TW200820830A - Light source module driving device - Google Patents

Light source module driving device Download PDF

Info

Publication number
TW200820830A
TW200820830A TW95138094A TW95138094A TW200820830A TW 200820830 A TW200820830 A TW 200820830A TW 95138094 A TW95138094 A TW 95138094A TW 95138094 A TW95138094 A TW 95138094A TW 200820830 A TW200820830 A TW 200820830A
Authority
TW
Taiwan
Prior art keywords
light source
transformer
signal
driving device
secondary winding
Prior art date
Application number
TW95138094A
Other languages
Chinese (zh)
Inventor
Chia-Peng Wang
Chih-Chan Ger
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95138094A priority Critical patent/TW200820830A/en
Publication of TW200820830A publication Critical patent/TW200820830A/en

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

A device for driving a light source module includes a power factor correction (PFC) circuit, a direct current (DC)/alternative current (AC) convert circuit, an isolating transformer, an inverter circuit and a PWM controller. The PFC circuit is used for converting a received AC signal to a DC signal. The DC/AC convert circuit is connected to the PFC circuit, for converting the DC signal to another AC signal. The isolating transformer includes a primary winding and at least a secondary winding. The primary winding of the isolating transformer is connected to the DC/AC convert circuit. The inverter circuit is connected to the secondary winding of the isolating transformer, for converting the AC signal to another AC signal to drive the light source module. The PWM controller is connected to the DC/AC convert circuit, for controlling the output of the DC/AC convert circuit.

Description

200820830 九、發明說明: 【發明所屬之技術領域】 β 本發明涉及一種光源驅動裝置,尤其涉及一種整合交流/ *直流轉換器之光源驅動裝置。 【先前技術】 通常,冷陰極螢光燈(Cold Cathode Fluorescent Lamps, CCFLs)或者夕卜部電極螢光燈(External Electrode Fluorescent _ Lamps,EEFLs)用作平面顯示裝置LCD模組之背光源,例如: 液晶顯示器、等離子顯示面板等。在LCD模組中,通常使用 r逆變器驅動一個或多個背光燈管並使其發光,該逆變器將從 交流/直流轉換器接收到的直流訊號轉換成一交流訊號,其 中’直流訊號的大小一般為5V至24V。 圖1所示係習知的光源驅動裝置,用於驅動一光源模組 14 ’其包括一交流電源10、一交流/直流轉換器11與一逆變器 籲12。其中,交流/直流轉換器11包括一功率因數校正電路110、 一直流/交流轉換電路111與一變壓器112。逆變器12包括一 電源轉換電路12〇與一逆變電路121。 其中,交流電源10輸出一交流訊號,並將該交流訊號透 過功率因數校正電路110昇壓轉換為一直流訊號輸出至直流/ 交流轉換電路111。直流/交流轉換電路111將該直流訊號轉換 為一方波訊號,並透過變壓器112及其週邊整流電路降壓且整 流後輪出另一直流訊號。逆變器12將接收到的直流訊號轉換 200820830 • 為一弦波訊號,並提供給光源模組14。 習知的光源驅動裝置中,交流輸入訊號需要經過直流一方 ! 波一直流一方波之轉換.,進而才能得到所需之弦波訊號,使得 ‘ 轉換效率明顯降低,大約為70%。顯然,習知光源驅動裝置不 僅具有較低的電源轉換效率,而且還佔據較大的空間,成本較 南。 【發明内容】 藝有鑑於此,需提供一種光源驅動裝置,其具有較高的轉換 效率。 . 一種光源驅動裝置,用於驅動一包括複數燈管之光源模 組,該光源驅動裝置包括一功率因數校正電路、一直流/交流 轉換電路、一隔離變壓器、一逆變電路以及一 PWM控制器。 其中,功率因數校正電路用於將一接收到的交流輸入訊號轉換 為一直流訊號。直流/交流轉換電路與功率因數校正電路相 ⑩連,用於將該直流訊號轉換為另一交流訊號。隔離變壓器包括 一初級繞組與至少一次級繞組,其中,該初級繞組與該直流/ 交流轉換電路相連,用於隔離該接收到的交流輸入訊號與該光 源模組。逆變電路與該隔離變壓器之次級繞組相連,用於將該 隔離變壓器輸出之交流訊號轉換為可驅動該光源模組之交流 訊號。PWM控制器連接於該直流/交流轉換電路相連,用於控 制該直流/交流轉換電路之輸出。 一種光源驅動裝置,用於驅動一包括複數燈管之光源模 200820830 •組,該光源驅動裝置包括一功率因數校正電路、一直流/交流 轉換電路、一隔離變壓器以及一逆變電路。其中,功率因數校 正電路用於將一接收到的交流訊號轉換為一直流訊號。直流/ 交流轉換電路與該功率因數校正電路相連,用於將該直流訊號 轉換為另一交流訊號。隔離變壓器包括一初級繞組與至少一次 級繞組,其中,該初級繞組與該直流/交流轉換電路相連,用 於隔離該接收到的交流訊號與該光源模組。逆變電路與該隔離 ⑩變壓器之次級繞組相連,用於將隔離變壓器輸出之交流訊號轉 換為可驅動該光源模組之交流訊號,該逆變電路包括複數變壓 器。每—變壓器包括至少一初級繞組以及至少一次級繞組。其 中’該等變壓器之初級繞組之高壓端均與該隔離變壓器次級繞 組之高壓端相連;該等變壓器之初級繞組之低壓端均與該隔離 變壓器次級繞組之低壓端相連;該等變壓器之次級繞組之高壓 端分別連接一燈管。 ® 本發明之光源驅動裝置直接將隔離變壓器輸出之交流訊 號輸出至逆變電路,提高轉換效率。 【實施方式】 圖2所示係本發明一實施方式中光源驅動裝置之模組圖。 該光源驅動裴置用於驅動一光源模組47,其包括一交流電源 電磁干擾(Electro-Magnetic Interference,EMI)濾波電 路41、一功率因數校正電路42、一功率因數控制器43、一直 流/交流轉換電路44、一隔離變壓器T1、一逆變電路45以及 200820830 一脈波寬度調變(Pulse-Width Modulation,PWM)控制器 46。 本實施方式中,光源模組47包括複數燈管。 , 同樣,交流電源40提供一交流訊號,並透過EMI濾波電 ‘ 路41傳送至功率因數校正電路42。EMI濾波電路41連接於 交流電源40與功率因數校正電路42之間,用於濾除交流電源 40輸出之交流訊號中的EMI訊號。本實施方式中,功率因數 校正電路42係一昇壓型電路,其用於將該交流訊號轉換為一 _直流訊號並昇壓。在本實施例中,昇壓後的直流訊號大約為 400V。 本實施方式中,功率因數控制器42用於將該功率因數校 正電路之輸出迴授至該功率因數校正電路,以穩定該功率因數 校正電路之直流輸出。 直流/交流轉換電路44與功率因數校正電路42相連,用 於將功率因數校正電路42輸出之直流訊號轉換為一交流訊 _號。本實施方式中,直流/交流轉換電路44輸出之交流訊號係 一方波訊號,且該直流/交流轉換電路44可以為全橋式架構 (Full-Bridge )、半橋式架構(Half-Bridge )、推挽式架構 (Push-Pull)或是自激式(Royer)架構。 隔離變壓器T1具有一初級繞組與一次級繞組,其中’該 初級繞組與直流/交流轉換電路44相連,其次級繞組與逆變電 路45相連。本發明其他實施方式中,隔離變壓器T1可具有複 數次級繞組。通常,根據安規可知,交流電源40輸出之電壓 200820830 屬於危險電壓,為了使得光源模組47及驅動其的逆變電路45 處於安全狀態,則使用隔離變壓器T1將危險的交流電源40與 , 光源模組47及驅動其的逆變電路45隔離開來。本實施方式 ‘中,隔離變壓器T1同時還具有降壓之功能。 逆變電路45用於將隔離變壓器T1輸出之交流訊號轉換為 另一交流訊號,並輸出給光源模組47用於驅動其點亮。本實 施方式中,逆變電路45輸出之交流訊號係一弦波訊號。 _ PWM控制器46與直流/交流轉換電路44相連,用於根據 接收到的一迴授訊號控制直流/交流轉換電路44之輸出。本實 施方式中,該迴授訊號可以是電流迴授訊號,即由一電流迴授 電路(圖中未顯示)將流經光源模組47之電流迴授至PWM控 制器46 ;抑或是由一感測電路(圖中未顯示)將感測到的光源 模組47之電壓、溫度等迴授訊號迴授至PWM控制器46。因 此,PWM控制器46可根據該等迴授訊號檢測流經光源模組 春47之電流、加載在光源模組47上之電壓、光源模組47之溫度 等,從而控制直流/交流轉換電路44之輸出。 圖3所示係圖2之一具體電路圖。其中,逆變電路45包 括複數變壓器T4n(n=l,2, 3,…,η)及複數電容C4n(n=l,2, 3,…, η),光源模組47包括複數燈管L4n(n=l,2,3, ...,n)。其中,每 一變壓器T4n(n=l,2,3,.·.,η)均包括一初級繞組與一次級繞 組。本實施方式中,該等變壓器Τ4η(η=1,2, 3, ·.·,!!)之初級繞 組之高壓端均與隔離變壓器之次級繞組之高壓端相連,該等變 11 200820830 .壓器Τ4η(η=1,2, 3, ···,!!)之初級繞組之低壓端均與隔離變壓器 之次級繞組之低壓端相連。該等變壓器Τ4η(η=1,2, 3,…,η)之 次級繞組之高壓端對應連接一燈管之一端,該等變壓器 一 Τ4η(η=1,2, 3,···,η)之次級繞組之低壓端接地,且該等燈管 L4n(n=l,2, 3, ···,η)之另一端亦接地。電容 C4n(n=l,2, 3,…,η) 對應跨接於該等變壓器Τ4η(η=1,2, 3, ...,η)之次級繞組之高壓 端與低壓端之間,與該等變壓器Τ4η(η=1,2, 3,…,η)次級繞組 ⑩之漏電感形成一諧振電路,將隔離後的直流訊號轉換為可驅動 光源模組47之交流訊號。本發明其他實施方式中,由於燈管 L4n(n=l,2,3,···,η)中存在有寄生電容,其可以代替電容 C4n(n=l,2, 3,···,η)與隔離變壓器T1次級繞組之漏感形成諧 振電路’該種情況下,電容C4n(n=l,2, 3,…,η)可以省略。且, C4n(n=l,2, 3,···,η)與隔離變壓器T1次級繞組亦可以採用其 他方式連接,其不侷限於本實施方式之連接方式。同樣,本發 •明其他實施方式中,變壓器T4n(n=i,2, 3, ···,!!)亦可具有複數 初級繞組。 圖4係本發明圖2之另一具體電路圖。其中,逆變電路55 包括複數變壓器T5n(n=l,2, 3,…,η)以及複數電容C5k(k=l,2, 3,…,2n) ’光源模組57包括複數燈管L5k(k=l,2, 3,…,2n)。 其中’母一變壓器T5n(n=l,2, 3,···,n)均包括一初級繞組、一 第一次級繞組以及一第二次級繞組。該等變壓器T5n(n=l,2, 3,…,η)之初級繞組之高壓端均與隔離變壓器T1之次級繞組之 12 200820830 ,高壓端相連,該等變壓器Τ5η(η=1,2, 3, ···,η)之次級繞組之低 壓端均與隔離變壓器Τ1之次級繞組之低壓端相連。於每一變 ^ 壓器Τ5η(η=1,2, 3, ·.·,!!)中,第一與第二次級繞組之高壓端分 ' 別對應連接一燈管之一端,其低壓端均接地。且,該等燈管之 另一端亦接地。電容C5k(k=l,2, 3,…,2η)對應跨接於該等變 壓器Τ5η(η=1,2, 3,…,η)之第一次級繞組之高壓端與低壓端之 間,以及該等變壓器Τ5η(η=1,2, 3,…,η)之第二次級繞組之高 _壓端與低壓端之間,與該等變壓器Τ5η(η=1,2, 3,…,η)第一、 第二次級繞組之漏電感形成諳振電路,將隔離後的直流訊號轉 換為可驅動光源模組57之交流訊號。同樣,本發明其他實施 方式中,變壓器Τ5η(η=1,2, 3,…,η)可具有複數初級繞組。 圖5係本發明圖2之又一具體電路圖,其與圖4所示之電 路結構基本相同,區別在於··圖5所示之光源模組67包括複 數燈管 L6m(m=l,2, 3,…,4η),且每一變壓器 Τ6(η)(η=1,2, 3,···,η)之第一次級繞組與第二次級繞組之高壓端與低壓端分 別對應連接一燈管。 由此可見,本發明之光源驅動裝置直接將隔離變壓器輸出 之父流訊號輸出給逆變電路,其省略習知的整流電路與電源轉 換電路,使得整體轉換效率可達85%,而且同時減小了光源驅 動裝置之體積、降低成本。 ^ π上所述,本發明符合發明專利要件,爰依法提出專利申 、上所述者僅為本發明之較佳實施例,舉凡熟悉本案 13 、 200820830 技藝之人士,在爰依本案發明精神所作之等效修飾或變化,皆 應包含於以下之申請專利範圍内。 ^【圖式簡單說明】 ‘ 圖1係習知光源驅動裝置之模組圖。 圖2係本發明一實施方式之光源驅動裝置之模組圖。 圖3係本發明圖2之一具體電路圖。 圖4係本發明圖2之另一具體電路圖。 _圖5係本發明圖2之又一具體電路圖。 【主要元件符號說明】 光源模組 40 EMI濾波電路 41 功率因數校正電路 42 功率因數控制器 43 直流/交流轉換電路 44 _逆變電路 45、55、65 P WM控制器 變壓器 電容 46 ΤΙ、T4n(n=l,2,…,η)、 Τ5η(η=1? 2? ... ? η)^ Τ6η(η=1? 2,…,π) C4n(n=l,2,…,η)、 C5(2n)(n=l,2,…,η)、 C6(2n) (η=1,2,…,η) 200820830 光源模組 47、57、67 燈管 4n(n=l,2,…,η)、 • L5(2n)(n=l,2,…,η)、 " L6(2n) (η=1,2,…,η) 籲 15200820830 IX. Description of the Invention: [Technical Field] The present invention relates to a light source driving device, and more particularly to a light source driving device incorporating an AC/*DC converter. [Prior Art] Generally, Cold Cathode Fluorescent Lamps (CCFLs) or External Electrode Fluorescent Lamps (EEFLs) are used as backlights for LCD modules of flat panel display devices, such as: Display, plasma display panel, etc. In an LCD module, one or more backlight tubes are usually driven and illuminated by an r inverter, and the inverter converts a DC signal received from an AC/DC converter into an AC signal, where 'DC signal The size is generally 5V to 24V. A conventional light source driving device for driving a light source module 14' includes an AC power source 10, an AC/DC converter 11 and an inverter. The AC/DC converter 11 includes a power factor correction circuit 110, a DC/AC conversion circuit 111, and a transformer 112. The inverter 12 includes a power conversion circuit 12A and an inverter circuit 121. The AC power source 10 outputs an AC signal, and the AC signal is boosted and converted to a DC signal to the DC/AC conversion circuit 111 through the power factor correction circuit 110. The DC/AC conversion circuit 111 converts the DC signal into a one-wave signal, and depressurizes through the transformer 112 and its peripheral rectifier circuit, and rectifies and rotates another DC signal. The inverter 12 converts the received DC signal into 200820830. • It is a string signal and is supplied to the light source module 14. In the conventional light source driving device, the AC input signal needs to pass through the DC side wave to convert the square wave, so that the desired sine wave signal can be obtained, so that the conversion efficiency is significantly reduced, about 70%. Obviously, the conventional light source driving device not only has a low power conversion efficiency, but also occupies a large space and costs relatively. SUMMARY OF THE INVENTION In view of the above, it is desirable to provide a light source driving device that has high conversion efficiency. A light source driving device for driving a light source module including a plurality of lamps, the light source driving device comprising a power factor correction circuit, a DC/AC conversion circuit, an isolation transformer, an inverter circuit, and a PWM controller . The power factor correction circuit is configured to convert a received AC input signal into a DC signal. The DC/AC conversion circuit is connected to the power factor correction circuit for converting the DC signal into another AC signal. The isolation transformer includes a primary winding and at least a primary winding, wherein the primary winding is coupled to the DC/AC conversion circuit for isolating the received AC input signal from the optical source module. The inverter circuit is connected to the secondary winding of the isolation transformer, and is configured to convert the AC signal outputted by the isolation transformer into an AC signal that can drive the light source module. A PWM controller is coupled to the DC/AC conversion circuit for controlling the output of the DC/AC conversion circuit. A light source driving device for driving a light source module including a plurality of lamps 200820830. The light source driving device comprises a power factor correction circuit, a DC/AC conversion circuit, an isolation transformer and an inverter circuit. The power factor correction circuit is configured to convert a received AC signal into a DC signal. A DC/AC conversion circuit is coupled to the power factor correction circuit for converting the DC signal to another AC signal. The isolation transformer includes a primary winding and at least a primary winding, wherein the primary winding is coupled to the DC/AC conversion circuit for isolating the received AC signal from the light source module. The inverter circuit is connected to the secondary winding of the isolation transformer, and is configured to convert an alternating current signal outputted by the isolation transformer into an alternating current signal capable of driving the light source module, and the inverter circuit comprises a plurality of transformers. Each transformer includes at least one primary winding and at least one primary winding. Wherein the high voltage ends of the primary windings of the transformers are connected to the high voltage ends of the secondary windings of the isolation transformer; the low voltage ends of the primary windings of the transformers are connected to the low voltage ends of the secondary windings of the isolation transformer; The high voltage ends of the secondary windings are respectively connected to a lamp. The light source driving device of the present invention directly outputs an alternating current signal output from the isolation transformer to the inverter circuit to improve conversion efficiency. [Embodiment] FIG. 2 is a block diagram showing a light source driving device according to an embodiment of the present invention. The light source driving device is configured to drive a light source module 47, and includes an AC-electromagnetic interference (EMI) filter circuit 41, a power factor correction circuit 42, a power factor controller 43, and a DC/ The AC conversion circuit 44, an isolation transformer T1, an inverter circuit 45, and 200820830, a Pulse-Width Modulation (PWM) controller 46. In this embodiment, the light source module 47 includes a plurality of lamps. Similarly, the AC power source 40 provides an AC signal and is transmitted to the power factor correction circuit 42 via the EMI filter circuit 41. The EMI filter circuit 41 is connected between the AC power source 40 and the power factor correction circuit 42 for filtering the EMI signal in the AC signal output from the AC power source 40. In this embodiment, the power factor correction circuit 42 is a step-up type circuit for converting the AC signal into a DC signal and boosting. In this embodiment, the boosted DC signal is approximately 400V. In this embodiment, the power factor controller 42 is configured to feedback the output of the power factor correction circuit to the power factor correction circuit to stabilize the DC output of the power factor correction circuit. The DC/AC conversion circuit 44 is coupled to the power factor correction circuit 42 for converting the DC signal output from the power factor correction circuit 42 into an AC signal. In this embodiment, the AC signal outputted by the DC/AC conversion circuit 44 is a one-wave signal, and the DC/AC conversion circuit 44 can be a full-bridge architecture (Half-Bridge) or a half-bridge architecture (Half-Bridge). Push-Pull or self-excited (Royer) architecture. The isolation transformer T1 has a primary winding and a primary winding, wherein the primary winding is connected to a DC/AC conversion circuit 44, and its secondary winding is connected to an inverter circuit 45. In other embodiments of the invention, the isolation transformer T1 may have a plurality of secondary windings. Generally, according to the safety regulations, the voltage of the output of the AC power source 40200820830 is a dangerous voltage. In order to make the light source module 47 and the inverter circuit 45 driving the same, the isolation transformer T1 is used to connect the dangerous AC power source 40 with the light source module. The group 47 and the inverter circuit 45 that drives it are isolated. In the present embodiment, the isolation transformer T1 also has a function of step-down. The inverter circuit 45 is configured to convert the AC signal output from the isolation transformer T1 into another AC signal, and output it to the light source module 47 for driving the illumination. In this embodiment, the AC signal output by the inverter circuit 45 is a chord signal. The PWM controller 46 is coupled to the DC/AC conversion circuit 44 for controlling the output of the DC/AC conversion circuit 44 based on a received feedback signal. In this embodiment, the feedback signal may be a current feedback signal, that is, a current flowing back through the light source module 47 is fed back to the PWM controller 46 by a current feedback circuit (not shown); The sensing circuit (not shown) feeds back the sensed voltage and temperature feedback signals of the light source module 47 to the PWM controller 46. Therefore, the PWM controller 46 can detect the current flowing through the light source module spring 47, the voltage applied to the light source module 47, the temperature of the light source module 47, etc. according to the feedback signals, thereby controlling the DC/AC conversion circuit 44. The output. Figure 3 is a specific circuit diagram of Figure 2. The inverter circuit 45 includes a plurality of transformers T4n (n=l, 2, 3, . . . , η) and a plurality of capacitors C4n (n=l, 2, 3, . . . , η), and the light source module 47 includes a plurality of lamps L4n. (n=l, 2, 3, ..., n). Each of the transformers T4n (n = 1, 2, 3, . . . , η) includes a primary winding and a primary winding. In this embodiment, the high voltage ends of the primary windings of the transformers η4η (η=1, 2, 3, . . . , !!) are connected to the high voltage end of the secondary winding of the isolation transformer, and the variable 11 200820830 . The low voltage end of the primary winding of the voltage transformer η4η (η=1, 2, 3, ···, !!) is connected to the low voltage end of the secondary winding of the isolation transformer. The high voltage ends of the secondary windings of the transformers η4η (η=1, 2, 3, ..., η) are connected to one end of a lamp, and the transformers are 4 η (η = 1, 2, 3, ...) The low voltage side of the secondary winding of η) is grounded, and the other end of the lamps L4n (n=l, 2, 3, ···, η) is also grounded. The capacitor C4n (n=l, 2, 3, ..., η) corresponds between the high voltage end and the low voltage end of the secondary winding which is connected across the transformers η4η (η=1, 2, 3, ..., η) And forming a resonant circuit with the leakage inductance of the secondary winding 10 of the transformer η4η (η=1, 2, 3, . . . , η), converting the isolated DC signal into an AC signal that can drive the light source module 47. In other embodiments of the present invention, since there is a parasitic capacitance in the lamp L4n (n=l, 2, 3, . . . , η), it can replace the capacitor C4n (n=l, 2, 3, . . . , η) forms a resonant circuit with the leakage inductance of the secondary winding of the isolation transformer T1. In this case, the capacitance C4n (n = 1, 2, 3, ..., η) can be omitted. Further, C4n (n = 1, 2, 3, ..., η) and the secondary winding of the isolation transformer T1 may be connected in other ways, which is not limited to the connection mode of the present embodiment. Similarly, in other embodiments of the present invention, the transformer T4n (n = i, 2, 3, ..., !!) may also have a plurality of primary windings. 4 is another specific circuit diagram of FIG. 2 of the present invention. The inverter circuit 55 includes a plurality of transformers T5n (n=l, 2, 3, . . . , η) and a plurality of capacitors C5k (k=l, 2, 3, . . . , 2n). The light source module 57 includes a plurality of lamps L5k. (k=l, 2, 3,..., 2n). Wherein the mother-transformer T5n (n = 1, 2, 3, ..., n) each includes a primary winding, a first secondary winding, and a second secondary winding. The high voltage ends of the primary windings of the transformers T5n (n=l, 2, 3, ..., η) are connected to the high voltage end of the secondary winding 12 200820830 of the isolation transformer T1, and the transformers Τ 5η (η = 1, 2) The low voltage ends of the secondary windings of 3, ···, η) are all connected to the low voltage end of the secondary winding of the isolation transformer Τ1. In each of the transformers η5η (η=1, 2, 3, ·.·, !!), the high voltage ends of the first and second secondary windings are respectively connected to one end of a lamp, and the low voltage thereof Both ends are grounded. Moreover, the other end of the lamps is also grounded. The capacitor C5k (k=l, 2, 3, ..., 2η) corresponds between the high voltage end and the low voltage end of the first secondary winding which is connected across the transformers η5η (η=1, 2, 3, ..., η) And between the high_voltage terminal and the low voltage terminal of the second secondary winding of the transformer Τ5η (η=1, 2, 3, ..., η), and the transformer Τ5η (η=1, 2, 3, ..., η) The leakage inductance of the first and second secondary windings forms a oscillating circuit, and converts the isolated DC signal into an AC signal that can drive the light source module 57. Also, in other embodiments of the invention, the transformer η5η (η = 1, 2, 3, ..., η) may have a plurality of primary windings. 5 is another specific circuit diagram of FIG. 2 of the present invention, which is basically the same as the circuit structure shown in FIG. 4, and the difference is that the light source module 67 shown in FIG. 5 includes a plurality of lamps L6m (m=l, 2, 3,...,4η), and the high voltage end and the low voltage end of the first secondary winding and the second secondary winding of each transformer Τ6(η) (η=1, 2, 3, ···, η) respectively Connect a light tube. It can be seen that the light source driving device of the present invention directly outputs the parent flow signal of the output of the isolation transformer to the inverter circuit, which omits the conventional rectifier circuit and the power conversion circuit, so that the overall conversion efficiency can reach 85%, and simultaneously reduce The volume of the light source driving device reduces the cost. ^ π above, the present invention meets the requirements of the invention patent, and the patent application is filed according to law, and the above description is only a preferred embodiment of the present invention. Those who are familiar with the skill of the present case 13 and 200820830 are in the spirit of the invention. Equivalent modifications or variations are intended to be included in the scope of the following claims. ^ [Simple description of the diagram] ‘ Figure 1 is a block diagram of a conventional light source driving device. 2 is a block diagram of a light source driving device according to an embodiment of the present invention. Figure 3 is a specific circuit diagram of Figure 2 of the present invention. 4 is another specific circuit diagram of FIG. 2 of the present invention. FIG. 5 is still another specific circuit diagram of FIG. 2 of the present invention. [Main component symbol description] Light source module 40 EMI filter circuit 41 Power factor correction circuit 42 Power factor controller 43 DC/AC conversion circuit 44 _ Inverter circuit 45, 55, 65 P WM controller Transformer capacitor 46 ΤΙ, T4n ( n=l,2,...,η),Τ5η(η=1? 2? ... ? η)^ Τ6η(η=1? 2,...,π) C4n(n=l,2,...,η) , C5(2n)(n=l,2,...,η), C6(2n) (η=1,2,...,η) 200820830 Light source module 47, 57, 67 Tube 4n (n=l, 2 ,...,η), • L5(2n)(n=l,2,...,η), " L6(2n) (η=1,2,...,η)

Claims (1)

200820830 ,十、申請專利範圍: 1· 一種光源驅動裝置,用於驅動一包括複數燈管之光源模組, * 該光源驅動裝置包括: • 一功率因數校正電路,用於將一接收到的交流訊號轉換為一 直流訊號; 一直流/交流轉換電路,與該功率因數校正電路相連,用於 將該直流訊號轉換為另一交流訊號; _ 一隔離變壓器,其包括一初級繞組與至少一次級繞組,其 中,該初級繞組與該直流/交流轉換電路相連,用於隔離該 接收到的交流訊號與該光源模組; 一逆變電路,與該隔離變壓器之次級繞組相連,用於將隔離 變壓器輸出之交流訊號轉換為可驅動該光源模組之交流訊 號;以及 一 PWM控制器,與該直流/交流轉換電路相連,用於控制該 _ 直流/交流轉換電路之輸出。 2·如申請專利範圍第1項所述之光源驅動裝置,其中更包括一 交流電源,用於提供該接收到的交流訊號。 3·如申睛專利範圍第2項所述之光源驅動裝置,其中更包括一 電磁干擾濾波電路,連接於該交流電源與該功率因數校正電 路之間,用於濾除該接收到的交流訊號中的電磁干擾訊號。 4·如申請專利範圍第1項所述之光源驅動裝置,其中該PWM 控制器接收一迴授訊號。 16 200820830 5.申請專利範圍第1項所述之光源驅動裝置,更包括一功率因 數控制器,用於將該功率因數校正電路之輸出迴授至該功率 _ 因數校正電路,以穩定該功率因數校正電路之直流輸出。 4 6.如申請專利範圍第1項所述之光源驅動裝置,其中該逆變電 路包括: 複數變壓器,每一變壓器包括至少一初級繞組與一次級繞 組;以及 _ 複數電容,對應跨接於該等變壓器次級繞組之高壓端與低壓 端之間; 其中,該等變壓器之初級繞組之高壓端均與該隔離變壓器次 級繞組之高壓端相連;該等變壓器之初級繞組之低壓端均與 該隔離變壓器次級繞組之低壓端相連;該等變壓器之次級繞 組之高壓端分別連接一燈管;該等變壓器之次級繞組之低壓 端接地。 • 7.如申請專利範圍第1項所述之光源驅動裝置,其中該逆變電 路包括: 複數變壓器,每一變壓器包括至少一初級繞組、一第一次級 繞組以及一第二次級繞組;以及 複數電容,對應跨接於該等變壓器第一次級繞組與第二次級 繞組之高壓端與低壓端之間; 其中,該等變壓器之初級繞組之高壓端均與該隔離變壓器次 級繞組之高壓端相連;該等變壓器之初級繞組之低壓端均與 17 200820830 . 該隔離變壓器次級繞組之低壓端相連;該等變壓器之第一次 級繞組與第二次級繞組之高壓端分別連接一燈管;該等變壓 : 器之第一次級繞組與第二次級繞組之低壓端接地。 ‘ 8.如申請專利範圍第1項所述之光源驅動裝置,其中該逆變 電路包括: 複數變壓器,每一變壓器包括至少一初級繞組、一第一次級 繞組以及一第二次級繞組;以及 _ 複數電容,對應跨接於該等變壓器第一次級繞組與第二次級 繞組之高壓端與低壓端之間; 其中,該等變壓器之初級繞組之高壓端均與該隔離變壓器次 級繞組之高壓端相連;該等變壓器之初級繞組之低壓端均與 該隔離變壓器次級繞組之低壓端相連;該等變壓器之第一次 級繞組與第二次級繞組之高壓端與低壓端分別連接一燈管。 9. 一種光源驅動裝置,用於學動一包括複數燈管之光源模組, _ 該光源驅動裝置包括: 一功率因數校正電路,用於將一接收到的交流訊號轉換為一 直流訊號; 一直流/交流轉換電路,與該功率因數校正電路相連,用於 將該直流訊號轉換為另一交流訊號; 一隔離變壓器,其包括一初級繞組與至少一次級繞組,其 中,該初級繞組與該直流/交流轉換電路相連,用於隔離該 接收到的交流訊號與該光源模組;以及 18 200820830 睿 , 一逆變電路,與該隔離變壓器之次級繞組相連,用於將隔離 變壓器輸出之交流訊號轉換為可驅動該光源模組之交流訊 ; 號,該逆變電路包括: β 複數變壓器,每一變壓器包括至少一初級繞組以及至少一次 級繞組; 其中,該等變壓器之初級繞組之高壓端均與該隔離變壓器次 級繞組之高壓端相連;該等變壓器之初級繞組之低壓端均與 , 該隔離變壓器次級繞組之低壓端相連;該等變壓器之次級繞 組之高壓端分別連接一燈管。 10. 如申請專利範圍第9項所述之光源驅動裝置,其中該逆變 電路更包括複數電容,對應跨接該等變壓器次級繞組之高壓 端與低壓端之間。 11. 如申請專利範圍第9項所述之光源驅動裝置,更包括一 PWM控制器,與該直流/交流轉換電路相連,用於控制該直 Λ 流/交流轉換電路之輸出。 12. 如申請專利範圍第11項所述之光源驅動裝置,其中該PWM 控制器接收一迴授訊號。 13. 如申請專利範圍第9項所述之光源驅動裝置,其中該等變 壓器之次級繞組之低壓端分別連接一燈管。 14. 如申請專利範圍第9項所述之光源驅動裝置,更包括一功 率因數控制器,用於將該功率因數校正電路之輸出迴授至該 功率因數校正電路,以穩定功率因數校正電路之直流輸出。 19200820830, X. Patent application scope: 1. A light source driving device for driving a light source module including a plurality of lamps, * The light source driving device comprises: • a power factor correction circuit for receiving a received communication The signal is converted into a constant current signal; a DC/AC conversion circuit is connected to the power factor correction circuit for converting the DC signal into another AC signal; _ an isolation transformer comprising a primary winding and at least a primary winding The primary winding is connected to the DC/AC conversion circuit for isolating the received AC signal from the light source module; an inverter circuit is connected to the secondary winding of the isolation transformer for isolating the transformer The output AC signal is converted into an AC signal that can drive the light source module; and a PWM controller is connected to the DC/AC conversion circuit for controlling the output of the DC/AC conversion circuit. 2. The light source driving device of claim 1, further comprising an alternating current power source for providing the received alternating current signal. 3. The light source driving device of claim 2, further comprising an electromagnetic interference filter circuit connected between the alternating current power source and the power factor correction circuit for filtering the received alternating current signal The electromagnetic interference signal. 4. The light source driving device of claim 1, wherein the PWM controller receives a feedback signal. 16 200820830 5. The light source driving device of claim 1, further comprising a power factor controller for feeding back the output of the power factor correction circuit to the power factor correction circuit to stabilize the power factor Correct the DC output of the circuit. 4. The light source driving device of claim 1, wherein the inverter circuit comprises: a plurality of transformers, each transformer comprising at least one primary winding and a primary winding; and _ a plurality of capacitors correspondingly connected to the The high voltage end of the primary winding of the transformer is connected to the high voltage end of the secondary winding of the isolation transformer; the low voltage end of the primary winding of the transformer is The low voltage ends of the secondary windings of the isolation transformer are connected; the high voltage ends of the secondary windings of the transformers are respectively connected to a lamp; the low voltage ends of the secondary windings of the transformers are grounded. 7. The light source driving device of claim 1, wherein the inverter circuit comprises: a plurality of transformers, each transformer comprising at least one primary winding, a first secondary winding, and a second secondary winding; And a plurality of capacitors correspondingly connected between the high voltage end and the low voltage end of the first secondary winding and the second secondary winding of the transformer; wherein the high voltage end of the primary winding of the transformer and the secondary winding of the isolation transformer The high voltage terminals are connected; the low voltage ends of the primary windings of the transformers are connected to the low voltage end of the secondary winding of the isolation transformer; the first secondary windings of the transformers are respectively connected to the high voltage ends of the second secondary windings a lamp tube; the transformers are grounded at a low voltage end of the first secondary winding and the second secondary winding. 8. The light source driving device of claim 1, wherein the inverter circuit comprises: a plurality of transformers, each transformer comprising at least one primary winding, a first secondary winding, and a second secondary winding; And _ a plurality of capacitors correspondingly connected between the high voltage end and the low voltage end of the first secondary winding and the second secondary winding of the transformer; wherein the high voltage end of the primary winding of the transformer is opposite to the isolation transformer secondary a high voltage end of the winding is connected; a low voltage end of the primary winding of the transformer is connected to a low voltage end of the secondary winding of the isolation transformer; respectively, a high voltage end and a low voltage end of the first secondary winding and the second secondary winding of the transformer Connect a light tube. 9. A light source driving device for learning a light source module including a plurality of light tubes, wherein the light source driving device comprises: a power factor correction circuit for converting a received alternating current signal into a direct current signal; a current/AC conversion circuit coupled to the power factor correction circuit for converting the DC signal to another AC signal; an isolation transformer including a primary winding and at least a primary winding, wherein the primary winding and the DC / an AC conversion circuit connected to isolate the received AC signal from the light source module; and 18 200820830 Rui, an inverter circuit connected to the secondary winding of the isolation transformer for outputting an AC signal of the isolation transformer Converting to an alternating current signal capable of driving the light source module; the inverter circuit comprises: a beta complex transformer, each transformer comprising at least one primary winding and at least one primary winding; wherein the high voltage ends of the primary windings of the transformers Connected to the high voltage end of the secondary winding of the isolation transformer; the primary winding of the transformer And voltage terminal are connected to the low pressure end of the secondary winding of the isolation transformer; such a high voltage terminal of the secondary winding of the transformer are connected to a tube. 10. The light source driving device of claim 9, wherein the inverter circuit further comprises a plurality of capacitors corresponding between the high voltage end and the low voltage end of the secondary windings of the transformers. 11. The light source driving device of claim 9, further comprising a PWM controller coupled to the DC/AC conversion circuit for controlling an output of the DC/AC conversion circuit. 12. The light source driving device of claim 11, wherein the PWM controller receives a feedback signal. 13. The light source driving device of claim 9, wherein the low voltage ends of the secondary windings of the transformers are respectively connected to a lamp. 14. The light source driving device of claim 9, further comprising a power factor controller for feeding back the output of the power factor correction circuit to the power factor correction circuit to stabilize the power factor correction circuit DC output. 19
TW95138094A 2006-10-16 2006-10-16 Light source module driving device TW200820830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95138094A TW200820830A (en) 2006-10-16 2006-10-16 Light source module driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95138094A TW200820830A (en) 2006-10-16 2006-10-16 Light source module driving device

Publications (1)

Publication Number Publication Date
TW200820830A true TW200820830A (en) 2008-05-01

Family

ID=44770288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95138094A TW200820830A (en) 2006-10-16 2006-10-16 Light source module driving device

Country Status (1)

Country Link
TW (1) TW200820830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401996B (en) * 2009-02-27 2013-07-11 Ampower Technology Co Ltd Light source driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401996B (en) * 2009-02-27 2013-07-11 Ampower Technology Co Ltd Light source driving device

Similar Documents

Publication Publication Date Title
US7492107B2 (en) Device for driving light source module
US7291987B2 (en) Power supply system for flat panel display devices
US8179053B2 (en) Power supply for an LCD display
US7443108B2 (en) Apparatus for driving a plurality of lamps
TW200945952A (en) Light source driving device
JP2004533800A (en) Power supply device and liquid crystal display device having the same
US20070046218A1 (en) Apparatus and method for driving plural lamps
US8120262B2 (en) Driving circuit for multi-lamps
TWI382384B (en) Inverter and driving device of backlight module
US8143804B2 (en) Light source driving device
US20080089099A1 (en) Half-bridge CCFL driving apparatus
TW200814501A (en) Power adapter and power supply system using the same
US7825606B2 (en) Fluorescent lamp driver power
CN101568219B (en) Light source driving device
CN101409972A (en) Driver system and method for a plurality of cold cathode fluorescent lamp and/or outer electrode florescent lamp
US7518317B2 (en) Backlight driving and control circuit with an isolated power factor correction structure
TW200820830A (en) Light source module driving device
US7256553B1 (en) Lamp driving system controlled by electrical isolation
TWM360424U (en) Light source driving device
CN201352875Y (en) Light source driving device
TW201012299A (en) A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device
TWI401996B (en) Light source driving device
CN201256476Y (en) Driving apparatus of multiple strip lamp
TW201029518A (en) Single-stage driving circuit for fluorescent lamp tube with high power factor and high performance
CN201197214Y (en) Light tube driving device