TW200820471A - Polymer composite P-N junction and method for manufacturing the same and polymer composite diode adopting the same - Google Patents

Polymer composite P-N junction and method for manufacturing the same and polymer composite diode adopting the same Download PDF

Info

Publication number
TW200820471A
TW200820471A TW95138894A TW95138894A TW200820471A TW 200820471 A TW200820471 A TW 200820471A TW 95138894 A TW95138894 A TW 95138894A TW 95138894 A TW95138894 A TW 95138894A TW 200820471 A TW200820471 A TW 200820471A
Authority
TW
Taiwan
Prior art keywords
organic composite
polymer material
junction
type
layer
Prior art date
Application number
TW95138894A
Other languages
Chinese (zh)
Other versions
TWI350602B (en
Inventor
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW095138894A priority Critical patent/TWI350602B/en
Publication of TW200820471A publication Critical patent/TW200820471A/en
Application granted granted Critical
Publication of TWI350602B publication Critical patent/TWI350602B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention is related to a polymer composite p-n junction. The polymer composite p-n junction includes an n-type polymer composite layer and a p-type polymer composite layer. The n-type composite polymer layer includes a film of first polymer material and a number of electron conductive particles imbedded therein. The p-type composite polymer layer includes a film of second polymer material and a number of carbon nanotubes (CNTs) imbedded therein. The present invention is further related to a method for manufacturing the polymer composite p-n junction and a polymer composite diode adopting the polymer composite p-n junction.

Description

200820471 九、發明說明: • 【發明所屬之技術領域】 ^ 本發明涉及一種P-N結及其製備方法,尤其涉及 有機複合物P_N結及其製備方法以及應用所述p-N結 之有機複合物二極體。 【先前技術】 奈米碳管(CNTs)自90年代初由日本學者發現 _ 以來(IijimaS·,Nature,1991,354(7),56-58),立即 引起科學界及産業界之極大重視,係近年來國際科學研究 之熱點。奈米碳管由六元環組成之石墨片層結構捲曲而形 成之同心圓筒構成,隨直徑及螺旋性之不同,奈米碳管可 呈現金屬或半導體特性。奈米破管具有優異之力學性能, 強度比鋼南100倍,重量只有鋼的Ι/g。此外奈米碳管具 有吸波特性,可用於電磁遮罩或吸波材料等。特別地,奈 • 米碳管/聚合物複合材料自Ajayan等首次報道以來,已經 成爲世界科學研究之熱點(AjayanP.M·,etai,Science, 1994’ 265,1212-1215)。奈米碳管與聚合物之複合可以實 現組元材料之優勢互補或加強,故最經濟有效地利用奈米 碳官之獨特性能,也係奈米碳管穩定化之有效途徑。同時, 奈来碳管之加入,可以增強複合材料之導電性及力學性 能。目前電子領域已經設計並且製造出諸多的有機電子器 件。有機材料與傳統之半導體矽材料相比,具有低成本、 了 4曲基材相各以及可印刷或旋塗形成電子器件之特 點。然,儘管在有機半導體器件之研究和發展上投入很大 7 200820471 之人力、物力,有機器件因其電學性能差,至今仍然沒有 被廣泛地商業化。有機半導體器件與傳辭器件相比具有 較差電學性能,此主由械材料之低韻子遷移率、 低載流子密度等缺點決定。 有鑒於此,提供一種可藉由簡單之工藝大規模製備, ,有較高之載流子魏及概子遷料,並且可彎折、重 置輕之P-N及其製備方法以及應用所述p—N結之 為必要。 只 【發明内容】 一種有機複合物卜N結,其包括—電子财機複合物 層及-電洞型有機複合物層。所述電子型有機複合物層包 括第-聚合物㈣及均自分散於第—聚合物材财之^數 電子型導電顆粒。所述電洞型有機複合物層包括第二聚合 物材料及均勻刀政於第二聚合物材料中之複數奈米石炭管。 所述電子型有機複合物層中第一聚合物材料與第二聚 合物材料爲相同之材料或不同之材料。 所述第一聚合物材料與第二聚合物材料為聚乙烯乙二 醇、聚知、矽膠系列、環氧樹脂系列、缺氧膠系列及壓克 力膠系列之一種。 所述電洞型有機複合物層及電子型有機複合物層之厚 度均爲幾十微米至〇. 2毫米。 子 所述電子型導電顆粒爲氧化鋅顆粒,質量百分比爲 30〜50 wt% 。 ^ 所述奈米碳管之長度爲200奈米〜20微米,直徑爲 200820471 , 〇· 5〜200奈米,質量百分比爲0· 01〜30 wt%。 _ 一種有機複合物P-N結之製備方法,其包括下述步 驟·(一)提供一襯底;(二)混合複數奈米碳管與第二聚 5物材料,开^成電洞型有機複合物,並將其塗布於所述襯 底上;(三)混合複數電子型導電顆粒與第一聚合物材料, 形成電子型有機複合物,並將其塗布於已經固化之電洞型 有機複合物層上;以及(四)將電洞型有機複合物層及複 _ &於其上之電子型有機複合物層一起從襯底剝離。 所述步驟(二)中,在奈米碳管混合前,可進一步包 括將奈米碳管酸氧化純化之過程。 所述步驟(二)及步驟(三)中,塗布過程可爲旋塗 法、喷塗法、印刷法、壓模法及洗注法之一種。 所述電洞型有機複合物層及電子型有機複合物層之厚 度均爲幾十微米至0.2毫米。 一種有機複合物二極體包括一陰極電極,一陽極電極 鲁 及位於陰極電極與陽極電極之間之一有機複合物· p—N結, 所述有機複合物P-N結包括一電子型有機複合物層及一電 洞型有機複合物層,其中,所述電子型有機複合物層包括 第一聚合物材料及均勻分散於第一聚合物材料中之複數電 子型導電顆粒,所述電洞型有機複合物層包括第二聚合物 材料及均勻分散於第二聚合物材料中之複數奈米碳管。所 述陰極電極與陽極電極材料均爲金屬金。 與先前技術相較,所述P-N結製備方法簡單,可夢由 印刷、旋塗或噴塗等方法實現簡單、大規模製備。另,由 9 200820471200820471 IX. Description of the invention: • Technical field to which the invention pertains. The present invention relates to a PN junction and a method of fabricating the same, and more particularly to an organic composite P_N junction and a preparation method thereof, and an organic composite diode using the same. . [Prior Art] Since the discovery of nanocarbon tubes (CNTs) by Japanese scholars in the early 1990s (IijimaS·, Nature, 1991, 354(7), 56-58), it has immediately attracted great attention from the scientific community and industry. It is a hot spot in international scientific research in recent years. The carbon nanotubes are composed of a concentric cylinder in which a graphite sheet structure composed of a six-membered ring is crimped, and the carbon nanotubes may exhibit metal or semiconductor characteristics depending on the diameter and the helicity. The nano tube has excellent mechanical properties, the strength is 100 times higher than that of steel, and the weight is only Ι/g of steel. In addition, the carbon nanotubes have absorbing properties and can be used for electromagnetic shielding or absorbing materials. In particular, carbon nanotube/polymer composites have become a hotspot of scientific research in the world since Ajayan et al. (Ajayan P.M., etai, Science, 1994' 265, 1212-1215). The combination of the carbon nanotubes and the polymer can complement or enhance the advantages of the component materials, so the most cost-effective use of the unique properties of the carbon carbon official is also an effective way to stabilize the carbon nanotubes. At the same time, the addition of the carbon nanotubes can enhance the electrical conductivity and mechanical properties of the composite. Many electronic electronic devices have been designed and manufactured in the electronics field. Compared with traditional semiconductor tantalum materials, organic materials have the characteristics of low cost, four-layer substrate phase, and printable or spin-on forming electronic devices. However, despite the large amount of human and material resources invested in the research and development of organic semiconductor devices, organic devices have not been widely commercialized due to their poor electrical performance. Organic semiconductor devices have poor electrical performance compared to speech devices, which are determined by shortcomings such as low-sonic mobility and low carrier density of mechanical materials. In view of the above, there is provided a method for large-scale preparation by a simple process, which has a high carrier and a general relocation, and can bend and reset a light PN, a preparation method thereof, and the application of the p-N It is necessary to conclude. [Explanation] An organic composite, N-junction, comprising an electronic financial complex layer and a hole-type organic composite layer. The electronic type organic composite layer includes a first polymer (4) and an electron-type conductive particle which is self-dispersed in the first polymer material. The hole-type organic composite layer includes a second polymer material and a plurality of nano-carboniferous tubes uniformly coated in the second polymer material. The first polymer material and the second polymer material in the electronic type organic composite layer are the same material or different materials. The first polymer material and the second polymer material are one of a series of polyethylene glycol, poly know, tannin series, epoxy resin series, anoxic glue series and acrylic glue series. The thickness of the hole-type organic composite layer and the electron-type organic composite layer is several tens of micrometers to 〇. 2 mm. The electron-type conductive particles are zinc oxide particles in a mass percentage of 30 to 50% by weight. ^ The length of the carbon nanotubes is 200 nm to 20 μm, the diameter is 200820471, 〇·5~200 nm, and the mass percentage is 0·01~30 wt%. _ A method for preparing an organic composite PN junction, comprising the steps of: (1) providing a substrate; (2) mixing a plurality of carbon nanotubes and a second polymer material, and opening the hole into an organic composite And coating the substrate on the substrate; (3) mixing the plurality of electronic conductive particles with the first polymer material to form an electronic organic composite, and applying the same to the solidified organic compound And (4) stripping the hole-type organic composite layer and the electronic-type organic composite layer on the substrate together with the layer. In the step (2), before the mixing of the carbon nanotubes, the process of oxidizing and purifying the carbon nanotubes may be further included. In the step (2) and the step (3), the coating process may be one of a spin coating method, a spray coating method, a printing method, a compression molding method, and a washing method. The thickness of the hole-type organic composite layer and the electron-type organic composite layer are several tens of micrometers to 0.2 mm. An organic composite diode includes a cathode electrode, an anode electrode and an organic complex p-N junction between the cathode electrode and the anode electrode, and the organic composite PN junction includes an electronic organic compound And a hole-type organic composite layer, wherein the electronic organic composite layer comprises a first polymer material and a plurality of electron-type conductive particles uniformly dispersed in the first polymer material, the hole-type organic The composite layer includes a second polymeric material and a plurality of carbon nanotubes uniformly dispersed in the second polymeric material. The cathode electrode and the anode electrode material are both metal gold. Compared with the prior art, the P-N junction preparation method is simple, and it can be dreamed by simple, large-scale preparation by printing, spin coating or spraying. Also, by 9 200820471

於採用聚合物材料做爲基體,可製備質量輕、可彎折之p-N 結。同時,由於採用奈米碳管,所述結還具有導熱能 ‘ 力強、力學性能好等優點。 ^ 【實施方式】 下面將結合附圖對本發明實施例作進一步之詳細說 明。 請參閱圖1,本發明實施例提供—種有機複合物p_N 結10 ’其包括一電子型(N型)有機複合物層12,及一電 洞型(p型)有機複合物層14。電子型有機複合物層12包 括第-聚合物材料122及均勻分散於所述第—聚合物材料 中之電子型導電顆粒124。電洞型有機複合物層14包括第 二聚合物材料H2及均勻分散於該第二聚合物材料中之複 數奈米碳管144。 電子型有機複合物層12及電洞型有機複合物層14之 厚度範圍均爲幾十微米至0·2毫米。第一聚合物材料122 • 及第=聚合物材料124可以爲相同材料也可爲不同之材 料。第-聚合物材料122及第二聚合物材料124可爲聚乙 烯乙-醇、聚酯、石夕膠系列、環氧樹脂系列、缺氧膠 或壓克力膠系列材料。 ^ ” 山電洞型有機複合物層14中之奈米碳管144,還 勒碳顆粒、碳黑顆粒及碳纖維。奈米碳管14 ;田 一長度約二例中奈米 電洞型有機複合物層14中之奈米碳管144的質量百分 200820471 比含量爲G. Glwt%-3GwU,優選爲G.丨聲㈣,本實施中 爲1wt%。若奈来碳管144之質量百分比含量小於0. 01wt%, 貝^洞型有機複合物層14之導電性更接近絕緣體;若奈米 石反& 144之質罝百分含量大於3〇的%,則電洞型有機複合 物層14之導電性更接近導體。A lightweight, bendable p-N junction can be prepared using a polymeric material as the substrate. At the same time, due to the use of carbon nanotubes, the junction also has the advantages of high thermal conductivity, strong mechanical properties and the like. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, an embodiment of the present invention provides an organic composite p_N junction 10' which includes an electron (N-type) organic composite layer 12 and a hole-type (p-type) organic composite layer 14. The electronic organic composite layer 12 includes a first polymer material 122 and electronically conductive particles 124 uniformly dispersed in the first polymer material. The hole-type organic composite layer 14 includes a second polymer material H2 and a plurality of carbon nanotubes 144 uniformly dispersed in the second polymer material. The thickness of the electron-type organic composite layer 12 and the hole-type organic composite layer 14 is in the range of several tens of micrometers to 0.2 mm. The first polymeric material 122 and the = polymeric material 124 may be the same material or different materials. The first polymer material 122 and the second polymer material 124 may be a polyethylene glycol, a polyester, a lycopene series, an epoxy resin series, an anoxic rubber or an acrylic adhesive series material. ^ ” Nano-carbon tube 144 in the mountain-type organic composite layer 14, also carbon particles, carbon black particles and carbon fiber. Nano carbon tube 14; Tianyi length in about two cases of nano-hole organic compound The mass percentage of the carbon nanotubes 144 in the layer 14 is 200820471. The specific content is G. Glwt% - 3 GwU, preferably G. 丨 (4), and in this embodiment is 1 wt%. If the mass percentage of the carbon nanotubes 144 is less than 0. 01wt%, the electrical conductivity of the shell-and-hole type organic composite layer 14 is closer to the insulator; if the percentage of the mass of the nano-inverted & 144 is greater than 3%, the hole-type organic composite layer 14 Conductivity is closer to the conductor.

電子型有機複合物層12中之電子型導電顆粒124可爲 任何電子型導電材料。電子型導電顆粒124之質量百分含 量根據具體材料來選擇。本實施例中,電子型導電顆粒124 舄祕辞顆粒,氧化鋅之f量百分比含量爲術t%_5〇㈣。 在電子财顧合物層12巾,主要㈣子型導電顆粒 124▲提供電子載流子。電子型導電.124可採用電子密 度高、電子遷移率高之無機導電材料,故,所述電子型^ 機複合物層12既具有機材料f量輕、可料之特點,又具 無機材料電荷密度高、好遷料高之特點。在電洞型有 物層14中,由奈米碳管ι44提供電洞載流子。奈米 碳管144除具制密度高、制遷移率高之特性外,還且 導熱性’故,可提高P-N結之熱穩定性。另,奈米碳管144 優良之力學特性,可增強器件之力學性能。 請參_ 2,製備本發明實施例有機複合物P—N結10 之方法包括下述步驟·· “步驟1,提供-襯底(未標出)。概底材料可以爲玻璃、 石英、矽、金屬及氧化鋁等。 步驟2,混合複數奈米碳管144與第二聚合物材料 142 ’形成電_有频合物,並將其塗布於所述觀底上。 11 200820471 其中’將奈米碳管144與第二聚合物材料142之液態 預水物按比例混合,並加人少量膠聯劑,將混合後之液態 水狀電/同型有機複合物均勻地塗布於所述襯底上。待其固 化後,即得到電洞型有機複合物層14。 〆本實施例中,第二聚合物材料142爲矽橡膠,膠聯劑 爲四乙基石m奈米碳管144之質量百分比含量爲 0·Iwt%-4wt%。 不米碳管144混合前可進行酸氧化純化處理,去除金 屬性之奈米碳管及無定形碳,以利提高奈米碳管144之導 電性質。具體步驟包括:將重量比爲1:5〜1:1〇〇之奈米碳 官144與氧化性酸混合,在超聲或回流條件下處理〇· 小時,除去酸液,水洗並乾燥。所述之酸係濃硝酸、濃硫 酸或它們之任意混合物。或者將奈米碳管144與氧化性酸 共混’煮沸M0分鐘,然後清洗過濾。即得到處理 米碳管144。 $ 奈米碳管144與矽橡膠預聚物可以通過球磨法或者超 聲波法充分混合,以利奈米碳管均勻分佈於矽橡膠預聚物 中。球磨法係將奈米碳管與矽橡膠預聚物放入球磨機中混 合大約4個小時。超聲波法係先以石油醚做溶劑,得到矽 橡膠預聚物溶液,再將奈米碳管與矽橡膠預聚物溶液之混 合物以超聲波處理〇· 5至4小時。將球磨法或者超聲波= 處理後所得之液態漿狀混合物,加入少量膠聯劑,而後將 液態漿狀混合物塗布於一襯底上。塗布方法可爲旋塗、去: 噴塗法、印刷法、壓模法及澆注法等。待其固化後,即得 12 200820471 到電洞型有機複合物層14。電洞型有機複合物層14之厚 度範圍爲幾十微米至0.2毫米,優選爲1G微米。 步驟3,混合複數電子型導電顆粒124與第一聚合物 材料122,形成電子财機複合物,並將其塗布於已固化 之電洞型有機複合物層14上。 〜其中,將電子導電顆粒124與第一聚合物材料122之 液恶預聚物按_混合,並加人少量膠聯劑,將混合後之 液L水狀電子型有機複合物均自地塗布於已目化之電洞型 有機複合物層14上。待其固化後,即得複合於電洞型有機 複合物層14上之電子型有機複合物層12。 電子型有機複合物層12與步驟2中電洞型有機複合物 層14之製備過程類似,惟電子型有機複合物層12混入爲 電子型導電顆粒124。電子型有機複合物層12之厚度範圍 爲成十微米至G· 2晕米。本實施例中,電子型導電顆粒 馬氧化鋅雌,質量百分比含量爲3Gwt%-5Gwt%。電子型 導電顆粒124還可爲任何電子型導電材料之顆粒。 步驟4,將電洞型有機複合物層14及複合於其上之電 子型有機複合物層12從襯賴離。即得有機複合物P—N結 1〇 〇 /由於電洞型有機複合物層14與電子型有機複合物層 12係通過塗布之方法複合,故’有機複合物P-N結10 ^ 結構穩定、不易脫落。 本領域技術人員應明白,上述有機複合物p_N結1〇製 備方法之步驟2與步驟3之先後順序可互換。 衣 13 200820471The electron-type conductive particles 124 in the electron-type organic composite layer 12 may be any electron-type conductive material. The mass percentage of the electron-type conductive particles 124 is selected depending on the specific material. In this embodiment, the electron-type conductive particles 124 舄 辞 颗粒 particles, the percentage of the amount of f of zinc oxide is surgery t% _ 5 〇 (four). In the electronic financial composition layer 12, the main (four) sub-type conductive particles 124 ▲ provide electron carriers. The electronic type conductive material 124 can be made of an inorganic conductive material having a high electron density and a high electron mobility. Therefore, the electronic type compound layer 12 has the characteristics of light weight, materiality, and inorganic material charge. High density and good relocation. In the hole type organic layer 14, hole carriers are supplied from the carbon nanotubes ι44. In addition to the high density and high mobility of the carbon nanotubes 144, the carbon nanotubes 144 can also improve the thermal stability of the P-N junction. In addition, the excellent mechanical properties of the carbon nanotube 144 can enhance the mechanical properties of the device. Please refer to _ 2, the method for preparing the organic composite P-N junction 10 of the embodiment of the present invention comprises the following steps: "Step 1, providing - substrate (not shown). The base material may be glass, quartz, germanium. , metal, alumina, etc. Step 2, mixing the plurality of carbon nanotubes 144 with the second polymer material 142' to form an electric-frequency compound and coating it on the bottom. 11 200820471 The carbon nanotube 144 is mixed with the liquid pre-hydrate of the second polymer material 142 in proportion, and a small amount of binder is added, and the mixed liquid water-like electric/homo-type organic composite is uniformly coated on the substrate. After the curing, the hole-type organic composite layer 14 is obtained. In the present embodiment, the second polymer material 142 is a ruthenium rubber, and the binder is a mass percentage of the tetraethyl stone m-nanocarbon tube 144. It is 0·Iwt%-4wt%. The non-carbon tube 144 can be subjected to acid oxidation purification treatment before mixing, and the metallic carbon nanotubes and amorphous carbon are removed to improve the conductivity of the carbon nanotubes 144. Including: a weight ratio of 1:5~1:1 奈 nano carbon official 144 and oxidation The acid is mixed, treated under ultrasonic or reflux conditions for a few hours, the acid solution is removed, washed with water and dried. The acid is concentrated nitric acid, concentrated sulfuric acid or any mixture thereof, or the carbon nanotube 144 is co-polymerized with oxidizing acid. Mix and boil for M0 minutes, then clean and filter. That is, the treated rice carbon tube 144 is obtained. The nano carbon tube 144 and the ruthenium rubber prepolymer can be thoroughly mixed by ball milling or ultrasonic method, and the carbon nanotubes are evenly distributed on the ruthenium rubber. In the prepolymer, the ball milling method is to mix the nano carbon tube and the ruthenium rubber prepolymer into a ball mill for about 4 hours. The ultrasonic method first uses petroleum ether as a solvent to obtain a ruthenium rubber prepolymer solution, and then the naphthalene solution. The mixture of the carbon nanotube and the ruthenium rubber prepolymer solution is ultrasonicated for 5 to 4 hours. The ball-milling method or the ultrasonic solution = the liquid slurry mixture obtained after the treatment, a small amount of the binder is added, and then the liquid slurry mixture is coated. On a substrate, the coating method may be spin coating, de-spraying, printing, stamping, casting, etc. After curing, 12 200820471 is obtained to the hole-type organic composite layer 14. The thickness of the hole-type organic composite layer 14 ranges from several tens of micrometers to 0.2 millimeters, preferably 1 micrometers. Step 3, mixing the plurality of electronic conductive particles 124 with the first polymer material 122 to form an electronic financial complex, and Applying it to the cured hole-type organic composite layer 14. wherein, the electronic conductive particles 124 are mixed with the liquid prepolymer of the first polymer material 122, and a small amount of glue is added. The mixed liquid L aqueous electronic organic composite is applied to the visible hole-type organic composite layer 14 from the ground. After being cured, it is composited on the hole-type organic composite layer 14. The electron type organic composite layer 12 is similar to the preparation process of the hole type organic composite layer 14 in the step 2, except that the electron type organic composite layer 12 is mixed into the electron type conductive particles 124. The thickness of the electronic organic composite layer 12 ranges from ten micrometers to G·2 halo. In this embodiment, the electronically-conductive conductive particles are equine zinc oxide female, and the mass percentage is from 3 Gwt% to 5 Gwt%. The electronic conductive particles 124 may also be particles of any electronically conductive material. In step 4, the hole-type organic composite layer 14 and the electron-type organic composite layer 12 laminated thereon are separated from the liner. That is, the organic composite P-N junction 1 〇〇 / because the hole-type organic composite layer 14 and the electronic organic composite layer 12 are composited by the coating method, so the 'organic composite PN junction 10 ^ structure is stable and difficult Fall off. It should be understood by those skilled in the art that the order of step 2 and step 3 of the above organic compound p_N junction preparation method is interchangeable. Clothing 13 200820471

凊參閱圖3所示,採用本發明實施例有機複合物p__N 結10之有機複合物二極體30包括:一陰極電極32,一陽 極電極34及一夾於陰極電極32及陽極電極34之間之有機 複合物P,結20。所述有機複合物p—N結2〇包括一電洞 型有機複合物層24及複合與其上之電子型有機複合物層 22。有機複合物p—N結2〇與上述有機複合物p—N結ι〇相 同。陰極電極32沈積於電子型有機複合物層22上,並與 電子型有機複合物層22形成歐姆接觸。陽極電極34沈積 於電洞型有機複合物層24上,並與電洞型有機複合物層 24形成歐姆接觸。 本實施例中,陰極電極34與陽極電極32之材料均係 金屬至(Au)。陰極電極32與陽極電極34亦可爲其他導電 金屬或合金。有機複合物P_N結2G之製備方法與有機複合 物P-N結1〇相同。有機複合物二極體3〇之製備方法只係 於有機複合物P-N結2G上,藉由真空級等綠於電子型 有機複合物層22表面沈積-陰極電極32,及於電洞型有 機複合物層24表面沈積—陽極電極34來製備得到。 、明參閱圖4所示,有機複合物二極體別於電壓爲 伏特(V)之範圍内都有很好之整流性。 本領域技術人貞應明白,上述有機複合物二極體還 可用以下方法製備4於—襯底上沈積—陽極電極;而 後於所述_電極34依次塗布電洞财機複合物層24及 電子型有顧合物層22 ;錢子射機複合物層22再沈 積一陰極電極32 ’從而得到有機複合物二極體30。 200820471As shown in FIG. 3, the organic composite diode 30 using the organic composite p__N junction 10 of the embodiment of the present invention includes a cathode electrode 32, an anode electrode 34 and a sandwich between the cathode electrode 32 and the anode electrode 34. Organic complex P, knot 20. The organic composite p-N junction 2A includes a hole-type organic composite layer 24 and an electron-type organic composite layer 22 laminated thereon. The organic complex p-N junction 2 is the same as the above organic complex p-N junction. The cathode electrode 32 is deposited on the electron-type organic composite layer 22 and forms an ohmic contact with the electron-type organic composite layer 22. The anode electrode 34 is deposited on the hole-type organic composite layer 24 and is in ohmic contact with the hole-type organic composite layer 24. In this embodiment, the materials of the cathode electrode 34 and the anode electrode 32 are both metal to (Au). Cathode electrode 32 and anode electrode 34 may also be other conductive metals or alloys. The organic composite P_N junction 2G is prepared in the same manner as the organic composite P-N junction. The preparation method of the organic composite diode 3〇 is only on the organic composite PN junction 2G, and is deposited on the surface of the green-type organic composite layer 22 by a vacuum level, the cathode electrode 32, and the hole-type organic compound. The surface layer of the layer 24 is deposited as an anode electrode 34 to prepare. As shown in Fig. 4, the organic complex diode has good rectification in the range of voltage volts (V). It should be understood by those skilled in the art that the above-mentioned organic composite diode can also be prepared by depositing an anode electrode on the substrate by using the following method; and then sequentially coating the electron bank complex layer 24 and the electrons on the _ electrode 34. The type has a compound layer 22; the money emitter complex layer 22 redeposits a cathode electrode 32' to obtain an organic composite diode 30. 200820471

• j先前技術相較,本發明實施例之有機複合物p—N 結,藉由簡單之旋塗、印刷等成膜技術即可製備 : 雜大規模製備Μ結之工藝。另,由於選用聚合物材料 作爲有機複合物Ρ—Ν結之基體材料,故,所述有機複合物 Ρ-Ν結具有重量輕、可彎折之特點。且,由於奈米碳管之 加入,所得所述有機複合物ρ—Ν結之導熱性能及力學^能 ,以加強。所述有機複合物Μ結制得之二極體顯示出: ⑩ 高之整流比。故,本發明實施例之有機複合物P—N結及應 用此有機複合物P—N結之有機複合物二極體,於所有涉及 半導體材料應用之領域都有潛在之應用。 另,本領域技術人員還可在本發明精神内做其他變 化然,這些依據本發明精神所做之變化,都應包含在本 發明所要求保護之範圍之内。 【圖式簡單說明】 圖1係本發明實施例有機複合物P—N結之剖面示意圖。 • 圖2係應用本發明實施例有機複合物P-N結之有機複 合物二極體之剖面示意圖。 圖3係圖2中有機複合物二極體之ι—ν曲線圖。 【主要元件符號說明】 有機複合物p-N結 10、20 電子型有機複合物層 12、22 電洞型有機複合物層 14、24 苐一聚合物材料 122 導電顆粒 124 15 200820471 第二聚合物材料 142 奈米碳管 144 有機複合物二極體 30 陰極電極 32 陽極電極 34 16• Compared with the prior art, the organic composite p-N junction of the embodiment of the present invention can be prepared by a simple spin coating, printing and other film forming techniques: a process for preparing a ruthenium on a large scale. In addition, since the polymer material is selected as the base material of the organic composite Ρ-Ν, the organic composite Ρ-Ν knot has the characteristics of light weight and bendability. Moreover, due to the addition of the carbon nanotubes, the thermal conductivity and mechanical properties of the resulting organic composite ρ-Ν junction are enhanced. The diode of the organic composite enthalpy shows: a high rectification ratio of 10. Therefore, the organic composite P-N junction of the embodiment of the present invention and the organic composite diode of the organic composite P-N junction have potential applications in all fields involving the application of semiconductor materials. In addition, those skilled in the art can make other changes in the spirit of the present invention, and all changes made in accordance with the spirit of the present invention should be included in the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a P-N junction of an organic composite according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing an organic composite diode of an organic composite P-N junction of the embodiment of the present invention. Figure 3 is a graph of the ι-ν of the organic complex diode of Figure 2. [Explanation of main component symbols] Organic composite pN junction 10, 20 Electronic organic composite layer 12, 22 Electroporation type organic composite layer 14, 24 苐 Polymeric material 122 Conductive particles 124 15 200820471 Second polymer material 142 Carbon nanotube 144 organic composite diode 30 cathode electrode 32 anode electrode 34 16

Claims (1)

200820471 十、申請專利範圍 1. -人種有機複合物P—N結’其包括:一電子型有機複 5物層及—電洞财機複合物層,其改良在於,所 迷電子型有機複合物層包括第一聚合物材料及均 勻分散於第一聚合物材料中之複數電子型導電顆 粒’所述電洞型有機複合物層包括第二聚合物材料 及均勻分散於第二聚合物材料中之複數奈米碳管。 鲁 2.如中請專利範圍第丨項所述之有機複合物卜n結, 其中,所述第一聚合物材料與第二聚合物材料爲相 同之材料或不同之材料。 ' 3'如申請專利範圍第1項所述之有機複合物P,結, 其=,所述第-聚合物材料及第二聚合物材料騎 ^烯乙二醇、聚酯、矽膠系列、環氧樹脂系列、2 氧膠系列及壓克力膠系列之一種。 、 4·如申請專利範圍第1項所述之有機複合物p,結, _ 其中,所述電洞型有機複合物層及電子型有機複合 物層之厚度均爲幾十微米至0.2毫米。 σ 5 ·如申叫專利範圍第1項所述之有機複合物ρ—Ν纟士, 其中’所述電子型導電顆粒爲氧化鋅顆粒。 6·如申請專利範圍第5項所述之有機複合物ρ—Ν結, 其中,所述氧化辞顆粒之質量百分比爲3〇 wt%〜5〇 7.如申請專利範圍第1項所述之有機複合物p_N結, 其中’所述奈米碳管之質量百分比爲〇 〇1肋 200820471 wt% 〇 ‘ 8. 如申請專利範圍第1項所述之有機複合物P-N結, 其中,所述奈米碳管之長度爲200奈米〜20微米, ^ 直徑爲0. 5〜200奈米。 9. 一種有機複合物P-N結之製備方法,其包括以下步 驟: 提供一襯底; 混合複數奈米碳管與第二聚合物材料,形成電洞型 ® 有機複合物,並將其塗布於所述襯底上; 混合複數電子型導電顆粒與第一聚合物材料,形成 電子型有機複合物,並將其塗布於已固化之電洞型 有機複合物層上;以及 將電洞型有機複合物層及複合於其上之電子型有 機複合物層一起從襯底剝離。 10. 如申請專利範圍第9項所述之有機複合物P-N結之 血 製備方法,其中,於奈米碳管混合前,可進一步包 括將奈米碳管酸氧化純化之過程。 11. 如申請專利範圍第9項所述之有機複合物P-N結之 製備方法,其中,塗布過程爲旋塗法、喷塗法、印 刷法、壓模法及澆注法中之一種。 12. 如申請專利範圍第9項所述之有機複合物P-N結之 製備方法,其中,電洞型有機複合物層及電子型有 機複合物層之厚度均爲幾十微米至0. 2毫米。 13. —種有機複合物二極體,其包括一陰極電極,一陽 18 200820471 極電極及位於陰極電極和陽極電極之間之一有機 複合物P-N結,所述有機複合物P-N結包括一電子 型有機複合物層及一電洞型有機複合物層,其改良 在於,所述電子型有機複合物層包括第一聚合物材 料及均勻分散于第一聚合物材料中之複數電子型 導電顆粒,所述電洞型有機複合物層包括第二聚合 物材料及均勻分散于第二聚合物材料中之複數奈 米碳管。 14.如申請專利範圍第13項所述之有機複合物二極 體,其中,所述陰極電極與陽極電極之材料均爲金。 19200820471 X. Patent application scope 1. - Human organic composite P-N junction' includes: an electronic type organic complex 5 layer and a hole-cavity compound layer, the improvement is that the electronic type organic compound The layer includes a first polymer material and a plurality of electron-type conductive particles uniformly dispersed in the first polymer material. The hole-type organic composite layer includes a second polymer material and is uniformly dispersed in the second polymer material. The number of carbon nanotubes. 2. The organic composite according to claim 2, wherein the first polymer material and the second polymer material are the same material or different materials. '3', as in the organic compound P according to claim 1, the knot, the first polymer material and the second polymer material riding ethylene glycol, polyester, silicone series, ring A series of oxygen resin series, 2 oxygen glue series and acrylic glue series. 4. The organic composite p, the junction, wherein the hole-type organic composite layer and the electron-type organic composite layer have a thickness of several tens of micrometers to 0.2 mm. σ 5 · The organic composite ρ-Gentle as described in claim 1, wherein the electronic-type conductive particles are zinc oxide particles. 6. The organic composite ρ-Ν junction according to claim 5, wherein the oxidized particle has a mass percentage of 3 〇 wt% 〜5 〇 7. as described in claim 1 The organic composite p_N junction, wherein 'the mass percentage of the carbon nanotubes is 〇〇1 ribs 200820471 wt% 〇' 8. The organic composite PN junction according to claim 1, wherein the nai 5〜200纳米。 The length of the carbon tube is 200 nm ~ 20 μm, ^ diameter is 0. 5~200 nm. 9. A method of preparing an organic composite PN junction, comprising the steps of: providing a substrate; mixing a plurality of carbon nanotubes with a second polymer material to form a hole-type® organic composite, and coating the same On the substrate; mixing the plurality of electronic conductive particles with the first polymer material to form an electronic organic composite, and coating it on the cured hole-type organic composite layer; and the hole-type organic composite The layer and the electronic type organic composite layer composited thereon are peeled off from the substrate together. 10. The method for preparing a blood of an organic composite P-N junction according to claim 9, wherein the process of oxidizing and purifying the carbon nanotube acid may be further included before the carbon nanotube is mixed. 11. The method for preparing an organic composite P-N junction according to claim 9, wherein the coating process is one of a spin coating method, a spray coating method, a printing method, a compression molding method, and a casting method. 2 毫米。 The thickness of the organic layer of the organic composite layer and the electronic composite layer of the thickness of the tens of micrometers to 0. 2 mm. 13. An organic composite diode comprising a cathode electrode, a yang 18 200820471 electrode and an organic composite PN junction between the cathode electrode and the anode electrode, the organic complex PN junction comprising an electronic type The organic composite layer and the hole-type organic composite layer are improved in that the electronic organic composite layer comprises a first polymer material and a plurality of electronic conductive particles uniformly dispersed in the first polymer material. The hole-type organic composite layer includes a second polymer material and a plurality of carbon nanotubes uniformly dispersed in the second polymer material. The organic composite diode according to claim 13, wherein the material of the cathode electrode and the anode electrode is gold. 19
TW095138894A 2006-10-20 2006-10-20 Polymer composite p-n junction and method for manufacturing the same and polymer composite diode adopting the same TWI350602B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095138894A TWI350602B (en) 2006-10-20 2006-10-20 Polymer composite p-n junction and method for manufacturing the same and polymer composite diode adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095138894A TWI350602B (en) 2006-10-20 2006-10-20 Polymer composite p-n junction and method for manufacturing the same and polymer composite diode adopting the same

Publications (2)

Publication Number Publication Date
TW200820471A true TW200820471A (en) 2008-05-01
TWI350602B TWI350602B (en) 2011-10-11

Family

ID=44770178

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095138894A TWI350602B (en) 2006-10-20 2006-10-20 Polymer composite p-n junction and method for manufacturing the same and polymer composite diode adopting the same

Country Status (1)

Country Link
TW (1) TWI350602B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423272B (en) * 2008-10-29 2014-01-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423272B (en) * 2008-10-29 2014-01-11

Also Published As

Publication number Publication date
TWI350602B (en) 2011-10-11

Similar Documents

Publication Publication Date Title
Li et al. Recent progress in silver nanowire networks for flexible organic electronics
JP5184856B2 (en) PN junction element, manufacturing method thereof, and diode using PN junction element
WO2016008187A1 (en) Method for preparing conductive adhesive and conductive adhesive
CN101054467B (en) Carbon nano-tube composite material and preparation method thereof
US7368009B2 (en) Carbon fine particle structure and process for producing the same, carbon fine particle transcriptional body for producing the same, solution for producing carbon fine particle structure, carbon fine particle structure, electronic device using carbon fine particle structure and process for producing the same, and integrated circuit
Bano et al. Reduced graphene oxide nanocomposites for optoelectronics applications
TW200917947A (en) Composite for electromagnetic shielding and method for making the same
KR101401574B1 (en) Electrical conductive adhesives with hybrid fillers and fabrication method therof
WO2020151346A1 (en) Composite conductive silver paste and preparation method therefor
CN108257710B (en) A kind of graphene conductive slurry and preparation method thereof
TW201123517A (en) Doping of carbon nanotube films for the fabrication of transparent electrodes
CN109181654A (en) A kind of graphene-based composite heat conduction film and preparation method thereof and its application
TWI339465B (en) Electromagnetic shielding layer and method for making the same
CN112614627B (en) Flexible transparent electrode with high conductive coverage rate and preparation method thereof
CN113744916A (en) Transparent conductive film and preparation method thereof
CN106784202A (en) QLED devices and preparation method thereof
CN102881458B (en) Preparation method of graphene composite titanium dioxide slurry
TW200820471A (en) Polymer composite P-N junction and method for manufacturing the same and polymer composite diode adopting the same
CN104377369B (en) A kind of fibrous electrochemical luminescence battery and preparation method thereof
KR101514765B1 (en) Method for preparing graphene-zinc oxide composite materials and piezo-electric element using the same
CN102120573A (en) Graphene nanospheres and preparation method thereof
JP6592268B2 (en) Conductive material, thermoelectric conversion element and thermoelectric conversion device using the same
CN110890169A (en) Preparation method of carbon nano tube composite metal paste
CN110157266A (en) A kind of high thermal conductivity graphene Wave suction composite material and preparation method
CN101923964A (en) Solid tantalum electrolytic capacitor and manufacturing method thereof