TW200819691A - Phototropic control method for solar panels - Google Patents

Phototropic control method for solar panels Download PDF

Info

Publication number
TW200819691A
TW200819691A TW097100676A TW97100676A TW200819691A TW 200819691 A TW200819691 A TW 200819691A TW 097100676 A TW097100676 A TW 097100676A TW 97100676 A TW97100676 A TW 97100676A TW 200819691 A TW200819691 A TW 200819691A
Authority
TW
Taiwan
Prior art keywords
azimuth
solar panel
angle
sun
elevation
Prior art date
Application number
TW097100676A
Other languages
Chinese (zh)
Other versions
TWI332072B (en
Inventor
Shan-Cheng Lin
Szu-Hung Lin
Original Assignee
Tranergy Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tranergy Technologies Co Ltd filed Critical Tranergy Technologies Co Ltd
Priority to TW097100676A priority Critical patent/TW200819691A/en
Publication of TW200819691A publication Critical patent/TW200819691A/en
Application granted granted Critical
Publication of TWI332072B publication Critical patent/TWI332072B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention is related to a phototropic control method for solar panels. A controller can divide daytime into multiple units based on the way that the sun is moving to predetermine a set of solar angles of azimuth and altitude. A sensor is installed on the support of the solar panel to detect the angles of azimuth and altitude for the solar panel. The controller can compare the angles of azimuth and altitude of the solar panel with the angles of azimuth and altitude at the predetermined time unit. If there is a discrepancy between the angles of azimuth or the angles of altitude, the biaxial actuator will drive the support of the solar panel to the right angles of azimuth and altitude at the predetermined time unit. If the angles of azimuth or the angles of altitude are the same, the biaxial actuator will stop the operation. By doing so, a phototropic control for solar panels can be achieved.

Description

200819691 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種太陽能面板,特別是有關於一種控制 太陽能面板自動朝向太陽的方法。 【先前技術】 太陽能面板在傳統上是裝設在建築物頂部或戶外曰照 充足的位置,可經由太陽光的照射而產生電能,用以補助 供應公眾場所或家庭之電器驅動所需的電力,藉以降低對 電力公司提供之交流電的使用量,進而節省用電成本。 且知,上述太陽能面板一般是以平躺或略微傾斜的狀 態,擺放於建築物頂部或戶外,讓太陽能面板表面朝向上 方或斜上方,藉使太陽能面板能得到太陽光較長時間的照 射,但太陽光的照射角度會隨著時間改變,導致該僅能保 持單一方向的太陽能面板,無法在任何時間内均能得到太 陽光充分的照射,造成其發電之穩定性欠佳的問題。 因此,目前坊間較為先進的技術中,已見揭露有一種 可自動跟隨太陽光照射角度擺動的太陽能面板,係裝設於 一承架上,且承架端侧裝設有一雙轴向驅動器,能帶動承 架及太陽能面板進行雙軸向擺動,並藉由一控制器依據太 陽光照射角度控制驅動器,以持續帶動太陽能面板之表面 擺動至朝向太陽;據此,可控制太陽能面板在任何時間内 均能自動朝向太陽,以得到太陽光充分的照射。 惟,上述傳統太陽能面板之控制器,僅是依據太陽移 動執跡將太陽能面板驅動至概略朝向太陽的位置,致使太 200819691 陽能面板的表面與太陽之間呈現未達90度的夾角,故無法 確保太陽能面板之表面能準確朝向太陽,同樣會造成發電 之穩定性欠佳的問題,亟需加以改善。 【發明内容】 為了有效克服上述先前技術中,太陽能面板之表面無 法準確朝向太陽而導致其發電穩定性欠佳的問題,本發明 之目的旨在提供一種太陽能面板之追日控制方法,以確保 太陽能面板之表面與太陽恒保持在90度之最佳受光角度, φ 進而提升太陽能面板發電之穩定性。 為能實踐上述目的,本發明太陽能面板之追日控制方 法,包含: 在一控制器内將一曰之白天規劃出複數時間單位,並 依據各時間單位内之太陽移動軌跡,各自預設一組可朝向 太陽的方位角(AZIMUTH)及高度角(ALTITUDE),與時 間單位相搭配; 使用一裝設於太陽能面板之承架上且可感測方位角及 • 高度角的感测器,感測太陽能面板之方位角及高度角,並 將太陽能面板之方位角及高度角回傳至控制器; 使用控制器將太陽能面板之方位角、高度角與目前時 間單位的方位角、高度角進行比對; 於太陽能面板之方位角、高度角與目前時間單位的方 位角、高度角不相同時,令一雙軸向驅動器驅動太陽能面 板之承架運作至目前時間單位的方位角及高度角;及 於太陽能面板之方位角、高度角與目前時間單位的方 6 200819691 位角、高度角相同時,令驅動器停止驅動太陽能面板之承 架運作。 此外,本發明更加包含: 於控制器内之最末組時間單位後預設一停止時間;及 使用控制器於停止時間,令驅動器驅動太陽能面板之 承架運作至第一組時間單位的方位角及高度角。 除此之外,本發明也包含: 所述時間單位係依據太陽日的時間規劃成365組。 所述各時間單位之可朝向太陽的方位角及高度角,係 為能控制太陽能面板之表面與太陽呈90度夾角的方位角及 高度角。 所述感測器係設於承架頂部、底部或一端侧表面,且 感測器係為電子羅盤或可反應方位角及高度角的解碼器 (ENCORDER)〇 然而,為能再加詳述本發明,併予列舉較佳實施之圖 例,以詳細說明其實施方式如後述: 【實施方式】 首觀圖1所示,揭示出本發明太陽能面板之追日控制 方法之實施環境的側視圖,並配合圖2說明該實施環境包 含有一可裝設太陽能面板1的承架2,且承架2端侧裝設有 一雙軸向驅動器3,能帶動承架2及太陽能面板1進行雙軸 向擺動(配合圖6及圖7所示),且驅動器3内結合一控制 器4,承架2頂部裝設一可感測方位角及高度角的感测器 5,能感測承架2及太陽能面板1之表面10目前面對之方 200819691 該,角,正南方或正北方,向 二角度’“度角3係由水平面向上旋掙的 角度;該控制器4能控制驅動器3進行運作, 測器5感測之方位“及高度角m 、’ 此外’該感測||5&、51)亦可裝設於承架2底部或一端 測㈣可為市售之—電 位角及高度角的解碼器、。 人』反應万200819691 IX. Description of the Invention: [Technical Field] The present invention relates to a solar panel, and more particularly to a method of controlling a solar panel to automatically face the sun. [Prior Art] Solar panels are traditionally installed at the top of a building or in a well-lit outdoor location, and can generate electricity through the illumination of sunlight to supplement the power required to supply electric appliances for public places or homes. In order to reduce the use of AC power provided by the power company, thereby saving electricity costs. It is also known that the solar panel is generally placed on the top of the building or outdoors, in a state of lying flat or slightly inclined, so that the surface of the solar panel faces upward or obliquely upward, so that the solar panel can receive sunlight for a long time. However, the angle of illumination of sunlight changes with time, resulting in a solar panel that can only maintain a single direction, and it is impossible to obtain sufficient sunlight to be irradiated at any time, resulting in a problem of poor stability of power generation. Therefore, among the more advanced technologies in the workshop, it has been disclosed that a solar panel that can automatically follow the angle of sunlight illumination is mounted on a rack, and a double-axis driver is mounted on the end side of the rack. Driving the frame and the solar panel to perform biaxial oscillation, and controlling the driver according to the angle of sunlight irradiation by a controller to continuously drive the surface of the solar panel to oscillate toward the sun; accordingly, the solar panel can be controlled at any time It can automatically face the sun to get full illumination of the sun. However, the controller of the above-mentioned conventional solar panel only drives the solar panel to a position that is oriented toward the sun according to the sun movement, so that the surface of the solar panel of 200819691 and the sun are not at an angle of 90 degrees, so Ensuring that the surface of the solar panel is accurately oriented toward the sun will also cause poor stability in power generation and will need to be improved. SUMMARY OF THE INVENTION In order to effectively overcome the above problems in the prior art, the surface of the solar panel cannot be accurately oriented toward the sun, resulting in poor power generation stability, and an object of the present invention is to provide a solar panel tracking control method to ensure solar energy. The surface of the panel is kept at an optimum light receiving angle of 90 degrees with the sun, and φ further enhances the stability of solar panel power generation. In order to achieve the above object, the solar panel tracking method of the present invention comprises: planning a plurality of time units in a day in a controller, and presetting a group according to the sun movement trajectory in each time unit. Azimuth (AZIMUTH) and elevation angle (ALTITUDE) for the sun, matched with time units; sensing with a sensor mounted on the shelf of the solar panel and capable of sensing azimuth and • elevation angle Azimuth and elevation angle of the solar panel, and returning the azimuth and elevation angle of the solar panel to the controller; using the controller to compare the azimuth and elevation angle of the solar panel with the azimuth and elevation angle of the current time unit When the azimuth and elevation angle of the solar panel are different from the azimuth and elevation angle of the current time unit, a dual-axis driver drives the solar panel to operate the azimuth and elevation angle of the current time unit; When the azimuth and elevation angle of the solar panel are the same as the current time unit of the square 6 200819691, the angle is the same as the height angle, so that the drive stops driving. The solar panels of the rack operations. In addition, the present invention further includes: presetting a stop time after the last set of time units in the controller; and using the controller to stop the time, causing the drive to drive the solar panel carrier to operate to the azimuth of the first set of time units And height angle. In addition, the present invention also includes: The time unit is planned into 365 groups according to the time of the sun day. The azimuth and elevation angle of each time unit that can face the sun is an azimuth and elevation angle that can control the surface of the solar panel to be at an angle of 90 degrees to the sun. The sensor is disposed on the top, bottom or one end side surface of the rack, and the sensor is an electronic compass or a decoder capable of reacting azimuth and elevation angles (ENCORDER). The present invention will be described in detail with reference to the preferred embodiments, and the embodiments thereof will be described in detail as follows: [Embodiment] FIG. 1 is a first side view showing an implementation environment of a solar panel tracking control method according to the present invention, and 2, the implementation environment includes a rack 2 on which the solar panel 1 can be mounted, and a double-axis driver 3 is mounted on the end side of the rack 2 to drive the rack 2 and the solar panel 1 to perform biaxial oscillation ( In conjunction with FIG. 6 and FIG. 7 , and a controller 4 is incorporated in the driver 3 , a sensor 5 capable of sensing the azimuth and elevation angle is mounted on the top of the rack 2 to sense the rack 2 and the solar panel. The surface of 1 is currently facing the face of 200819691. The angle, the south or the north, to the angle of the two angles 'the angle 3 is the angle of the horizontal upwards; the controller 4 can control the driver 3 to operate, the detector 5 sensed orientation "and elevation angle m, ' Outside 'the sensing || 5 &, 51) also mounted to the bottom end of the rack 2, or (iv) may be commercially available test - A potential angle and elevation angle of the decoder. People's reaction

依據上述實施環境, 之追日控制方法,包含·· 可供據以實踐本發明太陽能面板 在該控制器4内將一曰之白天規劃出複數時間單位 1 2 t3 %tn (如圖3所示),在本實施上係可將時間單 位依據太陽日的時間規劃成365 &,並依據各時間單位内According to the above implementation environment, the method for tracking the sun, including the solar panel according to the present invention, can be used in the controller 4 to plan a complex time unit of 1 2 t3 %tn in the daytime (as shown in FIG. 3). In this implementation, the time unit can be planned as 365 & according to the time of the sun day, and according to each time unit

,太陽移動執跡6,各自預設一組可朝向太陽的方位角。及 局度角0 ’與時間單位相搭配71 (如圖4及圖5所示);所 述各時間單位^^…^之可朝向太陽的方位角^及 高度角/5,係為能控制太陽能面板1之表面1〇與太陽呈卯 度夾角的方位角及高度角。 、、使用該裝設於太陽能面板!之承架2頂部的感測器5, 感測目别太陽能面板1之方位角α及高度角冷(75)(如圖 5圖6及圖7所示)’並將太陽能面板!之方位角j及高 度角万訊號回傳至控制器4 ; 使用控制器4將太陽能面板1之方位角α、高度角石 與目前時間單位的方位角、高度角進行比對72 (如圖5所 示),此刻舉以目前係時間單位ti為例,其預設之方位角為 Qi、咼度角為(如圖4所示); 8 200819691 之方仇角α、尚度角3與目前時間單 位h的方位角a t、高度备β 。士 χ 两6 1不相同時,令該雙轴向驅動器 3驅動太陽能面板1之承架2進行雙軸向運作73 (如圖5、 Γ 6 ,以帶動太陽能面板1旋擺至目前時間單 位t〗的方位角α 1及高庶备β 、,, t 進行位移74 ;及又角〜’亚經由承架2帶動感測器5 於太陽能面板1之方位角《、高度角難目前時間單 位ti的方位角αι、高声& ρ α 門曰月早 太陽处又角点1相同時,令驅動器3停止驅動 太—面板1之承架2運作76 (如圖5所示)。 動的: 面板1及承架2同步擺 對的方位角α及高度dm1之表面目前所面 位角及高度角進行比器4内預設之方 ©fe ^猎以控制承架2旋擺至讓太陽能 及高度角相同空制器4内預設的方位角 持在90度之最佳受光角\太。^㈣反1之表面10與太陽保 因此感測器5感測之=;:=角心及高度角〜 t2的方位角〇上☆万位角αΐ、向度角沒1與目前時間單位 控制器4會再22不相同(如圖5所示);此時’ 會隨著目前時門™/角 鬲度角沒2的位置;該控制器4 至控制器4 推移’逐步控制太陽能面板1旋擺 能面板1之丰&、°又、位角及高度角;據此,以確保太陽 之表面1〇與太陽怪保持在90度之最佳受光角度, 9 200819691 進而提升太陽能面板丨發電之穩定性。 除此之外,本發明更加包含: j制H 4内之最末組時間單位 止時間 示);該最末組時間單位U系為-天之中最後 即頁昏時分,該停止時間tn+1 係為貫昏之後,即進入夜晚之時;及 二,器4於停止時間W令驅動器3驅動太陽能 Γ二運作t第—組時間單位w方位角…及高 =(如所示)’該第—組時間單位ti係為一天之中 取先可接文太陽光照射的時間,即日出時分。 =:太陽能面板!會保持在時間單位^之方位角〜 ^度角Α的位置直到黎明,以利於曰出時接光照 射。 相信上述說明,。疋以死分揭示出本發明可供攄以實 施=要技術内容、然其僅為本發明之較佳實施The sun moves on track 6, each presetting a set of azimuths that can face the sun. And the degree angle 0' is matched with the time unit 71 (as shown in Fig. 4 and Fig. 5); the time unit ^^...^ can be oriented toward the sun's azimuth angle ^ and the height angle /5, which can be controlled The azimuth and elevation angle of the surface of the solar panel 1 at an angle to the sun. , use the device installed in the solar panel! The sensor 5 on the top of the rack 2 senses the azimuth angle α and the height angle cold (75) of the solar panel 1 (as shown in FIG. 5 and FIG. 7) and the solar panel! The azimuth angle j and the elevation angle signal are transmitted back to the controller 4; the controller 4 is used to compare the azimuth angle α and the height angle of the solar panel 1 with the azimuth and elevation angles of the current time unit (see FIG. 5). Show), at this moment, take the current time unit ti as an example, the preset azimuth is Qi, the twist angle is (as shown in Figure 4); 8 200819691 Fang Qiujiao α, Shangdu angle 3 and current time The azimuth angle at unit h is at a height of β. When the two 6 1 are different, the biaxial actuator 3 drives the frame 2 of the solar panel 1 to perform biaxial operation 73 (Fig. 5, Fig. 6 to drive the solar panel 1 to swing to the current time unit t 〗 The azimuth angle α 1 and the high-prepared β, ,, t are displaced by 74; and the angle ~ 'sub-bearing 2 drives the azimuth of the sensor 5 to the solar panel 1 , and the height angle is difficult to the current time unit ti When the angle αι, high sound & ρ α is the same as the corner point 1 in the early morning sun, the drive 3 stops driving too. The shelf 2 operation of the panel 1 is 76 (as shown in Fig. 5). And the azimuth angle α and the height dm1 of the synchronous pair of the frame 2 are at the preset angles and height angles of the surface of the frame 4, and the surface of the frame is adjusted to the solar energy and the height angle. The preset azimuth angle in the same air compressor 4 is at the optimal acceptance angle of 90 degrees. ^(4) The surface 10 of the reverse 1 and the sun protection thus the sensor 5 senses;; = angle and elevation angle ~ t2 azimuth angle ☆ 10,000 position angle α ΐ, the degree angle is not 1 and the current time unit controller 4 will be different 22 (as shown in Figure 5); 'With the current time gate TM / corner angle no position 2; the controller 4 to controller 4 push 'step by step control solar panel 1 swing energy panel 1 Feng & ° °, position angle and height According to this, in order to ensure that the surface of the sun is at the optimum light receiving angle of 90 degrees with the sun, 9 200819691 further enhances the stability of solar panel power generation. In addition, the present invention further includes: The last group of time units in 4 is shown as the time limit; the last group of time units U is the last of the days, that is, the page is faint, and the stop time tn+1 is after the fainting, that is, when entering the night And two, the device 4 at the stop time W causes the driver 3 to drive the solar energy. The second operation t-group time unit w azimuth angle... and high = (as shown) 'the first group time unit ti is taken in one day You can pick up the time when the sun shines, that is, at sunrise. =: Solar panel! Will maintain the position of the time unit ^ azimuth ~ ^ degree angle 直到 until dawn, in order to facilitate the light when shooting. I believe the above explanation. The present invention is disclosed in terms of death to implement the technical content, which is merely a preferred embodiment of the present invention.

^非^限定本發明之中請專利範圍,凡任何熟習此技術 者在不脫離本發明所揭之精神下完成的等效修晉 換,均應洛入本發明後述之申請專利範圍内。 > 〆 【圖式簡單說明】 圖1 ·為本發明之實施環境的侧視圖。 圖2:為本發明之實施環境的俯視圖。 圖3 :為複數時間單位内之太陽移動軌跡示音固 圖4:為時間單位及預設方位角α、高度角点的對^ 圖5 :為本發明之追日控制方法的流程圖。 义 200819691 圖6 :為圖1之使用狀態圖。 圖7 :為圖2之使用狀態圖。 【主要元件符號說明】 1 ------ 太陽能面板 10 ------表面 2 ……承架 3 ------ 驅動器 • 4 ……控制器 5、5a、5b ------ 感測器 6 ------ 太陽移動執跡 11The scope of the invention is not limited to the scope of the invention, and any equivalent modifications made by those skilled in the art without departing from the spirit of the invention are intended to be included in > 〆 [Simplified description of the drawings] Fig. 1 is a side view showing an implementation environment of the present invention. Figure 2 is a plan view of an implementation environment of the present invention. Figure 3: The sound movement of the sun in a complex time unit is shown in Fig. 4: the time unit and the preset azimuth angle α, the height angle point. Fig. 5 is a flow chart of the method for controlling the date of the present invention.义 200819691 Figure 6: The state diagram of the use of Figure 1. Figure 7 is a state diagram of the use of Figure 2. [Main component symbol description] 1 ------ Solar panel 10 ------ Surface 2 ...... Shelf 3 ------ Driver • 4 ...... Controller 5, 5a, 5b --- --- Sensor 6 ------ Sun Mobile Excavation 11

Claims (1)

200819691 十、申請專利範圍: 1. 一種太陽能面板之追日控制方法,包含: 在一控制器内將一日之白天規劃出複數時間單位,並 依據各時間單位内之太陽移動軌跡,各自預設一組可朝向 太陽的方位角及高度角,與時間單位相搭配; 使用一裝設於太陽能面板之承架上且可感測方位角及 高度角的感測器,感測太陽能面板之方位角及高度角,並 將太陽能面板之方位角及高度角回傳至控制器; 使用控制器將太陽能面板之方位角、高度角與目前時 間單位的方位角、高度角進行比對; 於太陽能面板之方位角、高度角與目前時間單位的方 位角、高度角不相同時,令一雙轴向驅動器驅動太陽能面 板之承架運作至目前時間單位的方位角及高度角;及 於太陽能面板之方位角、高度角與目前時間單位的方 位角、高度角相同時,令驅動器停止驅動太陽能面板之承 架運作。 2. 如申請專利範圍第1項所述太陽能面板之追日控制 方法,更加包含: 於控制器内之最末組時間單位後預設一停止時間;及 使用控制器於停止時間,令驅動器驅動太陽能面板之 承架運作至第一組時間單位的方位角及高度角。 3. 如申請專利範圍第1項所述太陽能面板之追日控制 方法,其中時間單位係依據太陽日的時間規劃成365組。 4. 如申請專利範圍第1項所述太陽能面板之追日控制 12 200819691 方法,其中各時間單位之可朝向太陽的方位角及高度角, 係為能控制太陽能面板之表面與太陽呈90度夾角的方位角 及高度角。 5. 如申請專利範圍第1項所述太陽能面板之追日控制 方法,其中感測器係設於承架頂部、底部或一端侧表面。 6. 如申請專利範圍第1或5項所述太陽能面板之追曰控 制方法,其中感測器係為電子羅盤或可反應方位角及高度 角的解碼器。200819691 X. Patent application scope: 1. A solar panel tracking method, including: planning a plurality of time units in a day during a day, and according to the sun movement trajectory in each time unit, each preset A set of azimuth and elevation angles facing the sun, matched with time units; sensing the azimuth of the solar panel using a sensor mounted on the shelf of the solar panel and sensing the azimuth and elevation angles And the height angle, and returning the azimuth and elevation angle of the solar panel to the controller; using the controller to compare the azimuth and elevation angle of the solar panel with the azimuth and elevation angle of the current time unit; When the azimuth and elevation angles are different from the azimuth and elevation angles of the current time unit, the azimuth and elevation angles of the solar panel are driven by the current position unit of a dual-axis driver; and the azimuth of the solar panel When the elevation angle is the same as the azimuth and elevation angle of the current time unit, the drive stops driving the solar panel. The frame operates. 2. The solar panel tracking method according to item 1 of the patent application scope further includes: presetting a stop time after the last group of time units in the controller; and using the controller to stop the drive time to drive the drive The shelf of the solar panel operates to the azimuth and elevation angle of the first set of time units. 3. For the solar panel tracking method according to item 1 of the patent application scope, the time unit is planned to be 365 groups according to the time of the sun day. 4. The method for tracking solar panels according to claim 1 of the scope of claim 1 200819691, wherein the azimuth and elevation angle of each time unit facing the sun is such that the surface of the solar panel can be controlled at an angle of 90 degrees to the sun. Azimuth and elevation angle. 5. The solar panel tracking method according to claim 1, wherein the sensor is disposed on the top, bottom or one end side surface of the rack. 6. The tracking control method for a solar panel according to claim 1 or 5, wherein the sensor is an electronic compass or a decoder capable of reacting azimuth and elevation. 1313
TW097100676A 2008-01-08 2008-01-08 Phototropic control method for solar panels TW200819691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097100676A TW200819691A (en) 2008-01-08 2008-01-08 Phototropic control method for solar panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097100676A TW200819691A (en) 2008-01-08 2008-01-08 Phototropic control method for solar panels

Publications (2)

Publication Number Publication Date
TW200819691A true TW200819691A (en) 2008-05-01
TWI332072B TWI332072B (en) 2010-10-21

Family

ID=44769891

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097100676A TW200819691A (en) 2008-01-08 2008-01-08 Phototropic control method for solar panels

Country Status (1)

Country Link
TW (1) TW200819691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499717B (en) * 2009-04-16 2015-09-11 Tachikawa Blind Mfg Electric blinds for solar panel installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499717B (en) * 2009-04-16 2015-09-11 Tachikawa Blind Mfg Electric blinds for solar panel installation

Also Published As

Publication number Publication date
TWI332072B (en) 2010-10-21

Similar Documents

Publication Publication Date Title
CN106130456B (en) A kind of solar panel radiation direction automatic following system
Fathabadi Comparative study between two novel sensorless and sensor based dual-axis solar trackers
CA2731583C (en) Solar-powered sun tracker
US7476832B2 (en) Seasonally adjustable mounting system for solar panels having dual motor assembly
JP5412646B2 (en) Foldable solar following solar cell
KR20090029587A (en) Solar power plant having solar tracking apparatus
CN101764166A (en) Solar photovoltaic tracking astronomic control system
CN102566587A (en) Photovoltaic group tracking device
CN101499741A (en) Sun tracing control method for solar panel
PH12015501808A1 (en) Solar tracking concentrator
JP4677537B1 (en) Automatic sunshine system in a three-dimensional garden laid in a multi-story building
JP2013236065A (en) Solar energy power generation method and apparatus including non-identical direction sun tracking stage
TW200819691A (en) Phototropic control method for solar panels
CN207752383U (en) A kind of settled date photovoltaic power generation apparatus
JP3156066U (en) Movable cage
Jani et al. Linkage Synthesis for Solar Tracking
JP2005294315A (en) Hybrid power generator
Marsh BIPV: innovation puts spotlight on solar
CN210536571U (en) Photovoltaic power generation device that intelligence was followed spot
JP2001290537A (en) Solar power generating device
CN205450788U (en) Novel sun light beam is trailed device
US20130333688A1 (en) Solar energy collection system
CN206149199U (en) Portable tracking formula solar power plant
CN202771270U (en) Active solar azimuth tracking device
JP3962055B2 (en) Triangular prism solar power generator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees