TW200818982A - R, G, B LED module - Google Patents

R, G, B LED module Download PDF

Info

Publication number
TW200818982A
TW200818982A TW95137890A TW95137890A TW200818982A TW 200818982 A TW200818982 A TW 200818982A TW 95137890 A TW95137890 A TW 95137890A TW 95137890 A TW95137890 A TW 95137890A TW 200818982 A TW200818982 A TW 200818982A
Authority
TW
Taiwan
Prior art keywords
voltage
light
emitting diode
power
mentioned
Prior art date
Application number
TW95137890A
Other languages
Chinese (zh)
Inventor
Tae-Hyun Choi
Jae-Nam Kim
Original Assignee
Tae-Hyun Choi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tae-Hyun Choi filed Critical Tae-Hyun Choi
Priority to TW95137890A priority Critical patent/TW200818982A/en
Publication of TW200818982A publication Critical patent/TW200818982A/en

Links

Abstract

This invention relates to an R, G, B LED module. The LED module is capable of sensing the voltage of the power, and converting the R, G, B driving parts (17, 18, 19) into switches according to the voltage and then controlling the current channels of LED devices (11, 12, 13). Therefore, the R, G, B LED devices (11, 12, 13) can turn on and off. Using different power sources on the R, G, B LED devices and providing power through 2 wires facilitate the set up procedure of the LED devices. In addition, reduced number of wires also reduces the weight of the whole device, and makes the structure thinner and simpler.

Description

200818982 九、發明說明: 【發明所屬之技術領域】 亥么月疋有關R、G、B(R、G、B意味著Red、Green、 Blue,以下統稱R、G、B)發光二極體模組的發明。尤其 疋,爿b夠感知電源電壓,而隨著所感知到的電壓,轉換各 ’ 個R、g、β驅動部分的開關,從而控制R,G,光二極 ,體元件的電流通道,並可以通過2線提供電源的R,G,B 發光二極體元件。 【先前技術】 赉光一極體(LED : 1 ight-emitting diode)應用於儀 器類的顯示元件、光通訊專用光源等各種電器上的顯示專 用燈、顯示數位的裝置、計算器解讀信用卡功能等。並且, 注入式半導體雷射器是一種高密度的發光二極體,從它發 生反轉分佈而能夠產生干涉性光線。 把紅色(RED)、綠色(GREEN)、藍色(BLUE)的發光二極 體組成一個像數,而構成RGB LED元件的電路,並控制 各R、G、B LED的光度,能夠顯示理論上的} 6 〇 〇萬種顏 色。 在圖1圖示已有的R,G,B發光二極體模組的電路圖。 把紅色發光二極體D1的陽極終端通過抗力R丨連接 到+共同線,而把紅色發光二極體D1的陰極終端連接到R 控制線,並把綠色發光二極體D2的陽極終端通過抗力R2 連接到+共同線,以及把綠色發光二極體D1的陰極終端連 5214—8394-PF 5 200818982 接到G控制線。還有,把藍色發光二極體D3的陽極終端 通過抗力R3連接到+共同線,而把藍色發光二極體⑽的 陰極終端連接到B控制線。 已有的R,G,B發光二極體模組為最讓人常用的方 式,而它的電路圖比較簡單,但是全部的lED驅動電流都 ^ 成為負荷,因此控制線應該具有能夠與LED相應的粗細。 , 在圖2圖示已有的5線式R,G,B發光二極體模組的 電路圖。 5線式R,G,B發光二極體模組把紅色發光二極體μ 的陽極終端通過抗力R4連接到v+電源線,而紅色發光二 極體(D1)的陰極終端通過電晶體的收集體(⑶丨丨ect〇er ) 和务射體(emitter)連接到v-的電源線,並上述電晶體 Q1的基極連接到R控制線。 因此,通過從R控制線輸出的信號’電晶體Q1以打 開(turn on)的狀態進行轉換之後’再通過紅色發光二 、極體(D1)通電流,從而紅色發光二極體(Di)能夠發光。 同樣,綠色發光二極體(D5)和藍色發光二極體(D6)以 同樣的結構,各通過從G'B控制線所輸出的信號,電晶 體Q2和Q3以打開(turn 〇n)的狀態進行轉換之後,再 I匕 '亲色毛光一極體(D5)和藍色發光二極體(抑)通電 流,從而綠色發光二極體(D5)和藍色發光二極體⑽)能 夠發光。 5線式R’ G,B發光二極體元件通過提供led電源專 用電源線和v_電源線,R、G、b控制線相對比較細也可 5214-83 94-PF 6 200818982 以驅動,但是總體上有複數線股,因此在工作時有此不 便。反之,它的優點就是,元件内部沒有安裝控制器也处 驅動R,G,B發光二極體。 在圖3圖示已有的3線式R,G,B發光二極體模組的 電路圖。 • 3線式R,G,B發光二極體模組把紅色發光二極體μ ,· 的陽極終端,通過抗力R15連接到V+電源線,紅色發光二 極體(D7)的陰極終端通過電晶體q4的收集體 (collectoer)和發射體(efflitter)連接到V-電源線, 而上述電晶體Q4基極通過抗力r 14連接到控制器u 1的輸 出資料終端D1。並且,控制器通過輸入資料的終端 D i η ’輸入月b夠使指號輸出為資料輸出終端d 1的序列資料。 因此,通過從控制器U1的資料終端D1輸出的信號, 電晶體Q4以打開(turn on)的狀態進行轉換之後,再通 過綠色發光二極體D7通電流,從而綠色發光二極體D7能 夠發光。 同樣,綠色發光二極體D8和藍色發光二極體D9以同 樣的結構,各通過從控制器1Π的資料終端D2及d3所輸 出的信號,電晶體Q5和Q6以打開(turn 〇n )的狀態進 行轉換之後,再通過綠色發光二極體D8和藍色發光二極 體D9通電流,從而綠色發光二極體⑽和藍色發光二極體 D9能夠發光。 這樣的已有的R,G,B發光二極體元件應該包括為了 處理資料的控制器,而因為驅動Led專用電源電壓和驅動 5214-8394-PF 7 200818982 控制器專用電源電壓各不同,因此應該補充安裝提供驅動 控制器電源及穩定電源的穩壓器(voltage Regulat〇r)。 正因為這樣’製造配件及單價會有所上漲。 【發明内容】 • 【通過該發明要解決的技術上的課題】 . 該發明是為了解決上述的問題而提出的。該發明的目 的就是提供通過2線電源線供給電源的、2線式R,G,B 發光二極體模組。 除了上述的目的外,還有另一種目的就是,提供利用 電壓感測器感知電壓之後,隨著所感知到的電麼能夠選擇 性地驅動紅色(RED)、綠色(GREEN)、藍色(BLUE)發光二 極體的2線式R,G,B發光二極體模組。, 【發明的構成】 根據該發明的R,G,B發光二極體模組的組成部分 為·電流源;在電流源連接陽極而把陰極連接到開關某一 終端的R,G,B發光二極體;某一終端連接到上述的R,G, B發光二極體,而另一個終端連接到—電源線的r、g、b 開關;隨著所感知到的電壓,把r、G、B開關轉換之後, 把R,G,B發光二極體打開(turn on)的R、G、β電壓感 測器。 根據该發明的r,G,Β發光二極體元件的一個實施例 的組成部分為:提供標準電壓的標準電壓部;把電源電壓 V+分壓的分壓阻抗;通過上述的分壓阻抗把被分壓的電壓 5214-8394-PF 8 200818982 輸入到演算放大器的輸入阻抗…整合穩壓 述電源電…、以演算放大器構成的射極隨轉ί (Emitter FGl Wr);對上述的標準電壓和各R、G 射電壓進行比較的、以3個比較器構成的r、β映' 壓比較部;在上述的R、G、B映射㈣比較部的功率之門 決定優先等次的衫部分;把上述優先等次決^部分㈣ 2號通過抗力輸入進去之後,利用所輸入到的信號轉換 為打開狀態的控制器,及以複數β發光二極體組成的心 ^根據該發明的上述優先等次決定部分在結構上的特 被在於.對上述Β映射電壓比較部的功率進行反轉的反及 閘’對上述G映射電壓比較部的功率和上述反及閘功率進 行與非演算的反及閘;對上述反及閘功率和R映射電壓比 較部功率進行與非演算的反及閘。 匕::體…牛;把上述的優先等次決定部分的功率信號通 輸入進去之後’利用所輸入到的信號轉換為打開狀 態的控制器,及以複數G發光二極體組成的G發光二極體 兀件,把上述優先等次決定部分的功率信號通過抗力輸入 :去之後,利用所輸入到的信號轉換為打開狀態的控制 口口及以複S R發光二極體組成白勺R發光二才亟體元件。 、&根據該發明的R,G,B發光二極體模組之實施例的組 成部分為:提供恒電流的恒電流部;以 G β發光 :極體構成的…發光二極體模組;能夠發生驅= 發光二極體元件時所需的R映射電壓的R映射電壓部;通 過上述R映射電壓轉換為打開狀態,而驅動上述R發光二 5214-8394-pf 9 200818982 ::1…驅動部分;能夠發生驅動G發光二極體元件 厂:轉:Γ 昼的G映射電麼部;通過上述。映射電 二為打開狀態’而驅動上述G發光二極體元件的G驅 電壓=夠發生:動6發光二極體元件時所需的B映射 能%㈣射電㈣’通過上述B映射電遷轉換為打開狀 心,而驅動上述Β發光二極體元件的R驅動部分。 :艮:該發明的R,G,B發光二極體元件的特徵在於: =串:連接複數…發光二極體,而某一終端與 源、串聯接線而從它供給到電流,並另外終端與 刀、G驅動部分、β驅動部分的R、G、B開關元件 的陰級終端相連接。 』關兀仟 根據該發明的上述RG、R門ω - Μ〜 4 κ u β開關凡件各為可控矽整流 器、電晶體、並聯調節器。 【實施方式】 而進行詳細說明。 G,B發光二極體元件 下面,參照本發明的實視例圖 在圖4圖示,根據該發明的R, 之結構的方塊圖。 根據該發明的R,G,B發光二極體模組的組成部分 為:電流源(1G);在電流源(1G)ii接陽極而陰極連接 到開關(17’18’19)某-終端的紅色(_、綠色((^_、 藍色(BLUE)的R,G,B發光二極體(u,12, 13);某一終 端連接到上述的紅色(RED)、綠色(GREEN)、藍色(此此)的 R, G,B發光二極體(u,12,13),而另—個終端連接 10200818982 IX. Description of the invention: [Technical field to which the invention belongs] 么月月疋 About R, G, B (R, G, B means Red, Green, Blue, hereinafter collectively referred to as R, G, B) LEDs Group of inventions. In particular, 爿b is able to perceive the power supply voltage, and with the sensed voltage, converts the switches of each of the R, g, and β driving sections, thereby controlling the current channels of the R, G, and optical diodes, and R, G, B LED components that provide power through 2-wire. [Prior Art] The LED: 1 ight-emitting diode is used for display-specific components such as instrument display elements, optical communication-specific light sources, display digital devices, and calculator interpretation credit card functions. Further, the injection type semiconductor laser is a high-density light-emitting diode from which an inverted distribution is generated to generate interference light. The red (RED), green (GREEN), and blue (BLUE) light-emitting diodes are formed into an image number to form a circuit of RGB LED elements, and control the luminosity of each of the R, G, and B LEDs, and can theoretically display } 6 million colors. FIG. 1 is a circuit diagram showing a conventional R, G, and B light emitting diode module. Connect the anode terminal of the red LED D1 to the + common line through the resistance R丨, and connect the cathode terminal of the red LED D1 to the R control line, and pass the anode terminal of the green LED D2 through the resistance. R2 is connected to the + common line, and the cathode terminal of the green LED D1 is connected to the G control line by 5214-8394-PF 5 200818982. Further, the anode terminal of the blue light-emitting diode D3 is connected to the + common line by the resistance R3, and the cathode terminal of the blue light-emitting diode (10) is connected to the B control line. The existing R, G, B LED module is the most common way, and its circuit diagram is relatively simple, but all lED drive currents become loads, so the control line should have the corresponding LED Thickness. Fig. 2 is a circuit diagram showing a conventional 5-wire type R, G, B light-emitting diode module. The 5-wire R, G, B LED module connects the anode terminal of the red LED μ to the v+ power line through the resistance R4, while the cathode terminal of the red LED (D1) is collected through the transistor. The body ((3) 丨丨ect〇er) and the emitter are connected to the power line of the v-, and the base of the above transistor Q1 is connected to the R control line. Therefore, the red light emitting diode (Di) can be passed through the red light emitting diode (D1) by the signal 'transistor Q1 outputted from the R control line after being turned on" and then passing through the red light emitting diode (D1). Glowing. Similarly, the green light-emitting diode (D5) and the blue light-emitting diode (D6) have the same structure, each passing through the signal output from the G'B control line, and the transistors Q2 and Q3 are turned on (turn 〇n). After the state is converted, I匕's color-lighting body (D5) and blue light-emitting diode (suppressing) current, so that the green light-emitting diode (D5) and the blue light-emitting diode (10)) Can shine. The 5-wire R' G, B LED components provide a dedicated power line for the led power supply and a v_ power line. The R, G, and b control lines are relatively thin and can be driven by 5154-83 94-PF 6 200818982, but In general, there are multiple strand stocks, so this is inconvenient at work. On the contrary, its advantage is that the R, G, B LEDs are not driven inside the component. Fig. 3 is a circuit diagram showing a conventional 3-wire type R, G, B light-emitting diode module. • The 3-wire R, G, B LED module connects the anode terminal of the red LED, · is connected to the V+ power line through the resistance R15, and the cathode terminal of the red LED (D7) is powered. The collector and emitter (efflitter) of the crystal q4 are connected to the V-power line, and the base of the transistor Q4 is connected to the output data terminal D1 of the controller u1 by the resistance r14. Further, the controller inputs the month b by the terminal D i η ' of the input data so that the index is output as the sequence data of the material output terminal d 1 . Therefore, by the signal output from the data terminal D1 of the controller U1, the transistor Q4 is switched in a turn-on state, and then the current is passed through the green light-emitting diode D7, so that the green light-emitting diode D7 can emit light. . Similarly, the green light-emitting diode D8 and the blue light-emitting diode D9 have the same structure, and each of the transistors Q5 and Q6 is turned on (turn 〇n) by the signals output from the data terminals D2 and d3 of the controller 1A. After the state is converted, current is passed through the green light-emitting diode D8 and the blue light-emitting diode D9, so that the green light-emitting diode (10) and the blue light-emitting diode D9 can emit light. Such existing R, G, B LED components should include a controller for processing data, and because the Led dedicated supply voltage and the drive 5112-8394-PF 7 200818982 controller dedicated supply voltage are different, it should A voltage regulator (voltage Regulat〇r) that provides drive controller power and stable power is added. Because of this, 'manufacturing parts and unit prices will rise. SUMMARY OF THE INVENTION [Technical Problem to be Solved by the Invention] The present invention has been made to solve the above problems. The object of the invention is to provide a 2-wire type R, G, B light-emitting diode module that is powered by a 2-wire power line. In addition to the above purposes, there is another object to provide for selectively driving red (RED), green (GREEN), and blue (BLUE) with the perceived power after the voltage is sensed by the voltage sensor. A 2-line R, G, B light-emitting diode module of a light-emitting diode. [Configuration of the Invention] The components of the R, G, and B light-emitting diode modules according to the invention are a current source; the R, G, B light is connected to the anode of the switch when the current source is connected to the anode and the cathode is connected to a certain terminal of the switch. a diode; one terminal is connected to the above R, G, B light emitting diode, and the other terminal is connected to the r, g, b switch of the power line; with the sensed voltage, r, G After the B-switch is switched, the R, G, and B voltage-emitting diodes are turned on by the R, G, and B light-emitting diodes. An embodiment of an embodiment of the r, G, Β light emitting diode element according to the invention is: a standard voltage portion that supplies a standard voltage; a voltage dividing impedance that divides the power supply voltage V+; and is subjected to the above-described voltage dividing impedance The voltage divided by the voltage is 5214-8394-PF 8 200818982 Input impedance input to the amp... integrated voltage regulation power supply..., the emitter of the amplifier is turned on ί (Emitter FGl Wr); for the above standard voltage and each R and G radiation voltages are compared, and r and β reflection voltage comparison units are composed of three comparators; in the R, G, and B maps (4), the power gate of the comparison unit determines the priority of the shirt portion; The above-mentioned priority equal-order part (4) No. 2 passes through the resistance input, the controller that converts the input signal into an open state, and the heart composed of a plurality of β-light-emitting diodes according to the above-mentioned priority order of the invention The determining portion is structurally characterized by the inverse of the power of the Β mapping voltage comparison unit and the inverse of the power of the G mapping voltage comparison unit and the inverse thyristor power. NAND above the power voltage and the non-R mapping of the NAND arithmetic comparison unit power.匕::body...the cow; after inputting the power signal of the above-mentioned priority equal-determination part, the controller that converts the input signal into an open state, and the G-lighted two composed of a plurality of G-emitting diodes In the polar body, the power signal of the above-mentioned priority equal-determination part is input through the resistance force: after the conversion, the input signal is converted into the open control port and the R-emitting diode composed of the complex SR light-emitting diode Only the body components. And the components of the R, G, B light-emitting diode module according to the invention are: a constant current portion for supplying a constant current; and a light-emitting diode module composed of a G β light-emitting body: a polar body; An R-mapped voltage portion capable of generating an R-mapped voltage required for driving a light-emitting diode element; converting the above-mentioned R-mapped voltage into an open state, and driving the above-mentioned R-emitting illuminator 2521-8394-pf 9 200818982 ::1... Driving part; capable of driving G-emitting diode component factory: turn: Γ 昼 G mapping electric part; through the above. The mapping power 2 is the open state' and the G driving voltage of the above-mentioned G light-emitting diode element is generated = enough to occur: the B mapping energy required when moving the 6-emitting diode element is (4) radio (four) 'transformed by the B-map electromigration described above In order to open the center of the core, the R driving portion of the above-described Β-emitting diode element is driven. :艮: The R, G, B light-emitting diode elements of the invention are characterized by: = string: connecting a plurality of light-emitting diodes, and a terminal is connected to the source, connected in series to supply current thereto, and the other terminal It is connected to the cathode terminal of the R, G, and B switching elements of the knives, the G driving portion, and the β driving portion. According to the invention, the RG and R gate ω - Μ 4 4 κ u β switches are each a controllable 矽 rectifier, a transistor, and a shunt regulator. [Embodiment] A detailed description will be given. G, B light-emitting diode element Next, a block diagram of a structure of R according to the present invention is shown in Fig. 4 with reference to a real-time example of the present invention. The components of the R, G, B light-emitting diode module according to the invention are: a current source (1G); the current source (1G) ii is connected to the anode and the cathode is connected to the switch (17'18'19). Red (_, green ((^_, blue (BLUE) R, G, B light-emitting diode (u, 12, 13); a terminal connected to the above red (RED), green (GREEN) , blue (here) R, G, B light-emitting diodes (u, 12, 13), and another terminal connection 10

5214-8394-PF 200818982 到-電源線的R、G、B開關(i 7,18,1 9 );隨著所感知 到的電壓,把上述的R、G、b開關(1 7,1 8,1 9 )轉換之 後,再把紅色(RED)、綠色(GREEN)、藍色(BLUE)的發先二 極體(11 ’ 12,13 )打開(turn on)的R、G、B電壓感測 器(14,15,16)。 . R、G、B電壓感測器(14,1 5,1 6 )如果在R、g、g ··發光二極體(Π,1 2,1 3 )上設置已設定的電壓,那能感 知到屬於R、G、Β發光二極體(11,12,1 3 )的電壓, 而能夠獨立地把R、G、Β開關(Π,18,19)轉換為打開 的狀態’從而驅動r、G、Β發光二極體(丨丨,丨2,丨3 )。 R發光二極體往順方向約10mA、1· 9V時發光,而G 發光二極體往順方向約10mA、3. 2V時發光,並B發光二 極體往順方向約10mA、3· 6V時發光。 口此各5個串聯連接的R、G、B發光二極體順方 向的電壓映射為9· 5V、16V、18V,而隨著V+的電壓,R、 G、B發光二極體元件會滅燈,從而能夠控制通過2線的 R、G、B發光二極體模組。 在圖5圖示,根據該發明的2線式R、G、B發光二 極體元件的某一種實施例之電路圖。 、 據亥务明的2線式R、G、B發光二極體模組的組 成部分為:提供標準電壓的標準電壓部(2〇);分壓電源 電壓V+的分壓阻抗(R20, R21);把通過上述分壓阻抗(R21) "出、來的電壓輸入到演算放大器(U2)的輸入阻抗 (R22)’為了把穩壓二極體(D10)及上述電源電壓v +恒定電5214-8394-PF 200818982 R-, G, B switch to the - power line (i 7, 18, 1 9); with the sensed voltage, the above R, G, b switch (1 7,1 8 , 1 9 ) After the conversion, the red (RED), green (GREEN), blue (BLUE) first diode (11 '12, 13) turns on the R, G, B voltage sense Detector (14, 15, 16). R, G, B voltage sensor (14,1 5,16) If the set voltage is set on the R, g, g · · LED (Π, 1 2, 1 3 ), then The voltages belonging to the R, G, and Β light-emitting diodes (11, 12, 13) are sensed, and the R, G, and Β switches (Π, 18, 19) can be independently converted into an open state to drive r , G, Β light-emitting diodes (丨丨, 丨 2, 丨 3). The R light-emitting diode emits light at about 10 mA and 1·9 V in the forward direction, and the G-emitting diode emits light at about 10 mA in the forward direction and 3.2 V, and the B-emitting diode is about 10 mA in the forward direction, and 3. 6 V. Lights up. The voltages of the five R, G, and B LEDs in series are mapped to 9.5V, 16V, and 18V, and the R, G, and B LED components are extinguished with the V+ voltage. The lamp can control the R, G, B LED module through the 2-wire. Fig. 5 is a circuit diagram showing an embodiment of a 2-wire type R, G, B light-emitting diode element according to the invention. According to Haiwuming, the components of the 2-wire R, G, B LED module are: standard voltage part (2〇) providing standard voltage; voltage-dividing impedance of voltage supply voltage V+ (R20, R21) The input voltage (R22) of the operating amplifier (U2) is input to the voltage (V2) of the voltage divider (R21) and the power supply voltage v + is constant.

5214-8394-PF 11 200818982 壓的、以演算放大器(ϋ2)構成的射極隨轉器(EmiUer F〇ll〇Wer;21);對上述標準電壓和各R、G、B映射電壓 進行比較的、以3個比較器(U3, υ4, ϋ5)構成的r、g、b 映射電壓比較部(22, 23,24);在上述R、G、B映射電 壓比較部(22,23,24)的功率之間決定優先等次的決定優 •先等-人部(2 5 );把上述決定優先等次部(2 5 )的功率信 .號通過阻抗(R26)輸入之後,利用其功率信號轉換為打開 狀態的電晶體(Q7),及以複數B發光二極體(1)11_])14)構 成的B發光二極體模組(26);把上述決定優先等次部(25) 的功率信號通過阻抗(R27)輸入之後,利用其功率信號轉 換為打開狀態的電晶體(Q8),及以複數G發光二極體 〇)15-018)構成的6發光二極體模組(27);把上述決定優 先等次部(25)的功率信號通過阻抗(R28)輸入之後,利 用其功率信號轉換為打開狀態的電晶體(Q9),及以複數r 發光—極體(D19-D22)構成的R發光二極體模組(28); 標準電壓部(20 )是,舉例子說明,以恒電壓調整器 構成而發生恒電壓。 射極P返|禺器(Emi tter Fol 1 〇wer ; 21)的組成部分為: 對電源電壓V +進行分壓的分壓阻抗(R20,R21);把通過上 述/刀壓阻抗(R21)分壓的電壓往演算放大器輸入進去 的輸入阻彳几(R22);為了整合穩壓二極體(])1〇)及上述電源 電壓v+的演算放大器(ϋ2)。 R、G、Β映射電壓比較部(22,23,24)的組成部分為: 把上述的標準電壓分割為各r、G、b映射電壓的映射阻抗 5214-8394-PF 12 200818982 ψ (R2 3,R24,R25);對上述的標準電壓和各R、G、Β映射 電壓進行比較的3個比較器(U3,U4,。 決定優先等次部(25)的組成部分為··對上述Β映射電 壓比較部(22)的功率進行反轉的反及閘(ϋ7,ϋ8);對上述 G映射電壓比較部(23)的功率和上述反及閘(U7)功率進=5214-8394-PF 11 200818982 The emitter follower (EmiUer F〇ll〇Wer; 21) composed of a calculus amplifier (ϋ2); comparing the above standard voltage with the mapped voltages of each R, G, B , r, g, b mapping voltage comparison sections (22, 23, 24) composed of three comparators (U3, υ4, ϋ5); mapping voltage comparison sections (22, 23, 24) in the above R, G, B Between the powers, the decision is made to prioritize the priority, and the first part is equal to the human part (2 5 ); after the power signal of the above-mentioned decision priority (2 5 ) is input through the impedance (R26), the power signal is used. a transistor (Q7) converted to an open state, and a B LED module (26) composed of a plurality of B light-emitting diodes (1) 11_]) 14); giving priority to the above-mentioned decision (25) After the power signal is input through the impedance (R27), the 6-light diode module composed of the transistor (Q8) whose power signal is converted into an open state and the complex G-emitting diode 15) 15-018) 27); after the power signal of the above-mentioned decision priority sub-section (25) is input through the impedance (R28), the power signal is converted into an open state transistor (Q9) And an R light-emitting diode module (28) composed of a plurality of light-polar body (D19-D22); the standard voltage portion (20) is, for example, a constant voltage regulator formed to generate a constant voltage . The components of the emitter P return | (Emi tter Fol 1 〇wer; 21) are: a voltage divider impedance (R20, R21) that divides the power supply voltage V + ; and passes the above / knife impedance (R21) The divided voltage is input to the input amplifier of the amplifier (R22); in order to integrate the regulator diode (1)) and the above-mentioned power supply voltage v+ calculus (ϋ2). The components of the R, G, and Β mapping voltage comparison sections (22, 23, 24) are: The above-mentioned standard voltage is divided into mapping impedances of the respective r, G, and b mapping voltages 5124-8394-PF 12 200818982 ψ (R2 3 , R24, R25); three comparators (U3, U4, which compare the above-mentioned standard voltage and each of the R, G, and Β mapping voltages. The components of the priority sub-part (25) are determined as follows. The power of the mapping voltage comparison unit (22) is inverted (的7, ϋ8); the power of the G-map voltage comparison unit (23) and the above-mentioned inverse gate (U7) power are input =

.與非演算的反及閘(U9),·對上述反及間(U6, U7)功率和R ..映射電壓比較部(24)功率進行與非演算的反及閘(υι〇)。 B發光二極體模組(26)的組成部分為··把上述決定優 先等次部(25)的反及閘(U8)之功率信號通過阻抗(R26) 輸入之後,利用其輸入信號轉換為打開狀態的電晶體(Q7) 及複數B發光二極體(D11-D14)。 G發光二極體模組(27)的組成部分為:把上述決定優 先等次部(25)的反及閘(U9)之功率信號通過阻抗(R27) 輸入之後,利用其輸入信號轉換為打開狀態的電晶體(q8) 及複數G發光二極體(D15-D18)。 R發光二極體模組(28)的組成部分為:把上述決定優 先等次部(25)較及閘(U10)之功率信號通過阻抗⑽) 輸入之後,利用其輸入信號轉換為打開狀態的電晶體(Q9) 及複數R發光二極體(D19-D22)。 因此,從標準電壓部(20)輸出的標準電壓是通過阻 抗(R23, R24, R25)分割為R、g、B映射電壓,而演算放 大器(U2)的電壓功率是從R、G、B比較器⑽,U4, U5) 中進行比較之後,輸出屬於映射電壓的信號。 舉例子說明,如果V+電源電壓為h射電壓(假設把 5214-8394-PF 13 200818982 標準電壓設頂為,R映射電壓是12V、G映射電壓是16V、 B映射電壓是20V),那V+電源電壓從標準電壓部(20)輸 出為標準電壓,而這標準電壓通過映射電壓阻抗(R23,R24, R25)分割為R、G、B映射電壓之後,輸入到rgb比較 為(U3,U4,U5)的反轉終端(一)。 一方面,v+電源電壓(12V)被分壓阻抗(R2〇、R21)* 壓之後,通過構成射極隨耦器的演算放大器(U2)輸出,而 輸入到b、g、r比較器(U3, U4, U5)的非反轉終端(+ ) 之後,與上述的標準電壓進行比較。 囚此,B比季父裔U3)是,往反轉終端(―)所輸入進去的 B映射標準電壓’和輸人為非反轉終端⑴的R映射標準恭 壓之V+電源電壓(12V)之間做比較之下,因輸人到反轉^ 端㈠的B映射標準電壓(例’ 2〇v)比輸入為非反轉線端 (+ )的電壓大,因此輸出‘0,的信號。 、、而And the non-calculus of the inverse gate (U9), the opposite and (U6, U7) power and R.. mapping voltage comparison section (24) power and non-calculus inverse gate (υι〇). The component of the B-light-emitting diode module (26) is that the power signal of the anti-gate (U8) of the determining priority sub-section (25) is input through the impedance (R26), and then the input signal is converted into Open transistor (Q7) and complex B LED (D11-D14). The component of the G-light-emitting diode module (27) is: after inputting the power signal of the anti-gate (U9) of the above-mentioned priority sub-section (25) through the impedance (R27), the input signal is converted to open. The state of the transistor (q8) and the complex G light-emitting diode (D15-D18). The component of the R LED module (28) is: after the above-mentioned decision priority sub-portion (25) is input to the gate (U10) through the impedance (10), the input signal is converted into an open state. Transistor (Q9) and complex R LED (D19-D22). Therefore, the standard voltage output from the standard voltage section (20) is divided into R, g, and B mapping voltages by impedance (R23, R24, R25), and the voltage power of the operational amplifier (U2) is compared from R, G, and B. After the comparison is made in the device (10), U4, U5), the signal belonging to the mapped voltage is output. For example, if the V+ supply voltage is the h-emitter voltage (assuming the 5112-8394-PF 13 200818982 standard voltage is set to the top, the R-mapped voltage is 12V, the G-mapped voltage is 16V, and the B-mapped voltage is 20V), then the V+ power supply The voltage is output from the standard voltage section (20) as a standard voltage, and the standard voltage is divided into R, G, and B mapping voltages by mapping the voltage impedances (R23, R24, R25), and the input is compared to rgb (U3, U4, U5). ) Reverse terminal (1). On the one hand, the v+ supply voltage (12V) is divided by the voltage divider (R2〇, R21)* and is output to the b, g, r comparator (U3) through the amp (U2) that forms the emitter follower. After the non-inverting terminal (+) of U4, U5), it is compared with the above standard voltage. Prisoner, B is the father of the U3), the B-mapped standard voltage input to the reverse terminal (-) and the R-mapped standard of the non-inverted terminal (1) are the V+ supply voltage (12V). In comparison, the B-mapped standard voltage (example '2〇v) of the input to the inversion terminal (1) is larger than the input voltage of the non-inverted line terminal (+), so the signal of '0' is output. ,,and

G比較器(U4)是,往反轉終端㈠所輸入進去的g 標準電壓,和輸人為非反轉終端⑴的R映射標準電壓 V+電源電塵(12V)之間做比較之下’因輸人収轉終I 的G映射標準電壓(例,16V)比輸人為非反轉終端' 電壓大,因此輸出‘0,的信號。 增 R比較器(U5)是,往反轉終端㈠所輸入進去 射標準電壓’和輸入為非反轉終端⑴的R映 、 之v+電源電麼(m)之間做比較之下,因輸 不丰電屢 (-)的1?映射標準電壓(例,12v)比_ 1反轉終端 的㈣一樣或小,因此輸出‘广=到非反轉終端(+) 5214-8394-PF 14 200818982 決定優先等次部(25)的反及閘⑽對B比較部(22 ) 功率進行反轉之後,輸出發光二極體㈣(Μ)。而決 定優先等次部(25)的反及問⑽把上述G比較部(23)的 功率和上述反及閘⑽的功率與非演算之後,輸出^發 先一極體凡件(26)。還有決定優先等次部(25)的反及閘 (um把上述反及閘(U6, U7)的功率和w射標準比較部 分(24)的功率與非演算之後’輸出為R #光二極體元件 (27)。 B發光二極體元件(26)把對b比較部分(22)功率進行 反轉的反及閘(U8)之功率信號,通過阻抗(R26)輸入之 後’隨者其輸入信號把電晶體(Q7)轉換為打開狀態,從而 點燈複數B發光二極體(dii—d14)。 G發光二極體元件(27)把G比較部(23)功率和被反 轉的B比較部分(22)功率進行與非演算的反及閘(U9)之功 率信號,通過阻抗(R27)輸入之後,隨著其輸入信號把電 晶體(Q8)轉換為打開狀態,從而點燈複數G發光二極體 (D15-D18)。 R發光二極體元件(28)把R比較部(24)功率和被反 轉的β比較部分(2 2)及G比較部(2 3 )功率進行與非演算 的反及閘(U9)之功率信號,通過阻抗(R28)輸入之後,隨 者其輸入彳。號把電晶體(Q 8)轉換為打開狀態,從而點燈複 數R發光二極體(D19-D22)。 電源電壓如上述例子一樣,在1 2 V的情況時,要察看 發光二極體模組(26,27,28)的點燈狀態。 5214-8394-PF 15 200818982 Β比較部(22)功率 ,通過阻抗(R26) β發光二極體元件(26)是把對 0’進行反轉的反及閘(U8)的功率 入之後,因把ΡΝΡ型電晶體(q7)轉換為打開狀態,所以 輸 滅複數Β發光二極體(D11-D14)的燈。 G發光二極體元件(27)是把G比較部(23)的功率 ‘0,和被反及閘(U7)反轉的B比較部分(22)功率 1 ,及與非演算的反及閘(U9)功率信號‘丨,,通過 阻抗(R27)輸入之後,因把PNP型電晶體(Q8)轉換為打開 狀態,所以滅複數G發光二極體(D1 5-D1 8)的燈。 R發光二極體元件(28)是把R比較部分(24)功率 、進行反轉的B比較部(22)功率‘1,、進行反轉 的G比較部(22 )功率‘ Γ線與的功率‘丨,,和把與非 演算的反及閘(U10)功率信號‘〇,,通過阻抗(R28)輸入 之後,因把PNP型電晶體(Q9)轉換為打開狀態,所以滅複 數R發光二極體(D19-22)的燈。 如上所述’如果電源電壓輸入為r映射標準電壓,那 只點R發光二極體(D19-D22)的燈,而滅G、B發光二極體 (Dll-D18)的燈。 接著’如果電源電壓輸入為G映射標準電壓,即,輸 入為1 6V,那以同樣原理,β比較部(22 )的功率為‘ 〇,, 而G比較部(2 3)及R比較部(2 4)的功率為‘ Γ 。 因此,B發光二極體(Dll-D14)為滅燈狀態,而G發光 二極體(D15-D18)為點燈狀態,不過R發光二極體(D18_D22) 儘管R比較部分(24)的功率為‘ Γ ,因通過反及閘(U6) 5214-8394—PF 16 200818982 反轉的功率為‘〇,,因此反及閘(υιο)的功率還是 ‘1 ’ ,所以滅燈。 也就是說,如果G發光二極體(D15-D18)點燈,那R 發光二極體(D19-D22)會滅燈,因此G發光二極體模組(27 ) 優先于R發光二極體模組(28 )。 接著,如果電源電壓輸入為B映射標準電壓,即, 輸入為20V,那以同樣原理,b發光二極體(DU_D14)為滅 燈狀態,而G發光二極體(D15-D18)及R發光二極體 (D18-D22)為滅燈狀態,因此b發光二極體元件(26)優 先于G發光二極體模組(27)及r發光二極體模組(28)。 因而’通過變動電源電壓,可以選擇性地驅動各發光 二極體元件。 在圖6圖示,根據該發明的2線式R,G,b發光二極 體元件的另一種實施例之電路圖。此電路圖的結構為:提 供恒電流的恒電流部(29 );以複數R,G,B發光二極體 組成的R,G,B發光二極體模組(3〇,31,32);驅動上述 R發光一極體元件(3〇)的、產生R映射電壓的1^映射電壓 部(34) ·,被上述R映射電壓轉換為打開狀態,而驅動r 發光二極體元件(30 )的R驅動部(33 );驅動上述G發 光一極體元件(31)的、產生g映射電壓的〇映射電壓部 (36 )·’被上述G映射電壓轉換為打開狀態,而驅動上述 G發光二極體元件(31 )的G驅動部(35 );驅動上述b 發光二極體元件(32)的、產生B映射電壓的B映射電壓部 (38 );被上述B映射電壓轉換為打開狀態,而驅動上述 5214-8394-PF 17 200818982 % B發光二極體元件(32)的β驅動部(37)。 各R,G,B發光二極體模組(3〇,31,32)是串聯複數 (如,4 個)R,g,B 發光二極體(D22-D25,D26-D29, D30-D33)構成,而其某一終端連接到上述恒流源(29)供給 到電流,另外某一終端各連接到R驅動部(33) 、G驅動 部(35)及B驅動部(37)的R、G、β開關元件(SR1,SR3, 、SR5)的陰極。在此,R、G、B開關元件(SRl,SR3,SR5) 可以以可控矽整流器、電晶體、並聯調節器構成。 ' R驅動部(33)是以相互串聯接線的阻抗(R29)和第iThe G comparator (U4) is a comparison between the g standard voltage input to the inverting terminal (1) and the R-mapped standard voltage V+ power supply dust (12V) input to the non-inverting terminal (1). The G-mapped standard voltage of the person receiving the final I (for example, 16V) is larger than the input voltage of the non-inverted terminal, so the signal of '0' is output. The R comparator (U5) is compared with the input of the de-embed standard voltage to the inverting terminal (1) and the R-input of the non-inverting terminal (1), and the v+ power supply (m). The 1st mapping standard voltage (example, 12v) of the non-rich (-) is the same or smaller than the (4) of the _ 1 reverse terminal, so the output 'wide= to the non-inverting terminal (+) 5214-8394-PF 14 200818982 The reverse gate (10) of the priority sub-section (25) is determined to invert the power of the B comparison unit (22), and then the light-emitting diode (4) (Μ) is output. The decision (10) of the priority sub-section (25) is determined. (10) After the power of the G comparison unit (23) and the power of the anti-gate (10) and the non-calculus are calculated, the first polar body (26) is output. There is also a decision on the priority of the equal part (25) of the reverse gate (um the power of the above-mentioned reverse gate (U6, U7) and the comparison of the power of the w-shooting standard (24) with the non-calculus after the output is R #光二极Body element (27) B light-emitting diode element (26) reverses the power of the b-comparative part (22) and reverses the power signal of the gate (U8), after inputting through the impedance (R26) The signal converts the transistor (Q7) to an open state, thereby lighting a plurality of B light-emitting diodes (dii-d14). The G-emitting diode element (27) compares the power of the G-comparison (23) with the inverted B Comparing part (22) power and non-calculus inverse gate (U9) power signal, after input through impedance (R27), turn the transistor (Q8) into an open state with its input signal, thereby lighting the complex G Light-emitting diode (D15-D18) The R-emitting diode element (28) combines the power of the R comparison unit (24) with the inverted β comparison portion (2 2) and the G comparison portion (23) The non-calculus inverse gate (U9) power signal is input through the impedance (R28), followed by its input 彳. The transistor (Q 8) is converted to hit State, thus lighting the plural R light-emitting diodes (D19-D22). The power supply voltage is the same as the above example. In the case of 12 V, the lighting of the LED module (26, 27, 28) is to be observed. State: 5214-8394-PF 15 200818982 ΒComparative section (22) Power, pass impedance (R26) The beta LED component (26) is the power of the inverse gate (U8) that reverses 0'. , because the ΡΝΡ-type transistor (q7) is turned into an open state, the lamp of the complex Β light-emitting diode (D11-D14) is extinguished. The G-emitting diode element (27) is the G-comparison part (23) The power '0, and the B comparison part (22) power 1 that is reversed by the gate (U7), and the non-calculated inverse gate (U9) power signal '丨, after input through the impedance (R27), The PNP type transistor (Q8) is switched to the on state, so the lamp of the complex G light-emitting diode (D1 5-D1 8) is extinguished. The R light-emitting diode element (28) is the power of the R comparison portion (24), The B comparison unit (22) that performs the inversion is power '1, and the G comparison unit (22) that performs the inversion is the power 'Γ and the power '丨, and the inverse of the non-calculus The gate (U10) power signal '〇, after inputting through the impedance (R28), turns off the P-type transistor (Q9) to the on state, so the lamp of the complex R-emitting diode (D19-22) is extinguished. Said 'If the power supply voltage input is r mapped standard voltage, then only the light of the R light-emitting diode (D19-D22), and the light of the G, B light-emitting diode (Dll-D18). Then 'If the power supply voltage The input is the G-mapped standard voltage, that is, the input is 16 V, and the power of the β comparison unit (22) is '〇', and the power of the G comparison unit (23) and the R comparison unit (24) is the same principle. For ' Γ . Therefore, the B light emitting diode (D11-D14) is in the off state, and the G light emitting diode (D15-D18) is in the lighting state, but the R light emitting diode (D18_D22) is in the R comparison portion (24). The power is ' Γ , because the power reversed by the reverse gate (U6) 5214-8394-PF 16 200818982 is '〇, so the power of the gate (υιο) is still '1 ', so the light is off. That is to say, if the G light emitting diode (D15-D18) is lit, the R light emitting diode (D19-D22) will be turned off, so the G light emitting diode module (27) has priority over the R light emitting diode. Body module (28). Then, if the power supply voltage input is B-mapped standard voltage, that is, the input is 20V, then the same principle, b light-emitting diode (DU_D14) is off, and G-light diode (D15-D18) and R light The diode (D18-D22) is in a light-off state, so the b-light diode component (26) has priority over the G-light diode module (27) and the r-light diode module (28). Thus, by varying the power supply voltage, each of the light-emitting diode elements can be selectively driven. Fig. 6 is a circuit diagram showing another embodiment of a 2-line type R, G, b light-emitting diode element according to the invention. The structure of the circuit diagram is: a constant current portion (29) for supplying a constant current; and an R, G, and B light emitting diode module (3, 31, 32) composed of a plurality of R, G, and B light emitting diodes; a mapping voltage portion (34) for generating an R mapping voltage of the R light-emitting diode element (3〇), being converted into an open state by the R-mapped voltage, and driving the r-emitting diode element (30) The R driving unit (33); the 〇 mapping voltage portion (36)·' that generates the g mapping voltage for driving the G light emitting diode element (31) is converted into the open state by the G mapping voltage, and drives the G illuminating a G driving portion (35) of the diode element (31); a B mapping voltage portion (38) for driving the b-light emitting diode element (32) to generate a B-map voltage; being converted into an open state by the B-mapped voltage And driving the β-drive unit (37) of the above-mentioned 5124-8394-PF 17 200818982% B light-emitting diode element (32). Each R, G, B LED module (3〇, 31, 32) is a series of complex (eg, 4) R, g, B LEDs (D22-D25, D26-D29, D30-D33) a configuration in which one of the terminals is connected to the constant current source (29) to supply current, and the other terminal is connected to the R drive unit (33), the G drive unit (35), and the B drive unit (37). The cathode of the G, β switching element (SR1, SR3, SR5). Here, the R, G, and B switching elements (SR1, SR3, SR5) may be constituted by a controllable 矽 rectifier, a transistor, and a shunt regulator. 'R drive unit (33) is the impedance (R29) and the i-th wire connected in series with each other.

R開關元件(SR1)構成,而阻抗(R29)和第}開關元件(SR1) 的連接點連接到R發光二極體元件(3 〇 ),並通過第^ R 開關元件(SR1)的通道提供電流渠道,從而R發光二極體 (D22-D25)能夠點燈。 R映射電壓部(34)的組成部分為:分割電源電壓v + 之後,向上述苐1 R開關元件(SR 1 )門提供轉換電壓的第1 ^ 轉換分割阻抗(R30,R31);在上述第1轉換分割阻抗(R3〇, 1 R31)的接點連接其陰極,而控制分割的第2r開關元件 (SR2);上述第2R開關元件(SR2)的門提供轉換電壓的第2 轉換分割阻抗(R32,R33)。 G驅動部(3 5 )是以相互串聯接線的阻抗(r 3 4 )和第工 G開關元件(SR3)構成,而阻抗(R34)和第1 G開關元件(SR3) 的連接點連接到G發光二極體元件(31 ),並通過第1G開 關元件(SR3)的通道提供電流渠道,從而G發光二極體 (D26-D29)能夠點燈。 5214-8394-PF 18 200818982 G映射電壓部(36 )的組成部分為:分割電源電壓v+ 之後,向上述第1 G開關元件(SR3)的門提供轉換電壓的 第3轉換分割阻抗(R35, R36);在上述第3轉換分割阻抗 (R35, R36)的接點連接其陰極,而控制分割的第2 G開 關元件(SR4);上述第2 G開關元件(SR4)的門提供轉換 電壓的第4轉換分割抗力(R37,R38)。 B驅動部(37 )是以相互串聯接線的阻抗(R39)和第1 B開關元件(SR5)構成,而阻抗(R39)和第1 b開關元件(SR5) 的連接點連接到B發光二極體元件(32),並通過第1B開 關元件(SR5)的通道提供電流渠道,從而b發光二極體 (D 3 0 _ D 3 3)能夠點燈。 映射電壓部(3 8 )的組成部分為:分割電源電壓 之後,向上述第1 B開關元件(SR5)的門提供轉換電壓的 第5轉換分割阻抗(R40,R41);在上述第5轉換分割阻抗 (R40,R41)的接點連接其陰極,而控制分割的第2B開關 元件(SR6);上述第2 B開關元件(SR6)的門提供轉換電壓 的第6轉換分割阻抗(R42, R43)。 R映射電壓部(34 )的第1轉換分割阻抗(R30, R31 ) 是’分割V +電壓而分割到阻抗(R 31 )的轉換電壓接加到第 1 R開關元件(SR 1 )的門,並通過第1 R開關元件(训1 )的 通道提供電流渠道,從而R發光二極體元件(30)能夠點燈。 如果V +電壓上升而超過R映射電壓(如,7.6 V)達 到G映射電壓(如,1 2· 8 V)的話,第2轉換分割阻抗(R32, R33)的阻抗(R33)提供的第2轉換電壓會加到第2R開關元 5214-8394-PF 19 200818982 件(SR2),這樣通過第2R開關元件(SR2)的通道,第ir開 關το件(SR1)門的電壓處於‘低(L〇w),狀態,從而第1R 開關元件(S R1)處於遮斷狀態。 因此’ R發光二極體元件(3 〇 )的電流途徑被遮斷, 因此電流未能經過,最終R發光二極體元件(3〇 )被滅 燈。 同樣,G映射電壓部(36)的第3轉換分割阻抗(R35, ^ R36)是,分割V+電壓而分割到阻抗(R36)的轉換電壓加到 " 第1〇開關元件(8!?3)的門,並通過第1〇開關元件(仰3) 的通道向G發光二極體元件(3丨)提供電流渠道,從而G 發光一極體元件(31)能夠點燈。 如果V+電壓上升而超過g映射電壓(如,ΐ2·8 V) 達到Β映射電壓(如,14· 4 V)的話,第4轉換分割阻抗 (R37,R38)的阻抗(R38)提供的第2轉換電壓會加到第2R 開關元件(SR4) ’這樣通過第2G開關元件(SR4)的通道, 第1G開關元件(SR3)門的電壓處於‘低(L〇w),狀態,從 而第1G開關元件(SR3)處於遮斷狀態。 因此,G發光二極體元件(3丨)的電流途徑被遮斷, 因此電流未能經過,最終G發光二極體元件(3丨)被滅 燈。 β驅動部(37)及B映射電 ’因此省略其說明。 B發光二極體元件(32)、 壓部(38)與上述的說明一樣 【發明效果】 如上所述,根據該發明,在各個R,G, B發光二極體 5214-8394-PF 20 200818982 元件上使用各不同的電源’而能狗通過2個線提供電源, 這樣可以簡單地安裝發光二極體元件,而還可以很容易地 設置起來。並且,因減少電源線從而能夠減輕整個元件的 重量,所以其結構更薄而且更簡單。 【圖式簡單說明】 圖1 ’已有的R,G,B發光二極體模組的電路圖。 圖2 ’已有的5線式R,G,B發光二極體模組的電路 圖。 圖3 ’已有的3線式R,G,B發光二極體模組的電路 圖。 圖4 ’根據該發明的R,G,b發光二極體元件結構之 方塊圖。 圖5 ’該電路圖是展現根據該發明的2線式R,G,b 發光二極體模組的實施例。 圖6 ’該電路圖是展現根據該發明的2線式R,g,B 發光二極體元件的另一種實施例。 【主要元件符號說明】 10: 電流源 11 : R 發光二 二極體模組 12: G 發光二 二極體模組 13: Β 發光二 二極體模組 14: R 電流感測器 5214-8394-PF 21 200818982 15 16 17 18 19 電流感測器 B電流感測器 R轉換開關元件 G轉換開關元件 B轉換開關元件 5214-8394-PF 22The R switching element (SR1) is formed, and the connection point of the impedance (R29) and the (th) switching element (SR1) is connected to the R light emitting diode element (3 〇), and is provided through the channel of the ^R switching element (SR1) The current channel allows the R-emitting diode (D22-D25) to be lit. The component of the R-map voltage unit (34) is a first-to-conversion split impedance (R30, R31) that supplies a switching voltage to the 苐1 R switching element (SR 1 ) gate after dividing the power supply voltage v + ; 1 switching the splitting impedance (R3 〇, 1 R31) the junction is connected to the cathode thereof, and controlling the divided 2r switching element (SR2); the gate of the 2nd R switching element (SR2) providing the 2nd conversion splitting impedance of the switching voltage ( R32, R33). The G driving unit (3 5 ) is composed of an impedance (r 3 4 ) and a G-switching element (SR3) connected in series, and a connection point of the impedance (R34) and the 1 G switching element (SR3) is connected to the G. The light emitting diode element (31) is provided with a current channel through the channel of the 1G switching element (SR3), so that the G light emitting diode (D26-D29) can be lit. 5214-8394-PF 18 200818982 The component of the G map voltage unit (36) is a third conversion split impedance (R35, R36) for supplying a switching voltage to the gate of the first G switching element (SR3) after dividing the power supply voltage v+. The second G-switching element (SR4) is connected to the junction of the third conversion-divided impedance (R35, R36), and the gate of the second G-switching element (SR4) is supplied with the switching voltage. 4 conversion split resistance (R37, R38). The B driving unit (37) is composed of an impedance (R39) and a first B switching element (SR5) which are connected in series with each other, and a connection point of the impedance (R39) and the 1b switching element (SR5) is connected to the B light emitting diode. The body element (32) provides a current channel through the channel of the 1B switching element (SR5) so that the b-light emitting diode (D 3 0 _ D 3 3) can be lit. The component of the mapping voltage unit (38) is a fifth conversion splitting impedance (R40, R41) that supplies a switching voltage to the gate of the first B switching element (SR5) after dividing the power supply voltage; The junction of the impedance (R40, R41) is connected to the cathode thereof, and the divided second B switching element (SR6) is controlled; the gate of the second B switching element (SR6) provides the sixth conversion splitting impedance of the switching voltage (R42, R43) . The first conversion divided impedance (R30, R31) of the R mapping voltage portion (34) is a gate that divides the V + voltage and divides the converted voltage into the impedance (R 31 ) to the first R switching element (SR 1 ). The current channel is provided through the channel of the 1st R switching element (train 1), so that the R light emitting diode element (30) can be lit. If the V + voltage rises and exceeds the R map voltage (eg, 7.6 V) to reach the G map voltage (eg, 1 2·8 V), the second conversion split impedance (R32, R33) impedance (R33) provides the second The switching voltage is applied to the 2R switching element 5114-8394-PF 19 200818982 (SR2), so that the voltage of the ir switch τ ο (SR1) gate is at a low level through the channel of the 2R switching element (SR2) (L〇 w), state, and thus the 1R switching element (S R1 ) is in an off state. Therefore, the current path of the 'R light emitting diode element (3 〇 ) is blocked, so that the current does not pass, and finally the R light emitting diode element (3 〇 ) is turned off. Similarly, the third conversion splitting impedance (R35, ^R36) of the G map voltage unit (36) is a switching voltage divided into an impedance (R36) by dividing the V+ voltage and added to the "1〇 switching element (8!?3) The gate of the first light-emitting diode element (3) is supplied with a current channel through the channel of the first switching element (3), so that the G-emitting one-pole element (31) can be lit. If the V+ voltage rises and exceeds the g-mapped voltage (eg, ΐ2·8 V) to reach the Β mapping voltage (eg, 14·4 V), the fourth conversion split impedance (R37, R38) impedance (R38) provides the second The switching voltage is applied to the 2R switching element (SR4)' such that the voltage of the 1G switching element (SR3) is at the low (L〇w) state, and the 1G switch is passed through the channel of the 2G switching element (SR4). The component (SR3) is in an interrupted state. Therefore, the current path of the G light-emitting diode element (3 turns) is blocked, so that the current does not pass, and finally the G light-emitting diode element (3 turns) is turned off. The β drive unit (37) and the B map are electrically omitted, and thus the description thereof will be omitted. B light-emitting diode element (32) and pressing part (38) are the same as described above. [Effect of the invention] As described above, according to the invention, each of the R, G, B light-emitting diodes 5114-8394-PF 20 200818982 The device uses different power supplies' and the dog can supply power through 2 wires, which makes it easy to install the LED components and can be easily set up. Also, since the power supply line is reduced to reduce the weight of the entire component, the structure is thinner and simpler. [Simple diagram of the diagram] Figure 1 'Circuit diagram of the existing R, G, B LED module. Figure 2 is a circuit diagram of an existing 5-wire R, G, B LED module. Figure 3 is a circuit diagram of an existing 3-wire R, G, B LED module. Fig. 4 is a block diagram showing the structure of an R, G, b light emitting diode element according to the invention. Fig. 5' is a circuit diagram showing an embodiment of a 2-wire R, G, b LED module according to the invention. Fig. 6' is a circuit diagram showing another embodiment of a 2-wire type R, g, B light emitting diode element according to the invention. [Main component symbol description] 10: Current source 11: R Light-emitting diode module 12: G Light-emitting diode module 13: 发光 Light-emitting diode module 14: R Current sensor 5214-8394 -PF 21 200818982 15 16 17 18 19 Current sensor B current sensor R transfer switch element G transfer switch element B transfer switch element 5114-8394-PF 22

Claims (1)

200818982 十、申請專利範圍: 1. 一種R,G,B發光二極體元件,其特徵在於包括: 電流源(1 0 ); R,G,B發光二極體⑴,12, 13),在電流源 連接陽極而陰極連接到開關(17,18,19)某—終端; R、G、B開關(17’18’19),某一終端連接到上述 R’ G’ B發光二極體(n’ 12’ 13),而另—個終端連接 到-電源線;及200818982 X. Patent application scope: 1. An R, G, B light-emitting diode component, characterized by: a current source (10); R, G, B light-emitting diodes (1), 12, 13), The current source is connected to the anode and the cathode is connected to a certain terminal of the switch (17, 18, 19); the R, G, B switch (17'18'19), and a terminal is connected to the above R' G' B light emitting diode ( n' 12' 13), while another terminal is connected to the - power line; and R、g、b電壓感測器(14, 15’ 16),隨著所感知到 的電壓’把上述的R、G、B開關(17, 18, 19)轉換之後, R,G,B 發光二極體(11’ 12’ 13)打開(turn ⑻。 2. —種2線式R、G、B發光二極體模組,包括: 標準電壓部(20) ’提供標準電壓; 分壓阻抗(R20,R21),分壓電源電壓v+ ; 輸入阻抗(R22)’把通過上述分壓阻抗(R21)分壓出來 的電壓輸入帶演算放大器(U2); 射極隨耦器(Emitter Foll〇wer;2l),為了把穩壓二 極體(D10)及上述電源電壓v +恒定電壓的、以演算‘大器 (U 2)構成; K、G、B映射電壓比較部(22, 23, 24),對上述桿準 電壓和各R、G、B映射電壓進行比較的、以3個比㈣ (旧,U4,U5)構成·, 決定優先等次部(25) ’在上述R、G、B映射電壓 比較部(22,23,24)的功率之間決定優先等次; 5214-8394-PF 23 200818982 B發光二極體模組(2 6),把上述決定優先等次部(2 5 ) 的功率信號通過阻抗(R26)輸入之後,利用其功率信號轉 換為打開狀態的電晶體(Q7)及以複數b發光二極體 (D11-D14)構成; G發光二極體模組(2 7 ),把上述決定優先等次部(2 5 ) 的功率信號通過阻抗(R27)輸入之後,利用其功率信號轉 換為打開狀態的電晶體(Q8)及以複數G發光二極體 (D15-D18)構成; R發光二極體模組(28),把上述決定優先等次部(25 ) 的功率信號通過阻抗(R28)輸入之後,利用其功率信號轉 換為打開狀態的電晶體(Q9)及以複數R發光二極體 (D19-D22)構成; 3·如申請專利範圍第2項所述的R,G,B發光二極體 模組’其中,上述決定優先等次部(25)包括: 反及閘(U7,U8),對上述B映射電壓比較部(22)的功 率進行反轉; 反及閘(U9),對上述g映射電壓比較部(23)的功率和 上述反及閘(U7)功率進行與非演算;及 反及閘(U10),對上述反及閘(U6,U7)功率和R㈣6 φ _ 丁 π κ映射 電壓比較部(2 4 )功率進行與非演算。 4· 一種R,G,Β發光二極體元件,其特徵在於包括· 恒電流部(29),提供恒電流; 匕· R,G, Β發光二極體模組(3〇,31,32),以 β發光二極體組成; R,G, 5214-8394-PF 24 200818982 R映射電壓部(34),驅動上述r發光二極 的、產生R映射電壓; -元件(30) K驅動部(3 3 ),被上述R映射電壓轉換直 穴苟打開壯能 而驅動R發光二極體元件(3〇 ); 心’ G映射電壓部(36 ),驅動上述G發光二 > 隨π件「q 1、 的、產生G映射電壓; “區動部(35),被上述(?映射電壓轉換為 而驅動上述G發光二極體元件(3〗); ^ β映射電麼糊)’驅動…發光二極體 的、產生Β映射電壓;及 Β驅動部(37) ’被上述Β映射電壓轉換為打開狀態, 而驅動上述β發光二極體元件(32)。 5.如申請專利範圍第4項所述R,G,β發光二極體元 件’其中各R’ G,Β發光二極體模組(3〇, 31,⑻是串聯 複數(如,4、個)R,G,β發光二極體⑽2-D25, D26-D29, )構成而其某一終端連接到上述恒流源(2 9)供給 到電流’另外某-終端各連接到R驅動部(Μ)、G驅動 邛(35)及B驅動部(37)的R、G、B開關元件(am SR5)的陰極。 5214-8394-PF 25R, g, b voltage sensors (14, 15' 16), after the R, G, B switches (17, 18, 19) are converted with the sensed voltage, R, G, B are illuminated The diode (11' 12' 13) is turned on (turn (8). 2. A 2-wire R, G, B LED module, including: standard voltage section (20) 'provides standard voltage; voltage divider impedance (R20, R21), voltage divider supply voltage v+; input impedance (R22)' input voltage divided by the above-mentioned voltage divider impedance (R21) with amplifier (U2); emitter follower (Emitter Foll〇wer ; 2l), in order to balance the voltage regulator diode (D10) and the above-mentioned power supply voltage v + constant voltage to calculate the 'large unit (U 2); K, G, B map voltage comparison unit (22, 23, 24 In comparison with the above-mentioned R-, G, and B-mapped voltages, three ratios (four) (old, U4, U5) are used to determine the priority sub-section (25) 'in the above R, G, B-map voltage comparison unit (22, 23, 24) determines the priority between powers; 5214-8394-PF 23 200818982 B LED module (2 6), prioritize the above decision (2 5 ) After the power signal is input through the impedance (R26), the power signal is converted into an open state transistor (Q7) and a plurality of b light-emitting diodes (D11-D14); G light-emitting diode module (2 7 After inputting the power signal of the above-mentioned decision priority sub-part (2 5 ) through the impedance (R27), the power signal is converted into an open state transistor (Q8) and a complex G light-emitting diode (D15-D18). The R LED module (28) converts the power signal of the decision priority sub-part (25) through the impedance (R28), and then converts the power signal into an open state transistor (Q9) and A plurality of R light-emitting diodes (D19-D22); 3. The R, G, B light-emitting diode module according to claim 2, wherein the above-mentioned decision priority sub-section (25) includes : the reverse gate (U7, U8), inverts the power of the B-map voltage comparison unit (22); the gate (U9), the power of the g-map voltage comparison unit (23) and the reverse gate (U7) power and non-calculus; and inverse gate (U10), for the above-mentioned reverse gate (U6) U7) Power and R(4)6 φ _ π π κ mapping voltage comparison unit (2 4 ) Power calculation and non-calculation. 4. An R, G, Β light-emitting diode element characterized by including a constant current portion (29), Providing a constant current; 匕·R, G, Β light-emitting diode module (3〇, 31, 32), consisting of a beta light-emitting diode; R, G, 5214-8394-PF 24 200818982 R mapping voltage section ( 34) driving the r-emitting diode to generate an R-mapped voltage; - component (30) K-driving portion (3 3 ) is driven by the R-mapped voltage-converted pinhole to drive the R-emitting diode element ( 3〇); heart 'G mapping voltage part (36), driving the above-mentioned G light-emitting two> with π piece "q 1 , generating G-map voltage; "moving part (35), by the above (? mapping voltage conversion In order to drive the above-mentioned G light-emitting diode element (3); ^β-mapped electric paste) 'drives the light-emitting diode to generate a Β mapping voltage; and Β drive unit (37) 'is converted by the above-mentioned Β mapping voltage In the open state, the above-mentioned beta light emitting diode element (32) is driven. 5. R, G, β light-emitting diode elements as described in claim 4, wherein each R' G, Β light-emitting diode module (3 〇, 31, (8) is a series complex number (eg, 4, R, G, β light-emitting diodes (10) 2-D25, D26-D29, ) are formed and one terminal is connected to the above-mentioned constant current source (29) to supply current 'the other terminal' is connected to the R drive unit (Μ), G drive 邛 (35) and the cathode of the R, G, and B switching elements (am SR5) of the B drive unit (37). 5214-8394-PF 25
TW95137890A 2006-10-14 2006-10-14 R, G, B LED module TW200818982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95137890A TW200818982A (en) 2006-10-14 2006-10-14 R, G, B LED module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95137890A TW200818982A (en) 2006-10-14 2006-10-14 R, G, B LED module

Publications (1)

Publication Number Publication Date
TW200818982A true TW200818982A (en) 2008-04-16

Family

ID=44769619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95137890A TW200818982A (en) 2006-10-14 2006-10-14 R, G, B LED module

Country Status (1)

Country Link
TW (1) TW200818982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468080B (en) * 2008-07-31 2015-01-01 Richtek Technology Corp LED drive device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468080B (en) * 2008-07-31 2015-01-01 Richtek Technology Corp LED drive device and method

Similar Documents

Publication Publication Date Title
US8766553B2 (en) Serial-type light-emitting diode (LED) device
CN101663919B (en) Driving light emitting diodes
TWI325130B (en) Led current driving system for lcos display
TW200904254A (en) Light source apparatus and driving apparatus thereof
EP1675440A2 (en) Illumination apparatus and image display apparatus
US8558482B2 (en) Programmable current PWM dimming controller
TWI441140B (en) Led driving system and display device using the same
CN106576408B (en) Synchronous mode multichannel light emitting diode drive device
TW201106776A (en) Light emitting diode driving circuit
US20220060146A1 (en) Inverter, combiner box, and photovoltaic system
TW201117657A (en) Electric current equilibrium circuit of string LED group
TW200818982A (en) R, G, B LED module
TW200939885A (en) Driver for a projection system
TW201223319A (en) Sampling external voltage which may exceed integrated circuit maximum voltage rating
TWI477194B (en) Light emitting diode drive device
KR101266284B1 (en) Lighting Circuit for LED
TW201212542A (en) Regulated protection circuit, display controller and LED driving method of the same
CN108235497A (en) Light source device and control method
KR20160001498A (en) Led driving device capable of parallel driving of led group by voltage drop
US9445467B2 (en) Backlight driving circuit, electronic device and backlight driving method
KR100819820B1 (en) R, G, B LED module
US8816590B2 (en) Lighting device with adjustable color temperature
JP5197028B2 (en) Lighting device, display device and guide light
CN201887988U (en) Illuminating apparatus
JPH02166894A (en) Subordinate video telephone set at door having illuminator