TW200818979A - Organic light-emitting component, device with the same, lighting equipment and display device - Google Patents

Organic light-emitting component, device with the same, lighting equipment and display device Download PDF

Info

Publication number
TW200818979A
TW200818979A TW096135387A TW96135387A TW200818979A TW 200818979 A TW200818979 A TW 200818979A TW 096135387 A TW096135387 A TW 096135387A TW 96135387 A TW96135387 A TW 96135387A TW 200818979 A TW200818979 A TW 200818979A
Authority
TW
Taiwan
Prior art keywords
organic light
current
intensity
operating current
emitting component
Prior art date
Application number
TW096135387A
Other languages
Chinese (zh)
Inventor
Karsten Heuser
Arvid Hunze
David John Lacey
Ralph Paetzold
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200818979A publication Critical patent/TW200818979A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This invention concerns an organic light-emitting component with an electroluminescence layer(3), under the supply of working current(91-95), the electroluminescence layer(3) can generate electromagnetic radiation with a spectral distribution(5), in which the spectral distribution is dependent on current intensity(I0) of working current that through the electroluminescence layer, to change. This invention concerns also device with an organic light-emitting component, this device has a control unit, which can change the intensity and/or the spectral distribution of generated electromagnetic radiation.

Description

200818979 九、發明說明: 【發明所屬之技術領域】 本專利申請主張享有德國專利申請1 02006046302.1之 優先權。 本發明包括一種有機發光組件、一種具有有機發光組 件之裝置、一種照明設備、以及一種顯示裝置。 【先前技術】 一般的有機發光組件(例如有機發光二極體(OLED))發 射的電磁輻射具有一給定的光譜分佈。這個光譜分佈是由 所選擇的發射材料決定。 這種一般的有機發光組件在發光時給人的感覺是持續 發出顏色相同的光線。 【發明內容】 本發明之目的是提出一種應用範圍非常廣泛的有機發 光組件、具有有機發光組件之裝置、照明設備、以及顯示 裝置。 採用本發明之申請專利範圍中關於有機發光組件、具 有有機發光組件之裝置、照明設備、以及顯不裝置的主申 請專利項目的內容即可達到上述目的。附屬申請專利項目 的內容爲、本發明之各種有利的實施方式及改良方式。 本發明的有機發光組件具有一個電致發光層。當工作 電流注入時,電致發光層會產生具有光譜分佈的電磁輻 射,而且電磁輻射的光譜分佈會隨著通過電致發光層之工 作電流的電流強度而改變。 有機發光組件發射的電磁輻射最好是具有可變的光譜 200818979 分佈。根據一種有利的實施方式’在有機發光組件運轉時, 可以經由控制工作電流以很簡單的方式調整或改變有機發 光組件發出之電磁輻射的光譜分佈。 例如有機發光組件發出在可見光、紅外線、及/或紫外 線光譜範圍的電磁輻射。例如在一種實施方式中,有機發 光組件發射的電磁輻射的光譜分佈給人的顏色感覺主要是 白色。 如果有機發光組件發射的是可見光光譜範圍的電磁輻 f 射,則這些電磁輻射的光譜分佈在CIE色度座標圖上通常 相當於一個點,也就是所謂的色度座標。CIE色度座標圖 是由國際照明委員會(Commission International de Γ Eel air age)於1931年制定的標準CIE色品圖。例如白色顏 色感覺相當於所謂的白色點,也就是CIE色度座標圖上座 標爲x = 0.33及y = 0.33的那一個點。 換句話說,在這種實施方式中的有機發光組件發射的 光線的光譜分佈在CIE色度座標圖上的色度座標會隨著工 作電流的電流強度而改變。 例如色度座標隨著電流強度的變大而朝藍色的方向移 動。至少在這種實施方式中,長波(例如紅光)電磁輻射在 光譜分佈中所佔的比例會隨著電流強度的變大而變小,及/ 或短波(例如藍光)電磁輻射在光譜分佈中所佔的比例會隨 著電流強度的變大而持續變大。在CIE色度座標圖上,色 度座標是在一條線上移動,例如沿著一條直線移動。 例如有機發光組件在以第一工作電流運轉時發射的電 磁輻射給人的顏色感覺爲紅色,在以第二工作電流運轉時 200818979 發射的電磁輻射給人的顏色感覺爲白色,及/或在以第三工 作電流運轉時發射的電磁輻射給人的顏色感覺爲藍色。紅 色或藍色的顏色感覺在CIE色度座標圖上的座標是從白色 點的附近朝紅色點或藍色點的方向移動。 第一、第二、第三工作電流的區別在於電流強度及/或 隨時間的變化過程。例如第一、第二、第三工作電流是直 流電,或是由電流強度基本上恆定的脈衝構成的電流。胃 二工作電流的電流強度大於第一工作電流的電流強度,但 ί 是小於第三工作電流的電流強度。 根據一種實施方式,電致發光層至少含有一種聚合 物。電致發光層最好還含有至少一種與聚合物混合或聚合 的摻雜物質。電致發光層所含的聚合物及/或摻雜物質最好 是一種發射材料,也就是一種用來發出電磁輻射的材料。 在一種實施方式中,至少有一種摻雜物質爲發色團。 根據另外一種實施方式,電致發光層含有一種低分子 材料(「小分子」)。根據一種有利的改良方式,這種低分 子材料是作爲至少一種本身也可能是一種低分子材料的慘 雜物質的基材。在這種實施方式中,低分子材料(尤其是基 材及/或摻雜物質)是一種發射材料。 根據一種有利的實施方式,電致發光層含有複數種發 射材料,尤其是發射出不同波長之輻射的發射材料。在這 些發射材料中最好是至少有一種是摻雜物質。摻雜物質或 至少一種摻雜物質的濃度在大於等於〇.丨%(莫耳百分比)至 小於等於50%(莫耳百分比)之間,或最好是在大於等於 〇· 1 %(莫耳百分比)至小於等於20%(莫耳百分比)之間。 200818979 電致發光層含有複數種發射材料的優點是有機發光組 件可以發出光譜範圍很廣的電磁輻射,例如可以產生白光 之顏色感覺的光譜範圍。 例如可以經由改變摻雜物質的濃度來調整有機發光組 件在運轉時發射的電磁輻射的光譜分佈。例如可以經由測 量對摻雜物質的吸收及/或光致發光,及/或利用回旋電量測 量法測定摻雜物質的必要濃度,例如利用回旋電量測量法 可以測定電致發光層中的激子形成機制,以及測定不同的 發射材料的激子形成。例如摻雜物質(是一種發射材料)的 濃度及/或複數種摻雜物質(也都是發射材料)之間的濃度比 例都會對電磁輻射的光譜分佈造成很大的影響。 最好是至少有一種摻雜物質(例如一種用來發射紅光 光譜範圍的摻雜物質)在電致發光層中的濃度很低。例如這 種摻雜物質的濃度小於等於2% (莫耳百分比),或最好是小 於等於1%(莫耳百分比)。 當摻雜物質的濃度很低時,摻雜物質的發射會隨著工 作電流的變大而顯示出飽和特性。經由這種方式可以使光 譜分佈與電流強度產生極大的關聯性。 根據另外一種實施方式,從第一電極往第二電極的方 式看過去,電致發光層依序具有一個第一發射層及一個第 二發射層。這兩個發射層都含有至少一種發射材料。第一 發射層及第二發射層的區別含有不同成分的發射材料。在 一種有利的改良方式中,第一赛射層發出具有第一光譜分 佈的電磁輻射,第二發射層發出具有第二光譜分佈的電磁 輻射,而且第一光譜分佈和第二光譜分佈是不同的。 200818979 發明人目前假定電致發光層中的載子的分佈及/或移 動性會隨著在第一電極及電二電極之間的工作電壓而改 變。換句話說就是,電致發光層的載子密度輪廓會隨著工 作電壓而改變。在第一電極及電二電極之間的工作電壓與 工作_ k的電流強度彼此具有對應關係:工作電流會隨著 工作電壓的升高而變大,反之亦然。 有機發光組件運轉時,從第一電極出發的第一載子被 注電致發光層,從第二電極出發的第二載子被注電致發光 ' 層。如果第一電極是陽極,第二電極是陰極,則第一載子 是電洞,第二載子是電子。 第一發射層中的第一載子之移動性會隨著工作電壓的 升高而變大。因此穿過第一發射層進入第二發射層並與第 二載子重新結合而發出輻射的第一載子的比例也會升高。 因此隨著工作電壓的升高或與工作電壓具有對應關係之工 作電流的電流強度的變大,和第一發射層發射的輻射量相 比,第二發射層發射的輻射量佔電致發光層發射之總輻射 量的比例也會跟著升高。 在這種情況下,電致發光層的最大輻射子區域的位置 會發生移動。換句話說,在電致發光層中大部分的第一載 子及第二載子重新結合而發出輻射的子區域的位置會發生 移動。隨著工作電流的變大,這個子區域會從第一電極往 第二電極的方向移動,或是從第二電極往第一電極的方向 移動。 根據另外一種改良方式,除了第一發射層及第二發射 層外,電致發光層還具有一個第三發射層。第一.、第二、 200818979 第三發射層是沿著從第一電極到第二電極的方向依序排 列。例如第一發射層是發出藍光光譜範圍的輻射,第二發 射層是發出綠光光譜範圍的輻射,第三發射層是發出紅光 光譜範圍的輻射。當然也可以是其他的顏色順序。 有機發光組件發射出的混合輻射是由第一、第二、以 及第二發射層發射的電磁輻射所構成。第一、第二、及/或 第三發射層發射的電磁輻射佔混合輻射的總光通量的比例 會隨著工作電流的電流強度而改變。有一種可能的方式 是,當工作電流爲第一電流強度時,有機發光組件發射的 電磁輻射全部來自於第一發射層發射的電磁輻射;當工作 電流爲第二電流強度(大於第一電流強度)時,有機發光組 件發射的電磁輻射全部來自於第二發射層發射的電磁輻 射。 根據至少一種實施方式,有機發光組件具有一個設置 在電致發光層上的電極,而且這個電極被分成多個彼此隔 開的子區域。 所謂”設置在電致發光層上”有兩種不同的實施方式, 第一種實施方式是電極與電致發光層有直接接觸,例如直 接將電致發光層放在電極上,或是直接將電極放在電致發 光層上;另外一種實施方式是在電極及電致發光層之間至 少還有另外一個層,例如一個電子輸送層或電洞輸送層。 本發明的一種裝置具有一個有機發光組件(例如以上 提及的有機發光組件中至少任一種有機發光組件),以及一 個能夠控制流向有機發光組件之工作電流以改變有機發光 組件產生之電磁輻射的強度及/或光譜分佈的控制單元。控 -10- 200818979 制單元最好是能夠在給定的電磁輻射強度下改變電磁輻射 的光譜分佈。控制單元能夠改變電流強度及/或經時平均電 流強度。例如控制單元能夠經由與供電電壓的匹配改變注 入電致發光層之工作電流的電流強度。 例如控制單元在運轉時可以將一基本上恆定的工作電 流注入電致發光層,以獲得一預先規定的光強度。這個恆 定的工作電流的電流強度是可以調整的。 # 另外一種可行的方式是,控制單元可以將一隨時間改 ί 變的工作電流注入電致發光層,以獲得一預先規定的光強 度。例如這個工作電流是隨時間作週期性的變化。控制單 元最好是以25Hz或更高的頻率改變工作電流。各單一週期 最好是無法被肉眼分辨,以便使觀察者覺得有機發光組件 發出的是中等強度(光強度)的光。 例如隨時間改變的工作電流可以具有方波的形狀。換 句話說就是控制單元是在單一脈衝內將工作電流注入電致 發光層。 , 控制單元最好是能夠改變脈衝的電流強度,也就是說 能夠改變脈衝高度、脈衝時間及/或脈衝重複率、以及方波 的週期長度。換句話說就是控制單元最好是能夠進行脈衝 幅度調製、脈衝寬度調製、及/或脈衝頻率調製。這樣就可 以用很簡單的方式改變在裝置運轉時注入電致發光層的工 作電流。 這樣做的好處是在一給定的時間平均電流強度下,可 以改變在一特定時間點注入電致發光層的電流強度。時間 平均電流強度決定了有機發光二極體發射的電磁輻射的強 -11- 200818979 度或光通量。在某一時間點真正注入電致發光層之工作電 流的(未平均的)電流強度則會對光譜分佈造成影響。經由 這種方式就可以將有機發光組件在運轉時發射的電磁輻射 的強度及光譜分佈分開來各別進行調整。 例如,當控制單元將一具有第一電流強度之恆定的工 作電流注入電致發光層,有機發光組件就會發射具有第一 光譜分佈的電磁輻射。例如第一光譜分佈有很^大比例的電 磁輻射是在長波範圍(例如紅光範圍)。 y 反之,如果控制單元是將脈衝式工作電流注入電致發 光層,而且其中一個脈衝具有第二電流強度(大於第一電流 強度),同時這個工作電流和第一工作電流一樣,有許多個 脈衝的時間平均電流強度是一樣的,則有機發光組件就會 發射具有第二光譜分佈的電磁輻射,而且第二光譜分佈和 第一光譜分佈是不一樣的。例如第二光譜分佈在長波範圍 的電磁輻射的比例小於第一光譜分佈。 根據一種有利的實施方式,裝置具有一個有機發光組 件,這個有機發光組件具有一個被分成多個彼此隔開的子 區域的電極,也就是說這個電極至少具有一個第一子區域 及一個第二子區域。在這種實施方式中,工作電流包括一 個第一工作電流及一個第二工作電流,其中第一工作電流 是由控制單元經由第一子區域注入電致發光層,第二工作 電流是由控制單元經由第二子區域注入電致發光層。 第一工作電流及/或第二工作電流最好是隨時間改 變,例如以方波長的形狀改變。例如第一工作電流及第二 工作電流在同一時間具有不同的電流強度。 -12- 200818979 根據一種實施方式,第一工作電流及第二工作電流都 具有方波長的形狀,尤其是具有相同持續時間及/或相同電 流強度的脈衝。根據一種實施方式,第一工作電流及/或第 二工作電流具有一週期長度爲T及脈衝持續時間爲Τ/η之 週期性方波長的形狀,其中η代表電極的子區域之數量。 所謂”週期長度”是指一個週期的持續時間,所謂的”脈衝持 續時間”是指一個脈衝的持續時間。頻率1 /Τ最好是大於或 等於25Hz,這樣觀察者就無法以肉眼分辨出單一脈衝,因 ~ 此會覺得有機發光組件的所有子區域都是連續發出中等強 度的光。 根據另外一種實施方式,第一工作電流及第二工作電 流的相位相互移動。例如二者的相位相互移動1 80度。在 另外一種實施方式中,二者的相位相差3 60/n度的位數, 其中代表電極的子區域的數量。例如第一工作電流及第二 工作電流均爲方波,同時第一工作電流的方波對第二工作 電流的方波移動。例如在這種情況下,兩個工作電流的方 波的週期長度均爲T,脈衝持續時間均爲Τ/η,且二者的脈 衝相互移動360/n度,則在不考慮時間可能出現短暫重疊 及/或脈衝前緣可能出現間隙的情況下,在一個(尤其是每 一個)給定的時間點剛好會有一個電極的子區域獲得電流 供應。 根據一種有利的實施方式,控制單元會爲一給定的光 譜分佈調整工作電流的電流強度(尤其是脈衝的最大電流 強度)作爲給定的光譜分佈的函數,尤其是作爲色度座標在 CIE色度座標圖上的函數。例如在有機發光組件的一種實 -13· 200818979 施方式中,電流強度與光譜分佈中的紅光比例成反比。 根據另外一種有利的實施方式,控制單元會從一個表 格中爲給定的光譜分佈選定工作電流的電流強度。根據這 種實施方式的進一步改良方式,這個表格含有對應於複數 個色度座標的電流強度,同時控制單元能夠利用一個函數 以內插法定出對應於介於表格中兩個色度座標之間的色度 座標的電流強度。 根據另外一種有利的實施方式,控制單元會爲一給定 的強度調整工作電流的時間平均電流強度作爲給定的強度 的函數。例如時間平均電流強度至少在一個介於第一強度 及第二強度(不同於第一強度)之間的範圍內是與強度成正 比。因此這個函數是一個線性函數。另外一種可行的方式 是這個函數也可以是一個多項式函數、根函數、或是指數 函數。 另外一種可行的方式是,控制單元可以從一個列有多 種給定的強度及與其對應之時間平均電流強度的表格中, 爲一給定的強度選定及調整工作電流的時間平均電流強 度。 例如控制單元調整電流強度及時間平均電流強度作爲 給定的光譜分佈或給定的強度的函數,並將具有方波的工 作電流注入有機發光組件,這個工作電流的脈衝持續時間 及/或頻率是由控制單元根據電流強度及時間平均電流強 度決定。 根據另外一種有利的實施方式,控制單元(尤其是函數 及/或表格)會配合人類眼睛的感色靈敏度。例如在從最大 -14- 200818979 強度在第一光譜範圍內的光譜分佈過渡到最大強度在第二 光譜範圍內的光譜分佈時,控制單元會改變強度,使觀察 者覺得有機發光組件發出的亮度是恆定的。 通常人的眼睛對於黃光及綠光的靈敏度比較高,尤其 是對於在黃綠光光譜範圍內的光線的靈敏度特別高。例如 在一種實施方式中,在從最大強度在綠、黃綠及/或黃光光 譜範圍的光譜分佈過渡到最大強度在藍光或紅光光譜範圍 的光譜分佈時,控制單元將強度提高。這樣觀察者只會感 ^] 覺有機發光組件發出的光線顏色有改變,但是並不會感覺 亮度有發生變化。 根據另外一種有利的實施方式,控制裝置能夠平衡有 機發光組件的發射特性(尤其是有機發光組件發射的電磁 輻射的強度及/或光譜分佈)與一額定値的差異。 例如,由於老化的緣故,在一給定的電流強度下運轉 的有機發光組件發射的電磁輻射的光譜分佈及/或強度會 隨著運轉時間而改變。 根據一種有利的實施方式,控制單元會利用一個運轉 計時器測定有機發光組件的累計運轉時間,並根據所測得 的運轉時間改變注入有機發光組件的工作電流的電流強度 及/或時間平均電流強度。如前面所述,爲了執行這個工 作,控制單元最好是應用至少一個函數(使用固定參數,或 是可以由操作者設定參數)及/或至少一個表格。 本發明的裝置可以經由這種方式抵消有機發光組件發 射的電磁輻射的光譜分佈及/或強度隨著運轉時間而發光 的變化,使有機發光組件在整個使用壽命中發射的電磁輻 -15- 200818979 射都能夠保持恆定的光譜分佈及/或強度。 根據另外一種有利的實施方式,本發明的裝置含有一 個具有一個或複數個光電二極體的接收器,這個接收器能 夠測定有機發光組件發射的電磁輻射的強度及/或光譜分 佈。控制單元會偵測出接收器測定的強度及/或光譜分佈與 額定値的差異,並改變電流強度及/或時間平均電流強度, 直到接收器測定的強度及/或光譜分佈與額定値的差異小 於一個給定値爲止。 在這些實施方式中,有機發光組件在本發明之裝置的 整個使用壽命中都可以發射出強度及/或光譜分佈可以精 確調整的電磁輻射。 本發明的裝置可以被應用在照明設備中。例如應用本 發明的裝置可以使照明設備在運轉中能夠調整色度座標。 例如,根據一種實施方式,本發明的裝置具有一個控 制單元,這個控制單元可以將一電流強度可以調整的(最好 是恆定的)工作電流注入有機發光組件的電致發光層。至少 在這種情況下,有機發光組件發射的電磁輻射的光譜分佈 會隨光強度而改變。例如,如果發射光線的光強度很小, 觀察者感覺到的是紅色的顏色感覺,如果發射光線的光強 度很大,觀察者感覺到的是白色或藍色的顏色感覺。這種 照明設備很適合被應用在一般照明目的。在一種有利的實 施方式中,這種照明設備發出的任何一種光強度的光線給 人的顏色感覺都能夠令觀察者覺得和習慣的感覺相符。例 如,觀察者會覺得這種照明設備發出的光線給人的顏色感 覺和在一般的白熾燈內以不同電流強度發光的燈絲發出的 -16- 200818979 光線給人的顏色感覺是一樣的。 此外,本發明還包括一種具有本發明之裝置的顯示裝 置。例如本發明的顯示裝置是一種單色顯示裝置或彩色顯 示裝置。例如是一種具有複數個畫素(Pixel)的顯示裝置。 例如每一個畫素都含有一個紅色、一個綠色、以及一個藍 色的副畫素。本發明的顯示裝置也可以是一種被動矩陣式 或主動矩陣式顯示器。 在運轉時,顯示裝置發出之光線的光譜分佈最好是可 以改變的。本發明的顯示裝置可以很靈活的調整發出之光 線的光譜分佈。此外,本發明的顯示裝置可以平衡有機發 光組件發射的電磁輻射的光譜分佈與希望獲得的光譜分佈 的差異。這個差異可能是因爲有機發光組件的製造公差及/ 或退化過程所造成。 【實施方式】 以下配合第1 A圖至第9圖顯示的實施例對本發明的優 點及有利的實施方式做進一步的說明。 相同或相同作用的元件在所有的圖式中均以相同的元 件符號標示。以上圖式中的元件並非按比例尺繪製,有時 爲了便於說明或理解而將某些元件(例如塗層)繪製得特別 大。 如第1 A圖顯示的第一個實施例的有機發光組件具有 一個基板(1)。例如基板(1)可以是一片玻璃板或一層塑膠 膜。 在基板(1)上有一個第一電極(2)。例如可以用蒸鍍法將 第一電極(2)鍍在基板上。 -17- 200818979 在第一電極(2)上有一個電致發光層(3)。在這個實施例 中,電致發光層(3)與第一電極(2)背對基板(1)的那一個面直 接接觸。另外一種可行的方式是在第一電極(2)及電致發光 層(3)之間設置另外一個或複數個層,例如一個最好是含有 聚(3,4-乙烯二氧化噻吩)(PED〇T)的電洞輸送層。 在電致發光層(3)背對第一電極(2)的那一個面上有一 個第二電極(4)。第二電極(4)直接與電致發光層(3)接觸。另 外一種可行的方式是在電致發光層(3)及第二電極(4)之間 設置另外一個或複數個層,例如一個電子輸送層。 例如第一電極是陽極。第二電極(2)最好是含有一種至 少能夠讓電致發光層(3)產生的輻射部分通過的材料,例如 —種透明導電氧化物(TC〇:Transparent Conducting Oxide),例如氧化銦錫(IT0)。在這個實施例中,基板(i)最 好也是至少能夠讓電致發光層(3)產生的輻射部分通過。在 這個實施例中,電致發光層(3)產生的輻射最好是至少有一 部分是通過基板(1)從有機發光組件向外輸出。 如第1 Β圖所示,從上面往下看,第二電極(4)將電致 發光層(3)的主延伸面整個覆蓋住。例如第二電極(4)是陰 極,而且含有一種電子功函數很低的金屬。根據一種實施 方式,陰極具有一個多層結構。根據一種改良方式,這個 多層結構具有一個厚度約0.5nm並含有Ba及/或CsF的層 (或是由Ba及/或CsF構成的層),以及一個厚度爲I50nm 的A1層。 根據如第1C圖的實施例,第二電極(4)具有一個第一 子區域(41)、一個第二子區域(42)、以及一個第三子區域 -18- 200818979 (43)。子區域(41,42,43)彼此電絕緣,而且彼此隔開一段 距離。例如從上往下看電致發光層(3)的主延伸面,第一子 區域(41)、第二子區域(42)、及/或第三子區域(4 3)具有長方 形的形狀。子區域(41,42,43)最好是將第二電極(4)分成 單一的條帶。當然,子區域的數量並非限制在3個。例如 第二電極(4)可以有2至20個子區域,或最好是有3至10 個子區域。例如第二電極(4)具有5個子區域。 另外一種可行的方式是,除了第二電極(4)外,第一電 極(2)也可以具有複數個子區域。根據這個實施例的一種改 良方式,在第一電極(2)的子區域之間有一個平坦化層。 在本實施例中,電致發光層(3)含有一種聚合物。這種 聚合物含有一種發射藍光光譜範圍之輻射的聚螺骨幹 (polyspiro backbone)。此外,這種聚合物還含有少量的作爲 摻雜物質用的發色團,這種發色團發射的幅射在紅光或綠 光光譜範圍。在本實施例中,這種發色團是一種紅光或綠 光的共聚單體。經由紅光及綠光共聚單體與聚螺骨幹及電 洞輸送單元的共聚(例如鈴木(S u z u k i)聚合)會形成一種聚 合物,這種聚合物可以發射光譜範圍很廣的光線,尤其是 一種給人白色的顏色感覺的光線。在本實施例中,紅光及 綠光共聚單體及聚螺骨幹是電致發光層(3)的發射材料。綠 光發色團在聚合物中的濃度爲小於或等於1 % (莫耳百分 比)。紅光發色團在聚合物中的濃度爲也是小於或等於 1 % (莫耳百分比)。 第2圖顯示電致發光層(3)產生之電磁輻射的光譜範圍 (5)與通過電致發光層(3)之工作電流的電流強度(Ιο)的關 -19- 200818979 係。 在藍光光譜範圍發射之電磁輻射及在綠光光譜範圍 (波長400nm至550nm)發射之電磁輻射的相對強度與工作 電流無關,基本上是恆定的。相反的,在550nm至700nm 的波長範圍(也就是紅光光譜範圍)發射之電磁輻射所佔的 光譜比重會隨電流強度的變大而降低,換句話說就是相較 於短波電磁輻射所佔的比例,長波電磁輻射所佔的比例會 降低。 例如一種摻雜物質發射的電磁輻射在長波光譜範圍 (尤其是紅光光譜範圍),而其他的摻雜物質及/或聚合物發 射的電磁輻射則在短波光譜範圍(尤其是綠光及/或藍光光 譜範圍)。發明人確認,在電流強度變大時,摻雜物質發射 的在長波光譜範圍的電磁輻射會達到飽和,原因是此種摻 雜物質的濃度很低。因此摻雜物質的發射量佔總發射量的 比例會隨電流強度的變大而降低,且聚螺骨幹及在藍光及 綠光光譜範圍中發射的摻雜物質之光譜比重則會隨電流強 度而上升。 因此電致發光層(3)產生之電磁輻射在第3圖顯示之 CIE色度座標圖上的色度座標會跟著改變。CIE色度座標圖 根據光譜分佈(5)中的紅光比例(X)、綠光比例(y)、以及藍光 比例(z)描述以光譜分佈(5)發射之電磁輻射給人的顏色感 覺,其中 x + y + z=l。每一個色度座標都有一個 CIE座標 (x,y)。例如這3種色光在白光中的比例爲x = y = z = 0.33。白 光所屬的色度座標爲白色點7。 除了混合及/或聚合一種或數種發色團的聚合物(尤其 -20- 200818979 是共聚物)外’電致發光層(3)也可以含有一種低分子材料。 最好在這種低分子材料中混合一種或數種摻雜物質(例如 另外一種低分子材料)。此時這種低分子材料就是這一種或 數種摻雜物質的基材。在這一種或數種摻雜物質中最好是 至少有一種是發射材料。如果電致發光層(3)具有複數種摻 雜物質’則最好是至少有兩種摻雜物質會發出具有不同光 譜分佈的光線。 例如含有低分子材料的電致發光層(3)是以蒸鍍低分 子材料(最好是同時蒸鍍基材及摻雜物質)的方式製成。例 如’電致發光層含有一種由2 -甲基-9,10 -二(2 -萘基)蒽 (M A DN)組成的基材。根據一種實施方式,基材與一種藍光 發射材料(濃度3 %莫耳百分比)p-雙(ρ·ν,Ν-二苯基-胺基苯 乙嫌基)苯(DSA-Ph)及一種黃光發射材料(濃度0.2 %莫耳百 分比)5,6,11,12-四苯基萘(紅螢烯)。 例如至少兩種發射材料的激發效率關係會隨工作電流 的電流強度而改變。尤其是第一種摻雜物質(例如一種發射 黃光及/或紅光的摻雜物質)在電流強度較小時會被很有效 率的激發,而在電流強度較大時被激發的效率就比較差, 反之第二種摻雜物質(例如一種發射綠光或藍光的摻雜物 質)在電流強度較大時的被激發效率會高於或等於在電流 強度較小時的被激發效率。 發明人目前假定,第一種摻雜物質在較小的電場下, 也就是在第一電極及第二電極之間的工作電壓較小的情況 下(如同在工作電流的電流強度較小的情況下),會形成載 子捕獲(carrier traps)。因此在工作電流的電流強度較小 -21 - 200818979 時,第一種摻雜物質的激發效率較高。在工作電流的電流 強度較大時,由於載子捕獲被佔據,因此激發效率變小。 尤其是會出現飽和效應。 在第1 D圖顯示第3個實施例的有機發光組件中,電致 發光層(3)具有複數個發射層,從第一電極(2)往第二電極(4) 的方向看過去,這些發射層依序爲第一發射層(31)、第二 發射層(32)、以及第三發射層(33)。發射層(31,32,33)都 是由一種低分子材料構成。 r.'、 發射層(31,32,3 3)發出的光線最好是各自具有不同的 光譜分佈(尤其是色度座標)。例如第一發射層(31)發出藍 光’第二發射層(3 2)發出綠光、第三發射層(3 3)發出紅光。 發射層(3 1,32,33)最好是各自含有不同的基材及/或不同 的摻雜物質。例如第一發射層(31)含有一種濃度20 % (重量 百分比)的發出藍光的摻雜物質二(4,-6’-二氟苯基吡啶)四 (1-吡唑)硼酸鹽(FIr6);第二發射層(32)含有一種濃度 0.5%(重量百分比)的發出綠光的摻雜物質fac-三(2-苯基吡 啶)銥(Ir(ppy)3);第三發射層(33)含有一種濃度2%(重量百 分比)的發出紅光的摻雜物質銥(III)二(2-苯基喹啉基-N,C2’’) 乙醯丙酮(PQIr)。例如對-二(三苯基矽烷)苯(UGH2)可以作 爲上面提及之所有摻雜物的基材。 有機發光組件之電致發光層(3)的最大幅射子區域最 好是會隨工作電流的電流強度(Ιο)的改變而發生空間位 移。例如最大幅射子區域會隨工作電流的電流強度(1〇)從第 一電極(2)往第二電極(4)的方向移動,或是從第二電極(4) 往第一電極(2)的方向移動。例如,在第一電流強度時,最 -22- 200818979 大幅射子區域與第一發射層(31)重疊;在第二電流強度(大 於第一電流強度)時,最大幅射子區域與第二發射層(3 2)重 疊;在第三電流強度(大於第二電流強度)時,最大幅射子 區域與第三發射層(3 3)重疊。如在前面的發明內容所述, 這是因爲從第一電極(2)及第二電極(4)注入的電子及電洞 的比例關係改變造成的,及/或因爲載子在第一電極(2)及第 二電極(4)之間的電場的移動性改變造成的。 有機發光組件發射的混合輻射是由第一發射層(3 1)、 第二發射層(32)、以及第三發射層(3 3)發射的電磁輻射所構 成。第一發射層(31)、第二發射層(32)、以及第三發射層(33) 發射的電磁輻射佔總輻射的比例會隨工作電流的電流強度 (1〇)而改變。 根據前面的實施例,電致發光層(3)產生的電磁輻射的 色度座標(6)很靠近白色點(7)。色度座標(6)會隨通過電致發 光層(3)之工作電流(91-95)的電流強度(1〇)而改變。 如第3圖中的箭頭(8)所示,電流強度(1〇)變大時,色度 座標(6)會向藍色方向移動。也就是說,位於最右邊的點(最 大的X値)屬於在第2圖中的最小電流強度(10 mA/cm2)的光 譜分佈,位於最左邊的點屬於在第2圖中的最大電流強度 的光譜分佈。 如第4圖所示,具有有機發光組件(1 0)的裝置(例如具 有如第一個實施例之有機發光組件(1 0)的裝置)具有一個控 制單元(1 1)。控制單元(Π)與第一電極(2)及第二電極(4)均 形成導電連接,並且可以調整電致發光層(3)產生之電磁輻 射的光譜分佈。控制單元(Π)經由第一電極(2)及第二電極 -23- 200818979 (4)將工作電流(9 1-95)注入電致發光層(3)。爲了保護有機層 免於受到空氣中的氧氣及/或濕氣的影響’有機發光組件(1 〇) 有用熟習該項技術者所習知之方式封裝起來(未在圖式中 繪出)。 例如控制單元(1 1)將一如第5 A圖之基本上恆定的工作 電流(91)注入電致發光層(3),電致發光層(3)就會發射出具 有如第7A圖之第一光譜分佈(5)的電磁輻射。 第5B圖顯示的是一種隨時間變化的工作電流(92)。隨 時間變化的工作電流(92)是一種脈動的直流電。隨時間變 化的工作電流(92)是由以週期T重複的脈衝(921,922,923) 所構成。換句話說,在這個例子中隨時間變化的工作電流 (92)具有週期長度爲T的方波的形狀。 每一個脈衝最好都具有矩形的形狀,這樣電流強度(Ιο) 在一個脈衝期間就會保持不變,而在方波的前緣則會突然 上升或下降。 例如由跨越一個或多個週期Τ測得之隨時間變化的工 作電流(92)的平均電流強度(lave)相當於恆定的工作電流(91) 的恆定的電流強度(1〇)。所選擇的週期長度T(也就是兩個脈 衝(921,922)之間的平均時間距離)最好是使人的眼睛分辨 不出單一脈衝(921,922,923 ),例如週期長度Τ小於或等 於1/25秒。換句話說,工作電流(92)是以25Hz或更高的頻 率脈動。這樣做的好處是觀察者會覺得有機發光組件是不 間斷的持續發光。 如果控制單元將隨時間變化的工作電流(92)注入電致 發光層(3),電致發光層(3)就會發射具有第二光譜分佈(不 -24- 200818979 同於第一光譜分佈)的電磁輻射(見第7B圖)。 如果隨時間變化的工作電流(9 2)的時間平均電流強度 (1〇)及恆定的工作電流(91)的時間平均電流強度(1(>)是一樣 大的,則觀者會覺得在這兩種情況下有機發光組件發射的 電磁輻射的光強度(L)是一樣的,也就是說二者的亮度是一 樣的。但是這兩種情況的光譜分佈並不相同’(見弟7 A圖 及第7 B圖),這是因爲注入有機發光組件的隨時間變化的 工作電流(92)在一個脈衝期間的電流強度(Ιο)大於恆定之工 作電流(91)的電流強度(Ιο)。因此在注入恆定的工作電流(91) 時發出的光在CIE色度座標圖上的色度座標會不同於在注 入隨時間變化之工作電流(92)時發出的光在CIE色度座標 圖上的色度座標。 如第5 C圖所示,控制單元(1 1)可以改變隨時間變化 的工作電流(92,92’)的電流強度(1〇,1〇’)及脈衝持續時間 (tP,tp’)。例如工作電流(92,92’)具有相同的時間平均電 流強度(Iave),但是單一脈衝(921,9 22)的電流強度(iG)和 單一脈衝(921,,922’)的電流強度(I。’)是不一樣的,因此 工作電流(92,92’)會激發有機發光組件(1〇)發射出具有相 同強度(L)的電磁輻射(13),但是二者的光譜分佈(5)是不 同的。 例如控制單元(π)會調整時間平均電流強度(Iave)作爲 由使用者給定的強度(L)的函數。第8圖以示意方式顯示這 個函數。這個函數會以參數化的形式被儲存在控制單元 中。在控制單元(11)中也存有一個表格,這個表格含有與 有機發光組件(10)發射之電磁輻射(13)的所有可調整的色 -25- 200818979 度座標(6)對應之工作電流(9 2)的電流強度(IG)的數値。控制 單元(11)會從表格中選出屬於使用者選定之色度座標(6)的 電流強度(Ιο)。 此外,控制單元(1 1)還具有一個運轉計時器。從表格 中選出的電流強度(1〇)的數値會作爲運轉計時器測得之有 機發光組件(10)的運轉時間的函數被修正。這樣就可以平 衡光譜分佈(5 )的改變,例如平衡因有機發光組件(1 0)老化 而造成光譜分佈的改變。 f 另外一種可行的方式是不要由使用者對光譜分佈(5) 進行任何影響,而是由控制單元(1 1)依據運轉時間調整工 作電流(92)的電流強度(1〇)來平衡色度座標(6)隨有機發光 組件(1 0)之運轉時間發生的改變。 如果有機發光組件的電極(4)和第1C圖的第二個實施 例一樣具有多個子區域(41,42,43),則控制單元最好是與 每一個子區域(41,42,43)都形成導電連接。 例如控制單元將第一工作電流(9 3)經由第一子區域(41) 注入電致發光層(3),以及將第二工作電流(94)經由第二子 區域(42)注入電致發光層(3),及/或將第三工作電流(95)經 由第三子區域(43)注入電致發光層(3)。也就是說分別將第 一、第二、第三工作電流(93,94,95)注入位於第二電極(4) 之第一、第二、第三子區域(41,42,43)及第一電極(2)之 間的電致發光層(3)的第一、第二、第三子區域。 例如第一、第二、第三工作電流(93,94,95)都是一種 隨時間變化的工作電流,而且都具有如第6圖之週期爲T 的方波的形狀。第一、第二、第三工作電流(93,94,95) -26- 200818979 的方波最好是彼此有1 2 0度的相位移動。脈衝持續時間佔 週期長度的三分之一。換句話說,在每一個時間點都只有 一個子區域(41、42、或43)會獲得工作電流(93、94、或95) 的供應。也就是說,當子區域(4 1)獲得電流供應時,另外 兩個子區域(4 2,4 3)就沒有電流。例如,在每一個時間點電 致發光層(3)都只有第一、第二、或第三子區域會發射電磁 輻射。 另外一種可行的方式是在同一時間對多個子區域供應 電流。也就是說第一、第二、及/或第三工作電流(93,94, 9 5)的脈衝可以有時間上的重疊。第5圖顯示的工作電流 (9 3,94,95)也可能在脈衝前緣出現短暫的重疊的現象。例 如在從第一工作電流(9 3)的一個脈衝終端過渡到第二工作 電流(9 4)的一個脈衝開端時,可能會有一段很短的時間同 時供應電流給兩個子區域(41,42)。尤其是在脈衝前緣實際 上並非垂直,而是與垂直座標軸夾一個角度的情況下,更 可能發生這種現象,例如電流會在一段時間內持續上升及/ 或下降。在這種情況下,脈衝的形狀爲梯形。 另外一種可行的方式是選擇很短的脈衝持續時間,以 便在兩個脈衝之間的至少一段有限的時間內使第二電極(4) 的子區域(41,42,43)都沒有獲得電流供應。 除了有機發光組件(10)及控制單元(11)外,如第9圖之 實施例的本發明的裝置還具有一個接收器(1 2)。具有複數 個光電二極體之接收器可以測定有機發光組件(1〇)發射的 電磁輻射(1 3)中的紅光、綠光、以及藍光的比例。因此一 部分的電磁輻射(13)會照射在其上。 -27- 200818979 由使用者爲電磁輻射(13)向控制單元(11)給定一個特 定的強度(L)及一個特定的光譜分佈(5)。控制單元(11)會從 儲存在其內部之電流強度(Ιο)與色度座標(6)之對應表格及 時間平均電流強度(lave)與強度(L)之對應表格中選出適當的 電流強度(Ιο)及時間平均電流之關係強度(lave),並根據週期 長度T計算出工作應注入有機發光組件之電流(92)的脈衝 持續時間tp。 控制單元(11)會從接收器(1 2)發出的信號計算出在其 選出的工作電流(9 2)下,有機發光組件(10)發射的電磁輻射 (13)的真正的強度(L)及真正的光譜分佈(5)。 控制單元會將實際値(真正的強度(L)及真正的光譜分 佈(5))與給定的額定値做一比較。比較後如果發現至少有一 個實際値或兩個實際値與額定値有差異,而且差異的程度 超出一個固定或可以由使用者調整的規定値,控制裝置(1 1) 就會調整電流強度(Ιο)以配合光譜分佈(5)及/或調整脈衝持 續時間tP(尤其是調整時間平均電流強度(Iave))以配合強度 (L) ’以便使實際値與額定値一致,或是將二者的差異程度 降低到規定値的範圍內。 本發明的範圍並非僅限於以上所舉的實施例。每一種 新的特徵及兩種或兩種以上的特徵的所有組合方式(尤其 是申請專利範圍中提及的特徵的所有組合方式)均屬於本 發明的範圍,即使這些特徵或特徵的組合方式未在本說明 書之說明部分或實施例中被明確指出。 【圖式簡單說明】 第1 A圖:第一個實施例的有機發光組件的一個斷面示 -28- 200818979 意圖。 第1 B圖:如第1 A圖之有機發光組件的一個俯視圖。 第1 C圖:第二個實施例的有機發光組件的一個俯視 圖。 第1D圖:第三個實施例的有機發光組件的一個斷面示 意圖。 第2圖:第一個實施例的有機發光組件發射之電磁輻 射的光譜分佈。 ^ 第3圖:如第2圖之電磁輻射在CIE色度座標圖上的 < 色度座標。 第4圖:具有如第1 A圖之有機發光組件的裝置。 第5 A圖:一恆定的工作電流的示意圖。 第5B圖和第5C圖:一隨時間變化之工作電流的示意 圖。 第6圖:由控制單元注入如第1 C圖之有機發光組件的 電致發光層的工作電流的示意圖。 第7A圖:在如第1A圖之有機發光組件中如第5A圖 之工作電流產生的電磁輻射的光譜分佈。 第7B圖:在如第1A圖之有機發光組件中如第5B圖 之工作電流產生的電磁輻射的光譜分佈。 第8圖:以示意方式顯示第一個實施例之有機發光組 件的強度與時間平均電流強度的關係。 第9圖:以示意方式顯示具有如另外一個實施例之有 機發光組件的裝置。 【主要元件符號說明】 基板 第一電極 -29- 2 200818979 3 電 致 發 光 層 4 第 二 電 極 5 光 譜 分 佈 6 色 度 座 標 7 白 色 點 8 方 向 10 發 光 組 件 11 控 制 單 元 12 接 收 器 13 電 磁 輻 射 31 第 一 發 射 層 32 第 二 發 射 層 33 第 二 發 射 層 41 第 一 子 域 42 第 二 子 區 域 43 第 三 子 域 91 恆 定 的 工 作電流 92/92’ 隨時間改變的工作電流 93 第一工作電流 94 第二工作電流 95 第三工作電流 921,922,923,9215,922、923,脈衝 I 〇 電流強度 lave 時間平均電流強度 L 強度 T 週期長度 -30-200818979 IX. Description of the invention: [Technical field to which the invention pertains] This patent application claims to have a German patent application of 1 02006046302. 1 priority. The present invention includes an organic light emitting device, a device having an organic light emitting device, a lighting device, and a display device. [Prior Art] Electromagnetic radiation emitted by a general organic light-emitting component such as an organic light-emitting diode (OLED) has a given spectral distribution. This spectral distribution is determined by the chosen emissive material. This general organic light-emitting component gives the impression when illuminated that the same color of light is continuously emitted. SUMMARY OF THE INVENTION An object of the present invention is to provide an organic light-emitting component, a device having the organic light-emitting component, a lighting device, and a display device, which have a wide range of applications. The above object can be attained by the contents of the main patent application relating to an organic light-emitting component, a device having an organic light-emitting device, a lighting device, and a display device in the scope of the patent application of the present invention. The contents of the affiliated patent application are various advantageous embodiments and improvements of the present invention. The organic light emitting device of the present invention has an electroluminescent layer. When the working current is injected, the electroluminescent layer produces electromagnetic radiation having a spectral distribution, and the spectral distribution of the electromagnetic radiation changes with the intensity of the current through the working current of the electroluminescent layer. The electromagnetic radiation emitted by the organic light-emitting component preferably has a variable spectrum of 200818979 distribution. According to an advantageous embodiment, the spectral distribution of the electromagnetic radiation emitted by the organic light-emitting component can be adjusted or changed in a very simple manner by controlling the operating current when the organic light-emitting component is in operation. For example, organic light-emitting components emit electromagnetic radiation in the visible, infrared, and/or ultraviolet spectral range. For example, in one embodiment, the spectral distribution of the electromagnetic radiation emitted by the organic light-emitting component gives the human color perception primarily white. If the organic light-emitting component emits electromagnetic radiation in the visible spectrum, the spectral distribution of these electromagnetic radiation is usually equivalent to a point on the CIE chromaticity coordinate map, the so-called chromaticity coordinate. The CIE chromaticity coordinate map is a standard CIE chromaticity diagram developed by the Commission International de Γ Eel air age in 1931. For example, the white color feels like a so-called white point, that is, the coordinate on the CIE chromaticity coordinate map is x = 0. 33 and y = 0. The point of 33. In other words, the chromaticity coordinates of the spectral distribution of the light emitted by the organic light-emitting component in this embodiment on the CIE chromaticity coordinate map will vary with the current intensity of the operating current. For example, the chromaticity coordinates move toward the blue direction as the current intensity increases. In at least such an embodiment, the proportion of long-wave (eg, red) electromagnetic radiation in the spectral distribution becomes smaller as the current intensity increases, and/or short-wave (eg, blue) electromagnetic radiation is in the spectral distribution. The proportion will continue to increase as the current intensity increases. On the CIE chromaticity coordinate map, the chromaticity coordinates are moved on a line, for example, along a straight line. For example, the electromagnetic radiation emitted by the organic light-emitting component when operating at the first operating current gives the human color a red color, and the electromagnetic radiation emitted by the 200818979 when the second working current is operated gives the human color a white color, and/or The electromagnetic radiation emitted when the third working current is operated gives a human color feeling blue. The red or blue color feels that the coordinates on the CIE chromaticity coordinate map move from the vicinity of the white point toward the red or blue point. The first, second, and third operating currents differ in current intensity and/or as a function of time. For example, the first, second, and third operating currents are direct current or currents consisting of pulses of substantially constant current intensity. The current intensity of the working current of the stomach is greater than the current intensity of the first working current, but ί is the current intensity less than the third working current. According to one embodiment, the electroluminescent layer contains at least one polymer. Preferably, the electroluminescent layer further contains at least one dopant which is mixed or polymerized with the polymer. The polymer and/or dopant contained in the electroluminescent layer is preferably an emissive material, that is, a material for emitting electromagnetic radiation. In one embodiment, at least one dopant species is a chromophore. According to another embodiment, the electroluminescent layer contains a low molecular material ("small molecule"). According to an advantageous development, the low molecular material is a substrate which is at least one kind of catastrophic substance which may itself be a low molecular material. In this embodiment, the low molecular material (especially the substrate and/or dopant) is an emissive material. According to an advantageous embodiment, the electroluminescent layer contains a plurality of emissive materials, in particular emissive materials which emit radiation of different wavelengths. Preferably, at least one of these emissive materials is a dopant. The concentration of the dopant or at least one dopant is greater than or equal to 〇. 丨% (% of moles) to less than or equal to 50% (% of moles), or preferably between 大于·1% (% of moles) to 20% (% of moles). The advantage of the 200818979 electroluminescent layer containing a plurality of emissive materials is that the organic light-emitting component emits a wide range of electromagnetic radiation, such as a spectral range that produces a perceived color of white light. For example, the spectral distribution of the electromagnetic radiation emitted by the organic light-emitting component during operation can be adjusted by changing the concentration of the dopant. For example, the necessary concentration of the dopant species can be determined by measuring the absorption and/or photoluminescence of the dopant species and/or by means of a cyclotron method, for example by measuring the exciton formation in the electroluminescent layer by means of a cyclotron method. Mechanism, and determination of exciton formation for different emissive materials. For example, the concentration of the dopant (which is an emissive material) and/or the concentration ratio of the plurality of dopants (also both emissive materials) can have a large effect on the spectral distribution of the electromagnetic radiation. Preferably, at least one dopant species (e.g., a dopant species used to emit a red light spectral range) has a low concentration in the electroluminescent layer. For example, the concentration of such dopants is less than or equal to 2% (% by mole), or preferably less than or equal to 1% (% by mole). When the concentration of the dopant is low, the emission of the dopant exhibits saturation characteristics as the operating current becomes larger. In this way, the spectral distribution can be greatly correlated with the current intensity. According to another embodiment, the electroluminescent layer has a first emissive layer and a second emissive layer in this order from the first electrode to the second electrode. Both of the emissive layers contain at least one emissive material. The difference between the first emissive layer and the second emissive layer contains different compositions of emissive materials. In an advantageous further development, the first firing layer emits electromagnetic radiation having a first spectral distribution, the second emitting layer emits electromagnetic radiation having a second spectral distribution, and the first spectral distribution and the second spectral distribution are different. . 200818979 The inventors now assume that the distribution and/or mobility of carriers in the electroluminescent layer will vary with the operating voltage between the first electrode and the second electrode. In other words, the carrier density profile of the electroluminescent layer changes with the operating voltage. The operating voltage between the first electrode and the electric two electrode and the current intensity of the working _k have a corresponding relationship with each other: the operating current increases as the operating voltage increases, and vice versa. When the organic light-emitting device is in operation, the first carrier from the first electrode is injected with the electroluminescent layer, and the second carrier from the second electrode is injected into the electroluminescent layer. If the first electrode is the anode and the second electrode is the cathode, the first carrier is a hole and the second carrier is an electron. The mobility of the first carrier in the first emissive layer becomes larger as the operating voltage increases. Thus the proportion of the first carrier that passes through the first emissive layer into the second emissive layer and recombines with the second carrier to emit radiation will also increase. Therefore, as the operating voltage increases or the current intensity of the operating current corresponding to the operating voltage increases, the amount of radiation emitted by the second emitting layer occupies the electroluminescent layer compared to the amount of radiation emitted by the first emitting layer. The proportion of total radiation emitted will also increase. In this case, the position of the largest radiation sub-area of the electroluminescent layer will move. In other words, the position of the sub-region where most of the first carrier and the second carrier are recombined in the electroluminescent layer to emit radiation may move. As the operating current becomes larger, this sub-region moves from the first electrode toward the second electrode or from the second electrode toward the first electrode. According to another modification, the electroluminescent layer has a third emissive layer in addition to the first emissive layer and the second emissive layer. the first. Second, 200818979 The third emission layer is sequentially arranged in the direction from the first electrode to the second electrode. For example, the first emissive layer emits radiation in the blue spectral range, the second emitting layer emits radiation in the green spectral range, and the third emitting layer emits radiation in the red spectral range. Of course, it can be other color sequences. The mixed radiation emitted by the organic light emitting device is composed of electromagnetic radiation emitted by the first, second, and second emitting layers. The ratio of the electromagnetic radiation emitted by the first, second, and/or third emissive layers to the total luminous flux of the mixed radiation will vary with the current intensity of the operating current. There is a possibility that when the working current is the first current intensity, the electromagnetic radiation emitted by the organic light emitting component is all from the electromagnetic radiation emitted by the first emitting layer; when the working current is the second current intensity (greater than the first current intensity) The electromagnetic radiation emitted by the organic light-emitting component is all from the electromagnetic radiation emitted by the second emission layer. According to at least one embodiment, the organic light-emitting assembly has an electrode disposed on the electroluminescent layer, and this electrode is divided into a plurality of sub-regions spaced apart from each other. There are two different embodiments of the so-called "on the electroluminescent layer". In the first embodiment, the electrode is in direct contact with the electroluminescent layer, for example, directly placing the electroluminescent layer on the electrode, or directly The electrode is placed on the electroluminescent layer; another embodiment is at least one further layer between the electrode and the electroluminescent layer, such as an electron transport layer or a hole transport layer. A device of the present invention has an organic light emitting component (such as at least one of the above-mentioned organic light emitting components), and an operating current capable of controlling the flow to the organic light emitting component to change the intensity of electromagnetic radiation generated by the organic light emitting component. And/or control unit for spectral distribution. Control -10- 200818979 The unit is preferably capable of varying the spectral distribution of electromagnetic radiation at a given electromagnetic radiation intensity. The control unit is capable of varying the current intensity and/or the average current intensity over time. For example, the control unit can vary the current intensity of the operating current injected into the electroluminescent layer via matching with the supply voltage. For example, the control unit can inject a substantially constant operating current into the electroluminescent layer during operation to obtain a predetermined intensity of light. The current intensity of this constant operating current can be adjusted. # Another possible way is that the control unit can inject a working current that changes over time into the electroluminescent layer to obtain a predetermined intensity of light. For example, this operating current is periodically changed with time. The control unit preferably changes the operating current at a frequency of 25 Hz or higher. Each single cycle is preferably not distinguishable by the naked eye so that the observer perceives that the organic light-emitting component emits moderate-intensity (light intensity) light. For example, the operating current that changes over time can have the shape of a square wave. In other words, the control unit injects the operating current into the electroluminescent layer in a single pulse. Preferably, the control unit is capable of varying the current intensity of the pulse, that is, changing the pulse height, pulse time and/or pulse repetition rate, and the period length of the square wave. In other words, the control unit is preferably capable of pulse amplitude modulation, pulse width modulation, and/or pulse frequency modulation. This makes it possible to change the operating current injected into the electroluminescent layer during operation of the device in a very simple manner. The benefit of this is that at a given time average current intensity, the intensity of the current injected into the electroluminescent layer at a particular point in time can be varied. The time average current intensity determines the intensity of the electromagnetic radiation emitted by the organic light-emitting diode, -11-200818979 degrees or luminous flux. The (unaveraged) current intensity of the working current actually injected into the electroluminescent layer at a certain point in time will have an effect on the spectral distribution. In this way, the intensity and spectral distribution of the electromagnetic radiation emitted by the organic light-emitting component during operation can be separately adjusted. For example, when the control unit injects a constant operating current having a first current intensity into the electroluminescent layer, the organic light emitting component emits electromagnetic radiation having a first spectral distribution. For example, the first spectral distribution has a large proportion of electromagnetic radiation in the long wavelength range (e.g., the red light range). y Conversely, if the control unit injects a pulsed operating current into the electroluminescent layer, and one of the pulses has a second current intensity (greater than the first current intensity), and the operating current is the same as the first operating current, there are many pulses The time average current intensity is the same, and the organic light emitting component emits electromagnetic radiation having a second spectral distribution, and the second spectral distribution and the first spectral distribution are different. For example, the proportion of electromagnetic radiation in the second spectral distribution over the long wavelength range is less than the first spectral distribution. According to an advantageous embodiment, the device has an organic light-emitting component having an electrode which is divided into a plurality of sub-regions which are spaced apart from each other, that is to say that the electrode has at least a first sub-region and a second sub-region. region. In this embodiment, the operating current includes a first operating current and a second operating current, wherein the first operating current is injected into the electroluminescent layer by the control unit via the first sub-region, and the second operating current is controlled by the control unit The electroluminescent layer is implanted through the second sub-region. Preferably, the first operating current and/or the second operating current are time varying, e.g., in the shape of a square wavelength. For example, the first operating current and the second operating current have different current intensities at the same time. -12- 200818979 According to one embodiment, both the first operating current and the second operating current have the shape of a square wavelength, especially pulses having the same duration and/or the same current intensity. According to one embodiment, the first operating current and/or the second operating current have a shape having a period length T and a periodic square wavelength of pulse duration Τ/η, where η represents the number of sub-regions of the electrode. The so-called "cycle length" refers to the duration of one cycle, and the so-called "pulse duration" refers to the duration of one pulse. The frequency 1 / Τ is preferably greater than or equal to 25 Hz, so that the observer cannot distinguish a single pulse with the naked eye, because it will feel that all sub-areas of the organic light-emitting component emit medium-intensity light continuously. According to another embodiment, the phases of the first operating current and the second operating current move relative to each other. For example, the phases of the two move by 180 degrees. In another embodiment, the phases of the two differ by a number of bits of 3 60/n degrees, wherein the number of sub-regions representing the electrodes. For example, the first working current and the second working current are square waves, and the square wave of the first working current moves to the square wave of the second working current. For example, in this case, the square wave lengths of the two operating currents are both T, the pulse duration is Τ/η, and the pulses of the two are shifted by 360/n degrees, which may be short-lived regardless of time. In the case of overlapping and/or possible gaps in the leading edge of the pulse, a current supply is obtained in a sub-region of exactly one electrode at a given point in time (especially at each). According to an advantageous embodiment, the control unit adjusts the current intensity of the operating current (especially the maximum current intensity of the pulse) as a function of a given spectral distribution for a given spectral distribution, in particular as a chromaticity coordinate in CIE color. The function on the coordinate graph. For example, in a method of organic light-emitting components, the current intensity is inversely proportional to the ratio of red light in the spectral distribution. According to a further advantageous embodiment, the control unit selects the current intensity of the operating current for a given spectral distribution from a table. According to a further refinement of this embodiment, the table contains current intensities corresponding to a plurality of chromaticity coordinates, and the control unit is capable of interpolating a color corresponding to the two chromaticity coordinates in the table by means of a function. The current intensity of the coordinate. According to a further advantageous embodiment, the control unit adjusts the time averaged current intensity of the operating current as a function of the given intensity for a given intensity. For example, the time average current intensity is proportional to the intensity at least in a range between the first intensity and the second intensity (different from the first intensity). So this function is a linear function. Another possible way is that this function can also be a polynomial function, a root function, or an exponential function. Alternatively, the control unit can select and adjust the time average current intensity of the operating current for a given intensity from a table listing a plurality of given intensities and corresponding time average current intensities. For example, the control unit adjusts the current intensity and the time average current intensity as a function of a given spectral distribution or a given intensity, and injects a working current having a square wave into the organic light emitting component. The pulse duration and/or frequency of the operating current is The control unit determines the current intensity and the time average current intensity. According to a further advantageous embodiment, the control unit (especially a function and/or a table) cooperates with the color sensitivity of the human eye. For example, when transitioning from a spectral distribution in the first spectral range from a maximum of -14 to 18,819,979 to a spectral distribution in the second spectral range, the control unit changes the intensity so that the observer perceives that the brightness of the organic light-emitting component is stable. Generally, human eyes are more sensitive to yellow and green light, especially for light in the yellow-green spectrum. For example, in one embodiment, the control unit increases the intensity when transitioning from a spectral distribution of maximum intensity in the green, yellow-green, and/or yellow spectral range to a spectral distribution of maximum intensity in the blue or red spectral range. In this way, the observer will only feel that the color of the light emitted by the organic light-emitting component has changed, but the brightness does not change. According to a further advantageous embodiment, the control device is able to balance the emission characteristics of the organic illumination assembly, in particular the intensity and/or spectral distribution of the electromagnetic radiation emitted by the organic illumination assembly, with a nominal chirp. For example, the spectral distribution and/or intensity of electromagnetic radiation emitted by an organic light-emitting component operating at a given current level may vary with operating time due to aging. According to an advantageous embodiment, the control unit determines the cumulative running time of the organic light emitting component by using an operation timer, and changes the current intensity and/or the time average current intensity of the working current injected into the organic light emitting component according to the measured running time. . As previously mentioned, in order to perform this work, the control unit preferably applies at least one function (using fixed parameters, or can be parameterized by the operator) and/or at least one table. In this way, the device of the present invention can counteract the change of the spectral distribution and/or the intensity of the electromagnetic radiation emitted by the organic light-emitting component with the change of the operating time, so that the organic light-emitting component emits the electromagnetic radiation throughout the service life-15 - 200818979 Both shots are capable of maintaining a constant spectral distribution and/or intensity. According to another advantageous embodiment, the device of the invention comprises a receiver having one or more photodiodes capable of determining the intensity and/or spectral distribution of electromagnetic radiation emitted by the organic light-emitting component. The control unit detects the difference between the intensity and/or spectral distribution measured by the receiver and the nominal enthalpy, and changes the current intensity and/or the time average current intensity until the receiver measures the difference in intensity and/or spectral distribution from the nominal enthalpy. Less than a given 値. In these embodiments, the organic light-emitting component can emit electromagnetic radiation whose intensity and/or spectral distribution can be precisely adjusted throughout the life of the device of the present invention. The device of the invention can be applied in a lighting device. For example, the application of the apparatus of the present invention allows the illumination device to adjust the chromaticity coordinates during operation. For example, according to one embodiment, the apparatus of the present invention has a control unit that can inject a current intensity-adjustable (preferably constant) operating current into the electroluminescent layer of the organic light-emitting component. At least in this case, the spectral distribution of the electromagnetic radiation emitted by the organic light-emitting component varies with the light intensity. For example, if the intensity of the light that emits light is small, the viewer perceives a red color sensation, and if the light intensity of the emitted light is large, the viewer perceives a white or blue color sensation. This type of lighting is well suited for general lighting purposes. In an advantageous embodiment, any light intensity of light emitted by such an illumination device gives the person a sense of color that is consistent with the perception of the viewer. For example, an observer would feel that the light emitted by such a lighting device gives the same color perception as the light emitted by a filament that emits light at a different current intensity in a typical incandescent lamp. Furthermore, the invention also includes a display device having the device of the invention. For example, the display device of the present invention is a monochrome display device or a color display device. For example, it is a display device having a plurality of pixels (Pixel). For example, each pixel contains a red, a green, and a blue sub-pixel. The display device of the present invention may also be a passive matrix or active matrix display. The spectral distribution of the light emitted by the display device is preferably changeable during operation. The display device of the present invention can flexibly adjust the spectral distribution of the emitted light. Furthermore, the display device of the present invention can balance the difference between the spectral distribution of the electromagnetic radiation emitted by the organic light-emitting device and the desired spectral distribution. This difference may be due to manufacturing tolerances and/or degradation processes of the organic light emitting component. [Embodiment] Advantages and advantageous embodiments of the present invention will be further described below in conjunction with the embodiments shown in Figs. 1A to 9 . Elements that have the same or the same function are denoted by the same element symbols in all figures. The elements in the above figures are not drawn to scale, and some elements (e.g., coatings) are sometimes drawn particularly large for ease of illustration or understanding. The organic light-emitting assembly of the first embodiment as shown in Fig. 1A has a substrate (1). For example, the substrate (1) may be a piece of glass or a plastic film. There is a first electrode (2) on the substrate (1). For example, the first electrode (2) may be plated on the substrate by evaporation. -17- 200818979 There is an electroluminescent layer (3) on the first electrode (2). In this embodiment, the electroluminescent layer (3) is in direct contact with the face of the first electrode (2) facing away from the substrate (1). Another possible way is to provide another layer or layers between the first electrode (2) and the electroluminescent layer (3), for example one preferably containing poly(3,4-ethylene thiophene) (PED)电T) The hole transport layer. On the face of the electroluminescent layer (3) facing away from the first electrode (2), there is a second electrode (4). The second electrode (4) is in direct contact with the electroluminescent layer (3). Another possibility is to provide another layer or layers, such as an electron transport layer, between the electroluminescent layer (3) and the second electrode (4). For example, the first electrode is an anode. The second electrode (2) preferably contains a material which at least allows the radiation portion generated by the electroluminescent layer (3) to pass therethrough, for example, a transparent conductive oxide (TC〇: Transparent Conducting Oxide) such as indium tin oxide ( IT0). In this embodiment, the substrate (i) is preferably also at least capable of passing the portion of the radiation generated by the electroluminescent layer (3). In this embodiment, it is preferred that at least a portion of the radiation generated by the electroluminescent layer (3) is outputted outwardly from the organic light-emitting assembly through the substrate (1). As shown in Fig. 1, the second electrode (4) covers the main extension surface of the electroluminescent layer (3) as viewed from above. For example, the second electrode (4) is a cathode and contains a metal having a very low electron work function. According to one embodiment, the cathode has a multilayer structure. According to a modification, the multilayer structure has a thickness of about 0. A layer of 5 nm containing Ba and/or CsF (either a layer composed of Ba and/or CsF) and an A1 layer having a thickness of I50 nm. According to the embodiment as shown in Fig. 1C, the second electrode (4) has a first sub-region (41), a second sub-region (42), and a third sub-region -18-200818979 (43). The sub-areas (41, 42, 43) are electrically insulated from each other and are spaced apart from each other. For example, the main sub-area of the electroluminescent layer (3) is viewed from the top, and the first sub-area (41), the second sub-area (42), and/or the third sub-area (43) have a rectangular shape. The sub-area (41, 42, 43) preferably divides the second electrode (4) into a single strip. Of course, the number of sub-areas is not limited to three. For example, the second electrode (4) may have 2 to 20 sub-regions, or preferably 3 to 10 sub-regions. For example, the second electrode (4) has five sub-regions. Another possible way is that the first electrode (2) can have a plurality of sub-areas in addition to the second electrode (4). According to a modification of this embodiment, there is a planarization layer between the sub-regions of the first electrode (2). In this embodiment, the electroluminescent layer (3) contains a polymer. This polymer contains a polyspiro backbone that emits radiation in the blue spectral range. In addition, the polymer also contains a small amount of chromophore as a dopant which emits a spectrum in the red or green spectrum. In this embodiment, the chromophore is a red or green comonomer. Copolymerization of red and green comonomers with polysulphate and hole transport units (eg, Suzuki polymerization) forms a polymer that emits a wide spectrum of light, especially A light that gives a white color feel. In this embodiment, the red and green comonomers and the polysulphate are the emissive materials of the electroluminescent layer (3). The concentration of the green chromophore in the polymer is less than or equal to 1% (% by mole). The concentration of the red chromophore in the polymer is also less than or equal to 1% (% by mole). Fig. 2 shows the spectral range (5) of the electromagnetic radiation generated by the electroluminescent layer (3) and the current intensity (Ιο) of the operating current passing through the electroluminescent layer (3) -19-200818979. The electromagnetic radiation emitted in the blue spectral range and the relative intensity of the electromagnetic radiation emitted in the green spectral range (wavelength 400 nm to 550 nm) are substantially constant regardless of the operating current. Conversely, the spectral specific gravity of electromagnetic radiation emitted in the wavelength range of 550 nm to 700 nm (ie, the red spectral range) decreases as the current intensity increases, in other words, compared to short-wave electromagnetic radiation. Proportion, the proportion of long-wave electromagnetic radiation will decrease. For example, a dopant emits electromagnetic radiation in the long-wave spectral range (especially in the red spectral range), while other dopants and/or polymers emit electromagnetic radiation in the short-wave spectral range (especially in green light and/or Blue light spectral range). The inventors have confirmed that when the current intensity becomes large, the electromagnetic radiation emitted by the dopant in the long-wave spectral range is saturated because the concentration of such a dopant is low. Therefore, the ratio of the emission amount of the dopant to the total emission decreases as the current intensity increases, and the spectral specific gravity of the polyspirate and the dopants emitted in the blue and green spectral ranges will vary with the current intensity. rise. Therefore, the chromaticity coordinates of the electromagnetic radiation generated by the electroluminescent layer (3) on the CIE chromaticity coordinate map shown in Fig. 3 will change. The CIE chromaticity coordinate map describes the color perception of the electromagnetic radiation emitted by the spectral distribution (5) according to the red light ratio (X), the green light ratio (y), and the blue light ratio (z) in the spectral distribution (5). Where x + y + z = l. Each chromaticity coordinate has a CIE coordinate (x, y). For example, the ratio of these three shades of light in white light is x = y = z = 0. 33. The chromaticity coordinate to which white light belongs is white point 7. In addition to the polymer which mixes and/or polymerizes one or several chromophores (especially -20-200818979 is a copolymer), the electroluminescent layer (3) may also contain a low molecular material. It is preferred to mix one or more dopants (e.g., another low molecular material) in the low molecular material. At this time, the low molecular material is the substrate of the one or several dopant substances. Preferably, at least one of the one or more dopant materials is an emissive material. If the electroluminescent layer (3) has a plurality of dopants, it is preferred that at least two of the dopants emit light having a different spectral distribution. For example, an electroluminescent layer (3) containing a low molecular material is formed by vapor-depositing a low molecular material (preferably simultaneously vapor-depositing a substrate and a dopant). For example, the electroluminescent layer contains a substrate consisting of 2-methyl-9,10-bis(2-naphthyl)anthracene (M A DN). According to one embodiment, the substrate and a blue light emitting material (concentration of 3% by mole) p-bis(ρ·ν,Ν-diphenyl-aminophenylethyl) benzene (DSA-Ph) and a yellow Light emitting material (concentration 0. 2% molar percentage) 5,6,11,12-tetraphenylnaphthalene (red fluorene). For example, the excitation efficiency relationship of at least two emissive materials will vary with the current intensity of the operating current. In particular, the first dopant (for example, a dopant that emits yellow and/or red light) is excited very efficiently when the current intensity is small, and the efficiency is excited when the current intensity is large. Poorly opposite, the second dopant (for example, a dopant that emits green or blue light) is excited at a higher current intensity than or equal to the excited efficiency when the current is small. The inventors now assume that the first dopant species is under a small electric field, that is, when the operating voltage between the first electrode and the second electrode is small (as in the case where the current intensity of the operating current is small). B), will form carrier traps. Therefore, when the current intensity of the operating current is small -21 - 200818979, the first dopant has a higher excitation efficiency. When the current intensity of the operating current is large, since the carrier trap is occupied, the excitation efficiency becomes small. In particular, there is a saturation effect. In the organic light emitting device of the third embodiment, the electroluminescent layer (3) has a plurality of emissive layers viewed from the first electrode (2) toward the second electrode (4). The emission layer is sequentially the first emission layer (31), the second emission layer (32), and the third emission layer (33). The emissive layers (31, 32, 33) are all composed of a low molecular material. r. The light emitted by the emission layer (31, 32, 3 3) preferably has a different spectral distribution (especially the chromaticity coordinates). For example, the first emissive layer (31) emits blue light. The second emissive layer (32) emits green light, and the third emissive layer (33) emits red light. Preferably, the emissive layers (3, 32, 33) each contain a different substrate and/or a different dopant species. For example, the first emissive layer (31) contains a blue-emitting dopant bis(4,-6'-difluorophenylpyridine)tetrakis(1-pyrazole)borate (FIr6) at a concentration of 20% by weight. The second emissive layer (32) contains a concentration of 0. 5% by weight of the green-emitting dopant fac-tris(2-phenylpyridine)iridium (Ir(ppy)3); the third emission layer (33) contains a concentration of 2% by weight A red-emitting dopant 铱(III) bis(2-phenylquinolinyl-N,C2'') acetamidineacetone (PQIr). For example, p-bis(triphenyldecane)benzene (UGH2) can be used as a substrate for all of the dopants mentioned above. The maximum radiation sub-region of the electroluminescent layer (3) of the organic light-emitting component is preferably spatially displaced as a function of the current intensity (Ιο) of the operating current. For example, the maximum radiation sub-region moves from the first electrode (2) to the second electrode (4) according to the current intensity (1 〇) of the operating current, or from the second electrode (4) to the first electrode (2) The direction of the movement. For example, at the first current intensity, the most -22-200818979 large emitter region overlaps the first emitter layer (31); at the second current intensity (greater than the first current intensity), the largest emitter region and the second The emission layer (32) overlaps; at the third current intensity (greater than the second current intensity), the maximum radiation sub-region overlaps with the third emission layer (33). As described in the foregoing summary, this is because the proportional relationship between the electrons and the holes injected from the first electrode (2) and the second electrode (4) is changed, and/or because the carrier is at the first electrode ( 2) and the change in mobility of the electric field between the second electrode (4). The mixed radiation emitted by the organic light emitting device is composed of electromagnetic radiation emitted from the first emission layer (31), the second emission layer (32), and the third emission layer (33). The ratio of the electromagnetic radiation emitted by the first emissive layer (31), the second emissive layer (32), and the third emissive layer (33) to the total radiation varies with the current intensity (1 〇) of the operating current. According to the previous embodiment, the chromaticity coordinates (6) of the electromagnetic radiation generated by the electroluminescent layer (3) are very close to the white point (7). The chromaticity coordinate (6) changes with the current intensity (1 〇) of the operating current (91-95) passing through the electroluminescent layer (3). As indicated by the arrow (8) in Fig. 3, when the current intensity (1〇) becomes large, the chromaticity coordinates (6) move in the blue direction. That is to say, the point on the far right (the largest X値) belongs to the spectral distribution of the minimum current intensity (10 mA/cm2) in Fig. 2, and the point on the far left belongs to the maximum current intensity in Fig. 2. The spectral distribution. As shown in Fig. 4, a device having an organic light-emitting component (10) (e.g., a device having the organic light-emitting component (10) as in the first embodiment) has a control unit (11). The control unit (Π) forms an electrically conductive connection with both the first electrode (2) and the second electrode (4), and can adjust the spectral distribution of the electromagnetic radiation generated by the electroluminescent layer (3). The control unit (Π) injects an operating current (9 1-95) into the electroluminescent layer (3) via the first electrode (2) and the second electrode -23-200818979 (4). In order to protect the organic layer from the effects of oxygen and/or moisture in the air, the organic light-emitting component (1 〇) is packaged in a manner known to those skilled in the art (not shown in the drawings). For example, the control unit (11) injects a substantially constant operating current (91) as shown in Fig. 5A into the electroluminescent layer (3), and the electroluminescent layer (3) is emitted as shown in Fig. 7A. Electromagnetic radiation of the first spectral distribution (5). Figure 5B shows an operating current (92) that varies over time. The operating current (92) that varies over time is a pulsating direct current. The operating current (92) that changes with time is composed of pulses (921, 922, 923) repeated in period T. In other words, the operating current (92) which changes with time in this example has the shape of a square wave having a period length T. Each pulse preferably has a rectangular shape such that the current intensity (Ιο) remains constant during one pulse and suddenly rises or falls at the leading edge of the square wave. For example, the average current intensity (lave) of the operating current (92) as measured by time spanning one or more cycles corresponds to a constant current intensity (1 〇) of the constant operating current (91). The selected period length T (i.e., the average time distance between the two pulses (921, 922)) is preferably such that the human eye does not recognize a single pulse (921, 922, 923), for example, the period length Τ is less than or Equal to 1/25 second. In other words, the operating current (92) is pulsed at a frequency of 25 Hz or higher. The advantage of this is that the observer will feel that the organic light-emitting component is continuously and continuously illuminated. If the control unit injects a time varying operating current (92) into the electroluminescent layer (3), the electroluminescent layer (3) emits a second spectral distribution (not the same as the first spectral distribution). Electromagnetic radiation (see Figure 7B). If the time average current intensity (1〇) of the operating current (9 2) and the time average current intensity (1 (>) of the constant operating current (91) are the same as the time, the viewer will feel In both cases, the light intensity (L) of the electromagnetic radiation emitted by the organic light-emitting component is the same, that is, the brightness of the two is the same. However, the spectral distribution of the two cases is not the same '(See Brother 7 A Figure 7 and Figure 7B), because the time-varying operating current (92) injected into the organic light-emitting component has a current intensity (Ιο) greater than a constant operating current (91) during a pulse (Ιο). Therefore, the chromaticity coordinates of the light emitted when injecting a constant operating current (91) on the CIE chromaticity coordinate map will be different from the light emitted when the operating current (92) is changed over time on the CIE chromaticity coordinate map. The chromaticity coordinates. As shown in Figure 5C, the control unit (1 1) can change the current intensity (1〇, 1〇') and pulse duration (tP) of the operating current (92, 92') as a function of time. , tp'). For example, operating current (92, 92' ) has the same time average current intensity (Iave), but the current intensity (iG) of a single pulse (921, 9 22) and the current intensity (I.') of a single pulse (921, 922') are different. Therefore, the operating current (92, 92') excites the organic light-emitting component (1〇) to emit electromagnetic radiation (13) having the same intensity (L), but the spectral distribution (5) of the two is different. For example, the control unit ( π) adjusts the time average current intensity (Iave) as a function of the intensity (L) given by the user. Figure 8 shows this function in a schematic manner. This function is stored in the control unit in a parameterized form. There is also a table in the control unit (11) which contains the operating current corresponding to all adjustable colours -25 - 200818979 degrees (6) of the electromagnetic radiation (13) emitted by the organic light-emitting component (10) ( 9 2) The current intensity (IG) number. The control unit (11) selects the current intensity (Ιο) belonging to the user selected chromaticity coordinate (6) from the table. In addition, the control unit (1 1) also Has an operation timer. The number of current intensities (1〇) selected in the table is corrected as a function of the operating time of the organic light-emitting component (10) measured by the running timer. This allows the balance of the spectral distribution (5) to be balanced, such as the balance factor. The organic light-emitting component (10) is aged to cause a change in the spectral distribution. f Another possible way is not to have any influence on the spectral distribution (5) by the user, but to adjust the operation according to the operation time by the control unit (1 1). The current intensity (1 〇) of the current (92) is used to balance the change in the chromaticity coordinate (6) with the operating time of the organic light-emitting component (10). If the electrode (4) of the organic light-emitting assembly has a plurality of sub-regions (41, 42, 43) as in the second embodiment of the first embodiment, the control unit is preferably associated with each of the sub-regions (41, 42, 43). Both form an electrically conductive connection. For example, the control unit injects the first operating current (9 3) into the electroluminescent layer (3) via the first sub-region (41), and injects the second operating current (94) into the electroluminescence via the second sub-region (42). Layer (3), and/or injecting a third operating current (95) into the electroluminescent layer (3) via a third sub-region (43). That is, the first, second, and third operating currents (93, 94, 95) are respectively injected into the first, second, and third sub-regions (41, 42, 43) of the second electrode (4) and First, second, and third sub-regions of the electroluminescent layer (3) between one electrode (2). For example, the first, second, and third operating currents (93, 94, 95) are all operating currents that vary with time, and both have the shape of a square wave of period T as shown in Fig. 6. The square waves of the first, second, and third operating currents (93, 94, 95) -26-200818979 preferably have a phase shift of 120 degrees from each other. The pulse duration is one-third of the length of the cycle. In other words, there is only one sub-area (41, 42, or 43) at each point in time to obtain a supply of operating current (93, 94, or 95). That is to say, when the sub-area (4 1) obtains the current supply, the other two sub-areas (4 2, 4 3) have no current. For example, at each point in time, only the first, second, or third sub-regions of the electroluminescent layer (3) emit electromagnetic radiation. Another possible way is to supply current to multiple sub-areas at the same time. That is to say, the pulses of the first, second, and/or third operating currents (93, 94, 9.5) may have temporal overlap. The operating current (9 3, 94, 95) shown in Figure 5 may also have a brief overlap at the leading edge of the pulse. For example, when transitioning from one pulse terminal of the first operating current (93) to the beginning of a pulse of the second operating current (94), there may be a short period of time simultaneously supplying current to the two sub-regions (41, 42). This is especially the case when the leading edge of the pulse is not actually vertical, but is at an angle to the axis of the vertical coordinate, for example, the current will continue to rise and/or fall over a period of time. In this case, the shape of the pulse is trapezoidal. Another possible way is to select a very short pulse duration so that no current supply is obtained for the sub-regions (41, 42, 43) of the second electrode (4) for at least a limited period of time between the two pulses. . In addition to the organic light emitting component (10) and the control unit (11), the apparatus of the present invention as in the embodiment of Fig. 9 also has a receiver (12). A receiver having a plurality of photodiodes can measure the ratio of red, green, and blue light in the electromagnetic radiation (13) emitted by the organic light-emitting component (1). Therefore, part of the electromagnetic radiation (13) will illuminate it. -27- 200818979 The user gives a specific intensity (L) and a specific spectral distribution (5) to the control unit (11) for electromagnetic radiation (13). The control unit (11) selects the appropriate current intensity from the corresponding table of the current intensity (Ιο) and the chromaticity coordinate (6) stored therein and the corresponding table of the time average current intensity (lave) and the intensity (L) ( Ιο) and the time-averaged current relationship (lave), and the pulse duration tp of the current (92) that should be injected into the organic light-emitting component is calculated according to the period length T. The control unit (11) calculates from the signal from the receiver (12) the true intensity (L) of the electromagnetic radiation (13) emitted by the organic light-emitting component (10) at its selected operating current (92). And the true spectral distribution (5). The control unit compares the actual 値 (true intensity (L) and true spectral distribution (5)) to the given nominal 値. After the comparison, if at least one actual flaw or two actual flaws are found to be different from the rated flaw, and the degree of the difference exceeds a fixed or user-adjustable specification, the control device (1 1) adjusts the current intensity (Ιο). ) to match the spectral distribution (5) and / or adjust the pulse duration tP (especially adjust the time average current intensity (Iave)) to match the intensity (L) 'to make the actual 値 consistent with the rated ,, or both The degree of difference is reduced to within the specified range. The scope of the invention is not limited to the embodiments set forth above. Each of the new features and all combinations of the two or more features (especially all combinations of features mentioned in the patent application) are within the scope of the invention, even if the features or combinations of features are not It is explicitly indicated in the description or the examples of the specification. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a cross-sectional view showing the organic light-emitting device of the first embodiment. -28-200818979 Intent. Figure 1 B: A top view of the organic light emitting assembly as in Figure 1A. Fig. 1C is a top plan view of the organic light emitting device of the second embodiment. Fig. 1D is a cross-sectional view showing the organic light emitting module of the third embodiment. Fig. 2 is a view showing the spectral distribution of electromagnetic radiation emitted by the organic light-emitting module of the first embodiment. ^ Figure 3: Electromagnetic radiation as shown in Figure 2 on the CIE chromaticity coordinate map < Chroma coordinates. Figure 4: Apparatus having an organic light emitting assembly as in Figure 1A. Figure 5A: Schematic diagram of a constant operating current. Figure 5B and Figure 5C: Schematic diagram of the operating current as a function of time. Fig. 6 is a view showing the operation current of the electroluminescent layer of the organic light-emitting device of Fig. 1C injected by the control unit. Figure 7A: Spectral distribution of electromagnetic radiation generated by the operating current as in Figure 5A in the organic light-emitting assembly of Figure 1A. Figure 7B: Spectral distribution of electromagnetic radiation generated by the operating current as in Figure 5B in the organic light-emitting assembly of Figure 1A. Fig. 8 is a view showing the relationship between the intensity of the organic light-emitting component of the first embodiment and the time-averaged current intensity in a schematic manner. Fig. 9 is a schematic view showing a device having an organic light-emitting assembly according to another embodiment. [Main component symbol description] Substrate first electrode -29- 2 200818979 3 Electroluminescent layer 4 Second electrode 5 Spectral distribution 6 Chromaticity coordinate 7 White point 8 Direction 10 Light-emitting component 11 Control unit 12 Receiver 13 Electromagnetic radiation 31 An emissive layer 32 a second emissive layer 33 a second emissive layer 41 a first subfield 42 a second sub-region 43 a third sub-field 91 a constant operating current 92 / 92 ' operating current varying with time 93 first operating current 94 Two operating currents 95 Third working currents 921, 922, 923, 9215, 922, 923, pulse I 〇 current intensity lave time average current intensity L intensity T period length -30-

Claims (1)

200818979 十、申請專利範圍: 1 · 一種有機發光組件,具有一個電致發光層(3 ),當工作電 流(91-95)注入時’電致發光層(3)會產生具有光譜分佈(5) 的電磁輻射,而且電磁輻射的光譜分佈會隨著通過電致 發光層之工作電流的電流強度(IG)而改變。 2 ·如申請專利範圍第1項的有機發光組件,其中,發出在 可見光光譜範圍的電磁輻射。 3. 如申請專利範圍第2項的有機發光組件,其中,發出具 有光譜分佈(5)的光線,而且其光譜分佈在CIE色度座標 圖上的色度座標(6)會隨著電流強度(1〇)而改變。 4. 如申請專利範圍第3項的有機發光組件,其中,在CIE 色度座標圖上的色度座標(6)會隨著電流強度(1〇)的變大 向藍色的方向(8)移動。 5 ·如前述申請專利範圍中任一項的有機發光組件,其中, 電致發光層(3)至少含有一種聚合物。 6.如前述申請專利範圍中任一項的有機發光組件,其中, 電致.發光層(3)至少含有一種低分子材料。 7 ·如g(j述申g靑專利範圍中任一項的有機發光組件,其中, 電致發光層(3)至少含有兩種可以產生輻射的發射材料。 8 ·如申請專利範圍第7項的有機發光組件,其中,至少有 一種發射材料是一種摻雜物質,尤其是一種在電致發光 層(3)中僅含有低濃度的摻雜材料。 9 ·如申請專利範圍第7項或第8項的有機發光組件,其中, 有一種發射材料是一種聚合物,而且這種聚合物有混合 一種作爲另外一種發射材料的摻雜物質。 -31- 200818979 10·如申口円專利圍第5項至第9項中任一項的有機發光組 件其中,至少有一種發射材料(尤其是一種摻雜物質) 與一種聚合物聚合。 11·如申專利範圍n 8項至第1Q項中任—項的有機發光 組件,其中,至少有一種摻雜物質是一種發色團。 12·如申請專利範圍第7項至第u項中任一項的有機發光 組件,其中,電致發光層(3)具有一個第一發射層(31)及 一個第二發射層(32),這兩個發射層是在從第一電極(2) 到桌一 _極(4)的方向上依序排列,其中第一發射層含有 兩種發射材料中的第一種發射材料,第二發射層含有兩 種發射材料中的第二種發射材料。 1 3 ·如申g靑專利範圍第1 2項的有機發光組件,其中,在運 轉時’第一發射層(3 1)發出具有第一光譜分佈的電磁輻 射’第二發射層(32)發出具有第二光譜分佈的電磁輻 射,而且第一光譜分佈和第二光譜分佈是不同的。 1 4.如申請專利範圍第1 2項或第1 3項的有機發光組件,其 中’第一發射層(31)發出的電磁輻射及/或第二發射層(32) 發出的電磁輻射佔有機發光組件發出的總輻射量的比例 會隨著工作電流(91-95)的電流強度(I。)而改變。 1 5 ·如前述申請專利範圍中任一項的有機發光組件,其中, 具有一個被分成多個彼此隔開的子區域(41,42,43)的 電極(4)。 16.—種裝置,具有一個如前述申請專利範圍中任一項的有 機發光組件(10)及一個控制單元(11),控制單元(11)能夠 控制流向有機發光組件之工作電流(91-95),以改變所產 •32- 200818979 生之電磁輻射(13)的強度(L)及/或光譜分佈(5)。 1 7 .如申請專利範圍第1 6項的裝置,其中,控制單元(1 1) 能夠在給定的電磁輻射強度(L)下改變電磁輻射(13)的光 譜分佈(5 )。 1 8 .如申請專利範圍第1 6項或第1 7項的裝置,其中,控制 單元(1 1)能夠經由與供電電壓的匹配改變工作電流 (91-95)的電流強度(1〇)。 1 9 ·如申請專利範圍第1 6項至第1 8項中任一項的裝置,其 中,控制單元(1 1)將一基本上恆定的工作電流(91)注入電 致發光層(3 )。 20 ·如申請專利範圍第1 6項至第1 9項中任一項的裝置,其 中,控制單元(11)將一隨時間改變的工作電流(92-95)注 入電致發光層(3 )。 21. 如申請專利範圍第20項的裝置,其中,工作電流(92-95) 是以25Hz或更高的頻率隨時間作週期性的變化。 22. 如申請專利範圍第20項或第21項的裝置,其中,隨時 間變化的工作電流(92-95)具有方波的形狀。 23 ·如申請專利範圍第1 6項至第22項中任一項的裝置,其 中,具有一個如申請專利範圍第1 5項的有機發光組件 (10)’而電極(4)具有一個第一子區域(41)及一個第二子 區域(4 2),同時工作電流包括第一工作電流(9 3)及第二工 作電流(9 4 ),且第一工作電流(9 3 )是由控制單元(1 1)經由 第一子區域注入電致發光層(3 ),第二工作電流(9 4)是由 控制單元(1 1)經由第二子區域注入電致發光層。 2 4 ·如申請專利範圍第2 3項的裝置,其中,第一工作電流(9 3 ) 及第二工作電流(9 4)在同一時間具有不同的電流強度 -33- 200818979 (Ιο)。 25 ·如申請專利範圍第23項或第24項的裝置,其中,第一 工作電流(93)及/或第二工作電流(94)會隨時間變化,尤 其是以方波的形狀變化。 26_如申請專利範圍第25項的裝置,其中,第一工作電流(93) 及第二工作電流(94)會隨時間作週期性的變化,尤其是 以25Hz或更高的頻率變化。 2 7 ·如申請專利範圍第2 6項的裝置,其中,第一工作電流(9 3) f 及第二工作電流(94)的相位相互移動。 2 8 .如申請專利範圍第2 7項的裝置,.其中,相位相互移動 1 80 度。 29.如申請專利範圍第27項的裝置,其中,相位相差360/n 度的倍數’其中η代表結構化之電極(4)的子區域(41, 4 2,4 3 )的數量。 3 〇 ·如申請專利範圍第2 6項至第2 9項中任一項的裝置,其 中,第一工作電流(93)及/或第二工作電流(94)具有一週 期性方波的形狀,此方波至少有一個脈衝的持續時間爲 Τ/η,其中Τ代表方波的週期長度,η代表結構化之電極 (4)的子區域(41,42,43)的數量。 3 1 ·如申請專利範圍第2 0項至第3 0項中任一項的裝置,其 中,控制單元(1 1)會爲一給定的光譜分情(5 )調整工作電 流(9 1 - 9 5 )的電流強度(I 〇)作爲給定的光譜分佈的函數。 32.如申請專利範圍第20項至第31項中任一項的裝置,其 中,控制單元(1 1)會從一個表格中爲給定的光譜分佈(5) 選定工作電流的電流強度(10)。 33·如申請專利範圍第18項至第32項中任一項的裝置,其 -34 - 200818979 中,控制單元(1 1)會爲一給定的強度(L)調整工作電流 (91-95)的時間平均電流強度dave)作爲給定的強度的函 數。 34. 如申請專利範圍第18項至第33項中任一項的裝置’其 中,控制單元會根據一個表格來爲給定之強度(L)選定工 作電流(91-95)的時間平均電流強度(I ave) ° 35. 如申請專利範圍第31項至第34項中任一項的裝置’其 中,函數及/或表格配合人類眼睛的感色靈敏度。 3 6 .如申請專利範圍第1 6項至第3 5項中任一項的裝置,其 中,控制裝置(11)能夠平衡有機發光組件(10)發射的電磁 輻射(13)的強度(L)及/或光譜分佈(5)與一額定値的差 異。 37. 如申請專利範圍第36項的裝置,其中,控制單元(11) 會測定有機發光組件(1 0)的運轉時間,並根據所測得的 運轉時間改變工作電流(9 1-95)的電流強度(Ιο)及/或時間 平均電流強度(Iave)。 38. 如申請專利範圍第36項或第37項的裝置,其中,含有 一個接收器(1 2),這個接收器能夠測定有機發光組件(1 〇) 發射的電磁輻射(13)的強度(L)及/或光譜分佈(5),同時 控制單元會根據接收器測定的強度及/或光譜分佈與額 定値的差異來改變工作電流(9丨_ 9 5 )的電流強度(I 〇)、時間 平均電流強度(I ave)、及/或時間變化。 39. —種照明設備,其具有如前述之申請專利範圍之裝置。 40. —種顯示裝置,其具有如前述之申請專利範圍之裝置。 -35-200818979 X. Patent application scope: 1 · An organic light-emitting component with an electroluminescent layer (3), when the working current (91-95) is injected, the electroluminescent layer (3) will have a spectral distribution (5) The electromagnetic radiation, and the spectral distribution of the electromagnetic radiation, changes with the current intensity (IG) of the operating current through the electroluminescent layer. 2. The organic light-emitting component of claim 1, wherein the electromagnetic radiation in the visible light spectral range is emitted. 3. The organic light-emitting component of claim 2, wherein the light having the spectral distribution (5) is emitted, and the chromaticity coordinates (6) of the spectral distribution on the CIE chromaticity coordinate map are along with the current intensity ( 1〇) and change. 4. For the organic light-emitting component of claim 3, wherein the chromaticity coordinate (6) on the CIE chromaticity coordinate map increases toward the blue direction as the current intensity (1 〇) increases (8) mobile. The organic light-emitting device according to any one of the preceding claims, wherein the electroluminescent layer (3) contains at least one polymer. The organic light-emitting device according to any one of the preceding claims, wherein the electroluminescent layer (3) contains at least one low molecular material. 7. The organic light-emitting device according to any one of the claims, wherein the electroluminescent layer (3) contains at least two kinds of emissive materials capable of generating radiation. 8 · As claimed in claim 7 The organic light-emitting component, wherein at least one of the emissive materials is a doping material, especially a doping material containing only a low concentration in the electroluminescent layer (3). 9 · As claimed in claim 7 or An organic light-emitting component of 8 items, wherein one of the emissive materials is a polymer, and the polymer has a doping substance mixed as another emissive material. -31- 200818979 10· The organic light-emitting device according to any one of the items 9 to 9, wherein at least one of the emissive materials (especially a dopant) is polymerized with a polymer. 11· As claimed in the claims n-8 to 1Q— The organic light-emitting device of any one of the above-mentioned items, wherein the at least one of the dopants is a chromophore. The organic light-emitting device according to any one of claims 7 to 5, wherein the electroluminescent layer (3) ) a first emissive layer (31) and a second emissive layer (32), the two emissive layers are sequentially arranged in a direction from the first electrode (2) to the table-pole (4), wherein the first The emissive layer contains the first emissive material of the two emissive materials, and the second emissive layer contains the second emissive material of the two emissive materials. 1 3 · The organic light emitting component of item 12 of the patent application scope, Wherein, during operation, the first emissive layer (31 emits electromagnetic radiation having a first spectral distribution', the second emissive layer (32) emits electromagnetic radiation having a second spectral distribution, and the first spectral distribution and the second spectrum The distribution is different. 1 4. The organic light-emitting component of claim 12 or claim 13, wherein the electromagnetic radiation emitted by the first emission layer (31) and/or the second emission layer (32) is emitted The ratio of the electromagnetic radiation to the total amount of radiation emitted by the organic light-emitting component varies with the current intensity (I.) of the operating current (91-95). The organic light-emitting component according to any one of the preceding claims. , having one that is divided into multiples that are separated from each other An electrode (4) of a sub-area (41, 42, 43) 16. A device having an organic light-emitting component (10) according to any one of the preceding claims and a control unit (11), a control unit ( 11) It is possible to control the operating current (91-95) flowing to the organic light-emitting component to change the intensity (L) and/or spectral distribution (5) of the electromagnetic radiation (13) produced by the 32-200818979. The device of claim 16 wherein the control unit (1 1) is capable of changing the spectral distribution (5) of the electromagnetic radiation (13) at a given electromagnetic radiation intensity (L). The device of item 1 or item 17, wherein the control unit (11) is capable of changing the current intensity (1〇) of the operating current (91-95) via matching with the supply voltage. A device according to any one of claims 1 to 18, wherein the control unit (11) injects a substantially constant operating current (91) into the electroluminescent layer (3) . The apparatus according to any one of claims 1 to 9, wherein the control unit (11) injects a working current (92-95) which changes with time into the electroluminescent layer (3) . 21. The device of claim 20, wherein the operating current (92-95) is periodically varied with time at a frequency of 25 Hz or higher. 22. The device of claim 20, wherein the operating current (92-95) varying over time has the shape of a square wave. A device according to any one of claims 1 to 22, wherein the organic light-emitting device (10) has a first object as claimed in claim 15 and the electrode (4) has a first a sub-area (41) and a second sub-area (42), wherein the operating current includes a first operating current (9 3) and a second operating current (9 4 ), and the first operating current (9 3 ) is controlled by The unit (11) injects the electroluminescent layer (3) via the first sub-region, and the second operating current (94) is injected into the electroluminescent layer by the control unit (11) via the second sub-region. 2 4 . The device of claim 2, wherein the first operating current (9 3 ) and the second operating current (9 4) have different current intensities at the same time -33 - 200818979 (Ιο). [25] The apparatus of claim 23, wherein the first operating current (93) and/or the second operating current (94) vary with time, particularly in the shape of a square wave. 26_ The device of claim 25, wherein the first operating current (93) and the second operating current (94) are periodically changed with time, especially at a frequency of 25 Hz or higher. 2 7 The apparatus of claim 26, wherein the phases of the first operating current (9 3) f and the second operating current (94) move relative to each other. 2 8. The device of claim 27, wherein the phases move by 1 to 80 degrees. 29. Apparatus according to claim 27, wherein the phase differs by a multiple of 360/n degrees' wherein η represents the number of sub-regions (41, 4 2, 4 3 ) of the structured electrode (4). The device of any one of claims 2-6 to 29, wherein the first operating current (93) and/or the second operating current (94) have a periodic square wave shape The square wave has at least one pulse having a duration of Τ/η, where Τ represents the period length of the square wave and η represents the number of sub-regions (41, 42, 43) of the structured electrode (4). 3 1 · A device as claimed in any one of claims 20 to 3, wherein the control unit (1 1) adjusts the operating current for a given spectral profile (5) (9 1 - The current intensity (I 〇 ) of 9 5 ) is a function of the given spectral distribution. The apparatus of any one of claims 20 to 31, wherein the control unit (11) selects the current intensity of the operating current for a given spectral distribution (5) from a table (10) ). 33. The apparatus of any one of claims 18 to 32, wherein -34 - 200818979, the control unit (11) adjusts the operating current for a given intensity (L) (91-95) The time average current intensity dave) is a function of the given intensity. 34. The device of any one of claims 18 to 33 wherein the control unit selects the time average current intensity of the operating current (91-95) for a given intensity (L) according to a table ( A device according to any one of claims 31 to 34 wherein the function and/or table cooperates with the color sensitivity of the human eye. A device according to any one of claims 1 to 3, wherein the control device (11) is capable of balancing the intensity (L) of the electromagnetic radiation (13) emitted by the organic light-emitting component (10) And/or the difference between the spectral distribution (5) and a nominal enthalpy. 37. The device of claim 36, wherein the control unit (11) determines the operating time of the organic light emitting component (10) and changes the operating current (9 1-95) according to the measured operating time. Current intensity (Ιο) and/or time average current intensity (Iave). 38. The device of claim 36, wherein the device comprises a receiver (1 2) capable of determining the intensity of electromagnetic radiation (13) emitted by the organic light-emitting component (1 〇) (L) And / or spectral distribution (5), while the control unit changes the current intensity (I 〇) and time of the operating current (9丨_ 9 5 ) according to the difference between the intensity and / or spectral distribution measured by the receiver and the rated enthalpy. Average current intensity (I ave), and / or time variation. 39. A lighting device having a device as claimed in the aforementioned patent application. 40. A display device having a device as claimed in the aforementioned patent application. -35-
TW096135387A 2006-09-29 2007-09-21 Organic light-emitting component, device with the same, lighting equipment and display device TW200818979A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006046302 2006-09-29

Publications (1)

Publication Number Publication Date
TW200818979A true TW200818979A (en) 2008-04-16

Family

ID=38988242

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096135387A TW200818979A (en) 2006-09-29 2007-09-21 Organic light-emitting component, device with the same, lighting equipment and display device

Country Status (3)

Country Link
DE (1) DE112007002899A5 (en)
TW (1) TW200818979A (en)
WO (1) WO2008040318A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112425266A (en) * 2018-07-05 2021-02-26 阿弗拉科技有限责任公司 Open circuit electroluminescent system
US11892404B2 (en) 2018-07-05 2024-02-06 AhuraTech LLC Electroluminescent methods and devices for characterization of biological specimens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931296B1 (en) * 2008-05-13 2013-04-26 Commissariat Energie Atomique CONTROL CIRCUIT OF A PIXEL WITH VARIABLE CHROMATIC COORDINATES
CN104247560B (en) * 2011-11-29 2016-08-17 Oled工厂有限责任公司 The method of the color dot of the light that adjustment is launched from Organic Light Emitting Diode OLED
DE102013111906A1 (en) * 2013-10-29 2015-04-30 Osram Oled Gmbh Optoelectronic component and method for operating an optoelectronic component

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773130A (en) * 1996-06-06 1998-06-30 Motorola, Inc. Multi-color organic electroluminescent device
WO1998059382A1 (en) * 1997-06-23 1998-12-30 Fed Corporation Voltage controlled color organic light emitting device and method of producing the same
JP3469764B2 (en) * 1997-12-17 2003-11-25 三洋電機株式会社 Organic electroluminescence device
CN100432788C (en) * 1998-07-24 2008-11-12 精工爱普生株式会社 Display device
US6392620B1 (en) * 1998-11-06 2002-05-21 Canon Kabushiki Kaisha Display apparatus having a full-color display
US6605904B2 (en) * 2000-01-31 2003-08-12 University Of Rochester Tunable multicolor electroluminescent device
US6933532B2 (en) * 2003-03-28 2005-08-23 Eastman Kodak Company OLED display with photosensor
JP2005091420A (en) * 2003-09-12 2005-04-07 Sony Corp Display device and control method therefor
TWI267822B (en) * 2004-04-30 2006-12-01 Fuji Photo Film Co Ltd Organic electroluminescence device that can adjust chromaticity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112425266A (en) * 2018-07-05 2021-02-26 阿弗拉科技有限责任公司 Open circuit electroluminescent system
CN112425266B (en) * 2018-07-05 2023-06-23 阿弗拉科技有限责任公司 Open-circuit electroluminescent system
US11892404B2 (en) 2018-07-05 2024-02-06 AhuraTech LLC Electroluminescent methods and devices for characterization of biological specimens

Also Published As

Publication number Publication date
DE112007002899A5 (en) 2009-09-03
WO2008040318A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
KR101100771B1 (en) Organic light emitting devices for illumination
JP5535628B2 (en) Electroluminescent device with variable color point
US7740771B2 (en) Methods of determining a composition ratio of an organic white-light-emitting blend material
EP2869355A1 (en) Organic electroluminescent element and lighting device
WO2011081125A1 (en) Organic el element and organic el panel
TW200818979A (en) Organic light-emitting component, device with the same, lighting equipment and display device
JP4560494B2 (en) Operation method of organic light emitting component and organic light emitting component
JP2008530810A (en) OLED device with patterned light emitting layer thickness
US10839734B2 (en) OLED color tuning by driving mode variation
KR20090074795A (en) Light emissive device
KR20090047977A (en) Inorganic light emitting device
KR101877195B1 (en) Method for driving organic electroluminescent element
KR102236492B1 (en) Method for operating an organic light-emitting component and lighting device for implementing the method
TW201242126A (en) Organic light emitting diode device
JP2015032367A (en) Organic electroluminescent element and lighting system
de Kok et al. Tuning the colour of white polymer light emitting diodes
KR20100106594A (en) Pulsed driven light emissive device and composition therefor
KR101844327B1 (en) Broad wavelength tunable tandem polymer light-emitting device and thereof manufacturing method
Köhnen et al. Simultaneous color and luminance control of organic light-emitting diodes for mood-lighting applications
WO2013151130A1 (en) Organic electroluminescence element and method for manufacturing same
WO2005109541A1 (en) Color tunable white light emitting electroluminescent device
JPWO2015079524A1 (en) Light emitting device, indicator lamp and display system
TW201117652A (en) Organic light-emitting diode luminaires
JP2007531993A (en) Organic light-emitting diode and use thereof
Huang et al. Highly efficient white light with sharp red–green–blue emissions from iridium complexes doped carbazole-grafted poly (para-phenylene)