TW200818792A - Notch filtering for OFDM system with null postfix - Google Patents

Notch filtering for OFDM system with null postfix Download PDF

Info

Publication number
TW200818792A
TW200818792A TW96132065A TW96132065A TW200818792A TW 200818792 A TW200818792 A TW 200818792A TW 96132065 A TW96132065 A TW 96132065A TW 96132065 A TW96132065 A TW 96132065A TW 200818792 A TW200818792 A TW 200818792A
Authority
TW
Taiwan
Prior art keywords
frequency
symbol
frequency division
time domain
filter
Prior art date
Application number
TW96132065A
Other languages
Chinese (zh)
Other versions
TWI351200B (en
Inventor
Stephan Ten Brink
Ravishankar H Mahadevappa
Original Assignee
Wionics Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wionics Research filed Critical Wionics Research
Publication of TW200818792A publication Critical patent/TW200818792A/en
Application granted granted Critical
Publication of TWI351200B publication Critical patent/TWI351200B/en

Links

Landscapes

  • Transmitters (AREA)

Abstract

Transmission systems and methods for reducing interference by wideband communication systems with narrowband communications systems are disclosed. In some embodiments an ultrawideband system employing orthogonal frequency division multiplexing (OFDM) with a null post-fix nulls symbols for sub-carriers at potentially interfering frequencies prior to transformation to the time domain and filters a time domain representation using a notch filter to further reduce spectral components at the potentially interfering frequencies. In further embodiments pre-emphasis is applied to a frequency domain representation of symbols to reduce ripples introduced by the notch filter.

Description

200818792 九、發明說明: L發明所属之技術領域】 發明背景 本發明一般來說是關於寬頻通訊系統,且尤其關於在 5 寬頻通訊系統中對干擾的避免。 【先前技術3 寬頻通訊系統的好處在於它們允許資料在一頻率範園 上被傳送,潛在地增加資料流通量,同時潛在地增強通訊 的堅固性。寬頻通訊系統及特別的超寬頻通訊系統,例如, 10 可使用例如正交分頻多工(OFDM)來在一頻率範圍上進行 符號的傳送,通常被稱為副载波。超寬頻系統可進一步擴 大傳送資料的頻率,例如藉由週期性地切換於不同的頻帶 之間,有時被稱為跳躍。使用不同跳頻樣本,(通常由一時 間頻率編碼所指示)許多發射機接收機對可同時利用相同 15 頻寬。 在通訊中使用寬頻頻率的劣勢是,部分(p〇rti〇ns)該頻 寬可能已經被保留由其他通訊系統所利用。此等其他通訊 系統可能干擾該寬頻傳送,且該寬頻傳送可能干擾該等其 他通訊系統的傳送。作為一實際問題,該等其他通訊系統 2〇通常對它們所使用的特定頻率具有優先權,且超寬頻發射 機可被要求不能干擾其他在那些頻率上的通訊。 避免干擾其他通訊系統有時可能是不確定的 〇例如, 不同的位置可能具有不同的被保留頻帶。此外,該等被保 h員π可月b並不在所有地點或所有時間被使用。因此,在 5 200818792 許多情況中,可能在大部分時間中,考慮到被增加的頻寬, 在那些被保留頻率上的通訊實際上可以由超寬頻(UWB)來 完成,只要當那些頻帶被該等其他通訊系統使用時,那些 UWB發射機可避免干擾即可。 5 【勞^明内容】 發明概要 本發明提供用於在寬頻通訊系統中的發送。本發明之 一個層面提供一發射機,用於一分頻多工系統,包含一單 音變零區塊,用以將表示一分頻多工符號的潛在干擾副載 10 波的符號或部分符號變零;一反快速傅利葉轉換(iFFT)區 塊’用以將表示具有已變零副載波的該分頻多工符號的資 訊轉換到一時域表示法;及一陷波濾波器,用以濾波至少 部分關於該干擾副載波的該時域表示法。 在本發明之另一層面中提供一方法,該方法在一分頻 15多工系統中為了降低與其他通訊系統的干擾而對符號進行 處理,包含以下步驟··在該頻域中將被指示正在被其他通 δίΐ糸統所使用的發送頻率的副載波的資訊變零,該等副載 波的該資訊是部分分頻多工符號;將該具有已變零副載波 的分頻多工符號的一表示法轉換到一時域表示法;添加零 20符號到該時域表示法;及使用一頻率選擇濾波器濾波該時 域表示法,從而減少被指示正在被該等其他通訊系統使用 的發送頻率的副載波的信號成分。 在本發明的另一層面中提供一方法,該方法降低一超 見頻正父分頻多工(OFDM)通訊系統發射機與窄頻通訊系 6 200818792 統間的干擾,包含以下步驟:接„頻通料統所使用的 頻率的-指不;在該頻域巾將被期望要在該等窄頻通訊系 統所使用的該等頻率上傳送的—0FDM符號的資訊變零; 及在該時域中對被期望要在該料頻通訊系統所使用的該 等頻率上傳送的該OFDM符號的資訊濾波。 本發明的此等及其他層面在對此揭露的重新探討之後 將更容易被理解。 圖式簡單說明 第1圖疋依據本發明的層面的一發射機之一方塊圖; 10 第2圖是一具相位移位的陷波濾波器之一方塊圖; 第3 a - 3 d圖是顯示一相位移位陷波濾波器的操作類型 之圖不, ' 第4圖是依據本發明之層面的一 FIR濾波器之一方塊 圖; 第5圖是依據本發明之層面的又一發射機之一方塊圖; 第6圖是依據本發明之層面用於陷波干擾單音的一流 程之一流程圖;及 第7圖是本發明之層面用於陷波干擾單音的一流程之 又一流程圖。 L· "5Γ 較佳實施例之詳細說明 第1圖疋依據本發明之層面的一發射機之一方塊圖。較 佳地,該發射機接收一位元流用於分頻多工。因此,該發 射機通逼編所接收位元流的該等符號,交錯該等符號 15 20 7 200818792 位元的位元或組,映射或調變該等已 々 符號到-B寺域表示法,轉換該時域表示:到 '轉換5亥等 上變頻該類比錢到-載波頻率 2—類比信號’ 大信號於至少-個天線。在許多實施 正交分頻多x(GFDM)。 ^射機使用 10 15 20 正如第1圖所顯示,該發射機包括-通道編喝哭⑴。 =通道編碼器接收來自-資訊源的—位元流,例如 存取控制摩构。該通道編碼純行通道編碼及錄元 流的位就/或符财錯。在錄實施财,通_碼與交 錯被分開執彳了 ’例如用-交錯區塊來執行交錯,為方便对 論’所以此等魏都被組合純塊⑴中。魏編瑪可使用 例如記憶體6的-迴旋碼來執行。該已編碼位㈣被交錯, 例如,用⑽低叢發錯郷響。鱗㈣碼交錯符號被一 映射器113接收。該映射器映射符號,例如,使用四相移鍵 控(QPSK)或雙載波調變(DCM)、- 16-QAM星座圖、或一些 ”他的生座圖反快速傅利葉轉換(肿了)區塊I〗?轉換該 等符號到該時域’例如,使用_128點iFFT 一零插入器! Μ 對該時域取樣插人零。在許多實施财,零被添加到該肿丁 的輸出,提供-零後缀。然而,在一些實施例中,使用一 I刖綴代替。藉由—數位類比轉換器(DAC)123,該時域取 樣被轉換咖比信號,由上變顧125上變制載波頻率, 由放大1§ 127放大,且經由一天線輻射。 在許多情況中’希望不發送符號在符號正在被發送於 的該頻率範圍中的特定頻率上。因此,在許多情況中,一 8 200818792 與該$射機相關的-接收機透過對所接收信號進行分析, 可決定其他發射機正在發送所在的頻率。在另一可行實施 例中,該媒體存取控制器(MAC)或一表格(可能駐存在= 射機或該發射機可存取的記憶體中),可提供關於無功率將 5要被發送的特定頻率的資訊。 在依據本發明之層面中,一單音變零器115在處理鏈中 在該iFFT之前。一單音變零器變零由一選擇信號所指示的 單音,該選擇信號提供要被變零的單音的資訊。該選擇信 號可由一MAC或如上討論為來源得到資訊。單音變零在一 10些灵施例中藉由用零量值符號替換特定頻率的頻域符號或 單音被實現,或藉由用零多工那些符號被實現。因此,該 iFFT的該輸出通常將被期望在被變零的頻率上沒有頻率成 分0 然而,由零插入器119插入的一零後綴限制了接近那些 15 頻率的在降低輸出功率方面的程度。因此,一陷波渡波器 121也被提供在該零後綴的插入之後,且在數位類比轉換器 之前。該陷波滤波器慮波一選擇信號所指示的一頻率凹 口。該選擇信號可以是與被提供給該單音變零器的相同的 選擇信號。 20 另外,在許多實施例中,該DAC的輸入首先由一發送 FIR濾波器升取樣(upsample)並濾波’該升取樣器以兩倍升 取樣該時域取樣,且該HR濾波器實現一低通濾波器。 一陷波濾波器的一實施例的一範例被提供於第2圖。一 信號經由複數乘法器211被頻移一 △€。該被移位信號被一 9 200818792 FIR濾波器213濾波。較佳地,該FIR濾波器以一低通濾波器 被實施。該FIR濾波器的輸出由一另外複數乘法器215接 收,該另外複數乘法器頻移該濾波器輸出以與該複數乘法 器211相反的方式,從而頻移該信號-Af。 5 第3a到3d圖提供第2圖的陷波濾波器的操作概要之一 說明。第3a圖顯不一將被滤波的信號的一範例頻譜,以副 載波為索引。第3a圖中的該信號具有副載波η<64···63,其 中η=-64、-63、-62、-61、0、62,及63設定為零。 作為一範例,一凹口可被定在副載波η=30。正如第2 10 圖的一陷波濾波器使用一低通滤波器頻移,該複數乘法哭 211移位該頻譜64-η個副載波,其中在該範例中η=3〇。移位 該頻譜34個副載波,使原先在索引值30的副載波移到頻帶 邊緣。 第3c圖顯示該低通濾波器FIR濾波器的輪出。正如在第 15 3c圖中可見,在該邊緣頻率上的信號成分明顯被減少。第 3d圖顯示以與該第一頻移相反方式頻移該頻譜的結果,藉 此該等邊緣頻率被移位回中間,在副載波仏川上。這在第 3d圖中可見,——凹口出現於該頻譜約副载波n=3〇上。 第4圖顯示被使用於本發明之層面中的一nR漁波器的 20 一範例。該濾波器包括一具NHS1接頭的分接式延遲線。每 一該接頭都被一乘法lak所乘,其中k的範圍從。該 等接頭被相加以提供該濾波器的一輸出。在一實施例中, 該分接式延遲線的該等乘法器的係數依據—截斷sinc脈衝 來選擇,有 αΐς=8ήΐ(πχ)/(πχ),當 χ9ί:〇時,且%=1,當 χ=〇時, 10 200818792 其中 \二作-(>^1.〇)/2.〇)/(128/(128_陷波頻寬)), 陷波頻寬是依據副載波數的一陷波頻寬,且Nf是濾波器接 頭個數。 5 在前面,該128是假定為一 128點iFFT,因此X值應依據 該iFFT點數而變化。 當然’在不同實施例中不同的濾波器結構可被使用, 例如,包括一折疊式分接延遲線可被使用,簡少了乘法器。 然而,在多數實施例中,較佳的是,該濾波器的脈衝響應 10 是對稱的。 第6圖是用於在一分頻多工系統中減少不想要的頻率 成分的流程之一流程圖。在區塊611中,在干擾單音上的副 載波符號被變零。在區塊613中,該頻域中的符號被轉換到 一時域表示法。在區塊617中,零符號被加入到該時域表示 15法。在一些實施例中,該等零符號被預先加到該時域表示 法,但在多數實施例中,該等零符號以一後缀被附加到該 時域表示法。在區塊619中,一濾波器被用於該時域表示法 用以滤波該等干擾單音。在多數實施例中,該據波器是一 陷波滤波器。在一些實施例中,該據波器是具頻移元件的 20 -FIR低通瀘'波器’藉由頻移該時域表示法藉此該等干擾單 音以高頻成分出現,且接著反頻移該時域表示法回到^刀 始位置從而有效地作為一陷波攄波器來使用。在區塊621 中該信號被發送。該流程從此返回。 較佳地,該陷波FIR濾波器僅具有少數個接頭(例如31 11 200818792 頻域中漣波’這可能導致感興趣之頻率的功率頻譜密度的 增加。 個接頭)用以在實施中節省功率及矽區域。可是,在時域中 對該濾波器脈衡響應的截斷(例如僅使用31接頭)導致^談BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to broadband communication systems, and more particularly to the avoidance of interference in a 5 wideband communication system. [Prior Art 3 The benefits of broadband communication systems are that they allow data to be transmitted over a frequency range, potentially increasing data throughput while potentially enhancing the robustness of the communication. Broadband communication systems and special ultra-wideband communication systems, e.g., 10, may use, for example, orthogonal frequency division multiplexing (OFDM) to transmit symbols over a range of frequencies, commonly referred to as subcarriers. Ultra-wideband systems can further amplify the frequency at which data is transmitted, for example by periodically switching between different frequency bands, sometimes referred to as hopping. Using different frequency hopping samples (usually indicated by a time frequency code) many transmitter receiver pairs can utilize the same 15 bandwidth simultaneously. The disadvantage of using a broadband frequency in communication is that the portion (p〇rti〇ns) may have been reserved for use by other communication systems. Such other communication systems may interfere with the broadband transmission and the broadband transmission may interfere with the transmission of such other communication systems. As a practical matter, these other communication systems typically have priority over the particular frequencies they use, and ultra-wideband transmitters may be required to not interfere with other communications at those frequencies. Avoiding interference with other communication systems can sometimes be uncertain. For example, different locations may have different reserved frequency bands. In addition, the insured members π may be used at all locations or at all times. Therefore, in many cases of 5 200818792, it is possible that for most of the time, considering the increased bandwidth, the communication on those reserved frequencies can actually be done by ultra-wideband (UWB) as long as those bands are When used by other communication systems, those UWB transmitters can avoid interference. 5 [LOMING content] SUMMARY OF THE INVENTION The present invention provides for transmission in a broadband communication system. One aspect of the present invention provides a transmitter for a frequency division multiplexing system including a tone zeroing block for representing a potential interference subcarrier 10 symbol or partial symbol representing a frequency division multiplex symbol Zeroing; an inverse fast Fourier transform (iFFT) block 'for converting information representing the frequency division multiplex symbol having a zero-subcarrier to a time domain representation; and a notch filter for filtering This time domain representation of the interfering subcarrier is at least partially relevant. In another aspect of the invention, a method is provided for processing symbols in a frequency division 15 multiplex system to reduce interference with other communication systems, including the following steps: • will be indicated in the frequency domain The information of the subcarriers of the transmission frequency being used by other CDMA systems is zeroed, the information of the subcarriers is a partial frequency division multiplex symbol; the frequency division multiplex symbol having the zero subcarriers is changed Converting a representation to a time domain representation; adding a zero 20 symbol to the time domain representation; and filtering the time domain representation using a frequency selective filter to reduce the transmission frequency indicated to be used by the other communication systems The signal component of the subcarrier. In another aspect of the present invention, a method is provided for reducing interference between an over-frequency positive-family crossover multiplex (OFDM) communication system transmitter and a narrowband communication system 200818792, comprising the following steps: The frequency of the frequency used by the frequency channel is not; in the frequency domain, the information of the -0FDM symbol that is expected to be transmitted on the frequencies used by the narrowband communication systems is zero; and at that time The information in the domain that is expected to be transmitted on the frequencies used by the frequency communication system is filtered. These and other aspects of the present invention will be more readily understood after revisiting the disclosure. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a transmitter in accordance with a layer of the present invention; 10 FIG. 2 is a block diagram of a phase shifting notch filter; FIG. 3 a - 3 d is A diagram showing the type of operation of a phase shift notch filter, 'Fig. 4 is a block diagram of a FIR filter in accordance with aspects of the present invention; Fig. 5 is a further transmitter in accordance with aspects of the present invention a block diagram; Figure 6 is in accordance with the present invention A flow chart of one of the processes for notching interference tones; and Figure 7 is another flow chart of a process for notching interference tones in the aspect of the present invention. L· "5Γ DETAILED DESCRIPTION OF THE INVENTION Figure 1 is a block diagram of a transmitter in accordance with aspects of the present invention. Preferably, the transmitter receives a bit stream for frequency division multiplexing. Therefore, the transmitter is forced to encode received bits. The symbols of the meta-stream, interleaving the bits or groups of the symbols 15 20 7 2008 18792 bits, mapping or modulating the signed symbols to the -B temple domain representation, converting the time domain representation: to 'conversion 5 Hai et al. upconvert the analogy to the carrier-carrier frequency 2 - analog signal 'large signal to at least one antenna. In many implementations of orthogonal frequency division x (GFDM). ^ Shooter uses 10 15 20 as shown in Figure 1. The transmitter includes a channel-by-channel crying (1). The channel encoder receives a bit stream from the information source, such as an access control structure. The channel encodes the pure line channel encoding and the bit stream of the recording stream. Fucai wrong. In the implementation of the book, the pass code and the stagger are separated and executed. The blocks are interleaved to perform the interleaving, so that these Weis are combined in the pure block (1). Wei Ma can be executed using a-skew code such as the memory 6. The coded bits (4) are interleaved, for example, The (10) low-sequence error is struck. The scale (four) code interlace symbol is received by a mapper 113. The mapper maps symbols, for example, using quadrature phase shift keying (QPSK) or dual carrier modulation (DCM), - 16- QAM constellation diagram, or some "his life diagram inverse fast Fourier transform (swollen) block I〗? Convert the symbols to the time domain', for example, using the _128 point iFFT zero inserter!采样 The time domain is sampled and inserted into zero. In many implementations, zero is added to the swollen output, providing a zero suffix. However, in some embodiments, an I suffix is used instead. By means of a digital analog converter (DAC) 123, the time domain sample is converted to a chirp signal, from which the carrier frequency is varied by 125, amplified by amplification 1 § 127, and radiated via an antenna. In many cases, it is desirable to not transmit a symbol on a particular frequency in the range of frequencies to which the symbol is being transmitted. Therefore, in many cases, a receiver associated with the $1001818792 can determine the frequency at which other transmitters are transmitting by analyzing the received signal. In another possible embodiment, the media access controller (MAC) or a table (possibly resident = in the memory or in the memory accessible by the transmitter) can provide 5 to be sent about no power Information about a specific frequency. In accordance with the teachings of the present invention, a tone changer 115 precedes the iFFT in the processing chain. A tone changer zeros a single tone indicated by a selection signal that provides information on the tone to be zeroed. The selection signal can be obtained from a MAC or as a source as discussed above. The monophonic zeroing is achieved in a 10 embodiment by replacing the frequency domain symbols or tones of a particular frequency with zero magnitude symbols, or by using zeros to multiply those symbols. Therefore, the output of the iFFT will typically be expected to have no frequency component at the zeroed frequency. However, the zero suffix inserted by the zero inserter 119 limits the extent to which the output power is reduced near those 15 frequencies. Therefore, a notch waver 121 is also provided after the insertion of the zero suffix and before the digital analog converter. The notch filter considers a frequency notch indicated by the selection signal. The selection signal can be the same selection signal as that provided to the tone changer. In addition, in many embodiments, the input of the DAC is first upsampled and filtered by a transmit FIR filter. The upsampler samples the time domain with a double upsample, and the HR filter achieves a low Pass filter. An example of an embodiment of a notch filter is provided in FIG. A signal is frequency shifted by Δ€ via a complex multiplier 211. The shifted signal is filtered by a 9 200818792 FIR filter 213. Preferably, the FIR filter is implemented as a low pass filter. The output of the FIR filter is received by a further complex multiplier 215 which shifts the filter output in a manner opposite to the complex multiplier 211 to frequency shift the signal -Af. 5 Figures 3a to 3d provide an illustration of the operational outline of the notch filter of Figure 2. Figure 3a shows an example spectrum of the signal to be filtered, indexed by the subcarrier. The signal in Fig. 3a has subcarriers η < 64···63, where η = -64, -63, -62, -61, 0, 62, and 63 are set to zero. As an example, a notch can be set to subcarrier η = 30. As with the notch filter of Figure 2 10, a low pass filter frequency shift is used, which complexes 211 shifts the spectrum by 64-n subcarriers, where η = 3 在 in this example. The subcarriers of the spectrum are shifted by 34 subcarriers so that the subcarriers originally at index value 30 are moved to the edge of the band. Figure 3c shows the wheeling of the low pass filter FIR filter. As can be seen in Figure 15c, the signal components at this edge frequency are significantly reduced. Figure 3d shows the result of frequency shifting the spectrum in a manner opposite to the first frequency shift, whereby the edge frequencies are shifted back to the middle on the subcarriers. This can be seen in Figure 3d, where the notch appears on the spectrum about subcarrier n = 3 。. Figure 4 shows an example of an nR fishing vessel used in the level of the present invention. The filter includes a tapped delay line with an NHS1 connector. Each of the joints is multiplied by a multiplication lak, where k ranges from. The connectors are added to provide an output of the filter. In one embodiment, the coefficients of the multipliers of the tapped delay line are selected according to a truncated sinc pulse, having αΐς=8ήΐ(πχ)/(πχ), when ί9ί:〇, and %=1, When χ=〇, 10 200818792 where \二作-(>^1.〇)/2.〇)/(128/(128_ notch bandwidth)), the notch bandwidth is based on the number of subcarriers A notch bandwidth, and Nf is the number of filter connectors. 5 In the front, the 128 is assumed to be a 128-point iFFT, so the value of X should vary depending on the number of iFFT points. Of course, different filter configurations can be used in different embodiments, for example, including a foldable tap delay line can be used, with fewer multipliers. However, in most embodiments, it is preferred that the impulse response 10 of the filter is symmetrical. Figure 6 is a flow diagram of a flow for reducing unwanted frequency components in a frequency division multiplexing system. In block 611, the subcarrier symbol on the interfering tone is zeroed. In block 613, the symbols in the frequency domain are converted to a time domain representation. In block 617, a zero symbol is added to the time domain representation 15 method. In some embodiments, the zero symbols are pre-added to the time domain representation, but in most embodiments, the zero symbols are appended to the time domain representation with a suffix. In block 619, a filter is used for the time domain representation to filter the interfering tones. In most embodiments, the data filter is a notch filter. In some embodiments, the data filter is a 20-FIR low-pass filter with frequency shifting elements by frequency shifting the time domain representation whereby the interfering tones appear as high frequency components, and then The inverse frequency shifting of the time domain representation back to the ^ knife start position is effectively used as a notch chopper. This signal is sent in block 621. The process returns from here. Preferably, the notch FIR filter has only a few joints (eg, 31 11 200818792 chopping in the frequency domain 'this may result in an increase in the power spectral density of the frequency of interest. A connector) to save power in implementation And the area. However, the truncation of the filter's pulse-balance response in the time domain (for example, using only 31 connectors) leads to a talk

因此,在-些實施例中,在藉由該反快速傅利葉轉換 區塊轉換到_表示法之前,—預加強遮罩被用於頻域符 號。-預加強遮罩可被決定,藉由將該陷波渡波器的一時 域脈衝響應轉制-頻域表示法,且制該賴表示法以 估計陷波t、波II 5丨起的漣波。例如,簡錢波器的該時 10 域脈衝響應可以是hk,k=0、 是Hn ’ n=〇、…、127。 ···、127, 且該頻率脈衝響應 因此,在iFFT之前,該預加強遮罩可用购乘以一載波 . ^t|H^^(real(Hn)Mmag^ 〇 第5圖是依據本發明之層面的又一發射機之一方塊 15圖。如弟1圖的該發射機,第5圖的發射機包括—通道編碼 器511、一映射器513、—單音變零器515、- iFFT區塊517、 一零插入機521、一數位類比轉換器523、-上變頻器525及 -放大器提供-信號給至少—個天線。如對於第旧所討論 的《亥通逼、、扁碼益編碼貧料用於該發送系統,一般用一6迴 20 =碼此外’為便於討論,該通道編碼器也被假設包括一 低叢發錯誤。該映射器映射該已編碼資料到一 符號"亥單3全I益對特定副載波變零單音。該iFFT區塊 轉換A v頁域存相一時域符號,—般用⑶點肿丁。該零插 入機插人-錢綴。颇波歧_波肺·該時域表 12 200818792 丁法以進步減少被希望變零的頻率上的信號成分。該 c轉換虡域符號到該類比域。該上變頻器上變頻該信 號到近似兔送頻率,且該放大器放大該已上變頻信號用於 該天線發送。 5 &外’纟單音零插人之後,但轉換該頻域符號到-時 戈表示法之荊,一預加強遮罩降低在使用減少接頭個數的 "亥陷波濾波器的使用之後預計將出現於該頻譜中的漣波。 預加強‘罩用遠陷波渡波器的該頻域脈衝響應的反向乘 以該頻域信號的一副載波η的每一符號。 1〇 “於移除在干擾頻率上的信號成分的-流程 的又一流程圖。在區塊711中,一頻域符號的干擾單音被變 令在區塊713中,-預加強遮罩被用於該頻域符號以降低 該頻域中的漣波。在多數實施例中,該遮罩被決定,藉由 決定稍後被使用以從該符號的一時域表示法中濾波干擾單 15曰的一濾波器的一頻率脈衝響應,且使用該頻率脈衝響應 以調整該等符號的頻域表示法。 在區塊715中在降低漣波之後,該頻域符號被轉換到 该時域。在區塊717中,—零前綴或零後綴分別被預先加到 或附加到該時域表示法。在區塊719中,使用一陷波滤波器 將干擾單音滤波。在區域721中,該信號被發送。該流程從 那以後返回。 雖然本發明已簡於某些特定實施例被描述,要知道, 本發明可赠特定錢料的被實施。因此,本發明應被申 π專利範圍及其等由此揭露支持的非實質變化來看待。 13 200818792 【圈式簡單^^明】 第1圖是依據本發明的層面的-發射機之-方塊圖; 第2圖是一具相位移位的陷波濾波器之一方塊圖; 第3a-3d圖是顯示一相位移位陷波濾波器的操作類型 5之圖示; 第4圖是依據本發明之層面的一 F j R濾波器之一方塊Thus, in some embodiments, the pre-emphasis mask is used for frequency domain symbols prior to conversion to the _ representation by the inverse fast Fourier transform block. The pre-emphasis mask can be determined by converting the time domain impulse response of the notch waver to a frequency domain representation and making the Lai representation to estimate the chopping of the notch t and the wave II. For example, the time domain 10 impulse response of the simple money filter can be hk, k = 0, and Hn 'n = 〇, ..., 127. ···, 127, and the frequency impulse response Therefore, before the iFFT, the pre-emphasis mask can be purchased by a carrier. ^t|H^^(real(Hn)Mmag^ 〇 Figure 5 is in accordance with the present invention Another transmitter of the layer is shown in Figure 15. In the transmitter of Figure 1, the transmitter of Figure 5 includes a channel encoder 511, a mapper 513, a tone changer 515, an iFFT. Block 517, a zero insertion machine 521, a digital analog converter 523, an upconverter 525, and an amplifier provide a signal to at least one antenna. For example, for the first discussion, "Haitong Force, Flat Code Benefit" The encoding poor material is used in the transmitting system, generally using a 6-20 = code. In addition, for ease of discussion, the channel encoder is also assumed to include a low burst error. The mapper maps the encoded data to a symbol " The IFFT block converts the specific subcarrier to zero. The iFFT block converts the A v page field to store a time domain symbol, and the general use (3) points to swollen. The zero insertion machine inserts the money - the suffix. __波肺·this time domain table 12 200818792 Dingfa progresses to reduce the signal component at the frequency that is expected to become zero. The domain symbol is to the analog domain. The upconverter upconverts the signal to an approximate rabbit transmit frequency, and the amplifier amplifies the upconverted signal for the antenna to transmit. 5 & external '纟 single tone zero after insertion, but Converting the frequency domain symbol to the time-history representation, a pre-emphasis mask reduces the chopping that is expected to occur in the spectrum after the use of the "sea notch filter that reduces the number of connectors. 'The cover uses the inverse of the frequency domain impulse response of the far-wave waver multiplied by each symbol of a subcarrier η of the frequency domain signal. 1" "The process of removing the signal component at the interference frequency" Yet another flow chart. In block 711, the interference tone of a frequency domain symbol is muted in block 713, and a pre-emphasis mask is used for the frequency domain symbols to reduce chopping in the frequency domain. In most embodiments, the mask is determined by determining a frequency impulse response of a filter that is later used to filter the interference block 15 from a time domain representation of the symbol and using the frequency impulse response To adjust the frequency domain representation of these symbols. The frequency domain symbols are converted to the time domain after the chopping is reduced in 715. In block 717, the -zero prefix or zero suffix is pre-added or appended to the time domain representation, respectively. The interference tone is filtered using a notch filter. The signal is transmitted in region 721. The process has since returned. Although the invention has been described in some specific embodiments, it will be appreciated that the invention may be The present invention is to be treated as a non-substantial change of the scope of the patent and its disclosure. 13 200818792 [Circle simple ^^ 明] Figure 1 is in accordance with the present invention Level-transmitter-block diagram; Figure 2 is a block diagram of a phase-shifted notch filter; Figure 3a-3d is a diagram showing the operation type of a phase-shifted notch filter Figure 4 is a block diagram of a F j R filter in accordance with aspects of the present invention.

第5圖是依據本發明之層面的又一發射機之一方塊圖; 第6圖是依據本發明之層面用於陷波干擾單音的一流 10 程之一流程圖;及 第7圖是本發明之層面用於陷波干擾單音的一流程之Figure 5 is a block diagram of still another transmitter in accordance with aspects of the present invention; Figure 6 is a flow chart of one of the first-class processes for notching interference tones in accordance with aspects of the present invention; and Figure 7 is The aspect of the invention is used in a process of notching interference tones

又一流程圖。 【主要元件符號說明】 111···通道編碼器 113···映射器 115···單音變零器 117···反快速傅利葉轉換(iFFT) 區塊 119···零插入器 121···陷波濾波器 123…數位類比轉換器(DAC) 125···上變頻器 127…放大器 211、215…乘法器 213…FIR濾波器 511···通道編碼器 513···映射器 515···單音變零器 516···預加強遮罩 517…反快速傅利葉轉換(iFFT) 區塊 519···零插入器 521…陷波濾波器 523 · · ·數位類比轉換器(DAC) 525···上變頻器 527···放大器 611〜621···區塊 711〜721···區塊 14Another flow chart. [Description of Main Component Symbols] 111···Channel Encoder 113··· Mapper 115···Mono Zeroer 117···Anti-Fast Fourier Transform (iFFT) Block 119···Zero Inserter 121· · Notch filter 123... Digital analog converter (DAC) 125··· Upconverter 127...Amplifier 211, 215...Multiplier 213...FIR filter 511···Channel encoder 513···Mapper 515 ···monophonic zero changer 516··· pre-emphasis mask 517...anti-fast Fourier transform (iFFT) block 519···zero inserter 521...notch filter 523 · · ·Digital analog converter (DAC) 525···Upconverter 527···Amplifiers 611 to 621··· Blocks 711 to 721···Block 14

Claims (1)

200818792 十、申請專利範圍: 1. 一種發射機,用於一分頻多工系統,包含: 一單音變零區塊,用以將表示一分頻多工符號的潛 在干擾副載波的符號或部分符號變零; . 一反快速傅利葉轉換(iFFT)區塊,用以將表示具有 _ 已變零副載波的該分頻多工符號的資訊轉換到一時域 表示法;及 一陷波濾波器,用以濾波至少部分關於該干擾副載 ® 波的該時域表示法。 2. 如申請專利範圍第1項所述之發射機,其中表示該分頻 多工符號的該資訊是具有該已變零副載波的分頻多工 符號。 3. 如申請專利範圍第1項所述之發射機,其中該陷波濾波 器包括一FIR濾波器。 4. 如申請專利範圍第1項所述之發射機,其中該陷波濾波 ^ 器包含一具有相移器的低通FIR濾波器。 5·如申請專利範圍第2項所述之發射機,進一步包含一預 . 加強區塊,被配置用以對具有已變零副載波的分頻多工 符號提供一加強,且表示該分頻多工符號的資訊是被加 強過的具有已變零副載波的分頻多工符號。 6.如申請專利範圍第5項所述之發射機,其中該預加強區 塊被配置用以藉由有效地用該FIR濾波器的一頻域反脈 衝響應乘以該具有已變零副載波的分頻多工符號以提 供一加強。 15 200818792 7. 如申請專利範圍第6項所述之發射機,其中該FIR濾波器 包括一具有三i—接頭的延遲線。 8. 如申請專利範圍第6項所述之發射機,其中該FIR濾波器 包括具有被依據一截斷sine脈衝的係數所乘的接頭的一 分接式延遲線。 9·如申請專利範圍第1項所述之發射機,其中該分頻多工 信號是一正交分頻多工信號。 10. —種方法,該方法在一分頻多工系統中為了降低與其他 通訊系統的干擾而對符號進行處理,包含以下步驟: 在該頻域中將被指示正在被其他通訊系統所使用 的發送頻率的副載波的資訊變零,該等副載波的該資訊 是部分分頻多工符號; 將該具有已變零副載波的分頻多工符號的一表示 法轉換到一時域表示法; 添加零符號到該時域表示法;及 使用一頻率選擇濾波器濾波該時域表示法,從而減 少被指示正在被該等其他通訊系統使用的發送頻率的 副載波的信號成分。 11. 如申請專利範圍第10項所述之方法,其中該具有已變零 副載波的分頻多工符號的該表示法是具有該已變零副 載波的分頻多工符號。 12. 如申請專利範圍第10項所述之方法,進一步包含減少該 時域表示法之一頻譜中的漣波,該等漣波是由該時域表 不法的該滤、波導致的。 16 200818792 13.如申請專利範圍第12項職之方法,其中減少漣波藉由 在頻域中修改至少部分該分頻多工符號被執行。 14·如申請專鄕圍第13項所述之方法,在賴巾修改至少 心Μ頻多工符號包含,有效地用該頻率選擇據波器 的該頻率脈衝響應的-反向乘以該具有已變零副載/ Μ 的分頻多工符號。 15·如申請專利範圍第14項所述之方法,其中該頻率選擇滤 波裔包含一具有相位移位的低通FIR濾波器。 16· —種方法,該方法降低一超寬頻正交分頻多工(〇fDm)通訊 糸統务射機與窄頻通訊系統間的干擾,包含以下步驟: 接收窄頻通訊系統所使用的頻率的一指示; 在該頻域中將被期望要在該等窄頻通訊系統所使 用的該等頻率上傳送的一〇FDM符號的資訊變零;及 在該時域中對被期望要在該等窄頻通訊系統所使 用的該等頻率上傳送的該OFDM符號的資訊濾波。 17·如沖請專利範圍第16項所述之方法,其中該濾波藉由一 濾波器被執行,且進一步包含,在頻域中,有效地用該 濾波器的一脈衝響應乘以該OFDM符號的資訊,從而降 低由該濾波導致的頻譜漣波。 18·如申請專利範圍第16項所述之方法,其中在該時域中對 被期望要在該等窄頻通訊系統所使用的該等頻率上傳 送的該OFDM符號的資訊濾波包含,頻移該OFDM符號 一第一數量,低通濾波該已頻移OFDM符號,及頻移該 OFDM符號該第一數量的相反量。 17200818792 X. Patent application scope: 1. A transmitter for a frequency division multiplexing system, comprising: a tone-to-zero block for symbolizing a potential interference subcarrier representing a frequency division multiplex symbol or Partial symbol becomes zero; an inverse fast Fourier transform (iFFT) block for converting information representing the frequency division multiplex symbol having _ zeroed subcarriers into a time domain representation; and a notch filter And to filter at least a portion of the time domain representation of the interfering subcarrier wave. 2. The transmitter of claim 1, wherein the information indicating the frequency division multiplex symbol is a frequency division multiplex symbol having the zero subcarrier. 3. The transmitter of claim 1, wherein the notch filter comprises an FIR filter. 4. The transmitter of claim 1, wherein the notch filter comprises a low pass FIR filter having a phase shifter. 5. The transmitter of claim 2, further comprising a pre-emphasis block configured to provide an enhancement to the frequency division multiplex symbol having the zero subcarriers, and indicating the frequency division The information of the multiplex symbol is an enhanced frequency division multiplex symbol with zero subcarriers. 6. The transmitter of claim 5, wherein the pre-emphasis block is configured to multiply the zero subcarrier with a frequency domain by using a frequency domain back impulse response of the FIR filter The crossover multiplex symbol provides a boost. The transmitter of claim 6, wherein the FIR filter comprises a delay line having three i-connectors. 8. The transmitter of claim 6 wherein the FIR filter comprises a tapped delay line having a connector that is multiplied by a coefficient of a truncated sine pulse. 9. The transmitter of claim 1, wherein the frequency division multiplexing signal is an orthogonal frequency division multiplexing signal. 10. A method for processing symbols in a frequency division multiplexing system to reduce interference with other communication systems, comprising the steps of: in the frequency domain being indicated to be in use by other communication systems The information of the subcarriers of the transmission frequency becomes zero, the information of the subcarriers is a partial frequency division multiplex symbol; and a representation of the frequency division multiplex symbol with the changed subcarriers is converted to a time domain representation; A zero symbol is added to the time domain representation; and the time domain representation is filtered using a frequency selective filter to reduce signal components of the subcarriers of the transmission frequency indicated to be used by the other communication systems. 11. The method of claim 10, wherein the representation of the divided multiplex symbol having a zeroed subcarrier is a frequency division multiplex symbol having the zeroed subcarrier. 12. The method of claim 10, further comprising reducing chopping in a spectrum of the time domain representation, the chopping being caused by the filter or wave that is unlawful in the time domain table. 16 200818792 13. The method of claim 12, wherein reducing chopping is performed by modifying at least a portion of the frequency division multiplex symbol in the frequency domain. 14. If the method described in claim 13 is applied, modifying at least the heartbeat frequency multiplex symbol included in the towel, effectively using the frequency to select the frequency impulse response of the wave device - inverse multiplication by the The crossover multiplex symbol of zero subcarrier / 已 has been changed. The method of claim 14, wherein the frequency selective filter comprises a low pass FIR filter having a phase shift. 16. A method for reducing interference between an ultra-wideband orthogonal frequency division multiplexing (〇fDm) communication device and a narrowband communication system, comprising the steps of: receiving a frequency used by a narrowband communication system An indication of a set of FDM symbols expected to be transmitted on the frequencies used by the narrowband communication systems in the frequency domain; and in the time domain is expected to be in the Information filtering of the OFDM symbol transmitted on the frequencies used by the narrowband communication system. The method of claim 16, wherein the filtering is performed by a filter, and further comprising, in the frequency domain, effectively multiplying the OFDM symbol by an impulse response of the filter Information, thereby reducing spectral chopping caused by this filtering. The method of claim 16, wherein the information filtering of the OFDM symbol expected to be transmitted on the frequencies used by the narrowband communication systems in the time domain comprises: frequency shifting The OFDM symbol is a first number, low pass filtering the frequency shifted OFDM symbol, and frequency shifting the first amount of the OFDM symbol by an inverse amount. 17
TW096132065A 2006-08-29 2007-08-29 Notch filtering for ofdm system with null postfix TWI351200B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84087006P 2006-08-29 2006-08-29

Publications (2)

Publication Number Publication Date
TW200818792A true TW200818792A (en) 2008-04-16
TWI351200B TWI351200B (en) 2011-10-21

Family

ID=44769592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096132065A TWI351200B (en) 2006-08-29 2007-08-29 Notch filtering for ofdm system with null postfix

Country Status (1)

Country Link
TW (1) TWI351200B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162640A (en) * 2020-01-22 2021-07-23 瑞昱半导体股份有限公司 Interference cancellation circuit and related interference cancellation method
US11303313B2 (en) 2020-01-21 2022-04-12 Realtek Semiconductor Corp. Interference cancellation circuit and associated interference cancellation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783705B (en) * 2021-10-01 2022-11-11 瑞昱半導體股份有限公司 Network control method and chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11303313B2 (en) 2020-01-21 2022-04-12 Realtek Semiconductor Corp. Interference cancellation circuit and associated interference cancellation method
CN113162640A (en) * 2020-01-22 2021-07-23 瑞昱半导体股份有限公司 Interference cancellation circuit and related interference cancellation method

Also Published As

Publication number Publication date
TWI351200B (en) 2011-10-21

Similar Documents

Publication Publication Date Title
US7764742B2 (en) Notch filtering for OFDM system with null postfix
EP2315386B1 (en) OFDM communications methods and apparatus
US6657950B1 (en) Optimal filtering and upconversion in OFDM systems
EP2299626B1 (en) Signaling method and apparatus in an OFDM multiple access system
JP5016035B2 (en) Apparatus and method for reducing peak power in a communication system
US8427934B2 (en) Single carrier frequency division multiple access technique
CN105531975A (en) Method and apparatus for transmitting a signal with constant envelope
TW201112702A (en) Methods and systems for PAPR reduction in SC-FDMA systems
JP2001060936A (en) Method and device for transmitting and receiving orthogonal frequency division multiplex signal
ZA200505247B (en) Method and arrangement for filter bank based signal processing
EP2131545A1 (en) Technique for peak power reduction
JP2004531934A (en) Data communication apparatus and method based on orthogonal frequency division multiple access
CN112804182A (en) Multi-carrier spread spectrum method and communication method and related device applied to same
WO2008154965A1 (en) Ofdm clipping up-sampling and evm optimization such that spectral interference is concentrated outside the used band
CA2660654A1 (en) Method and arrangement relating to the insertion of pilot tones in the frequency domain in sc-fdma
WO2007058219A1 (en) Multi carrier transmission device, multi carrier reception device, and communication method
EP1246386B1 (en) Data communication apparatus and method based on orthogonal frequency division multiple access
JP4728715B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
TW200818792A (en) Notch filtering for OFDM system with null postfix
EP1532788B1 (en) Processing of an ofdm signal
EP1170918A1 (en) Method and apparatus for generating orthogonal frequency division multiplexed (OFDM) signal
JP4548427B2 (en) Power line carrier communication equipment
JP3940415B2 (en) Multi-carrier communication system and communication method
EP1604501A2 (en) Multicarrier system wherein control data is summed to information data
Liu New peak-to-average power ratio reduction schemes for OFDM systems