TW200818755A - Detection of time-frequency hopping patterns - Google Patents
Detection of time-frequency hopping patterns Download PDFInfo
- Publication number
- TW200818755A TW200818755A TW096128702A TW96128702A TW200818755A TW 200818755 A TW200818755 A TW 200818755A TW 096128702 A TW096128702 A TW 096128702A TW 96128702 A TW96128702 A TW 96128702A TW 200818755 A TW200818755 A TW 200818755A
- Authority
- TW
- Taiwan
- Prior art keywords
- preamble
- time
- frequency
- signal
- domain
- Prior art date
Links
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
200818755 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種在0FDM(正交分頻多玉)系統中谓測 一時-頻跳躍模式之方法。 【先前技術】 傳統上,在一單載波發射系統内的一無線通信通道係模 型化為具有—時變脈衝響應g(u),其可能由於多路徑而200818755 IX. Description of the Invention: [Technical Field] The present invention relates to a method for measuring a time-frequency skip mode in an OFDM (Orthogonal Frequency Division Multiple Jade) system. [Prior Art] Conventionally, a wireless communication channel within a single carrier transmission system is modeled as having a time varying impulse response g(u), which may be due to multipath
對於任一給定時間“系頻率選擇性的。該通道之頻率選擇 性可藉由觀察在關注時間期間所發射之已知前導信號來加 、、]而日守間選擇性係通常藉由觀察該些週期性插入已 知信號之若干信號來加以追蹤。 然而,在一陸地行動通信環境中,通道選擇性主要係由 料端運動利起。只要運料度保射n該通道便可 模型化為一非時變延遲杜卜勒響應h(T,十其表示招致一 延遲τ及杜卜勒偏移U進入信號之散射體之複合值通道增 於亡種原因’此事實一直主要用作時域内之前導插 雜用ΪΪ:設計限制以避免頻疊。杜卜勒資訊之略微更複 :4於通道追蹤相關的濾波器設計’其需要估測 通道之杜卜勒擴展。 、-時·頻跳躍模式係一信號’其頻率内容以—特定方 式’週期性或非週期性地作為一時間函數而變化。 ==:許多通信及雷達應用。最近,由於二將 ’員夕(OFDM)調適成未來無線通信系 技術’將其用作同步信號之可能已得到了廣泛的^究^ 123138.doc 200818755 於一0歷系統本質上將無線電資源分成正交時-頻單元, 故自然設計遲守現有時_頻劃分之同步作號。 在;~〇FDM系統中,前導符號係週期性地放置於時頻平 面内、仏、道估測用。圖i顯示—規則間隔前導模式(指示 ㈣與-科斯塔斯(Cc)Sta_列模式(㈣之—範例,如習 知此項技術者所熟知,該科斯塔斯陣龍式係以—特定次 序偏移該規則間隔前導模式之水平掃描線所產生之許多可For any given time "system frequency selective. The frequency selectivity of the channel can be added by observing the known preamble signals emitted during the time of interest," and the day-to-day selectivity is usually observed by observation. The signals are periodically inserted into a number of known signals for tracking. However, in a terrestrial mobile communication environment, the channel selectivity is mainly due to the movement of the material end. As long as the transport degree is guaranteed, the channel can be modeled. For a non-time-varying delay Doppler response h (T, which indicates that a delay value τ and a Dubre offset U into the signal scatterer composite value channel increases in the cause of death] this fact has been mainly used as In the domain, the pre-introduction miscellaneous ΪΪ: design constraints to avoid frequency stacking. Dubrie information slightly more complex: 4 in the channel tracking related filter design 'it needs to estimate the channel's Doppler expansion., - time · frequency The skip mode is a signal whose frequency content changes periodically or aperiodically as a function of time in a specific manner. ==: Many communication and radar applications. Recently, since the second is to adapt the 'OFDM' future The line communication system technology has been widely used as a synchronization signal. 123138.doc 200818755 In the 0-day system, the radio resources are essentially divided into orthogonal time-frequency units, so the natural design is late. Synchronization of _frequency division. In the ~~〇 FDM system, the preamble symbols are periodically placed in the time-frequency plane, and the estimator is estimated. Figure i shows the regular interval preamble mode (indicative (4) and - Coase Tas (Cc) Sta_column mode ((d)--example, as is well known to those skilled in the art, the Costas-Dragon series is generated by shifting the horizontal scan line of the regular interval preamble pattern in a specific order Many
能變化之一。科斯塔斯陣列模式係揭示於"聲納設計及效 能上的媒介約束 ”(I. P. c⑽as,easc〇n c〇nv.Rec., 1975,第 68A-68L頁)。 在該陣列内的各小區表示在_ 0FDM符號内的該等^子 載波之—,其具有—間心.⑽·,包括循環前綴之Tep sec·。因而’子載波間隔係fs=1 /(Ts _Tcp) Hz。對於原始 規則間隔模式,在時域内,每隔]^個〇FDM符號插入一前 導符號,即Tp = NTS,而在頻域内每隔…個子載波插入一 前導符號,即fp = Mfs。相對於首個子載波,各模式可能 具有一子載波偏移指數〇 ^ h Μ。 任一前導模式可由一 一維時-頻陣列來指定,其陣列元 素C[n,m]係在第η個OFDM符號内的第瓜個子載波上發射 之前導符號之複合值。除非另有申明,在存在一前導符號 之情況下C[n,m]係η Γ’而不存在之情況下係”〇,,。在q時域 週期上的前導模式之對應連續時間信號可由以下表述為一 OFDM符號序列: Ο) • 卜 nTs) n=0 123I38.doc (2) 200818755 其中Can change one. The Costas array pattern is revealed in "media constraints on sonar design and performance" (IP c(10)as, easc〇nc〇nv.Rec., 1975, pp. 68A-68L). The ^ subcarriers within the _ 0FDM symbol have - centroids (10) ·, including the cyclic prefix Tep sec ·. Thus the 'subcarrier spacing is fs = 1 / (Ts _Tcp) Hz. For the original rule In the interval mode, in the time domain, a preamble symbol is inserted every ^^ 〇 FDM symbols, that is, Tp = NTS, and a preamble symbol is inserted every other subcarriers in the frequency domain, that is, fp = Mfs. Relative to the first subcarrier, Each mode may have a subcarrier offset index 〇^ h Μ. Any preamble mode may be specified by a one-dimensional time-frequency array, and its array element C[n, m] is in the nth OFDM symbol. The composite value of the preamble symbol is transmitted on the subcarriers of the melon. Unless otherwise stated, in the case where a preamble symbol exists, C[n, m] is η Γ ' in the absence of the presence of "〇,". The corresponding continuous time signal of the preamble mode on the q time domain period can be expressed as an OFDM symbol sequence as follows: Ο) • 卜 nTs) n=0 123I38.doc (2) 200818755
Cn(t)= %CnWiit-iTc) /=0 係第n個OFDM符號,其進一步由一序列,所組成, 該序列調變發射濾波器脈衝函數μ(〇。忽略循環前綴,該 前導模式之時-頻陣列表示C[n,m]係與藉由以下而與離散 時間序列cn[i]相關 J2mni C[n9m]= J]cn[i^ ^ = .] 卜-0 (3) 為了解調變一 OFDM系統内的該等資料符號,接收器需 要瞭解通道之時-頻響應H(t,f),其係延遲杜卜勒響應^^^) 之二維傅立葉變換。若在時間及頻率上觀察到足夠數目的 基底前導信號,則延遲杜卜勒關聯器之輸出係該延遲杜卜 勒響應之一較佳近似。 该通道係杈型化為具有一延遲杜卜勒響應,其表 示払致I遲r及杜卜勒偏移至進入信號之散射體之複合 值通道增益。假定無線電環境由一連續散射體(或"目標,,) 所組成,各散射體將引入一特定延遲及杜卜勒偏移至透過 其傳播之信號,則對應於前導之接收信號係由以下得出: 則ΓΤ、讳 p — z*)ey27nVz^v + z(,) ,、 ( 4 ) 其中z(t)係加成性高斯白雜訊(AWGN),τ〇及分別係初 始時序及頻率偏移,以及 < Μ < Λ Ws 丄=丄 n 係通道之最大延遲及杜卜勒擴展,其小於或等於沒有$ 123138.doc 200818755 疊情況下前導密度所能支援之該等值。 目則偵測器通常使用匹配假設信號之關聯器,接著找到 峰值並將其與-特定限定值進行比較以決定該等前導信^ 之存在。此相關程序可能計算上過於複雜,尤其在存^、 量潛在假設時。 大 . 一使用時-頻跳躍模式作為同步信號之已知系統係揭亍 . 於Lar〇ia等人之US 6961364 B1中。不同的基地台使用不: 的斜率之模式,且偵測演算法係一最大能量偵測器。 【發明内容】 ^ 本發明之一目的係提供一種用於比較先前技術較少計瞀 複雜性地在一 〇 F D Μ系統中债測一前導模式之裝置及= 法。 一額外目標係提供一種用於在一通信網路中同步並偵測 通裔件之方法。 ' 本發曰請決偵測-在一最佳意義上滿足一特定標準之前 • ㈣號之時-頻跳躍模式之問題。藉由應用廣義概似比檢 疋(GLRT)之原理,本發明針對在前導模式及其時:頻偏移 . 上的一給定假設提供一最佳概似測量。基於此概似測量, 可獲得一前導模式之偵測及同步。 本發明之一優點在於,本發明可用於一使用不同時頻跳 躍模式來識別不同器件之〇FDM系統之一初始同步。 另一優點在於,儘管最佳概似度量係在一二維延遲杜卜 勒相關器之輸出處之能量積分,但不一定實際上執行該二 維延遲杜卜勒關聯。 123138.doc 200818755 本發明之一較佳且體眚& _ 八 》例之一優點在於,當前導模式 供許多共旱一共用結構(例 士 止 (j如每形偏移模式)之器件使用 % ’可進-步加以簡化其概似度瞀。 【實施方式】 # 本發明之目標係福測一 n 別導k旎之存在,隨後藉由估測 未知參數(:。…)來獲得一粗略初始時-頻同步。 假定已獲得該初始同步,因 N ^因而已知(τ〇, v〇),針對在一範Cn(t)=%CnWiit-iTc) /=0 is the nth OFDM symbol, which is further composed of a sequence, the sequence modulation transmission filter pulse function μ (〇. ignores the cyclic prefix, the preamble mode The time-frequency array represents C[n,m] and is related to the discrete time series cn[i] by J2mni C[n9m]= J]cn[i^ ^ = .] 卜-0 (3) To modulate the data symbols in an OFDM system, the receiver needs to know the time-frequency response H(t,f) of the channel, which is the two-dimensional Fourier transform of the delayed Doppler response ^^^). If a sufficient number of substrate preambles are observed in time and frequency, then the output of the delayed Doppler correlator is a preferred approximation of the delayed Dubley response. The channel is zipped to have a delayed Doppler response, which represents the composite value channel gain of the sigma and the scatterer of the Doppler shift to the incoming signal. Assuming that the radio environment consists of a continuous scatterer (or "target,), each scatterer will introduce a specific delay and a Doppler shift to the signal propagating through it, then the received signal corresponding to the preamble is determined by It is concluded that: ΓΤ, 讳p — z*) ey27nVz^v + z(,) , ( 4 ) where z(t) is additive Gaussian white noise (AWGN), τ〇 and the initial timing and The frequency offset, and the maximum delay of the < Μ < Λ Ws 丄 = 丄 n system and the Doppler spread, which is less than or equal to the value supported by the leading density in the case of no stacking of $123138.doc 200818755. The target detector typically uses a correlator that matches the hypothesis signal, then finds the peak and compares it to the -specific limit value to determine the presence of the preamble. This related procedure may be computationally too complex, especially when it comes to potential assumptions. A known system using a time-frequency skip mode as a synchronization signal is disclosed in US 6,961,364 B1 to Lar〇ia et al. Different base stations use a non-slope mode and the detection algorithm is a maximum energy detector. SUMMARY OF THE INVENTION One object of the present invention is to provide a device and a method for comparing a preamble pattern in a 〇F D Μ system with less complexity in the prior art. An additional goal is to provide a method for synchronizing and detecting a foreign object in a communication network. ' This issue asks for the detection - before a certain standard is met in the best sense. • The problem of the time-frequency skip mode of (4). By applying the principle of generalized likelihood ratio 疋 (GLRT), the present invention provides an optimal approximate measurement for a given hypothesis on the preamble mode and its time: frequency offset. Based on this approximate measurement, a detection and synchronization of a preamble mode can be obtained. One advantage of the present invention is that the present invention can be used for initial synchronization of one of the FDM systems using different time-frequency hopping patterns to identify different devices. Another advantage is that although the best approximate measure is the energy integral at the output of a two-dimensional delayed Dubler correlator, the two-dimensional delayed Doppler correlation is not necessarily performed. 123138.doc 200818755 One of the advantages of one of the preferred embodiments of the present invention is that the current conduction mode is used by many devices that share a common structure (such as a per-slope mode). % ' can be stepped in to simplify its approximate degree 瞀. [Embodiment] # The object of the present invention is the existence of a measure, and then obtain an estimate by estimating an unknown parameter (:...). Rough initial time-frequency synchronization. Assume that the initial synchronization has been obtained, because N^ is known (τ〇, v〇), for a fan
圍(V一v〜Vmax)上定義的諸如上述該等前導信 號之適當料料信號,通道之最大概似_估測、, V)係”以下與該二維延遲杜卜勒影像Ι(τ,ν)相關: I(r,v)= J称ρ (卜φ-如冶 ^Ki{r.v)^X5p{r,v)^EshML{r,v) ^、 (6) 其中A = ikKf dt係在未指定觀察間隔上之前導信號之 能量以及The appropriate material signal such as the above-mentioned preamble signals defined on the circumference (V_v~Vmax), the most approximate channel of the channel is estimated, V) is below and the two-dimensional delayed Doppler image Ι (τ , ν)Related: I(r,v)= J is called ρ (Bu φ-如冶^Ki{rv)^X5p{r,v)^EshML{r,v) ^, (6) where A = ikKf dt The energy of the leading signal at the unspecified observation interval and
Xsp^^v)^\sPi})s\(t-T)e~2mdt W / 係前導信號Sp(t)之含糊度函數。 在初始同步階段中,初始時-頻偏移(τ〇, v〇)未知,因而 需要來假設。因此,偵測一前導模式之存在並隨後識別發 送該模式之器件涉及在前導信號Sp⑴與初始時_頻偏移(τ〇, ν〇)所指定之假設空間上的搜尋。 首先,開始於以一 Sp⑴給定假設為條件並其後定義一概 4乂 /則里用於該假設’即通道之延遲杜卜勒響應開始於延遲 杜卜勒平面内的(τ〇, vG)並在其最大延遲杜卜勒擴展範圍上 123l38.doc 200818755 延伸。由於通道響應h(u5 V)未知,故其係需要移除的一多 餘變數。此點可藉由應用用於廣義概似比測試(GLrt)之相 同方法來完成。假定假設(τ05以)正確,則第一步驟係估測 該多餘變數1ι(τ,ν)。根據等式(6),此係由以下得出: ⑻ 其中且vGSv$vG+vmax。下一步驟係在該對數概 似函數中使用其估測來替換真實通道響應:Xsp^^v)^\sPi})s\(t-T)e~2mdt W / The ambiguity function of the preamble signal Sp(t). In the initial synchronization phase, the initial time-frequency offset (τ〇, v〇) is unknown and therefore needs to be assumed. Therefore, detecting the presence of a preamble pattern and then identifying the device transmitting the pattern involves a search on the hypothesis space specified by the preamble Sp(1) and the initial time_frequency offset (τ〇, ν〇). First, starting with the assumption given by a Sp(1) and then defining a general 4乂/ then for the hypothesis, ie the delayed Dubler response of the channel begins in the delayed Doppler plane (τ〇, vG) And extended in its maximum delay Doppler extension range 123l38.doc 200818755. Since the channel response h(u5 V) is unknown, it is a redundant variable that needs to be removed. This can be done by applying the same method for the generalized approximate ratio test (GLrt). Assuming that the hypothesis (τ05 is) is correct, the first step estimates the excess variable 1ι(τ, ν). According to equation (6), this is derived from: (8) where and vGSv$vG+vmax. The next step is to replace the real channel response with its estimate in the logarithmic approximation function:
° 0 (9) 在重新配置並移除無關項之後,用於該假設之對數概似 函數變成: A(〜v0)=d:〜|I(L咖° 0 (9) After reconfiguring and removing extraneous terms, the logarithmic approximation function for this hypothesis becomes: A(~v0)=d:~|I(L
=Γ、J:1(⑴。,…。和 V (ια> 在廣義最大概似意義上,用於此假設之最佳概似測量因 而由等式(10)得出,其中Ι(τ,ν)係由該假設信號Sp(t)所觀察 之延遲杜卜勒影像。 ” 二妾著偵測刖導模式係在Sp(t)及〇0,以)之可能假設中估測 I比k此對數概似函數之該等值或將其與一特定限定 行比較。 專式(10)直接評估八(τ〇,v〇)係僅執行一延遲杜 關聯,接荽A W 1导刀 灸考在對於所有滿足尼奎斯特標準(並因此可 通道估測)之捃+ 、 模式有效之該等假設者上積分能量,此類直 123138.doc -10- 200818755 接什异之複雜性可能對於許多器件可能假定之大量可能假 設而言係過大。幸運的#,如在下列章節中所能看到的,又 存在用於計算該對數概似函數而不需明確評估延遲杜卜勒 影像Ι(τ,v)之替代性方法。在該等潛在前導模式共享一特 定共用結構之情況下,甚至更大的複雜性降低係可能的。 偵測器之離散實施方案 如等式(ίο)中所得出,廣義對數概似函數Λ(τ〇, v〇)僅係 在通道之延遲杜卜勒影像Ι(τ,v)之假設能量範圍上積分, / P像在1&圍()上的離散近似可加以推 ^ X乙這杜卜勒影像之時-頻偏移版本可表述成·· 取 + r0,μ + v〇) = Jr(r>;(卜卜 其中 (12 > 由於僅在偵測階段上 ^(〇=r(f 4-T〇)e-^2^ 係接收信號之一時-頻偏移版本 :=卜勒影像之振幅有關,故在等式:::: 延=項係移動至該等式之另-側並定義-用於該通道 延遲杜卜勒影像之新函數: ^=Γ, J:1((1).,... and V (ια> In the broadest sense of the most approximate sense, the best approximate measure for this hypothesis is thus derived from equation (10), where Ι(τ, ν) is the delayed Doppler image observed by the hypothetical signal Sp(t). ” Estimating I ratio k in the possible hypothesis that the detection guidance mode is in Sp(t) and 〇0, This logarithm approximates the equivalent of the function or compares it to a specific defined row. Specialized (10) direct evaluation of eight (τ〇, v〇) is performed only by a delay du correlation, followed by AW 1 Integrate energy for all hypotheses that satisfy the Nyquist criteria (and therefore channel estimates) and the mode is valid, such a straight 123138.doc -10- 200818755 Many devices may assume that a large number of possible assumptions are too large. Fortunately, as can be seen in the following sections, there is a function for calculating the log-like approximation function without explicitly evaluating the delayed Doppler image ( Alternative method of τ, v). Even larger if these potential preamble patterns share a particular shared structure A reduction in complexity is possible. The discrete implementation of the detector is derived from the equation (ίο), and the generalized logarithm approximation function Λ(τ〇, v〇) is only in the channel's delayed Doppler image Ι (τ , v) is the integral of the assumed energy range, and the discrete approximation of the /P image on 1&() can be pushed. X The time-frequency offset version of the Doppler image can be expressed as ···+r0, μ + v〇) = Jr(r>; (Bu Bu (12 > Since only at the detection stage ^(〇=r(f 4-T〇)e-^2^ is one of the received signals) Offset version: = the amplitude of the Buhler image, so in the equation:::: delay = the item moves to the other side of the equation and defines - a new function for delaying the Doppler image of the channel: ^
Wtv) “帅+,(Γ + Γ〇,ν + ν。) vj°pv ^J at 其中下標τ〇、V〇指示私卩主μ ^ 初始時*頻偏移假設之相依性 在丰式(13)内的積分可藉由苴 ^ 糟由其離散和而表述為: J23l38.doc (14) 200818755 厶 】 QN-l :2心 !r0,J]e QN \r{t^nTs)cn{t-kTc)dt Q^p -1 ,2>- /=0 [nj^k)cn[i] 其中HU係以一在延遲域内碼片速率1 /T Hz及一在杜 卜勒域内碼片速率QNTs sec.下取樣的通道延遲杜卜勒影 像,以及Wtv) "handsome +, (Γ + Γ〇, ν + ν.) vj°pv ^J at where the subscripts τ〇, V〇 indicate the private μ main ^ ^ initial time * frequency offset hypothesis dependence in the abundance The integral in (13) can be expressed by the discrete sum of 苴^: J23l38.doc (14) 200818755 厶 QN-l : 2 heart! r0,J]e QN \r{t^nTs)cn {t-kTc)dt Q^p -1 ,2>- /=0 [nj^k)cn[i] where HU is a chip rate of 1 /T Hz in the delay domain and a code in the Doppler domain Slice rate QNTs sec. Downsampled channel delay Doppler image, and
|r(/ + w7; ^τ〇)μ(ί^ιΤ€)ώ (15) 係一接收濾、波裔之輸出,其具有在碼片速率1 /丁。ηζ下取 樣的時間偏移τ 〇及頻率偏移ν 〇 ’如圖2所示。還應清楚, 延遲假設τ❶應較佳地選擇為碼片持續時間凡的倍數。 圖2顯示一用於從一接收信號r(t)產生一取樣信號% 之器件30。該接收信號係輸入至一濾波器3 1,其具有一渡 波函數μ*(- t)。該濾波信號係在一碼片速率} /凡Hz下,使 用一取樣器32來取樣的,並在一延遲器33内添加一負延 遲。該取樣並延遲信號在一混合器3 5内混合一來自一來源 3 4之信號以產生取樣信號Ά,ζ·]。 離散頻域實施方案 如等式(5)中所申明,通道之最大延遲杜卜勒擴展 vmax)不應起出别導岔度所能支援之值。對於等式(1 〇)内白勺 積分係於如導後度所支援之最大值上進行之情況下,^r積 分可近似為其在範圍^^以^^亦/从…/^上之取樣版本 123138.doc •12- 200818755 之離散和並由以下得出· 胃η♦暴·κ (ΐ6) 在大於(τΓη3χ,vmax)之範圍上的積分 t 要的雜訊而劣化❹i效能。然而,可明顯二不必 性,如下文所述。㈣測器接著可^ =降低㈣複雜 力而效能與複雜性間折衷。 據㈣要求及設備能 :=:T窗,時,_)最後部㈣ 域内加以評估 而可使用DFT(離散傅立葉變換)在頻 乂’少,吨勞觉 (17) 其中 Γ *1 ν诹一' 及 r0,v。艺 _j2nmi (18) 係對應於弟η個〇 p j) 篇:缺夕他|r(/ + w7; ^τ〇)μ(ί^ιΤ€)ώ (15) is a receiver-filtered, wave-like output that has a chip rate of 1/min. The time offset τ 〇 and the frequency offset ν 〇 ' taken under ηζ are shown in Fig. 2. It should also be clear that the delay assumption τ ❶ should preferably be chosen to be a multiple of the chip duration. Figure 2 shows a device 30 for generating a sample signal % from a received signal r(t). The received signal is input to a filter 3 1 having a wave function μ*(-t). The filtered signal is sampled using a sampler 32 at a chip rate} / Hz and a negative delay is added to a delay 33. The sampled and delayed signal is mixed in a mixer 35 with a signal from a source 34 to produce a sampled signal Ά, ζ·]. Discrete Frequency Domain Implementation As stated in equation (5), the maximum delay of the channel, the Doppler spread, vmax, should not be supported by the value of the other metrics. For the case where the integral in the equation (1 〇) is performed on the maximum value supported by the post-conduction degree, the ^r integral can be approximated to be in the range ^^ to ^^/from.../^ The discrete version of the sampled version 123138.doc •12-200818755 is derived from the following: · stomach η ♦ · κ ΐ ΐ ΐ 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在However, it is obvious that it is not necessary, as described below. (4) The detector can then reduce (4) complexity and compromise between performance and complexity. According to (4) requirements and equipment can: =: T window, when, _) the last (four) domain to be evaluated and can use DFT (discrete Fourier transform) in the frequency of 'small, tons of labor (17) where Γ *1 ν诹一' and r0, v. Art _j2nmi (18) corresponds to the brother η 〇 p j)
Nfft DFT以及 N 识J2mii φ,β= 〜[φ i, /=0 屬付5虎之循裱取樣接收信號之長度- p. DFTlv η (19) fft 〇, 1,…,Ν 係在第n個0職符號内前導信號之離散頻域表示。使用 圖1視覺說明在該陣列内的該等行對應於針對一給定(τ。, V0)在連續〇FDM符號上的該等接收樣本之DF 丁之情況下, 此具體實施例藉由該假設模式之該等位置上的能量和來近 似該概似函數。 應注意,c[n,m]也僅在一前導符號係在第n個〇FDM符 號内的第1"個子載波上發射時係非零。還應注意,若 123J38.doc 200818755 |C(n,m)丨對於所有(非零)前導符號恆定且若%,⑷在時頻 平面内形成多個怪定斜率的線’則此具體實施例係降低至 在背景章節中所提及之US 6,961,364 β1中提供的先前技 術0 此外’應注意’對於初始頻率偏移〜之所有可能假設, 在其係以適當選擇間隔而規則間隔之情況下,咖叫可使Nfft DFT and N know J2mii φ, β= ~[φ i, /=0 is the length of the received signal of the 5th cycle of the tiger - p. DFTlv η (19) fft 〇, 1,...,Ν at the nth Discrete frequency domain representation of the preamble signal within the 0 job symbol. Using FIG. 1 to visually illustrate that the rows within the array correspond to a given DF din of the received samples on a continuous 〇 FDM symbol for a given (τ., V0), this particular embodiment is by way of The energy sum at these locations of the model is assumed to approximate the approximate function. It should be noted that c[n,m] is also non-zero only when a preamble symbol is transmitted on the 1" subcarriers within the nth 〇FDM symbol. It should also be noted that if 123J38.doc 200818755 |C(n,m)丨 is constant for all (non-zero) preamble symbols and if %, (4) forms a plurality of lines of strange slopes in the time-frequency plane, then this embodiment Reduction to the prior art 0 provided in US 6,961,364 β1 mentioned in the background section. In addition, all possible assumptions for the initial frequency offset ~ should be noted, with regular intervals being selected at appropriate intervals. Next, the coffee can make
用墊零DFT來加以計算。例如對於一特定τ。假設,一具有 墊零之長度-LNfft序列 (20) 將產生一長度-LNfft序列, 0 + L(Nfft -1)之子序列對應於 對於上述規則間隔&導模式或其跳躍變數,可藉由以下 在離散頻域内評估用於-給定初始時,偏移假設之對數 概似函數: 鐵』’]丨=g g |',JHc’hm]丨2 (21) 其僅係在離散時-頻平面上的假設前導模式之該等位置 上接收信號能量之和。 離散時域實施方案 在某二^況下,可能在時域内直接計算對數概似度量更 加有效。對於結合圖丨所述之該等前導模式,其時_頻映 C[n,m]僅在該等子載波指數m+m,么+ 2M,…時非零, 中係作為符號指數n之一函數的一跳躍序列且M係在該 號内的別導插入週期(不一定係原始規則間隔模式之前 123138.doc -14· 200818755 插入週期)。則等式(21)變成: o//^i /r-i =Σ ΣΚο,νο^ί^ +mAf] 2 rt=0 m=*0 f (2 2) 其中 κ = Nfft / M。 使用m = 替換來自等式⑽之〇]於等式(22) 内得到: ν-'γ-1|τ r η (2 Nffi-、 、, *«〇Sl =^Σ Σ〇[ E^.J«5/K,〇k/-^]je"y^ (23) 其涉及該等落後接收信號之循環自我關聯,其係K數倍 及若干更短長度DFT。 循環偏移模式之特殊情況 偵測多個跳躍模式可A i 1女 ^ 隹裸式了在其具有一特定共用結構之情況下 得到較大程度的簡化。例如,蕤 ^稭由將循裱偏移模式指派給 不同器件。該❹]接著可藉由使用—匹配至基底模式之 時-頻映射之二維循環相關器來實現。圖3顯示—科斯拔斯 陣列之循環偏移模式。-第二模式係由”㈣Μ符號盘⑽ + W子载波所循環偏移之原始模式。如在規格間隔情況 下,具有不同子載波偏移々之模式係完全正交。對於一特 定類別的科斯塔斯.陣列’具有相同化不同瓜之二模式每 週期最多具有_重合’參見圖6中範例。應注意,對於長 度L的-科斯塔斯序列,總計存在L χ μ χ n個不同循㈣ 移用於識別不同的小區’假如其係時間同步的話。另一方 面’對於不同步網路,存在LxM個不同循環頻率偏移。 123I38.doc • 15- 200818755 除了人為引人的循環偏移外,相對於諸如來自—不同基 地台或-特定終端之取樣點之模式的其他參考,由於各種 原因’-前導模式還可具有一本地尺度的時,偏移。此 初始偏移本質上與上述(τ〇, v〇)相同並由其表示,除了其在 範圍以<7;且以</5内的约束外。任何在此範圍外的'偏 移將被折疊成指數η、μ及多。偵測一循環偏移前導模式接 者决疋其在一假設時-頻座標内的存在: τρ (24) νο =(岸 + 彡)Λ+ν0 如圖3中以放大尺度顯示。 為了演示如何可實施二維相關器,吾人考量一範例,其 係藉由設定頻域前導插入週期厘至丨而從圖3所示者&簡化= 來。對於該初始時-頻偏移(τΰ, VG)之各假設,一L X二(6 X 7)輸入p車列係藉由在符號持續時間上執行N長度DFT並X 以N連續行來放置頻域樣本來形成,如圖4中第一矩陣…斤 示。該初始時·頻偏移假設應較佳地選擇為符號持續時間 與子載波寬度之部分以避免雙重計算。 -旦設定該輸入陣列’模式搜尋便開始。首先,該科斯 塔斯陣列係表述為符號索引之一頻率跳躍序列 {〇,2,1,4,5,3,X},其中"χ,,指示_不具有任何+ 付遗。此序列係放置於該輸人陣列下面以便視覺說明。在 -第-步驟,該陣列之該等行係以列(子載波)索引循環旋 轉一對應此跳躍序列之數量,如圖4中第二矩陣52所亍’ 並橫跨該等行(符號)指示而相加,除了標注"χ”者外?而 123138.doc -16- 200818755 產生—大小L=6之行向量。拉基 出陣列5〇之_第_1肉 將此向量放置於圖5中一輸 列係循環向右偏/ n /在一第二步驟’該科思塔思序 行,如圖4中第三1==、猶環旋㈣入陣糾之該等 接著將該產生向量放置二1如在弟一步驟中相加。 … 放置於圖5内輸出陣列之第二行56内。 移。V繼至耗盡所有N個可能科思塔思序列循環偏 列5〇將接著包含針對-給定(一科Calculate with pad zero DFT. For example, for a particular τ. Assume that a length with a pad-LNfft sequence (20) will produce a length-LNfft sequence, and a subsequence of 0 + L(Nfft -1) corresponds to the above-mentioned regular interval & or its hopping variable, The following is an evaluation of the logarithmic approximate function of the offset hypothesis for the given initial in the discrete frequency domain: iron 』'] 丨 = gg | ', JHc'hm] 丨 2 (21) which is only in discrete time-frequency The sum of the received signal energies at these locations of the hypothetical preamble pattern on the plane. Discrete Time Domain Implementations In some cases, it is possible to calculate the log likelihood measure directly in the time domain. For the preamble modes described in conjunction with the map, the time-frequency map C[n, m] is only non-zero at the subcarrier indices m+m, y+2M, ..., and is used as the symbol index n. A hopping sequence of a function and M is a unique insertion period within the number (not necessarily before the original regular interval pattern 123138.doc -14·200818755 insertion period). Then equation (21) becomes: o//^i /r-i =Σ ΣΚο,νο^ί^ +mAf] 2 rt=0 m=*0 f (2 2) where κ = Nfft / M. Use m = to replace the equation from equation (10). Obtained in equation (22): ν-'γ-1|τ r η (2 Nffi-, ,, *«〇Sl =^Σ Σ〇[ E^. J«5/K,〇k/-^]je"y^ (23) It relates to the cyclic self-correlation of these backward received signals, which is K times and several shorter length DFTs. Detecting multiple hopping modes can be greatly simplified if it has a specific shared structure. For example, 秸^ straw is assigned to different devices by the cyclic offset mode. The ❹] can then be implemented by using a two-dimensional cyclic correlator that matches the time-frequency mapping of the base mode. Figure 3 shows the cyclic offset mode of the Cosbus array. - The second mode is represented by the "(4) Μ symbol The original mode of the cyclic offset of the disc (10) + W subcarriers. As in the case of the specification interval, the modes with different subcarrier offsets are completely orthogonal. For a particular class of Costas arrays, there is a different identity. The melon mode has a maximum of _ coincidence per cycle. See the example in Figure 6. It should be noted that for the length L - Costas order There are a total of L χ μ χ n different cycles (4) Shifts are used to identify different cells 'if they are time synchronized. On the other hand, for the unsynchronized network, there are LxM different cyclic frequency offsets. 123I38.doc • 15-200818755 In addition to artificially induced cyclic shifts, relative to other references such as patterns from different base stations or sampling points of a particular terminal, for various reasons, the 'preamble mode can also have a local scale, Offset. This initial offset is essentially the same as and represented by (τ〇, v〇) above, except that it is in the range of <7; and is within the constraints of </5. Anything outside this range 'The offset will be folded into the exponents η, μ and more. Detecting a cyclic offset preamble mode depends on its presence in a hypothetical time-frequency coordinate: τρ (24) νο = (shore + 彡)Λ +ν0 is shown on an enlarged scale in Figure 3. To demonstrate how a two-dimensional correlator can be implemented, we consider an example that is simplified by setting the frequency domain leading insertion period to 丨 from the one shown in Figure 3. For each of the initial time-frequency offsets (τΰ, VG) Assume that an LX two (6 X 7) input p train is formed by performing N length DFT on the symbol duration and X placing the frequency domain samples in N consecutive rows, as shown in the first matrix in FIG. The initial time-frequency offset hypothesis should preferably be selected as part of the symbol duration and sub-carrier width to avoid double counting. Once the input array is set, the pattern search begins. First, the Costas array is expressed. One of the frequency index hopping sequences {〇, 2, 1, 4, 5, 3, X}, where "χ,, indicates that _ does not have any + pay. This sequence is placed under the input array for visual illustration. In the -step, the rows of the array are cyclically rotated by a column (subcarrier) index by a number corresponding to the hopping sequence, as shown by the second matrix 52 in FIG. 4 and spanning the rows (symbols) In addition to the indication "χ", and 123138.doc -16- 200818755 produces a line vector of size L=6. The base of the array is placed in the image. 5 in the middle of the output system cycle to the right / n / in a second step 'the Costasis sequence, as shown in Figure 4, the third 1 ==, the loop of the ring (four) into the array, then The resulting vector is placed 2 as added in the first step. ... is placed in the second row 56 of the output array in Figure 5. Moved. V continues to exhaust all N possible Costas sequence cyclic biases 5〇 Will then contain the target - given
;7 循環偏移之所有Lx N可能假設之廣義對數 :似円接著可進行概似職及定限以蚊是否存在任何目 圖5所示之輸出陣列5。清楚揭示兩個突出峰值,一個 位於01 一 〇’ μ = 〇) ’表示為輸出陣列50之第-行55内的 =而另-個位於(η= 2, μ= 2),表示為輸出陣列5〇之一第 仃57内的59。放置於行57内的向量係推導自圖钟的第 四矩陣54,如上所述。 ”圖4及5所示之相關程序在一包含先前捕捉資料之記憶體 緩衝内離線發生。可在一滑動窗口中即時地替代性實施 :、'序”中新=貝料繼續到達並填滿陣列,同時溢出舊 二1料在任^ '兄下,該記憶體緩衝器之載入及向量之循 {疋轉可王口P藉由修改位址指標而不實體移動緩衝器内容 來完成。最後,即便該範例顯示該科思塔思陣列之一單一 ^ ^至夕個週期之延伸係較直接的。一具計算效率之實 施方案係在多個週期中相加能量以在關聯進行之前形成該 輸入陣列。 下面簡略說明用於此特殊情沉之滑動窗口具體實施例之 123138.doc -17- 200818755 參 流程。上述離線具體實施例不變’除了資料已載入該緩衝 器内,因此可省略資料獲取步驟。 丨·在-符號持續時間上在接收樣本上執行 零师。該贿之長度取決於在初始頻 (的 假設。 7 W =該雨輸出之絕對平方放置於該輪入陣列之第—行 以-歹“子載波)索引將該輪入陣列内的該等行 循壤旋轉(實體内容或一指桿 _ 列之數量。 冑應於該科斯塔斯序 =料行(符號)索引相加該輸人_並將㈣ 向置放置於該輸出陣列之第一行内。 重置由於步驟3而位移之該等輪入陣列指標並將該等輸 入/輸出(向右循環旋轉該等行)一位置。 獲得在-符號持續時間上的接收樣本之下 片斷可重疊先前者,視τ〇的假設而定。 7· 前進至步驟1。 模擬結果 為:評估該偵測器之效能’考量圖6中所述 陣列前導模式60。其係由循产^ ^ 前導模式61"二存取點具有—基底= 、羊上循%偏移nfp且在時間上循環偏移⑽之 62 ’ 如對於(m,n) = (2 、; 在忒4兩個模式之間各 2. 3· 4, 5. 6. 123138.doc -18 - 200818755 週期63内的重合數目在此範例中係-,由於具有㈣ GF⑺之-理想週期性科斯塔斯序列係同時用於科斯 前導核式61、6 2。 最大延遲擴展〇 苓數 ------——---— 陣列1 陣列2 --N____ Μ Γ ------ — .. 16 16 —-===== _30_ 8 Nfft 1024 512 __ncd 64 64 科斯塔斯序列長度Z 16(GF17) 3〇(GF31) 假設L X Μ X TV之數目 4096 7440 囊I 丨表Η用於二科斯塔斯陣列之參數 表1顯不所模擬之兩個特定陣列之該等參數。為了進行 一公平比較’二者均具有-大約"256的前導密度。用= 長度-16陣列之OFDM符號FFT大小係1〇24。由於在此情況 下M=!6,可支援之最大延遲擴展係1〇24/16=64個碼片,其 係設定在循環前綴之長度上。用於長度_3〇陣列之〇脑符 號FFT大小係512,即〇FDM符號間隔係在第—陣列内者的 一半。然而’前綴循環長度仍保持相同,故可容納相同的 對於在模擬中各通道實現,引入一初始隨機時_頻偏移 (τ〇, ν〇)’其係均勻地分佈於間隔[〇, Ts]與[0,以2]内。相關 • 器在形成該輸入陣列時作一單一假設(τ〇, Vo) = (〇,〇卜此點 對應於以一在時域内Ts sec.與頻域内fs Hzi間隔粗略搜尋 該等前導模式。若真實目標係在偵測位置之任一側上的一 付號及子載波内,則宣佈一成功偵測。在獲得小區識別 與粗略同步化之後,可執行進一步精細搜尋以建立通道之 延遲杜卜勒響應之邊界。在較佳SNR(訊號雜訊比)或另外 123138.doc -19· 200818755 連貫附之情況τ,此點可涉及某些簡單内插。 表2列舉所有模擬共用的一些其他參數。模擬二功率延 遲杜卜勒輪廊。該”平直" 屯 ^ Κ僅係一零均值高斯變數之一 機實現而該”充滿"通道具有一 ^ ^ v ^ Case3 X Bessei”輪廓,其 係散佈於整個最大延遲杜卜 隹& 殊杜卜勒£域上。其表示該通道之分 木-人序之兩個極端。實務中的實際效能應大致位於之間。; 7 All the Lx N of the cyclic offset may be assumed to be the generalized logarithm: 円 可 可 可 概 概 概 概 概 概 概 概 概 概 概 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否 是否Clearly reveal two prominent peaks, one at 01 〇 'μ = 〇) 'represented as the first in row 55 of output array 50 and the other one at (η = 2, μ = 2), expressed as an output array 5 of the 5th, 59 of the 57th. The vector placed in line 57 is derived from the fourth matrix 54 of the clock, as described above. The related program shown in Figures 4 and 5 occurs offline in a memory buffer containing previously captured data. It can be implemented alternately in a sliding window: new in the 'sequence' = the material continues to arrive and fill up Array, while overflowing the old two materials in the ^ ^ brother, the memory buffer loading and vector tracking {疋 可 可王口 P by modifying the address indicator without physically moving the buffer content to complete. Finally, even this example shows that the extension of a single ^^ to a cycle of the Costas array is relatively straightforward. A computationally efficient implementation adds energy over multiple cycles to form the input array prior to association. The following is a brief description of the specific embodiment of the sliding window for this particular situation, 123138.doc -17- 200818755. The offline specific embodiment described above does not change 'except that the data has been loaded into the buffer, so the data acquisition step can be omitted.丨·Execute the division on the receiving sample for the - symbol duration. The length of the bribe depends on the initial frequency (the assumption that 7 W = the absolute square of the rain output is placed in the first row of the wheeled array - the row is - 歹 "subcarrier" index the wheel into the array Rotate by the soil (the physical content or the number of a finger _ column. 胄 should add the input _ in the Costas order = row (symbol) index and place the (4) orientation on the first line of the output array Resets the wheeled array metrics displaced by step 3 and rotates the input/output (rotating the rows to the right) a position. Obtaining fragments under the received samples over the - symbol duration may overlap The former depends on the assumption of τ〇. 7· Advance to step 1. The simulation result is: evaluate the performance of the detector' to consider the array leading mode 60 described in Figure 6. The system is based on the production ^ ^ preamble mode 61"Two access points have -base =, sheep on the % offset nfp and cycle offset in time (10) 62 ' as for (m,n) = (2,; between 忒4 two modes 2. 3· 4, 5. 6. 123138.doc -18 - 200818755 The number of coincidences in period 63 is in this example - Because of the (four) GF(7)-ideal periodic Costas sequence system is also used for the Coase preamble nucleus 61, 6.2. Maximum delay spread ------ ————--- Array 1 Array 2 - -N____ Μ Γ ------ — .. 16 16 —-===== _30_ 8 Nfft 1024 512 __ncd 64 64 Costas sequence length Z 16 (GF17) 3〇 (GF31) Assume LX Μ X TV The number of 4096 7440 capsule I 丨 is used for the parameters of the two Costas array. The parameters of the two specific arrays that are not simulated are shown in Table 1. In order to make a fair comparison, both have - about & 256 Preamble density. The FFT size of the OFDM symbol with the length -16 array is 1〇24. Since M=!6 in this case, the maximum delay extension that can be supported is 1〇24/16=64 chips, which is set. In the length of the cyclic prefix, the camphor symbol FFT size system 512 for the length_3〇 array, that is, the 〇FDM symbol interval is half of the first array. However, the prefix cycle length remains the same, so it can accommodate The same is true for each channel implementation in the simulation, introducing an initial random time_frequency offset (τ〇, ν〇)' which is evenly distributed Interval [〇, Ts] and [0, to 2]. Correlation • Make a single hypothesis (τ〇, Vo) when forming the input array = (〇, 〇, this point corresponds to one in the time domain Ts Sec. Roughly search for the preamble modes with the fs Hzi spacing in the frequency domain. If the real target is within a pay and subcarrier on either side of the detected location, a successful detection is declared. After obtaining cell identification and coarse synchronization, a further fine search can be performed to establish the boundary of the delayed Doppler response of the channel. In the case of a preferred SNR (signal-to-noise ratio) or another 123138.doc -19. 200818755, this can involve some simple interpolation. Table 2 lists some of the other parameters shared by all simulations. The simulated two power delays the Dubler wheel gallery. The "straight" 屯^ Κ is only implemented as a zero-mean Gaussian variable and the "full" channel has a ^ ^ v ^ Case3 X Bessei profile, which is spread over the entire maximum delay Dub &; 于杜布勒£ domain. It represents the two extremes of the channel-human sequence. The actual performance in practice should be roughly between.
[表2]用於該等模擬之某些額外參數[Table 2] Some additional parameters for these simulations
圖7煩示一單一小區誤偵測機率之一模擬之一圖式。帶 生唬之貝線71係陣列1 (Costas 16),,,充滿"通道,而帶圓 圈之貫線72係陣列2 (c〇stas 3〇),"充滿"通道。帶星號之 虛線73係陣列!(CGStas 16),,,平直,’通道,而帶圓圈之虛 線係陣列2 (C0stas 30),"平直,通道。儘管受到通道内分 集-人序之嚴重景彡響’但在該等兩個極端情況下效能仍極為 健固。该第二陣列(Costas 3〇)之更大側瓣峰值能量比不會 產生更多增益,直到在該”充滿”範圍内的更高SNR範圍。 此點主要由於事實,即其具有更多可能的假設(7440)及因 此更多機會犯錯。 該第二組模擬涉及具有相同子載波0 = 0之二小區。第 一小區位於(η,μ) = (〇,〇),一平均SNR為0 dB,而第二小 123138.doc -20· 200818755 區位於(η,μ) = (6,7)’相對於該第一小區具有可變信號功 率。除了在更早提及接收器處的偏移,該等二小區具有 類似分佈的隨機相對時-頻偏移。僅在成功 時,才在該雙小區模擬中宣佈一成功偵測。此點 出陣列内的該等兩個最大度量之位置對應於該等兩個目標 之該等位置時發生。—用於二等強度小區之典型陣列如圖 8所示以供參考。 圖9顯示在0 dB SNR下在"充滿"通道内—雙小區誤债測 機率之一模擬之一圖式,而圖1〇顯示在〇 dB snr下在,,平 直”通道内-雙小區誤制機率之—模擬之—圖式。在圖9 及10内的該等實線表示—操作週期而在圖9及1〇内的該等 虛線表示二觀察週期。在圖9及10中帶星號之該等線表示 陣列1 (Costas 16)而在圖9及1〇中帶圓圈之線表示陣歹" (Costas 30) 〇 在圖9及10中的Pl及P2係接收自各別前導信號之功率。 、考慮到隱藏事實,即即便錯過最㈣,大多數時間仍债 測到及等兩個小區之最強者,在"充滿"通道(圖9)中的效能 由於僅-㈣觀察週期理應較佳。在一具有某些時間選 擇性之通道内,效能可益士 猎由&加累積前導週期數目來改良 所而位準,如在Q==2,10%錯誤率下增益3 dB所證 另方面,對於该”平直”通道情況,對於q=2所觀察 到的增益主要係雜訊抑制而非分集,由於該等曲線之斜率 保持不變。 除了觀察到更多前莫、两# < 4 ’可藉由一些其他測量或在特 123U8.doc -21 - 200818755 疋條件下來進一步改良偵測效能。例如,可增加初始時- 頻偏移(TG,V❹)之假設數目。此有效地增加搜尋密度及因此 以計算複雜性為代價找到對數概似函數之峰值之機會。一 、 十者避可約束識別指數(η,μ,〇以降低錯誤罄報速 率。最後,在該等小區及終端内的初始時-頻偏移最可能 多於模擬中假定的該等偏移。在該等小區中的符號對齊 」係在OFDM系統内的一基本假定)將會相當明顯地 ^ 降低干擾。 一執行所述用於偵測一前導模式之方法之偵測器可自然 實施於-通信系統之一節點内,諸如一基地台、行動電話 或任一其他類型的無線通信器件。該方法實 =存於-記憶體單元内並由一處理器件所執行之 貫施。 上面設計原理一直遵守一 〇FDM系統内固有的正交時-頻 自分格式’藉此引起主要涉及時間與頻率(或延遲與杜卜 • 勒)域之間轉換(較佳的係使用DFT)之接收器演算法。由於 貧料符號之解調變,還使用而來完成,但_專用且彈性硬 • 細T加it器可處理從一數據機接收資料位元時的幾乎所 有計算。 ’ 【圖式簡單說明】 圖1顯示結合本發明使用之一前導模式之一範例。 圖2顯示一用於從_接☆ 接收彳5遽r(t)產生一取樣信號之裝 置。 圖3顯示-科斯塔斯陣列之循環偏移模式。 123138.doc -22- 200818755 圖4顯示依據本發明之一二維相關器之一 π 〜體貫施例 圖5顯示結合圖5之一相關器輸出陣列。 圖6顯示一二循環偏移科斯塔斯陣列範例。 圖7顯示具有一觀察週期之單小區彳貞測之一固气 圖8顯示一典型偵測度量。 圖9顯示在充滿通道内雙小區偵測之_圖式。 圖10顯示在平直通道内雙小區偵測之一圖式 此姓缺雄拍1 【主要元件符號說明】 30 器件 31 濾波器 32 取樣器 33 延遲器 34 來源 35 混合器 50 輸出陣列 51 第一矩陣 .52 弟一矩陣 53 第三矩陣 54 第四矩陣 55 輸出陣列5 〇之 56 輪出陣列5〇之 57 峰值 58 峰值 60 科斯塔斯陣列 123138.doc •23 - 200818755 61 * 前導模式 62 前導模式 63 週期 71 實線 72 實線 73 虛線 74 虛線Figure 7 illustrates one of the simulations of one of the single-cell false detection probabilities. The 71 line array 1 (Costas 16), with the oyster shell line, is filled with "channels, and the line with the circle 72 is array 2 (c〇stas 3〇), "full "channel. Dotted 73 series array with an asterisk! (CGStas 16),,, Straight, 'Channel, and Circled Virtual Line Array 2 (C0stas 30), " Straight, Channel. Despite the seriousness of the intra-channel diversity-human sequence, the effectiveness is still very strong in these two extreme cases. The larger sidelobe peak energy ratio of the second array (Costas 3〇) does not produce more gain until a higher SNR range in the "filled" range. This is mainly due to the fact that it has more likely assumptions (7440) and therefore more opportunities to make mistakes. This second set of simulations involves two cells with the same subcarrier 0 = 0. The first cell is located at (η, μ) = (〇, 〇), an average SNR is 0 dB, while the second small 123138.doc -20· 200818755 region is located at (η, μ) = (6, 7)' relative to The first cell has a variable signal power. In addition to the offsets mentioned earlier at the receiver, the two cells have a similarly distributed random relative time-frequency offset. A successful detection is announced in the dual-cell simulation only upon success. This occurs when the locations of the two largest metrics within the array correspond to the locations of the two targets. - A typical array for a second-intensity cell is shown in Figure 8 for reference. Figure 9 shows a simulation of one of the two-cell mishaps in the "full" channel at 0 dB SNR, while Figure 1〇 shows the 〇dB snr in, in a flat" channel - The double-cell miscalculation probability - the simulation - the pattern. The solid lines in Figures 9 and 10 represent the operation cycle and the dashed lines in Figures 9 and 1 represent the two observation periods. In Figures 9 and 10 The lines with the asterisk indicate array 1 (Costas 16) and the circles with lines in Figures 9 and 1 indicate the array " (Costas 30) PPl and P2 in Figures 9 and 10 are received separately The power of the leading signal. Considering the hidden facts, even if the most (four) is missed, most of the time is still measured and the strongest of the two communities, the performance in the "full" channel (Figure 9) is due only - (4) The observation period should be better. In a channel with certain time selectivity, the performance of the benefit can be improved by & plus the number of accumulated preamble cycles to improve the level, such as at Q == 2, 10% error rate The gain of 3 dB is evidenced by the other side. For the "flat" channel case, the gain observed for q=2 is mainly noise suppression. System rather than diversity, since the slope of the curves remains the same. In addition to observing more of the former Mo, the two # < 4 ' can be further improved by some other measurements or under the conditions of 123U8.doc -21 - 200818755 疋Detecting performance. For example, the assumed number of initial time-frequency offsets (TG, V❹) can be increased. This effectively increases the search density and thus the chance of finding the peak of the log-like approximation function at the expense of computational complexity. The avoidance constraint can identify the index (η, μ, 〇 to reduce the false alarm rate. Finally, the initial time-frequency offset in the cells and terminals is most likely to be more than the assumed offset in the simulation. The "symbol alignment in equal cells" is a basic assumption in OFDM systems) that will significantly reduce interference. A detector that performs the method for detecting a preamble mode can be naturally implemented in a node of a communication system, such as a base station, a mobile phone, or any other type of wireless communication device. This method is implemented in the -memory unit and executed by a processing device. The above design principles have always adhered to an orthogonal time-frequency self-division format inherent in an FDM system, thereby causing a transition between time and frequency (or delay and Dubler) domains (preferably using DFT). Receiver algorithm. Due to the demodulation of the poor material symbol, it is also used to complete, but _ dedicated and flexible • thin T plus device can handle almost all calculations when receiving data bits from a data machine. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows an example of one of the leading modes used in connection with the present invention. Fig. 2 shows a device for generating a sampling signal from _ ☆ 彳 receiving 遽 5 遽 r (t). Figure 3 shows the cyclic shift mode of the - Costas array. 123138.doc -22- 200818755 Figure 4 shows one of the two-dimensional correlators in accordance with the present invention. π ~ Body Embodiments Figure 5 shows an correlator output array in conjunction with Figure 5. Figure 6 shows an example of a two-cycle offset Costas array. Figure 7 shows a single cell survey with one observation period. One of the solid gases Figure 8 shows a typical detection metric. Figure 9 shows the pattern of dual cell detection in a full channel. Figure 10 shows one of the two-cell detection in the flat channel. This surname is missing. 1 [Main component symbol description] 30 Device 31 Filter 32 Sampler 33 Delayer 34 Source 35 Mixer 50 Output array 51 First Matrix .52 Brother-Matrix 53 Third Matrix 54 Fourth Matrix 55 Output Array 5 〇56 56 Round-out Array 5〇57 57 Peak 58 Peak 60 Costas Array 123138.doc •23 - 200818755 61 * Leading Mode 62 Leading Mode 63 cycle 71 solid line 72 solid line 73 dotted line 74 dotted line
123138.doc -24-123138.doc -24-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE2006001034 | 2006-09-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200818755A true TW200818755A (en) | 2008-04-16 |
TWI439070B TWI439070B (en) | 2014-05-21 |
Family
ID=44769589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096128702A TWI439070B (en) | 2006-09-08 | 2007-08-03 | Detection of time-frequency hopping patterns |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI439070B (en) |
-
2007
- 2007-08-03 TW TW096128702A patent/TWI439070B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI439070B (en) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5074501B2 (en) | Time-frequency hopping pattern detection | |
CN102780673B (en) | Detect for the timing acquisition of OFDM transmission and pattern and protection | |
US9829560B2 (en) | Determining the position of a mobile device using the characteristics of received signals and a reference database | |
US8314736B2 (en) | Determining the position of a mobile device using the characteristics of received signals and a reference database | |
CN100452687C (en) | Signal structure, detection and estimation of timing sync and access of upstream link | |
KR100810180B1 (en) | Method and apparatus for reduced rank channel estimation in a communications system | |
US9681267B2 (en) | Positioning techniques for narrowband wireless signals under dense multipath conditions | |
EP1869909A2 (en) | System and method for ranging | |
RU2733419C1 (en) | Transmitter and receiver and corresponding methods | |
KR20190065322A (en) | Segmentation based on telepragments | |
KR20130104289A (en) | Apparatus and method for estimating offset value, receiving apparatus, and method for processing signal in the same | |
KR100809020B1 (en) | Apparatus and method for acquiring initial synchronization of mobile in communication system | |
CN114268528B (en) | Frame capturing synchronization method and device | |
WO2017211212A1 (en) | Method and device for positioning interference source cell, and base station | |
CN108989259B (en) | Time offset estimation method and system for narrow-band physical uplink shared channel of wireless comprehensive measurement instrument | |
US11139853B2 (en) | Low-power wide area networks | |
Colone et al. | Reference-free amplitude-based WiFi passive sensing | |
RU2700005C1 (en) | Method of estimating channel parameters in broadband hydroacoustic communication and a device for realizing said channel | |
TW200818755A (en) | Detection of time-frequency hopping patterns | |
Bialer et al. | A time-of-arrival estimation algorithm for OFDM signals in indoor multipath environments | |
Karasek et al. | The DVB-T-based positioning system and single frequency network offset estimation | |
CN101310501A (en) | Timing acquisition and mode and guard detection for an OFDM transmission | |
Berg et al. | OTDOA-based positioning in NB-IoT | |
La Pan et al. | Protecting physical layer synchronization: Mitigating attacks against OFDM acquisition | |
JP3795885B2 (en) | Reception device and reception control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |