TW200815783A - Antireflection film and fabrication method thereof - Google Patents

Antireflection film and fabrication method thereof Download PDF

Info

Publication number
TW200815783A
TW200815783A TW95135123A TW95135123A TW200815783A TW 200815783 A TW200815783 A TW 200815783A TW 95135123 A TW95135123 A TW 95135123A TW 95135123 A TW95135123 A TW 95135123A TW 200815783 A TW200815783 A TW 200815783A
Authority
TW
Taiwan
Prior art keywords
antireflection film
hard
layer
refractive index
dielectric layer
Prior art date
Application number
TW95135123A
Other languages
Chinese (zh)
Inventor
Po-Tau Liu
Original Assignee
Daxon Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daxon Technology Inc filed Critical Daxon Technology Inc
Priority to TW95135123A priority Critical patent/TW200815783A/en
Publication of TW200815783A publication Critical patent/TW200815783A/en

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Disclosed is an antireflection film, comprising a hard coat on a substrate, a low refractive index layer above the hard coat and a primer between the hard coat and the low refractive index layer to improve the hardness and the wear resistance of the antireflection film. The interface between the hard coat and the primer can be treated with a base solution or corona to enhance the adhesion therebetween.

Description

200815783 九、發明說明: 【發明所屬之技術領域】 一本發明係有關於一種抗反射膜,特別有關於一種具有 高硬度及高耐磨性之抗反射膜。 【先前技術】200815783 IX. DESCRIPTION OF THE INVENTION: 1. Field of the Invention The present invention relates to an antireflection film, and more particularly to an antireflection film having high hardness and high wear resistance. [Prior Art]

平面液晶顯示器已廣泛被應用於各項現代電子化產 品,如個人電腦、筆記型電腦、數位相機、行動電話、個 =位化祕(舰)及液θ日日電視#。液晶面板產品技術之 μ ’除了朝向高對比、廣視角、高輝度、薄型化、大型 ==往表面附加功能如抗到、抗眩、抗反射、抗污等 者二二應用丄曰常生?中1像清晰度直接影響使用 彡紐在顯示11表面之玻璃或歸基材的 表面約有4〜5%的反射率,在使用時,容易受外界光線干 擾,影響書面視覺效果,對认 、、、干 斗、“見果_於大尺寸面板,特別是大於20 明顯。之液心視^,其螢幕表面外在光反射影響更為 :達:抗反射之效果通常可利用多層光干涉 成,當入射光線通過塗層界面時 &amp; 70 之特性,如穿透區介質折射率=二二= 反射波會產生180度轉相,反之,如穿透區 率小於入射區介質之折射率時/丨貝折射 相。利用光線通過塗層之不同界面時其:::射波同 波形成破壞性干涉,即為多層光干涉之抗反 之反射 層光學厚度(塗層折射率與塗膜厚度之乘積以 0659-A21724TWF(N2);KELLY;M06008 5 200815783 射波波長之奇數倍時,破壞性干涉效果最佳。抗反射鍍膜 可分為單層至多層結構,層數越多抗反射效果越佳,低反 射波長區域也越廣。低折射率層之折射率越低,抗反射效 果也越好。 如美國專利第5591517號,,antireflection film,,中所揭示 及美國專利第 6207263B1 號”anti-reflection film and process for preparation thereof,中所揭示,利用二至四層不 同折射率塗層以達到較佳之抗反射效果。傳統上為了使抗 ⑩ 反射膜具有較佳之硬度及耐磨擦性,低折射率層經常使用 熱硬化方式來製作,如美國專利第6649271B2號,,anti-static anti-reflective film”中所揭示及美國專利第6841272B2 號’’film for optical applications”中所揭示,然而熱硬化之低 折射率塗液通常需要較高溫度或是較長時間來完成硬化反 應’對於厚度較薄的膜類基材並不適合。為了避免熱硬化 塗液之缺點,JSR(JSR corp·),SOC(Sumitomo Osaka Cement 馨 Co·,Ltd·),DSM(DSM Desotech Inc·)等公司陸續開發出紫 外光硬化之低折射率塗料。然而,紫外光硬化之低折射率 塗料雖然具有生產快速之特性,但卻有較差之硬度及耐磨 擦之性質。 傳統之抗反射膜結構如第1圖所示,硬鍍層塗液塗佈 於基材10之上,經過烘箱將塗液中所含溶劑蒸發,經過紫 外燈照射後產生硬化反應,形成穩定硬鍍層12。然後,再 將低折射率塗料塗佈於硬鍍層12之上,經過烘箱將低折射 率塗液中之溶劑蒸發,再經過紫外燈照射後,形成低折射 0659-A21724TWF(N2);KELLY;M06008 6 200815783 率層14。然而,不幸的是,紫外光硬化樹脂之硬鍍層具有 較高之鍵結密度,其表面不易再附著一層紫外光硬化樹脂 之低折射率層,無法獲得良好硬度及耐磨性之抗反射膜。 因此’業界亟需一種高硬度及耐磨性之抗反射膜,以 改善傳統抗反射膜之缺點。 【發明内容】 本發明之目的在於提供一種抗反射膜及其製法,其可 以達到提高硬度及耐磨性之功效。 鲁 為達上述目的,本發明提供一種抗反射膜,包括硬鍍 層設置於基底上,低折射率層設置於硬鍍層之上,以及介 質層設置於硬鍍層及低折射率層之間。 為達上述目的,本發明更提供一種抗反射膜的製造方 法,首先將硬鍍層塗液塗佈於基底上形成硬鍍層,接著將 硬鍍層以驗液處理或電暈(corona)處理後於其上塗佈介質 層塗液形成介質層,然後將低折射率塗液塗佈於介質層 • 上,形成低折射率層。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 【實施方式】 本發明之抗反射膜的結構如第2圖所示,在基底2〇上 為硬鍍層22,於硬鍍層22之上有低折射率層26,介質層 24介於硬鍍層22與低折射率層26之間。本發明之抗反射 膜的製造方式為首先將硬鍍層塗液塗佈於基底2〇上,經過 0659-A21724TWF(N2);KELLY;M06008 7 200815783 烘箱將硬度膜塗液中所含溶劑蒸發,再經過紫外燈照射後 產生硬化反應,形成穩定的硬鍍層22。其中,基底20為 一透明基材,其材料可為玻璃、聚丙烯酸酯(poly aery late)、 聚碳酸S旨(polycarbonate)、聚乙浠(polyethylene)、聚乙稀對 笨二甲酸酯(polyethylene terephthalate,簡稱 PET)、三醋酸 纖維素(triacetyl cellulose,簡稱TAC)等,其中又以PET和 TAC較佳。Flat-panel liquid crystal displays have been widely used in modern electronic products such as personal computers, notebook computers, digital cameras, mobile phones, mobile phones, and liquid θ 日日电视#. The liquid crystal panel product technology μ ′ is not only facing high contrast, wide viewing angle, high brightness, thinning, large size == additional functions such as resistance to anti-glare, anti-reflection, anti-fouling, etc. The resolution of the 1 image directly affects the use of the neon on the surface of the glass of the display 11 or the surface of the substrate to have a reflectivity of about 4 to 5%. When used, it is easily interfered by external light, affecting the written visual effect. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, When the incident light passes through the coating interface, the characteristics of &amp; 70, such as the refractive index of the penetrating medium = 22 = the reflected wave will produce a 180 degree phase transition, and conversely, if the penetration rate is less than the refractive index of the medium in the incident region / Mussel refraction phase. When light passes through different interfaces of the coating, its:::The wave forms a destructive interference with the wave, which is the anti-reflective layer optical thickness of the multilayer light interference (coating index and coating thickness) When the product is 0659-A21724TWF(N2); KELLY; M06008 5 200815783, the destructive interference effect is best when the wave wavelength is an odd multiple. The anti-reflection coating can be divided into single layer to multi-layer structure. The more layers, the more anti-reflection effect Good, low reflection wavelength area The lower the refractive index of the low refractive index layer, the better the antireflection effect. For example, in US Pat. No. 5,591,517, antireflection film, and disclosed in US Pat. No. 6,207,263 B1, "anti-reflection film and process for preparation thereof" It is disclosed that two to four layers of different refractive index coatings are used to achieve better anti-reflection effect. Traditionally, in order to make the anti-10 reflective film have better hardness and abrasion resistance, the low refractive index layer is often used in a thermal hardening manner. For example, as disclosed in U.S. Patent No. 6,486,271 B2, the disclosure of which is incorporated herein in Higher temperature or longer time to complete the hardening reaction' is not suitable for thin film substrates. To avoid the disadvantages of heat hardening coating liquid, JSR (JSR corp.), SOC (Sumitomo Osaka Cement Xin Co·, Ltd.), DSM (DSM Desotech Inc.) and other companies have successively developed UV-cured low-refractive-index coatings. However, UV curing is low. Although the rate coating has the characteristics of rapid production, it has poor hardness and abrasion resistance. The traditional anti-reflection film structure is as shown in Fig. 1, and the hard coating liquid is applied on the substrate 10 through The oven evaporates the solvent contained in the coating liquid, and after hardening by the ultraviolet lamp, a hardening reaction is formed to form a stable hard coating layer 12. Then, the low refractive index coating is applied on the hard coating layer 12, the solvent in the low refractive index coating liquid is evaporated through the oven, and then irradiated by the ultraviolet lamp to form a low refractive index 0659-A21724TWF (N2); KELLY; M06008 6 200815783 Rate layer 14. However, unfortunately, the hard-plated layer of the ultraviolet light-hardening resin has a high bonding density, and the surface thereof is less likely to adhere to a low-refractive-index layer of an ultraviolet light-curable resin, and an anti-reflection film having good hardness and wear resistance cannot be obtained. Therefore, the industry needs an anti-reflection film with high hardness and wear resistance to improve the shortcomings of the conventional anti-reflection film. SUMMARY OF THE INVENTION An object of the present invention is to provide an antireflection film and a method for producing the same, which can achieve the effects of improving hardness and abrasion resistance. In order to achieve the above object, the present invention provides an antireflection film comprising a hard plating layer disposed on a substrate, a low refractive index layer disposed on the hard plating layer, and a dielectric layer disposed between the hard plating layer and the low refractive index layer. In order to achieve the above object, the present invention further provides a method for manufacturing an anti-reflection film, which firstly applies a hard plating coating solution on a substrate to form a hard plating layer, and then applies the hard plating layer to a liquid treatment or corona treatment. The dielectric layer coating liquid is applied to form a dielectric layer, and then a low refractive index coating liquid is applied onto the dielectric layer to form a low refractive index layer. The above and other objects, features, and advantages of the present invention will become more apparent and understood by the appended claims <RTIgt As shown in FIG. 2, the structure of the film is a hard plating layer 22 on the substrate 2, and a low refractive index layer 26 on the hard plating layer 22, and the dielectric layer 24 is interposed between the hard plating layer 22 and the low refractive index layer 26. The anti-reflection film of the present invention is produced by first applying a hard coating liquid coating onto the substrate 2, and evaporating the solvent contained in the hardness film coating liquid through an oven of 0659-A21724TWF (N2); KELLY; M06008 7 200815783. After the ultraviolet lamp is irradiated, a hardening reaction is generated to form a stable hard plating layer 22. Wherein, the substrate 20 is a transparent substrate, and the material thereof may be glass, poly aery late, polycarbonate, polyethylene, polyethylene, diacetate (polyethylene) Polyethylene terephthalate (referred to as PET), triacetyl cellulose (TAC), etc., of which PET and TAC are preferred.

硬鍍層22之材料為紫外光硬化型樹脂,其塗液包含光 啟始劑、單體、寡聚物及溶劑等,其中光啟始劑可以是苯 酮(benzophenone) 、 1-羥基環己基苯基酮 (l-hydroxy_cyclohexyl-phenyl-ketone)、2-羥基-甲基苯基丙 烧-1-酮(2-hydroxy-2-methyl-l-phenyl-l-propanone)、苯曱酰 曱酸曱醋(methylbenzoylformate)等;單體可為丙烯酸異丁 酯(isobutyl acrylate)、丙烯酸 2-乙基己酯(2-eAylhexyl acrylate)、1,6-六二醇二丙烯酸酯(1,6-hexanediol diacrylate), 三丙二醇(tripropylene glycol)、三曱基醇丙烧 (trimethylolpropane)、二季戊四醇五丙烯酸酯 (dipentaerythritol pentaacrylate)、季戊四醇三丙烯酸酉旨 (pentaerythritol triacrylate)、二季戊四醇六丙烯酸酉旨 (dipentaerythritol hexaacrylate)等;寡聚物例如為氨基甲基 丙烯酸寡聚物(urethane (meth)acrylate oligomer)、聚酯丙稀 酸曱酯寡聚物(polyester (meth)acrylate oligomer)、環氧(曱 基)丙稀酸醋寡聚物(epoxy (meth)acrylate oligomer)等;溶 劑可使用異丙醇(IPA)、丁酮(MEK)、曱基異丁基甲酮 0659-A21724TWF(N2);KELLY;M06008 8 200815783 (MIBK)、醋酸乙酯(EAC)、醋酸丁酯(BAC)、曱苯(toluene)、 環己酮(cyclohexanone)、曱醇(methanol)、丙二醇乙醚醋酸 醋(ProPylene glycol monoethylether acetate)等。為了 降低收 縮性’硬鍍層塗液中也可以添加膠體型無機奈米粒子,例 如一氧化石夕(silica)、氧化銘(alumina)、氧化錯(zirconia)、 一氧化欽(titania)、氧化辞(zinc oxide)、氧化錯(germanium oxide)、氧化銦(indium oxide)、氧化錫(tin oxide)等,其中 又以二氧化矽較佳。 接著,將硬鍍層22含浸於6〜10 %,50〜60°C的鹼液 例如氳氧化鉀(KOH)或氫氧化鈉(NaOH)水溶液之中約數分 4里後取出’或是以電暈處理後,再將介質層(primer)塗液塗 佈於硬鍍層22上,經過80〜12CTC烘烤10〜20分鐘之後 使介質層塗液以熱硬化方式和硬鍍層接合'。硬鍍層經由鹼 液或電暈處理後,將使其表面羥基數目及表面能增加,以 提升其與介質層之密著性。介質層塗液含有光硬化型矽氧 烷聚合物及極性溶劑,其中光硬化型矽氧烷聚合物之化學 式如下式1 : Y-[CH2]n-SiRmX3_m 式 1 其中,η為0〜5之整數,m為0〜2之整數,R為烷基, X為氧烷基,Y為乙烯基(CH2=CH-)、丙烯醯基 (CH2=CHCOO-)或曱基丙烯醯基(CH2二CCH3COO-)。光硬化 型矽氧烷聚合物例如為r -曱基丙烯酸氧丙基三甲氧基矽 烧(gamma_methacryloxypropyl trimethoxysilane)、7 _ 曱基 丙烯酸氧丙基三異丙氧基石夕烧(gamma-methacryloxypropy 1 0659-A21724TWF(N2);KELLY;M06008 9 200815783 trisopropoxysilane)、 r -曱基丙烯酸氧丙基三乙氧基石夕烧 (gamma-methacryloxypropyl triethoxy silane)、乙烯基三乙氧 基矽烧(vinyl triethoxylsilane)、乙浠基三曱氧基矽烧(vinyi trimethoxysilane)、乙烯基三-(2-曱氧乙氧基)矽烧(vinyi tri-(2-metlioxyethoxy)silane)、乙烯基曱基二曱氧基石夕烧 (vinyl methyldimethoxysilane)、乙烯基三異丙氧基石夕烧 (vinyl triisopropoxysilane)等。介質層塗液中的溶劑例如為 IPA或MEK等,介質層塗液中也可包含具有抗靜電、抗反 ⑩ 射、高折射率或前述之組合的功能性奈米粒子,例如銻掺 雜氧化錫(antimony-doped tin oxide)、氧化錫(tin oxide)、亞 銻酸鋅(zinc antimonite)、五氧化二銻(antim〇ny pentoxide)、銦錫氧化物(indium tin oxide)、铭掺雜氧化辞 (aluminum-doped zinc oxide)、錫鈦錯銻氧化物 (stannic-titanium-zirconium-antimony oxide)等,奈米粒子 之直徑約介於5〜100 nm,更佳者為10〜40 nm。介質層塗 $ 液的組成物矽氧烷聚合物:奈米粒子:溶劑之重量比例約 為 10〜20 : 15〜25 : 18 。 最後將低折射率層塗料塗佈於介質層24之上,經過_ 箱將低折射率層塗液中的溶劑蒸發,經過紫外燈照射後, 形成低折射率塗層26,即完成本發明之抗反射膜。低折射 率層之材料為紫外光硬.化型材料’例如多孔性二氧化@ (porous silica)、氟衍生物或前述組合之紫外光硬化型济 液,低折射率層之折射率約為1.35〜1.45。 在本發明之抗反射膜中,其低折射率層之厚度約為5〇 0659-A21724TWF(N2);KELLY;M06008 10 200815783 〜200 nm,介質層之厚度約為1〜2〇〇 ηηι,藉由介質層以 增加低折射率層與硬鍍層之附著力,提高抗反射膜之硬度 及耐磨性。本發明之抗反射膜與傳統未包含介質層之抗反 射膜相比,其硬度可提升至約為傳統的1·5〜2倍,耐磨性 可提高至約為傳統的2.5〜3倍。 【實施例1】 將光硬化塗料U4690mpl(立大化工產品)/溶劑(ΜΕΚ) • 以2 · 1之重量比例混合成硬鍍層塗液,以線棒塗佈於厚度 80/zm的基材(triacetyl cellul〇se膜)上,塗佈後置於7〇〇c 烘箱3分鐘,接著以η型水銀燈(劑量為500mJ/cm2)照射 硬化,形成硬鍍層,硬鍍層之厚度可由線棒規格及塗液之 固含量控制,所得到的硬鍍層之厚度約為5〜6 ,然後 將製成之硬鍍層浸泡於8%,55。〇的KOH溶液下2分鐘。 將介質層塗液(1% gamma-methaCryl〇Xypr〇pyl trimethoxylsilane之ΜΕΚ溶液)’以線棒塗佈於硬鍛層上, Φ 然後置於1⑽c下1 〇分鐘,形成介質層。再將低折射率塗 液TU2102(JSR公司產品)以線棒塗佈於介質層上,塗佈後 置於70°C烘箱3分鐘,接著以H型水銀燈在氮氣環境下 劑量為500mJ/cm2照射硬化,形成低折射率層,完成實施 例1之抗反射膜製作。 抗反射膜以鋼絲絨0000號測試耐擦傷性10次,其磨 擦面積直徑為2.5cm,於230g之重量下,實施例1之抗反 射膜表面無刮痕。以鉛筆硬度量測硬度,其硬度為3H。 【實施例2】 0659-A21724TWF(N2);KELLY;M06008 11 200815783 實施例2之抗反射膜與實施例1之差別在於實施例2 所使用的低折射率塗液為DA-LH-2(SOC公司產品),其他 製程條件及使用材料皆與實施例1相同。同樣地,對實施 例2之抗反射膜進行耐磨性及硬度測試,其測試結果硬度 為4H,财磨性可承受重量為580g。 【實施例3】 實施例3之抗反射膜與實施例2之差別在於實施例3 所使用的介質層塗液中添加高折射率奈米粒子 參 HIT_3〇lMl(Nissan Chemical公司產品),並且介質層塗液 中使用的溶劑為 IPA,其中 gamma-methacryloxypropyl trimethoxylsilane/ HIT-301M1/IPA 之重量比例為 15 : 20 : 18,其他製程條件及使用材料皆與實施例1相同。同樣地, 對實施例3之抗反射膜進行耐磨性及硬度測試,其測試結 果硬度為4H,耐磨性可承受重量為580g。 【比較例1】 鲁 比較例1之抗反射膜與實施例1之差別在於比較例1 中沒有介質層,其他製程條件及使用材料皆與實施例1相 同。同樣地,對比較例1之抗反射膜進行耐磨性及硬度測 試,其測試結果硬度為2H,耐磨性可承受重量為8〇g。 【比較例2】 比較例2之抗反射膜與實施例2之差別在於比較例2 中沒有介質層,其他製程條件及使用材料皆與實施例2相 同。同樣地,對比較例2之抗反射膜進行财磨性及硬度測 試,其測試結果硬度為3H ’耐磨性可承受重量為23〇g。 0659-A21724TWF(N2);KELLY;M06008 12 200815783 上述實施例及比較例之組成與測試結果如下表i所 列:The material of the hard plating layer 22 is an ultraviolet curing resin, and the coating liquid comprises a photoinitiator, a monomer, an oligomer, a solvent, etc., wherein the photoinitiator may be benzophenone or 1-hydroxycyclohexylbenzene. 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-l-phenyl-l-propanone, benzoyl hydrazide Ethyl acetate (methylbenzoylformate); etc.; monomer can be isobutyl acrylate, 2-ehexyl acrylate, 1,6-hexadiol diacrylate (1,6-hexanediol diacrylate) ), tripropylene glycol, trimethylolpropane, dipentaerythritol pentaacrylate, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, etc. The oligomer is, for example, urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, epoxy (meth) acrylate oligomer Epoxy (meth) acrylate oligomer, etc.; solvent can use isopropanol (IPA), methyl ethyl ketone (MEK), decyl isobutyl ketone 0659-A21724TWF (N2); KELLY; M06008 8 200815783 (MIBK) Ethyl acetate (EAC), butyl acetate (BAC), toluene, cyclohexanone, methanol, ProPylene glycol monoethylether acetate, and the like. In order to reduce shrinkage, colloidal inorganic nanoparticles can also be added to the hard coating solution, such as silica, alumina, zirconia, titania, and oxidation. (Zinc oxide), germanium oxide, indium oxide, tin oxide, etc., among which cerium oxide is preferred. Next, the hard plating layer 22 is impregnated with 6 to 10%, 50 to 60 ° C of an alkali solution such as potassium oxyhydroxide (KOH) or sodium hydroxide (NaOH) aqueous solution for about 4 minutes and then taken out 'or corona After the treatment, a primer coating liquid is applied onto the hard plating layer 22, and after being baked at 80 to 12 CTC for 10 to 20 minutes, the dielectric layer coating liquid is bonded to the hard plating layer by heat hardening. After the hard coating is treated by alkali or corona, the number of surface hydroxyl groups and surface energy are increased to enhance the adhesion to the dielectric layer. The dielectric layer coating liquid contains a photocurable siloxane polymer and a polar solvent, wherein the photocurable siloxane polymer has the following chemical formula: Y-[CH2]n-SiRmX3_m Formula 1 wherein η is 0 to 5 An integer, m is an integer from 0 to 2, R is an alkyl group, X is an oxyalkyl group, Y is a vinyl group (CH2=CH-), a propylene fluorenyl group (CH2=CHCOO-) or a decyl acrylonitrile group (CH2 two) CCH3COO-). The photocurable siloxane polymer is, for example, gamma_methacryloxypropyl trimethoxysilane, gamma-methacryloxypropy 1 0659- 217 24 gam 217 gam gam gam Vinyi trimethoxysilane, vinyi tri-(2-metlioxyethoxy)silane, vinyl fluorenyl bismuth oxide Vinyl methyldimethoxysilane), vinyl triisopropoxysilane, and the like. The solvent in the dielectric layer coating liquid is, for example, IPA or MEK, and the dielectric layer coating liquid may also contain functional nano particles having antistatic, anti-reflective, high refractive index or a combination thereof, such as antimony doping oxidation. Tin (antimony-doped tin oxide), tin oxide, zinc antimonite, antimony pentoxide, indium tin oxide, indole oxidation (aluminum-doped zinc oxide), stannic-titanium-zirconium-antimony oxide, etc., the diameter of the nanoparticle is about 5 to 100 nm, more preferably 10 to 40 nm. The dielectric layer is coated with a composition of liquid helium oxide polymer: nanoparticle: the weight ratio of the solvent is about 10~20: 15~25: 18 . Finally, the low refractive index layer coating is applied on the dielectric layer 24, and the solvent in the low refractive index coating liquid is evaporated through the _ box, and after being irradiated by the ultraviolet lamp, the low refractive index coating 26 is formed, that is, the invention is completed. Anti-reflective film. The material of the low refractive index layer is an ultraviolet light hardening material such as porous oxidized silica, a fluorine derivative or the combination of the ultraviolet light curing type liquid, and the refractive index of the low refractive index layer is about 1.35. ~ 1.45. In the antireflection film of the present invention, the thickness of the low refractive index layer is about 5 〇 0659-A21724TWF (N2); KELLY; M06008 10 200815783 〜 200 nm, and the thickness of the dielectric layer is about 1~2 〇〇ηηι, The dielectric layer increases the adhesion between the low refractive index layer and the hard plating layer to improve the hardness and wear resistance of the antireflection film. The antireflection film of the present invention can be increased in hardness to about 1.5 to 2 times as compared with the conventional antireflection film which does not include a dielectric layer, and the abrasion resistance can be increased to about 2.5 to 3 times that of the conventional one. [Example 1] A photohardenable coating material U4690mpl (Lida Chemical Products) / solvent (ΜΕΚ) was mixed in a weight ratio of 2.6 to a hard coating liquid, and was applied to a substrate having a thickness of 80/zm by a wire rod ( On the triacetyl cellul〇se film, after coating, it is placed in a 7〇〇c oven for 3 minutes, and then hardened by irradiation with an n-type mercury lamp (dosage of 500mJ/cm2) to form a hard-plated layer. The thickness of the hard-plated layer can be specified by the wire rod and coated. The solid content of the liquid is controlled, and the thickness of the obtained hard plating layer is about 5 to 6, and then the hard plating layer is immersed at 8%, 55. Place the KOH solution for 2 minutes. The dielectric layer coating solution (1% gamma-methaCryl(R) Xypr〇pyl trimethoxylsilane) was applied to the hard forged layer by wire bar, and then placed at 1 (10) c for 1 minute to form a dielectric layer. The low refractive index coating liquid TU2102 (product of JSR company) was applied to the dielectric layer by wire rod, coated and placed in an oven at 70 ° C for 3 minutes, and then irradiated with a H-type mercury lamp at a dose of 500 mJ/cm 2 under a nitrogen atmosphere. The film was hardened to form a low refractive index layer, and the antireflection film of Example 1 was completed. The antireflection film was tested for scratch resistance 10 times with steel wool 0000, and its rubbing area diameter was 2.5 cm. Under the weight of 230 g, the surface of the antireflection film of Example 1 was free from scratches. The hardness was measured by pencil hardness and its hardness was 3H. [Example 2] 0659-A21724TWF(N2); KELLY; M06008 11 200815783 The antireflection film of Example 2 differs from Example 1 in that the low refractive index coating liquid used in Example 2 is DA-LH-2 (SOC The company's products), other process conditions and materials used are the same as in the first embodiment. Similarly, the anti-reflection film of Example 2 was subjected to abrasion resistance and hardness test, and the test result showed a hardness of 4H and a grindability of 580 g. [Example 3] The antireflection film of Example 3 differs from Example 2 in that a high refractive index nanoparticle ginseng HIT_3〇lMl (product of Nissan Chemical Co., Ltd.) was added to the dielectric layer coating liquid used in Example 3, and the medium The solvent used in the layer coating liquid was IPA, wherein the weight ratio of gamma-methacryloxypropyl trimethoxylsilane/ HIT-301M1/IPA was 15:20:18, and other process conditions and materials used were the same as in Example 1. Similarly, the anti-reflection film of Example 3 was subjected to abrasion resistance and hardness test, and the test result hardness was 4H, and the abrasion resistance was 580 g. [Comparative Example 1] The difference between the antireflection film of Comparative Example 1 and Example 1 was that there was no dielectric layer in Comparative Example 1, and the other process conditions and materials used were the same as in Example 1. Similarly, the anti-reflection film of Comparative Example 1 was subjected to abrasion resistance and hardness test, and the test results showed a hardness of 2H and an abrasion resistance of 8 〇g. [Comparative Example 2] The antireflection film of Comparative Example 2 differed from Example 2 in that there was no dielectric layer in Comparative Example 2, and other process conditions and materials used were the same as in Example 2. Similarly, the anti-reflection film of Comparative Example 2 was subjected to a grindability and hardness test, and the test result showed a hardness of 3 Å. The wear resistance was 23 〇g. 0659-A21724TWF(N2); KELLY; M06008 12 200815783 The composition and test results of the above examples and comparative examples are listed in Table i below:

表1各實施例及比較例之組成與測試結果 實施例1 例 1 實施例2 峨例2 實施例3 硬鍍層 塗液的 組成之 重量比 例 純匕塗_4690mpl) 100 100 100 100 100 溶劑(MEK) 50 50 50 50 50 介質層 塗液的 組成之 重量比 例 矽麟 (Gamma-Methaciyloxypr opyl trimethoxylsilane) 1 一 1 一 15 奈米粒子(ΗΓΓ-301Μ1) ^___^ ____ 20 溶劑 100/MEK 100/MEK 18/ΓΡΑ 麟射率層錄 TU2102 TU2102 DA-LH-2 DA-LH-2 DA-LH-2 鉛筆硬度 3H 2H 4H 3H 4H 耐磨性測試之可承受重量(磨擦面 積直徑=2.5em) 230g 80g 580g 230g 580g 由表1之硬度及耐磨性測試結果可得知,含有介質層 之實施例1、2、3其硬度及耐磨性皆較沒有含介質層之比 較例1、2明顯提升。以實施例1與比較例1相比,其鉛筆 0659-A21724TWF(N2);KELLY;M06008 13 200815783 硬度由2H 4疋南到3H,耐磨性之可承受重量由g〇g提高至 230g,以貫施例2與比較例2相比,其鉛筆硬度由3H提 高到4H,耐磨性之可承受重量由23〇g提高至58〇g。 此外’測量未添加奈米粒子於介質層塗液中的實施例 2與添加奈米粒子之實施例3的反射率,結果實施例3之 反射卞為0.3’ R施例2之反射率為1〇,由此結果可得知, 添加奈米粒子於介質層塗液中可降低抗反射膜之反射率,Table 1 Composition and Test Results of Examples and Comparative Examples Example 1 Example 1 Example 2 Example 2 Example 3 Weight ratio of composition of hard coating layer pure 匕4690mpl) 100 100 100 100 100 Solvent (MEK 50 50 50 50 50 Weight ratio of composition of dielectric layer coating liquid Gamma-Methaciyloxypr opyl trimethoxylsilane 1 -1 to 15 nm particles (ΗΓΓ-301Μ1) ^___^ ____ 20 Solvent 100/MEK 100/MEK 18 /ΓΡΑ 射射率层录 TU2102 TU2102 DA-LH-2 DA-LH-2 DA-LH-2 Pencil hardness 3H 2H 4H 3H 4H Abrasion resistance test bearable weight (friction area diameter = 2.5em) 230g 80g 580g 230g 580g It can be seen from the hardness and abrasion resistance test results of Table 1. The hardness and wear resistance of Examples 1, 2 and 3 containing the dielectric layer were significantly improved compared with Comparative Examples 1 and 2 without the dielectric layer. Comparing Example 1 with Comparative Example 1, the pencil 0659-A21724TWF(N2); KELLY; M06008 13 200815783 has a hardness ranging from 2H 4 to 3H, and the wear resistance can be increased from g〇g to 230g. In Example 2, compared with Comparative Example 2, the pencil hardness was increased from 3H to 4H, and the wear resistance was increased from 23 〇g to 58 〇g. Further, 'the reflectance of Example 2 in which no nanoparticle was added to the dielectric layer coating liquid and Example 3 in which the nanoparticle was added was measured, and as a result, the reflection enthalpy of Example 3 was 0.3'. The reflectance of Example 2 was 1 〇, from this result, it can be known that the addition of nano particles in the dielectric layer coating solution can reduce the reflectance of the anti-reflection film.

由1.0(貫&amp;例2)p♦至〇·3(實施例3),提升抗反射效果。 雖然本發明已揭露較佳每 和範圍内,當娜許更動:=在不脫離本發明之精神 圍當視後附之巾請專利_所界定為準。 保瘦乾From 1.0 (Cross &amp; Example 2) p♦ to 〇·3 (Example 3), the anti-reflection effect is enhanced. Although the invention has been disclosed in its preferred embodiments, it is intended that the invention may be modified as follows: the invention is defined by the appended claims. Thin and dry

0659-A21724TWF(N2);KELLY;M06008 200815783 【圖式簡單說明.】 第1圖所示為習知的抗反射膜之結構剖面圖。 第2圖所示為本發明較佳實施例之抗反射膜的結構剖 面圖。 【主要元件符號說明】 10、20〜基底; 12、22〜硬鍛層; 24〜介質層; 14、26〜低折射率層。0659-A21724TWF(N2); KELLY; M06008 200815783 [Simplified illustration of the drawings.] Fig. 1 is a cross-sectional view showing the structure of a conventional anti-reflection film. Fig. 2 is a cross-sectional view showing the structure of an antireflection film according to a preferred embodiment of the present invention. [Description of main component symbols] 10, 20~ substrate; 12, 22~ hard forged layer; 24~ dielectric layer; 14, 26~ low refractive index layer.

0659-A21724TWF(N2);KELLY;M06008 150659-A21724TWF(N2);KELLY;M06008 15

Claims (1)

200815783 十、申請專利範圍: h一種抗反射膜,包括: 一基底; 一硬鍍層,設置於該基底上; 二折射率層,設置於該硬鐘層之上;以及 一介質層’設置於該硬鍍層及該低折射率層之間。200815783 X. Patent application scope: h An anti-reflection film comprising: a substrate; a hard plating layer disposed on the substrate; a second refractive index layer disposed on the hard clock layer; and a dielectric layer disposed on the substrate Between the hard plating layer and the low refractive index layer. 2.如申請專利範㈣1項所述之抗反射膜,其中該介 質層之材料為一光硬化型之矽氧烷。 •士申5月專利範圍帛2項所述之抗反射膜,其中該介 質層之材料更包括複數個奈米粒子。 4‘如申請專利範圍第!項所述之抗反射膜, 底為一透明基底。 如申請專利範圍第i項所述之抗反射膜,其中該硬 鍍層之材料為一紫外光硬化型樹脂。 6·如申睛專利範圍第5項所述之抗反射膜,其中該硬 鍍層之材料更包括一寡聚物。 Λ 其中該低 7·如申請專利範圍第1項所述之抗反射膜, 折射率層之材料為一紫外光硬化型材料。 8·如申請專利範圍第7項所述之抗反射膜,其 之 外光硬化料包括多祕二氧切、氟衍生物或前=紫 組合。 、 9·一種抗反射膜的製造方法,包括: 提供一基底; 將一硬鑛屬塗液塗柿於該基底上,形成一硬鐵層 0659-Α21724TWF(N2);KELLY;M06008 ] 6 200815783 將違硬鍍層進行_鹼液處理或一電暈(c〇r〇na)處理; 將一介質層塗液塗佈於該鹼液處理或該電暈處理過么 该硬鍍層上,形成一介質層;以及 將一低折射率塗液塗佈於該介質層上,形成一低折射 率層。 ιο·如申請專利範圍第9項所述之抗反射膜的製造方 法,其中該基底為一透明基底。 11·如申請專利範圍第9項所述之抗反射膜的製造方 法,其中該硬鍍層塗液包括一光啟始劑、一紫外光硬彳匕赉 樹脂單體、一寡聚物及一溶劑。 12·如申請專利範圍第9項所述之抗反射膜的製造方 法’其中該介質層塗液包括一光硬化型矽氧烷聚合物及/ 極性溶劑。 13.如申請專利範圍第12項所述之抗反射膜的製造方 法,其中该光硬化型矽氧烷聚合物之化學式為下列式工, Y· [CH2] n-SiRmx3 m 式 1 - 其中, η為0至5之整數,m為〇至2之整數,R為烷基,χ 為氧$元基’ Y為乙烯基(CH2=CH-)、丙烯醯基((:112=^11(:00-) 或曱基丙烯醯基(CH2=CCH3COO-)。 14·如申請專利範圍第12項所述之抗反射膜的製造方 法,其中該介質層塗液更包括複數個奈米粒子。 15·如申請專利範圍第9項所述之抗反射膜的製造方 法,其中該低折射率塗液為一紫外光硬化型材料。 0659-A21724TWF(N2);KELLY;M06008 17 200815783 16.如申請專利範圍第15項所 法,其中該紫外光硬化型材料包括多孔性二氧::,方 生物或前述之組合。 夕、乳丁 17.如申請專利範圍第9項所述之抗反射膜的製造方 法,其中該鹼液包括氫氧化鉀(KOH)或氫氧化鈉(Na〇H)水 溶液。 參 0659-A21724T WF(N2);KELLY;M06008 182. The antireflection film according to claim 4, wherein the material of the dielectric layer is a photocurable type of decane. The anti-reflection film described in the scope of the patent application of the Japanese Patent Publication No. 2, wherein the material of the dielectric layer further comprises a plurality of nano particles. 4 ‘If you apply for a patent range! The antireflection film of the item is a transparent substrate. The antireflection film of claim i, wherein the material of the hard coat layer is an ultraviolet curable resin. 6. The antireflection film of claim 5, wherein the material of the hard coat layer further comprises an oligomer. Λ Wherein the low-reflection film as described in claim 1, the material of the refractive index layer is an ultraviolet light-curable material. 8. The antireflection film of claim 7, wherein the external light hardening material comprises a polyoxydiazine, a fluorine derivative or a front = violet combination. 9. A method for producing an antireflection film, comprising: providing a substrate; applying a hard mineral coating liquid to the substrate to form a hard iron layer 0659-Α21724TWF(N2); KELLY; M06008] 6 200815783 The hard coating is subjected to lye treatment or a corona treatment (c〇r〇na); a dielectric layer coating solution is applied to the lye treatment or the corona treatment on the hard coating layer to form a dielectric layer. And coating a low refractive index coating on the dielectric layer to form a low refractive index layer. The method of producing an antireflection film according to claim 9, wherein the substrate is a transparent substrate. The method for producing an antireflection film according to claim 9, wherein the hard coating solution comprises a photoinitiator, an ultraviolet hard resin monomer, an oligomer, and a solvent. . 12. The method of producing an antireflection film according to claim 9, wherein the dielectric layer coating liquid comprises a photocurable siloxane polymer and/or a polar solvent. The method for producing an antireflection film according to claim 12, wherein the chemical formula of the photocurable siloxane polymer is the following formula: Y·[CH2] n-SiRmx3 m Formula 1 - wherein η is an integer from 0 to 5, m is an integer from 〇 to 2, R is an alkyl group, χ is an oxygen group, and 'Y is a vinyl group (CH2=CH-), an acryloyl group ((: 112=^11( The method for producing an antireflection film according to claim 12, wherein the dielectric layer coating liquid further comprises a plurality of nano particles. The method for producing an antireflection film according to claim 9, wherein the low refractive index coating liquid is an ultraviolet curing material. 0659-A21724TWF(N2); KELLY; M06008 17 200815783 16. The method of claim 15, wherein the ultraviolet light-curable material comprises a porous dioxometer::, a living organism or a combination thereof. The diaper, the diced powder, the anti-reflective film according to claim 9 A manufacturing method, wherein the lye comprises an aqueous solution of potassium hydroxide (KOH) or sodium hydroxide (Na〇H). Reference 0659-A21724T WF(N2); KE LLY; M06008 18
TW95135123A 2006-09-22 2006-09-22 Antireflection film and fabrication method thereof TW200815783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95135123A TW200815783A (en) 2006-09-22 2006-09-22 Antireflection film and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95135123A TW200815783A (en) 2006-09-22 2006-09-22 Antireflection film and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW200815783A true TW200815783A (en) 2008-04-01

Family

ID=44768901

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95135123A TW200815783A (en) 2006-09-22 2006-09-22 Antireflection film and fabrication method thereof

Country Status (1)

Country Link
TW (1) TW200815783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779411B (en) * 2019-11-26 2022-10-01 日商日東電工股份有限公司 Antireflection film, method for manufacturing the same, and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779411B (en) * 2019-11-26 2022-10-01 日商日東電工股份有限公司 Antireflection film, method for manufacturing the same, and image display device

Similar Documents

Publication Publication Date Title
TWI460742B (en) Transparent conductive film
TWI738654B (en) Laminated film and manufacturing method of laminated film
TWI298078B (en) Hardcoat film
JP5044099B2 (en) Antireflection film and method for producing the same
JP4187454B2 (en) Antireflection film
JP5372417B2 (en) Antireflection film
EP3189107B1 (en) Hardcoat and method of making the same
JP2007234424A (en) Transparent conductive film and touch panel
WO2005064367A1 (en) Polarizing plate protective film, polarizing plate with reflection preventing function and optical product
JP2012206502A (en) Transparent conductive film and touch panel
WO2004031813A1 (en) Anti-reflection film
JP2023062056A (en) Antireflection film, manufacturing method of antireflection film, optical member, and image display device
CN112442206B (en) Laminated film
TWI294040B (en) Film for optical applications
JP4496726B2 (en) Low refractive index layer for anti-reflective material, anti-reflective material provided therewith, and use thereof
KR20140095862A (en) High trans-missive composite film for electrostatic capacity type touch panel
KR101094633B1 (en) Ceramic Organic-Inorganic Hybrid Coating Materials Composed of Metal Oxide Sol for Monolayer Anti-Reflective Film And Fabrication Method Thereof
JP5428592B2 (en) Conductive hard coat film and antireflection film
WO2006098363A1 (en) Optical laminated body
CN101226245A (en) Antireflective film and manufacturing method thereof
JP2008073999A (en) Antireflective film
JP3329924B2 (en) Antireflection film and method for producing the same
TW200815783A (en) Antireflection film and fabrication method thereof
CN117480412A (en) Hard coat film, optical member, and image display device
JP2010032734A (en) Antireflection film