TW200814414A - Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method - Google Patents

Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method Download PDF

Info

Publication number
TW200814414A
TW200814414A TW095134349A TW95134349A TW200814414A TW 200814414 A TW200814414 A TW 200814414A TW 095134349 A TW095134349 A TW 095134349A TW 95134349 A TW95134349 A TW 95134349A TW 200814414 A TW200814414 A TW 200814414A
Authority
TW
Taiwan
Prior art keywords
nano
anode
composite film
anode structure
nanochannel
Prior art date
Application number
TW095134349A
Other languages
Chinese (zh)
Other versions
TWI338404B (en
Inventor
Chang-Sing Hwang
Original Assignee
Inst Nuclear Energy Res Aec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Nuclear Energy Res Aec filed Critical Inst Nuclear Energy Res Aec
Priority to TW095134349A priority Critical patent/TW200814414A/en
Publication of TW200814414A publication Critical patent/TW200814414A/en
Application granted granted Critical
Publication of TWI338404B publication Critical patent/TWI338404B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The invention provides a structure of anode with composite membrane and the atmospheric plasma spraying method. The structure of anode comprises a porous base material and a composite membrane with nano channel. The said composite membrane with nano channel has plural nano passage holes and plural nano channels. The method of this invention comprises: providing a micro powder, composed of nano oxide mixed powder and a bonding agent; heating the micro powder into oxide of melting or half melting status; spraying the oxide of melting or half melting status on a porous base material; producing the anode structure of this invention by the reaction of hydrogen reduction. It can enhance the activity and conductivity of electro-chemical reaction in the anode of solid-state fuel cell. It can also slow down the agglomeration of particle of anode material at high temperature. Therefore, the life of anode is increased.

Description

200814414 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種奈米複合薄膜之陽極結構及其製造方法,其尤指一 -種奈米通道複合極結構及其大氣電椠喷塗之製造方法,該奈^通 運衩合薄膜之陽極結構係應用於一固態氧化物燃料電池之陽極結構,以提 南陽極之電化學反應活性及導電度,並降低陽極電阻以降低電能的耗損及 減緩陽極結構在高溫操作環境下造成的粒子凝聚,以增加陽極結構之使用 壽命。 馨 【先前技術】 固態氧化物燃料電池是一種藉電化學機制發電的裝置。通常固態氧化 物燃料電池以紀安定氧化錯(Yttria Stabilized zirconia,YSZ)為電解質材料, 以鎳和紀安魏化結混合組成之金屬陶竟⑽YSZ cermet)為陽極材料,以 具鈣鈦礦結構之鑭锶錳導電氧化物(LaMn〇3)為陰極材料(參考文獻,A即咖, "Fuel cell technology: Status and foture prospects;5 Energy^ 215 521,1996; Smghal, Science and technology of solid-oxide fliel cells;5 MRS Bulletin, 25, 16, 2000; Williams, Status of solid oxide fuel cell development ^ and commercialization in the U.S.^ Proceedings of 6th International Symposium on Solid Oxide Fuel Cells (SOFC VI)? Honolulu, Hawaii, 3? 1999; Hujismans et al.9 INTERMEDIATE TEMPERATURE SOFC- A PROMISE FOR THE 21TH CENT皿Y,’V·尸〇贈W⑽,71,1〇7, 1998)q雖然固態氧化物燃料電池具有 高的發電效率及低污染性,但由於釔安定氧化锆需在9〇〇〜1〇〇〇t:工作才有 足夠南的氧離子導電度,使得目態氧化物燃料電池因高的工作溫度而需要 使用耐咼溫之昂貴材料,導致製作成本增高,此為無法大量普及原因之一。 如果採用其他約在600°C就有高氧離子導電度的電解質材料,例如含釓(Gd) 發雑的氧化鈽(Ce〇2),簡稱GDC,便能因為可使用相對容易的製作技術及 較便宜的材料去組合固態氧化物燃料電池堆(Stack),而達到降低製作成本的 目的,同時降低工作溫度的固態氧化物燃料電池系統其可靠度及使用壽命 均能顯著提升,更有利推廣固態氧化物燃料電池的應用領域,使其含蓋家 5 200814414 極《極之電化學雜也隨之降低,而導致陰極及陽_極性電阻 (p〇anzat1〇nres1stance)^i^tm(〇hmre^^ > . , ' :" -CF(La^^^^ 的帝化風及雍二* :ee haseBoundanes,TPB)數目’從而增加陰極及陽極 的弘化予反應此力,達到降低陰極及陽極的能量損失。 ⑺麵電池陽極金顧_方法有⑴化學氣相沉積法、 (U化子乳相_法、(3)溶膠_凝膠法、(4)帶禱法 =相f法及⑺《喷塗法。《喷塗法又分成大氣《=ΐ及(Γ= =:= 重:在這,作方法中,以大氣《噴塗法的製程最為快速, 年已侍到大豕的注意,是前途相當看好的製程。 文獻上Virkar等人於2003年提出低溫高功率 ,(Ni/YSZ_e_t_細孔層及厚的粗孔層組合而成+== 、、'田孔層的^洞愈細愈好,最好能到奈米級以求有效增加τρβ數目。但是 Virkar未祝明薄細孔層到底是怎麼樣的奈米結構特性。中國大陸王金 “ u丄十电也孟屬陶瓦%極具備增加ΤΡΒ數目及減少電極能量損失 的k點’由运樣的陽極做成的固態氧化物燃料電池其輸出功率更高 ^也於2〇04年提出以燃燒化學氣相沈積法(Combustion Chemical Vapw position)衣作具奈米及功能梯度結構的陰極,由於在此陰極結構中陰極電 化子反應位置或TPB數目大量提升,使得該陰極的極性及歐姆電阻均 低’減少陰極的能量損失。文獻上迄今沒有人提出以大氣電渡喷塗法製作 孔通道固態氧化物燃料電池奈米複合結構金屬陶莞陽 、固恶氧化物燃料電池金屬陶曼陽極(Ni/YSZ或Ni/GDC cermet)在其言 二度了會發生錄金屬之聚集效應’而且該陽極之電阻會隨鎳金屬顆 粒受大而增加。當陽極之電阻變得過大無法有效使用時,使用壽命即故止。 因此本發明提供一種奈米通道複合薄膜之陽極結構及其大氣電襞噴塗 6 200814414 故 故可 二於南溫環境下,延緩陽極之金屬顆粒過大而無法有效使 y加陽極之電化學反應能力及制壽命。且絲紐道複合^ 去及奈μ雜構’射增加陽滅構之三相界面長度及化學反應位置 米通_合薄膜之陽極結構是由奈米粒子做成, 薄膜具有奈米 。度,^低陽極電阻,以避免電能的耗損。 【發明内容】 大^主要目的’在於提供—種奈米通道複合薄膜之陽極結構及复 之製造方法’其係於多孔底材上以大氣電滎噴塗的方“ =示未孔洞及奈米通道的奈米複合薄膜,該奈米通道複合薄膜 ^ 上=成-固態氧化物燃料電池之陽極結構,該奈 米:上 ^力:陽極電極之三祕崎如提高陽㈣極之電化學反應^運4 大氣電在種奈米通道複合薄膜之陽極結構及其 成呈太料.^ 纽底材上以大氣電㈣塗的方式來形 f態氧化物燃料電池之陽極結構,該奈米孔 α曰•極包極之導電度,降低陽極電阻以避免電能的耗損。 大氣電在=供;種奈刪複合薄膜之陽極結構及其 成奈米通道複上以大氣噴塗的方式來形 子凝聚,明;:=之使陽極在高溫操作環境下造成的材料粒 本發明奈求通^複合薄膜之陽極結構,包括:—多孔底材;及 ==於該多孔底材上,且該奈觸合薄膜具有複崎 噴塗之:二=。本發明綱道複合薄膜之陽極結構之大氣電漿 太步驟包括:提供—微綠粒00,該微綠粒團係由一 半炫粉粒與—黏結劑所組成;將該微米粉粒81加熱成一熔融或 Μ、恶之iut物;將該熔融或树融狀態之氧化物倾在—多孔底材 7 200814414 複合薄膜之陽極結構 上;及經由氫氣還原,製作出該奈米通道 【實施方式】 热為使貝番查委員對本發明奈米通道複合薄膜之陽極結構及其大氣 «喷塗之製造方法的結構特徵及方法步驟有更進—步之瞭解與認識,現 以較佳之實施例說明如後。200814414 IX. Description of the Invention: [Technical Field] The present invention relates to an anode structure of a nano composite film and a method of manufacturing the same, and more particularly to a nanochannel composite pole structure and an atmospheric electric spray coating thereof The manufacturing method, the anode structure of the composite film is applied to the anode structure of a solid oxide fuel cell to increase the electrochemical reactivity and conductivity of the anode, and reduce the anode resistance to reduce the power consumption and slow down The anode structure causes agglomeration of particles in a high temperature operating environment to increase the service life of the anode structure. Xin [Prior Art] A solid oxide fuel cell is a device that generates electricity by an electrochemical mechanism. In general, solid oxide fuel cells are made of Yttria Stabilized zirconia (YSZ) as an electrolyte material, and metal ceramics (10) YSZ cermet) composed of nickel and Ji'an Weihuan are used as anode materials to have a perovskite structure. Manganese-manganese conductive oxide (LaMn〇3) is the cathode material (Reference, A, Coffee, "Fuel cell technology: Status and foture prospects; 5 Energy^ 215 521, 1996; Smghal, Science and technology of solid-oxide fliel Cells;5 MRS Bulletin, 25, 16, 2000; Williams, Status of solid oxide fuel cell development ^ and commercialization in the US^ Proceedings of 6th International Symposium on Solid Oxide Fuel Cells (SOFC VI)? Honolulu, Hawaii, 3? 1999 Hujismans et al.9 INTERMEDIATE TEMPERATURE SOFC- A PROMISE FOR THE 21TH CENT Dish Y, 'V· Corpse W(10), 71,1〇7, 1998)q Although solid oxide fuel cells have high power generation efficiency and low pollution Sex, but since yttrium zirconia needs to be at 9 〇〇~1 〇〇〇t: work only has enough south's oxygen ion conductivity to make the target oxide fuel Pool due to high operating temperatures require the use of expensive materials resistant 咼 temperature, resulting in increased production costs, this is not one of the reasons a lot of popularity. If other electrolyte materials with high oxygen ion conductivity at about 600 ° C, such as cerium oxide (Ce 〇 2) containing gadolinium (Gd) hair, or GDC for short, can be used because of relatively easy fabrication techniques and The cheaper materials to combine solid oxide fuel cell stacks, and achieve the purpose of reducing the production cost, while reducing the operating temperature of the solid oxide fuel cell system, the reliability and service life can be significantly improved, and it is more advantageous to promote the solid state The application field of oxide fuel cell makes it include the cover of the home 5 200814414 pole "the electrochemical impurity of the pole is also reduced, resulting in cathode and anode _ polarity resistance (p〇anzat1〇nres1stance) ^i^tm (〇hmre^ ^ > . , ' :" -CF(La^^^^'s Emperor's wind and 雍2*: ee haseBoundanes, TPB) number ' thereby increasing the cathode and anode Honghua to react this force to reduce the cathode and The energy loss of the anode. (7) Surface battery anode gold _ method has (1) chemical vapor deposition method, (U-vehicle phase _ method, (3) sol-gel method, (4) with prayer method = phase f method and (7) "Spray method. "The spray method is divided into the atmosphere" = ΐ and (Γ = =: = weight: In this method, the method of spraying is the fastest in the atmosphere, and the annual attention has been paid to the attention of the public. It is a process with a promising future. In the literature, Virkar et al. proposed low temperature and high power in 2003, (Ni/YSZ_e_t _Pore layer and thick coarse hole layer are combined to form +==, 'The finer hole of the field hole layer is better, it is better to go to the nanometer level to effectively increase the number of τρβ. But Virkar did not wish to be thin What is the nano-structure characteristic of the pore layer? The Chinese mainland Wang Jin "u丄十电也孟属陶瓦% has a k-point that increases the number of defects and reduces the energy loss of the electrode" is made of the anode of the sample. Solid oxide fuel cells have higher output power. ^In 2004, Combustion Chemical Vapw position was proposed as a cathode with a nanostructure and a functionally graded structure, due to the cathode in this cathode structure. The electrochemical reaction position or the number of TPBs is greatly increased, so that the polarity and ohmic resistance of the cathode are both low, reducing the energy loss of the cathode. So far, no one has proposed to make a pore-channel solid oxide fuel cell by atmospheric electric spray coating. Metal composite structure metal ceramics Wanyang, solid oxide fuel cell metal Tauman anode (Ni / YSZ or Ni / GDC cermet) in its second degree will occur the metal accumulation effect 'and the anode resistance will follow the nickel metal particles When the resistance of the anode becomes too large to be effectively used, the service life is terminated. Therefore, the present invention provides an anode structure of a nanochannel composite film and its atmospheric electric spray coating 6 200814414 In a warm environment, the metal particles of the anode are delayed, and the electrochemical reaction capability and the life of the anode are not effectively achieved. And the wire-line composite compound and the nano-hybrid structure increase the three-phase interface length and chemical reaction position of the annihilation structure. The anode structure of the membrane is made of nano particles, and the film has nanometer. Degree, ^ low anode resistance to avoid the loss of electrical energy. SUMMARY OF THE INVENTION The main purpose of the invention is to provide an anode structure and a manufacturing method for a nanochannel composite film, which are coated on a porous substrate by atmospheric electricity spraying. Nanocomposite film, the nanochannel composite film ^ on the anode structure of the solid-state oxide fuel cell, the nano: upper force: the third electrode of the anode electrode, such as the electrochemical reaction of the positive (four) pole ^ The anode structure of the f-state oxide fuel cell is formed by the atmospheric electricity (four) coating on the anode structure of the nano-channel composite film and the formation of the nano-material.曰• extremely polar conductivity, reduce the anode resistance to avoid the loss of electrical energy. Atmospheric electricity in the = supply; the anode structure of the composite film and its nano-channels are painted by air to form agglomerate, The anodic structure of the composite film of the present invention comprises: a porous substrate; and == on the porous substrate, and the neat contact The film has a Fusaki spray: two =. The atmospheric plasma of the anode structure of the composite film of the present invention comprises the steps of: providing - micro green particles 00, the micro green particles being composed of half of the powder particles and the binder; heating the micron particles 81 into one Melting or bismuth or irritating iut; pouring the molten or oxidized state oxide onto the anode structure of the porous substrate 7 200814414 composite film; and producing the nanochannel via hydrogen reduction [embodiment] In order to enable the Beppucha member to have a better understanding and understanding of the anode structure of the nanochannel composite film of the present invention and the structural features and method steps of the method of manufacturing the atmosphere, the preferred embodiment is as follows. .

明麥閱第si ’本發明奈米通道複合薄膜之陽極結構,包括:一多孔 底材1及—奈紐道複合細2。該奈米通道複合_ 2位於鮮孔底材i 上,且錢米通遏複合薄膜2具有複數個奈米孔洞2ι及複數個奈米通道公 該多孔底材丨係選自纽微綠安定氧化辦竹也&删^心喊 YSZ)/錄複合底材、多孔錄底材、多孔不錄鋼底材、多孔鐵錄合金底材及多 _鉻合金底獅域之群組之射之—者,錢多孔底材丨為―導電透 氣的底材,其厚度為0.5〜2 mm。該奈米通道複合薄膜2係選自奈米妃安定 氧化錯/鎳複合薄膜及奈槪/氧化鈽增複合薄膜所組成之群組之其中之一 者。遠奈米輕22係為-奈米氣孔通道(其直徑細為8〜3()㈣,其能提 ,固態氧化物燃料電池中的氫氣、水氣或其他氣體及液體有較均勻之流通 管道,並能增加固態氧化物燃料電池之陽極電極的三相界面(Thrce_phase Βο—,TPB)數目及提高陽極電極之電化學反應活性,使陽極的極性電 阻㈣arizati〇nresist繼)和歐姆電阻(〇hmresistance)減小崎 損。由於龄定氧化錯及摻雜札的氧化_為—陶紐料,故本發明之奈 米通道複合薄膜可為一金屬陶瓷複合薄膜。 於本舍明奈米通逼複合薄膜之陽極結構之較佳實施例中,使用之多孔 底材為多,,構紀安定氧化錯/錄複合(YSZ/N輸才,且多孔底材上的 奈米通逼複合薄膜為紀安定氧化鍅/錄(YSz/N〇複合薄膜。本發明較佳實施 =不米通這稷合薄膜之SEM圖如第二圖所*,圖中顯示奈米通道複合薄 諸具有奈米孔洞2l(黑色部位h奈米鎳粒子23(灰色部位)及奈米紀安定氧 化錯2攸自色雜)。第三別林發贿转道複;^ 200814414 膜=陽極结,佳實施例之SEM圖及本發明奈米通道複合薄膜之陽極結構 ^貫補h米猶複合_之SEM做圖, z 材!及彻Ni奈米通道複合薄膜2具有複數個朽繼奈米通道22。 • +本發明«通道複合_之陽減構之大氣俩之製造方法,其 • 步驟包括(如第四圖所示): Μ提供-微米粉粒團’該微諸粒團係由_奈米氧化物混合粉粒與一黏 結劑所組成; S2將該微米粉粒團加熱成—熔融或輪融狀態; S3提供-多孔底材,將該多孔底材預熱; 將或半¥融狀恶之該微米粉粒團噴塗在該多孔底材上;及 S5經氫氣還原,製作出該奈米通道複合薄膜之陽極結構。 採用米通道複合薄膜之陽極結構之大氣電聚喷塗之製造方法,係 、、^φ回溫⑤逮火趋為加熱工具’利用送粉機將微米粉粒團送入高 經由齡解將微綠簡之麟舰除騎解成原組成之 後喷淹於亚將泛些奈米氧化物粉粒加熱至溶融或半炫融狀態,最 合薄㈣夺认1底材,在多孔底材上沈積形成奈米結構複 Π ± 構複合賴由奈米粉粒所組成,再經氫氣還原作用㈣ 複合_之^^簡電_複料狀陽㈣胁卩树料米通i 米氧二的奈米氧化物之混合粉粒係選自奈米紀安定氧化 雜之氧化鈽與奈米氧•粉粒、奈二 與奈米氧化鎳鎳定化Γ_Γ池之陽極材料 銳安定氧化錯鱼夺1、入羊〜、不米氧化銅此合粉粒、奈米 …4魏舰合雜、奈綠摻狀氧_與奈米氧化銅 9 200814414 混合粉粒及奈米固態氧化物嶽 …、科甩池之%極材料與奈米金屬氧化物合 粒所組成之群組之射之—者。微轉«之紐為丨〜⑽,,而夺= 徑小於_卿。該黏__選自聚乙浠醇 _y二eGG\PVA)、有機黏結物及其他具黏結性且能被Al1電漿火$ 、之:料所組成之群組之其巾之—者。該微米粉粒團中更可添加一孔洞 形成材料’該孔洞形成材_選自碳粉、錢及碳管驗成之群組之立中 之-者’明加絲通道複合義之陽赌構的孔晚。 /、 本电明之k財施例由奈米妓定氧化辦YSZ)及奈米氧傾(㈣)粉 拉(S 100nmu合做成的微米粉粒團如第五A圖所示,微米粉粒團中的太米 纪安定祕=奈米氧化鎳粉粒如第五β圖所示。由於奈綠粒具備= 的表面積’很容易為高溫高速火焰加熱至縣或半錄狀態。以夺米纪安 定氧化錯及奈米氧化錄粉粒混合做成_綠粒縣例,當雜 進入大氣«火财,馬上分解鱗多奈綠安定祕财奈錄化j 粒’這些奈米錄經大氣⑽加熱而翁融辭熔雜態,最後在多 孔底材上沈積形成紀安定氧化鉛/氧化錄(YSZ㈣)奈米複合薄膜(如第六圖 所示)。在高溫氫氣還原環境下(以7%氫氣及93%氯氣還原,還原謂為 800C) ’ YSZ/NiO奈米複合薄膜中的氧原子會與氫原子作用產生氏〇,如 此可得具«制、絲雜子、奈純奴氧化餘子之辟定氧化錯/ 絲米通道複合_(如第二鼠1三B目卿)尬蚊氧化_奈米通 道複合薄膜=陽極結構(如第三A圖所示)’該奈米通道可提供氫氣及水氣較 均勻的流通管道,此奈米通道複合_可作為固態氧化物燃料電池之陽極 細。記安定氧化題積:鎳體積為5㈣時,大氣電漿無形成之奶删 奈米通道複合_之導電度比鮮丨刀形成之Ys廳微米複合_高(如第 七圖所示)。依據Xiaohua Deng及Anthony Petric共同提出的三相界面幾 何模式(參考文獻,Deng and Petrie,“Geometricai m〇deling 〇f 加 triple-phase-boundaiy in solid oxide fuel cells», Journal of P〇wer Source, 140 二97, 2005)汁异YSZ/Ni奈米通道複合薄膜之陽極結構及YSZ/Ni微米複合薄 200814414 =之陽極結構的三祕面錢之絲如f八圖獅,座標點Μ表示烈纖 不米通1¾合編之陽極結構的三相界面長度之對數值(假設裏奈米 通道複口,械之陽極結構具25 %的孔隙,且YSz·平均粒徑大小為% 來计YSZ/Ni奈米通道複合薄膜之陽極結構之三相界面長度的對數 -值),座標點⑸至a3表示奶鹰微米複合薄膜之陽極結構的三相界面長度 之對數值’結果顯不YSZ/Ni奈米通道複合細之陽極結構具有較高的三項 、—長又對數值’其提供更多的三相界面氫氣氧化反應的位置。奈米通道 禝合結構比單獨金屬或陶竞單相奈米結構來得隱定,以奈雜安定氧化錯 馨為彳]低概狀悲呈現單相奈米結構之紀安定氧化錯如燒至1圓。〔以上時, $於昍粒的成長會即靠現微米複合_結構,但ysz臟^奈米結構複合 溥膜在燒至11’且維持丨小時後,YSZ及動晶粒仍小於⑽麵(如第 九圖所示)。 本發明使用之大氣電漿噴塗祕如第十騎示,該大氣電漿系統包括 弘!火矩裝置10’該電浆火炬裝置1〇設有一处嫣陰極1〇卜一銅陽極搬 及:火距出口 103,該電漿火炬裝置10係用以喷射一大氣電裝火焰104; 一電源11係連接該钍鎢陰極101及該銅陽極102; 一點火器12之兩側邊分 別連接於4琶源11和忒敍鶬陰極101,一氣瓶連接於一第一送粉機Μ, •用以輸送微米粉粒團至該火距出口祕,且該氣瓶13和該第一送粉機14之 間更η又有一氣體壓力调整為15及一質量流量控制器16,用以調整氣體壓力 及氣體流量,其中該氣瓶13更可連接於—第二送粉機17,該氣瓶13和該 第二送粉機17之間設有該氣體壓力調整器15及該質量流量控制器16 ; 一 第一注粉器141設於該火距出口 1〇3之外側,並和該第一送粉機14相接_, 係以外注粉的方式來輸送微米粉粒團;一第二注粉器171設於該火距出口 103之内侧’並和鮮二送粉機17減,係簡注粉財絲輸送微米粉 粒團及一 χ-γ掃描機台18可配合該大氣電漿火焰104來調整及掃描其上一 夕孔底材19的位置,該多孔底材19和該χ-γ掃描機台18之間更設有一加 熱器20,用來預熱該多孔底材19 ;該電漿火炬裝置1〇更可連接一冷卻水 200814414 系統30來降低該電漿火炬裝置1〇的溫度,以防止其因熱而受損。 4¾永火炬表置可使用一直流電源,其係利用鼓鶴陰極與銅陽極間的 迅弧將通過陰極與陽極間的氣體加熱成高溫高速火焰。通過陰極與陽極間 的氣體可為純氬氣、氬氫的混合氣、氬氦的混合氣,或是氬氮的混合氣。 氬氣流量之範圍為38〜8〇 slpm (Slpm為標準大氣壓下之每分鐘升流量),氫 氣流里之fe圍為4〜20 slpm,氦氣流量之範圍為8〜40 slpm。該電漿火炬裝 置工作電流範圍為400〜9〇〇A,該電黎火炬裝置工作電壓範圍為38〜7〇v, 該電聚火炬裝置工作電功率為20〜40kw,火炬出口與多孔底材之間的距離 為6〜15 Cm,而Χ·Υ掃描機台掃描速度之範圍為300〜3000 cm/min,該χ-γ 掃描機台可先掃X方向再掃γ方向或先掃¥方向再掃χ方向,該χ_γ掃 描機台可掃描多孔底材上各點,掃描次數依沈積的膜厚而定,以得到一均 勻膜厚之奈米通道複合細。彡減材預熱之溫料勘〜7⑽。c,微米粉粒 團進料速度為1〜10 g/min。 於本發明之較佳實施例中,大氣電漿喷塗系統製作YSZ-Ni奈米通道複 合薄膜之陽極結構時,在大氣環境下該M火魄置的氬氣較佳流量為 41〜45 slpm,氫氣較佳之流量為8〜12 sipm,電漿火炬裝置較佳工作電流為 420A’電敎炬裝置較佳工作電壓為62v’電漿火炬裝置較佳工作電功率 為26 kW’火炬出口與多孔底材之間的較佳距離為9啦,並使用p職卜1264 型送粉機,輸送的YSZ_Ni0微米粉團其直徑為2〇〜4〇 μηι,送粉量為2〜5 g/min,該YSZ-NiO微米粉粒團由顆粒直徑約4〇〜6〇nm之8〇1〇1%釔安定 氧化錯粉粒、獅錄約2G〜5G nm之氧化鎳粉粒及聚乙騎黏結劑所組 成’ YSZ_NiQ微綠粒_人大氣電敎㈣位置在該火㈣σ上方約2 cm處,為使用一内注粉的方式。喷塗時電默火矩固定不動,而χ_γ掃描機 台在X及γ方向線性運動速率可調整,線性運動速率為4〇〇~1〇〇〇 cm/min, X及γ方向的掃描運動範圍也可調整,最大範圍可至15 cm,代表性的掃 描運動軌跡示於第十—騎示,其中符號1代表微米L多孔基材,Μ 12 200814414 為測試點,b2為掃描起點,b3為掃描賴,Δχ為χ方向移動的間格距離, 其為3〜5麵。平面掃描的次數視膜厚而定,χ及γ方向線性運動速率為 5⑻c„V麵時’ 6〜10次平面掃描即可得2〇〜3〇 _膜厚之Ysz_Ni〇奈米通 逕複合溥膜,第六圖即為依上述工作操作參數製成之观概^夺米複 膜。將YSZ細奈米複合_置於·c真空爐内,通以7 %魏及9: 氬氣還原氣體,約3〜4小時後即可得具奈米制、奈米鎳粒子、夺米 定氧化錯粒子的W奈米通道複合薄膜(如第二圖及第三圖B所示)及 (如_ A所示)職〇奈米複 :==原:之咖圖如第十二A圖所示奈米複合薄 胺被虱乳逖原後之XRD圖如第+ —The anode structure of the nanochannel composite film of the present invention comprises: a porous substrate 1 and a nucleus composite fine 2. The nanochannel composite _ 2 is located on the fresh hole substrate i, and the Qianmitong composite film 2 has a plurality of nanopores 2ι and a plurality of nanochannels. The porous substrate is selected from the group consisting of neutrophil green oxidation. Do the bamboo also & delete the heart shout YSZ) / recorded composite substrate, porous recording substrate, porous non-recorded steel substrate, porous iron recorded alloy substrate and more _ chrome alloy lion domain group shot - The porous substrate is made of a conductive and permeable substrate having a thickness of 0.5 to 2 mm. The nanochannel composite film 2 is selected from the group consisting of a nanometer yttrium oxidized/nickel composite film and a ruthenium/yttria-doped composite film. The nanometer light 22 series is a nano-porous channel (the diameter of which is 8~3 () (4), which can raise the uniform flow of hydrogen, water or other gases and liquids in the solid oxide fuel cell. And can increase the number of three-phase interfaces (Thrce_phase Βο-, TPB) of the anode electrode of the solid oxide fuel cell and increase the electrochemical reactivity of the anode electrode, so that the polarity resistance of the anode (four) arizati〇nresist followed by ohmic resistance (〇hmresistance) ) Reduce the loss. The nanochannel composite film of the present invention may be a cermet composite film because of the oxidation of the age and the oxidation of the doping. In a preferred embodiment of the anode structure of the composite film of the present invention, the porous substrate used is more, and the composition is stabilized by oxidation/recording (YSZ/N transmission, and the naphthalene on the porous substrate) The mitone-composite composite film is Ji'anding yttrium oxide/recorded (YSz/N〇 composite film. The preferred embodiment of the present invention = the SEM image of the conjugated film of the glutinous rice is as shown in the second figure*, and the nanochannel composite is shown in the figure. Thin ones have nanopores 2l (black part h nano nickel particles 23 (grey part) and nanometer stability oxidized 2 攸 self-color mixed). Third Bielin bribe turn complex; ^ 200814414 film = anode junction The SEM image of the preferred embodiment and the anodic structure of the nanochannel composite film of the present invention are processed by SEM, and the z-material and the deep nano-channel composite film 2 have a plurality of catastrophic nanometers. Channel 22. • The method for manufacturing the atmosphere of the invention of the channel composite _ yang reduction, the steps of which include (as shown in the fourth figure): Μ supply - micron granules _ nano oxide mixed powder and a binder; S2 heats the micron particle into a molten or rounded state; S3 provides a porous substrate, preheats the porous substrate; sprays the micron powder particles of the half or a smear on the porous substrate; and S5 is reduced by hydrogen to form the nanochannel composite film The anode structure. The manufacturing method of the atmospheric electro-polymerization spraying using the anode structure of the rice channel composite film, the system, the ^φ back temperature 5 catches the fire tends to be a heating tool, and uses the powder feeder to send the micron powder pellets into the high via After the solution, the micro-green syllabus will be sprayed into the original composition and then sprayed in the sub-basic nano-oxide powder to be heated to a molten or semi-glazed state. The most thin (4) recognizable 1 substrate, deposited on the porous substrate Forming a nanostructure Π 赖 赖 赖 赖 赖 Π Π Π Π Π Π Π Π Π Π Π Π Π 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气 氢气The mixed powder particles are selected from the group consisting of nanometer sulphur oxides and nanometer oxygen powders, nano- and nano-nickel nickel-nickel alloys Γ Γ 之 之 阳极 阳极 阳极 锐 锐 锐 锐 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 Non-meter copper oxide, this powder, nano...4 Wei ship mixed, Nai green mixed oxygen _ Nano-copper oxide 9 200814414 Mixed powder and nano-solid oxides..., the group of carbon-based materials and nano-metal oxides combined with the combination of the group. ~(10),, and win = diameter is less than _Qing. The viscosity __ is selected from polyacetone _y two eGG\PVA), organic binders and other adhesives can be fired by Al1 plasma. The group of the group is composed of a towel. The microporous particle group may further be provided with a hole forming material. The hole forming material is selected from the group consisting of toner, money and carbon tube. The 'Ming Jiasi channel compound yin yang smashed the hole late. /, this electric power of the k-enrichment example from the nano-doped oxidation YSZ) and nano-oxygen ((4)) powder pull (S 100nmu made of micron The powder granules are as shown in Fig. 5A, and the Taimian stability secret of the micron powder granules = nano nickel oxide powder particles as shown in the fifth β diagram. Since the green particles have a surface area of =, it is easy to heat the high-temperature high-speed flame to the county or semi-recorded state. It is made up of a mixture of chlorpyrifos and oxidized granules, and it is made into a mixture of granules and granules. When it enters the atmosphere, it will be decomposed into the atmosphere, and it will immediately decompose the scales, and the greens will be secreted. After heating through the atmosphere (10), Weng Rong melts the heteromorphism, and finally deposits a film of dianzepine oxide/oxidation (YSZ(tetra)) nano composite film on the porous substrate (as shown in the sixth figure). In the high-temperature hydrogen reduction environment (reduced by 7% hydrogen and 93% chlorine, the reduction is 800C). The oxygen atoms in the YSZ/NiO nanocomposite film react with hydrogen atoms to produce a sputum.丝子子, Neiwu slave oxidized yttrium oxidative error / silk rice channel composite _ (such as the second mouse 1 three B mesh) 尬 mosquito oxidation _ nanochannel composite film = anode structure (such as the third A map Shown) 'The nanochannel provides a uniform flow of hydrogen and water, this nanochannel composite _ can be used as the anode of the solid oxide fuel cell. Remember the stability of the oxidized product: when the nickel volume is 5 (four), the atmospheric plasma is not formed by the milk. The conductivity of the nanochannel composite _ is higher than that of the Ys hall formed by the fresh trowel _ high (as shown in Figure 7). Based on the three-phase interface geometry model proposed by Xiaohua Deng and Anthony Petric (references, Deng and Petrie, “Geometricai m〇deling 〇f plus triple-phase-boundaiy in solid oxide fuel cells», Journal of P〇wer Source, 140 2,97, 2005) The anode structure of the juice-like YSZ/Ni nanochannel composite film and the YSZ/Ni micro-composite thin 200814414 = the three secrets of the anode structure, such as the f-eight lion, the coordinate point indicates that the fiber is not The logarithmic value of the three-phase interface length of the anode structure of Mitong 13⁄4 (assuming that the Rinami channel is doubled, the anode structure of the machine has 25% porosity, and the average particle size of YSz is % to calculate YSZ/Ni Nai The logarithmic-value of the three-phase interface length of the anode structure of the rice channel composite film, and the coordinate points (5) to a3 indicate the logarithmic value of the three-phase interface length of the anode structure of the milk eagle micro-composite film. The result is not YSZ/Ni nanochannel The composite fine anode structure has a higher three-term, long and logarithmic value, which provides more positions for the three-phase interfacial hydrogen oxidation reaction. The nanochannel coupling structure is obtained from the single metal or the ceramic single phase nanostructure. Hidden The naphthene is stable and the oxidized scent is 彳] the low-profile sorrow shows the single-phase nanostructure, and the stability of the oxidation is as high as 1 round. [In the above, the growth of the granules will be based on the current micro-composite _ structure, However, after the ysz dirty ^ nanostructure composite ruthenium film is burned to 11' and maintained for 丨 hours, the YSZ and dynamic grains are still smaller than the (10) plane (as shown in the ninth figure). The atmospheric plasma spray used in the present invention is as secret as the first According to Shiqi, the atmospheric plasma system includes a Hong! Fire Torque Device 10'. The plasma torch device 1 is provided with a cathode cathode, a copper anode, and a fire outlet 103. The plasma torch device 10 For spraying an atmospheric electric flame 104; a power source 11 is connected to the thorium tungsten cathode 101 and the copper anode 102; two sides of an igniter 12 are respectively connected to the 4 琶 source 11 and the 忒 鶬 cathode 101, a gas cylinder connection In a first powder feeder •, • for conveying micron granules to the rim outlet, and between the cylinder 13 and the first powder feeder 14, a gas pressure is adjusted to 15 and one. a mass flow controller 16 for adjusting gas pressure and gas flow, wherein the gas cylinder 13 is further connectable to - The powder feeder 17, the gas pressure regulator 15 and the mass flow controller 16 are disposed between the gas cylinder 13 and the second powder feeder 17. A first powder injector 141 is disposed at the fire outlet 1 The outer side of the third side is connected to the first powder feeder 14 to transport the micron particles; the second powder injector 171 is disposed on the inner side of the fire outlet 103. The two powder feeding machine 17 is reduced, and the micro-powder conveying micron powder granules and the χ-gamma scanning machine 18 can be adjusted with the atmospheric plasma flame 104 to adjust and scan the position of the upper hole substrate 19. A heater 20 is further disposed between the porous substrate 19 and the χ-γ scanning machine 18 for preheating the porous substrate 19; the plasma torch device 1 is further connected to a cooling water 200814414 system 30. The temperature of the plasma torch device is lowered to prevent it from being damaged by heat. The 43⁄4 permanent torch set can use a DC power supply that uses a rapid arc between the cathode of the drum and the copper anode to heat the gas between the cathode and the anode into a high-temperature, high-speed flame. The gas passing between the cathode and the anode may be pure argon, a mixture of argon and hydrogen, a mixture of argon and helium, or a mixture of argon and nitrogen. The flow rate of argon gas is 38~8 〇 slpm (Slpm is the flow rate per minute under standard atmospheric pressure), the circumference of the hydrogen gas flow is 4~20 slpm, and the flow rate of helium gas is 8~40 slpm. The operating range of the plasma torch device is 400~9〇〇A, the working voltage range of the electric torch device is 38~7〇v, the working power of the electric gathering torch device is 20~40kw, the torch exit and the porous substrate The distance between the two is 6~15 cm, and the scanning speed of the scanning machine is 300~3000 cm/min. The χ-γ scanning machine can scan the X direction and then sweep the γ direction or sweep the direction first. In the broom direction, the χ_γ scanning machine can scan each point on the porous substrate, and the number of scans depends on the deposited film thickness to obtain a uniform film thickness of the nanochannel composite.温 彡 预 预 预 预 预 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ c, the micron powder pellet feed rate is 1~10 g/min. In a preferred embodiment of the present invention, when the atmospheric plasma spray system is used to fabricate the anode structure of the YSZ-Ni nanochannel composite film, the preferred flow rate of the argon gas of the M fire is 41 to 45 slpm in an atmospheric environment. The preferred flow rate of hydrogen is 8~12 sipm, and the preferred working current of the plasma torch device is 420A'. The preferred working voltage of the electric torch device is 62v'. The better working electric power of the plasma torch device is 26 kW' torch exit and porous bottom. The preferred distance between the materials is 9 and the p-type 1264 type powder feeder is used. The YSZ_Ni0 micron powder is transported with a diameter of 2〇~4〇μηι and the powder feeding amount is 2~5 g/min. YSZ-NiO micron powder granules are composed of 8〇1〇1% 钇 定 氧化 氧化 氧化 氧化 、 、 、 、 、 、 、 、 、 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 YS The composition of 'YSZ_NiQ micro-green particles _ human atmospheric electricity 敎 (four) position is about 2 cm above the fire (four) σ, in order to use an internal injection method. The electric flame moment is fixed when spraying, and the linear motion rate of the χ_γ scanning machine can be adjusted in the X and γ directions. The linear motion rate is 4〇〇~1〇〇〇cm/min, and the scanning motion range in the X and γ directions. It can also be adjusted up to a maximum range of 15 cm. The representative scanning motion trajectory is shown in the tenth-riding sign, where the symbol 1 represents the micron L porous substrate, Μ 12 200814414 is the test point, b2 is the scanning starting point, and b3 is the scanning Lai, Δχ is the inter-grid distance in the direction of the ,, which is 3 to 5 faces. The number of plane scans depends on the thickness of the film. The linear motion rate in the χ and γ directions is 5 (8) c „V surface. 6~10 times plane scanning can obtain 2〇~3〇_film thickness of Ysz_Ni〇 nanometer diameter composite 溥Membrane, the sixth picture is the view of the above work parameters. The YSZ fine nano composite _ is placed in the vacuum furnace, with 7 % Wei and 9: argon reduction gas After about 3 to 4 hours, a W nanochannel composite film having nano-made, nano-nickel particles, and smectic oxidized particles (as shown in the second and third panels B) and (for example, _ A) can be obtained. Show) Jobs Nano-recovery: == Original: The coffee chart is shown in Figure 12A.

原步驟後氧_已_2。計圖.’料二B _祕氯氣還 tgΜ二^ Ά通麵合賴之陽極結構及其大M tf K 減小陽極餘,崎低鴻㈣導電度、 極在高溫+ 屯此的耗損,及可減缓陽極電 Γ 轉粒子凝崎極之使用壽命。 惟以上所述者,僅為本發明夺八一 + 漿喷塗之製造方法之—好,偏H賴之陽極結構及其大氣電 圍,舉凡依本發”請專^^並_來限定本發明實施之範 【圖式簡單說明】 圖 膜之陽極結構較佳實施例之YSZ/Ni奈米 薄膜之陽赌構較佳實關之YSZ/M奈米 f 一圖為本發^ _道複合_之陽極結構示音 第二圖為本發明奈米通道複合薄 1心 通道複合薄膜之8£]^圖( 第二圖A為本發明奈米通道複合 200814414 τ 通道複合薄膜之陽極結構之SEM剖視圖。 第三圖B為本發日賠米通道複合_之_結構較佳實施例之yszm奈米 通道複合薄膜之SEM剖視圖。 第四圖為本發明奈米通道複合薄膜之陽極結構之大氣電㈣塗之製造方法 之步驟流程圖。 第五圖A為本*明奈米通道複合核之陽極結構之較佳實施例之⑽靡幻 微米粉粒團之SEM圖。 第五圖B為本*明奈米通道袓合相之陽極結構之較佳實施例之ys靡幻 奈米粉粒之SEM圖。 第’、圖為本^明奈米通逗複合賴之陽極結構之較佳實施例之YSZ/Ni〇奈 米複合薄膜之SEM圖。 第圖為本毛明奈米通道衩合溥膜之陽極結構之較佳實施例之烈應i奈 a米通道複合薄膜與YSZ/Ni微米複合薄膜之導電度對溫度之比較圖。 乐八圖為本發明奈米通道複合薄膜之陽極結構之較佳實施例之^謂奈 米通道複合薄膜之陽極結構與Ys繼微米複合薄膜之陽極結構之 卜三相界面長度對數值對YSZ/Ni粒徑尺寸之比較圖。 弟九圖為本發明奈米通道複合_之陽極結構氫氣還原前之較佳實施例之 ^ YS雇1〇示米結構衩合薄膜之Ysz及NiO晶粒對溫度之變化圖。 π十圖為柄明奈米輕複合祕之陽極結構之大氣電漿製造方法之大氣 電漿喷塗系統圖。 第十-圖為本發明奈米通道複合_之陽極結構之大氣電錄造方法之 Χ-Υ掃描機台運動執跡圖。 第十一 A圖為本發明奈米通道複合薄膜之陽極結構之較佳實施例之 YSZ/NiO奈米袓合薄膜被氫氣還原前之圖。 不十一 B圖為本發明奈米通道複合薄膜之陽極結構之較佳實施例之 YSZ/NiC^$複合薄膜被Allit原後之XRJ)圖。 200814414 【主要元件符號說明】 1 多孔底材 2 奈米通道複合薄膜 21奈米孔洞 22奈米通道 23奈米鎳粒子 24奈米釔安定氧化锆 10電漿火炬裝置 103火距出口 104大氣電漿火焰 11 .電源 12點火器 13 氣瓶 14第一送粉機 141第一注粉器 15氣體壓力調整器 16質量流量控制器 17第二送粉機 171第二注粉器 18 X-Y掃描機台 19多孔底材 ~20加熱器 30冷卻水系統Oxygen _ has been _2 after the original step.计图. 'Material II B _ secret chlorine gas also tg Μ 2 ^ Ά 面 合 之 之 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极 阳极It can slow down the life of the anode Γ Γ 粒子 粒子 粒子. However, the above-mentioned ones are only the manufacturing method of the invention of the invention, and the anode structure and the atmospheric electric fence of the method are as follows. BRIEF DESCRIPTION OF THE EMBODIMENT OF THE INVENTION [A brief description of the drawings] The anode structure of the film is preferably the YSZ/Ni nano film of the preferred embodiment. The YSZ/M nanometer f is a good image of the present invention. The second structure of the anode structure shows the 8th] of the nanochannel composite thin 1 channel composite film of the present invention (the second figure A is the SEM of the anode structure of the nanochannel composite 200814414 τ channel composite film of the present invention) SEM. Fig. B is a SEM cross-sectional view of the yszm nanochannel composite film of the preferred embodiment of the present invention. The fourth figure is the atmospheric structure of the anode structure of the nanochannel composite film of the present invention. (4) Flow chart of the steps of the manufacturing method of the coating. The fifth drawing A is an SEM image of the (10) 靡 微米 micron powder granules of the preferred embodiment of the anode structure of the nucleus channel composite core. The preferred embodiment of the anode structure of the rice channel is ys 靡 靡 奈 粉SEM image. The SEM image of the YSZ/Ni〇 nanocomposite film of the preferred embodiment of the anode structure of the present invention is shown in Fig. 1. The figure is the 毛 毛 奈 之 毛 毛The preferred embodiment of the anode structure is a comparison of the conductivity of the nano-channel composite film and the YSZ/Ni micro-composite film. The Leba diagram is preferred for the anode structure of the nanochannel composite film of the present invention. The comparison between the anode structure of the nanochannel composite film and the anode structure of the Ys micron composite film and the logarithmic value of the YSZ/Ni particle size is shown in the example. The composite structure of the composite anode is hydrogen-reduced prior to hydrogen reduction. YS employs 1 〇 shows the change of the temperature of the Ysz and NiO grains of the rice structure-bonded film. The π-th diagram is the anode structure of the stalk-light nano composite The atmospheric plasma spraying system diagram of the atmospheric plasma manufacturing method. The tenth-picture is the 执-Υ scanning machine movement trace diagram of the atmospheric electric recording method of the anode structure of the present invention. An A picture shows the yang of the nano channel composite film of the present invention The YSZ/NiO nanocomposite film of the preferred embodiment of the polar structure is reduced before hydrogen gas reduction. FIG. 11B is a YSZ/NiC^$ of a preferred embodiment of the anode structure of the nanochannel composite film of the present invention. Composite film by Allit original XRJ) Figure 200814414 [Main component symbol description] 1 Porous substrate 2 Nano channel composite film 21 nm hole 22 nm channel 23 nm nickel particles 24 nm 钇 zirconia 10 electric Pulp torch device 103 fire distance outlet 104 atmospheric plasma flame 11. Power supply 12 igniter 13 gas cylinder 14 first powder feeder 141 first powder injector 15 gas pressure regulator 16 mass flow controller 17 second powder feeder 171 Second powder injector 18 XY scanning machine 19 porous substrate ~ 20 heater 30 cooling water system

Claims (1)

200814414 十、申請專利範圍: 1. 一種奈米通道複合薄膜之陽極結構,包括·· 一多孔底材;及 -奈米通^複合_位於該纽底材上,且該奈米通道複合薄膜具有 複數個奈米孔洞及複數個奈米通道。 2·,申%專利賴第所述之奈米通道複合賴之陽極結構,其中該 夕孔底材係延自多孔微米袭乙安定氧化歡鎳複合底材、多孔錄底材、200814414 X. Patent application scope: 1. The anode structure of a nanochannel composite film, including a porous substrate; and - nanocomb composite _ located on the substrate, and the nanochannel composite film It has a plurality of nanopores and a plurality of nanochannels. 2, the anode structure of the nanochannel composite according to the patent of the patent, wherein the substrate is extended from the porous micron-stranded oxidized nickel oxide composite substrate, porous recording substrate, 多孔不銹鋼底材、多孔鐵鎳合金底材及多孔鐵鉻合金底材所組成之群 組之其中之一者。 3.如申請專利刻第丨項所述之奈米喊複合薄膜之陽極結構,其中該 多孔底材為一導電透氣底材。 4·如申請專利範圍第丨項所述之奈米通11複合薄膜之陽極結構,其中該 多孔底材的厚度範圍為0.5〜2_。 人 5·如申請專利範圍第丨項所述之奈米通道複合触之陽極結構,复中节 奈米通道複合薄膜係選自奈米紀安定氧化錯/鎳複合薄膜及奈米桃 化鈽/鎳複合薄膜所組成之群組之其中之一者。 6.如申請專利範圍第!項所述之奈米通_合薄膜之陽極結構,其中兮 奈米通道的直徑範圍為8〜3〇nm。 7. 如申請專纖圍第丨項所述之奈米通道複合薄膜之陽極結構,其” 奈米通道複合薄膜之膜厚為2〇〜3() μηι。 人 8. -=料合細之陽_構之大氣電漿魅之製造紐,其步驟 提供-微米粉粒團,额米粉粒團係包含—奈米氧化物混合— 潫J:么士念,ί · 1 /、 將該微米粉粒團加熱成一熔融或半熔融狀態; 將該炫融辭熔融狀態之賴米難團噴塗在—多孔底材上;及 16 200814414 經由氫氣還原’製作出該奈米通道複合薄膜之陽極結構。 9·如申請專利範圍第8項所述之太半诵.# 將喰涂之制、生古、土 ^ 通運複节職之陽極結構之大氣電 攸方法,其中該奈米氧化物混合粉粒係選自奈米纪安定氧化 『=^^合粉粒、奈嶋雜之氧化鈽與奈米氧化鎳混合粉 ,:二只鈿女认化锆與奈米氧化鎳混合粉粒、奈米固態氡化物燃料電 池德極㈣與奈糊__粒、奈純蚊氧傾與奈米氧化銅 之混δ粉粒、奈米銃安定氧化錯與奈米氧化銅之混合粉粒、奈米轉雜 之乳化飾與奈米氧化銅之混合粉粒及奈米固態氡化物燃料電池之陽極 材料與奈米金屬氧化物混合粉粒所組成之率且之1中之一者 ω·如申請專利範圍第8項所述之奈米贼複合薄默陽極結構之大氣電 漿噴塗之製造方法,其中該微米粉粒團之直徑為ι〜⑽ nm ° η·如申請專利範圍第8項所述之奈米通_合薄膜之陽極結構之大氣電 漿嘴塗之製造方法,其中該奈米氧化物混合粉粒之直徑小於或等於_ 泛如申請專利範圍第8項所述之奈米秘複合薄膜之陽極結構之大 «塗之製造方法,其中該黏結劑之材料係選自聚乙稀醇、有機黏結 料及其他具黏結性且能被大氣電褒火焰燒掉之材料所組成之群組之复 中之一者。 “ η.如申請專利範圍第8項所述之奈米喊複合細之陽極結構之大 «塗之製造方法,其中該氫氣還原時間為2〜1〇小時。 Η.如申請細請第8項所述之奈米通錢合細之陽極結構之大 漿嘴塗之製造方法,其中該氫氣還原溫度為彻〜麵。c。 K如申請專利範圍第8項所述之奈米通道複合薄膜之陽極結構之大卜 漿喷塗之製造方法,其中該氫氣還原步,驟使用氮氣及氮氣之混合^ 還原反應。 W 16•如申請專利範圍第8項所述之奈米通道複合薄膜⑽極結構之大氣電 17 200814414 «塗之製造方法,其中該電聚喷塗之一工作電流為獅〜9〇〇a及—工 作電壓為38〜70 V。 • 17.如巾請專利範圍第8項所述之奈米通道複合_之陽極結構之大氣電 水喷土之衣xe方法’其中δ亥電黎噴塗使用之氣體係選自氯氣、氮氯混合 .' t、氬氦及氬氮混合氣所組成之群組之其中之一者,該氬氣之流量為 38侧Pm,氫氣之流量為4〜2G slpm,氦氣之流量為8〜4〇 一。 队如申請專利範圍第8項所述之奈米通道複合薄膜之陽極結構之大氣電 =塗之製造方法,其中該電漿噴塗之—火炬出口與該多孔底材間之距 離為6〜15 cm。 19·=專=圍第8項所述之奈米通道複合薄膜之陽極結構之大氣電 之::方法’其中將該微米粉粒團加熱成—熔融或半熔_態之 乳化物之々驟歧包括—將纽底材預熱之步驟。 20.如中請專娜圍第8項所述之奈米贼複合軸 ===方法,其中該微米粉粒團之—進料速度為 陽極結構之大氣電 速产Ϊ 3〇Π〇Γ ^喷塗步财之—切掃描機台之掃描 22·通道複合_之陽極結構之大氣電 令太米通=1: 孔洞形成材料於該微米粉團中以增加 管所組成之群組之其巾之—者。 自錄、碳纖及碳 18One of a group consisting of a porous stainless steel substrate, a porous iron-nickel alloy substrate, and a porous iron-chromium alloy substrate. 3. The anode structure of a nano-composite film as described in the patent application, wherein the porous substrate is a conductive gas permeable substrate. 4. The anode structure of the nanocomb 11 composite film according to the invention of claim 2, wherein the porous substrate has a thickness ranging from 0.5 to 2 mm. Human 5 · The nano-channel composite contact anode structure described in the scope of claim 2, the complex mid-section nanochannel composite film is selected from the group consisting of a nanometer stability oxidation/nickel composite film and a nano-powder One of a group of nickel composite films. 6. If you apply for a patent range! The nanostructure of the nanowire-bonded film, wherein the diameter of the nanochannel is in the range of 8 to 3 nm. 7. If the anode structure of the nanochannel composite film described in the special article is applied, the film thickness of the nanochannel composite film is 2〇~3() μηι. People 8. -=Materials Yang_Construction of Atmospheric Plasma Charcoal, its steps provide - micron powder pellets, rice flour pellets contain - nano oxide blend - 潫J: 么士念, ί · 1 /, the micron powder The pellet is heated to a molten or semi-molten state; the lyophilic group of the smelting state is sprayed on the porous substrate; and 16 200814414 is hydrogen-reduced to produce the anode structure of the nanochannel composite film. · For example, the method of applying for the patent scope of the eighth paragraph of the Taixuan. # The system of the anode of the 喰 之 、 生 生 生 生 生 生 生 阳极 阳极 阳极 阳极 阳极 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气 大气It is selected from the group consisting of nanometer anti-oxidation "=^^ powder particles, naphthoquinone cerium oxide and nano-nickel oxide mixed powder: two virgin zirconia and nano-nickel oxide mixed powder, nano-solid bismuth Fuel cell deer (four) and nai paste __ granules, nai pure mosquito oxidant dew and nano oxidized copper mixed δ powder , a mixture of nanometer yttrium oxidized and nanometer copper oxide, a mixture of nanometer emulsified and nano oxidized copper, and an anode material and a nano metal oxide of a nano solid hydride fuel cell a method of manufacturing a mixture of powder particles and one of ω. The method for producing an atmospheric plasma spray of a nano-small composite anode structure according to claim 8 of the patent application scope, wherein the micron particle group The method for producing an atmospheric electrode tip coating having an anode structure of a nanotube-composite film according to the invention of claim 8 wherein the diameter of the nano oxide mixed powder is smaller than a diameter of ι~(10) nm ° η Or equal to _ the manufacturing method of the anode structure of the nano-composite composite film as described in claim 8 of the patent application, wherein the material of the adhesive is selected from the group consisting of polyethylene glycol, organic binder and other bonding One of the complexes of the group of materials that can be burned by the flame of the atmosphere. " η. The nano-structure of the nano-combination fine as described in item 8 of the patent application scope" Manufacturing method, wherein the hydrogen reduction Inter is 2~1〇 hours.如 A method for manufacturing a large-nozzle coating of an anode structure in which the nanometer money is combined as described in the application of the eighth aspect, wherein the hydrogen reduction temperature is a thorough surface. c. K is a method for producing a large-sized slurry of an anode structure of a nanochannel composite film according to claim 8, wherein the hydrogen reduction step is carried out by using a mixture of nitrogen and nitrogen. W 16•The nanochannel composite film (10) as described in claim 8 of the invention, the atmospheric structure of the pole structure 17 200814414 «The manufacturing method of the coating, wherein the working current of the electropolymer coating is lion ~ 9〇〇a and - The working voltage is 38~70 V. • 17. For the towel according to the scope of the patent scope, the nano-channel composite _ the anode structure of the atmospheric electric water spray clothing xe method 'where the gas system used by δ hai electric spray is selected from chlorine, nitrogen and chlorine mixed One of the group consisting of argon-argon and argon-nitrogen mixed gas, the flow rate of the argon gas is 38 side Pm, the flow rate of hydrogen gas is 4~2G slpm, and the flow rate of helium gas is 8~4〇 One. The method of manufacturing the atmosphere of the anode structure of the nanochannel composite film according to claim 8 of the patent application, wherein the distance between the torch exit and the porous substrate is 6 to 15 cm . 19·=Special = the atmospheric structure of the anode structure of the nanochannel composite film described in Item 8: Method 'In which the micron powder pellet is heated into a melted or semi-melted emulsion The difference includes the step of preheating the substrate. 20. For example, please refer to the nano-synthesis axis === method described in Item 8 of the special navy, wherein the feed rate of the micron powder is the atmospheric electric velocity of the anode structure Ϊ 3〇Π〇Γ ^ Spraying the Steps - Scanning the Scanning Machine 22 - Channel Compounding - The Atomic Structure of the Anode Structure Makes the Metering Pass = 1: Hole forming material in the micron powder group to increase the group of the tube - the one. Self-recording, carbon fiber and carbon 18
TW095134349A 2006-09-15 2006-09-15 Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method TW200814414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095134349A TW200814414A (en) 2006-09-15 2006-09-15 Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095134349A TW200814414A (en) 2006-09-15 2006-09-15 Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method

Publications (2)

Publication Number Publication Date
TW200814414A true TW200814414A (en) 2008-03-16
TWI338404B TWI338404B (en) 2011-03-01

Family

ID=44768547

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095134349A TW200814414A (en) 2006-09-15 2006-09-15 Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method

Country Status (1)

Country Link
TW (1) TW200814414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462384B (en) * 2012-05-04 2014-11-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462384B (en) * 2012-05-04 2014-11-21

Also Published As

Publication number Publication date
TWI338404B (en) 2011-03-01

Similar Documents

Publication Publication Date Title
TWI373880B (en) Solid oxide fuel cell and manufacture method thereof
TWI385851B (en) Solid oxide fuel cell and manufacture method thereof
Fan et al. Infiltration of La0· 6Sr0· 4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell
Guan et al. Effect of contact between electrode and interconnect on performance of SOFC stacks
Li et al. Effect of composition of NiO/YSZ anode on the polarization characteristics of SOFC fabricated by atmospheric plasma spraying
US8053142B2 (en) Nanostructured composite anode with nano gas channels and atmosphere plasma spray manufacturing method thereof
Zhang et al. Thermally sprayed high-performance porous metal-supported solid oxide fuel cells with nanostructured La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− δ cathodes
JP2010113955A (en) Interconnector for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell
US9496559B2 (en) Method for manufacturing solid oxide fuel cell anode with high stability and high efficiency
US20150263351A1 (en) Anode for direct carbon fuel cell and direct carbon fuel cell including the same
CN108103524A (en) A kind of electrolytic tank of solid oxide and preparation method thereof
CN101521282B (en) Metal electrode catalyst and preparation method thereof
Jiang et al. Sm0. 5Sr0. 5CoO3–Sm0. 2Ce0. 8O1. 9 composite oxygen electrodes for solid oxide electrolysis cells
Tan et al. Nano-structured LSM-YSZ refined with PdO/ZrO2 oxygen electrode for intermediate temperature reversible solid oxide cells
JP4487465B2 (en) Solid oxide fuel cell
JP5028063B2 (en) Anode structure provided with nanochannel composite thin film and method for producing atmospheric plasma spraying method thereof
JP2004127635A (en) Cell plate for solid oxide fuel cell and its manufacturing method
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
Ai et al. A La0. 8Sr0. 2MnO3/La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
US9174841B2 (en) Solid oxide fuel cell anode with high stability and high efficiency and method for manufacturing the same
CN103887548B (en) A kind of ceria-based electrolyte film and Synthesis and applications thereof with preferred orientation
JP4399698B2 (en) Air electrode current collector and solid electrolyte fuel cell incorporating the air electrode current collector
TW200950202A (en) Electrolyte for an inexpensive, electrolyte-supported high-temperature fuel cell having high power and high mechanical strength
EP1939967A1 (en) Nanostructured composite anode with nano gas channels and atmosphere plasma spray manufacturing method thereof
JP2003346843A (en) Cylindrical solid oxide fuel battery and method of operating the fuel battery