200813370 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種具有光導的設備。 【先前技術】 光導用來導引輻射或光,且光導可能斷裂或受損。 【發明內容】 本發明的實施形式之目的在於使用一種具有光導之已 改良的設備。 此目的藉由申請專利範圍第1項之設備來達成。此設 備的其它形式以及具有此設備之發光裝置描述在其它各項 申請專利範圍中。 本發明的一實施形式可使用一種具有光導和偵測裝置 的設備,其中 -該光導包括一核心區以及一圍繞此核心區的外罩區, 且該核心區之折射率大於該外罩區的折射率,以及 -該偵測裝置可偵測該光導之受損情況。 在上述的設備中,光導的核心區例如藉由核心區至外 罩區之折射率躍遷現象所造成的反射和干涉來導引光線或 輻射’例如,短波之輻射(可包括紫外線輻射)。由於該偵測 裝置’則能可靠地偵測該光導的受損情況。 在本發明的另一實施形式中,該設備具有第一導電性 連接件以作爲該偵測裝置的組件,此第一導電性連接件在 光導上或光導中延伸,例如,在光導之外罩區中或外罩區 上延伸’此時第一導電性連接件之功能顯示出該光導的功 能。此外’可存在著多個對第一導電性連接件之功能進行 200813370 檢測用的元件,此時第一導電性連接件之功能顯示出該光 導的功能。 在電纜形式的光導(例如’光導棒或玻璃纖維)的情況 下,第一導電性連接件可有利地沿著光導的主軸而延伸且 因此可顯示該光導之特別敏感的受損情況。第一導電性連 接件之功能檢測用的元件例如可包含一種電流供應器,其 發出一種電脈波至該第一導電性連接件(例如,——種導線) 且因此可在該第一導電性連接件之長度上檢測該光導的外 Φ 形。第一導電性連接件(例如,——種導線)之長度於是可經由 導線另一末端上的脈波反射以及運行時間來決定。 此外,第二導電性連接件可另外經由光導而延伸,此 第二導電性連接件和第一導電性連接件形成一種電路且檢 測該第一導電性連接件之功能用的元件另外包括一種裝 置,其可偵測該電路中流過的電流。此裝置例如可以是一 種電晶體電路,其在該電路成閉迴路且因此該光導顯示出 未受損時只對輻射源供應能量。第一和第二導電性連接件 Φ 例如可在光導的設備著轉換材料的末端上一起形成一種電 路,這例如可藉由一種金屬套筒或金屬環來達成。 第二導電性連接件亦可藉由該光導而與該第一導電性 連接件相隔一距離而延伸著,且檢測該第一導電性連接件 之功能用的元件可偵測一種施加在該第一和第二導電性連 接件之間的電壓。例如,在互相隔開的第一和第二導電性 連接件之間可測得電容效應,且因此可藉由電容變化或Rc 共振位移來檢測該光導之良否。 有利的方式是多個導電性連接件或只有一個導電性連 -6- 200813370 接件較該核心區更容易碎裂。在此種情況下須確 導中斷之前或受損之前,在機械負載下各導電性 斷開。各導電性連接件亦可在光導之外罩區上或 延伸或例如在該外罩區和該核心區之間延伸。 所謂”碎裂”通常是指固體的性質,其在應力下 不是發生塑性或彈性變形。就此而言,此 (Sproedigkeit)” 可參考 Stuttgart Georg-Thieme-t Roempp Chemielexikon,新增修之第9版中的說明 於此處一倂作爲參考。 此外,本發明設定多個實施形式,其中該光 一端和第二端,第二端上存在一種轉換材料,其 導所傳送的第一波長的輻射轉換成第二波長的光 一端上存在著一第一偵測器而成爲該偵測裝置的 可偵測第二波長的光。第二波長的光例如可藉由 以經由光導而傳送回來且然後由第一偵測器所偵浴 具有光導和偵測裝置之設備亦可以是一發光 成,此時在該光導之第一端上另外存在著一輻射 出第一波長的輻射。 在上述第一波長的輻射(較佳是短波長的輻射 紫外線輪射)之轉換過程中’藉由該轉換材料所產 的第二波長的光(例如,可見波長的光)由該轉換材 地在全部的方向中發出。在轉換時,已轉換的光 該光導中。該已轉換的光又經由該光導而傳送至 另一端上的第一偵測器中。在此種情況下,藉由 器來偵測該已轉換的光時顯示出:該光導的功能 :在光 連接件須 外罩區中 會斷裂而 字”碎裂 3版社, ,其內容 導具有第 將經由光 ,且在第 組成,其 光學回授 ! !!出。 裝置的組 源,其發 ,例如, 生之較長 料等向性 可射入至 該光導的 第一偵測 正常而未 200813370 受損。在第一偵測器已偵測不到任何已轉換的光時,則顯 示出:例如,由於光導的中斷,該已轉換的光已不可能由 該轉換材料傳送至第一偵測器。在此種情況下,當第一偵 測器或偵測裝置可使該輻射源的能量供應中斷時特別有 利。例如,該偵測裝置可以是一種電路設備的一部份,此 電路設備供應電流至該輻射源且在未偵測到該已轉換的光 時使電路中斷。此外,該輻射源(例如,一種紫外線雷射二 極體)在起動該發光裝置時亦能以較小的功率來起動,且在 該雷射高速操作時該雷射原來所需的接通裝置被停用,取 而代之的是使用一種控制電路(其中該偵測裝置形成此控制 電路的一部份)來控制該雷射。因此,該雷射只依據已偵測 到的該已轉換的光而由該偵測裝置來驅動,且該雷射可在 該已轉換的光不再被偵測到時立即關閉。 例如,第一偵測器以可導光的方式耦接至一光導的末 端,此時在光導的另一末端上配置著該轉換材料。該光導 可以是較大的光導複合件(例如,光導束)之一部份。在此種 情況下,此光導束之其它光導可與輻射源相連接且例如只 有一光導纖維與第一偵測器相連接。亦可在光導中安裝一 分光器,其將該光導所傳送回來的已反射的光之至少一部 份導引至第一偵測器。 當該輻射源和第一偵測器存在於光導之相同末端或存 在於光導束上時特別有利。經由該轉換材料所轉換的可見 光反射而回時可特別簡單地藉由光導的實際總長度來偵測 光導之功能。此外,光學元件(例如’光學構件或透明體) 之造型上的高自由度在光導的另一末端上亦屬可能。 200813370 又,在光導的末端和該轉換材料之間亦可存在一層或 多個層,例如,介電反射鏡或其它反射層,其可透過第一 波長的輻射,但會使第二波長的已轉換的光之一部份反 射。例如’該介電反射鏡亦可使已轉換的光之紅色成份反 射,結果可使由光導而來的發射量變大,但黃色成份不會 反射,黃色成份經由光導而傳送回來且例如可由第一偵測 器所偵測到。然而,亦可形成一種反射層,使其可透過第 一波長的輻射,但可使第二波長的光之波長範圍的一些成 份反射,其它成份又入射至光導中。在上述二種情況下, 該裝置的輻射效率可藉由第二波長之已轉換的輻射回射至 光導中的量變少而提高。 此外,另外亦可存在著第二偵測器以偵測環境光。此 種偵測器例如可偵測一種經由未與該輻射源相連接的光導 而傳送的環境光且可作爲由第一偵測器所偵測的已轉換的 光的參考點。藉由第一和第二偵測器,則可簡易地提高已 轉換的光之偵測的敏感度且因此可獲得一種光導的功能控 制用的控制系統,其特別敏感。 光轉換的效率在上述發光裝置中可以下述方式來提 高’即’該轉換材料不是配置在該發出輻射的輻射源的直 接相鄰處而是藉由光導來與該輻射源相隔開。於是,較長 的第二波長之已轉換的光的再吸收可藉由該輻射源來下 降。此外’可見光的產生位置在空間中與該輻射源之熱產 生的位置相隔開。結果,該轉換材料的操作溫度可下降, 這樣可使該轉換材料的可靠性提高。該轉換材料與該輻射 源相隔開時的組態亦可稱爲,,遠磷光體組態”。藉由此種組 -9- 200813370 態,則第一波長的輻射可轉換成第二波長的輻射(較佳是可 見光),此時第二波長大於相鄰的輻射的第一波長。 在本發明的另一實施形式中,發出輻射的輻射源可發 出一種在210至500nm範圍的短波長的輻射,較佳的範圍 是在210至420nm,更佳的範圍是在360至420nm,或420 至5 0 0 n m的藍光範圍。 由光導和偵測裝置所構成的設備之存在對短波長的輻 射源(例如,紫外線輻射源)特別有利,此乃因此時可快速地 φ 偵測出:光導是否受損且因此對觀看者而言亦同樣向外發 出具有損傷性的短波長的光。 該偵測裝置可偵測出該光導之受損情況,該偵測裝置 亦可控制該發出短波長的輻射的輻射源之能量供應(電流及 /或電壓供應)時特別有利,此時在光導受損時該偵測裝置可 對能量供應進行調整。結果,由已受損的光導所發出的短 波長的輻射之有潛在危險性的輻射量可被中斷。然而,此 種控制在一種未發出短波長的輻射的輻射源(其發出可見光 0 的波長)中亦是可能的。 此外,該輻射源亦可在大約400至45 Onm的藍色可見 光範圍中發出高能量的光。轉換後所發出的第二波長的已 轉換的光(較佳是可見光)所具有的波長較原來由輻射源所 發出的輻射之波長還長,且此波長依據該輻射可位於400 至80〇nm之範圍中。 該轉換材料特別是可以爲一種發光材料,其可由輻射 源發出的輻射(例如,螢光)來激發。在紫外線附近,可使用 以氧化物爲主的發光物質,例如,鋇-鎂-鋁酸鹽,其以銪來 -10- 200813370 摻雜’例如,BaMgAli〇〇17:Eu2+。亦可使用緦-鎂-鋁酸鹽,其 同樣以銪來摻雜,例如,SrMgAli〇〇17:Eu2+。另外亦可使用 由總、鎖或錦所形成的分子式是(Sr,Ba,Ca)5(P〇4)3Cl:Eu2 + 之氯磷灰石。亦可使用鋇銘酸鹽,例如,B a 3 A12 8 Ο 4 5: E u2 +。 當上述的全部化合物都在鄰近的紫外線中泵送時,其都發 出藍色波長範圍中的光。發出綠光的發光材料例如可以是 SrAh〇4:Eu2+。發出綠色至綠-黃色之發光材料例如可以爲分 子式是Ca8Mg(Si〇4)4Cl2:Eu2 +,Mn2 +之氯矽酸鹽,其以銪或錳 來摻雜;以及分子式通常是AGa2S4:Eu2 +,Ce2 +之硫鎵酸鹽, 其中A可由鈣、緦、鋇、鋅和鎂中選取。此外,例如可使 用分子式通常是((A,S〇S:Eu2+,其中A =鹼土金屬離子)之以 鹼土取代的緦-硫化物或分子式是M2Si5N5N8:Eu2 + (其中M = Ca 或Sr)之氮化物矽酸鹽以作爲發出紅光之發光材料和轉換材 料。 可使用多種轉換材料或發光材料,使其在以短波長的 輻射來激發時可發出可見的白光且因此可將短波長的輻射 轉換成可見的白光。例如,一種由47 Wt%之緦-氯磷灰石, 48 Wt%之緦-鋁酸鹽和5 Wt%之氮化物-矽酸鹽所形成的混 \ 合物在405nm受激發時可發出一種在CIE規範(Norm)彩色圖 表中彩色座標X = 〇 · 3 5 4和y = Q · 3 8 6之白光。在本發明的另一 實施形式中,藉由第一波長之輻射的轉換,則亦可產生第 二波長的可見光,使得在觀看者中不會留下白光的印象而 是顯示出綠紅色、黃色或其它任意的彩色。此外,此發光 裝置亦可發出光線,使混合光是由未轉換的短波長的輻射 和已轉換的光所構成。 -11- 200813370 上述光導例如包含光纖,所含有的材料選自玻璃和塑 料。因此,該光導亦可包括玻璃纖維電纜或光導桿。在本 發明的一些實施形式中,爲了使輻射源所發出的短波長的 光(例如,紫外線)可射入且被傳輸,則適合使用以玻璃爲主 的特別良好的光導。此光導可像纖維一樣地構成,其中此 纖維的橫切面顯示出一種具有高折射率的核心區,其由折 射率較此核心區還小的一種外罩區所圍繞著。此核心區因 此可藉由千擾和反射來傳輸已射入的光和短波長的輻射的 各種模式。 在本發明的另一形式中,亦可存在多個光導,其例如 可組合成一種光導束,其中每一各別的光導可依據該轉換 材料的耦合入射作用以各別地對該輻射源所發出的第一波 長的輻射進行輸送。本發明的發光裝置的另一實施形式亦 可包括多個輻射源,其中對每一光導可存在一輻射源。由 輻射源所發出的第一波長的輻射可藉由光導而在光導束中 成爲束狀,且在該輻射經由光導束而輸送之後藉由該轉換 材料而轉換成較長的第二波長的光。因此,不同的輻射源 之入射至不同光導中的輻射藉由不同的轉換材料而轉換成 不同的第二波長之可見光,此時藉由不同波長之該可見光 之混合,則可對觀看者形成一種均勻的白光印象。於此, 對此種混合作.用而言,例如仍可使用以下將描述的光學構 件及/或透明體。 在具有由光導和偵測裝置所構成的設備之特定的發光 裝置中,該光導具有第一末端和第二末端,其中在光導的 第一末端上存在著一輻射源,其發出第一波長的輻射,且 -12- 200813370 在第二末端上另外存在著一光學構件,其與已轉換的光或 與該光導所發出的輻射交互地作用。此光學構件例如若該 轉換材料存在時可與已轉換的光或與該光導中所發出的第 一波長(例如,短波長的紫外線)的輻射藉由散射,折射,反 射,轉向或繞射而交互作用。此光學構件例如可包含一透 鏡,其例如可使已轉換的光成束。當該發光裝置包含多個 例如組合成束的光導時,則該束例如可插入至該光學構件 之一種共同的鑽孔中。 在本發明的另一實施形式中,該轉換材料可配置在該 光導之一端上且此端配置在該光學構件之焦點處。 在上述的發光裝置中,藉由轉換材料所產生的波長較 長的可見光平行地由該光學構件(例如,透鏡)發出,使該已 轉換的光可在一特殊的發射方向中平行對準地發出。 此外,該光導的末端亦可與該轉換材料配置在該光學 構件之焦點外部,且例如可用來使藉由轉換而產生的可見 光散焦。以此種方式,則可使一種點光源之輻射擴大,結 果可使更大的面積由該點光源所照射,其中該點光源藉由 短波長的輻射(例如,紫外線輻射)轉換成可見的輻射而形成 在作爲光導用的玻璃纖維之一端上。 輻射源例如可包括一種短波長的輻射源,特別是紫外 線雷射二極體,例如,以N爲主的雷射二極體,例如,inGaN 雷射二極體。特別是可使用一般形式是AhInyGazN,其中X, y, zk〇且x + y + z=l之材料,例如,發射波長是365nm至425nm 之雷射二極體之光產生層中所具有的銦含量是 〇至 1 0 A t 〇 m % (例如,X = 0 ; y = 0 - 0 · 1; z = 0 · 9 -1 · 0)。紫外線雷射二極 -13- 200813370 體特別適合用來發出一種已對準的紫外線輻射,其可良好 地入射至一光導中。 本發明之發光裝置例如可達成一種特別良好的光學成 像品質’此時須以下述方式來製成一種亮的點狀光源,即, 該輻射源之第一波長之輻射(例如,紫外線輻射)可經由一種 光導(其例如是一種玻璃纖維)來輸送。特別良好的點狀光源 可藉由使用紫外線雷射(其包括光導和轉換材料)來達成。點 狀光源具有一種狹窄地受到限制的空間範圍,其中該照明 區域和未照明之區域之間存在著一種較大的對比。 輻射源例如可與一種散熱件相連接以使已損耗的熱被 排出。輻射源可直接與散熱件相連接或保持著熱接觸。 在本發明的發光裝置的另一實施形式中,該轉換材料 可包括奈米微粒。奈米微粒的優點是,其可使光散射量減 少且因此使該轉換材料所發出的可見光之發光強度成爲均 勻狀。有利的方式是使奈米微粒所具有的微粒直徑在數個 奈米的範圍中,例如,在2至50nm之範圍中,更佳時是介 於2 n m至1 0 n m之間,此乃因此種小的奈米微粒可特別良好 地使已轉換的可見光之光散射量減少。此外,微粒直徑會 影響已轉換的光的波長,這例如是由於量子效應所造成。 因此,在與直徑較大的奈米微粒相比較時,直徑較小的奈 米微粒所產生的已轉換的光具有較短的波長。 在本發明的發光裝置的另一實施形式中,該光導的一 端可導光地與一透明體相連接。例如,該光導的一端可由 該透明體所圍繞著且例如可插入至該透明體的鑽孔中。該 透明體例如是一種玻璃體或塑料體,其中該透明體可以是 -14- 200813370 中空體或以實心方式來形成。該透明體可有利地透過該已 轉換的可見光或亦可透過該由光導所輸送的第一波長的輻 射,較佳是短波長的輻射,例如,紫外線輻射。在該透明 體的表面之至少一部份區域上可設有一種使短波長的輻射 反射用的層或一種使第一波長之輻射反射用的層或適當的 吸收層,以便防止或降低一種未轉換的短波長的光由該發 光裝置中發出。 較有利的方式是該光導的末端導光性地與該透明體相 連接或由該透明體所圍繞著,輻射源之在光導中所傳送的 輻射由該透明體中發出。 , 此外,該光導的末端(其上存在著該透明體)上存在著該 轉換材料以將第一波長的輻射(例如,紫外線輻射)轉換成第 二波長的光(例如,可見光)。 又,至少在該透明體之表面之部份區域上配置著對該 .已轉換的光具有反射性的層。此層可使藉由該轉換材料而 在該光導的末端上所產生的已轉換的可見光在一可照明的 面上成束。 此外,該透明體可具有一輻射發射面,其幾何形式可 廣泛地決定該可照明的面的形式。例如,亦可在該透明體 上形成圓形、卵形或例如長方形或三角形的光發射面,其 形成一種自由形式的面,其可用來對環境進行照明。以此 種方式,則例如可使點光源轉換成覆蓋著較大面積的面光 源’其中各個點光源藉由轉換而在光導的末端上發出所產 生的可見光。該透明體例如可形成一種拋物面體,其具有 圓形或卵形的光發射面,以形成適當的面光源。例如,該 -15- 200813370 透明體可具有一種縱向延伸的例如是棒形之光發射面,其 可用來照明各種較點光源所能照明的面積還大的面積。 例如,該透明體中亦可存在至少一個中空區,中空區 中配置著該轉換材料,其中該中空區可與光導或光導的一 末端在光學性質上相連接。該中空區例如可縱向地延伸且 沿著同樣是縱向延伸的透明體之主軸而延伸,因此可決定 該點光源的擴大率。 例如,該透明體中可存在一可導光的介質,例如,光 導桿或光導(例如,玻璃纖維),其沿著該透明體的主軸而延 伸,其中該導光的介質在光學性質上可與光導的末端相連 接。可使該導光的介質之表面粗糙化且因此不需一種散射 作用,藉此可特別簡單地使光由該透明體中的該導光的介 質發出。在該導光的介質中或其表面上可配置一種轉換材 料。 該轉換材料例如可以層的形式配置在由光導所輸送的 第一波長的輻射之輻射通道中。在此種情況下,較有利的 方式是藉由一種反射器使該輻射成束而將該輻射導引至轉 換層且在該處轉換成可見光。 在本發明的發光裝置的另一實施形式中,此發光裝置 之輻射通道中可反射第一波長的輻射且可使可見光透過的 層是連接在該轉換材料之後。此層例如可以是一種短波長 輻射用的介電反射鏡層。此種層可有利地防止未轉換的短 波長的輻射由該發光裝置中發出且該未轉換的短波長的輻 射例如反射回到該轉換材料上。藉由上述可使短波長的輻 射反射用的層,則一方面可使該具有潛在損害性的短波長 -16- 200813370 的輻射不會由該發光裝置中發出或使發出量減少,且同時 藉由再反射而使光轉換的效率提高。 本發明另一實施形式之標的是一種照明裝置,其包括 上述各種發光裝置之一種,特別是具有本發明的設備。此 照明裝置例如可以是一種燈、桌上發光體、天花板發光體 或其它任意的照明裝置。 本發明另一實施形式之標的是一種顯示裝置,其包括 上述各種發光裝置之一種。特別有利的是使用一種發光裝 置作爲此顯示裝置的組件,該發光裝置發出一種可轉換成 狹窄光條的光。此種光條例如特別適合射入至一種玻璃板/ 塑料板中以對LCD進行背景照明。 於此’本發明另一實施形式的標的亦是一種顯示裝 置’其中背景照明源包括一種如上所述的發光裝置。此顯 示裝置較佳是非自發光型且例如是一種液晶顯示器。 本發明的另一實施形式是一種具有探照燈的運輸工 具’其包括一種如上所述的發光裝置。此運輸工具例如是 一種機動車或軌道車且具有一種包含冷卻器的馬達。因 此’當該發光裝置的輻射源與該冷卻器在熱性上相接觸時 是有利的。在此種情況下,可特別簡易地使該發光裝置的 馬達和輻射源以該冷卻器來冷卻。 本發明以下將依據圖式中的實施例來詳述。各圖式未 按比例繪出,且相同的元件或作用相同的元件在各圖式中 設有相同的參考符號。 【實施方式】 第1 A和1 B圖顯示一光導1 〇,其包括一核心區1 0E和 -17- 200813370 一圍繞該核心區1 0E之外罩區1 0C,其中該核心區之折射率 大於該外罩區的折射率。該核心區可藉由反射和干擾來對 光線或輻射(例如,像紫外線輻射之類的短波長輻射)進行導 引。外罩區10C之表面上存在著一第一導電性連接件25 A, 其圍繞該外罩區而捲繞著或環繞該光導而配置著,因此可 在不同的位置處偵測到該光導可能的受損情況或中斷區。 第1 B圖顯示該光導在以200所示的位置處的橫切面。亦可 在該外罩區1 0C上使二個導電性連接件延伸,以取代導電 φ 性連接件25 A,此二個導電性連接件如上所述形成一種閉迴 路之電路,或可在平行延伸之連接件之間決定上述的電容 效應且因此可偵測到該光導的受損情況。 相對於第1A和1 B圖而言,第2A和2B圖中所示的光 導中第一導電性連接件25A和第二導電性連接件25B在該 光導10之外罩區10C中延伸。第2B圖顯示第2A圖中所示 .的光導之橫切面。亦可只有一導電性連接件經由該外罩區 10C而延伸以取代該二個導電性連接件25A和25B。此二個 φ 導電性連接件例如可平行於該光導的主軸3 00而延伸,或如 第1A和1B圖所示亦可圍繞該光導而捲繞著。 在第3A圖和3B圖之截面圖所示的光導中,第一導電 性連接件25A和與其平行的第二導電性連接件25B在該光 導1 0之外罩區1 0 C之表面上延伸。這些導電性連接件例如 可如上所述組合成一電路,或是可測得一種在各平行的連 接件中所產生的電容效應且因此能可靠地偵測該光導的受 損情況。 第4圖顯不一種發光裝置1,其中該輻射源5 (例如,一 -18- 200813370 種紫外線二極體雷射)發出紫外線輻射丨丨,其入射至該光導 10中。該輻射源5可導熱地與一散熱件6相連接。由紫外 線輻射源5所發出的光Π入射至該光導1 〇之末端1 〇 a上。 該光導10亦包含一外罩區10C。由該光導所輸送的紫外 線輻射1 1在光導1 0之第二末端1 〇 B上由該光導1 0發出, 且由一種轉換材料1 5轉換成波長較長的可見光20。 該透明體35藉由該插接件17而固定在該光導1〇上。 在該光導和該透明體之間存在著該轉換材料1 5,其可施加 _ 在該光導上或藉由一鑽孔而設置在該透明體35(玻璃體或塑 料體)中。此透明體35可透過該已轉換的光20且在其表面 上可有利地具有一種可吸收或可反射短波長之輻射的層(此 處未顯示)。輻射通道中一種光學構件3 0 (例如,透鏡)連接 在該透明體3 5之後。該轉換材料1 5存在於該光學構件3 0 之焦點,使與該光學構件30互相作用的已轉換的光20平行 地對準一優先方向而發出。該透鏡和透明體決定了該光導 10之末端10B上所產生的點光源之擴大率。此光學構件30 φ 和透明體3 5亦能以單件方式來形成。 第5圖顯示本發明之發光裝置的另一實施形式,其中 存在著一偵測裝置25,其可偵測該光導1 〇之受損情況。於 此,第一導電性連接件25A和第二導電性連接件25B都以 導線來形成且互相平行地在該光導1 0之外罩區1 0C中延 伸。此二個導電性連接件25 A和25B可組合成一種電路且 在電性上與該元件25C相接觸以檢測該導電性連接件之功 能。由第5圖中可知,該元件25C(例如,一種電晶體電路) 同時可控制該輻射源5之能量供應。當由於光導1 〇之受損 19- 200813370 而使導電性連接件2 5 A和2 5 B所構成的閉合之電路中斷 時,則對該輻射源5之能量供應可立即中斷且因此可防止 有損害性的短波長的輻射1 1由該發光裝置1中發出。一種 作爲光學構件30用的透鏡直接連接至該轉換材料1 5,該透 鏡用來使該已轉換的光對準地成束狀發出。 第6圖中所示的發光裝置1具有另一偵測器25C,其可 偵測該光導1 0之受損情況。在此種情況下,可使用一種光 導束,其中該光導束之光導10之末端10A是與可見光之偵 測器25C可導光地相連接著。該輻射源5發出短波長的輻 射11,其在該光導束之末端10A上入射至該光導中且在該 光導10之另一末端10B上藉由該轉換材料15而轉換成波長 較長的可見光20。此處可辨認出:該已轉換的可見光20之 一部份由作爲光學構件30用的透鏡所聚焦且由該發光裝置 對準地發出。該已轉換的可見光20之另一部份由該轉換材 料1 5射回至該光導1 0中且因此可由該偵測器2 5 C所偵測 到。此偵測器25C同樣控制該輻射源5(紫外線雷射二極體) 之能量供應且在未偵測到該已轉換的可見光2 0時可使電流 供應中斷,以使紫外光不會繼續由雷射中發出。 若不使用成束透鏡或聚焦透鏡,則在本發明的發光裝 置中亦可使用散焦透鏡,色散透鏡或色散透鏡系統以及可 調整的變焦透鏡。 第7圖顯示一種照明裝置100,其中整合著一種依據本 發明的一實施形式之發光裝置。在此種情況下,由該輻射 源5所發出的短波長的輻射在該光導的末端1 0 A上入射至 該光導10中且在經由該光導10而輸送之後在該光導之另一 -20- 200813370 末端1 QB上藉由一種轉換材料1 5而轉換成可見光該轉換 材料15直接位於該光導1〇之末端1QB上,以使無意中發出 的短波長的輻射最小化。已轉換的可見光2Q入射至該透明 體35 (其例如是一種全玻璃體)中且藉由具有反射性的層 35A而反射至該透明體35之表面上,使該已轉換的光對準 地發射至一待照明的面40上。該透明體3 5因此具有一種拋 物面的形式。該轉換材料1 5位於此拋物鏡之焦點處,以使 已轉換的輻射達成一種特別良好的聚焦作用。此外,在該 透明體35之光發射面35D上配置著一種可使短波長的輻射 被反射的層4 5,其可防止該未轉換的短波長的輻射無意中 發出。該透明體35亦可以是一種中空體,例如,一種曲面 鏡。此中空體可在該光發射面35D上具有一種可透過可見 光的外蓋,其塗佈著可使該短波長的輻射被反射的層45。 此一具有反射性的層45例如可以是一種介電反射鏡,其依 據該短波長的輻射源之波長來調整。此具有反射性的層3 5 A 可以是一種反射面或可藉由折射率躍遷現象使已轉換的輻 射發生全反射或亦可包含一種反射面和一種折射率躍遷現 象的組合。例如,一部份區域可具有反射面,且另一部份 區域可具有平坦的光入射角且因此無損耗地藉由折射率躍 遷現象而反射。此外,一種低折射率的中間層亦可配置在 該具有反射性的層35A下方。該透明體35之幾何上之3維 形式可另外形成,使該拋物面曲率可在二個圍繞該光軸而 旋轉的切面中偏移,這樣可產生一種橢圓形的光分佈。 上述的照明裝置1 00可產生明顯的光斑40且例如可用 作閱讀照明燈、探照燈、戲院照明燈和聚光燈。 -21- 200813370 相較於第7圖之照明裝置而言,第8圖所示的照明裝置 1 00可對一種待照明的長方形面積40進行照明。在此種情 況下,該透明體35具有一種拉長的拋物體形式,其光發射 面3 5D具有長方形的橫切面。第8圖中可明顯看出,該光 發射面35D之幾何形式可廣泛地決定該待照明的面積40之 幾何形式,其中該待照明的面積40所延伸的長度較該光發 射面35D還長。在此種照明裝置100中,短波長的光1 1經 由一光導而傳送且在光導10之末端10 B上入射至該透明體 35中。該透明體3 5中存在著一種鑽孔,其沿著該透明體3 5 之主軸而延伸且鑽孔中以一種轉換材料1 5來塡入,該轉換 材料1 5將短波長的輻射Π轉換成可見光20。該轉換材料 1 5例如可包含nm微粒,此乃因nm微粒中可使光散射現象 減低且因此可使該鑽孔的發光強度隨著轉換現象而變成更 均勻。在該透明體35之表面上可藉由折射率躍遷現象或藉 由反射層或此二者使已轉換的可見光20反射且經由該光發 射面35D而發出。該透明體35之光發射面35D設有一種可 使短波長的輻射被反射的層45,其可防止該未轉換的輻射 被發出。 藉由上述的設備,可形成一種已良好地界定之發光 區’其同時可藉由包括nm微粒的轉換材料來達成一*種均句 的亮度。此外,藉由將該桿形的照明裝置1 00定位在拋物體 中可達成明顯的亮-暗-邊界。200813370 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to an apparatus having a light guide. [Prior Art] A light guide is used to guide radiation or light, and the light guide may be broken or damaged. SUMMARY OF THE INVENTION An object of embodiments of the present invention is to use an improved apparatus having a light guide. This object is achieved by the device of claim 1 of the patent scope. Other forms of this device, as well as illumination devices having such devices, are described in the scope of the other patent applications. An embodiment of the invention may use an apparatus having a light guide and detection device, wherein - the light guide includes a core region and a cover region surrounding the core region, and the core region has a refractive index greater than a refractive index of the outer cover region And - the detecting device can detect the damage of the light guide. In the above apparatus, the core region of the light guide directs light or radiation, e.g., short-wave radiation (which may include ultraviolet radiation), for example, by reflection and interference caused by the refractive index transition of the core region to the outer region. The detection device can reliably detect the damage of the light guide. In another embodiment of the invention, the device has a first conductive connector as an assembly of the detecting device, the first conductive connector extending over the light guide or in the light guide, for example, outside the light guide Extending on the middle or outer cover region 'The function of the first conductive connector at this time shows the function of the light guide. Further, there may be a plurality of elements for detecting the function of the first conductive connector for 200813370, in which case the function of the first conductive connector exhibits the function of the light guide. In the case of a light guide in the form of a cable (e.g., 'light guide rod or fiberglass), the first conductive connector may advantageously extend along the major axis of the light guide and thus may exhibit particularly sensitive damage to the light guide. The functional detecting component of the first conductive connector may, for example, comprise a current supply that emits an electrical pulse wave to the first conductive connector (eg, a type of wire) and thus may be at the first conductive The outer Φ shape of the light guide is detected over the length of the sexual connector. The length of the first conductive connector (e.g., the type of wire) can then be determined by pulse reflection on the other end of the wire and the runtime. Furthermore, the second conductive connector may additionally extend via a light guide, the second conductive connector and the first conductive connector forming an electrical circuit and the component for detecting the function of the first conductive connector additionally comprises a device It can detect the current flowing in the circuit. The device may, for example, be a transistor circuit that supplies energy only to the radiation source when the circuit is in a closed loop and thus the light guide exhibits undamaged. The first and second electrically conductive connectors Φ, for example, may form a circuit together on the end of the light guide device carrying the conversion material, which may be achieved, for example, by a metal sleeve or metal ring. The second conductive connector may also extend away from the first conductive connector by the light guide, and the component for detecting the function of the first conductive connector may detect a type applied to the first conductive connector. The voltage between the first and second conductive connectors. For example, a capacitive effect can be measured between the first and second electrically conductive connectors that are spaced apart from each other, and thus the quality of the light guide can be detected by a change in capacitance or Rc resonance displacement. Advantageously, a plurality of electrically conductive connectors or only one electrically conductive connector -6-200813370 is more susceptible to chipping than the core region. In this case, the electrical conductivity is broken under mechanical load before or before the interruption. Each of the electrically conductive connectors may also extend over the outer or outer cover region of the light guide or, for example, between the outer cover region and the core region. By "fragmentation" it is generally meant the property of a solid that does not undergo plastic or elastic deformation under stress. In this regard, this (Sproedigkeit) can be referred to the Stuttgart Georg-Thieme-t Roempp Chemielexikon, the description of the new ninth edition is hereby incorporated by reference. In addition, the present invention provides a plurality of embodiments in which the light The first end and the second end have a conversion material on the second end, and the first wavelength of the radiation transmitted by the conduction of the second wavelength is converted into a first detector on one end of the light to become the detection device. Detecting light of a second wavelength. The light of the second wavelength can be illuminated by, for example, a device that is transmitted back through the light guide and then sensed by the first detector to have a light guide and a detection device. There is additionally a radiation radiating a first wavelength on the first end of the light guide. During the conversion of the first wavelength of radiation (preferably a short-wavelength radiation ultraviolet radiation), the conversion material is The second wavelength of light produced (eg, light of visible wavelength) is emitted by the conversion material in all directions. Upon conversion, the converted light is in the light guide. The converted light is again passed through the light. And transmitting to the first detector on the other end. In this case, the device detects the converted light and displays: the function of the light guide: breaks in the outer cover area of the optical connector And the word "Split 3 Edition", its content guide has the first will pass the light, and in the first composition, its optical feedback!!! Out. The source of the device, for example, the longer material isotropic can be injected into the light guide. The first detection is normal but not damaged in 200813370. When the first detector has not detected any converted light, it is shown that, for example, due to the interruption of the light guide, the converted light is no longer transferable by the conversion material to the first detector. In this case, it is particularly advantageous when the first detector or detection device can interrupt the energy supply to the radiation source. For example, the detecting means can be part of a circuit device that supplies current to the source of radiation and interrupts the circuit when the converted light is not detected. In addition, the radiation source (for example, an ultraviolet laser diode) can also be started with less power when the light-emitting device is activated, and the switch device originally required for the laser when the laser is operated at a high speed. Instead, a control circuit is used (where the detection device forms part of the control circuit) to control the laser. Therefore, the laser is driven by the detecting device only based on the detected converted light, and the laser can be turned off immediately when the converted light is no longer detected. For example, the first detector is optically coupled to the end of a light guide, and the conversion material is disposed on the other end of the light guide. The light guide can be part of a larger lightguide composite (e.g., a light guide bundle). In this case, the other light guides of the light guide bundle can be coupled to a source of radiation and, for example, only one of the optical fibers can be coupled to the first detector. A beam splitter can also be mounted in the light guide that directs at least a portion of the reflected light transmitted back by the light guide to the first detector. It is particularly advantageous when the source of radiation and the first detector are present at the same end of the light guide or on the bundle of light guides. The function of the light guide can be detected particularly simply by the actual total length of the light guide when reflected by the visible light converted by the conversion material. Furthermore, a high degree of freedom in the design of the optical element (e.g., 'optical member or transparent body) is also possible on the other end of the light guide. 200813370 Also, there may be one or more layers between the end of the light guide and the conversion material, such as a dielectric mirror or other reflective layer that transmits radiation at a first wavelength but will cause a second wavelength One of the converted lights is partially reflected. For example, the dielectric mirror can also reflect the red component of the converted light, and as a result, the amount of emission from the light guide can be increased, but the yellow component is not reflected, and the yellow component is transmitted back through the light guide and can be, for example, first. Detected by the detector. However, it is also possible to form a reflective layer that transmits radiation of the first wavelength, but which reflects some of the wavelength range of the second wavelength of light, the other components being incident into the light guide. In both cases, the radiation efficiency of the device can be increased by the amount of converted radiation from the second wavelength being reflected back into the light guide. In addition, a second detector may be present to detect ambient light. Such a detector, for example, can detect ambient light transmitted via a light guide that is not coupled to the radiation source and can serve as a reference point for the converted light detected by the first detector. By means of the first and second detectors, the sensitivity of the detection of the converted light can be easily increased and thus a control system for the function control of the light guide can be obtained, which is particularly sensitive. The efficiency of light conversion can be improved in the above-described light-emitting device by the fact that the conversion material is not disposed directly adjacent to the radiation-emitting source but is separated from the radiation source by a light guide. Thus, the reabsorption of the converted light of the longer second wavelength can be reduced by the source of radiation. Furthermore, the position at which the visible light is generated is spatially separated from the position at which the heat of the radiation source is generated. As a result, the operating temperature of the conversion material can be lowered, which can improve the reliability of the conversion material. The configuration when the conversion material is separated from the radiation source may also be referred to as a "far phosphor configuration". With this group of-9-200813370 states, the first wavelength of radiation can be converted to a second wavelength. Radiation (preferably visible light), in which case the second wavelength is greater than the first wavelength of the adjacent radiation. In another embodiment of the invention, the radiation-emitting source emits a short wavelength in the range of 210 to 500 nm. Radiation, preferably in the range of 210 to 420 nm, more preferably in the range of 360 to 420 nm, or in the range of 420 to 500 nm. The presence of devices consisting of light guides and detection devices for short wavelength radiation The source (e.g., a source of ultraviolet radiation) is particularly advantageous, so that it can be quickly detected φ whether the light guide is damaged and thus also emits a short wavelength of light that is damaging to the viewer. The measuring device can detect the damage of the light guide, and the detecting device can also control the energy supply (current and/or voltage supply) of the radiation source emitting short-wavelength radiation, which is particularly advantageous when the light guide is damaged. The detection device The energy supply can be adjusted. As a result, the potentially dangerous amount of radiation of short-wavelength radiation emitted by the damaged light guide can be interrupted. However, such control is in a radiation source that does not emit short-wavelength radiation. It is also possible (which emits a wavelength of visible light 0). In addition, the radiation source can also emit high-energy light in the blue visible range of about 400 to 45 Onm. The converted second wavelength is converted. The light (preferably visible light) has a wavelength longer than the wavelength of the radiation originally emitted by the radiation source, and the wavelength may be in the range of 400 to 80 〇 nm depending on the radiation. A luminescent material that can be excited by radiation (eg, fluorescent light) emitted by a radiation source. In the vicinity of ultraviolet light, an oxide-based luminescent material such as bismuth-magnesium-aluminate can be used, which 10- 200813370 Doping 'for example, BaMgAli〇〇17: Eu2+. It is also possible to use bismuth-magnesium-aluminate, which is also doped with yttrium, for example, SrMgAli〇〇17:Eu2+. lock The molecular formula formed by brocade is chloroapatite of (Sr,Ba,Ca)5(P〇4)3Cl:Eu2 + . You can also use bismuth acid salt, for example, B a 3 A12 8 Ο 4 5: E u2 + When all of the above compounds are pumped in the adjacent ultraviolet light, they emit light in the blue wavelength range. The green light emitting material may be, for example, SrAh〇4:Eu2+. Green to green-yellow The luminescent material may be, for example, a chlorophosphonate having a molecular formula of Ca8Mg(Si〇4)4Cl2:Eu2+, Mn2+, which is doped with lanthanum or manganese; and the molecular formula is usually AGa2S4:Eu2 +, Ce2 + thiogallate Salt, wherein A can be selected from the group consisting of calcium, barium, strontium, zinc and magnesium. Further, for example, a ruthenium-sulfide whose molecular formula is usually ((A, S〇S: Eu2+, where A = alkaline earth metal ion) is substituted with an alkaline earth or a molecular formula of M2Si5N5N8:Eu2 + (where M = Ca or Sr) can be used. Nitride silicate is used as a luminescent material and a conversion material that emits red light. A variety of conversion materials or luminescent materials can be used to emit visible white light when excited by short-wavelength radiation and thus can emit short-wavelength radiation. Converted to visible white light. For example, a mixture of 47 Wt% bismuth-chloroapatite, 48 Wt% bismuth-aluminate and 5 Wt% nitride-citrate at 405 nm When excited, a white light with color coordinates X = 〇 · 3 5 4 and y = Q · 3 8 6 in a CIE specification (Norm) color chart can be emitted. In another embodiment of the invention, by the first wavelength The conversion of the radiation can also produce visible light of the second wavelength, so that the impression of white light is not left in the viewer but a greenish red, yellow or any other color is displayed. In addition, the illumination device can also emit light. So that the mixed light is made up of unconverted short wavelengths Radiation and converted light. -11- 200813370 The above-mentioned light guide comprises, for example, an optical fiber containing materials selected from the group consisting of glass and plastic. Therefore, the light guide may also comprise a fiberglass cable or a light guiding rod. In some embodiments of the invention In order to allow the short-wavelength light (for example, ultraviolet light) emitted by the radiation source to be incident and transmitted, it is suitable to use a particularly good light guide mainly composed of glass. The light guide can be constructed like a fiber, wherein the fiber The cross-section shows a core region having a high refractive index surrounded by a cover region having a smaller refractive index than the core region. This core region can thereby transmit the incident light by interference and reflection. And various modes of short-wavelength radiation. In another form of the invention, there may also be a plurality of light guides, which may, for example, be combined into a bundle of light guides, wherein each individual light guide may be acted upon by the coupling of the conversion material. The radiation of the first wavelength emitted by the radiation source is separately transmitted. Another embodiment of the illumination device of the invention may also comprise a plurality of radiations. There may be a source of radiation for each of the light guides. The radiation of the first wavelength emitted by the source of radiation may be bundled in the bundle of light guides by the light guide and after the radiation is delivered via the bundle of light guides The material is converted into light of a longer second wavelength. Therefore, radiation incident on different light guides of different radiation sources is converted into visible light of different second wavelengths by different conversion materials, at which time different wavelengths are used. The mixing of the visible light can form a uniform white light impression to the viewer. Here, for such mixing, for example, an optical member and/or a transparent body which will be described below can still be used. In a particular illumination device of the device comprising the light guide and the detection device, the light guide has a first end and a second end, wherein a source of radiation is emitted on the first end of the light guide, which emits radiation of a first wavelength, and -12- 200813370 There is additionally an optical member on the second end that interacts with the converted light or with the radiation emitted by the light guide. The optical member may be scattered, refracted, reflected, deflected or diffracted by, for example, the converted light or the radiation of the first wavelength (for example, short-wavelength ultraviolet light) emitted from the light guide. Interaction. The optical member may, for example, comprise a lens which, for example, bundles the converted light. When the illumination device comprises a plurality of light guides, e.g., combined into a bundle, the bundle can be inserted, for example, into a common bore of the optical member. In another embodiment of the invention, the conversion material can be disposed on one end of the light guide and the end is disposed at the focus of the optical member. In the above light-emitting device, visible light having a longer wavelength generated by the conversion material is emitted in parallel by the optical member (for example, a lens) so that the converted light can be aligned in parallel in a particular emission direction. issue. Furthermore, the end of the light guide can also be disposed outside the focus of the optical member with the conversion material and can be used, for example, to defocus visible light produced by the conversion. In this way, the radiation of a point source can be enlarged, with the result that a larger area can be illuminated by the point source, wherein the point source is converted to visible radiation by short-wavelength radiation (eg, ultraviolet radiation). It is formed on one end of the glass fiber used as a light guide. The radiation source may, for example, comprise a short wavelength radiation source, in particular an ultraviolet laser diode, for example a N-based laser diode, for example an inGaN laser diode. In particular, it is possible to use a material in which the general form is AhInyGazN, wherein X, y, zk 〇 and x + y + z = 1, for example, indium in a light-generating layer of a laser diode having an emission wavelength of 365 nm to 425 nm The content is 〇 to 10 A t 〇m % (for example, X = 0; y = 0 - 0 · 1; z = 0 · 9 -1 · 0). Ultraviolet Laser Dipole -13- 200813370 The body is particularly suitable for emitting an aligned UV radiation that is well incident into a light guide. The illuminating device of the invention can, for example, achieve a particularly good optical imaging quality. In this case, a bright point-like light source must be produced in such a way that the radiation of the first wavelength of the radiation source (for example, ultraviolet radiation) can be It is delivered via a light guide, which is for example a glass fiber. Particularly good point sources can be achieved by using ultraviolet lasers, which include light guides and conversion materials. The point source has a narrowly constrained spatial extent in which there is a large contrast between the illuminated area and the unilluminated area. The radiation source can, for example, be connected to a heat sink to cause the lost heat to be discharged. The radiation source can be directly connected to the heat sink or in thermal contact. In another embodiment of the illumination device of the invention, the conversion material may comprise nanoparticulates. The advantage of the nanoparticle is that it reduces the amount of light scattering and thus makes the intensity of the visible light emitted by the conversion material uniform. Advantageously, the nanoparticles have a particle diameter in the range of a few nanometers, for example in the range of 2 to 50 nm, more preferably between 2 nm and 10 nm, which is A small number of small nanoparticles can particularly well reduce the amount of light scattered by the converted visible light. In addition, the particle diameter affects the wavelength of the converted light, for example due to quantum effects. Therefore, the converted light produced by the smaller diameter nanoparticles has a shorter wavelength when compared with the larger diameter nanoparticle. In a further embodiment of the illumination device of the invention, one end of the light guide is optically connectable to a transparent body. For example, one end of the light guide can be surrounded by the transparent body and can be inserted, for example, into a bore of the transparent body. The transparent body is, for example, a vitreous or plastic body, wherein the transparent body may be a hollow body of -14-200813370 or formed in a solid manner. The transparent body may advantageously pass through the converted visible light or also through the first wavelength of radiation delivered by the light guide, preferably short wavelength radiation, such as ultraviolet radiation. At least a portion of the surface of the transparent body may be provided with a layer for reflecting short-wavelength radiation or a layer for reflecting radiation of a first wavelength or a suitable absorbing layer to prevent or reduce an The converted short-wavelength light is emitted from the light-emitting device. Advantageously, the end of the light guide is optically coupled to or surrounded by the transparent body, and the radiation transmitted by the radiation source in the light guide is emitted from the transparent body. Further, the conversion material is present on the end of the light guide (on which the transparent body is present) to convert radiation of a first wavelength (e.g., ultraviolet radiation) into light of a second wavelength (e.g., visible light). Further, at least a portion of the surface of the transparent body is provided with a layer which is reflective to the converted light. This layer allows the converted visible light produced on the end of the light guide by the conversion material to be bundled on an illuminable surface. Furthermore, the transparent body can have a radiation emitting surface whose geometry can broadly determine the form of the illuminable surface. For example, a circular, oval or light-emitting surface such as a rectangle or a triangle may be formed on the transparent body to form a free-form surface that can be used to illuminate the environment. In this way, for example, the point source can be converted into a surface light source covering a larger area, wherein each point source emits visible light on the end of the light guide by switching. The transparent body, for example, can form a parabolic body having a circular or oval light emitting surface to form a suitable surface light source. For example, the -15-200813370 transparency may have a longitudinally extending, e.g., rod-shaped, light-emitting surface that can be used to illuminate areas of greater area that can be illuminated by a point source. For example, at least one hollow region may be present in the transparent body, the conversion material being disposed in the hollow region, wherein the hollow region may be optically coupled to one end of the light guide or the light guide. The hollow region can, for example, extend longitudinally and extend along the major axis of the transparent body which is also longitudinally extending, so that the enlargement rate of the point source can be determined. For example, a light-conducting medium may be present in the transparent body, for example, a light guiding rod or a light guide (for example, glass fiber) extending along a major axis of the transparent body, wherein the light guiding medium is optically Connected to the end of the light guide. The surface of the light-guiding medium can be roughened and thus does not require a scattering effect, whereby light can be emitted from the light-guiding medium in the transparent body in a particularly simple manner. A conversion material may be disposed in or on the surface of the light guiding medium. The conversion material can, for example, be arranged in the form of a layer in the radiation path of the radiation of the first wavelength delivered by the light guide. In this case, it is advantageous to beam the radiation by a reflector to direct the radiation to the conversion layer where it is converted into visible light. In a further embodiment of the illumination device of the invention, the radiation channel of the illumination device is reflective to the first wavelength of radiation and the visible light transmission layer is connected after the conversion material. This layer may, for example, be a dielectric mirror layer for short wavelength radiation. Such a layer advantageously prevents unconverted short wavelength radiation from being emitted from the illumination device and the unconverted short wavelength radiation being reflected back onto the conversion material, for example. By the above-mentioned layer for reflecting short-wavelength radiation, on the one hand, the potentially damaging short-wavelength-16-200813370 radiation can not be emitted or reduced by the illuminating device, and at the same time The efficiency of light conversion is improved by re-reflection. Another embodiment of the invention is directed to a lighting device comprising one of the various lighting devices described above, and in particular having the apparatus of the present invention. The illuminating device can be, for example, a lamp, a table illuminator, a ceiling illuminator or any other illuminating device. Another embodiment of the present invention is directed to a display device including one of the above various light-emitting devices. It is particularly advantageous to use a lighting device as an assembly of such a display device that emits light that can be converted into a narrow strip of light. Such a light strip is for example particularly suitable for injection into a glass/plastic panel for background illumination of the LCD. The subject matter of another embodiment of the present invention is also a display device 'where the background illumination source comprises a light-emitting device as described above. The display device is preferably of a non-self-illuminating type and is, for example, a liquid crystal display. Another embodiment of the invention is a transport tool having a searchlight' which includes a lighting device as described above. This transport is for example a motor vehicle or railcar and has a motor comprising a cooler. Therefore, it is advantageous when the radiation source of the illuminating device is in thermal contact with the chiller. In this case, the motor and the radiation source of the illuminating device can be cooled in a particularly simple manner by the cooler. The invention will be described in detail below with reference to the embodiments in the drawings. The figures are not drawn to scale, and the same elements or elements having the same function are provided with the same reference numerals in the drawings. [Embodiment] FIGS. 1A and 1B show a light guide 1 〇 including a core region 10E and -17-200813370 surrounding the core region 10E outer cover region 10C, wherein the core region has a refractive index greater than The refractive index of the outer cover region. The core region can be guided by light and radiation (e.g., short-wavelength radiation such as ultraviolet radiation) by reflection and interference. A first conductive connecting member 25A is disposed on the surface of the outer cover region 10C, and is disposed around or surrounded by the outer cover region, so that the light guide may be detected at different positions. Loss or interruption zone. Figure 1 B shows the cross section of the light guide at the position shown at 200. Two conductive connectors may be extended on the outer cover region 10C to replace the conductive φ connector 25A. The two conductive connectors form a closed circuit as described above, or may extend in parallel. The above-described capacitive effect is determined between the connectors and thus the damage of the light guide can be detected. With respect to the 1A and 1B drawings, the first conductive connecting member 25A and the second conductive connecting member 25B of the light guide shown in Figs. 2A and 2B extend in the outer cover region 10C of the light guide 10. Figure 2B shows the cross section of the light guide shown in Figure 2A. Alternatively, only one conductive connecting member may extend through the outer cover region 10C to replace the two conductive connecting members 25A and 25B. The two φ conductive connectors may extend, for example, parallel to the major axis 300 of the light guide, or may be wound around the light guide as shown in Figures 1A and 1B. In the light guides shown in the cross-sectional views of Figs. 3A and 3B, the first conductive connecting member 25A and the second conductive connecting member 25B parallel thereto extend over the surface of the cover region 10C of the light guide 10. These conductive connectors can be combined, for example, into a circuit as described above, or a capacitive effect generated in each of the parallel connectors can be measured and thus the damage of the light guide can be reliably detected. Fig. 4 shows a light-emitting device 1 in which the radiation source 5 (e.g., a -18-200813370 ultraviolet diode laser) emits ultraviolet radiation, which is incident into the light guide 10. The radiation source 5 is thermally connectable to a heat sink 6. The pupil emitted by the ultraviolet radiation source 5 is incident on the end 1 〇 a of the light guide 1 . The light guide 10 also includes a housing region 10C. The ultraviolet radiation 11 delivered by the light guide is emitted from the light guide 10 at the second end 1 〇 B of the light guide 10, and is converted by a conversion material 15 into visible light 20 having a longer wavelength. The transparent body 35 is fixed to the light guide 1 by the connector 17. Between the light guide and the transparent body there is a conversion material 15 which can be applied to the light guide or in a transparent body 35 (glass body or plastic body) by means of a drilled hole. The transparent body 35 is permeable to the converted light 20 and advantageously has a layer on its surface that absorbs or can reflect radiation of short wavelengths (not shown here). An optical member 30 (e.g., a lens) in the radiation path is connected behind the transparent body 35. The conversion material 15 is present at the focus of the optical member 30, and the converted light 20 interacting with the optical member 30 is aligned in a preferential direction in parallel. The lens and the transparent body determine the enlargement rate of the point source generated on the end 10B of the light guide 10. The optical member 30 φ and the transparent body 35 can also be formed in a single piece. Figure 5 shows another embodiment of the illumination device of the present invention in which a detection device 25 is present which detects damage to the light guide. Thus, the first conductive connecting member 25A and the second conductive connecting member 25B are both formed by wires and extend in parallel with each other in the outer cover region 10C of the light guide 10. The two conductive connectors 25 A and 25B can be combined into a circuit and electrically contacted with the element 25C to detect the function of the conductive connector. As can be seen from Figure 5, the component 25C (e.g., a transistor circuit) can simultaneously control the energy supply to the radiation source 5. When the closed circuit formed by the conductive connectors 2 5 A and 2 5 B is interrupted due to the damage of the light guide 1 19 19-200813370, the energy supply to the radiation source 5 can be immediately interrupted and thus can be prevented The damaging short-wavelength radiation 11 is emitted from the illuminating device 1. A lens for the optical member 30 is directly connected to the conversion material 15 for emitting the converted light in a bundle. The light-emitting device 1 shown in Fig. 6 has another detector 25C which can detect the damage of the light guide 10. In this case, a beam of light can be used in which the end 10A of the light guide 10 of the light guide is optically coupled to the detector 25C of visible light. The radiation source 5 emits a short-wavelength radiation 11 which is incident on the light guide at the end 10A of the light guide bundle and is converted to a longer wavelength visible light by the conversion material 15 at the other end 10B of the light guide 10 20. It is discernible here that a portion of the converted visible light 20 is focused by a lens for the optical member 30 and is aligned by the illumination device. Another portion of the converted visible light 20 is injected back into the light guide 10 by the conversion material 15 and is thus detectable by the detector 2 5 C. The detector 25C also controls the energy supply of the radiation source 5 (ultraviolet laser diode) and interrupts the current supply when the converted visible light 20 is not detected, so that the ultraviolet light does not continue to be Sent in the laser. If a beam forming lens or a focusing lens is not used, a defocusing lens, a dispersive lens or a dispersive lens system, and an adjustable zoom lens can also be used in the light emitting device of the present invention. Figure 7 shows a lighting device 100 incorporating a lighting device in accordance with an embodiment of the present invention. In this case, the short-wavelength radiation emitted by the radiation source 5 is incident into the light guide 10 at the end 10 A of the light guide and after being transported via the light guide 10, another -20 of the light guide - 200813370 The end 1 QB is converted to visible light by a conversion material 15 which is located directly on the end 1QB of the light guide 1 , to minimize inadvertently emitted short wavelength radiation. The converted visible light 2Q is incident into the transparent body 35 (which is, for example, an all-glass body) and is reflected onto the surface of the transparent body 35 by the reflective layer 35A, so that the converted light is emitted in alignment. Up to the face 40 to be illuminated. The transparent body 35 thus has a parabolic form. The conversion material 15 is located at the focus of the parabolic mirror to achieve a particularly good focusing effect on the converted radiation. Further, on the light-emitting surface 35D of the transparent body 35, a layer 45 which allows the short-wavelength radiation to be reflected is disposed, which prevents the unconverted short-wavelength radiation from being unintentionally emitted. The transparent body 35 can also be a hollow body, such as a curved mirror. The hollow body may have an outer cover permeable to visible light on the light-emitting surface 35D, which is coated with a layer 45 which allows the short-wavelength radiation to be reflected. This reflective layer 45 can be, for example, a dielectric mirror that is adjusted in accordance with the wavelength of the short wavelength radiation source. The reflective layer 35 A may be a reflective surface or may be totally reflective by the refractive index transition phenomenon or may comprise a combination of a reflective surface and a refractive index transition. For example, a portion of the area may have a reflective surface and another portion of the area may have a flat angle of incidence of light and thus be reflected without loss by a refractive index transition phenomenon. Further, a low refractive index intermediate layer may also be disposed under the reflective layer 35A. The geometrically 3-dimensional form of the transparent body 35 can be additionally formed such that the parabolic curvature can be offset in two cut planes that rotate about the optical axis, which produces an elliptical light distribution. The illumination device 100 described above can produce a distinct spot 40 and can be used, for example, as a reading light, a searchlight, a cinema light, and a spotlight. -21- 200813370 The illumination device 100 shown in Fig. 8 can illuminate a rectangular area 40 to be illuminated, compared to the illumination device of Fig. 7. In this case, the transparent body 35 has an elongated parabolic form, and its light emitting surface 35D has a rectangular cross section. As is apparent from Fig. 8, the geometric form of the light-emitting surface 35D can broadly determine the geometric form of the area 40 to be illuminated, wherein the area to be illuminated 40 extends longer than the light-emitting surface 35D. . In such an illumination device 100, short-wavelength light 1 1 is transmitted through a light guide and incident on the transparent body 35 at the end 10 B of the light guide 10. There is a hole in the transparent body 35 which extends along the main axis of the transparent body 35 and is bored in the borehole with a conversion material 15 which converts the short-wavelength radiation enthalpy. Into visible light 20. The conversion material 15 may, for example, comprise nm particles, because the light scattering phenomenon can be reduced in the nm particles and thus the luminous intensity of the hole can be made more uniform with the switching phenomenon. The converted visible light 20 can be reflected on the surface of the transparent body 35 by a refractive index transition phenomenon or by a reflective layer or both and emitted through the light emitting surface 35D. The light-emitting surface 35D of the transparent body 35 is provided with a layer 45 which allows the short-wavelength radiation to be reflected, which prevents the unconverted radiation from being emitted. With the above apparatus, a well-defined light-emitting region can be formed, which can simultaneously achieve a brightness of a uniform sentence by a conversion material including nm particles. In addition, a distinct light-dark-boundary can be achieved by positioning the rod-shaped illumination device 100 in a parabolic object.
第9圖顯示一種類似於第8圖的照明裝置1 〇〇。第9圖 中,該透明體3 5的鑽孔中存在著一種導光介質3 5 C,例如, 一種玻璃桿或玻璃纖維,其在光學上與該光導10之末端10B -22- 200813370 相連接。此導光介質如上所述可以是一種玻璃桿,其具有 一轉換層。該玻璃桿之厚度例如可小於1 mm,例如,小於 1 00 μ m。在使用雷射二極體作爲該輻射源5且由於該發光 桿之尺寸較小時,則可在特別高的亮度下達成一種很緊密 的照明裝置1 0 0。此種照明裝置例如亦可用作顯示器背景照 明源,其射入至背光板(例如,筆記型電腦)中的效率較高^ 該導光介質25C亦可未包含上述的轉換材料。在此種 設備中,該光發射面35D較佳是亦可粗糙化或包含散射中 心且因此可自動成爲一種二次發光面。此種形式在需要一 種自由形式的發光面時是有利的,此發光面在情況需要時 可以光學方式成像在待照明的面上或物件上。該導光介質 3 5C之表面較佳是同樣被粗糙化(已粗糙化的桿條或纖維)或 使該導光介質35C含有散射中心,且因此可使光較佳地由 該導光介質發出。可將短波長的輻射予以反射的層亦可與 該轉換層15和45 —起配置在該光發射面35D上。 第1 0圖顯示一種天花板照明裝置1 00,其中存在著一 種燈光懸吊110以固定至天花板上。在此種情況下,由光導 1 0所輸送的短波長的光在該光導的末端上藉由該轉換材料 15而轉換成可見光20且入射至錐體形式的透明體35中, 透明體35是一個實心體或中空體。此外,在該透明體35 上存在著一種光導固定器10D。在該透明錐形體之外表面上 於是可存在一種可使短波長的輻射被反射的層45,其使未 轉換的短波長的光被反射。 在第1 1圖所示的天花板照明裝置1 00中,短波長的輻 射11在光導10之末端10A上藉由一種可包含一散射透鏡 -23- 200813370 的光學構件30而入射至該透明體35中。透明體35可以是 中空體或實心錐形體且例如可由玻璃或塑料所構成。在中 空體的情況下,一種轉換材料1 5可配置在該中空體3 5之內 表面上,該轉換材料1 5將短波長的光1 1轉換成已轉換的光 2 0。在此中空錐形體的外表面上可存在著一種可使短波長的 輻射被反射的層45,其使未轉換的短波長的輻射被反射或 被吸收。由該透明體35可發出該已轉換的光20且因此可達 成一種擺動式照明。上述天花板照明裝置100之優點是,該 轉換材料1 5之輻射密度小於該材料1 5直接配置在該光導 10之末端10A上的情況下的輻射密度。於是,可達成一種 較高的轉換效率。 光學構件30亦可包含一種轉向稜鏡,其使短波長的輻 射在一種平角(flat angle)下入射,以使短波長的輻射在具有 反射性的層上反射回到該透明體3 5中,且在轉換之後達成 一種均勻的照明。 此外,在上述全部的實施形式中亦可將該轉換材料或 轉換奈米微粒配置在該透明體35之體積中,當該透明體35 是一種實心體時。 第1 2圖顯示一種機動車1 5 0,具有一探照燈1 6 0,其包 含一種依據本發明的實施形式而製成的發光裝置1。於此, 可辨認出該透明體3 5配置在該探照燈1 60中,且亦可選擇 性地配置著其它的光學構件30,其用來使已產生的輻射20 對準地被發射出。此外,存在著一種冷卻器170,其用來使 馬達冷卻,此時特別有利的是將該輻射源5及散熱件6配置 在該冷卻器1 70附近,以便可進行一種熱耦合且該冷卻器 -24- 200813370 170亦可使該輻射源5冷卻。 本發明當然不限於依據各實施例中所作的描述。反 之,本發明包含每一新的特徵和各特徵的每一種組合,特 別是包含各申請專利範圍-或不同實施例之各別特徵之每一 種組合。例如,就透明體35之幾何形式而言其它變動方式 亦是可能的。若不使用短波長的輻射源,則亦可使用其它 可發出可見光的輻射源,可以相對應的方式來對可見光進 行轉換。 φ 【圖式簡單說明】 第1 A至3B圖具有不同形式的導電性連接件之光導。 第4至6圖本發明之發光裝置之不同的實施形式,其 中整合著由光導和偵測裝置所構成的設備。 第7至11圖本發明具有透明體之發光裝置之其它的 實施形式。 第1 2圖具有探照燈的汽車,其包含本發明的發光裝 置。 應 【主要元件符號說明】 5 輻射源 6 散熱件 10 光導 10A 末端 10B 末端 10C 外罩區 10D 光導固定器 10E 核心區 -25- 200813370Fig. 9 shows a lighting device 1 类似于 similar to Fig. 8. In Fig. 9, there is a light guiding medium 35C in the bore of the transparent body 35, for example, a glass rod or glass fiber optically connected to the end 10B-22-200813370 of the light guide 10. . The light guiding medium may be a glass rod as described above having a conversion layer. The thickness of the glass rod can be, for example, less than 1 mm, for example, less than 100 μm. When a laser diode is used as the radiation source 5 and because the size of the light-emitting rod is small, a very compact illumination device 100 can be achieved with particularly high brightness. Such a lighting device can also be used, for example, as a background illumination source for a display, which is more efficient to enter into a backlight (e.g., a notebook computer). The light guiding medium 25C may also not include the conversion material described above. In such an apparatus, the light-emitting surface 35D preferably also roughens or contains a scattering center and thus automatically becomes a secondary light-emitting surface. This form is advantageous when a free-form illumination surface is desired which can be optically imaged onto the surface or object to be illuminated, if desired. The surface of the light guiding medium 35C is preferably roughened (roughened rods or fibers) or the light guiding medium 35C contains a scattering center, and thus light can preferably be emitted from the light guiding medium. . A layer which can reflect short-wavelength radiation can also be disposed on the light-emitting surface 35D together with the conversion layers 15 and 45. Fig. 10 shows a ceiling lighting device 100 in which a light suspension 110 is present to be fixed to the ceiling. In this case, the short-wavelength light transmitted by the light guide 10 is converted into visible light 20 by the conversion material 15 at the end of the light guide and is incident into the transparent body 35 in the form of a cone, the transparent body 35 being A solid body or hollow body. Further, a light guide holder 10D is present on the transparent body 35. On the outer surface of the transparent cone there may then be a layer 45 which allows the short wavelength radiation to be reflected, which causes the unconverted short wavelength light to be reflected. In the ceiling illumination device 100 shown in Fig. 1, short-wavelength radiation 11 is incident on the transparent body 35 at the end 10A of the light guide 10 by an optical member 30 which may include a scattering lens -23-200813370. in. The transparent body 35 may be a hollow body or a solid cone and may be composed, for example, of glass or plastic. In the case of a hollow body, a conversion material 15 may be disposed on the inner surface of the hollow body 35, and the conversion material 15 converts the short-wavelength light 1 1 into the converted light 20. There may be a layer 45 on the outer surface of the hollow cone that allows short-wavelength radiation to be reflected, which causes unconverted short-wavelength radiation to be reflected or absorbed. The converted light 20 can be emitted by the transparent body 35 and thus can be oscillated. An advantage of the ceiling lighting device 100 described above is that the radiation density of the conversion material 15 is less than the radiation density of the material 15 directly disposed on the end 10A of the light guide 10. Thus, a higher conversion efficiency can be achieved. The optical member 30 can also include a turning yoke that causes short-wavelength radiation to be incident at a flat angle such that short-wavelength radiation is reflected back onto the transparent body 35 on the reflective layer. And achieve a uniform illumination after the conversion. Further, in all of the above embodiments, the conversion material or the converted nanoparticle may be disposed in the volume of the transparent body 35 when the transparent body 35 is a solid body. Figure 12 shows a motor vehicle 150 with a searchlight 160, which comprises a lighting device 1 made in accordance with an embodiment of the invention. Here, it is recognized that the transparent body 35 is disposed in the searchlight 160, and other optical members 30 are selectively disposed to cause the generated radiation 20 to be emitted in alignment. Furthermore, there is a cooler 170 for cooling the motor, in which it is particularly advantageous to arrange the radiation source 5 and the heat sink 6 adjacent to the cooler 170 so that a thermal coupling can be performed and the cooler -24- 200813370 170 can also cool the radiation source 5. The invention is of course not limited to the description made in accordance with the various embodiments. Rather, the present invention encompasses each novel feature and each combination of features, and in particular, each of the various combinations of the various embodiments of the invention. For example, other variations in the geometry of the transparency 35 are also possible. If a short-wavelength source is not used, other sources of visible light can be used to convert visible light in a corresponding manner. φ [Simple description of the drawings] Figures 1A to 3B have light guides of different forms of conductive connectors. 4 to 6 show different embodiments of the light-emitting device of the present invention, in which a device consisting of a light guide and a detecting device is integrated. 7 to 11 show other embodiments of the light-emitting device of the present invention having a transparent body. Fig. 12 shows a car with a searchlight comprising the illuminating device of the invention. Should [Main component symbol description] 5 Radiation source 6 Heat sink 10 Light guide 10A End 10B End 10C Cover area 10D Light guide holder 10E Core area -25- 200813370
11 輻 射 15 轉 換 材 料 17 插 接 件 25 偵 測 裝 置 25A 第 一 導 電 性 連 接 件 25B 第 二 導 電 性 連 接 件 30 光 學 構 件 35 透 明 體 100 昭 J V \\ 明 裝 置 110 燈 光 懸 吊 150 機 動 車 160 探 照 燈 170 冷 卻 器 200 橫 切 面 300 主 軸11 Radiation 15 Conversion material 17 Connector 25 Detection device 25A First conductive connector 25B Second conductive connector 30 Optical member 35 Transparent body 100 JV \\ Ming device 110 Light suspension 150 Motor vehicle 160 Searchlight 170 Cooler 200 cross section 300 spindle
-26--26-