TW200813143A - Biodegradable resin composition with improved toughness and thermal resistance and production method thereof - Google Patents

Biodegradable resin composition with improved toughness and thermal resistance and production method thereof Download PDF

Info

Publication number
TW200813143A
TW200813143A TW95132679A TW95132679A TW200813143A TW 200813143 A TW200813143 A TW 200813143A TW 95132679 A TW95132679 A TW 95132679A TW 95132679 A TW95132679 A TW 95132679A TW 200813143 A TW200813143 A TW 200813143A
Authority
TW
Taiwan
Prior art keywords
parts
mass
biodegradable resin
resin composition
composition according
Prior art date
Application number
TW95132679A
Other languages
Chinese (zh)
Other versions
TWI330649B (en
Inventor
Ming-Yi Chu
Fu-Ming Chien
Original Assignee
Chitec Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chitec Technology Co Ltd filed Critical Chitec Technology Co Ltd
Priority to TW95132679A priority Critical patent/TWI330649B/en
Priority to JP2007230220A priority patent/JP4689650B2/en
Publication of TW200813143A publication Critical patent/TW200813143A/en
Application granted granted Critical
Publication of TWI330649B publication Critical patent/TWI330649B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

This invention provides a biodegradable resin composition with improved toughness and thermal resistance, comprising 100 parts by weight of biodegradable polymer, 1-40 parts by weight of thermoplastic elastomer, 0.1-30 parts by weight of inorganic filler, 3-25 parts by weight of flame retardant, 0.1-10 parts by weight of reinforcement agent and 0.1-10 parts by weight of processing aid, and the production method thereof. The melt blending process of this provided biodegradable resin composition is performed in a twin-screw extruder, and the extrudate is palletized into granules, which is easy to be brought into the following process such as injection molding. This provided biodegradable resin composition can be characterized by a short cycle time in the injection molding process, a notched Izod impact strength higher than 30 J/m (according to ASTM D256 method A), and a heat distortion temperature higher than 90 DEG C ; under the pressure of 0.45 MPa (according to ASTM D648) after heat treated at 110 DEG C; for 10 min.

Description

200813143 九、發明說明: 【發明所屬之技術領域】 本發明揭露一種改善勃性及耐熱性的可生物降解樹脂 組成物及其製造方法,其可透過習知的組成份混合搭配以 及聚合體熔融混練加工製造程序即可產出。該樹脂組成物 具有明顯改善的韌性及耐熱性質,可容易納入一般塑膠產 品的製程’應用在電子產品及家庭用具之殼體、辦公事務 用具、文具、建築裝潢等產品製造上。 【先前技術】 由於現今多數的塑膠材料不具有自然分解之特性,因 此在丟棄後不可避免地會造成廢棄塑膠的累積,成為垃圾 處理上沈重的負擔。另一方面,因為塑膠產品在使用上常 以複合材料之工藝法從事生產製造,以賦予塑膠產品不同 的使用特性,然而塑膠產品組成成份複雜的結果也導致難 以清楚標示、分類,增加塑膠產品實施回收工作的難度; 再加上塑膠材料在回收加工後其性質不可避免地會比原材 _ 料的特性為差,這種種因素都使得塑膠回收工作很難徹底 實施。有鑑於此,近幾年來在自然環境中可被微生物自然 分解的樹脂材料,即所謂的生物分解性樹脂,其相關應用 即備受重視。其中,尤其是可從澱粉或微生物培養等生質 (biomass)資源獲得之聚合物單體,前者如聚乳酸系聚合 物(poly lactic acids, PL As ),後者如聚經基叛酸酯系聚合物 (polyhydroxyalkanoates,PHAs )。相對於多數的塑膠材料之 單體來源完全倚賴石化資源,此類可從可再生資源 (renewable resource )獲取單體之聚合物被認為製造生產相 200813143 對穩定,不但毋須擔心石化資源枯竭造成單體來源短缺 重大影響,在生產成本上也較穩定,不易受到石化景氣、皮 動而起伏。同時此類聚合物在生產過程中也可減少鲊、 月匕線的 消耗,因此也被認為可抑制工業製程中c〇2氣體的產生量 減緩溫室效應的升高趨勢。 |’ 雖然這些生物分解性樹脂具有上述的優點,它們的自 身特性卻限制了產品的發展。以聚乳酸為例,其坡續轉化 溫度約60°C,熔點可高達160 — 170°C,但是因為聚乳^、 結晶速率非常緩慢,因此聚乳酸產品的耐熱性僅約55。$的 • 超過此溫度以上之成形品即會發生變形現象。另一方面’ 在常溫狀態下聚乳酸亦屬脆性材料:其抗張強度高達65〇’ 680 Kg/cm2,而伸長率僅有4-5%,艾若德衝擊強度也僅 35 - 45 J/m,從這些性能表現可看出聚乳酸不耐衝擊的护 徵。然而,在許多的塑膠產品應用上,耐熱性及耐衝擊^ 都是必要的性能要求,因此如何同時改善生物分解性樹匕 的耐熱性及耐衝擊性,即是此類材料在產品應用上亟待^ 決的問題。 ' 、 在先前的技術中,有研究者分別針對單一特性作改 攀善。美國專利第6,495,631號、第5,922,832號及第5,714,573 號說明一種二成分組成物,以天然橡膠、環氧化天然橡膠、 合成橡膠、具柔曲分子鍵之交聯橡膠或具柔曲分子鍵丘聚 合物之交聯橡膠,其中較佳者為環氧化天然橡膠,改質聚 乳酸基生物分解性樹脂,且加入量在25重量百分比以上, 最終可獲得韌性明顯改善之可生物降解樹脂組成物,但並 未提及耐熱性之提升。另一方面,對於生物分解性樹脂之 耐熱性提升則有許多研究者以提高樹脂結晶度為解決方 法。美國專利第5,916,950號提出使用滑石粉、高嶺土、黏 200813143 脂的1枝添酸鹽等無機填充物作為聚乳酸基生物分解性樹 二溫劍,可明顯縮短射出成形循環時間及提高衛氏軟 你I=嫵10〇 一 130°c。中華民國專利第1252863號則提出 鱼芬結晶促進劑的效果,可明顯提高聚乳酸的結晶化 ==結晶化時間。然而,以上提高結晶度的方法雖可 _ :树知組成物的耐熱性,卻會使樹脂組成物變得更為脆 、,並且,该專利的說明中亦未提及樹脂組成物之韌性改 〇 4 口以上所述,可知現今提出之技術對生物分解性樹 月曰特性之改善皆僅能達成其一,因此,如何同時兼顧生物 分解性樹脂的韌性及耐熱性,即是吾人需致力研發的技術 關鍵。 【發明内容】 生物分解性樹脂可應用於各種產品的製作,同時可兼 顧環保的需求,但由於本身的低耐熱性及低耐衝擊性,而 使其發展受到限制。因此,針對改善這些缺失進行技術研 發所在多有。惟仍具有播法同日τΓ改善生物分解性樹脂之韋刃 性及耐熱性的重大技術瓶頸。有鑑於此,本發明之目的係 在提供一種改善韌性及耐熱性的可生物降解樹脂組成物, 該樹脂組成物具有明顯改善的韌性及耐熱性質,透過習知 的組成份混合搭配以及聚合體熔融加工混練製造程序即可 產出此種改善韌性及耐熱性的可生物降解樹脂組成物,其 產品外觀為粒狀,且具有可快速結晶的特性,因此可容易 納入一般塑 膠產品的製程,降低生產成本及提高生產效率。 本發明之另一目的係提供一種改善韌性及耐熱性的可 生物降解樹脂組成物之製造方法,可同時提升其韌性及耐 8 200813143 熱性’進而擴大可生物降解樹脂的應用範圍、增加其在產 業利用上之可行性。 為達上述目的,本發明係提供一種改善韌性及耐熱性 的可生物降解樹脂組成物,係包含下列成分:以生物分解 性樹脂為100質量份,相對於生物分解性樹脂添加熱塑性 彈性體1〜40質量份、無機填充劑0.1〜30質量份。 較佳地,該生物分解性樹脂係包含··聚乳酸、聚乙烯 號拍酸S旨(polyethylene succinate, PES)、聚丁稀破拍酸酯 (polybutylene succinate,PBS)、聚丁烯琥珀酸-己二酸酯 (polybutylene succinate adipate,PBSA )、聚乙醇酸 (polyglycolic acid,PGA )、聚(β-羥基丁 酸酯) (poly(p-hydroxybutyrate),ΡΗΒ )、聚(β-經基戊酸酉旨) (poly(p-hydroxyvalerate),PHV )、聚(β-羥基己酸酯) (poly(p-hydroxycaproate),PHC )、聚(β-經基庚酸酯) (poly(p-hydroxyheptanoate),ΡΗΗ )、聚(羥基丁酸酯-共-羥基戊酸醋)(poly(hydroxybutyrate-co-hydroxyvalerate), PHBV)等聚羥基羧酸酯系聚合物、聚羥基酯醚系聚合物 (poly(hydroxyester-ether), PHEE )、聚酯碳酸酯 (poly(propylene carbonate),PPC)或由以上樹脂組成之混 合物,其中較佳者係為聚乳酸或含聚乳酸之生物分解性樹 脂混合物。 較佳地,前述熱塑性彈性體添加量係為5-30質量份, 更佳係為10-25質量份。而熱塑性彈性體則係包含:笨乙烯 -乙烯-丁二烯-苯乙烯共聚合物、笨乙烯-乙烯-丙烯-苯乙烯 共聚合物、苯乙稀-丁二烯-苯乙烯共聚合物、苯乙烯-異戊 二烯-苯乙烯共聚合物、苯乙烯-丁二烯橡膠、乙烯-丙烯橡 膠、氯化乙烯橡膠、丁二烯橡膠、氯化丁二烯橡膠、異戊 200813143 二烯橡膠、丁腈橡膠、壓克力橡膠、乙烯-壓克力橡膠、矽 橡膠、氟素橡膠、硫化橡膠、動態硫化橡膠、天然橡膠、 乙烯-丙烯-丁烯彈性體、聚烯烴系彈性體、聚氯乙烯系彈性 體、聚醯胺系彈性體、聚酯系彈性體、聚酯-聚醚系彈性體、 聚氨酯系彈性體、氟素系彈性體或由以上熱塑性彈性體組 成之混合物,其中較佳者係為苯乙烯-乙烯-丁二烯-苯乙烯 共聚合物。 較佳地,該熱塑性彈性體可先以加工油做預處理,該 加工油係包含石躐基系列加工油、芳香族系列加工油、環 馨 氧大豆油、甘油或由以上加工油組成之混合物,其中較佳 者為石蠟基系列加工油,其分子量介於100〜3000之間。 較佳地,前述無機填充劑之添加量為0.3-20質量份, 更佳係為無機填充劑0.5-15質量份。前述無機填充劑係包 含:滑石粉、高嶺土、黏土、層狀石夕酸鹽、碳酸#5、氧化 鋅、氫氧化鋁、氫氧化鎂、二氧化矽或由以上無機填充劑 組成之混合物,其中較佳者為滑石粉。 較佳地,前述改善韌性及耐熱性的可生物降解樹脂組 成物可視需要進一步添加阻燃劑3 -25質量份、性能補強劑 • 〇·1 - 10質量份或加工助劑0.1 - 10質量份以調整樹脂特性。 較佳地,前述阻燃劑之添加量係為5-20質量份,更佳係 為8-15質量份。前述阻燃劑係包含:RDP、磷酸三笨酯、 磷酸三苯酯寡聚體、氫氧化鋁、氫氧化鎂、溴化聚苯乙烯 或由以上阻燃劑組成之混合物,其中較佳者為磷酸三苯酯 寡聚體。 較佳地,前述性能補強劑之添加量係為0.5-8質量份, 更佳係為1-5質量份。前述性能補強劑係包含:聚乙烯接枝 馬來酸酐共聚合物、聚丙烯接枝馬來酸酐共聚合物‘、苯乙 200813143 烯-乙稀-丁二烯-笨乙烯接枝馬來酸酐共聚合物、乙烯_丁二 烯-甲基丙烯酸甲酯接枝馬來酸酐共聚合物、馬來酸酐、丁 —酉夂酐、偏本二甲酸酐(trimellitic anhydride,TMA)、石夕烧 類化合物(silane)、分子結構含有異氰酸酯反應官能基 (isocynate group)之化合物、分子結構含有環氧反應官能 基(epoxide group )之化合物或由以上性能補強劑組成之混 合物,其中較佳者為乙烯-丁二烯_甲基丙烯酸甲酯接枝馬來 酸酐共聚合物。200813143 IX. Description of the Invention: [Technical Field] The present invention discloses a biodegradable resin composition for improving bourbility and heat resistance, and a method for producing the same, which can be mixed and blended by a conventional component and melt-kneaded by a polymer. The manufacturing process can be produced. The resin composition has remarkably improved toughness and heat resistance, and can be easily incorporated into a general plastic product process, which is applied to the manufacture of electronic products and household appliances, office appliances, stationery, architectural decoration, and the like. [Prior Art] Since most of today's plastic materials do not have the property of being naturally decomposed, it is inevitable that the accumulation of waste plastics will be accumulated after disposal, which becomes a heavy burden on garbage disposal. On the other hand, because plastic products are often used in the manufacturing process of composite materials to give different use characteristics of plastic products, the complex composition of plastic products also makes it difficult to clearly mark and classify and increase the implementation of plastic products. The difficulty of recycling work; coupled with the inferior properties of plastic materials after recycling, the characteristics of raw materials are inferior, these factors make plastic recycling work difficult to fully implement. In view of this, in recent years, a resin material which can be naturally decomposed by microorganisms in a natural environment, a so-called biodegradable resin, has been highly regarded. Among them, especially polymer monomers obtainable from biomass resources such as starch or microbial culture, the former such as poly lactic acid (PL As ), the latter such as poly-based oxoester polymerization (polyhydroxyalkanoates, PHAs). Relative to the majority of the monomer sources of plastic materials rely entirely on petrochemical resources, such polymers that can be obtained from renewable resources are considered to be stable in the production phase, not only in the depletion of petrochemical resources. The source shortage has a major impact, and the production cost is also relatively stable, and it is not easy to be affected by the petrochemical boom and skin movement. At the same time, such polymers can also reduce the consumption of strontium and uranium lines during the production process, and are therefore considered to inhibit the increase in the greenhouse effect caused by the production of c〇2 gas in industrial processes. |' Although these biodegradable resins have the above advantages, their own properties limit the development of the product. Taking polylactic acid as an example, the slope transition temperature is about 60 ° C, and the melting point can be as high as 160 - 170 ° C. However, since the polylactic acid and the crystallization rate are very slow, the heat resistance of the polylactic acid product is only about 55. $• If the molded product exceeds this temperature, deformation will occur. On the other hand, polylactic acid is also a brittle material at room temperature: its tensile strength is as high as 65〇' 680 Kg/cm2, while the elongation is only 4-5%, and the Ai Ruide impact strength is only 35 - 45 J/ m, from these performances can be seen that polylactic acid is not resistant to shock. However, in many plastic product applications, heat resistance and impact resistance are necessary performance requirements, so how to simultaneously improve the heat resistance and impact resistance of biodegradable tree shrews, that is, such materials are urgently needed in product applications. ^ The question of decision. In the previous technology, researchers have made changes to a single feature. U.S. Patent Nos. 6,495,631, 5,922,832, and 5,714,573, the disclosure of each of each of each of each of each of each of each of each of each of each of each of a cross-linked rubber, preferably an epoxidized natural rubber, a modified polylactic acid-based biodegradable resin, and added in an amount of 25 wt% or more, finally obtaining a biodegradable resin composition having significantly improved toughness, but There is no mention of an increase in heat resistance. On the other hand, many researchers have proposed to improve the crystallinity of the resin in order to improve the heat resistance of the biodegradable resin. U.S. Patent No. 5,916,950 proposes the use of an inorganic filler such as talc, kaolin, and a sulphate of 200813143 as a polylactic acid-based biodegradable tree, which can significantly shorten the injection molding cycle time and improve Wei's softness. I = 妩 10 〇 130 ° c. The Republic of China Patent No. 1252863 proposes the effect of the fish crystallization accelerator, which can significantly improve the crystallization of polylactic acid == crystallization time. However, the above method for increasing the crystallinity can be used to make the resin composition more brittle, and the description of the patent does not mention the toughness of the resin composition. 〇 4 or more, it can be seen that the technology proposed today can only achieve the improvement of the characteristics of the biodegradable tree, and therefore, how to simultaneously consider the toughness and heat resistance of the biodegradable resin, that is, we must strive to develop The key to technology. DISCLOSURE OF THE INVENTION The biodegradable resin can be applied to the production of various products, and at the same time, it can meet environmental protection requirements, but its development is limited due to its low heat resistance and low impact resistance. Therefore, there are many technical research and development sites to improve these shortcomings. However, there is still a major technical bottleneck in improving the edge and heat resistance of biodegradable resins on the same day. In view of the above, an object of the present invention is to provide a biodegradable resin composition which has improved toughness and heat resistance, which has remarkably improved toughness and heat resistance, and is mixed by a conventional component and melted by a polymer. The processing and kneading manufacturing process can produce such a biodegradable resin composition for improving toughness and heat resistance, and the product has a granular appearance and a rapid crystallization property, so that it can be easily incorporated into a general plastic product process, and the production can be reduced. Cost and increase production efficiency. Another object of the present invention is to provide a method for producing a biodegradable resin composition which can improve toughness and heat resistance, and at the same time, can improve its toughness and heat resistance, thereby expanding the application range of the biodegradable resin and increasing its industrial use. The feasibility of using it. In order to achieve the above object, the present invention provides a biodegradable resin composition for improving toughness and heat resistance, comprising the following components: 100 parts by mass of a biodegradable resin, and a thermoplastic elastomer 1 to a biodegradable resin; 40 parts by mass of the inorganic filler is 0.1 to 30 parts by mass. Preferably, the biodegradable resin comprises polylactic acid, polyethylene succinate (PES), polybutylene succinate (PBS), polybutylene succinic acid- Polybutylene succinate adipate (PBSA), polyglycolic acid (PGA), poly(p-hydroxybutyrate, poly(p-hydroxybutyrate), poly(β-pyruvic acid) (poly(p-hydroxyvalerate), PHV), poly(β-hydroxycaproate), poly(p-hydroxycaproate, PHC), poly(β-pyridylheptanoate) (poly(p-hydroxyheptanoate) ), ΡΗΗ ), poly(hydroxybutyrate-co-hydroxyvalerate, PHBV) and other polyhydroxycarboxylate polymers, polyhydroxyester ether polymers (poly (hydroxyester-ether), PHEE), poly(propylene carbonate) (PPC) or a mixture of the above resins, preferably a polylactic acid or a polylactic acid-containing biodegradable resin mixture. Preferably, the thermoplastic elastomer is added in an amount of 5 to 30 parts by mass, more preferably 10 to 25 parts by mass. The thermoplastic elastomer comprises: a stupid ethylene-ethylene-butadiene-styrene copolymer, a stupid ethylene-ethylene-propylene-styrene copolymer, a styrene-butadiene-styrene copolymer, Styrene-isoprene-styrene copolymer, styrene-butadiene rubber, ethylene-propylene rubber, chlorinated ethylene rubber, butadiene rubber, chlorinated butadiene rubber, isoprene 200813143 diene rubber , nitrile rubber, acrylic rubber, ethylene-acrylic rubber, niobium rubber, fluorocarbon rubber, vulcanized rubber, dynamic vulcanized rubber, natural rubber, ethylene-propylene-butene elastomer, polyolefin elastomer, polyvinyl chloride An elastomer, a polyamide-based elastomer, a polyester-based elastomer, a polyester-polyether-based elastomer, a polyurethane-based elastomer, a fluoroelastomer, or a mixture of the above thermoplastic elastomers, preferably It is a styrene-ethylene-butadiene-styrene copolymer. Preferably, the thermoplastic elastomer may be pretreated with a processing oil comprising a stone base series processing oil, an aromatic series processing oil, cyclomethoxazole soybean oil, glycerin or a mixture of the above processing oils, wherein Preferred are paraffin-based processing oils having a molecular weight between 100 and 3000. Preferably, the inorganic filler is added in an amount of from 0.3 to 20 parts by mass, more preferably from 0.5 to 15 parts by mass based on the inorganic filler. The inorganic filler comprises: talc, kaolin, clay, layered sulphate, carbonic acid #5, zinc oxide, aluminum hydroxide, magnesium hydroxide, cerium oxide or a mixture of the above inorganic fillers, wherein Preferred is talc powder. Preferably, the biodegradable resin composition for improving toughness and heat resistance may be further added with 3 to 25 parts by mass of a flame retardant, a performance reinforcing agent, 〇·1 - 10 parts by mass, or a processing aid of 0.1 to 10 parts by mass. To adjust the resin properties. Preferably, the flame retardant is added in an amount of 5 to 20 parts by mass, more preferably 8 to 15 parts by mass. The flame retardant comprises: RDP, triphenyl phosphate, triphenyl phosphate oligomer, aluminum hydroxide, magnesium hydroxide, brominated polystyrene or a mixture of the above flame retardants, wherein preferably Triphenyl phosphate oligomer. Preferably, the amount of the above-mentioned performance reinforcing agent is 0.5 to 8 parts by mass, more preferably 1 to 5 parts by mass. The foregoing performance reinforcing agent comprises: a polyethylene grafted maleic anhydride copolymer, a polypropylene grafted maleic anhydride copolymer, and a styrene ethylene 200813143 olefin-ethylene-butadiene-stupyl ethylene grafted maleic anhydride. Polymer, ethylene-butadiene-methyl methacrylate-grafted maleic anhydride copolymer, maleic anhydride, butyl-phthalic anhydride, trimellitic anhydride (TMA), shixi burning compound (silane), a compound having an isocyanate group in a molecular structure, a compound having an epoxy structure of an epoxide group or a mixture of the above performance reinforcing agents, preferably ethylene-butyl Diene-methyl methacrylate grafted maleic anhydride copolymer.

較佳地,該前述加工助劑之添加量係為〇·3_5質量份, 更佳係為0.5-3質量份。前述加工助劑係包含··工業白油、 硬脂酸、硬脂酸鋅、硬脂酸鎂、石蠟、聚乙烯蠟、環氧大 ,油、甘油、丁四醇、木糖醇、山梨糖醇或由以上加工助 劑組成之混合物。 較仏地,纟纟述树知組成物在進行符合D638規範 之略鈴形標準試片之射出成形加工時,在模具溫度4〇〇c的 條件下,其成形加工週期在30秒以内。 較佳地,前述樹脂組成物在經過U(rc、1〇分鐘以上之 熱處理後,其收縮率低於1%。 77 較佳地’前述樹驗成物之抗衝擊特性係依據astm D256方法A =規範量測,其缺口衝擊強度高於邓^爪。 較佳地’前述樹脂組成物之耐熱性係依據astm 〇648 之規範’在施行壓力0.45 MPa的條件下量泪卜 度高於90。〇 义。7亚 本發明^另了目的係提供-種改善細性及耐熱性的可 生物降解樹脂之製造方法,係包含下列步驟 搜拌方式混合重量百分比之熱塑性彈性丄: 重量百分比之加工油,形成預處理之熱塑性彈性體、;⑻ 200813143 此口 100貝置份之生物分解性樹脂 40所旦柃夕:?®忐 熱塑性彈性體及叫〜3〇質量 〜40貝,伤之預處理 熔融混練加工程序;Γ人 揲機填充劑;(C)進行 生物降解樹脂。 ~ σ則处步驟(C)之產物以形成可 較佳地’别述步驟「A〕杨、、e / 塑性彈性體與1(Mg重量百分=6G-9()重量百分比之熱 ,以上備用;更加係混合㈣=比置8 用。其中前述=/( 合後靜置8小時以上備 列加工油、芳香族ϋΓί 油係包含:石織基系 上Λ…t 1袠氧大豆油、甘油或由以 油=二成八之混合物’其中棱佳者為石賴列力」 /由’其分子量介於100〜3000之間。 4/;σ工 較佳地,前述步驟(Α)中所挺含 $ 800 ~ 2_ rpm、麟時間 i5 〜3二=25 用 =件進行,該高速㈣處理係㈣之高㈣摔^ 旦較佳地,前述步驟(B)可視需要進—步添加3〜^拼 ,之阻燃劑、0.卜10質量份之性能補強劑或〇1〜ι〇二 =份之加工助劑,以調整樹脂特性。前述阻燃劑之添加; 幸^圭為5-20質量份,更佳為8_15質量份。前述性能補強= 冰加量較佳為0.5-8質量份,更佳為質量份。前述加1 助劑添加量較佳為0.3-5質量份,更佳為〇·5-3質量份。 較佳地’前述步驟(C)中所提之熔融混練加工程序係 利用一雙螺桿押出機進行之,其加工條件係為料缸溫度175 〜240°C、螺桿轉速180〜250 rpm。 較佳地,前述步驟(D)中所提之冷卻係以水冷或氣冷 方式進行。較佳地,前述步驟(D)之後可進一步包含一造粒 12 200813143 步驟,將前述可生物降解樹脂組成物製成粒狀,該造粒步 驟係將冷卻後的押出條以造粒機製成尺寸小於3 mm之粒 子,有利於納入一般塑膠產品的製程。 綜合上述,本發明提供之改善勃性及耐熱性的可生物 降解樹脂組成物因同時對生物分解性樹脂之韌性及耐熱性 做改善,因此大為增廣了該樹脂組成物的應用範圍,例如 可用來製造電子產品、家庭用具之殼體,亦可用來製造辦 公事務用具、文具、建築裝潢等塑膠產品;且因為該樹脂 組成物中使用了高於50重量百分比的生物分解性樹脂,相 • 對於現今倚賴石化資源甚深的塑膠原料而言,該樹脂組成 物對於降低塑膠產品之製造成本是相當有利的。再加上生 物分解性樹脂被丟棄後在自然環境中會被微生物自然分解 的特性,以該樹脂組成物製成之產品在被丟棄後也具有減 輕環境負擔的貢獻。 【實施方式】 本發明所提供之改善韌性及耐熱性的可生物降解樹脂 組成物因結晶速率獲得提升,故以此樹脂組成物進行快速 ⑩ 成形加工時(如射出成形)會具有成形加工週期短的特徵, 且成形品的成形性良好,在Tg+50QC的溫度範圍内做熱處 理加工,成形品不會出現翹曲變形的現象;而熱處理加工 後的成形品因結晶化度更為提高,其耐熱性更是顯著提 升,所以可獲得增韌且耐高溫之可生物降解之成形產品。 此外,各種添加劑也可以和本發明提供之改善韌性及 耐熱性的可生物降解樹脂組成物混合使用,例如抗氧化 劑、紫外光穩定劑、抗水解穩定劑、熱穩定劑、緩慢釋放 劑、抗靜電劑、濕潤劑、著色劑、潤滑劑等等,以賦予最 13 200813143 終產品d同使用特性。、 由以下的實施方式說明將更清楚地瞭解本發明之目 的、特徵和優點,但該等實施例僅係用於舉例說明,而非 用於限定本發明之範疇。 實施例 實施例與比較例中所使用的物質如下所示·· 1·聚乳酸:Nature Work®公司製,規格:3〇〇id。 2.本乙細_乙細-丁二細-笨乙細共聚合物: 台灣橡膠股份有限公司製,規格:SEBS-3151。 3·石蠟加工油: 中國石油化學公司製,分子量12〇,黏度指數97,比重 0.87。 4. 滑石粉: 台灣恆鋒貫業有限公司製,平均粒徑1〇 μιη以下,二氧化 矽含量58wt·%,氧化鎂含量高於3〇wt %。 5. 磷酸三苯酯寡聚體: 台灣長春化學公司製,等級:高純度。 6·乙稀-丁二烯-甲基丙烯酸甲酯接枝馬來酸酐共聚合物:杜 邦化學公司製,商品名·· Fusabond,規格:EB-560D。 7·硬脂酸··台灣景明化工公司製,等級:高純度。 14 200813143 * 實施例與比較例中所獲得之樹脂組成物材料樣品依據 下述的標準測試方法施行性能量測:Preferably, the amount of the processing aid added is 〇·3_5 parts by mass, more preferably 0.5-3 parts by mass. The processing aids include industrial white oil, stearic acid, zinc stearate, magnesium stearate, paraffin wax, polyethylene wax, epoxy, oil, glycerin, butyl alcohol, xylitol, sorbose. An alcohol or a mixture of the above processing aids. More specifically, the description of the composition is carried out in the injection molding process of a slightly bell-shaped standard test piece conforming to the D638 specification, and the molding processing cycle is within 30 seconds at a mold temperature of 4 〇〇c. Preferably, the resin composition has a shrinkage ratio of less than 1% after heat treatment of U (rc, 1 minute or more. 77. Preferably, the impact resistance of the aforementioned tree test is based on the astm D256 method A. = gauge measurement, the notched impact strength is higher than that of Deng's claw. Preferably, the heat resistance of the foregoing resin composition is based on the specification of astm 〇 648, and the tear depth is higher than 90 under the condition of a pressure of 0.45 MPa.亚义. 7 亚 The present invention provides a method for producing a biodegradable resin which improves the fineness and heat resistance, and comprises the following steps: mixing and weighting the thermoplastic elastomer: weight percent of the processing oil , forming a pre-treated thermoplastic elastomer; (8) 200813143 100-bay portion of the biodegradable resin 40: 忐 : : ? ? 忐 忐 忐 忐 忐 忐 忐 忐 忐 忐 忐 忐 忐 〜 〜 〜 〜 Kneading processing procedure; 揲人揲机充剂; (C) biodegradable resin. ~ σ then the product of step (C) to form a preferred 'detailed step' A) yang, e / plastic elastomer With 1 (Mg weight = 6G-9 ( The weight percentage of heat, the above spare; more mixed (four) = ratio of 8 used. The above = / (after standing for more than 8 hours to prepare the processing oil, aromatic ϋΓ oil system contains: stone woven base Λ... t 1 袠 大豆 soybean oil, glycerin or a mixture of oil = two to eight 'where the rib is good for the stone lailie force / / 'the molecular weight is between 100~3000. 4 /; σ work better The above step (Α) contains $800 ~ 2_ rpm, the lining time i5 〜3 two = 25 is carried out by the piece, the high speed (four) processing system (four) is high (four) smashing preferably, the aforementioned step (B) If necessary, add 3~^, flame retardant, 0. Bu of 10 parts by mass of performance reinforcing agent or 〇1~ι〇二=part of processing aid to adjust the resin characteristics. Addition; Fortunately, it is 5-20 parts by mass, more preferably 8-15 parts by mass. The foregoing performance reinforcement = ice addition amount is preferably 0.5-8 parts by mass, more preferably parts by mass. It is preferably 0.3 to 5 parts by mass, more preferably 5 to 5 parts by mass. Preferably, the melt-kneading processing procedure mentioned in the aforementioned step (C) is carried out using a twin-screw extruder. The processing conditions are a cylinder temperature of 175 to 240 ° C and a screw rotation speed of 180 to 250 rpm. Preferably, the cooling in the above step (D) is carried out in a water-cooled or air-cooled manner. Preferably, the foregoing steps (D) may further comprise a granulation 12 200813143 step of granulating the aforementioned biodegradable resin composition by granulating the cooled extrudate strip to a particle size of less than 3 mm by a granulator In order to improve the toughness and heat resistance of the biodegradable resin, the biodegradable resin composition for improving the stagnation and heat resistance of the present invention is greatly augmented. The application range of the resin composition, for example, can be used for manufacturing electronic products, housings for household appliances, plastic products for office equipment, stationery, building decoration, etc.; and because the resin composition is used above 50 Percentage of biodegradable resin, phase • For plastic materials that rely heavily on petrochemical resources today, the resin composition reduces the production of plastic products. Cost is quite favorable. In addition, the biodegradable resin is discarded and naturally decomposed by microorganisms in the natural environment, and the product made of the resin composition also contributes to reducing the environmental burden after being discarded. [Embodiment] The biodegradable resin composition for improving toughness and heat resistance provided by the present invention is improved in crystallization rate, so that when the resin composition is subjected to rapid 10 forming processing (e.g., injection molding), the molding processing cycle is short. The characteristics of the molded article are good, and the heat treatment is performed in a temperature range of Tg + 50 QC, and the molded article does not undergo warping deformation; and the molded article after the heat treatment is more improved in crystallinity. The heat resistance is significantly improved, so that a toughened and high temperature resistant biodegradable shaped product can be obtained. In addition, various additives may also be used in combination with the biodegradable resin composition for improving toughness and heat resistance provided by the present invention, such as an antioxidant, an ultraviolet light stabilizer, an anti-hydrolysis stabilizer, a heat stabilizer, a slow release agent, and an antistatic agent. Agents, humectants, colorants, lubricants, etc., to give the most use characteristics of the end product of 200813143. The objectives, features, and advantages of the present invention will be more apparent from the description of the appended claims. EXAMPLES The materials used in the examples and comparative examples are as follows: 1. Polylactic acid: manufactured by Nature Work®, specification: 3〇〇id. 2. This book _ B fine - Ding two fine - stupid B fine copolymer: Taiwan Rubber Co., Ltd., specifications: SEBS-3151. 3. Paraffin processing oil: Made by China Petroleum Chemical Co., Ltd., with a molecular weight of 12 〇, a viscosity index of 97 and a specific gravity of 0.87. 4. Talc powder: Made by Taiwan Hengfeng Guanye Co., Ltd., the average particle size is below 1〇 μηη, the cerium oxide content is 58wt·%, and the magnesium oxide content is higher than 3〇wt%. 5. Triphenyl phosphate oligomer: Taiwan Changchun Chemical Co., Ltd., grade: high purity. 6. Ethylene-butadiene-methyl methacrylate grafted maleic anhydride copolymer: manufactured by DuPont Chemical Co., Ltd., trade name · Fusabond, specification: EB-560D. 7· Stearic acid··Taiwan Jingming Chemical Co., Ltd., grade: high purity. 14 200813143 * The resin composition material samples obtained in the examples and the comparative examples were subjected to the energy measurement according to the following standard test methods:

艾若德衝擊強度··分別依據ASTM D256方法A及方法E 之規範,進行材料之缺口(notch)及反 缺口( reversed notch ) ’衝擊強度測量。 抗張性能:依據ASTMD638之規範,進行材料之最大抗張 強度及伸長率之測量。 熱變形溫度··依據ASTM D648之規範,在施行壓力q.45 MPa 胃 的條件下測量材料的熱變形溫度。 燃燒特性:依據UL-94之塑膠材料燃燒測試及分類標準規 範,測試材料之燃燒特性。 收縮率:使用一熱風循環烘箱,將溫度設定在110°C並維 持1小時以上以確保内部恆溫環境,再放入長父寬 X厚= 127mmxl2.7mmx3.2mm之長形試片(水平放 置及垂直放置)靜置1小時,之後從烘箱取出待 試片冷卻到室溫後量測長度變化量,作為材料之 Φ 收縮率依據。 以下說明實施例與比較例之樹脂組成物及成形樣品的 ' 製造方法。 &lt;實施例1&gt; 先對熱塑性彈性體做預處理。取重量百分比的苯乙 烯-乙烯-丁二烯-苯乙烯共聚合物及2〇重量百分比的石蠛加 工油放置於高速混合機中(台灣僑威機械公司製,機型: 15 200813143 =3〇〇L) ’在岔閉槽體内做高速混合,轉速1200 rpm,溫 : 55:C。約20分鐘後加工油與苯乙烯-乙烯—丁二烯·苯乙烯 共4合物可達均勻混合狀態,取出靜置8小時以上備用。 取100貝嚴份的聚乳酸、質量份的預處理苯乙稀-乙 稀-丁二烯-笨乙烯共聚合物、5質量份的滑石粉、0·5質量份 的硬知S欠,先以乾混方式授拌均勻,之後以容積式進料器 導入雙螺桿押出機(德國科倍隆科亞機械公司製,機型: STS-35,螺桿直徑35 mm,長經比36)進行炫融混練加工, 使用加工條件為料缸溫度180〜2〇^c、螺桿轉速21〇rpm。 熔融混練加工之後所得的押出條經冷水冷卻成固體態,以 造粒機製作成直徑3 mm、長度3 mm的圓柱狀粒子。 使用射出成形機(台灣富強鑫機械公司製,機型: HT-100)將上述之樹脂組成物粒子製作成符合ASTM規範 之標準測試試片’加工條件為料缸溫度18〇〜2〇5〇C、模具 溫度40°C,並記錄成形加工循環時間。製作之標準試片包 括符合ASTM D256規範之長形試片、符合ASTM D638規 範之啞鈐形試片、符合ASTMD648規範之長形試片、符合 UL-94規範之長形試片。獲得之標準測試試片在熱風循環烘 箱中以ll〇°C熱處理10分鐘,接著以前述之標準測試方法 進行性能量測,量測結果列於表1。 〈實施例2 - 12&gt; 使用與實施例1中所描述之相同的熔融加工方法與條 件,改變樹脂組成物之不同的混合比例以獲取樹脂粒子, 並製作成符合ASTM規範的標準試片以進行性能量測,所 獲得的量測結果同時列於表2。 從表1及表2可以清楚地看到聚乳酸之韌性及耐熱性 200813143 被明顯改善的證據。加入苯乙烯-乙烯-丁二烯-苯乙烯共聚 合物之後,該可生物降解樹脂組成物的韌性特徵(艾若德 衝擊強度、伸長率)數值明顯高於純聚乳酸許多;加入滑 石粉之可生物降解樹脂組成物的熱變形溫度也要明顯比純 聚乳酸為高。此處要注意的是,若是在可生物降解樹脂組 成物中僅添加苯乙烯-乙烯-丁二烯-苯乙烯共聚合物,此時 僅有動性會被改善(比較例2);而若是在可生物降解樹脂 組成物中僅添加滑石粉,則僅有耐熱性會被改善(比較例 3)。唯有同時添加有苯乙烯-乙烯-丁二烯-苯乙烯共聚合物 φ 及滑石粉的可生物降解樹脂組成物,其勃性及财熱性才會 呈現同時改善的結果(實施例1-12)。另外,加入乙烯-丁 二烯-曱基丙烯酸甲酯接枝馬來酸酐共聚合物可以進一步改 善可生物降解樹脂組成物的韌性特徵,加入磷酸三苯酯寡 聚體則可改善可生物降解樹脂組成物的耐燃性能。 〈比較例1〉 取5,000 g純聚乳酸粒子,使用真空烘箱以50°C及抽 真空的條件進行乾燥處理,時間4小時以上。之後取出以 ⑩ 射出成形機(台灣富強鑫機械公司製,機型:HT-100)製 作符合ASTM規範的標準測試試片,加工條件為料缸溫度 195〜210°C、模具溫度40°C,並記錄成形加工循環時間。 製作之標準試片包括符合ASTMD256規範之長形試片、符 合ASTM D638規範之啞鈴形試片、符合ASTM D648規範 之長形試片、符合UL-94規範之長形試片。獲得之標準測 試試片在熱風循環烘箱中以110°C熱處理10分鐘,接著以 前述之標準測試方法進行性能量測,量測結果列於表1。 17 200813143 &lt;比較例2&gt; 先對熱塑性彈性體做預處理。取80重量百分比的笨二 烯-乙烯-丁二稀-苯乙烯共聚合物及20重量百分比的石殲如 工油放置於高速混合機中(台灣僑威機械公司製,機变: CW-30L),在密閉槽體内做高速混合,轉速1200 rpm,浪 度55。0約20分鐘後加工油與苯乙烯-乙烯-丁二烯-苯乙嫌 共聚合物可達均勻混合狀態,取出靜置8小時以上備用。 取100質量份的聚乳酸、10質量份的預處理苯乙烯一6 烯-丁二烯-苯乙烯共聚合物、0·5質量份的硬脂酸,先以乾 # 混方式攪拌均勻,之後以容積式進料器導入雙螺桿押出機 (德國科倍隆科亞機械公司製,機型:STS-35,螺桿直樣 35 mm,長徑比36)進行熔融混練加工,使用加工條件爲 料缸溫度180〜205°C、螺桿轉速210 rpm。熔融混練加工 之後所得的押出條經冷水冷卻成固體態,以造粒機製作成 直徑3 mm、長度3 mm的圓柱狀粒子。 使用射出成形機(台灣富強鑫機械公司製,機塑: HT-100)將上述之樹脂組成物粒子製作成符合八8丁1\/1規範 之標準測試試片,加工條件為料缸溫度180 ~ 205°C、模具 _ 溫度40°C,並記錄成形加工循環時間。製作之標準試片包 括符合ASTM D256規範之長形試片、符合ASTM D638規 範之啞鈴形試片、符合ASTMD648規範之長形試片、符合 UL-94規範之長形試片。獲得之標準測試試片在熱風循環烘 箱中以110。(:熱處理10分鐘,接著以前述之標準測試方法 進行性能量測,量測結果列於表1。 18 200813143 &lt;比較例3&gt; v取10〇質量份的聚乳酸、5質量份的滑石粉、0·5質量 硬^酸,先以乾混方式攪拌均勻,之後以容積式進料 $導入雙螺桿押出機(德國科倍隆科亞機械公司製,機型: 累才干直後35 mm,長徑比% )進行溶融混練加工, =用加工條件為料缸溫度180〜2〇5。〇嫘桿轉速210rpm。 熔融混練加工之後所得的押出條經冷水泠卻成固體態,以 造粒機製作成直徑3 mm、長度3 mm的圓柱狀粒子。 使用射出成形機(台灣富強鑫機械公司製,機型·· • HT-100)將上述之樹脂組成物粒子製作成符合ASTM規範 之標準測試試片,加工條件為料缸溫度18〇 ~ 2〇5〇C、模具 溫度40°C,並記錄成形加工循環時間。製作之標準試片包 括符合ASTM D256規範之長形試片、符合ASTM D638規 範之啞鈴形試片、符合ASTMD648規範之長形試片、符合 UL-94規範之長形試片。獲得之標準測試試片在熱風循環烘 箱中以110°C熱處理1〇分鐘,接著以前述之標準測試方法 進行性能量測,量測結果列於表1。 19 200813143 表1 比較例 1 比較例 2 比較例 3 實施例 1 聚乳酸 [phr] 100 100 100 100 已預處理之苯乙烯-乙烯-丁 二烯-苯乙烯共聚合物 [phr] 10 10 滑石粉 [phr] 5 5 乙烯-丁二烯-甲基丙烯酸曱 酯接枝馬來酸酐共聚合物 [phr] 磷酸三苯酯寡聚體 [phr] 硬脂酸 [phr] 0.5 0.5 0.5Ai Ruide Impact Strength · According to ASTM D256 Method A and Method E, the material notch and reversed notch 'impact strength measurements were performed. Tensile properties: Measurement of the maximum tensile strength and elongation of the material in accordance with ASTM D638. Heat distortion temperature · According to the specification of ASTM D648, the heat distortion temperature of the material was measured under the conditions of a pressure of q.45 MPa stomach. Combustion characteristics: Test the burning characteristics of materials according to UL-94 plastic material burning test and classification standard specifications. Shrinkage: Use a hot air circulation oven, set the temperature at 110 ° C for more than 1 hour to ensure the internal constant temperature environment, and then put the long test piece with long father width X thickness = 127mmxl2.7mmx3.2mm (horizontal placement and Place it vertically for 1 hour, then take out the test piece from the oven and cool it to room temperature to measure the change in length as the basis for the Φ shrinkage of the material. The 'manufacturing method of the resin composition and the molded sample of the examples and the comparative examples will be described below. &lt;Example 1&gt; The thermoplastic elastomer was first subjected to pretreatment. The weight percentage of styrene-ethylene-butadiene-styrene copolymer and 2% by weight of stone mortar processing oil were placed in a high-speed mixer (made by Taiwan Overseas Chinese Machinery Co., Ltd., model: 15 200813143 = 3〇 〇L) 'High-speed mixing in the closed tank, speed 1200 rpm, temperature: 55:C. After about 20 minutes, the processing oil and the styrene-ethylene-butadiene-styrene co-mixture can be uniformly mixed, and the mixture is allowed to stand for 8 hours or more for use. Take 100 mils of polylactic acid, parts by mass of pretreated styrene-ethylene-butadiene-stuppy ethylene copolymer, 5 parts by mass of talc, and 0.5 parts by mass of hard known S owed, first The mixture was uniformly mixed by dry mixing, and then introduced into a twin-screw extruder (manufactured by Coperion Koya Machinery Co., Ltd., model: STS-35, screw diameter 35 mm, length ratio 36) with a volumetric feeder. In the process of mixing and kneading, the processing conditions are the cylinder temperature of 180~2〇^c and the screw rotation speed of 21〇rpm. The extrudate strip obtained after the melt-kneading process was cooled to a solid state by cold water, and a cylindrical particle having a diameter of 3 mm and a length of 3 mm was produced by a granulator. The above-mentioned resin composition particles were prepared into a test piece conforming to the ASTM standard using an injection molding machine (manufactured by Taiwan Fuqiangxin Machinery Co., Ltd., model: HT-100). The processing conditions were a cylinder temperature of 18 〇 2 2 〇 5 〇. C. The mold temperature was 40 ° C, and the forming cycle time was recorded. Standard test pieces produced include long test pieces conforming to ASTM D256, dumb test pieces conforming to ASTM D638, long test pieces conforming to ASTM D648, and long test pieces conforming to UL-94 specifications. The obtained standard test piece was heat-treated at ll 〇 ° C for 10 minutes in a hot air circulating oven, and then subjected to the above-mentioned standard test method for progress energy measurement, and the measurement results are shown in Table 1. <Example 2 - 12> Using the same melt processing method and conditions as described in Example 1, the mixing ratio of the resin composition was changed to obtain resin particles, and a standard test piece conforming to ASTM specifications was prepared for performance. The measurement results obtained are also shown in Table 2. It can be clearly seen from Tables 1 and 2 that the toughness and heat resistance of polylactic acid are significantly improved. After the addition of the styrene-ethylene-butadiene-styrene copolymer, the toughness characteristics (Ai Ruide impact strength, elongation) of the biodegradable resin composition are significantly higher than those of pure polylactic acid; The heat distortion temperature of the biodegradable resin composition is also significantly higher than that of pure polylactic acid. It should be noted here that if only the styrene-ethylene-butadiene-styrene copolymer is added to the biodegradable resin composition, only the kinetic property will be improved at this time (Comparative Example 2); When only talc powder was added to the biodegradable resin composition, only heat resistance was improved (Comparative Example 3). Only the biodegradable resin composition with styrene-ethylene-butadiene-styrene copolymer φ and talc added at the same time will exhibit both improved boring and heat recovery (Examples 1-12). ). In addition, the addition of ethylene-butadiene-methyl methacrylate grafted maleic anhydride copolymer can further improve the toughness characteristics of the biodegradable resin composition, and the addition of triphenyl phosphate oligomer can improve the biodegradable resin. The flame resistance of the composition. <Comparative Example 1> 5,000 g of pure polylactic acid particles were taken and dried in a vacuum oven at 50 ° C under vacuum for 4 hours or longer. After that, a 10-shot injection molding machine (manufactured by Taiwan Fuqiangxin Machinery Co., Ltd., model: HT-100) was taken out to produce a standard test piece conforming to the ASTM specification. The processing conditions were a cylinder temperature of 195 to 210 ° C and a mold temperature of 40 ° C. And record the forming cycle time. Standard test pieces produced include long test pieces conforming to ASTM D256, dumbbell test pieces conforming to ASTM D638, long test pieces conforming to ASTM D648, and long test pieces conforming to UL-94 specifications. The obtained standard test piece was heat-treated at 110 ° C for 10 minutes in a hot air circulating oven, and then subjected to the above-mentioned standard test method for the measurement of the energy. The measurement results are shown in Table 1. 17 200813143 &lt;Comparative Example 2&gt; The thermoplastic elastomer was first subjected to pretreatment. 80% by weight of stupid-ethylene-butylene-styrene copolymer and 20% by weight of stone oil, such as industrial oil, placed in a high-speed mixer (made by Taiwan Overseas Chinese Machinery Co., Ltd., machine change: CW-30L ), high-speed mixing in a closed tank, the speed of 1200 rpm, the wave degree of 55. 0 after about 20 minutes, the processing oil and the styrene-ethylene-butadiene-benzene-ethyl copolymer can be uniformly mixed, and the static state is taken out. Set for more than 8 hours. 100 parts by mass of polylactic acid, 10 parts by mass of pretreated styrene-6-butadiene-styrene copolymer, and 0.5 parts by mass of stearic acid are first stirred in a dry manner, and then Introduced by a volumetric feeder into a twin-screw extruder (manufactured by Coperion Koya Machinery Co., Ltd., model: STS-35, screw straight 35 mm, length to diameter ratio 36) for melt-kneading processing, using processing conditions The cylinder temperature is 180 to 205 ° C, and the screw rotation speed is 210 rpm. The extrudate strip obtained after the melt-kneading process was cooled to a solid state by cold water, and was formed into a cylindrical particle having a diameter of 3 mm and a length of 3 mm by a granulator. The above-mentioned resin composition particles were prepared into a standard test piece conforming to the specifications of 8:8 1/1 using an injection molding machine (manufactured by Taiwan Fuqiangxin Machinery Co., Ltd., machine: HT-100), and the processing conditions were a cylinder temperature of 180. ~ 205 ° C, mold _ temperature 40 ° C, and record the forming cycle time. Standard test pieces produced include long test pieces conforming to ASTM D256, dumbbell test pieces conforming to ASTM D638, long test pieces conforming to ASTM D648, and long test pieces conforming to UL-94 specifications. The standard test piece obtained was 110 in a hot air circulating oven. (: heat treatment for 10 minutes, followed by the above-mentioned standard test method for energy measurement, and the measurement results are shown in Table 1. 18 200813143 &lt;Comparative Example 3&gt; v Take 10 parts by mass of polylactic acid, 5 parts by mass of talc powder , 0. 5 mass of hard acid, first stirred in a dry mix, and then introduced into the twin-screw extruder with volumetric feed $ (made by Cobrenco, Germany), model: tired and straight 35 mm long The ratio of the ratio is %) to the melt-kneading process. The processing conditions are the cylinder temperature of 180~2〇5. The speed of the mast is 210 rpm. The extruded strip obtained after the melt-kneading process is solidified by cold water, and is made into a pelletizer. Cylindrical particles having a diameter of 3 mm and a length of 3 mm. The resin composition particles described above were prepared to meet ASTM specifications using an injection molding machine (manufactured by Taiwan Fuqiangxin Machinery Co., Ltd., HT-100). The processing conditions are cylinder temperature 18〇~ 2〇5〇C, mold temperature 40°C, and the molding cycle time is recorded. The standard test piece produced includes long test piece conforming to ASTM D256 specification and conforming to ASTM D638 specification. Dumbbell test Long test piece conforming to ASTM D648 specification, long test piece conforming to UL-94 standard. The obtained standard test piece is heat treated at 110 ° C for 1 minute in a hot air circulation oven, and then performance is performed by the aforementioned standard test method. The measurement results are shown in Table 1. 19 200813143 Table 1 Comparative Example 1 Comparative Example 2 Comparative Example 3 Example 1 Polylactic acid [phr] 100 100 100 100 Pretreated styrene-ethylene-butadiene-benzene Ethylene copolymer [phr] 10 10 talc [phr] 5 5 ethylene-butadiene-methyl methacrylate grafted maleic anhydride copolymer [phr] triphenyl phosphate oligomer [phr] stearic acid Acid [phr] 0.5 0.5 0.5

艾若德衝擊強度 缺口 反缺口 [J/m] [J/m] 17.7 136 34.6 293 19.5 101 32.4 327 抗張性質 最大強度 [Kg/cm2] 550 306 572 315 伸長率 [%] 2.40 7.73 1.22 8.60 熱變形溫度 [°C] 61.1 61.4 94.1 93.7 收縮率 水平放置 [%] 4.94 2.45 0.00 0.36 垂直放置 [%] 5.41 2.77 0.00 0.63 射出成形加工循環時間 [sec] 80 45 30 30 燃燒特性 UL-94 V-2 V-2 V-2 V-2 200813143 實施例 3 ^Hl !2 jn 65.5 \D ON 寸 \o (N 28.9 彐 036 0.36 5 實施例 二 8 R JO ό in 70.1 CN in s (N 32.7 O 0.36 0.63 R &lt;Ν 實施例 〇 8 JO ui 66.8 CO Ϊ/Ί 00 (N 29.4 彐 0.36 0.63 實施例 8 i〇 in in JO »n 50.6 CO ON &lt;N 21.7 m 0.36 0.36 實施例 00 8 JO 12 in 54.2 1 (N 26.3 0.36 0.63 實施例 卜 8 JO 52.1 § (N m 22.8 2 0.36 0.36 實施例 \〇 8 o vn JO ^T) 33.9 00 a 豸 CO 5 F—4 S' 0.00 0.36 實施例 S o JO ^T) 37.1 cn ΓΟ &lt;N m 25.2 8 0.15 0.36 (N 實施例 寸 8 o 12 Ό 34.4 R cn 〇〇 VO s 0.00 0.36 OI 8 m o jo in 31.9 s m s m 9.51 94.9 0.36 0.45 實施例 (N 8 o uo 34.9 00 On (N 12.6 ON 0.45 0.63 (N [Dj T7 A ΤΓ Ά ΤΓ a, 至 &amp; [J/m] [J/m] [Kg/cm2] g p t g g ¥ UL-94 1 餵 N Μ n 僉 l| % f D D m &lt; 齋 Ulj^ Μ 言 ό Μύ ΤτΠ _ 1 ΐ4 § w冰 s气 ^ d ¢4 键 拿 逢i i4 昭 ristl T 麵c V ^ ”1 i 齋 vu3? 爱尨 i)m s -¾ 64 ti3愛 o球 If ίΧ 200813143 其他實施態樣 雖然本發明已以較佳實施例揭露如上,然其並非用以限定 本發明,任何熟悉此技藝者,在不脫離本發明之精神和範圍内, 當可作各種之更動與潤飾,因此,本發明之保護範圍,當以後 附之申請專利範圍所界定者為準。Ai Ruide impact strength notch reverse notch [J/m] [J/m] 17.7 136 34.6 293 19.5 101 32.4 327 tensile strength maximum strength [Kg/cm2] 550 306 572 315 elongation [%] 2.40 7.73 1.22 8.60 heat Deformation temperature [°C] 61.1 61.4 94.1 93.7 Shrinkage level placement [%] 4.94 2.45 0.00 0.36 Vertical placement [%] 5.41 2.77 0.00 0.63 Injection molding cycle time [sec] 80 45 30 30 Combustion characteristics UL-94 V-2 V-2 V-2 V-2 200813143 Example 3 ^Hl !2 jn 65.5 \D ON inch \o (N 28.9 彐036 0.36 5 Example 2 8 R JO ό in 70.1 CN in s (N 32.7 O 0.36 0.63 R &lt;Ν Example JO8 JO ui 66.8 CO Ϊ/Ί 00 (N 29.4 彐0.36 0.63 Example 8 i〇in in JO »n 50.6 CO ON &lt;N 21.7 m 0.36 0.36 Example 00 8 JO 12 in 54.2 1 (N 26.3 0.36 0.63 Example 8 JO 52.1 § (N m 22.8 2 0.36 0.36 Example \〇8 o vn JO ^T) 33.9 00 a 豸CO 5 F—4 S' 0.00 0.36 Example S o JO ^ T) 37.1 cn ΓΟ &lt;N m 25.2 8 0.15 0.36 (N Example 8 o 12 Ό 34.4 R cn 〇〇 VO s 0.00 0.36 OI 8 Mo jo in 31.9 smsm 9.51 94.9 0.36 0.45 Example (N 8 o uo 34.9 00 On (N 12.6 ON 0.45 0.63 (N [Dj T7 A ΤΓ Ά ΤΓ a, to &amp; [J/m] [J/m] [ Kg/cm2] gptgg ¥ UL-94 1 Feed N Μ n 佥l| % f DD m &lt; 斋Ulj^ Μ ό Μύ Τ ΠτΠ _ 1 ΐ4 § w ice s gas ^ d ¢ 4 key to get i i4 Zhao ristl T face c V ^ "1 i 斋 vu3? 爱尨 i) ms -3⁄4 64 ti3 爱o球 If ίΧ 200813143 Other embodiments Although the present invention has been disclosed in the preferred embodiments as above, it is not intended to limit the present invention. It is to be understood that those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention, and the scope of the present invention is defined by the scope of the appended claims.

22 200813143 【圖式簡單說明】22 200813143 [Simple description of the schema]

MlMl

【主要元件符號說明】 無[Main component symbol description] None

23twenty three

Claims (1)

200813143 十、申請專利範圍: 1. 一種改善韌性及耐熱性的可生物降解樹脂組成物,係包含下 列組成分: 100質量份的生物分解性樹脂; 1〜40質量份的熱塑性彈性體;及 0.1〜30質量份的無機填充劑。 2·如申請專利範圍第1項所述之可生物降解樹脂組成物,其 中生物分解性樹脂係包含:聚乳酸、聚乙烯琥珀酸酯、聚丁 φ 烯琥珀酸酯、聚丁烯琥珀酸-己二酸酯、聚乙醇酸、聚(β-羥基丁酸酯)、聚(β-羥基戊酸酯)、聚(β-羥基己酸酯)、 聚(β-羥基庚酸酯)、聚(羥基丁酸酯-共-羥基戊酸酯)等 聚羥基羧酸酯系聚合物、聚羥基酯醚系聚合物、聚酯碳酸酯 或由以上樹脂組成之混合物。 3·如申請專利範圍第1項所述之可生物降解樹脂組成物, 其中前述熱塑性彈性體係為5-30質量份。 4·如申請專利範圍第3項所述之可生物降解樹脂組成物,其中 前述熱塑性彈性體係為10-25質量份。 ⑩5·如申請專利範圍第1項所述之可生物降解樹脂組成物,其中 熱塑性彈性體係包含:苯乙烯-乙烯-丁二烯-苯乙烯共聚合 物、苯乙烯-乙烯-丙烯-笨乙烯共聚合物、苯乙烯-丁二烯-苯 乙烯共聚合物、苯乙烯-異戊二烯-苯乙烯共聚合物、苯乙烯-丁二烯橡膠、乙烯-丙烯橡膠、氯化乙烯橡膠、丁二烯橡膠、 氯化丁二烯橡膠、異戊二烯橡膠、丁腈橡膠、壓克力橡膠、 乙烯-壓克力橡膠、矽橡膠、氟素橡膠、硫化橡膠、動態硫化 橡膠、天然橡膠、乙烯-丙烯_丁烯彈性體、聚烯烴系彈性體、 聚氯乙烯系彈性體、聚醯胺系彈性體、聚酯系彈性體、聚酯 24 200813143 -聚醚系彈性體、聚氨酯系彈性體、氟素系彈性體或由以上熱 塑性彈性體組成之混合物。 6·如申請專利範圍第5項所述之可生物降解樹脂組成物,其中 前述熱塑性彈性體可先以加工油做預處理,該加工油係包含 石躐基系列加工油、芳香族系列加工油、環氧大豆油、甘油 或由以上加工油組成之混合物。 7·如申請專利範圍第6項所述之可生物降解樹脂組成物,其中 前述加工油係為石蠟基系列加工油,其分子量介於100〜 _ 30Ό0之間。 8·如申請專利範圍第1項所述之可生物降解樹脂組成物, 其中前述無機填充劑係為0.3-20質量份。 9.如申請專利範圍第8項所述之可生物降解樹脂組成物,其中 前述無機填充劑係為0.5-15質量份。 10·如申請專利範圍第1項所述之可生物降解樹脂組成物,其中 無機填充劑係包含滑石粉、高嶺土、黏土、層狀矽酸鹽、碳 酸#5、氧化鋅、氫氧化銘、氫氧化鎂、二氧化梦或由以上無 機填充劑組成之混合物。 _ 11·如申請專利範圍第1項所述之可生物降解樹脂組成物,係進 一步包含3〜25質量份的阻燃劑。 12·如申請專利範圍第11項所述之可生物降解樹脂組成物,其 中前述阻燃劑係為5-20質量份。 13·如申請專利範圍第12項所述之可生物降解樹脂組成物,其 中前述阻燃劑係為8-15質量份。 14·如申請專利範圍第11項所述之可生物降解樹脂組成物,其 中阻燃劑係包含RDP、磷酸三苯酯、磷酸三苯酯寡聚體、氫 25 200813143 氧化鋁、氫氧化鎂、溴化聚苯乙烯及或以上阻燃劑組成之混 合物。 15. 如申請專利範圍第1項所述之可生物降解樹脂組成物,係進 一步包含0.1〜10質量份的性能補強劑。 16. 如申請專利範圍第15項所述之可生物降解樹脂組成物,其 中前述性能補強劑係為0.5-8質量份。 17. 如申請專利範圍第16項所述之可生物降解樹脂組成物,其 中前述性能補強劑係為1-5質量份。 鲁18·如申請專利範圍第15項所述之可生物降解樹脂組成物,其 中性能補強劑係包含聚乙烯接枝馬來酸酐共聚合物、聚丙烯 接枝馬來酸酐共聚合物、苯乙烯-乙烯-丁二烯-苯乙烯接枝馬 來酸酐共聚合物、乙烯-丁二烯-甲基丙烯酸曱酯接枝馬來酸 酐共聚合物、馬來酸酐、丁二酸酐、偏苯三曱酸酐、矽烷類 化合物、分子結構含有異氰酸酯反應官能基之化合物、分子 結構含有環氧反應官能基之化合物或由以上性能補強劑組 成之混合物。 19. 如申請專利範圍第1項所述之可生物降解樹脂組成物,係進 ⑩ 一步包含0· 1〜10質量份的加工助劑。 20. 如申請專利範圍第19項所述之可生物降解樹脂組成物,其 中前述加工助劑係為0.3-5質量份。 21. 如申請專利範圍第20項所述之可生物降解樹脂組成物,其 _ 中前述加工助劑係為0.5-3質量份。 22. 如申請專利範圍第Γ9項所述之可生物降解樹脂組成物,其 中加工助劑係包含工業白油、硬脂酸、硬脂酸鋅、硬脂酸鎂、 石蠟、聚乙烯蠟、環氧大豆油、甘油、丁四醇、木糖醇、山 梨糖醇或由以上加工助劑組成之混合物。 26 200813143 23. —種改善韌性及耐熱性的可生物降解樹脂之製造方法,其係 包含下列步驟: (A) 以高速攪拌方式混合50 - 99重量百分比之熱塑性彈 性體與1 - 50重量百分比之加工油,形成預處理後之 熱塑性彈性體; (B) 混合100質量份之生物分解性樹脂、1 - 40質量份之 預處理熱塑性彈性體及0.1 - 30質量份之無機填充劑; (C) 進行熔融混練加工程序;及 (D) 冷卻前述步驟(C)之產物以形成可生物降解樹脂。 24. 如申請專利範圍第23項所述之製造方法,其中前述步驟(A) 係以高速攪拌方式,混合60-90重量百分比之熱塑性彈性體 與10-40重量百分比之加工油,混合後靜置8小時以上備用。 25·如申請專利範圍第24項所述之製造方法,其中前述步驟(A ) 係以高速攪拌方式,混合65-80重量百分比之熱塑性彈性體 與20-35重量百分比之加工油,混合後靜置8小時以上備用。 26·如申請專利範圍第23項所述之製造方法,其中前述步驟(A) 中所使用之加工油係選自石躐基系列加工油、芳香族系列加 工油、環氧大豆油、甘油及由以上加工油組成之混合物。 27·如申請專利範圍第23項所述之製造方法,其中前述步驟(A) 中所使用之加工油係為石填基系列加工油,其分子量介於 100〜3000之間。 28·如申請專利範圍第23項所述之製造方法,其中前述步驟(A) 中所為之高速攪拌處理係使用轉速800〜200〇11)111、攪拌時 間15〜30分鐘、溫度25〜70°C之條件進行,該高速攪拌處 理係於一密閉之高速攪拌機中實施。 27 200813143 29·如申請專利範圍第23項所述之製造方法,其中前述步驟(B ) 係進一步添加3〜25質量份之阻燃劑、0.1〜10質量份之性 能補強劑或〇· 1〜10質量份之加工助劑,以調整樹脂特性。 30·如申請專利範圍第29項所述之製造方法,其中前述阻燃劑 之添加量係為5-20質量份、性能補強劑添加量係為0.5-8質 量份或加工助劑添加量係為0·3-5質量份。 31 ·如申請專利範圍第30項所述之製造方法,其中前述阻燃劑 之添加量係為8-15質量份、性能補強劑添加量係為1-5質量 _ 份或加工助劑添加量係為0.5-3質量份。 32.如申請專利範圍第23項所述之製造方法,其中前述步驟(C) 中之熔融混練加工程序係使用一雙螺桿押出機進行之,其加 工條件為料缸溫度175〜240。(:、螺桿轉速180〜250 ηρπι。 33·如申請專利範圍第23項所述之製造方法,其中前述步驟(D) 中之冷卻係以水冷或氣冷方式進行。 34·如申請專利範圍第23項所述之製造方法,其係可於前述步 驟(D)之後進一步包含一造粒步驟。 35·如申請專利範圍第34項所述之製造方法,其中前述造粒步 9 驟係將冷卻後的押出條以造粒機製成尺寸小於3 mm之粒 子。 28 200813143 七、指定代表圖: (一) 本案指定代表圖為:第(無)圖。 (二) 本代表圖之元件符號簡單說明: 無200813143 X. Patent application scope: 1. A biodegradable resin composition for improving toughness and heat resistance, comprising the following components: 100 parts by mass of biodegradable resin; 1 to 40 parts by mass of thermoplastic elastomer; and 0.1 ~30 parts by mass of an inorganic filler. 2. The biodegradable resin composition according to claim 1, wherein the biodegradable resin comprises: polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinic acid- Adipate, polyglycolic acid, poly(β-hydroxybutyrate), poly(β-hydroxyvalerate), poly(β-hydroxycaproate), poly(β-hydroxyheptanoate), poly A polyhydroxycarboxylic acid ester type polymer such as (hydroxybutyrate-co-hydroxyvalerate), a polyhydroxy ester ether type polymer, a polyester carbonate or a mixture of the above resins. 3. The biodegradable resin composition according to claim 1, wherein the thermoplastic elastomer system is 5 to 30 parts by mass. 4. The biodegradable resin composition according to claim 3, wherein the thermoplastic elastomer system is 10 to 25 parts by mass. The biodegradable resin composition according to claim 1, wherein the thermoplastic elastomer system comprises: styrene-ethylene-butadiene-styrene copolymer, styrene-ethylene-propylene-stupyl ethylene Polymer, styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, styrene-butadiene rubber, ethylene-propylene rubber, vinyl chloride rubber, dibutyl Ethylene rubber, chlorinated butadiene rubber, isoprene rubber, nitrile rubber, acrylic rubber, ethylene-acrylic rubber, niobium rubber, fluorocarbon rubber, vulcanized rubber, dynamic vulcanized rubber, natural rubber, ethylene-propylene -butene elastomer, polyolefin elastomer, polyvinyl chloride elastomer, polyamine elastomer, polyester elastomer, polyester 24 200813143 -polyether elastomer, polyurethane elastomer, fluorin An elastomer or a mixture of the above thermoplastic elastomers. 6. The biodegradable resin composition according to claim 5, wherein the thermoplastic elastomer is first pretreated with a processing oil comprising a stone base series processing oil, an aromatic series processing oil, and a ring. Oxygenated soybean oil, glycerin or a mixture of the above processed oils. 7. The biodegradable resin composition according to claim 6, wherein the processing oil is a paraffin-based processing oil having a molecular weight of between 100 and -30 Å. 8. The biodegradable resin composition according to claim 1, wherein the inorganic filler is from 0.3 to 20 parts by mass. 9. The biodegradable resin composition according to claim 8, wherein the inorganic filler is from 0.5 to 15 parts by mass. 10. The biodegradable resin composition according to claim 1, wherein the inorganic filler comprises talc, kaolin, clay, layered niobate, carbonic acid #5, zinc oxide, hydroxide, hydrogen Magnesium oxide, a dream of oxidation or a mixture of the above inorganic fillers. The biodegradable resin composition as described in claim 1 further contains 3 to 25 parts by mass of a flame retardant. The biodegradable resin composition according to claim 11, wherein the flame retardant is 5 to 20 parts by mass. The biodegradable resin composition according to claim 12, wherein the flame retardant is from 8 to 15 parts by mass. 14. The biodegradable resin composition according to claim 11, wherein the flame retardant comprises RDP, triphenyl phosphate, triphenyl phosphate oligomer, hydrogen 25 200813143 alumina, magnesium hydroxide, A mixture of brominated polystyrene and or a combination of the above flame retardants. 15. The biodegradable resin composition according to claim 1, further comprising 0.1 to 10 parts by mass of a performance reinforcing agent. 16. The biodegradable resin composition according to claim 15, wherein the performance reinforcing agent is 0.5-8 parts by mass. 17. The biodegradable resin composition according to claim 16, wherein the performance reinforcing agent is 1-5 parts by mass. The biodegradable resin composition according to claim 15, wherein the performance reinforcing agent comprises a polyethylene grafted maleic anhydride copolymer, a polypropylene grafted maleic anhydride copolymer, and styrene. - ethylene-butadiene-styrene grafted maleic anhydride copolymer, ethylene-butadiene-methyl methacrylate grafted maleic anhydride copolymer, maleic anhydride, succinic anhydride, trimellitic acid An acid anhydride, a decane compound, a compound having a molecular structure containing an isocyanate-reactive functional group, a compound having a molecular structure containing an epoxy-reactive functional group, or a mixture of the above-mentioned performance reinforcing agents. 19. The biodegradable resin composition according to the first aspect of the patent application, further comprising 0. 1 to 10 parts by mass of a processing aid. 20. The biodegradable resin composition according to claim 19, wherein the processing aid is 0.3 to 5 parts by mass. 21. The biodegradable resin composition according to claim 20, wherein the processing aid is 0.5 to 3 parts by mass. 22. The biodegradable resin composition according to claim 9, wherein the processing aid comprises industrial white oil, stearic acid, zinc stearate, magnesium stearate, paraffin wax, polyethylene wax, and ring. Oxygen soybean oil, glycerin, tetramethylene alcohol, xylitol, sorbitol or a mixture of the above processing aids. 26 200813143 23. A method for producing a biodegradable resin for improving toughness and heat resistance, comprising the steps of: (A) mixing 50 - 99 weight percent of a thermoplastic elastomer with 1 - 50 weight percent by high speed stirring Processing the oil to form a pretreated thermoplastic elastomer; (B) mixing 100 parts by mass of the biodegradable resin, 1 to 40 parts by mass of the pretreated thermoplastic elastomer, and 0.1 to 30 parts by mass of the inorganic filler; (C) Performing a melt-kneading process; and (D) cooling the product of the aforementioned step (C) to form a biodegradable resin. 24. The manufacturing method according to claim 23, wherein the step (A) is a method of mixing 60-90 weight percent of the thermoplastic elastomer with 10-40 weight percent of the processing oil in a high-speed stirring manner, and mixing Set for more than 8 hours. The manufacturing method according to claim 24, wherein the step (A) is a method of mixing 65-80 weight percent of the thermoplastic elastomer with 20-35 weight percent of the processing oil by high-speed stirring, and mixing Set for more than 8 hours. The manufacturing method according to claim 23, wherein the processing oil used in the step (A) is selected from the group consisting of a sulphur-based series processing oil, an aromatic series processing oil, an epoxidized soybean oil, glycerin, and the like. A mixture of processing oils. The manufacturing method according to claim 23, wherein the processing oil used in the above step (A) is a stone-based series processing oil having a molecular weight of between 100 and 3000. The manufacturing method according to claim 23, wherein the high-speed stirring treatment in the step (A) is performed by using a rotation speed of 800 to 200 〇 11) 111, a stirring time of 15 to 30 minutes, and a temperature of 25 to 70 °. The conditions of C were carried out, and the high-speed stirring treatment was carried out in a closed high-speed mixer. The method according to claim 23, wherein the step (B) is further adding 3 to 25 parts by mass of the flame retardant, 0.1 to 10 parts by mass of the performance reinforcing agent or 〇·1~ 10 parts by mass of processing aid to adjust resin properties. The manufacturing method according to claim 29, wherein the flame retardant is added in an amount of 5 to 20 parts by mass, and the performance reinforcing agent is added in an amount of 0.5 to 8 parts by mass or a processing aid is added. It is 0·3-5 parts by mass. The manufacturing method according to claim 30, wherein the flame retardant is added in an amount of 8 to 15 parts by mass, and the performance reinforcing agent is added in an amount of 1 to 5 parts by mass or a processing aid. It is 0.5-3 parts by mass. The manufacturing method according to claim 23, wherein the melt-kneading processing procedure in the above step (C) is carried out using a twin-screw extruder, and the processing conditions are a cylinder temperature of 175 to 240. (:, the screw rotation speed is 180 to 250 ηρπι. 33. The manufacturing method according to claim 23, wherein the cooling in the step (D) is carried out in a water-cooled or air-cooled manner. The manufacturing method of claim 23, further comprising a granulation step after the step (D). The manufacturing method according to claim 34, wherein the granulation step 9 is cooled The post-extruding strip is made of particles smaller than 3 mm in size by a granulator. 28 200813143 VII. Designation of representative drawings: (1) The representative figure of the case is: (None). (2) The symbol of the representative figure is simple. Description: None 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW95132679A 2006-09-05 2006-09-05 Biodegradable resin composition with improved toughness and thermal resistance and production method thereof TWI330649B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW95132679A TWI330649B (en) 2006-09-05 2006-09-05 Biodegradable resin composition with improved toughness and thermal resistance and production method thereof
JP2007230220A JP4689650B2 (en) 2006-09-05 2007-09-05 Biodegradable resin composition with improved toughness and heat resistance and method for producing biodegradable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95132679A TWI330649B (en) 2006-09-05 2006-09-05 Biodegradable resin composition with improved toughness and thermal resistance and production method thereof

Publications (2)

Publication Number Publication Date
TW200813143A true TW200813143A (en) 2008-03-16
TWI330649B TWI330649B (en) 2010-09-21

Family

ID=39286541

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95132679A TWI330649B (en) 2006-09-05 2006-09-05 Biodegradable resin composition with improved toughness and thermal resistance and production method thereof

Country Status (2)

Country Link
JP (1) JP4689650B2 (en)
TW (1) TWI330649B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831156A (en) * 2010-05-07 2010-09-15 四川大学 Toughened halogen-free flame-retardant polylactic acid blending material
CN101914274A (en) * 2010-09-15 2010-12-15 中国科学院长春应用化学研究所 Completely biodegradable transparent high-toughness polylactic acid resin and preparation method thereof
CN105419276A (en) * 2016-01-07 2016-03-23 苏州法斯特信息科技有限公司 Heat-resisting polyactic acid composite material and preparing method thereof
TWI567320B (en) * 2015-10-19 2017-01-21 Rui-Hong Chen Connecting pipe structure
CN110229497A (en) * 2019-05-16 2019-09-13 深圳光华伟业股份有限公司 Bio-based polyurethane/polylactic acid alloy blown film material and preparation method thereof
WO2023088239A1 (en) * 2021-11-17 2023-05-25 金发科技股份有限公司 Flame-retardant high-toughness pla alloy material, and preparation method therefor and use thereof

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110081235A (en) 2008-09-29 2011-07-13 바스프 에스이 Biodegradable polymer mixture
JP5610479B2 (en) * 2008-11-05 2014-10-22 独立行政法人産業技術総合研究所 Carbon dioxide-derived aliphatic polycarbonate composite and method for producing the same
US9120976B2 (en) * 2009-11-25 2015-09-01 Akusta Unternehmensberatung Fire retardant moldings and method for producing and using such a molding
EP2554595B1 (en) * 2010-03-30 2018-01-03 Nitto Denko Corporation Fire-retardant polylactic film or sheet, and method for producing same
ES2746204T3 (en) * 2010-10-11 2020-03-05 Novomer Inc Polymer blends
CN103013029B (en) * 2012-12-06 2015-06-03 上海日之升新技术发展有限公司 Flame-retardant glass fiber-reinforced ABS/PA6 alloy material with high CTI value and high GWIT value
WO2014115029A2 (en) * 2013-01-22 2014-07-31 University Of Guelph Poly (lactic actd)-based biocomposite materials having improved toughness and heat distortion temperature and methods of making and using thereof
KR101270363B1 (en) 2013-01-29 2013-05-31 최영재 Method of preparing naturally degradable food container using coated inorganic filler powder
JP6369315B2 (en) * 2014-12-12 2018-08-08 三菱ケミカル株式会社 Polylactic acid-based resin composition, heat-shrinkable film using the composition, molded product using the heat-shrinkable film, heat-shrinkable label, and container using or mounting the molded product
JP6687330B2 (en) * 2015-04-09 2020-04-22 東洋スチレン株式会社 Styrene resin composition and molded article
JP6553925B2 (en) * 2015-04-09 2019-07-31 東洋スチレン株式会社 Styrene resin composition and molded body
KR101559705B1 (en) * 2015-04-17 2015-10-13 오승근 a decomposable resin pellet and the product using thereof
CN108485219B (en) * 2018-04-29 2020-12-11 安徽中科达美新材料科技有限公司 Preparation method of bio-based wood-plastic composite new material
CN111748182B (en) * 2019-08-19 2022-11-04 天津大学 High-transparency high-toughness polylactic acid-based material and preparation method thereof
CN110564027A (en) * 2019-09-05 2019-12-13 徐州工业职业技术学院 preparation method of halogen-free flame-retardant rubber composite material
CN111732820A (en) * 2020-07-13 2020-10-02 滁州睿兴高分子材料有限公司 Degradable thermoplastic elastomer composite material and preparation method thereof
CN112267173A (en) * 2020-10-28 2021-01-26 深圳市华远新材料有限公司 Degradable tow for cigarette filter tip and preparation method thereof
CN112375357A (en) * 2020-12-04 2021-02-19 温州市隆昌塑料有限公司 Degradable modified polylactic acid composition and application thereof
CN112646347B (en) * 2020-12-25 2021-09-21 中国科学院长春应用化学研究所 Anti-adhesion PPC material and preparation method thereof
CN113276513B (en) * 2021-02-05 2023-01-10 厦门艾美森新材料科技股份有限公司 Completely degradable gas barrier air cushion film and preparation method thereof
CN113549270A (en) * 2021-08-11 2021-10-26 重庆科聚孚新材料有限责任公司 High-toughness weather-resistant efficient halogen-free flame-retardant material for cables
CN113698748B (en) * 2021-09-06 2022-10-11 西南大学 Partially crosslinked epoxy natural rubber modified polylactic acid and preparation method thereof
CN113861599B (en) * 2021-10-27 2022-11-18 广东唯粒新材料科技有限公司 Silica gel-like thermoplastic resin and preparation method thereof
CN113801448B (en) * 2021-10-28 2022-11-22 漯河市瑞博塑胶有限公司 Biodegradable color master batch and preparation method thereof
CN114479395A (en) * 2022-01-06 2022-05-13 中化泉州能源科技有限责任公司 Preparation method of heat-resistant polylactic acid modified material
CN114736481B (en) * 2022-02-15 2023-07-21 杭州巨星科技股份有限公司 Gasoline-resistant TPE material
KR20230165729A (en) * 2022-05-27 2023-12-05 한화솔루션 주식회사 Biodegradable Resin Composition, Biodegradable Resin Article and Process for Preparing the Same
CN115895205A (en) * 2022-11-17 2023-04-04 东莞市宇捷实业投资有限公司 Ocean renewable resource modified PBT material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226501A (en) * 1999-02-03 2000-08-15 Daicel Chem Ind Ltd Biodegradable resin composition excellent in impact resistance
JP3770191B2 (en) * 2001-04-09 2006-04-26 Jsr株式会社 Thermoplastic polymer composition and molded article thereof
JP4241243B2 (en) * 2003-07-11 2009-03-18 株式会社豊田中央研究所 Aliphatic polyester composition and molded article thereof
JP2005187533A (en) * 2003-12-24 2005-07-14 Asahi Kasei Chemicals Corp Molded item of polylactic acid-based resin composition excellent in impact resistance and heat resistance
JP2005226056A (en) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp Molded product of aliphatic polyester resin
JP2005272696A (en) * 2004-03-25 2005-10-06 Asahi Kasei Chemicals Corp Aliphatic polyester molding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831156A (en) * 2010-05-07 2010-09-15 四川大学 Toughened halogen-free flame-retardant polylactic acid blending material
CN101914274A (en) * 2010-09-15 2010-12-15 中国科学院长春应用化学研究所 Completely biodegradable transparent high-toughness polylactic acid resin and preparation method thereof
CN101914274B (en) * 2010-09-15 2012-07-04 中国科学院长春应用化学研究所 Completely biodegradable transparent high-toughness polylactic acid resin and preparation method thereof
TWI567320B (en) * 2015-10-19 2017-01-21 Rui-Hong Chen Connecting pipe structure
CN105419276A (en) * 2016-01-07 2016-03-23 苏州法斯特信息科技有限公司 Heat-resisting polyactic acid composite material and preparing method thereof
CN105419276B (en) * 2016-01-07 2017-04-26 东莞市飞扬塑胶模具有限公司 Heat-resisting polyactic acid composite material and preparing method thereof
CN110229497A (en) * 2019-05-16 2019-09-13 深圳光华伟业股份有限公司 Bio-based polyurethane/polylactic acid alloy blown film material and preparation method thereof
CN110229497B (en) * 2019-05-16 2021-07-30 深圳光华伟业股份有限公司 Bio-based polyurethane/polylactic acid alloy film blowing material and preparation method thereof
WO2023088239A1 (en) * 2021-11-17 2023-05-25 金发科技股份有限公司 Flame-retardant high-toughness pla alloy material, and preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP2008063577A (en) 2008-03-21
JP4689650B2 (en) 2011-05-25
TWI330649B (en) 2010-09-21

Similar Documents

Publication Publication Date Title
TW200813143A (en) Biodegradable resin composition with improved toughness and thermal resistance and production method thereof
CN101143962A (en) Biodegradable resin composition for modifying toughness and heat resistance and preparation method thereof
KR101277726B1 (en) Natural fiber-reinforced polylactic acid resin composition and molded product made using the same
EP2186846B1 (en) Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
Kumar et al. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites
JP5610479B2 (en) Carbon dioxide-derived aliphatic polycarbonate composite and method for producing the same
Liu et al. Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MA
CN1216101C (en) Preparation method of toughness enhanced and reinforced polybutanediol terephthalate nanometer composition
KR101233373B1 (en) Polylactic acid resin composition
WO2022252266A1 (en) Composite toughened and high-temperature-resistant polylactic acid modified material and preparation method therefor
CN106751607A (en) A kind of FDM printings use graininess PLA material modified and preparation method
WO2005085352A1 (en) Thermoplastic resin composition and molded article comprising the same
JP2008150599A (en) Natural fiber-reinforced polylactic acid resin composition
CN101280096A (en) High-glaze strengthened toughened polyethylene glycol terephthalate nanometer composite material and preparation thereof
JP2014503678A (en) Biodegradable polymer composite
JP2006328117A (en) Impact-resistant environmental material, method for producing the same, and molded article
WO2015000081A1 (en) Heat resistant polylactic acid
JP5272283B2 (en) Styrenic resin composition
Wang et al. Mechanical properties of polypropylene by diversely compatibilizing with titanate whiskers in composites
CN101870803A (en) Toughened polyethylene glycol terephthalate and preparation method thereof
JP2006137853A (en) Resin composition
CN109721786B (en) Polyethylene composite material and preparation method thereof
KR101233370B1 (en) Clay-reinforced polylactic acid stereocomplex resin composition
CN111171542A (en) High CTI flame-retardant polycarbonate alloy material and preparation method and application thereof
KR20090073847A (en) Clay-reinforced polylactice acid-polyamide compositie resin composition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees