TW200810156A - LED device with re-emitting semiconductor construction and reflector - Google Patents

LED device with re-emitting semiconductor construction and reflector Download PDF

Info

Publication number
TW200810156A
TW200810156A TW096121063A TW96121063A TW200810156A TW 200810156 A TW200810156 A TW 200810156A TW 096121063 A TW096121063 A TW 096121063A TW 96121063 A TW96121063 A TW 96121063A TW 200810156 A TW200810156 A TW 200810156A
Authority
TW
Taiwan
Prior art keywords
light
reflector
semiconductor structure
emitting semiconductor
wavelength
Prior art date
Application number
TW096121063A
Other languages
Chinese (zh)
Inventor
Michael Albert Haase
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW200810156A publication Critical patent/TW200810156A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • H01L2924/13033TRIAC - Triode for Alternating Current - A bidirectional switching device containing two thyristor structures with common gate contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Abstract

Briefly, the present disclosure provides a device comprising: (a) an LED capable of emitting light at a first wavelength; (b) a re-emitting semiconductor construction which comprises a potential well not located within a pn junction; and (c) a reflector positioned to reflect light emitted from the LED onto the re-emitting semiconductor construction. Alternately, the device comprises: (a) an LED capable of emitting light at a first wavelength; (b) a re-emitting semiconductor construction capable of emitting light at a second wavelength which comprises at least one potential well not located within a pn junction; and (c) a reflector which transmits light at said first wavelength and reflects at least a portion of light at said second wavelength. Alternately, the device comprises a semiconductor unit comprising a first potential well located within a pn junction which comprises a LED capable of emitting light at a first wavelength, and a second potential well not located within a pn junction which comprises a re-emitting semiconductor construction.

Description

200810156 九、發明說明: 【發明所屬之技術領域】 本發明係關於光源。更特定言之,本發明係關於其中從 一發光二極體(LED)發射的光會撞擊在一再發射半導體結 構上並激發該結構將所發射的光之一部分降頻轉換為較長 波長的光源。 【先前技術】 發光二極體(LED)係固態半導體裝置,其於在陽極與陰 極之間傳遞電流時發射光。傳統發光二極體包含一單二二 接面。該Pn接面可包含中間未摻雜區域,此類型的pn接面 亦可稱為梢接面。像非發光半導體二極體一樣,傳統發光 二極體在一個方向上(即,在電子從n區域移動至p區域的 方向上)更輕易地傳遞電流。當電流於"正向”方向上穿過該 =光二極體時,來自n區域的電子與來自p區域的電洞再組 合:從而產生光子。由-傳統發光二極體發射的光在外觀 上係單色的’ R ’其係在波長之單一窄頻帶中產生。發射 的j波長對應於與電子及電洞對再組合相關聯的能量。 在最簡單的情況下,該能量係接近其中出現再組合的半導 體之帶隙能量。 傳統發光二極體可另外包含pn接面上的一或多個量子 2 ’其捕獲南濃度的電子及電洞,從而增強產生光的再組 二右干調查者已嘗試生產一發光二極體裝置,其發射白 光或對肉眼之3色感覺顯現為白色的光。 某一調查者報‘ pn接面内具有多個量子井的發光二極體 12I656.doc 200810156 之據稱的•又η十或製造,在該接面中多個量子井係預計以不 同波長發射光。下列參考可與此一技術相關:美國專利第 5,851,905號;美國專利第6,3〇3,404號;美國專利第 6,504,171號;美國專利第6,734,467號;Damilano等人,基 於InGaN/GaN多量子井之單片白色發光二極體,Jpn· j·應 用物理第40卷(2001)第L918至L920頁;Yamada等人,由 InGaN多量子井組成的不含再發射之半導體構造的高光效 率之白色發光二極體,jpn· J·應用物理第41卷(2〇〇2)第 L246至L248頁;Dalmasso等人,不含再發射之半導體構造 之以GaN為基礎的白色發光二極體之電致發光光譜的注射 相依,phys· stat· sol· (a)192,第 1 號,第 139 至 143 頁 (2003)。 某些调查者報導組合二個傳統發光二極體的發光二極體 裝置之據稱的設計或製造,該等發光二極體係預計在單一 裝置中以不同波長獨立地發射光。下列參考可與此類技術 相關·美國專利第5,85 1,905號;美國專利第6,734,467號; 美國專利公告案第2002/0041148 A1號;美國專利公告案第 2002/0134989 A1號;Luo等人,整合全色及白色光發射器 用之圖案化三色ZnCdSe/ZnCdMgSe量子井結構,應用物理 論文第77卷,第26號,第4259至4261頁(2〇〇〇)。200810156 IX. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a light source. More particularly, the present invention relates to a light source in which light emitted from a light emitting diode (LED) impinges on a re-emitting semiconductor structure and excites the structure to down-convert a portion of the emitted light to a longer wavelength. . [Prior Art] A light-emitting diode (LED) is a solid-state semiconductor device that emits light when a current is transferred between an anode and a cathode. A conventional light-emitting diode includes a single two-two junction. The Pn junction may comprise an intermediate undoped region, and this type of pn junction may also be referred to as a tip junction. Like non-emitting semiconductor diodes, conventional light-emitting diodes transfer current more easily in one direction (i.e., in the direction in which electrons move from the n-region to the p-region). When the current passes through the = photodiode in the "forward" direction, the electrons from the n region are recombined with the holes from the p region: thereby producing photons. The light emitted by the conventional light emitting diode is in appearance The upper monochromatic 'R' is produced in a single narrow band of wavelengths. The emitted j-wavelength corresponds to the energy associated with the recombination of electrons and holes. In the simplest case, the energy is close to The band gap energy of the recombined semiconductor occurs. The conventional light emitting diode may additionally include one or more quantum 2's on the pn junction to capture electrons and holes in the south concentration, thereby enhancing the generation of light and the second right Investigators have attempted to produce a light-emitting diode device that emits white light or white light that appears to the naked eye. Some investigators reported a light-emitting diode 12I656 with multiple quantum wells in the pn junction. Doc 200810156 Allegedly • η or manufacturing, in which multiple quantum well systems are expected to emit light at different wavelengths. The following references may be related to this technique: US Patent No. 5,851,905; US Patent 6,3〇3,404 U.S. Patent No. 6,504,171; U.S. Patent No. 6,734,467; Damilano et al., Single-Piece White Light Emitting Diode Based on InGaN/GaN Multiple Quantum Wells, Jpn·j·Applied Physics Volume 40 (2001) L918 To the L920 page; Yamada et al., a high-light-efficiency white light-emitting diode composed of an InGaN multi-quantum well without a re-emitting semiconductor structure, jpn·J· Applied Physics, Volume 41 (2〇〇2), L246 to L248, Dalmasso et al., Injection-dependent dependence of electroluminescence spectra of GaN-based white light-emitting diodes without re-emitting semiconductor structures, phys stat·sol· (a) 192, No. 1, pp. Pp. 139-143 (2003). Some investigators reported the alleged design or manufacture of a light-emitting diode device combining two conventional light-emitting diodes that are expected to be independent at different wavelengths in a single device. Ground emission. The following references may be related to such techniques. U.S. Patent No. 5,85,905; U.S. Patent No. 6,734,467; U.S. Patent Publication No. 2002/0041148 A1; U.S. Patent Publication No. 2002/0134989 A1 No.; Luo et al., integration The patterned color and white light emitters with the three-color ZnCdSe / ZnCdMgSe quantum well structure, the paper Applied Physics, Vol. 77, No. 26, of 4259 to 4261 (2〇〇〇).

某些調查者報導發光二極體裝置之據稱的設計或製造, 該等裝置將一傳統發光二極體元件與一化學再發射之半導 體構造組合,該構造如釔鋁石榴石(YAG),其係預計吸收 由該發光二極體元件發射的光之一部分並再發射較長波I 121656.doc 200810156 之光。美國專利第5,998,925號以及美國專利第6,734,467號 可與此一技術相關。 某些調查者報導,發光二極體之傳說的設計或製造係生 長在採用I、Al、Cl、Br、Ga或In加以η摻雜的一 ZnSe基板 上以在該基板中建立螢光中心,其係意欲吸收由發光二極 - 元件發射的光之一部分且再發射一較長波長之光。美國專 、 利申請案第6,337,536號及曰本專利申請公告案第2〇〇4_ 072047號可與此類技術相關。 ⑩ 【發明内容】 簡吕之,本揭示内容提供一種裝置,其包括:a) 一發光 一極體,其能夠以一第一波長發射光;b)一再發射半導體 結構,其包括未定位在一 pn接面内的一電位井;以及c) 一 反射器’其固疋成將從該發光二極體發射的光反射至該再 發射半導體結構上。該再發射半導體結構可額外包括緊密 鄰近或緊接鄰近於一電位井之一吸收層。電位井可以係量 φ 子井。在一項具體實施例中,該再發射半導體結構能夠以 一第二波長發射光而且該反射器以該第一波長反射光並以 該第二波長透射光。該反射器可以係一多層反射器、一非 • 平面撓性多層反射器、或一反射偏光器層。 • 另一方面,本揭示内容提供一裝置,其包括:a) 一發光 二極體,其能夠以一第一波長發射光;b)一再發射半導體 、、、σ構,其旎夠以一弟二波長發射光、包括未定位在一叩接 面内的至少一電位井;以及勾一反射器,其以該第一波長 透射光且以該第二波長反射至少一部分光。該再發射半導 121656.doc 200810156 體結構可額外包括緊密鄰近或緊接鄰近於一電位井之一吸 收層。電位井可以係量子井。可將該反射器固定在該發光 二極體與該再發射半導體結構之間。該反射器可以係一多 層反射裔或一非平面撓性多層反射器。 另一方面,本揭示内容提供一裝置,其包括:叻一半導 體單兀,其包括:i)定位在包括能夠以一第一波長發射光 的一發光二極體之一抑接面内的一第一電位井,及⑴未定 位在包括一再發射半導體結構之一 ρη接面内的一第二電位 井;以及b)—反射器,其係固定成將從該發光二極體發射 的光反射至該再發射半導體結構上。該再發射半導體結構 可額外包括緊密鄰近或緊接鄰近於一電位井之一吸收層。 電位井可以係量子井。在一項具體實施例中,該再發射半 導體結構能夠以一第二波長發射光而且該反射器以該第一 波長反射光並以該第二波長透射光。該反射器可以係一多 層反射器、一非平面撓性多層反射器、或一反射偏光器 層。 另一方面,本發明提供一繪圖顯示器裝置,其包括依據 本發明之發光二極體裝置。 另一方面,本發明提供一照明裝置,其包括依據本發明 之發光二極體裝置。 在此申請案中: 關於一半導體裝置中的層堆疊,,,緊接鄰近"意味著在無 中間層的情況下順次下一個,η緊密鄰近,’意味著在具有一 或幾個中間層的情況下順次下一個,以及"周圍”意味著順 121656.doc -9- 200810156 次之前以及之後; "電位井,,意味著一半導體裝置中的-半導體層,其具有 比周圍層低的傳導頻帶能量或比周圍層高的價頻帶能量, 或二者兼而有之; ' ,,量子井"意味著一電位井,其係足夠薄以致量子化效應 會提升該井中的電洞賴變能量,該井通常具有剛咖或 更小厚度; "轉變能量”意味著電子及電洞再組合能量,· "晶格匹配"意味著,參考二種結晶材料(例如一基板上的 蟲晶膜),在隔離中所取的每一種材料均具有—晶格常 數,而且此等晶格常數係實質上相等的,通常至多彼此相 是0.2%’更通常至多彼此相差〇1%,而且最通常至多彼此 相差0.01%,以及 "假晶"意味著,參考給定厚度之一第—結晶層以及一第 二結晶層(例如一磊晶層以及-基板),在隔離中所取的每 一層均具有—晶格常數,並且此等晶格常數係實質上類似 的以便具有給定厚度之該第_層可以採用實質上無失配缺 陷的層之平面中的該第二層之晶格間距。 應瞭解#於本文中說明的包括n推雜及P推雜半導體區 域的本發明之任一具體實施例而言,另一具體實施例應視 為揭示於本文中’其中η摻雜係與P掺雜交換且反之亦然。 應瞭解’在本文陳述,’電位井”、"第一電位井"、”第二電 [井乂及第二電位井"之每一項的情況下,可提供一單 電位井或可提供通常共有類似特性的多個電位井。同樣 121656.doc 200810156 地,應瞭解,在本文陳述”量子井,,、"第一量子井,,、,,第二 S子井”以及"第三量子井”之每一項的情況下,可提供一 單一里子井或可提供通常共有類似特性的多個量子井。 【實施方式】 本發明提供一種裝置,其包括:一發光二極體;一再發 ♦ 射半導體結構及一反射器,其係固定成將從該發光二極體 、 發射的光反射至該再發射半導體結構上。通常而言該發光 二極體能夠以―第—波長發射光而且該再發射半導體結構 • ㈣以該第一波長吸收光並以一第二波長再發射光。該再 發射半導體結構包括未定位在一pn接面内的一電位井。該 再發射半V體結構之該等電位井通常但不必係量子井。 在另-具體實施例中,該裝置包括_反射器,其以該第 -波刪光並以一第二波長反射至少一料光。可將此 反射器固定在該發光二極體與該再發射半導體結構之間。 在/、型運轉中,该發光二極體發射光子以回應一電流而 φ 1該再發射半導體結構發射光子以回應從該發光二極體發 射的該等光子之一部分的吸收。在一項具體實施例中,該 再發射半導體結構額外包括緊密或緊接鄰近於該電位井之 β —吸收層。吸收層通常具有-帶隙能量,其係小於或等於 &該發光二極體發射的光子之能量且大於該再發射半導體 結構之電位井的轉變能量。在典型運轉中,吸收層協助吸 收從該發光二極體發射的光子。在一項具體實施例中,該 7發射半導體結構額外包括未定位在―沖接面内的至少一 第電位井,其具有不等於該第一電位井之轉變能量的— 121656.doc •11- 200810156 第二轉變能量。在一項具體實施例中,該發光二極體係一 uv發光二極體。在一項此類具體實施例中,該再發射半 導體結構包括未定位在一 pn接面内的至少一第一電位井, 其具有對應於藍波長光的一第一轉變能量;未定位在一沖 接面内的至少一第二電位井,其具對應於綠波長光的一第 二轉變能量;以及未定位在pn接面内的至少一第三電位 井,其具有對應於紅波長光的一第三轉變能量。在一項具 體實施例中,該發光二極體係一可見光發光二極體,通常 係一綠、藍或紫發光二極體,更通常係一綠或藍發光二極 體且农通4係一藍發光二極體。在一項具體實施例中, 該再發射半導體結構包括未定位在一 pn接面内的至少一第 電位井,其具有對應於頁或綠波長光(更通常為綠波長 光)的一第一轉變能量,·及未定位在一叩接面内的至少一 第一電位井,其具有對應於橘或紅波長光(更通常為紅波 長光)的一第二轉變能量。該再發射半導體結構可包括額 外電位井及額外吸收層。 任一適當的發光二極體均可用於本發明之實務中。依據 本發明之裝置的元件(包含該發光二極體及該再發射半導 體結構)可由任何適當的半導體組成,該等元件包含:^ 族元素,例如Si或Ge (而非在發光層中);ΙΠ·ν化合物,例 如 InAs、A1As、GaAs、Inp、Alp、Gap、“讥、、 GaSb及其合金;ΐΐ-νι化合物,例如ZnSe、CdSe、、Some investigators report the alleged design or manufacture of light-emitting diode devices that combine a conventional light-emitting diode component with a chemically re-emitting semiconductor structure such as yttrium aluminum garnet (YAG). It is intended to absorb a portion of the light emitted by the light-emitting diode element and re-emit light of the longer wavelength I 121656.doc 200810156. U.S. Patent No. 5,998,925 and U.S. Patent No. 6,734,467 are incorporated herein by reference. Some investigators report that the legendary design or fabrication of light-emitting diodes is grown on a ZnSe substrate doped with I, Al, Cl, Br, Ga, or In to create a fluorescent center in the substrate. It is intended to absorb a portion of the light emitted by the light-emitting diode-element and re-emit a longer wavelength of light. U.S. Patent Application No. 6,337,536 and Japanese Patent Application Laid-Open No. Hei. 10 SUMMARY OF THE INVENTION The present disclosure provides an apparatus comprising: a) a light emitting body capable of emitting light at a first wavelength; b) a re-emitting semiconductor structure comprising: not positioned in a a potential well within the pn junction; and c) a reflector 'solidified to reflect light emitted from the light emitting diode onto the re-emitting semiconductor structure. The re-emitting semiconductor structure can additionally include an absorber layer that is in close proximity or immediately adjacent to a potential well. Potential wells can be used to measure φ subwells. In a specific embodiment, the re-emitting semiconductor structure is capable of emitting light at a second wavelength and the reflector reflects light at the first wavelength and transmits light at the second wavelength. The reflector can be a multilayer reflector, a non-planar flexible multilayer reflector, or a reflective polarizer layer. • In another aspect, the present disclosure provides a device comprising: a) a light emitting diode capable of emitting light at a first wavelength; b) a re-emitting semiconductor, a sigma structure, which is sufficient for a brother Two wavelengths of emitted light, including at least one potential well not positioned within a junction; and a hook reflector that transmits light at the first wavelength and reflects at least a portion of the light at the second wavelength. The re-emitting semi-conductor 121656.doc 200810156 may additionally include an absorbent layer that is in close proximity or immediately adjacent to one of the potential wells. Potential wells can be quantum wells. The reflector can be secured between the light emitting diode and the re-emitting semiconductor structure. The reflector can be a multi-layer reflector or a non-planar flexible multilayer reflector. In another aspect, the present disclosure provides an apparatus comprising: a semiconductor monolith comprising: i) positioning in a plane that includes one of a light-emitting diodes capable of emitting light at a first wavelength a first potential well, and (1) a second potential well not positioned within a pn junction of a re-emitting semiconductor structure; and b) a reflector fixed to reflect light emitted from the light emitting diode Up to the re-emitting semiconductor structure. The re-emitting semiconductor structure can additionally include an absorber layer that is in close proximity or immediately adjacent to a potential well. Potential wells can be quantum wells. In a specific embodiment, the re-emitting semiconductor structure is capable of emitting light at a second wavelength and the reflector reflects light at the first wavelength and transmits light at the second wavelength. The reflector can be a multi-layer reflector, a non-planar flexible multilayer reflector, or a reflective polarizer layer. In another aspect, the invention provides a drawing display device comprising a light emitting diode device in accordance with the present invention. In another aspect, the invention provides an illumination device comprising a light emitting diode device in accordance with the present invention. In this application: Regarding the layer stack in a semiconductor device, immediately adjacent to " means that in the absence of an intermediate layer, the next one, η is closely adjacent, 'meaning that there are one or several intermediate layers In the case of the next one, and "around" means cis121656.doc -9- 200810156 times before and after; "potential well, meaning a semiconductor device in the semiconductor device, which has a lower than the surrounding layer The conduction band energy or the valence band energy higher than the surrounding layer, or both; ', quantum well" means a potential well that is thin enough that the quantization effect will enhance the hole in the well Depending on the energy, the well usually has a bare coffee or a smaller thickness; "transition energy means that electrons and holes recombine energy, "lattice matching" means that two crystalline materials (such as a substrate) are referenced Each of the materials taken in the isolation has a lattice constant, and the lattice constants are substantially equal, usually at most 0.2% of each other's phase, more usually at most The difference is 1%, and most usually at most 0.01% difference from each other, and "false crystal" means, referring to one of the given thicknesses of the first crystalline layer and a second crystalline layer (such as an epitaxial layer and a substrate) Each layer taken in the isolation has a lattice constant, and such lattice constants are substantially similar such that the first layer having a given thickness can be in the plane of the layer substantially free of mismatch defects The lattice spacing of the second layer. It should be understood that any of the specific embodiments of the present invention including n-imposing and P-imposing semiconductor regions described herein, another embodiment should be considered as disclosed herein, where n-doped systems and P Doping exchange and vice versa. It should be understood that 'in the case of the statement, the 'potential well', the 'first potential well', the second electric (well and second potential well), a single potential well or Multiple potential wells that typically share similar characteristics can be provided. Similarly, it should be understood that the case of each of the "quantum wells,,, "first quantum wells,,,, the second S subwells" and the "third quantum wells" is stated in this paper. In the following, a single neutron well or a plurality of quantum wells that generally share similar characteristics can be provided. [Embodiment] The present invention provides an apparatus comprising: a light emitting diode; a re-emitting semiconductor structure and a reflector And is fixed to reflect the emitted light from the light emitting diode onto the re-emitting semiconductor structure. Generally, the light emitting diode can emit light at a “first wavelength” and the re-emitting semiconductor structure • (4) The first wavelength absorbs light and re-emits light at a second wavelength. The re-emitting semiconductor structure includes a potential well that is not positioned within a pn junction. The equipotential well of the re-emitting half-V body structure is usually but not necessarily In another embodiment, the apparatus includes a reflector that multiplexes the first wave and reflects at least one of the light at a second wavelength. The reflector can be attached to the light emitting diode body Between the re-emitting semiconductor structures, the light-emitting diode emits photons in response to a current and φ 1 the re-emitting semiconductor structure emits photons in response to the photons emitted from the light-emitting diodes. A portion of the absorption. In a specific embodiment, the re-emitting semiconductor structure additionally includes a beta-absorbing layer that is in close proximity or immediately adjacent to the potential well. The absorber layer typically has a band gap energy that is less than or equal to & The energy of the photon emitted by the light-emitting diode is greater than the energy of the potential well of the re-emitting semiconductor structure. In a typical operation, the absorber layer assists in absorbing photons emitted from the light-emitting diode. In a specific embodiment The 7-emitting semiconductor structure additionally includes at least one potential well not positioned in the "punching plane" having a second transition energy not equal to the transition energy of the first potential well - 121656.doc • 11 - 200810156 In a specific embodiment, the light emitting diode system is a uv light emitting diode. In one such specific embodiment, the reemitting semiconductor structure comprises unlocated At least one first potential well in a pn junction having a first transition energy corresponding to blue wavelength light; at least one second potential well not positioned in a splicing surface, corresponding to green wavelength light a second transition energy; and at least a third potential well not positioned within the pn junction having a third transition energy corresponding to red wavelength light. In a specific embodiment, the light emitting diode system A visible light emitting diode, typically a green, blue or violet light emitting diode, more typically a green or blue light emitting diode and an agricultural 4 series blue light emitting diode. In a specific embodiment The re-emitting semiconductor structure includes at least one potential well not positioned within a pn junction having a first transition energy corresponding to a page or green wavelength light (more typically green wavelength light), and not positioned At least one first potential well within a junction having a second transition energy corresponding to orange or red wavelength light (more typically red wavelength light). The re-emitting semiconductor structure can include an additional potential well and an additional absorber layer. Any suitable light emitting diode can be used in the practice of the present invention. An element (including the light-emitting diode and the re-emitting semiconductor structure) of the device according to the invention may be composed of any suitable semiconductor comprising: a group element such as Si or Ge (rather than in the light-emitting layer); ΙΠ·ν compounds, such as InAs, A1As, GaAs, Inp, Alp, Gap, “讥, GaSb and their alloys; ΐΐ-νι compounds, such as ZnSe, CdSe,

MgSe、ZnTe、CdTe、BeTe、MgTe、ZnS、CdS、Bes、MgSe, ZnTe, CdTe, BeTe, MgTe, ZnS, CdS, Bes,

MgS及其合金;或以上任何者之合金。在適當的情況下, 121656.doc -12- 200810156 該等半導體可以藉由任何適當方法或藉由任何適當摻雜劑 之内含物加以η摻雜或p摻雜。在一項典型具體實施例中, 該發光二極係一III-V半導體裝置而且該再發射半導體結構 係一 π-νι半導體裝置。 在本發明之一項具體實施例中,根據下列考量選擇該裝 置之一組件之各層的組合物,例如該發光二極體或該再發 射半導體結構。每一層對於具有針對該層所給定的厚度之 基板而言通常係假晶的或與該基板晶格匹配。或者,每一 層對緊接鄰近層可以係假晶的或與其晶格匹配。通常選擇 電位井層材料及厚度以便提供一所需轉變能量,其將對應 於欲從該量子井加以發射的光之波長。例如,圖2中標識 為460 nm、540 nm以及630 11瓜的點表示 金,其具有接近於InP基板之晶格常數的晶格常數(5.8687 埃或0.58687 rnn)以及對應於46〇 nm(藍)、54〇 nm(綠)以及 630 nm(紅)之波長的帶隙能量。在一電位井層係足夠薄以 致1子化會將轉變能量提升至該井中的大帶隙能量以上之 情況下,該電位井可視為-量子井。每—量子井層之厚度 將決定該量子井中的量子化能量之數量,其係加入大帶隙 能量以決定該量子井中的轉變能量。因此,可以藉由調整 量子井層厚度而調諧與每一量子井相關聯的波長。通常而 言,量子井層的厚度係在i咖與丨㈧nm之間,更通常而言 係在2 nm與35 nm之間。通常而言,量子化能量轉化為: 對於單獨依據帶隙能量所期望的2〇至5〇 nm的波長減小。 該發射層中的壓受力亦改變電位井及量子井的轉變能量, 121656.doc •13- 200810156 該壓受力包含由假晶層之間的晶格常數之不良匹配所產生 的壓受力。 用於計算受力或未受力電位井或量子井之轉變能量的技 術在該技術中已為人所知,例如Herbert ^。嶋喷出的工 程量子力學’材料科技與應用物理(聖荷西州Engiew〇〇d CHffs市進修部,1994)第54至63頁;以及Z(^,ed提出的量 子井雷射(加州聖地牙哥市學術出版社,1993)第72至79 頁,二者係以引用的方式併入本文中。MgS and its alloys; or alloys of any of the above. Where appropriate, 121656.doc -12- 200810156 the semiconductors may be n-doped or p-doped by any suitable method or by inclusion of any suitable dopant. In a typical embodiment, the light emitting diode is a III-V semiconductor device and the re-emitting semiconductor structure is a π-νι semiconductor device. In one embodiment of the invention, the composition of the layers of one of the components of the device, such as the light emitting diode or the re-emitting semiconductor structure, is selected in accordance with the following considerations. Each layer is typically pseudo-crystallographically or lattice-matched to the substrate having a thickness given for that layer. Alternatively, each layer pair may be pseudomorphic or lattice matched to the adjacent layer. The potential well layer material and thickness are typically selected to provide a desired transition energy that will correspond to the wavelength of light to be emitted from the quantum well. For example, the dots identified as 460 nm, 540 nm, and 630 11 melons in Figure 2 represent gold, which has a lattice constant close to the lattice constant of the InP substrate (5.8687 angstroms or 0.58687 rnn) and corresponds to 46 〇 nm (blue Bandgap energy at wavelengths of 54 〇 nm (green) and 630 nm (red). A potential well can be considered a quantum well if the potential well is sufficiently thin that the one-pass will increase the energy of the transition above the large band gap energy in the well. The thickness of each quantum well layer will determine the amount of quantized energy in the quantum well, which is added to the large band gap energy to determine the transition energy in the quantum well. Thus, the wavelength associated with each quantum well can be tuned by adjusting the quantum well thickness. In general, the thickness of a quantum well layer is between i and 丨 (eight) nm, and more typically between 2 nm and 35 nm. In general, the quantized energy is converted to: a wavelength reduction of 2 〇 to 5 〇 nm that is desired depending on the band gap energy alone. The compressive force in the emissive layer also changes the energy of the potential well and the quantum well, 121656.doc •13- 200810156 This compressive force contains the compressive force generated by the poor matching of the lattice constant between the pseudomorphic layers. . Techniques for calculating the energy of transitions in stressed or unstressed potential wells or quantum wells are known in the art, such as Herbert.工程Spray of Engineering Quantum Mechanics' Materials Technology and Applied Physics (Engiew〇〇d CHffs City, San Jose, 1994), pp. 54-63; and Z (^, ed, Quantum Well Laser (California Holy Land) Togo City Academic Press, 1993) pages 72 to 79, both of which are incorporated herein by reference.

可選擇任何適當的發射波長,包含紅外、可見及紫外頻 帶中的波長。在本發明之—項具體實施例中’選擇發射波 長以便藉由該裝置發射的光之組合式輸出會建立可藉由 一 一或更多單色光源之組合加以產生的任何顏色之外 觀,該等顏色包含白或接近白色、彩色、深紅色、青色 等。在另-*體實施例中,㈣本發明之裝置以一不可見 紅外或紫外波長且以作為該裝置係在運轉中的指示之可見 波長兔射光。通常而言’該發光二極體發射最短波長之光 子’因此從!玄發光二極體發射的光子具有&夠的能量來驅 動該再發射半導體結構中的電位井。在—項典型具體實施 例中,料光二極體係_m_v半導體裝置(例#以發射藍 光之GaN為基礎的發光二極體),而且該再發射半導體結構 係一 II-VI半導體裝置。 圖1係一頻帶圖,其表示依據本發明之一項具體實施例 的一再發射半導體結構中的半導體之傳導頻帶以及價頻 ▼。層厚度亚非按比例表示。表〗指示此具體實施例中的 121656.doc -14- 200810156 層1皇9之組成物以及該組成物之帶隙能量(Eg)。此構造可 生長於InP基板上。Any suitable emission wavelength can be selected, including wavelengths in the infrared, visible, and ultraviolet bands. In a particular embodiment of the invention, 'selecting an emission wavelength for a combined output of light emitted by the device establishes the appearance of any color that can be produced by a combination of one or more monochromatic sources, The color is white or close to white, color, deep red, cyan, and the like. In another embodiment, the device of the present invention emits light at an invisible infrared or ultraviolet wavelength and at a visible wavelength as an indication that the device is in operation. Generally speaking, the light-emitting diode emits the photons of the shortest wavelength, so from! The photons emitted by the meta-light emitting diode have & energies to drive the potential wells in the re-emitting semiconductor structure. In a typical embodiment, a photodiode system _m_v semiconductor device (example # GaN-based luminescence-emitting diode) is used, and the re-emitting semiconductor structure is an II-VI semiconductor device. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a band diagram showing the conduction band and the eigenfrequency ▼ of a semiconductor in a re-emitting semiconductor structure in accordance with an embodiment of the present invention. The layer thickness is not expressed in proportion. The table indicates the composition of 121656.doc -14- 200810156 layer 1 and 9 in this embodiment and the band gap energy (Eg) of the composition. This configuration can be grown on an InP substrate.

表ITable I

層 組成物 帶隙能量(Eg) 1 Cdo.24Mgo.43Zno.33Se 2.9 eV 2 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 3 Cd〇.7〇Zn〇.3〇Se 1.9 eV 4 Cd〇35Mg〇.27Zn〇.38Se 2.6 eV 5 Cdo.24Mgo.43Zno.33Se 2.9 eV 6 Cdo.35Mgo.27Zno.38Se 2.6 eV 7 Cdo.33Zno.67Se 2.3 eV 8 Cdo.35Mgo.27ZnO.38Se 2.6 eV 9 Cdo.24Mgo.43Zno.33Se 2.9 eV 層3表示一單一電位井,其係具有約10 nm的厚度之一發 射紅光量子井。層7表示一單一電位井,其係具有約10 nm 的厚度之一發射綠光量子井。層2、4、6及8表示吸收層, 每一層具有約1000 nm的厚度。層1、5及9表示支撐層。支 撐層係通常選擇為對於從量子井3及7以及從短波長發光二 極體20發射的光係實質上透明的。或者,該裝置可包括藉 由吸收層及/或支#層分離的多個發射紅光或綠光電位井 或量子井。 在不希望受理論束缚的情況下,咸信由圖1表示的本發 明之具體實施例依據下列原理而運轉:由該發光二極體發 射且反射在該再發射半導體結構上的藍波長光子可加以吸 收並從發射綠光之量子井7加以再發射為綠波長光子或從 發射紅光之量子井3加以再發射為紅波長光子。一短波長 光子之吸收會產生一電洞對,其可接著在量子井中與一光 121656.doc -15- 200810156 子之發射再組合。從該裝置發射的藍、綠以及紅波長光之 多色組合可顯現為白色或接近白色。從該裝置發射的藍、 綠以及紅波長光之強度可採用任一適當方式加以平衡,該 方式包含操縱每一種類型的量子井之數目,使用濾光器或 反射層,以及操縱吸收層之厚度以及組合物。圖3表示從 依據本發明之裝置的一項具體實施例發射的光之一光譜。 再次參考由圖1表示的具體實施例,吸收層2、4、5及8 可經調適用以藉由下列方式吸收從該發光二極體發射的光 子:選擇用於該等吸收層的一帶隙能量,其係在從該發光 一極體發射的光子之能量與量子井3及7之轉變能量中間。 藉由吸收層2、4、6及8中光子之吸收所產生的電子及電洞 對通常在與一光子之伴隨發射再組合之前由量子井3及7加 以捕獲。吸收層可視需要地在其厚度之全部或一部分中具 有組成物方面的梯度,以便朝電位井以漏斗形式輸送或引 導電子及/或電洞。 在本發明之某些具體實施例中,在單一半導體單元中提 供戎發光二極體及該再發射半導體結構。此半導體單元通 常包含定位在一 pn接面内的一第一電位井及未定位在一叩 接面内的一第二電位井。該等電位井通常係量子井。該單 以二個波長發光,一波長對應於該第一電位井之轉 臺月b 1而且第一波長對應於該第二電位井之轉變能量。在 典^^轉中’該第—電位井發射光子以回應穿過該pn接面 的電机而且該第二電位井發射光子以回應從該第一電位井 發射的光子之-部分的吸收。該半導體單元可額外包括包 121656.doc -16- 200810156 圍或緊密或緊接鄰近於該第二電位井的一或多個吸收層。 吸收層通常具有一帶隙能量,其係小於或等於該第一電位 井之轉變能量且大於該第二電位井之轉變能量。在典型運 轉中,吸收層協助吸收從該第一電位井發射的光子。該半 導體單元可包括定位在該pn接面内或未定位在該pn接面内 的額外電位井,以及額外吸收層。 圖4係一頻帶圖,其表示依據本發明之一項具體實施例 的此類半導體單元中的半導體之傳導頻帶以及價頻帶。層 厚度並非按比例表示。表II指示此具體實施例中的層1至14 之組成物以及該組成物之帶隙能量(Eg)。Layer composition band gap energy (Eg) 1 Cdo.24Mgo.43Zno.33Se 2.9 eV 2 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 3 Cd〇.7〇Zn〇.3〇Se 1.9 eV 4 Cd〇35Mg 〇.27Zn〇.38Se 2.6 eV 5 Cdo.24Mgo.43Zno.33Se 2.9 eV 6 Cdo.35Mgo.27Zno.38Se 2.6 eV 7 Cdo.33Zno.67Se 2.3 eV 8 Cdo.35Mgo.27ZnO.38Se 2.6 eV 9 Cdo.24Mgo .43Zno.33Se 2.9 eV Layer 3 represents a single potential well that emits a red quantum well with a thickness of approximately 10 nm. Layer 7 represents a single potential well that emits a green quantum well with a thickness of about 10 nm. Layers 2, 4, 6 and 8 represent absorber layers, each layer having a thickness of about 1000 nm. Layers 1, 5 and 9 represent the support layer. The support layer is typically selected to be substantially transparent to the light systems emitted from quantum wells 3 and 7 and from short wavelength light emitting diodes 20. Alternatively, the apparatus can include a plurality of red or green potential wells or quantum wells separated by an absorber layer and/or a layer #. Without wishing to be bound by theory, the specific embodiment of the invention represented by Figure 1 operates according to the principle that blue wavelength photons emitted by the light emitting diode and reflected on the reemitting semiconductor structure can be It is absorbed and re-emitted as a green wavelength photon from a quantum well 7 that emits green light or re-emitted as a red wavelength photon from a quantum well 3 that emits red light. The absorption of a short wavelength photon produces a pair of holes that can then be combined in a quantum well with the emission of a light 121656.doc -15-200810156. The multi-color combination of blue, green, and red wavelength light emitted from the device can appear white or nearly white. The intensity of the blue, green, and red wavelength light emitted from the device can be balanced in any suitable manner, including manipulating the number of each type of quantum well, using a filter or reflective layer, and manipulating the thickness of the absorber layer. And the composition. Figure 3 shows a spectrum of light emitted from a particular embodiment of the apparatus according to the invention. Referring again to the specific embodiment illustrated by Figure 1, the absorbing layers 2, 4, 5 and 8 can be adapted to absorb photons emitted from the luminescent diode by: selecting a bandgap for the absorbing layers The energy is intermediate between the energy of the photons emitted from the light-emitting body and the energy of the quantum wells 3 and 7. The electrons and holes generated by the absorption of photons in the absorbing layers 2, 4, 6 and 8 are typically captured by quantum wells 3 and 7 before being recombined with the accompanying emission of a photon. The absorbent layer optionally has a compositional gradient in all or a portion of its thickness to transport or direct electrons and/or holes in the form of a funnel toward the potential well. In some embodiments of the invention, a neoluminescent diode and the re-emitting semiconductor structure are provided in a single semiconductor unit. The semiconductor unit typically includes a first potential well positioned within a pn junction and a second potential well not positioned within a junction. The equipotential well is typically a quantum well. The single light emits light at two wavelengths, one wavelength corresponding to the turntable b1 of the first potential well and the first wavelength corresponding to the transition energy of the second potential well. In the relay, the first potential well emits photons in response to the motor passing through the pn junction and the second potential well emits photons in response to absorption of a portion of the photons emitted from the first potential well. The semiconductor unit may additionally include a package 121656.doc -16 - 200810156 surrounding or in close proximity to one or more absorber layers adjacent to the second potential well. The absorber layer typically has a band gap energy that is less than or equal to the transition energy of the first potential well and greater than the transition energy of the second potential well. In a typical operation, the absorber layer assists in absorbing photons emitted from the first potential well. The semiconductor unit can include an additional potential well positioned within the pn junction or not positioned within the pn junction, and an additional absorber layer. Figure 4 is a band diagram showing the conducted and valence bands of a semiconductor in such a semiconductor unit in accordance with an embodiment of the present invention. The layer thickness is not to scale. Table II indicates the composition of layers 1 to 14 in this specific embodiment and the band gap energy (Eg) of the composition.

表IITable II

層 組成物 帶隙能量(Eg) 1 InP基板 1.35 eV 2 η 摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 3 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 4 Cd〇e7〇Zn〇.3〇Se 1.9 eV 5 Cdo.35Mgo.27Zno.38Se 2.6 eV 6 η 摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 7 Cd〇e35Mg〇.27Zn〇.38Se 2.6 eV 8 Cdo.33Zno.67Se 2.3 eV 9 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 10 n 摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 11 未摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 12 Cd〇jiMg〇.32Zn〇.37Se 2.7 eV 13 未摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 14 p 摻雜 Cd〇.24Mg〇,43Zn〇.33Se 2.9 eV 層10、11、12、13及14表示一 pn接面,或更明確而言, 一梢接面,因為中間未摻雜(”内在u摻雜)層11、12及13係 121656.doc -17· 200810156 插入在η摻雜層10與p摻雜層14之間。層12表示該pn接面内 的一單一電位井,其係具有約10 nm之厚度的量子井。或 者,該裝置可包括該pn接面内的多個電位井或量子井。層 4及8表示未在一 pn接面内的第二及第三電位井,每一個電 位井均為具有約1〇 nm2厚度的量子井。或者,該梦置可 包括未在該pn接面内的額外電位井或量子井。在另一替代 例中,該裝置可包括未在該卯接面内的單一電位井或量子 井。層3、5、7及9表示吸收層,每一層均具有約1〇〇〇 的厚度。圖中未顯示的電接點(未顯示)提供用於向該叩接 面供應電流的路徑。電接點會導電且通常係由導電金屬組 成。正電接點係直接或透過中間結構間接與層14電連接。 負電接點係直接或透過中間結構間接與層1、2、3、4、 5、6、7、8、9或1〇之一或多個電連接。 在不希望受理論束缚的情況下,咸信本發明之此具體實 施例依據下列原理而運轉··當電流從層14傳遞至層1〇時, 藍波長光子係從pn接面中的量子井(12)發射。在層14之方 向上行進的光子可能會離開該裝置。在相反方向上行進的 光子可經吸收並從第二量子井(8)再發射為綠波長光子或從 弟一1子井(4)再發射為紅波長光子。一藍波長光子之吸收 會產生一電子電洞對,其可接著在第二或第三量子井中再 組合從而發射一光子。在層14之方向上行進的綠或紅波長 光子可能會離開該裝置。從該裝置發射的藍、綠及紅波長 光之多色組合可顯現為白色或接近白色。從該裝置發射的 藍、綠及紅波長光之強度可採用任一適當方式加以平衡, 121656.doc •18- 200810156 其包含操縱每一種類型的電位井之數目以及使用濾光器或 反射層。圖3表示從依據本發明之裝置的一項具體實施例 發射的光之一光譜。 再次參考由圖4表示的具體實施例,吸收層3、5、7及9 可尤其適合於吸收從第一量子井(12)發射的光子,因為該 等吸收層具有介於第一量子井(12)之轉變能量與第二及第 三量子井(8及4)之轉變能量中間的帶隙能量。藉由吸收層 3、5、7及9中光子之吸收所產生的電子及電洞對通常在伴 隨一光子之發射之再組合之前由第二及第三量子井8及4捕 獲。吸收層可視需要加以摻雜(通常像對周圍層一樣),其 在此具體實施例中為n掺雜。吸收層可視需要在其厚度之 全部或一部分中具有組成方面的梯度,以便朝電位井以漏 斗形式輸送或引導電子及/或電洞。 在該發光二極體係一可見波長發光二極體的情況下,該 再發射之半導體構造的各層對於從該發光二極體發射的光 可犯係。P为透明的。或者,例如在該發光二極體係一 uv 波長發光二極體的情況下,再發射之半導體構造的各層之 一或多個可能阻擋從該發光二極體發射的光之一較大部分 或實質上或疋全全部阻播,因此從該裝置發射的光之一較 大邛刀或μ質上或完全全部係從該再發射之半導體構造再 發射的光在該發光二極體係一 υν波長發光二極體的情 況下再*射之半導體構造1()可包含發射紅光、綠光以及 藍光之量子井。 依據本發明之裝置可包括傳導、半傳導或非傳導材料之 121656.doc •19- 200810156 額外層。可添加電接觸層以提供用於將電流供應給該發光 二極體的一路徑。可添加濾光層以改變或校正由調適的發 光二極體發射之光中的光波長之平衡。 在一項具體實施例中,依據本發明之該裝置藉由以藍、 綠、黃及紅頻帶中的四個主要波長發射光而產生白或接近 白光。在一項具體實施例中,依據本發明之該裝置藉由以 藍及黃頻帶中的二個主要波長發射光而產生白或接近白 光。 依據本發明之該裝置可包括額外半導體元件,其包括主 動或被動組件,例如電阻器、二極體、齊納二極體、電容 器、電晶體、雙極電晶體、FET電晶體、MOSFET電晶 體、絕緣閘極雙極電晶體、光電·晶體、光偵測器、SCR、 閘流體、三端雙向矽控開關、電壓調節器、以及其他電路 兀件。依據本發明之裝置可包括一積體電路。依據本發明 之該裝置可包括一顯示器面板或一照明面板。 構成依據本發明之該裝置的該發光二極體及該再發射半 導體結構可藉由任一適當方法加以製造,該方法可包含分 子束蠢晶(MBE)、化學汽相沉積、液相磊晶以及汽相蠢 晶。依據本發明之該裝置的元件可包含一基板。任一適當 基板均可用於本發明之實務中。典型基板材料包含Si、 Ge、GaAs、InP、藍寶石、SIC以及ZnSe。該基板可以係n 捧雜、Ρ摻雜或半絕緣的,此可藉由任一適當方法或藉由 任何適當摻雜劑之内含物而達到。此外,依據本發明之裝 置的元件可以沒有一基板。在一項具體實施例中,依據本 121656.doc •20- 200810156 發明之該裝置的元件可加以形成於一基板上並接著與該基 板分離。依據本發明之該裝置的元件可藉由任何適當^二 加以接合在一起,該方法包含使用黏性或熔接材料、壓 力、熱或其组合。通常而言,建立的焊接係透明的。焊接 方法可包含介面或邊緣嬋接.可視需要地,可包含折射率 匹配層或填隙空間。 任一適當反射器均可用於本發明之裝置中。通常而古, 使用夕層反射器,其可以係非平面撓性多層反射器。多 層反射器包含聚合多層光學膜,即具有至少一第一及第二 聚合物材料之數十、數百或數千交替層的膜,其厚度及折 射率係選擇成達到光譜之所需部分中的所需反射率,例如 限於UV波長之一反射頻帶或限於可見波長之一反射頻 帶。參見(例如)美國專利案第5,882,774號(J0nza等人)。儘 官由此等膜產生的反射頻帶亦隨入射角而經歷類似於與無 機各向同性材料之堆疊相關聯的藍移之一藍移,但是可以 處理聚合多層光學膜以便鄰近層對具有匹配或接近匹配, 或與垂直於該膜的z軸相關聯之有意失配折射率,以便用 於P偏振光的鄰近層之間的每一介面之反射率隨入射角而 緩慢減小,係實質上與入射角無關,或隨偏離垂直方向的 入射角而增加。因此,對於即使處於高度傾斜入射角極的 P偏振光而έ ’此類聚合多層光學膜亦可以保持高反射率 位準,從而與傳統無機各向同性堆疊反射器相比,可減小 由反射膜所透射的ρ偏振光之數量。為達到此等特性,選 擇聚合材料及處理條件以便對於每一對鄰近光學層而言, 121656.doc -21 - 200810156 沿Z軸(平行於該膜之厚度)之折射率方面的差異係不超過沿 X或y(平面内)轴的折射率差與之一分數,該分數係〇,5、 0.25或甚至0.1。或者,沿2軸的折射率差異可在符號上與 平面内折射率差異相反。 聚合多層光學膜之使用亦使得結構之各種新具體實施例 及方法可以使用,因為此類膜具有撓性及可成形性,無論 其疋否亦具有以上所稱的折射率關係。例如,可藉由壓花 法、加熱成形或其他已知構件使聚合多層光學膜永久變形 成具有一三維形狀,例如一拋物面、一球體或一橢圓體之 一部分。一般參見所公佈的申請案US 2002/0154406 (Merrill等人)。就額外聚合多層膜具體實施例,亦參見美 國專利第5,540,978號(Schrenk)。不像通常逐層地汽相沉積 於剛性、脆性基板上的傳統無機各向同性堆疊一樣,聚合 多層光學膜可以採用大體積卷形式加以製造,而且亦可加 以層壓於其他膜上並加以塗布,而且可加以晶粒切割或另 外細分成小塊以易於併入一光學系統中,如以下進一步解 釋。細分聚合多層光學膜之適當方法係揭示於在2〇〇2年1〇 月ίο申請之待審的美國申請案第1〇/268,118號中。 各種聚合材料適合用於包含發光二極體之裝置的多層光 學膜中。然而,尤其在該裝置包括與一 UV發光二極體激 發源轉合之白光再發射半導體結構的情況下,多層光學膜 較佳包括由當曝露於uv光時會抵抗退化之材料組成的交 替聚合物層。在此方面,尤佳聚合物對係聚對苯二甲酸乙 一醇酉曰(PET)/共聚甲基丙烯酸曱酉旨(c〇_pMMA)。聚合反射 121656.doc -22- 200810156 器之uv穩定性亦可藉由併入_v吸收光安定劑(例如受阻 胺光安定劑(HALS))而增加。在某些情況下,聚合多層光 學膜亦可以包含透明金屬或金屬氧化層。請參見曰(例 如)pct公告案wo簡778 (〇uderkirk等人)。在使用將使 更強固聚合物材料組合無法接受地退化之特別高強度的 UV光之應用中,使用無機材料以形成多層堆疊可=有 利。無機材料層可以係各向同性或可加以製造成展現如 PCT公告案wo G1/7549G (Weber)中說明的形式雙折射,並 因此具有產生如以上說明的增強式p偏振反射率之有利的 折射率關係。然@,在大多i情況下,帛方便且成本效率 取兩的係多層光學膜為不含無機材料之實質完全聚合物。 圖5及圖6描述一項具體實施例,其中再發射半導體結構 22可與遂傳(LP)反射器24及短傳(SP)反射器26 (二者在圖 中已加以顯示)之一或二者組合以形成組合式反射器及再 發射器結構16。基於散射程序的Lp鏡或濾光器可以達到與 入射角成函關係之相對恆定的性能。採用無機介電材料堆 疊構造的LP及SP鏡可以在較窄範圍的入射角内具有良好的 光譜選擇性。裝置10額外包含架座14上的發光二極體12並 可包含具有凸出表面20的膠囊18。 在該發光一極體及再發射半導體結構包括單一半導體單 元的情況下,可能僅需要遠傳(LP)反射器24。 圖7至圖9描述利用凹形多層光學膜LP反射器46、56的裝 置40、50、60之替代性結構。使LP反射器46、56與再發射 半導體結構42、52隔開並使其彎曲以向再發射半導體結構 121656.doc -23- 200810156 42、52及發光二極體12呈現一凹入表面可有助於減小撞擊 在LP反射器46、56上的激發光之入射角的範圍,從而減少 透過LP反射器46、56由其藍移效應引起的發光二極體光之 洩漏。較佳而言,多層光學膜係藉由壓花或其他適當程式 而永久變开》成適當形狀之凹進表面,然後浸入透明媒介18 中。LP或SP多層光學膜係其個別反射頻帶内的光譜反射 器。通常可忽略自一多層光學膜的漫反射。 在圖7中,裝置40包含一相對較小面積的再發射半導體 結構層42,其係佈置在由聚合多層光學膜組成的可選⑼反 射器44上。LP反射器46已得到壓花以獲得凹進形狀並加以 固定在再發射半導體結構反射器裝配件之其他組件(42、 44)旁邊。發光二極體12及散熱片14係配置成朝再發射半 導體結構層42之中心部分引導由該發光二極體發射的激發 光。車父仏而& ’激發光於再發射半導體結構層4 2之中心處 或其附近具有其最高影響。於再發射半導體結構層42之最 初行進中未得以吸收的激發光會穿過LP反射器46與再發射 半導體結構層42之間的一區域48,然後朝該再發射半導體 結構層由LP反射器46加以往回反射。區域48可由透明灌注 材料18、或另一聚合材料、或空氣(或其他氣體)或玻璃組 成。LP反射器46係較佳成形為最小化反射回至該再發射半 導體結構的激發光之數量。 圖8顯示一裝置50,其係類似於裝置40,下列情況除 外:再發射半導體結構層52、SP反射器54及LP反射器56的 大小已得到增加。對於從發光二極體12至該再發射半導體 121656.doc -24- 200810156 、、口構層的、、Ό疋距離及相同的散熱片14之幾何結構而言,較 大LP反射益56將在該再發射半導體結構層之中心產生較高 的光集中度。該再發射半導體結構層之較小中心發射面積 向LP反射器之表面呈現較小範圍的之再發射光入射角,從 而改良總裝置效率。如上所述,區域58可由灌注材料18或 另一聚合材料、或空氣(或其他氣體)或玻璃組成。 圖9所示的裝置60係類似於裝置5〇,下列情況除外· Lp 反射器66現在形成光源之外部表面。區域68可採用灌注材 料1 8或另一透明媒介加以填充。 圖7至圖9之再發射半導體結構層可以係連續的,或加以 圖案化以將該再發射半導體結構限制於其最有效的程度。 此外’在圖5及圖7至圖9之具體實施例以及該再發射半導 體結構與反射器裝配件係佈置在發光二極體上且與其隔開 的其他具體實施例中,可以將該裝置製造成二半··一半包 含具有散熱片的該發光二極體,另一半包含該再發射半導 體結構層及該(等)多層反射器。該二半可加以分離製造, 並接著加以接合或另外固定在一起。此結構技術可以有助 於簡化製造並增加總產量。 圖10證實可有利地應用於本文中的其他具體實施例之概 念:提供該發光二極體與該再發射半導體結構層之間的一 氣隙’及/或提供接近於該再發射半導體結構與反射器裝 配件之一或多個元件的一氣隙。基於說明之簡單,該圖中 僅顯示一裝置之某些元件。一氣隙70係顯示為在發光二極 體12與再發射半導體結構層72、鄰近多層光學膜j§p反射$ 121656.doc -25- 200810156 74之間。該氣隙由於相對較小的有關角度而對自該發光二 極體到達該再發射半導體結構層的激發光具有最小的有害 影響。但是該氣隙啟動以高入射角行進的光(例如在Sp反 射器74、再發射半導體結構層72及LP反射器中行進行的 光)之全内反射(TIR)。在圖1〇之具體實施例中,藉由允許 在SP反射器74之下表面上進行丁IR而增強sp反射器74之效 率。或者,可以消除SP反射器74並且可以在再發射半導體 結構層72下直接形成該氣隙。一氣隙亦可形成於再發射半 導體結構層72之上側上,或在該層之上或下表面上鄰近於 LP反射器。用於提供該氣隙的一種方法涉及使用已知的微 構造膜。此類膜具有與一微構造表面相對的實質平坦表 面。該微構造表面的特徵可以係單一組線性v形溝槽或稜 鏡、界定微小錐形陣列的多組交叉v形溝槽、一或多組窄 脊專。當此類膜之微構造表面係背對另一平坦膜而放置 時’在微構造表面之最上部分之間形成氣隙。 隨著該再發射半導體結構將一種波長(激發波長)之光轉 換成其他波長(發射的波長)之光,可能會產生熱。接近該 再發射+導體結構的-氣隙之出5見可能會在很大程度上減 少伙該再發射半導體結構至周圍材料的熱傳輸。可以其他 方式補償減少的熱傳輸,例如藉由在可以橫向移除熱的該 再發射半導體結構層附近提供一層玻璃或透明陶竟。 改良依據本揭示内容之裝置的效率之另—種方法係組態 該發光二極體、該再發射半導體結構層及該^反射器以便 藉由該LP反射器將自該發光二極體的激發光之至少某些直 121656.doc -26 - 200810156Layer composition band gap energy (Eg) 1 InP substrate 1.35 eV 2 η doped Cdo.24Mgo.43Zno.33Se 2.9 eV 3 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 4 Cd〇e7〇Zn〇.3〇 Se 1.9 eV 5 Cdo.35Mgo.27Zno.38Se 2.6 eV 6 η doped Cdo.24Mgo.43Zno.33Se 2.9 eV 7 Cd〇e35Mg〇.27Zn〇.38Se 2.6 eV 8 Cdo.33Zno.67Se 2.3 eV 9 Cd〇. 35Mg〇.27Zn〇.38Se 2.6 eV 10 n doped Cdo.24Mgo.43Zno.33Se 2.9 eV 11 undoped Cdo.24Mgo.43Zno.33Se 2.9 eV 12 Cd〇jiMg〇.32Zn〇.37Se 2.7 eV 13 undoped Miscellaneous Cdo.24Mgo.43Zno.33Se 2.9 eV 14 p doped Cd〇.24Mg〇, 43Zn〇.33Se 2.9 eV Layers 10, 11, 12, 13 and 14 represent a pn junction, or more specifically, a tip The junction is because the intermediate undoped ("inner u-doped" layers 11, 12, and 13 are 121656.doc -17. 200810156 interposed between the n-doped layer 10 and the p-doped layer 14. Layer 12 represents the pn A single potential well within the junction, which is a quantum well having a thickness of about 10 nm. Alternatively, the device may include a plurality of potential wells or quantum wells within the pn junction. Layers 4 and 8 indicate not in a pn Second and third potential wells in the junction, each Each of the potential wells is a quantum well having a thickness of about 1 〇 nm 2 . Alternatively, the dream may include additional potential wells or quantum wells that are not within the pn junction. In another alternative, the apparatus may include A single potential well or quantum well within the junction. Layers 3, 5, 7, and 9 represent absorber layers, each layer having a thickness of about 1 。. Electrical contacts (not shown) not shown are provided A path for supplying current to the splicing surface. The electrical contact is electrically conductive and typically consists of a conductive metal. The positive electrical contact is electrically connected to the layer 14 directly or through an intermediate structure. The negative contact is directly or through the middle. The structure is indirectly electrically connected to one or more of the layers 1, 2, 3, 4, 5, 6, 7, 8, 9 or 1 . Without wishing to be bound by theory, this embodiment of the invention is The example operates according to the following principles: When a current is transferred from layer 14 to layer 1 , the blue wavelength photonic system is emitted from the quantum well (12) in the pn junction. Photons traveling in the direction of layer 14 may leave the Device. Photons traveling in opposite directions can be absorbed and extracted from the second quantum well (8 Re-emitted as a green wavelength photon or re-emitted as a red wavelength photon from the 1st (4) well. The absorption of a blue wavelength photon produces an electron hole pair that can then be combined in a second or third quantum well to emit a photon. Green or red wavelength photons traveling in the direction of layer 14 may leave the device. The multicolor combination of blue, green and red wavelength light emitted from the device can appear white or nearly white. The intensity of the blue, green, and red wavelength light emitted from the device can be balanced in any suitable manner, 121656.doc • 18-200810156 which includes manipulating the number of potential wells of each type and using a filter or reflective layer. Figure 3 shows a spectrum of light emitted from a particular embodiment of the apparatus according to the invention. Referring again to the specific embodiment illustrated by Figure 4, the absorbing layers 3, 5, 7 and 9 may be particularly adapted to absorb photons emitted from the first quantum well (12) because the absorbing layers have a first quantum well ( 12) The band gap energy between the transition energy and the transition energy of the second and third quantum wells (8 and 4). The electrons and holes generated by the absorption of photons in the absorbing layers 3, 5, 7 and 9 are captured by the second and third quantum wells 8 and 4, usually before recombination with the emission of a photon. The absorber layer can be doped as desired (usually like to the surrounding layer), which in this particular embodiment is n-doped. The absorbent layer may optionally have a compositional gradient in all or a portion of its thickness to transport or direct electrons and/or holes in the form of a funnel toward the potential well. In the case of the light-emitting diode system, a visible-wavelength light-emitting diode, the layers of the re-emitting semiconductor structure are damaging to light emitted from the light-emitting diode. P is transparent. Alternatively, for example, in the case of the illuminating diode system, a uv wavelength light emitting diode, one or more of the layers of the re-emitting semiconductor structure may block a substantial portion or substantial of the light emitted from the light emitting diode. All of the light emitted from the device is blocked, so that one of the light emitted from the device is larger than the trowel or the light that is re-emitted from the re-emitting semiconductor structure in the luminosity of the light-emitting diode system In the case of a diode, the semiconductor structure 1 () may include a quantum well that emits red, green, and blue light. The device according to the invention may comprise 121656.doc • 19- 200810156 additional layers of conductive, semi-conductive or non-conductive material. An electrical contact layer can be added to provide a path for supplying current to the light emitting diode. A filter layer can be added to change or correct the balance of the wavelength of light in the light emitted by the adapted light-emitting diode. In a specific embodiment, the apparatus according to the present invention produces white or near white light by emitting light at four dominant wavelengths in the blue, green, yellow and red bands. In a specific embodiment, the apparatus according to the present invention produces white or near white light by emitting light at two dominant wavelengths in the blue and yellow bands. The device according to the invention may comprise additional semiconductor components including active or passive components such as resistors, diodes, Zener diodes, capacitors, transistors, bipolar transistors, FET transistors, MOSFET transistors Insulated gate bipolar transistors, optoelectronic crystals, photodetectors, SCRs, thyristors, triacs, voltage regulators, and other circuit components. The device according to the invention may comprise an integrated circuit. The device according to the invention may comprise a display panel or a lighting panel. The light-emitting diode and the re-emitting semiconductor structure constituting the device according to the present invention may be fabricated by any suitable method, which may include molecular beam doping (MBE), chemical vapor deposition, liquid phase epitaxy And the vapor phase stupid crystal. The components of the device according to the invention may comprise a substrate. Any suitable substrate can be used in the practice of the present invention. Typical substrate materials include Si, Ge, GaAs, InP, sapphire, SIC, and ZnSe. The substrate can be n-doped, erbium-doped or semi-insulating, which can be achieved by any suitable method or by inclusion of any suitable dopant. Furthermore, the components of the device according to the invention may be free of a substrate. In a specific embodiment, the components of the device according to the invention of the invention of 121,656.doc. 20-200810156 can be formed on a substrate and then separated from the substrate. The elements of the device according to the invention may be joined together by any suitable means comprising the use of a viscous or fused material, pressure, heat or a combination thereof. In general, the established weld is transparent. The soldering method may comprise an interface or edge splicing. Optionally, a refractive index matching layer or a gap filling space may be included. Any suitable reflector can be used in the device of the present invention. Typically, ancient times, a layer reflector is used, which can be a non-planar flexible multilayer reflector. The multilayer reflector comprises a polymeric multilayer optical film, i.e., a film having alternating layers of tens, hundreds, or thousands of first and second polymeric materials, the thickness and refractive index of which are selected to achieve a desired portion of the spectrum. The desired reflectivity is, for example, limited to one of the UV wavelengths of the reflection band or to one of the visible wavelengths of the reflection band. See, for example, U.S. Patent No. 5,882,774 (J0nza et al.). The reflection band produced by such a film also experiences a blue shift similar to the blue shift associated with the stack of inorganic isotropic materials with the angle of incidence, but the polymeric multilayer optical film can be processed so that adjacent layer pairs have a match or Nearly matching, or intentionally mismatching the refractive index associated with the z-axis perpendicular to the film, such that the reflectivity of each interface between adjacent layers of P-polarized light decreases slowly with incident angle, essentially Independent of the angle of incidence, or increasing with an angle of incidence that deviates from the vertical. Therefore, for a P-polarized light even at a highly oblique incident angle pole, such a polymeric multilayer optical film can maintain a high reflectance level, thereby reducing reflection by reflection compared to conventional inorganic isotropic stacked reflectors. The amount of ρ-polarized light transmitted by the film. To achieve these characteristics, the polymeric material and processing conditions are selected such that for each pair of adjacent optical layers, the difference in refractive index along the Z-axis (parallel to the thickness of the film) is not exceeded. The refractive index difference along the X or y (in-plane) axis is a fraction of one, which is 〇, 5, 0.25 or even 0.1. Alternatively, the difference in refractive index along the 2 axes may be inversely proportional to the difference in refractive index in the plane. The use of a polymeric multilayer optical film also allows for the use of various new embodiments and methods of construction because of the flexibility and formability of such films, whether or not they have the refractive index relationship referred to above. For example, the polymeric multilayer optical film can be permanently deformed to have a three dimensional shape, such as a paraboloid, a sphere, or a portion of an ellipsoid, by embossing, heat forming, or other known means. See generally, published application US 2002/0154406 (Merrill et al.). For a specific embodiment of the additional polymeric multilayer film, see also U.S. Patent No. 5,540,978 (Schrenk). Unlike conventional inorganic isotropic stacks which are typically vapor deposited layer by layer on rigid, brittle substrates, polymeric multilayer optical films can be fabricated in large volume rolls and laminated to other films and coated. And can be die cut or otherwise subdivided into small pieces for easy incorporation into an optical system, as explained further below. A suitable method of subdividing a polymeric multilayer optical film is disclosed in U.S. Application Serial No. 1/268,118, filed on Jan. 2, 2011. Various polymeric materials are suitable for use in multilayer optical films comprising devices for light emitting diodes. However, especially where the device comprises a white light re-emitting semiconductor structure that is coupled to a UV light emitting diode excitation source, the multilayer optical film preferably includes alternating polymerization consisting of materials that resist degradation when exposed to uv light. Layer of matter. In this respect, a particularly preferred polymer is a poly(ethylene terephthalate) (PET)/co-methacrylic acid (c〇_pMMA). The uv stability of the polymeric reflection 121656.doc -22- 200810156 can also be increased by incorporating a _v light absorbing stabilizer (e.g., hindered amine light stabilizer (HALS)). In some cases, the polymeric multilayer optical film may also comprise a transparent metal or metal oxide layer. See 曰 (for example) pct announcement for Jan 778 (〇uderkirk et al.). In applications where particularly high intensity UV light will be unacceptably degraded by a combination of a stronger polymer material, the use of inorganic materials to form a multilayer stack can be advantageous. The layer of inorganic material may be isotropic or may be fabricated to exhibit formal birefringence as illustrated in PCT Bulletin wo G1/7549G (Weber) and thus have an advantageous refraction that produces enhanced p-polarized reflectance as explained above. Rate relationship. However, in most cases, it is convenient and cost-effective to take two layers of multi-layer optical film as a substantially complete polymer without inorganic materials. 5 and 6 depict an embodiment in which the re-emitting semiconductor structure 22 can be associated with one of a smear (LP) reflector 24 and a short pass (SP) reflector 26 (both shown in the figure) or The two combine to form a combined reflector and re-transmitter structure 16. A Lp mirror or filter based on the scattering procedure can achieve a relatively constant performance in a functional relationship to the angle of incidence. LP and SP mirrors with a stack of inorganic dielectric materials provide good spectral selectivity over a narrow range of incident angles. The device 10 additionally includes a light emitting diode 12 on the mount 14 and may include a capsule 18 having a raised surface 20. Where the light emitting diode and re-emitting semiconductor structure comprise a single semiconductor unit, only a remote pass (LP) reflector 24 may be required. 7 through 9 depict an alternative configuration of means 40, 50, 60 utilizing concave multilayer optical film LP reflectors 46, 56. Separating and bending the LP reflectors 46, 56 from the re-emitting semiconductor structures 42, 52 to present a recessed surface to the re-emitting semiconductor structures 121656.doc -23-200810156 42, 52 and the LEDs 12 Helps reduce the range of incident angles of the excitation light impinging on the LP reflectors 46, 56, thereby reducing leakage of the light-emitting diode light caused by the blue-shift effect of the LP reflectors 46, 56. Preferably, the multilayer optical film is permanently embossed into a suitably shaped recessed surface by embossing or other suitable means and then immersed in a transparent medium 18. LP or SP multilayer optical films are spectral reflectors within their individual reflection bands. Diffuse reflection from a multilayer optical film is generally negligible. In Figure 7, device 40 includes a relatively small area of re-emitting semiconductor structure layer 42 disposed on an optional (9) reflector 44 comprised of a polymeric multilayer optical film. The LP reflector 46 has been embossed to obtain a recessed shape and is secured adjacent to the other components (42, 44) of the re-emitting semiconductor structure reflector assembly. The light-emitting diode 12 and the heat sink 14 are arranged to guide the excitation light emitted by the light-emitting diode toward a central portion of the re-emitting semiconductor structure layer 42. The car's father & 'excitation light has its highest influence at or near the center of the re-emitting semiconductor structure layer 2 2 . Excitation light that is not absorbed during the initial travel of the re-emitting semiconductor structure layer 42 passes through a region 48 between the LP reflector 46 and the re-emitting semiconductor structure layer 42, and then toward the re-emitting semiconductor structure layer by the LP reflector 46 plus the previous back reflection. Region 48 may be comprised of a transparent infusion material 18, or another polymeric material, or air (or other gas) or glass. The LP reflector 46 is preferably shaped to minimize the amount of excitation light that is reflected back to the re-emitting semiconductor structure. Figure 8 shows a device 50 which is similar to device 40 except that the re-emitting semiconductor structure layer 52, SP reflector 54 and LP reflector 56 have been increased in size. For the geometry of the heat sink 14 from the light emitting diode 12 to the re-emitting semiconductor 121656.doc -24-200810156, the mouth layer, the Ό疋 distance and the same heat sink 14, the larger LP reflection benefit 56 will be The center of the re-emitting semiconductor structure layer produces a higher concentration of light. The smaller central emission area of the re-emitting semiconductor structure layer presents a smaller range of re-emission light incident angles to the surface of the LP reflector, thereby improving overall device efficiency. As noted above, region 58 may be comprised of infusion material 18 or another polymeric material, or air (or other gas) or glass. The device 60 shown in Figure 9 is similar to the device 5〇 except for the following cases. The Lp reflector 66 now forms the outer surface of the light source. Zone 68 may be filled with potting material 18 or another transparent medium. The re-emitting semiconductor structural layers of Figures 7 through 9 can be continuous or patterned to limit the re-emitting semiconductor structure to its most effective extent. Furthermore, in the specific embodiment of FIGS. 5 and 7 to 9 and the other embodiment in which the re-emitting semiconductor structure and the reflector assembly are arranged on and spaced apart from the light-emitting diode, the device can be manufactured. The second half includes half of the light emitting diode having a heat sink, and the other half includes the re-emitting semiconductor structure layer and the (etc.) multilayer reflector. The two halves can be fabricated separately and then joined or otherwise secured together. This structural technique can help simplify manufacturing and increase total production. Figure 10 demonstrates the concept of other embodiments that may be advantageously employed herein to provide an air gap between the light emitting diode and the re-emitting semiconductor structure layer and/or to provide access to the re-emitting semiconductor structure and reflection An air gap of one or more components of the device assembly. Based on the simplicity of the description, only certain elements of a device are shown in the figure. An air gap 70 is shown between the light emitting diode 12 and the re-emitting semiconductor structure layer 72, adjacent to the multilayer optical film j§p reflection $121656.doc -25-200810156 74. The air gap has minimal detrimental effect on the excitation light from the light emitting diode to the re-emitting semiconductor structure layer due to the relatively small associated angle. However, the air gap initiates total internal reflection (TIR) of light traveling at a high angle of incidence (e.g., light traveling in the Sp reflector 74, re-emitting semiconductor structure layer 72, and LP reflector). In the particular embodiment of Figure 1, the efficiency of the sp reflector 74 is enhanced by allowing the butt IR to be performed on the lower surface of the SP reflector 74. Alternatively, the SP reflector 74 can be eliminated and the air gap can be formed directly under the re-emitting semiconductor structure layer 72. An air gap may also be formed on the upper side of the re-emitting semiconductor structure layer 72, or adjacent to the LP reflector on the upper or lower surface of the layer. One method for providing this air gap involves the use of known microstructured membranes. Such films have a substantially flat surface opposite a microstructured surface. The microstructured surface can be characterized by a single set of linear v-shaped grooves or prisms, a plurality of sets of intersecting v-shaped grooves defining a micro-tapered array, and one or more sets of narrow ridges. An air gap is formed between the uppermost portions of the microstructured surface when the microstructured surface of such a film is placed away from the other flat film. As the re-emitting semiconductor structure converts light of one wavelength (excitation wavelength) into light of other wavelengths (transmitted wavelength), heat may be generated. The appearance of the air gap close to the re-emitting + conductor structure may greatly reduce the heat transfer of the re-emitting semiconductor structure to the surrounding material. The reduced heat transfer can be compensated for in other ways, such as by providing a layer of glass or transparent ceramic adjacent to the layer of re-emitting semiconductor structure that can laterally remove heat. Another method of improving the efficiency of the apparatus according to the present disclosure is to configure the light emitting diode, the re-emitting semiconductor structure layer, and the reflector to excite the light emitting diode by the LP reflector. At least some of the light straight 121656.doc -26 - 200810156

接反射於該再發射半導體結構層之頂部(觀察)表面上,而 非將所有激發光均5丨導至該再發射半導體結構層之底部表 面上。圖⑽示此類裝置80。散熱片“|已從以上具體實施 例加以修改’因此發光二極體12及再發射半導體結構㈣ 可一般加以共面安裝。一 SP反射器84係顯示為在該再發射 半導體結構層下面,但是在許多情況下將不需要如此。此 係因為已採用凹進橢圓或類似形狀之形式加以壓花的收 射器86將直接自該發光二極體的uv激發光引導至再發射 半導體結構層82之上表面上,該表面面對裝置8Qn 該發光二極體及該再發射半導體結構層係較佳佈置在擴圓 之焦距處。由該再發射半導體結構層發射的可見光係由U 反射器86透射並由該裝置主體之圓形前端加以收集以形成 所需圖案或可見(較佳為白)光。 將激發光直接引導至該再發射半導體結構層之前表面上 具有若干益處。該再發射半導體結構層之最明亮部分(激 發光最強處)現地係曝露在該裝置的前面而非透過該再發 射半導體結構層之厚度而模糊不清。實質上可以使該再發 射半導體結構層較厚以便其吸收實質上所有的u v激發 光,而無需擔心以上所稱的厚度/亮度折衷。該再發射半 導體結構可加以安裝在包含銀或增強型鋁的寬頻金屬鏡 上。 圖12不思性地顯示另一具體實施例,其中該發光二極體 光撞擊在該再發射半導體結構層之前表面上,但是其中該 發光一極體光之某些亦撞擊在背表面上。在此具體實施例 121656.doc -27- 200810156 中,由發光二極體12發射的某些光撞擊於再發射半導體結 構層92之背表面上,但是某些發光二極體光亦反射凹形Lp 反射益96以衝擊再發射半導體結構層92之前表面而不橫穿 該再發射半導體結構。由再發射半導體結構層92發射的可 見光接著朝觀察者或欲加以照明的物件穿過LP反射器96。 該發光二極體、再發射半導體結構層及LP反射器全部可浸 入或附於如先前具體實施例所示的透明灌注媒介。 圖13示意性地顯示另一具體實施例,其中非成像集中器 的組合係配置成增強多層光學膜之運轉。明確而言,集中 器元件100a、100b、100c係提供為顯示在發光二極體12、 SP反射器104、再發射半導體結構層1〇2與LP反射器1〇6之 間。該等集中器元件具有減小撞擊在多層反射器上的光之 角度擴散的效應,因而減小以上結合圖7至圖9論述的反射 頻帶之藍移。該等集中器元件可採用具有平坦侧壁之簡單 圓錐區段的形式,或者側壁可採用較複雜的彎曲形狀,此 已知可根據光之行進方向而增強聚焦校準動作的視準。無 論如何,該等集中器元件之侧壁均係反射的而二端(一端 小’一端大)並非如此。在圖13中,發光二極體12係佈置 在集中器100a之小端。集中器元件1〇〇a收集由該發光二極 體發射之寬角度範圍的光,該範圍係藉由此類光已行進至 集中器元件100a之大端的時間而減小,在大端安裝sp反射 器104。該SP反射器透射uV激發光至集中器元件100b,其 將此類光集中於再發射半導體層1〇2上(同時增加光之角度 擴散由再發射半導體結構層1〇2向下發射之寬角度範圍 121656.doc •28- 200810156 的光係在SP反射器104中由集中器元件100b轉換成較窄角 度範圍,在該反射器中該光係朝再發射半導體結構層102 往回反射。同時,透過再發射半導體結構層1〇2洩漏的激 發光與藉由再發射半導體結構層102向上發射的可見光最 初具有寬角度擴散,但係由集中器元件100c轉換成較小角 度擴散’因此LP反射器1〇6將更好地透射由該再發射半導 體結構發射的可見光並朝該再發射半導體結構層往回反射 激發光。The reflection is on the top (viewing) surface of the re-emitting semiconductor structure layer, and not all of the excitation light is guided to the bottom surface of the re-emitting semiconductor structure layer. Figure (10) shows such a device 80. The heat sink "| has been modified from the above specific embodiment" so that the light-emitting diode 12 and the re-emitting semiconductor structure (4) can be generally coplanar mounted. An SP reflector 84 is shown below the re-emitting semiconductor structure layer, but This will not be required in many cases. This is because the ejector 86, which has been embossed in the form of a recessed ellipse or the like, directs the uv excitation light directly from the luminescent diode to the re-emitting semiconductor structure layer 82. On the upper surface, the surface facing device 8Qn, the light emitting diode and the re-emitting semiconductor structure layer are preferably disposed at a focal length of the rounding. The visible light emitted by the re-emitting semiconductor structure layer is U-reflector 86. Transmitted and collected by the rounded front end of the body of the device to form the desired pattern or visible (preferably white) light. There are several benefits to the surface of the re-emitting semiconductor structure prior to directing the excitation light directly to the re-emitting semiconductor structure layer. The brightest part of the structural layer (where the excitation light is strongest) is exposed in front of the device rather than through the thickness of the re-emitting semiconductor structure layer. It is substantially obscured. The re-emitting semiconductor structure layer can be made thicker so that it absorbs substantially all of the uv excitation light without fear of the above-mentioned thickness/brightness tradeoff. The re-emitting semiconductor structure can be mounted on containing silver Or a wide-band metal mirror of reinforced aluminum. Figure 12 shows a further embodiment in which the light-emitting diode light impinges on the front surface of the re-emitting semiconductor structure layer, but wherein the light-emitting one-pole light Some of the light also impinges on the back surface. In this embodiment 121656.doc -27-200810156, some of the light emitted by the light-emitting diode 12 impinges on the back surface of the re-emitting semiconductor structure layer 92, but some The light-emitting diode light also reflects the concave Lp reflection benefit 96 to impact the surface of the re-emitting semiconductor structure layer 92 without traversing the re-emitting semiconductor structure. The visible light emitted by the re-emitting semiconductor structure layer 92 is then directed toward the viewer or The illuminated object passes through the LP reflector 96. The light emitting diode, the re-emitting semiconductor structure layer, and the LP reflector can all be immersed or attached as in the previous embodiment. A transparent perfusion medium is shown. Figure 13 schematically shows another embodiment in which the combination of non-imaging concentrators is configured to enhance the operation of the multilayer optical film. Specifically, the concentrator elements 100a, 100b, 100c are provided as Displayed between the light emitting diode 12, the SP reflector 104, the re-emitting semiconductor structure layer 1〇2 and the LP reflector 1〇6. The concentrator elements have an angular spread that reduces light impinging on the multilayer reflector Effect, thus reducing the blue shift of the reflection band discussed above in connection with Figures 7 through 9. The concentrator elements may take the form of simple conical sections having flat sidewalls, or the sidewalls may take a more complex curved shape, This is known to enhance the focus of the focus calibration action depending on the direction of travel of the light. In any event, the side walls of the concentrator elements are both reflective and the two ends (one end small 'one end large) are not. In Fig. 13, the light emitting diode 12 is disposed at the small end of the concentrator 100a. The concentrator element 〇〇a collects a wide range of light emitted by the illuminating diode, the range being reduced by the time that such light has traveled to the large end of the concentrator element 100a, and sp is mounted at the large end. Reflector 104. The SP reflector transmits uV excitation light to the concentrator element 100b, which concentrates such light on the re-emitting semiconductor layer 1 ( 2 (while increasing the angular spread of light by the re-emitting semiconductor structure layer 1 〇 2 downward emission width) The light range of the angular range 121656.doc • 28-200810156 is converted in the SP reflector 104 by the concentrator element 100b into a narrower angular range in which the light system is reflected back toward the re-emitting semiconductor structure layer 102. The excitation light leaking through the re-emitting semiconductor structure layer 1〇2 and the visible light emitted upward by the re-emitting semiconductor structure layer 102 initially have a wide angle diffusion, but are converted into a smaller angle diffusion by the concentrator element 100c. The device 1 6 will better transmit visible light emitted by the re-emitting semiconductor structure and reflect the excitation light back toward the re-emitting semiconductor structure layer.

為捕獲儘可能多的發光二極體激發光,集中器元件l〇〇a 之小端可以具有一空腔以便捕獲由該發光二極本之側發射 的至少某些光,如圖14所示。 另外的論述 本文中說明的干擾反射器包含由有機、無機或者有機與 :機材料之一組合形成的反射器。該干擾反射器可以係一 多層干擾反射器。該干擾反射器可以係一撓性干擾反射 器。一撓性干擾反射器可以採用聚合材料、非聚合或者聚 «與非聚合材料加以形成。包含聚合與非聚合材料的示範 性膜係揭示在美國專利第6,010,751及6,172,8㈣與Ep 733,919A2中’其全部係以㈣的方(併人本文中。 本文中說明的干擾反射器可以採用撓性 Π:以形成而且本身可以係挽性、塑膠或可變=此 加…成可™光二 121656.doc -29- 200810156 已知的自組裝週期性構造(例如膽固醇反射偏光器及某 些團聯共聚物)係視為基於此申請案之目的之多層干擾反 射器。可使用左與右手螺距元件之一組合而製造膽固醇 鏡0 在說明性具體實施例中,部分地透射藍光之全部波長的 运傳濾光器可與薄的黃色再發射半導體結構層組合而加以 使用’以便在第一層穿過該再發射半導體結構之後將自該 發光二極體的某些藍光引導回至該再發射半導體結構層。To capture as much of the LED excitation light as possible, the small end of the concentrator element 10a may have a cavity to capture at least some of the light emitted by the side of the light-emitting diode, as shown in FIG. Additional Discussion The interference reflectors described herein comprise a reflector formed from a combination of organic, inorganic or organic materials. The interference reflector can be a multi-layer interference reflector. The interference reflector can be a flexible interference reflector. A flexible interference reflector can be formed using polymeric materials, non-polymeric or poly- and non-polymeric materials. Exemplary membrane systems comprising polymeric and non-polymeric materials are disclosed in U.S. Patent Nos. 6,010,751 and 6,172,8 (d) and Ep 733,919 A2, the entire disclosure of which is incorporated herein by reference. Use flexible Π: to form and itself can be pullable, plastic or variable = this can be added to the TM photo 2121656.doc -29- 200810156 known self-assembling periodic structures (such as cholesterol reflective polarizers and some Co-linked copolymers are considered to be multilayer interference reflectors for the purposes of this application. Cholesterol mirrors can be fabricated using one of the left and right hand pitch elements. In an illustrative embodiment, all wavelengths of blue light are partially transmitted. The pass filter can be used in combination with a thin yellow re-emitting semiconductor structure layer to direct some of the blue light from the light-emitting diode back to the first layer after passing through the re-emitting semiconductor structure The semiconductor structure layer is emitted.

除誕供uv光之反射外,該多層光學膜之一功能可以係 阻止UV光之透射以便防止該發光二極體封裝内部或外部 之隨後元件的退化,包含防止肉眼傷害。在某些具體實施 例中,在離該發光二極體最遠的uv反射器之側上併入uv 吸收器可月b有利。此uv吸收器可以係在多層光學膜中、 上或鄰近於該膜。 儘管在用於生產干擾濾光器之技術中已知各種方法,但 是完全聚合物結構可以提供若干製造及成本益處。若在干 擾反射器中利用具有高光學透射及大折射率差之高溫聚合 物’則可以製造既薄又極具撓性之環境敎型濾、光器以滿 足短傳(SP)及遠傳(LP)濾光器之光學要求。特定言之,如 仍6,531,230 (佩打等人)所教導之共擠壓式多層干擾據= 器可以提供精確的波長選擇以及大面積、高成本效率:製 造。使用具有高折射率差之各聚合物對允許構造报薄的高 反射鏡,該等鏡係獨立式,#,沒有基板但仍可輕易加: 處理。此類干擾構造在得以加熱成形或折曲成小的 121656.doc •30- 200810156 曲率之半徑時將不會破裂、粉碎或另外退化。 一完全聚合濾光器可得以加熱形成為各種3D形狀,例如 半球圓頂(如以下說明)。然而,必須小心控制該圓頂之整 個表面上正確的薄化數量,以建立所需肖度性能。具有簡 單的二維曲率之濾光器係比3D複合形狀的濾光器易於建 立。特疋έ之’任何薄而具撓性的濾光器均可彎曲成形 狀’例如一圓柱體之一部分,在此情況下不需要一完全聚 合遽光器。可採取此方式成形薄聚合基板上的多層無機干 擾濾光器,以及厚度小於2〇〇微米之玻璃基板上的無機多 層。後者可能必須經加熱至接近玻璃轉變點之溫度以獲得 一具有低應力之永久形狀。 遠傳及短傳濾光器之最佳頻帶邊緣將取決於濾光器係設 计成在其中運轉之系統中的該發光二極體及該再發射半導 體結構之發射光譜。在一說明性具體實施例中,對於短傳 濾'光器而言,該發光二極體之實質上全部的發射會穿過該 濾光器以激發該再發射半導體結構,並且該再發射半導體 結構之實質上全部的發射係由該濾光器所反射,因此該等 發射不會進入其可以得到吸收的該發光二極體或其基底構 ^ 基於此原因’將界定頻帶邊緣的短傳濾、光器放置在該 發光二極體之平均發射波長與該再發射半導體結構之平均 發射波長之間的一區域中。在一說明性具體實施例中,將 該濾光器放置在該發光二極體與該再發射半導體結構之 間而,右禮;慮光器係平面的,則自典型的發光二極體 之發射將以各種角度衝擊該濾光器,而且以某一入射角由 121656.doc -31 - 200810156 該濾光器加以反射並且未能到達該再發射半導體結構。除 非使該濾光器彎曲以保持一幾乎悝定的入射角,否則可能 需要將該設計頻帶邊緣放置於比該再發射半導體結構及該 發光二極體發射曲線之中點大的波長處以最佳化總系統性 能。特定言之,該再發射半導體結構之發射的很少部分得 以引導至接近零度入射角的濾光器,因為包含的立體角係 很小的。 在另一說明性具體實施例中,遠傳反射濾光器係放置成 從該發光二極體與該再發射半導體結構相對以便使該發光 二極體激發光再循環回至該再發射半導體結構以便改良系 統效率。在說明性具體實施例中,若該發光二極體發射係 在可見光譜中並且需要大量發射以平衡該再發射半導體結 構之顏色輸出’則可省略一遠傳濾光器。然而,部分地透 射短波光(例如藍光)之一遠傳濾光器可用於經由以比垂直 入射角大的角度傳遞更多藍光之光譜角偏移而最佳化一藍 色發光二極體/黃色再發射半導體結構系統之角度性能。 在另一說明性具體實施例中,使LP濾光器彎曲以便保持 該濾光器上的發光二極體之發射光的幾乎恆定入射角。在 此具體實施例中,該再發射半導體結構及該發光二極體皆 面對該LP濾光器之一側。在高入射角情況下,該lp濾光 器將不會反射短波光。基於此原因,該LP濾光器之長波頻 帶邊緣可加以置放在儘可能長的波長處,而阻止該再發射 半導體結構之儘可能少的發射。此外,可以改變頻帶邊緣 放置以最佳化總系統效率。 121656.doc -32- 200810156 術語π鄰近’’係在本文中定義為指示彼此接近的二個物品 之相對位置。鄰近項目可以相互接觸,或彼此隔開,其中 一或多種材料係佈置在該等鄰近項目之間。 發光二極體之激發光可以係一發光二極體來源可以發射 的任何光。發光二極體之激發光可以係UV或藍光。藍光 亦包含紫色及靛藍光。發光二極體包含自發發射裝置以及 使用刺激或超輻射發射之裝置,包含雷射二極體及垂直空 腔表面發射雷射二極體。 本文中說明的再發射半導體結構層可以係連續或不連續 層。再發射半導體結構材料層可以係均勻或非均勻圖案。' 再發射半導體結構材料層可以係具有小面積的複數個區 域。在一說明性具體實施例中,該複數個區域可分別採用 以一或多個不同波長發射可見光之一再發射半導體結構形 成,.該等區域如發射紅光之—區域、發射藍光之—區域及 發射綠光之一區域。可按需要採用任一均勻或非均勻之方 式而配置並組態以複數個波長發射可見光之區域。例如, 再發射半導體結構材料層可以係具有沿—表面或—區域之 非均勻费度梯度的複數個區域。該等區域可以具有任一規 則或不規則形狀。 ' Ζ採用右干方式組態構造式再發射半導體結構層以提供 性能方面的益處’如以下說明。當將多種類型的再發射半 導體結制於提供更寬較更全面的㈣輸㈣,可藉由其 他再發射半導體結構再吸收自較短波長之再發射半導體結 、光包括每一再發射半導體結構類型之隔離線或隔離 121656.doc -33 - 200810156 區域的圖案減小再吸收之數量。此將在空腔型結構中尤其 有效,在該等結構中未吸收的幫浦光係反射回至再發射半 導體結構圖案。 本文中揭示具體實施例,其中第一光學組件包括一再發 射半導體結構/反射器裝配件,其可後來附於一發光二極 體基底;一散熱片,其可視需要地包含該再發射半導體結 構層及干擾濾光器可附於的一透明散熱片。透明散熱片可 以係佈置在再發射半導體結構層/干擾濾光器與該發光二 極體基底之間的一藍寶石層。大多數玻璃具有比聚合物高 的導熱率並且亦可用於此功能。許多其他晶體材料之導熱 率係高於大多數玻璃因此亦可在本文中加以使用。藍寶石 層可在邊緣處由金屬散熱片接觸。 SP或LP渡光器之使用壽命係較佳大於或等於同一系統 中的發光一極體之使用壽命。一聚合干擾濾光器之退化可 能係由於過熱,其可以引起改變層厚度數值並因此改變該 濾光器所反射的波長之材料蠕變。在最壞的情況下,過熱 可能使聚合物材料熔化,從而導致材料的迅速流動及波長 選擇方面的變化並引起該濾光器中的非均勻性。 聚合物材料之退化亦可因短波長(光化)輻射(例如,藍 色、紫色、或UV輻射,此取決於聚合物材料)而引起。退 化之速率取決於光化光通量以及該聚合物之溫度。該溫度 及該通量一般皆隨與該發光二極體之距離的增加而減小。 因此在高亮度發光二極體(尤其係UV發光二極體)的情況 下有利的將聚合渡光器放置在設計可以允許的離該發光 121656.doc -34- 200810156 二極體盡量遠距離處。一如以上說明之透明散熱片上的聚 合物濾光器之放置亦可以改良該濾光器之使用壽命。對於 圓頂濾光器而言,光化輻射之通量隨與該發光二極體的距 離之平方而減小。例如,與處於曲率中心之單向丨瓦特發 光二極體一起放置且具有1 em半徑的半球汹〇1?反射器將經 歷1/(2π)瓦/cm2的平均強度(圓頂之表面積⑽2)。在〇·5 cm半徑情況下,圓頂上的平均強度將係該數值的四倍,或 2/π W/cm2。發光二極體、再發射半導體結構及多層光學 膜之系統可以在設計時將光通量及溫度控制加入考量。 可以將一反射偏光器佈置成鄰近於該多層反射裝置及/ 或鄰近於該再發射半導體結構材料。該反射偏光器使一較 佳偏振光得以發射,而反射另一偏振光。該再發射半導體 結構層及技術中已知的其他膜組件可以去偏振由反射偏光 器所反射的偏振光,且藉由該再發射半導體結構層之反 射’或與該多層反射器組合的再發射半導體結構層,光可 加以再循環並增加固態光裝置(LED)之偏振光亮度。適當 的反射偏光器包含(例如)膽固醇反射偏光器、具有1/4波減 速器的膽固醇反射偏光器、可從3M公司購得之DBEF反射 偏光器或亦可從3M公司購得之DRPF反射偏光器。該反射 偏光益較佳偏振波長及角度之實質範圍内由該再發射半導 體結構發射的光,並且在該發光二極體發射藍光的情況 下’亦可反射發光二極體之發射波長範圍。 適當的多層反射器膜係雙折射多層光學膜,其中二個鄰 近層之厚度方向上的折射率係實質上匹配的而且具有布魯 121656.doc -35- 200810156 斯特角(P偏振光之反射係數變為零所處的角),其係非常大 的或不存在。此允許構造多層鏡及偏光器,其P偏振光之 反射率隨入射角而緩慢地減小,係與入射角無關,或隨偏 離垂直方向的入射角而增加。因此,可以達到在大頻帶寬 範圍内具有高反射率的多層膜(對於鏡情況下任一入射方 向之偏振之兩平面,及對於偏光器情況下的選擇方向)。 此等聚合多層反射器包含第一及第二熱塑性聚合物之交替 層。該等交替層界定局部坐標系統,其中相互垂直的X及y 軸平行於該等層而延伸,並且z軸係垂直於軸,而且 其中該等層之至少某些係雙折射的。對於沿第一、第二及 第二相互垂直軸偏振的光而言,第一偏振光第一層與第二 層之間的折射率方面的差異之絕對值分別係Δχ、々及 Δζ。第三軸係垂直於膜平面,其中Δχ係大於約〇〇5,並且 其中Δζ係小於約〇·05。此等膜係說明在(例如)美國專利第 5,882,774號,其係以引用的方式併入本文中。 圖15係本揭示内容之另一具體實施例(裝置21〇)的示意 斷面圖。非平面多層反射器224係顯示為鄰近於一再發 射半導體結構222,然而僅需要固定該非平面多層反射器 224以便光可以在該再發射半導體結構222與該多層反射器 224之間行進。非平面多層反射器224反射發光二極體之激 發光(例如UV或藍光)並透射可見光。此非平面多層反射器 224可稱為遠傳(LP)反射器,如以上說明。可以將以上配 置佈置在一光學透明材料220内。 可以固定非平面多層反射器224以接收自一發光二極體 121656.doc -36 - 200810156 212的光,如本文中論述。非平面多層反射器224可以具有 任何可用厚度。非平面聚合多層反射器224可以係5至2〇〇 微米厚或ίο至1〇〇微米厚。非平面多層反射器224可視需要 地實質上不含無機材料。 非平面多層反射器224可以採用一材料形成,該材料在 曝露於諸如本文論述的UV、藍或紫光時抵抗退化。本文 中論述的多層反射器在高強度照明下可以穩定延長的時間 週期。高強度照明一般可定義為從1至1〇〇瓦特/cm2之一通 量位準。干擾反射器中的運轉溫度可以係1〇〇χ:或較低, 或65°C或較低。適當的說明性聚合材料可以包含採用(例 如)丙烯酸材料、PET材料、PMma材料、聚苯乙烯材料、 聚碳酸酯材料、可從3M公司(明尼蘇達州聖保羅市)購得之 THV材料、及其組合形成的抗uv材料。此等材料及pEN材 料可以用於藍激發光。 非平面多層反射器224可以具有非均勻厚度或沿其長 度、寬度或二者的厚度梯度。非平面多層反射器224可以 具有非平面多層反射器224之内部區域223中的一第一厚度 及非平面多層反射器224之外部區域225中的一第二厚度。 橫跨該反射器之表面之厚度方面的差異係與光譜反射率方 面的對應差異或偏移相關聯,其中較薄區域係相對於較厚 區域而藍移。存在可以建立厚度梯度的各種方式。例如, 厚度梯度可藉由加熱成形、壓花、雷射壓花或擠壓等加以 形成。 如圖15所示,内部區域223之厚度可以大於外部區域225 121656.doc -37· 200810156 之厚度。增力口内部區域223之厚度可以減小瞭解為"光晕效 應"之不合需要之效應。"光暈效應,,係行業中已知的一問 題、’其中藍色激發光及黃色轉換光之平衡與該發光二極體 之視角成函數關係而發生變化。在本文中,内部區域M3 之厚度可以大於外部區域225之厚度以便減少軸上藍透 射。 如圖所示,外部區域325之厚度可以大於内部區域323 之厚度。可以將以上配置佈置在一光學透明材料32〇内。 該非平面多層反射器可與該發光二極體一起固定在任一 可用組態中,如本文中說明。在一說明性具體實施例中, 非平面多層反射器係固定在該再發射半導體結構與該發光 二極體之間(參見(例如)圖17)。在另一說明性具體實施例 中,該再發射半導體結構係固定在該非平面多層反射器與 4备光一極體之間(參見(例如)圖15、圖16)。 忒非平面多層反射态224/324可經組態用以反射或藍 光並透射可見光光譜(例如綠、黃或紅光)之至少一部分。 在另一說明性具體實施例中,該非平面多層反射器 224/324可經組態用以反射uv、藍或綠光並透射可見光光 譜(例如黃或紅光)之至少一部分。 再發射半導體結構222/322能夠在採用從一發光二極體 212/312發射的激發光加以照明時發射可見光。再發射半 導體結構材料可以係任何可用厚度。 圖17係本裝置之另一具體實施例4丨〇的示意斷面圖。一 非平面夕層反射器4 2 6係顯示為鄰近於一再發射半導體結 121656.doc -38 - 200810156 構422,然而僅需要固定該非平面多層反射器以便光可 以在該再發射半導體結構422與該非平面多層反射器426之 間行進。非平面多層反射器426反射可見光並透射發光二 極體之激發光(例如uv或藍光)。此非平面多層反射器426 可稱為短傳(SP)反射器,如以上說明。可以將以上配置佈 置在一光學透明材料420内。 非平面夕層反射器426可包含與以上說明的非平面多層 反射器424相同之材料並採用與其類似之方式加以形成。 以上亦說明再發射半導體結構層422。 非平面多層反射器426可與發光二極體412一起固定在任 =可用組態中,如本文說明。在如圖17所示的一說明性具 體實施例中,非平面多層反射器426係固定在再發射半導 體結構422與發光二極體412之間。在另—說明性具體實施 例中,再發射半導體結構422係固定在非平面多層反射器 426與發光二極體412之間。在一說明性具體實施例中,非 平面多層反射器426係面朝發光二極體412的半球凹形物。 此類設計使由發光二極體412發射的光可以垂直或接近垂 直的入射角衝擊非平面多層反射器426。多層反射器426之 非平面幾何結構使實質上所有的短波長光可穿過非平面多 層反射器426,無論該短波光從發光二極體412何側或何方 向發出。 —圖18係本裝置之另一具體實施例51〇的示意斷面圖。一 第—非平面多層反射器524係顯示為與一再發射半導體结 構522隔開,然而僅需要固定該第—非平面多層反射器^ 121656.doc -39- 200810156 以便光可以在再發射半導體結構522與該第一非平面多層 反射益524之間行進。該第一非平面多層反射器524反射發 光二極體之激發光(例如UV或藍光)並透射可見光。此第一 非平面多層反射器524可稱為遠傳(LP)反射器,如以上說 明。可以將以上配置佈置在一光學透明材料52〇内。 一第二非平面多層反射器526係顯示為鄰近於一再發射 半導體結構材料522,然而僅需要固定該第二非平面多層 反射益526以便光可以在該再發射半導體結構材料522與該 第二非平面多層反射器526之間行進。該第二非平面多層 反射器526反射可見光並透射發光二極體之激發光(例如uv 或藍光)。此第二非平面多層反射器526可稱為短傳(sp)反 射器,如以上說明。 一再發射半導體結構522係顯示為佈置在該第一非平面 聚合多層反射器524與該第二非平面聚合多層反射器526之 間。以上已說明該再發射半導體結構層522。 圖19係本裝置之另一具體實施例61〇的示意斷面圖。一 第一非平面多層反射器624係顯示為鄰近於一再發射半導 體結構材料622,然而僅需要固定該第一非平面多層反射 器624以便光可以在該再發射半導體結構材料622與該第一 非平面多層反射器624之間行進。該第一非平面多層反射 器624反射發光二極體之激發光(例如uv或藍光)並透射可 見光。此第一非平面多層反射器624可稱為遠傳(LP)反射 器,如以上說明。可以將以上配置佈置在一光學透明材料 620 内。 121656.doc -40- 200810156 一第二非平面多層反射器626係顯示為鄰近於一再發射 半導體結構材料622,然而僅需要固定該第二非平面多層 反射器626以便光可以在該再發射半導體結構材料622與該 弟^一非平面多層反射裔626之間行進。該第二非平面多層 反射器626反射可見光並透射發光二極體之激發光(例如uv 或藍光)。此弟一非平面多層反射器626可稱為短傳(j§p)反 射器,如以上說明。In addition to the reflection of the uv light, one of the functions of the multilayer optical film may be to block the transmission of UV light in order to prevent degradation of subsequent elements inside or outside the package of the light-emitting diode, including protection against gross damage. In some embodiments, incorporating a uv absorber on the side of the uv reflector furthest from the light emitting diode may be advantageous. The uv absorber can be attached to, on or adjacent to the multilayer optical film. While various methods are known in the art for producing interference filters, a full polymer structure can provide several manufacturing and cost benefits. If a high-temperature polymer with high optical transmission and large refractive index difference is used in the interference reflector, it is possible to manufacture a thin and flexible environment-type filter and optical device to meet short-pass (SP) and remote transmission ( LP) Optical requirements for filters. In particular, the co-extrusion multi-layer interference device taught by 6,531,230 (Peace et al.) can provide accurate wavelength selection as well as large area, high cost efficiency: manufacturing. The use of each polymer pair with a high refractive index difference allows for the construction of high-reflection mirrors that are self-contained, #, without a substrate but that can be easily added: processing. Such interference structures will not crack, shatter, or otherwise degrade when heated or bent into a small radius of curvature of 121656.doc • 30-200810156. A fully polymeric filter can be heated to form various 3D shapes, such as a hemispherical dome (as explained below). However, the correct amount of thinning on the entire surface of the dome must be carefully controlled to establish the desired Shore performance. A filter with a simple two-dimensional curvature is easier to construct than a 3D composite shape filter. Any thin, flexible filter can be bent into shape, such as a portion of a cylinder, in which case a fully integrated chopper is not required. The multilayer inorganic interference filter on the thin polymeric substrate can be formed in this manner, as well as the inorganic multilayer on the glass substrate having a thickness of less than 2 μm. The latter may have to be heated to a temperature near the glass transition point to obtain a permanent shape with low stress. The optimum band edge of the remote and short pass filters will depend on the emission spectrum of the light emitting diode and the retransmission semiconductor structure in the system in which the filter is designed to operate. In an illustrative embodiment, for a short pass filter, substantially all of the emission of the light emitting diode passes through the filter to excite the re-emitting semiconductor structure, and the re-emitting semiconductor Substantially all of the emission of the structure is reflected by the filter, so that the emission does not enter the light-emitting diode or its substrate structure that can be absorbed. For this reason, the short-pass filter that defines the edge of the band The optical device is placed in a region between an average emission wavelength of the light emitting diode and an average emission wavelength of the re-emitting semiconductor structure. In an illustrative embodiment, the filter is placed between the light-emitting diode and the re-emitting semiconductor structure, and the light-receiving device is planar, from a typical light-emitting diode. The emission will impact the filter at various angles and will be reflected by the filter at an angle of incidence of 121656.doc -31 - 200810156 and fail to reach the re-emitting semiconductor structure. Unless the filter is bent to maintain an almost constant angle of incidence, it may be desirable to place the design band edge at a wavelength greater than the midpoint of the re-emitting semiconductor structure and the emission curve of the LED. Total system performance. In particular, a small portion of the emission of the re-emitting semiconductor structure is directed to the filter near the zero angle of incidence because the included solid angle is small. In another illustrative embodiment, a remote reflective filter is disposed from the light emitting diode opposite the re-emitting semiconductor structure to recirculate the light emitting diode excitation light back to the re-emitting semiconductor structure In order to improve system efficiency. In an illustrative embodiment, a remote pass filter can be omitted if the light emitting diode emits in the visible spectrum and requires a large amount of emission to balance the color output of the re-emitting semiconductor structure. However, one of the remote transmission filters that partially transmit short-wave light (eg, blue light) can be used to optimize a blue light-emitting diode via a spectral angular offset that transmits more blue light at an angle greater than the normal angle of incidence. The angular performance of the yellow re-emitting semiconductor structural system. In another illustrative embodiment, the LP filter is bent to maintain an almost constant angle of incidence of the emitted light from the light emitting diodes on the filter. In this embodiment, the re-emitting semiconductor structure and the light emitting diode face one side of the LP filter. At high angles of incidence, the lp filter will not reflect short-wave light. For this reason, the long wavelength band edges of the LP filter can be placed at as long a wavelength as possible while preventing as little emission as possible of the re-emitting semiconductor structure. In addition, band edge placement can be changed to optimize overall system efficiency. 121656.doc -32- 200810156 The term π adjacent '' is defined herein as the relative position of two items indicating proximity to each other. Adjacent items may be in contact with each other or separated from one another, with one or more materials disposed between the adjacent items. The excitation light of the light-emitting diode can be any light that can be emitted from a source of the light-emitting diode. The excitation light of the light-emitting diode can be UV or blue light. Blue light also contains purple and neon blue light. The light-emitting diode comprises a spontaneous emission device and a device using stimuli or super-radiation emission, including a laser diode and a vertical cavity surface emitting laser diode. The re-emitting semiconductor structural layers described herein may be continuous or discontinuous layers. The layer of re-emitting semiconductor structural material may be a uniform or non-uniform pattern. The layer of re-emitting semiconductor structural material may be a plurality of regions having a small area. In an illustrative embodiment, the plurality of regions may be formed by re-emitting a semiconductor structure that emits visible light at one or more different wavelengths, such as a red-emitting region, a blue-emitting region, and One area of green light is emitted. The area where visible light is emitted at a plurality of wavelengths can be configured and configured in any uniform or non-uniform manner as desired. For example, the layer of re-emitting semiconductor structural material can be a plurality of regions having a non-uniform cost gradient along the surface or region. These areas can have any rule or irregular shape. Ζ Configure the structured re-emitting semiconductor structure layer in a right-handed manner to provide performance benefits as described below. When multiple types of re-emitting semiconductors are fabricated to provide a wider and more comprehensive (four) transmission (four), re-emitting semiconductor junctions can be reabsorbed from shorter wavelengths by other re-emitting semiconductor structures, including each re-emitting semiconductor structure type. The isolation line or isolation 121656.doc -33 - 200810156 The pattern of the area reduces the amount of reabsorption. This will be particularly effective in cavity-type structures in which unabsorbed pump light is reflected back to the re-emitting semiconductor structure pattern. Specific embodiments are disclosed herein, wherein the first optical component includes a re-emitting semiconductor structure/reflector assembly that can be attached to a light emitting diode substrate; a heat sink that optionally includes the re-emitting semiconductor structure layer And a transparent heat sink to which the interference filter can be attached. The transparent heat sink may be disposed in a sapphire layer between the re-emitting semiconductor structure layer/interference filter and the light emitting diode substrate. Most glasses have a higher thermal conductivity than polymers and can also be used for this function. Many other crystalline materials have higher thermal conductivity than most glasses and can therefore be used herein. The sapphire layer can be contacted by metal fins at the edges. The service life of the SP or LP irradiator is preferably greater than or equal to the service life of the illuminating body in the same system. Degradation of a polymeric interference filter may be due to overheating, which may cause material creep to change the layer thickness value and thus the wavelength reflected by the filter. In the worst case, overheating may cause the polymer material to melt, resulting in rapid flow of material and variations in wavelength selection and causing non-uniformities in the filter. Degradation of the polymeric material can also be caused by short wavelength (actinic) radiation (e.g., blue, violet, or UV radiation, depending on the polymeric material). The rate of degradation depends on the actinic flux and the temperature of the polymer. The temperature and the flux generally decrease as the distance from the light emitting diode increases. Therefore, in the case of high-brightness light-emitting diodes (especially UV-emitting diodes), it is advantageous to place the polymerization concentrator as far as possible from the design of the illuminating 121656.doc -34-200810156 diode. . The placement of the polymer filter on the transparent heat sink as described above can also improve the useful life of the filter. For a dome filter, the flux of actinic radiation decreases with the square of the distance from the light-emitting diode. For example, a hemispherical 汹〇1 reflector placed with a one-way 丨 watt light-emitting diode at the center of curvature and having a radius of 1 em will experience an average intensity of 1/(2π) watts/cm 2 (surface area of the dome (10) 2) . At a radius of 5 cm, the average intensity on the dome will be four times this value, or 2/π W/cm2. Light-emitting diodes, re-emitting semiconductor structures, and multilayer optical film systems can be designed with light flux and temperature control in mind. A reflective polarizer can be disposed adjacent to and/or adjacent to the multilayer reflective device. The reflective polarizer causes a better polarized light to be emitted while reflecting another polarized light. The re-emitting semiconductor structure layer and other film components known in the art can depolarize the polarized light reflected by the reflective polarizer and re-emitted by the re-emitting semiconductor structure layer or combined with the multilayer reflector The semiconductor structural layer, the light can be recycled and the brightness of the polarized light of the solid state light device (LED) is increased. Suitable reflective polarizers include, for example, a cholesterol reflective polarizer, a cholesterol reflective polarizer with a quarter wave reducer, a DBEF reflective polarizer available from 3M Company, or a DRPF reflective polarized light commercially available from 3M Company. Device. The reflected polarized light preferably emits light from the re-emitting semiconductor structure within a substantial range of polarization wavelengths and angles, and also reflects the emission wavelength range of the light-emitting diode in the case where the light-emitting diode emits blue light. A suitable multilayer reflector film is a birefringent multilayer optical film in which the refractive indices in the thickness direction of two adjacent layers are substantially matched and have a curvature of 121656.doc -35 - 200810156 (P-polarized light reflection) The angle at which the coefficient becomes zero) is very large or non-existent. This allows the construction of a multilayer mirror and a polarizer whose reflectance of P-polarized light decreases slowly with the angle of incidence, regardless of the angle of incidence, or increases with the angle of incidence that is offset from the vertical. Therefore, it is possible to achieve a multilayer film having high reflectance in a wide frequency band (two planes of polarization for any incident direction in the case of a mirror, and a direction of selection for a polarizer). These polymeric multilayer reflectors comprise alternating layers of first and second thermoplastic polymers. The alternating layers define a local coordinate system in which mutually perpendicular X and y axes extend parallel to the layers and the z-axis is perpendicular to the axis, and wherein at least some of the layers are birefringent. For light polarized along the first, second, and second mutually perpendicular axes, the absolute values of the difference in refractive index between the first layer and the second layer of the first polarized light are Δχ, 々, and Δζ, respectively. The third axis is perpendicular to the plane of the film, wherein the Δχ system is greater than about 〇〇5, and wherein the Δζ system is less than about 〇·05. Such membranes are described, for example, in U.S. Patent No. 5,882,774, incorporated herein by reference. Figure 15 is a schematic cross-sectional view of another embodiment (device 21A) of the present disclosure. The non-planar multilayer reflector 224 is shown adjacent to the re-emitting semiconductor structure 222, however, it is only necessary to secure the non-planar multilayer reflector 224 so that light can travel between the re-emitting semiconductor structure 222 and the multilayer reflector 224. The non-planar multilayer reflector 224 reflects the illuminating light (e.g., UV or blue light) of the light emitting diode and transmits visible light. This non-planar multilayer reflector 224 may be referred to as a remote pass (LP) reflector, as explained above. The above configuration can be disposed within an optically transparent material 220. The non-planar multilayer reflector 224 can be secured to receive light from a light emitting diode 121656.doc-36 - 200810156 212, as discussed herein. The non-planar multilayer reflector 224 can have any useful thickness. The non-planar polymeric multilayer reflector 224 can be 5 to 2 microns thick or ίο to 1 μm thick. The non-planar multilayer reflector 224 can be substantially free of inorganic material as desired. The non-planar multilayer reflector 224 can be formed from a material that resists degradation when exposed to UV, blue or violet light such as discussed herein. The multilayer reflectors discussed in this article can be extended for extended periods of time under high intensity illumination. High intensity illumination can generally be defined as a flux level from 1 to 1 watt/cm2. The operating temperature in the interfering reflector can be 1 〇〇χ: or lower, or 65 ° C or lower. Suitable illustrative polymeric materials can include, for example, acrylic materials, PET materials, PMma materials, polystyrene materials, polycarbonate materials, THV materials available from 3M Company, St. Paul, Minnesota, and combinations thereof. Formed anti-uv material. These materials and pEN materials can be used for blue excitation light. The non-planar multilayer reflector 224 can have a non-uniform thickness or a thickness gradient along its length, width, or both. The non-planar multilayer reflector 224 can have a first thickness in the inner region 223 of the non-planar multilayer reflector 224 and a second thickness in the outer region 225 of the non-planar multilayer reflector 224. The difference in thickness across the surface of the reflector is associated with a corresponding difference or offset in spectral reflectance, with the thinner regions being blue-shifted relative to the thicker regions. There are various ways in which a thickness gradient can be established. For example, the thickness gradient can be formed by heat forming, embossing, laser embossing, or extrusion. As shown in FIG. 15, the thickness of the inner region 223 may be greater than the thickness of the outer region 225 121656.doc -37.200810156. The thickness of the inner region 223 of the booster port can reduce the undesirable effect of the "halo effect". "Halo effect, a problem known in the industry, wherein the balance of blue excitation light and yellow conversion light varies as a function of the viewing angle of the light emitting diode. Herein, the thickness of the inner region M3 may be greater than the thickness of the outer region 225 to reduce axial blue transmission. As shown, the thickness of the outer region 325 can be greater than the thickness of the inner region 323. The above configuration can be disposed within an optically transparent material 32〇. The non-planar multilayer reflector can be mounted with any of the light emitting diodes in any of the available configurations, as described herein. In an illustrative embodiment, a non-planar multilayer reflector is attached between the re-emitting semiconductor structure and the light emitting diode (see, for example, Figure 17). In another illustrative embodiment, the re-emitting semiconductor structure is secured between the non-planar multilayer reflector and the phosphor side (see, for example, Figures 15, 16). The non-planar multilayer reflective state 224/324 can be configured to reflect or blue light and transmit at least a portion of the visible light spectrum (e.g., green, yellow, or red light). In another illustrative embodiment, the non-planar multilayer reflector 224/324 can be configured to reflect uv, blue or green light and transmit at least a portion of the visible light spectrum (e.g., yellow or red light). The re-emitting semiconductor structures 222/322 are capable of emitting visible light when illuminated with excitation light emitted from a light emitting diode 212/312. The re-emitting semiconductor structural material can be any useful thickness. Figure 17 is a schematic cross-sectional view showing another embodiment 4 of the apparatus. A non-planar reflector 4 6 6 is shown adjacent to the re-emitting semiconductor junction 121656.doc -38 - 200810156 422, however only the non-planar multilayer reflector needs to be fixed so that light can be at the re-emitting semiconductor structure 422 and the non- The planar multilayer reflector 426 travels between. The non-planar multilayer reflector 426 reflects visible light and transmits excitation light (e.g., uv or blue light) of the light emitting diode. This non-planar multilayer reflector 426 may be referred to as a short pass (SP) reflector, as explained above. The above configuration can be disposed within an optically transparent material 420. The non-planar reflector 426 can comprise the same material as the non-planar multilayer reflector 424 described above and is formed in a similar manner thereto. The re-emitting semiconductor structure layer 422 is also described above. The non-planar multilayer reflector 426 can be fixed with the light emitting diode 412 in any of the available configurations, as illustrated herein. In an illustrative embodiment as shown in FIG. 17, a non-planar multilayer reflector 426 is secured between the re-emitting semiconductor structure 422 and the light-emitting diode 412. In another illustrative embodiment, re-emitting semiconductor structure 422 is secured between non-planar multilayer reflector 426 and light emitting diode 412. In an illustrative embodiment, the non-planar multilayer reflector 426 is directed toward the hemispherical concave of the LED 412. Such a design allows light emitted by the LEDs 412 to strike the non-planar multilayer reflector 426 at a vertical or near vertical angle of incidence. The non-planar geometry of the multilayer reflector 426 allows substantially all of the short-wavelength light to pass through the non-planar multilayer reflector 426, regardless of the side or direction of the short-wave light from the LED 412. - Figure 18 is a schematic cross-sectional view of another embodiment 51 of the apparatus. A first non-planar multilayer reflector 524 is shown separated from a re-emitting semiconductor structure 522, however, only the first non-planar multilayer reflector ^ 121656.doc -39 - 200810156 needs to be fixed so that light can be re-emitted in the semiconductor structure 522. Traveling between the first non-planar multilayer reflective benefit 524. The first non-planar multilayer reflector 524 reflects the excitation light (e.g., UV or blue light) of the light emitting diode and transmits visible light. This first non-planar multilayer reflector 524 can be referred to as a remote pass (LP) reflector, as explained above. The above configuration can be disposed within an optically transparent material 52A. A second non-planar multilayer reflector 526 is shown adjacent to the re-emitting semiconductor structure material 522, however only the second non-planar multilayer reflective benefit 526 needs to be fixed so that light can be at the re-emitting semiconductor structural material 522 and the second non- The planar multilayer reflector 526 travels between. The second non-planar multilayer reflector 526 reflects visible light and transmits excitation light (e.g., uv or blue light) of the light emitting diode. This second non-planar multilayer reflector 526 can be referred to as a short pass (sp) reflector, as explained above. A re-emitting semiconductor structure 522 is shown disposed between the first non-planar polymeric multilayer reflector 524 and the second non-planar polymeric multilayer reflector 526. The re-emitting semiconductor structure layer 522 has been described above. Figure 19 is a schematic cross-sectional view of another embodiment 61 of the apparatus. A first non-planar multilayer reflector 624 is shown adjacent to a re-emitting semiconductor structure material 622, however, it is only necessary to secure the first non-planar multilayer reflector 624 such that light can be at the re-emitting semiconductor structural material 622 and the first non- The planar multilayer reflector 624 travels between. The first non-planar multilayer reflector 624 reflects the excitation light (e.g., uv or blue light) of the light emitting diode and transmits the visible light. This first non-planar multilayer reflector 624 may be referred to as a remote pass (LP) reflector, as explained above. The above configuration can be disposed within an optically transparent material 620. 121656.doc -40- 200810156 A second non-planar multilayer reflector 626 is shown adjacent to the re-emitting semiconductor structure material 622, however only the second non-planar multilayer reflector 626 needs to be fixed so that light can be in the re-emitting semiconductor structure Material 622 travels between the parent and the non-planar multilayer reflector 626. The second non-planar multilayer reflector 626 reflects visible light and transmits excitation light (e.g., uv or blue light) of the light emitting diode. This non-planar multilayer reflector 626 can be referred to as a short pass (j§p) reflector, as explained above.

一再發射半導體結構層622係顯示為佈置在該第一非平 面多層反射器624與該第二非平面多層反射器626之間。以 上已說明該再發射半導體結構層622。 依據本發明之裝置可以係一組件或一繪圖顯示器裝置之 關鍵組件,該繪圖顯示器裝置如大或小螢幕視訊監視器、 電腦監視器或顯示器、電視、電話裝置或電話裝置顯示 器、個人數位助理或個人數位助理顯示器、尋呼機或尋呼 機』不器、$算器或計异器顯示器、遊戲機或遊戲機顯示 :具或玩具顯示器、大或小器具或大或小器具顯示 ,、汽車儀錶板或汽車儀錶板顯示器、汽車内部或汽車内 部顯示器、船舶儀錶板或船舶儀錶板顯示器、船舶内部或 船,内部顯示器、航线錶板或航空儀錶板顯示器、航空 一:或航工内部顯不器、交通控制裝置或交通控制裝置顯 不斋、廣告顯示器、廣告標記等。 佤據本發明之裝置可 或 、、且仵或一液晶顯示器(LCD) 為〜、員不器之背光的類似顯示器之關鍵組件。在一項 ’、體實施例中’依據本發明之半導體裝置係藉由使由依據 121656.doc -41- 200810156 本發明之半導體裝置發射的顏色與發光二極體顯示器之彩 色渡光器匹配而特別_適用H曰曰顯示器之背光。A plurality of repeatedly emitting semiconductor structure layers 622 are shown disposed between the first non-planar multilayer reflector 624 and the second non-planar multilayer reflector 626. The re-emitting semiconductor structure layer 622 has been described above. The device according to the invention may be a key component of a component or a graphics display device, such as a large or small screen video monitor, a computer monitor or display, a television, a telephone device or a telephone device display, a personal digital assistant or Personal digital assistant display, pager or pager display, calculator or monitor display, game console or game console display: with or with a toy display, large or small appliances or large or small appliance display, car dashboard or car Dashboard display, car interior or car interior display, ship dashboard or ship dashboard display, ship interior or ship, internal display, route board or aeronautical instrument panel display, aviation one: or internal aircraft display, traffic control The device or traffic control device is not fast, advertising display, advertising mark, and the like. The device according to the present invention may be, or may be, or a liquid crystal display (LCD), a key component of a similar display that is backlit. In a 'body embodiment', a semiconductor device according to the present invention is configured by matching a color emitted by a semiconductor device according to the invention of 121656.doc-41-200810156 with a color illuminator of a light-emitting diode display. Special _ for the backlight of the H曰曰 display.

依據本發明之I置可以係—組件或—照明裝置之關鍵組 :’該妝明裝置如獨立或内建照明固定器或燈、景觀或建 心明固定器、手持或垂直安裝燈、汽車前燈或尾燈、汽 車内《明n汽車或非汽車信號裝置、道路照明事 控制信號農置、船舶燈或信號裝置或内部照明固 疋-航工燈或^號裝置或内部照明固定器、大或小器具 或大或小☆具燈等;或用作紅外、可見或紫外ϋ射之來源 的任何裝置或組件。 、…、白技術人士將將清楚本發明之各種修改及變更,而不 脫離本發明之料與精神,且應該瞭解本發明並非不適當 地限於以上提出的說明性具體實施例。 【圖式簡單說明】According to the invention, the key component of the component or the illuminating device: 'the makeup device such as a stand-alone or built-in lighting fixture or lamp, a landscape or a built-in fixture, a hand-held or vertical mounting lamp, a front of the car Lights or taillights, in the car "Ming n car or non-vehicle signal device, road lighting control signal farm, ship lamp or signal device or internal lighting solid - aerial light or ^ device or internal lighting fixture, large or Gadgets are large or small ☆ with lights, etc.; or any device or component used as a source of infrared, visible or ultraviolet radiation. The present invention is not limited to the illustrative embodiments set forth above. It is to be understood that the invention is not to be construed as limited to the details. [Simple description of the map]

圖1依據本發明之一項 體之傳導頻帶以及價頻帶 具體實施例的之一結構中的半導 之平帶圖。層厚度並非按比例表 進位化合物及其合金的晶格常數 圖2係指示各種 及帶隙能量之曲線圖; 圖3係表示從依據本發明之 射的光之光譜的曲線圖; 項具體實施例之一裝置發 具體實施例的之一結構中的半導 之平帶圖。層厚度並非按比例表 圖4依據本發明之—項 體之傳導頻帶以及價頰帶 示; 121656.doc -42- 200810156 圖5係依據本揭示内容之一裝置的示意斷面圖; 與反射器 圖6係用於圖4之襄置中的一再發射半導體結構 裝配件之斷面圖; 圖7至圖9係依據本揭示内容之 力 裒置的不意斷面圖; 圖10描述依據本揭示内容之另一裴置之一部分; 圖11係依據本揭示内容之另一裝置的斷面圖; 圖12係如圖10之具體實施例—樣、利用前表面照明的另 一裝置之示意側視圖;BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of a semiconducting layer in a structure of a specific embodiment of a conductive band and a valence band according to the present invention. The layer thickness is not a proportionality of the lattice constants of the compound and its alloys. FIG. 2 is a graph showing various and band gap energies; FIG. 3 is a graph showing the spectrum of light emitted from the light according to the present invention; One device transmits a semi-conducting flat band diagram in one of the configurations of the specific embodiment. The thickness of the layer is not to scale. FIG. 4 shows the conduction band of the body and the valence of the cheek band according to the present invention; FIG. 5 is a schematic cross-sectional view of the device according to one of the disclosures; Figure 6 is a cross-sectional view of a re-emitting semiconductor structure assembly for use in the mounting of Figure 4; Figures 7 through 9 are cross-sectional views of the power device in accordance with the present disclosure; Figure 11 is a cross-sectional view of another apparatus in accordance with the present disclosure; Figure 12 is a schematic side elevational view of another apparatus utilizing front surface illumination, as in the embodiment of Figure 10;

圖13係利用非成像集中器之一配置的一裝置之示意侧視 圖, 圖14係圖12之一部分的近視圖;以及 圖15至圖19係本揭示内容之其他具體實施例的示意斷面 圖0 【主要元件符號說明】 1-14 層 14, 散熱片 18 材料 20 凸出表面 22 再發射半導體結構 24 LP反射器 26 SP反射器 40 裝置 42 再發射半導體結構層 44 SP反射器 121656.doc •43· 200810156Figure 13 is a schematic side elevational view of a device configured using one of the non-imaging concentrators, Figure 14 is a close-up view of a portion of Figure 12; and Figures 15 through 19 are schematic cross-sectional views of other embodiments of the present disclosure 0 [Description of main component symbols] 1-14 Layer 14, heat sink 18 Material 20 Projection surface 22 Re-emitting semiconductor structure 24 LP reflector 26 SP reflector 40 Device 42 Re-emitting semiconductor structure layer 44 SP reflector 121656.doc • 43· 200810156

46 LP反射器 48 區域 50 \ 裝置 52 再發射半導體結構層 54 SP反射器 56 LP反射器 60 裝置 66 LP反射器 70 氣隙 72 再發射半導體結構層 74 SP反射器 80 裝置 82 再發射半導體結構層 84 SP反射器 86 LP反射器 92 再發射半導體結構層 96 LP反射器 100a 集中器元件 100 b 集中器元件 100c 集中器元件 102 再發射半導體結構層 104 SP反射器 106 LP反射器 210 裝置 121656.doc -44- 200810156 212 發光二極體 220 光學透明材料 222 再發射半導體結構 223 内部區域 224 非平面多層反射器 225 外部區域 312 發光二極體 320 光學透明材料 323 内部區域 324 非平面多層反射器 325 外部區域 410 裝置 412 發光二極體 420 光學透明材料 422 再發射半導體結構 426 非平面多層反射器 510 裝置 520 光學透明材料 522 再發射半導體結構 524 第一非平面多層反射器 526 第二非平面多層反射器 610 裝置 620 光學透明材料 622 再發射半導體結構材料 121656.doc -45- 200810156 624 第 一非平面多層反射器 626 第 二非平面多層反射器 121656.doc -46-46 LP reflector 48 region 50 \ device 52 re-emitting semiconductor structure layer 54 SP reflector 56 LP reflector 60 device 66 LP reflector 70 air gap 72 re-emitting semiconductor structure layer 74 SP reflector 80 device 82 re-emitting semiconductor structure layer 84 SP reflector 86 LP reflector 92 re-emitting semiconductor structure layer 96 LP reflector 100a concentrator element 100 b concentrator element 100c concentrator element 102 re-emitting semiconductor structure layer 104 SP reflector 106 LP reflector 210 device 121656.doc -44- 200810156 212 Light Emitting Diode 220 Optically Transparent Material 222 Re-emitting Semiconductor Structure 223 Internal Area 224 Non-planar Multilayer Reflector 225 External Area 312 Light Emitting Diode 320 Optically Transparent Material 323 Internal Area 324 Non-planar Multilayer Reflector 325 Exterior Region 410 device 412 light emitting diode 420 optically transparent material 422 re-emitting semiconductor structure 426 non-planar multilayer reflector 510 device 520 optically transparent material 522 re-emitting semiconductor structure 524 first non-planar multilayer reflector 526 second non-planar multilayer reflector 610 620 optically transparent material 622 re-emitting semiconductor construction material 121656.doc -45- 200810156 624 first non-planar multilayer reflector 626 of the second non-planar multilayer reflector 121656.doc -46-

Claims (1)

200810156 十、申請專利範圍·· 1· 一種裝置,其包括: a) 一發光二極體,其能夠以一第一波長發射光; b) 一再發射半導體結構,其包括並非定位在一卯接面内 的一電位井;以及 • c) 反射裔,其位置係固定成將從該發光二極體發射的 • 光反射至該再發射半導體結構上。 2·如請求項丨之裝置,其中該再發射半導體結構額外包括 • 緊密鄰近或緊接鄰近於該至少一電位井之至少一者的一 吸收層。 t 3·如明求項1之裝置,其中至少一電位井包括一量子井。 4. 如請求項1之裝置,其中該反射器係一多層反射器。 5. 如吻求項1之裝置,其中該反射器係一非平面撓性多層 反射器。 I如明求項1之裝置,其中該反射器係一反射偏光器層。 7·種繪圖顯示器裝置,其包括如請求項1之裝置。 _ 8 •種β月裝置,其包括如請求項工之裝置。 9·如明求項1之裝置,其中該再發射半導體結構能夠以一 - 第二波長發射光,而且其中該反射器以該第一波長反射 . 光並以該第二波長透射光。 10·如凊求項9之裝置,其中該反射器係一干擾反射器,其 位置係固定成緊密鄰近於該再發射半導體結構;並且其 中該裝置額外包括緊接鄰近於該再發射半導體結構的_ TIR促進層,該TIR促進層在該第一波長情況下具有一第 121656.doc 200810156 一折射率且在該第二波長情況下具有小於該第一折射率 之一第二折射率。 η· —種裝置,其包括: a) ——發光二極體,其能夠以一第一波長發射光; b) —能夠以一第二波長發射光的再發射半導體結構,其 包括並非定位在一 pn接面内的至少一電位井;以及 c) 一反射器,其以該第一波長透射光並以該第二波長反 射至少一部分光。 12·如請求項11之裝置,其中該再發射半導體結構額外包括 緊密鄰近或緊接鄰近於該至少一電位井之至少一者的一 吸收層。 13·如请求項丨丨之裝置,其中該至少一電位井包括一量子 井。 14·如晴求項丨i之裝置,其中該反射器之位置係固定在該發 光二極體與該再發射半導體結構之間。 15·如請求項11之裝置,其中該反射器係一多層反射器。 16·如请求項11之裝置,其中該反射器係一非平面撓性多層 反射器。 17· —種繪圖顯示器裝置,其包括如請求項Η之裝置。 18·種#展明裝置,其包括如請求項11之裝置。 19 · 一種裝置,其包括: a) 一半導體單元,其包括: )又位在一 Pn接面内之第一電位井,其包括能夠以 第一波長發射光的一發光二極體;以及 121656.doc -2- 200810156 U) 一並非定位在Pn接面内之第二電位井,其包括一再 發射半導體結構;以及 b) —反射器’其位置係固定成將從該發光二極體發射的 光反射至該再發射半導體結構上。 20. 如請求項19之裝置,其中該再發射半導體結構額外包括 緊密鄰近或緊接鄰近於該至少一電位井之至少一者的一 吸收層。 21. 如凊求項19之裝置,其中至少一電位井包括一量子井。 22. 如請求項19之裝置,其中該再發射半導體結構能夠以一 第一波長發射光,而且其中該反射器以該第一波長反射 光並以該第二波長透射光。 23·如請求項22之裝置,其中該反射器係一干擾反射器,其 位置係固定成緊密鄰近於該再發射半導體結構;並且其 中該裝置額外包括一緊接鄰近於該再發射半導體結構的 TIR促進層,該TIR促進層在該第一波長情況下具有一第 一折射率且在該第二波長情況下具有小於該第一折射率 之一第二折射率。 24. 如請求項19之裝置,其中該反射器係—多層反射器。 25. 如請求項19之裝置’其中該反射器係—非平面撓性多層 反射器。 9 26·如睛求項19之裝置,其中該反射器係一反射偏光器層。 27.種繪圖顯示器裝置,其包括如請求項19之裝置。 28· —種照明裝置,其包括如請求項19之裝置。 121656.doc200810156 X. Patent Application Scope 1. A device comprising: a) a light emitting diode capable of emitting light at a first wavelength; b) a re-emitting semiconductor structure comprising not being positioned at a splicing surface a potential well within; and • c) a reflector that is positioned to reflect light emitted from the light emitting diode onto the re-emitting semiconductor structure. 2. The device of claim 1, wherein the re-emitting semiconductor structure additionally comprises: an absorber layer in close proximity to or immediately adjacent to at least one of the at least one potential well. The device of claim 1, wherein the at least one potential well comprises a quantum well. 4. The device of claim 1, wherein the reflector is a multilayer reflector. 5. The device of claim 1, wherein the reflector is a non-planar flexible multilayer reflector. I. The device of claim 1, wherein the reflector is a reflective polarizer layer. A drawing display device comprising the device of claim 1. _ 8 • A beta month device that includes a device such as a request for an item. 9. The device of claim 1, wherein the re-emitting semiconductor structure is capable of emitting light at a second wavelength, and wherein the reflector reflects light at the first wavelength and transmits light at the second wavelength. 10. The device of claim 9, wherein the reflector is an interference reflector positioned to be in close proximity to the re-emitting semiconductor structure; and wherein the device additionally includes adjacent to the re-emitting semiconductor structure a TIR promoting layer having a 121656.doc 200810156 index of refraction at the first wavelength and a second index of refraction less than the first index of refraction at the second wavelength. a device comprising: a) a light emitting diode capable of emitting light at a first wavelength; b) a re-emitting semiconductor structure capable of emitting light at a second wavelength, comprising not being positioned At least one potential well within a pn junction; and c) a reflector that transmits light at the first wavelength and reflects at least a portion of the light at the second wavelength. 12. The device of claim 11, wherein the re-emitting semiconductor structure additionally comprises an absorber layer in close proximity or immediately adjacent to at least one of the at least one potential well. 13. The apparatus of claim 1, wherein the at least one potential well comprises a quantum well. 14. A device according to the invention, wherein the position of the reflector is fixed between the light-emitting diode and the re-emitting semiconductor structure. 15. The device of claim 11, wherein the reflector is a multilayer reflector. 16. The device of claim 11, wherein the reflector is a non-planar flexible multilayer reflector. 17. A drawing display device comprising a device as claimed. 18. A device for display, comprising the device of claim 11. A device comprising: a) a semiconductor unit comprising: a first potential well located in a Pn junction, comprising a light emitting diode capable of emitting light at a first wavelength; and 121656 .doc -2- 200810156 U) a second potential well not positioned within the Pn junction, comprising a re-emitting semiconductor structure; and b) a reflector 'position fixed to be emitted from the light emitting diode Light is reflected onto the re-emitting semiconductor structure. 20. The device of claim 19, wherein the re-emitting semiconductor structure additionally comprises an absorber layer in close proximity or immediately adjacent to at least one of the at least one potential well. 21. The device of claim 19, wherein the at least one potential well comprises a quantum well. 22. The device of claim 19, wherein the re-emitting semiconductor structure is capable of emitting light at a first wavelength, and wherein the reflector reflects light at the first wavelength and transmits light at the second wavelength. The device of claim 22, wherein the reflector is an interference reflector positioned to be in close proximity to the re-emitting semiconductor structure; and wherein the device additionally includes a liquid adjacent to the re-emitting semiconductor structure And a TIR promoting layer having a first refractive index at the first wavelength and a second refractive index lower than the first refractive index at the second wavelength. 24. The device of claim 19, wherein the reflector is a multilayer reflector. 25. The device of claim 19 wherein the reflector is a non-planar flexible multilayer reflector. 9-26. The device of claim 19, wherein the reflector is a reflective polarizer layer. 27. A drawing display device comprising the device of claim 19. 28. A lighting device comprising the device of claim 19. 121656.doc
TW096121063A 2006-06-12 2007-06-11 LED device with re-emitting semiconductor construction and reflector TW200810156A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80453806P 2006-06-12 2006-06-12

Publications (1)

Publication Number Publication Date
TW200810156A true TW200810156A (en) 2008-02-16

Family

ID=38832113

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096121063A TW200810156A (en) 2006-06-12 2007-06-11 LED device with re-emitting semiconductor construction and reflector

Country Status (6)

Country Link
EP (1) EP2033237A4 (en)
JP (1) JP2009540617A (en)
KR (1) KR20090018627A (en)
CN (1) CN101467273B (en)
TW (1) TW200810156A (en)
WO (1) WO2007146863A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008012316B4 (en) 2007-09-28 2023-02-02 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Semiconductor light source with a primary radiation source and a luminescence conversion element
BRPI1014623B1 (en) 2009-04-30 2020-01-07 Zeltiq Aesthetics, Inc. SYSTEM FOR TREATING SUBCUTANEOUS CELLS RICH IN LIPIDS IN A TARGET AREA
DE102013212372A1 (en) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Optical assembly
CN105865668B (en) * 2015-01-20 2019-12-10 北京纳米能源与系统研究所 Pressure sensing imaging array, equipment and manufacturing method thereof
WO2021066050A1 (en) * 2019-10-02 2021-04-08 富士フイルム株式会社 Backlight and liquid crystal display device
JP2024044396A (en) * 2022-09-21 2024-04-02 株式会社トプコン plant sensor
JP2024044397A (en) * 2022-09-21 2024-04-02 株式会社トプコン plant sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559446B2 (en) * 1998-03-23 2004-09-02 株式会社東芝 Semiconductor light emitting element and semiconductor light emitting device
JP3358556B2 (en) * 1998-09-09 2002-12-24 日本電気株式会社 Semiconductor device and manufacturing method thereof
US6853012B2 (en) * 2002-10-21 2005-02-08 Uni Light Technology Inc. AlGaInP light emitting diode
US7091653B2 (en) * 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a non-planar long pass reflector
US7136408B2 (en) * 2004-06-14 2006-11-14 Coherent, Inc. InGaN diode-laser pumped II-VI semiconductor lasers
US7223998B2 (en) * 2004-09-10 2007-05-29 The Regents Of The University Of California White, single or multi-color light emitting diodes by recycling guided modes
US7045375B1 (en) * 2005-01-14 2006-05-16 Au Optronics Corporation White light emitting device and method of making same

Also Published As

Publication number Publication date
EP2033237A4 (en) 2013-10-02
CN101467273A (en) 2009-06-24
JP2009540617A (en) 2009-11-19
EP2033237A1 (en) 2009-03-11
CN101467273B (en) 2012-05-09
KR20090018627A (en) 2009-02-20
WO2007146863A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
US7863634B2 (en) LED device with re-emitting semiconductor construction and reflector
EP3483944B1 (en) Light emitting device package and lighting apparatus comprising same
US7541610B2 (en) LED device with re-emitting semiconductor construction and converging optical element
US10461230B2 (en) Light emitting diode component
US7952110B2 (en) LED device with re-emitting semiconductor construction and converging optical element
US20070284565A1 (en) Led device with re-emitting semiconductor construction and optical element
JP2009540614A (en) Adaptive LED device having a re-emitting semiconductor construction
TW201017936A (en) Light-emitting device, light-emitting element and method of manufacturing same
US10497827B2 (en) Light emitting device package
TW200807769A (en) LED device with re-emitting semiconductor construction and optical element
TW200810156A (en) LED device with re-emitting semiconductor construction and reflector
KR101754910B1 (en) Light emitting device
KR101852898B1 (en) Light emitting device
KR20170125587A (en) Semiconductor device package
US20210193877A1 (en) Light emitting device package
KR102131303B1 (en) A Light emitting device and A Fabrication method thereof
TW201006004A (en) A photonic crystal equipped solid state light-emitting component