TW200807769A - LED device with re-emitting semiconductor construction and optical element - Google Patents

LED device with re-emitting semiconductor construction and optical element Download PDF

Info

Publication number
TW200807769A
TW200807769A TW096121064A TW96121064A TW200807769A TW 200807769 A TW200807769 A TW 200807769A TW 096121064 A TW096121064 A TW 096121064A TW 96121064 A TW96121064 A TW 96121064A TW 200807769 A TW200807769 A TW 200807769A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
optical
optical element
light emitting
Prior art date
Application number
TW096121064A
Other languages
Chinese (zh)
Inventor
Catherine Anne Leatherdale
Thomas James Miller
Andrew John Ouderkirk
Dong Lu
Michael Albert Haase
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW200807769A publication Critical patent/TW200807769A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0071Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source adapted to illuminate a complete hemisphere or a plane extending 360 degrees around the source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0095Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

A light source includes an LED component having an emitting surface, and an optical element having an input surface in optical contact with the emitting surface. The LED component may be or include an LED such as an LED die capable of emitting light at a first wavelength, in combination with a re-emitting semiconductor construction which includes a second potential well not located within a pn junction. The optical element can be an extractor whose shape is converging, diverging, or a combination thereof.

Description

200807769 九、發明說明: 【發明所屬之技術領域】 本發明係關於光源。更特定言之,本發明係關於包含如 本文中說明的一發光二極體(LED)、一再發射之半導體構 议以及一光學元件(例如一擷取器)之光源。 【先前技術】 發光二極體(LED)係固態半導體裝置,其於在陽極與陰 極之間傳遞電流時發射光。傳統發光二極體包含一單一卯 接面。該pn接面可包含中間未摻雜區域,此類型的卯接面 亦可稱為梢接面。像非發光半導體二極體—樣,傳統發光 二極體在一個方向上(即,在電子從η區域移動至p區域的 方向上)更輕易地傳遞電流。當電流於”正向,,方向上穿過該 :光二極體時,來自η區域的電子與來自ρ區域的電洞再組 口 /:而產生光子。由一傳統發光二極體發射的光在外觀 上係單色的,即,其係在波長之單一窄頻帶中產生。發射 的,之波長對應於與電子及電洞對再組合相關聯的能量。 在最簡單的情況下,該能量係接近其中出現再組合的半導 體之帶隙能量。 傳統發光二極體可另外包含ρη接面上的一或多個量子 :,其捕獲高濃度的電子及電洞’從而増強產生光的再組 二若干調查者已嘗試生產一發光二極體裝置,其發射白 光或對肉眼之3色感覺顯現為白色的光。 某些調查者報導叫接面内具有多個量子 之據稱的設計或製造,在該接面中多個量子井係預計以不 121770.doc 200807769 同波長發射光。下列參考可與此類技術相關:美國專利第 5,851,905號;美國專利第6,303,404號;美國專利第 6,504,171號;美國專利第6,734,467號;Damilano等人’基 於InGaN/GaN多量子井之單片白色發光二極體,JPn· J•應 用物理第40卷(2001)第L918至L920頁;Yamada等人’由 InGaN多量子井組成的不含再發射之半導體構造的高光效 率之白色發光二極體,Jpn. J.應用物理第41卷(2002)第 L246至L248頁;Dalmasso等人,不含再發射之半導體構造 之以GaN為基礎的白色發光二極體之電致發光光譜的注射 相依,phys· stat. sol. (a) 192,第 1 號,第 139 至 143 頁 (2003)。 某些調查者報導組合二個傳統發光二極體的發光二極體 裝置之據稱的設計或製造,該等發光二極體係預計在單一 裝置中以不同波長獨立地發射光。下列參考可與此類技術 相關:美國專利第5,851,905號;美國專利第6,734,467號; 美國專利公告案第2002/0041148 A1號;美國專利公告案第 2002/0134989 A1號;Luo等人,整合全色及白色光發射器 用之圖案化三色ZnCdSe/ZnCdMgSe量子井結構,應用物理 論文第77卷,第26號,第4259至4261頁(2000)。 某些調查者報導發光二極體裝置之據稱的設計或製造, 該等裝置將一傳統發光二極體元件與一化學再發射之半導 體構造組合,該構造如釔鋁石榴石(YAG),其係預計吸收 由該發光二極體元件發射的光之一部分並再發射較長波長 之光。美國專利第5,998,925號以及美國專利第6,734,467號 121770.doc 200807769 可與此類技術相關。 某些調查者報導生長在一 ZnSe基板上的發光二極體之據 稱的設計或製造,該基板係採用HCHGan 加以η摻雜以在該基板中建立螢光中心,其係預計吸收由 該發光二極體元件發射的光之一部分且再發射一較長波長 之光。美國專利弟6,337,536號及曰本專利申請公告案第 2004-072047號可與此類技術相關。 美國專利公告案第2005/0023545號(Camras等人)係以引 用的方式併入本文中。 【發明内容】 本申請案另外揭示一光源,其包括具有一發射表面的一 ^光一極體組件,該發光二極體組件可以係或包括:丨)一 發光二極體,其能夠以一第一波長發光;以及⑴一再發射 之半導體構造,其包括未定位在一叩接面内的一第二電位 井。該發光二極體以及該再發射之半導體構造可以係一單 -晶粒或晶片之部分,其中該發光二極體係與定位在一叩 接面内的一第一電位井相關聯,並且該再發射之半導體構 造係與未定位在_ pn接面内的—第二電位井相關聯。或 者,該發光二極體以及該再發射之半導體構造可以係分離 :部分’在該二部分之間經由一或多個其他光透射組件而 提供-光路徑。所揭示的光源亦較佳包含具有一輸入表面 及-輸出表面的一光學元件,該輸入表面係與該發光二極 體、、且件之^射表面光學接觸。此類發射表面可以係該發光 -極體之-表面或該再發射之半導體構造之一表面,但在 121770.doc 200807769 許多情況下其係相對較高折射率材料之—表面,該材料如 半導體材料或其他基板材料,例如Si、Ge、GaAs、inp、 藍寶石、S!C、ZnSe等。為增強從該發光二極體組件耦合 光’该光學兀件較佳在由該發光二極體發射的光之波長情 況下亦具有一相對較高折射率,例如至少i 7、i ·8、i .9、 ' 2·1、、2·3或2·4或較大。該光學元件可以係一封 裝物,其係在該發光二極體組件上形成於適當位置處且實 質上包圍該發光二極體組件(或其部幻,❹可以係一"擷 取器該擷取器係、分離地製造並接著接觸或接近一發光 二極體組件之一表面以從該表面耦合或擷取光並減少在該 組件内捕捉的光之數量。該擷取器或另一光學元件可以具 有了發散形狀,以部分地校準在該輸人表面上所收集的 “或收斂开^狀,以將在該輸入表面上收集的光引導至 一側發射圖案。 在某些具體實施財,該光源另外包括與該發射表面之 第〇卩刀光子接觸的一圖案化低折射率層,該圖案化層 :有帛折射率;而且該光學元件之該輸人表面係與該 :射表面之一第二部分光學接觸,該光學元件具有高於該 第折射率之-第二折射率。在某些具體實施例中,該光 ::外包括用於將由該發光二極體組件產生的光之至少某 :王内反射回至該發光二極體組件中的構件,該反射構件 係與該發射表面之_第—部分光學接觸;^該光學元件 之該輸入表面係與不同於該第-部分的該發射表面之—第 一部分光學接觸。在某些具體實施例中,該光學元件包括 121770.doc 200807769 -第-部分’其包括該輸入表面且係由一第一材料組成, 該光學元件亦包括一第二部分,其包括該輸出表面且係由 -第二材料組成;並且其中該第一材料具有大於該第二材 料之折射率的-折射率 在某些具體實關中,該光學元 件係複數個光學元件之―,每—個此類光學元件均具有一 輸入表面;其中該f光學元件得到尺寸調整以便該等輸入 表面係彼此隔開而且係與該發光表面之不同部分光學接 觸。 在某些具體實施例中,該光學元件具有—基底、二個收 斂側以及二個發散側,丨中該基底係與該發射表面光學躺 合的輸入表面。在某些具體實施例十,該光學元件係與該 發光二極體組件光學耦合且經成形用以引導由該發光二極 體組件發射的光以產生具有二個瓣的一側發射圖案。在某 些具體實施例中,該光學元件包含一基底、小於該基底的 一頂點、以及在該基底與該頂點之間延伸的一收斂側,其 中該基底係與該發射表面光學耦合且在大小上不大於該發 射表面;而且其中該光學元件引導由該發光二極體組件發 射的光以產生一側發射圖案。在某些具體實施例中,該光 學元件包含n、一了頁點以及接合該基底肖該頂點的一 收斂側,並且該基底係與該發射表面光學耦合,而且該光 學元件包括一第一區段,其包含該基底且係由一第一材料 組成,以及一第二區段,其包含該頂點且係由一第二材料 組成。在某些具體實施例中,該光學元件具有一第一折射 率且具有一基底、一頂點、以及接合該基底與該頂點的一 121770.doc 200807769 收斂側,該基底係與該發射表面光學耦合且在大小上不大 於該發射表面,該光源亦包括一第二光學元件,其封裝該 發光二極體組件以及該首先命名的光學元件,該第二光學 元件具有低於該第一折射率之一第二折射率。在某些具體 只施例中,該光學元件具有一第一折射率且具有一基底、 常駐於該發射表面上的_頂點、錢接合該基底與該頂點 的一收斂侧,該基底係與該發射表面光學耦合,該光源亦 匕括弟一光學元件,其封裝該發光二極體組件以及該首 先命名的光學元件,該第二光學元件具有低於該第一折射 率之一第二折射率。在某些具體實施例中,與藉由該第一 光學元件單獨擷取的功率相比,封裝該發光二極體組件以 及該第一光學元件的一第二光學元件提供從該發光二極體 組件擷取之功率方面的增加。在某些具體實施例中,該光 學元件包含一基底、一頂點、以及接合該基底與該頂點之 一側’其中該基底係與該發射表面光學耦合且從其機械去 事馬合。 亦說明包括所揭示的發光二極體裝置之繪圖顯示器裝置 以及照明裝置。 從以下詳細說明將明白本發明之此等及其他方面。然 而’以上概述決不應視為限制所要求的主旨,該主旨僅由 所附申請專利範圍加以定義,該等申請專利範圍可在起訴 期間進行修正。 在此申請案中: 關於一半導體裝置中的層堆疊,”緊接鄰近”意味著在無 121770.doc -11 - 200807769 中間層的情況下順次下一個,”緊密鄰近,,意味著在具有一 或幾個中間層的情況下順次下一個,以及”周圍,,意味著順 次之前以及之後; ’’電位井’’意味著一半導體裝置中的一半導體層,其具有 比周圍層低的傳導頻帶能量或比周圍層高的價頻帶能量, 或二者; "量子井”意味著一電位井,其係足夠薄(通常為1〇〇 nm200807769 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a light source. More particularly, the present invention relates to a light source comprising a light emitting diode (LED) as described herein, a re-emitting semiconductor composition, and an optical component (e.g., a picker). [Prior Art] A light-emitting diode (LED) is a solid-state semiconductor device that emits light when a current is transferred between an anode and a cathode. A conventional light-emitting diode includes a single splicing surface. The pn junction may comprise an intermediate undoped region, and this type of splicing surface may also be referred to as a tip junction. Like a non-emitting semiconductor diode, a conventional light-emitting diode can more easily transfer current in one direction (i.e., in a direction in which electrons move from the n-region to the p-region). When the current passes through the light diode in the "forward direction", the electrons from the η region and the holes from the ρ region recombine the /: photons are generated. Light emitted by a conventional light-emitting diode It is monochromatic in appearance, that is, it is produced in a single narrow frequency band of wavelengths. The emitted wavelength corresponds to the energy associated with recombination of electrons and holes. In the simplest case, the energy Is close to the band gap energy of the semiconductor in which the recombination occurs. The conventional light emitting diode may additionally include one or more quantum on the pη junction: it captures a high concentration of electrons and holes 'to thereby reproduce the light 2. Several investigators have attempted to produce a light-emitting diode device that emits white light or a white-colored sensation that appears to the naked eye. Some investigators report that there is a design or fabrication of multiple quantums in the junction. In the junction, a plurality of quantum well systems are expected to emit light at the same wavelength as 121770.doc 200807769. The following references may be related to such techniques: U.S. Patent No. 5,851,905; U.S. Patent No. 6,303,404; U.S. Patent 6,504,171; U.S. Patent No. 6,734,467; Damilano et al., Single-Piece White Light-Emitting Diode Based on InGaN/GaN Multiple Quantum Wells, JPn J. Applied Physics, Vol. 40 (2001), pp. L918-L920; Yamada Et al. 'High-efficiency white light-emitting diodes composed of InGaN multiple quantum wells without re-emitting semiconductor structures, Jpn. J. Applied Physics, Vol. 41 (2002), pp. L246 to L248; Dalmasso et al. Injection contrast of electroluminescence spectra of GaN-based white light-emitting diodes containing re-emitting semiconductor structures, phys. stat. sol. (a) 192, No. 1, pp. 139-143 (2003). Some investigators report the alleged design or fabrication of a light-emitting diode device combining two conventional light-emitting diodes that are expected to independently emit light at different wavelengths in a single device. Such techniques are related to: U.S. Patent No. 5,851,905; U.S. Patent No. 6,734,467; U.S. Patent Publication No. 2002/0041148 A1; U.S. Patent Publication No. 2002/0134989 A1; Luo et al., integrated full color and white Light emitter Patterned three-color ZnCdSe/ZnCdMgSe quantum well structure, Applied Physics Papers, Vol. 77, No. 26, pp. 4259 to 4261 (2000). Some investigators reported the alleged design or manufacture of light-emitting diode devices. The device combines a conventional light-emitting diode element with a chemically re-emitting semiconductor structure, such as yttrium aluminum garnet (YAG), which is intended to absorb a portion of the light emitted by the light-emitting diode element and Then emit longer wavelength light. U.S. Patent No. 5,998,925 and U.S. Patent No. 6,734,467, the disclosure of which is incorporated herein by reference. Some investigators report the alleged design or fabrication of light-emitting diodes grown on a ZnSe substrate that is n-doped with HCHGan to create a fluorescent center in the substrate that is expected to be absorbed by the luminescence One of the light emitted by the diode element partially re-emits a longer wavelength of light. U.S. Patent No. 6,337,536 and Japanese Patent Application Publication No. 2004-072047 may be related to such technology. U.S. Patent Publication No. 2005/0023545 (Camras et al.) is incorporated herein by reference. SUMMARY OF THE INVENTION The present application further discloses a light source comprising a light-emitting diode assembly having an emitting surface, the light-emitting diode assembly can be or include: a light-emitting diode, which can be a wavelength illuminating; and (1) a re-emitting semiconductor construction comprising a second potential well not positioned within a splicing surface. The light emitting diode and the re-emitting semiconductor structure can be part of a single-die or wafer, wherein the light-emitting diode system is associated with a first potential well positioned within a junction, and the The emitted semiconductor structure is associated with a second potential well that is not positioned within the _pn junction. Alternatively, the light emitting diode and the re-emitting semiconductor construction may be separated: a portion 'providing a light path between the two portions via one or more other light transmissive components. The disclosed light source also preferably includes an optical component having an input surface and an output surface that is in optical contact with the light emitting diode and the surface of the component. Such an emitting surface may be one of the surface of the illuminating-polar body or the surface of the re-emitting semiconductor structure, but in many cases 121770.doc 200807769 it is a relatively high refractive index material-surface, such as a semiconductor Materials or other substrate materials such as Si, Ge, GaAs, inp, sapphire, S!C, ZnSe, and the like. In order to enhance the coupling of light from the LED assembly, the optical element preferably has a relatively high refractive index, for example at least i 7, i · 8, in the case of the wavelength of light emitted by the LED. I.9, '2.1, 2.3 or 2. 4 or larger. The optical component can be an encapsulant formed on the LED assembly and substantially surrounding the LED assembly (or its phantom, which can be a " picker A picker system, separately fabricated and then in contact with or in proximity to a surface of a light emitting diode assembly to couple or extract light from the surface and reduce the amount of light captured within the assembly. The picker or another The optical element can have a diverging shape to partially calibrate the "or converging shape" collected on the input surface to direct light collected on the input surface to a side emission pattern. The light source additionally includes a patterned low refractive index layer in contact with the first knive photon of the emitting surface, the patterned layer: having a refractive index; and the input surface of the optical component is: a second portion of the surface is in optical contact, the optical element having a second refractive index above the first index of refraction. In some embodiments, the light:: externally included for use by the light emitting diode assembly At least : the interior of the king is reflected back to the component in the light emitting diode assembly, the reflective member being in optical contact with the first portion of the emitting surface; the input surface of the optical component being different from the first portion The first portion is optically contacted. In some embodiments, the optical component comprises 121770.doc 200807769 - the first portion - which includes the input surface and is comprised of a first material, the optical component also including a a second portion comprising the output surface and consisting of a second material; and wherein the first material has a refractive index greater than a refractive index of the second material. In some specific implementations, the optical component is plural Each of the optical elements has an input surface; wherein the f optical elements are sized such that the input surfaces are spaced apart from each other and are in optical contact with different portions of the light emitting surface. In a specific embodiment, the optical element has a substrate, two converging sides, and two diverging sides, wherein the substrate is optically lying on the emitting surface. In some embodiments, the optical component is optically coupled to the light emitting diode assembly and shaped to direct light emitted by the light emitting diode assembly to produce a side emission pattern having two lobes. In some embodiments, the optical component includes a substrate, a vertice smaller than the substrate, and a converging side extending between the substrate and the apex, wherein the substrate is optically coupled to the emitting surface and Not larger than the emitting surface; and wherein the optical element directs light emitted by the light emitting diode assembly to produce a side emitting pattern. In some embodiments, the optical element includes n, a page point, and Bonding a convergence side of the apex of the substrate, and the substrate is optically coupled to the emitting surface, and the optical component includes a first segment comprising the substrate and consisting of a first material, and a second A segment that includes the apex and is composed of a second material. In some embodiments, the optical element has a first index of refraction and has a substrate, an apex, and a 121770.doc 200807769 convergent side joining the substrate to the apex, the substrate being optically coupled to the emitting surface And not greater than the emission surface in size, the light source also includes a second optical component encapsulating the LED assembly and the first named optical component, the second optical component having a lower refractive index than the first refractive index a second refractive index. In some specific embodiments, the optical element has a first index of refraction and has a substrate, a apex that resides on the emitting surface, and a convergent side of the substrate that joins the substrate and the apex. Optically coupled to the emitting surface, the light source also includes an optical component encapsulating the light emitting diode component and the first named optical component, the second optical component having a second refractive index lower than the first refractive index . In some embodiments, the light emitting diode assembly and a second optical component of the first optical component are provided from the light emitting diode compared to the power drawn by the first optical component alone The increase in power drawn by the component. In some embodiments, the optical component includes a substrate, a vertex, and a side joining the substrate to the apex, wherein the substrate is optically coupled to the emissive surface and mechanically coupled therefrom. A graphic display device and a lighting device including the disclosed light emitting diode device are also described. These and other aspects of the present invention will be apparent from the following detailed description. However, the above summary should in no way be considered as limiting the claimed subject matter, which is defined only by the scope of the appended claims, which can be modified during the prosecution. In this application: Regarding the layer stack in a semiconductor device, "immediately adjacent" means that in the absence of the intermediate layer of 121770.doc -11 - 200807769, the next one, "closely adjacent, means that there is one In the case of several intermediate layers, the next one, and "around," means before and after the sequence; ''potential well'' means a semiconductor layer in a semiconductor device having a lower conduction band than the surrounding layer Energy or valence band energy higher than the surrounding layer, or both; "quantum wells" means a potential well that is sufficiently thin (usually 1 〇〇nm

或更小)以便量子化效應提升該井中的電子及電洞對轉變 能量; π轉變能量”意味著電子及電洞再組合能量; ’’晶格匹配”意味著,參考二種結晶材料(例如一基板上的 磊晶膜),在隔離中所取的每一種材料均具有一晶格常 數’而且此等晶格常數係實質上相等的,冑常至多彼此相 差0.2%’更通常至多彼此相差〇1%,而且最通常至多彼此 相差0 · 01 %,以及 "假晶"意味著,參考給定厚度之一第一結晶層以及一第 二結晶層(例如-磊晶層以及一基板),在隔離中所取的每 -層均具有—晶格常數,並且此等晶格常數係實質上類似 的以便具有給疋厚度之該第一層可以採用實質上無失配缺 陷的層之平面中的該第二層之晶格間距。 一應》亥瞭解’對於包括η摻雜及Ρ摻雜半導體區域之任何揭 示的具體實施例而言,另—具體實施例應視為揭示於本文 中,其中Π摻雜係與持雜交換且反之亦然。 應瞭解,在本文陳述"電位井"、"第—電位井"、”第二電 121770.doc -12- 200807769 位井π以及"繁二φ > 一帝 —井之母一項的情況下,可提供一單 丨可提供通常共有類似特性的多個電位 地’應瞭解’在本文陳述"量子井"、"第一,、 量子井”以及"第三量子共"夕— 弟— β 一 一里子井之母—項的情況下,可提供一 單-:子井或可提供通常共有類似特性的多個量子井。 【實施方式】Or smaller so that the quantization effect increases the electron and hole pair energy in the well; π-transition energy means that electrons and holes recombine energy; ''lattice matching' means that two crystal materials are referenced (eg An epitaxial film on a substrate), each material taken in the isolation has a lattice constant 'and these lattice constants are substantially equal, and the 胄 often differs by at most 0.2% from each other' more often at most 〇1%, and most often at most 0. 01%, and "false crystal" means, referring to one of the given thicknesses of the first crystalline layer and a second crystalline layer (eg, the epitaxial layer and a substrate) Each of the layers taken in the isolation has a lattice constant, and the lattice constants are substantially similar so that the first layer having a thickness of germanium can be a layer having substantially no mismatch defects. The lattice spacing of the second layer in the plane. In the context of any of the disclosed embodiments including the η-doped and erbium-doped semiconductor regions, another embodiment should be considered as disclosed herein, wherein the erbium doping is exchanged with dopants. vice versa. It should be understood that in this paper, "potential well", "first potential well", "second electric 121770.doc -12-200807769 well π and " complex φ > In one case, a single unit can be provided that provides multiple potentials that generally share similar characteristics. 'should be understood' in this document "quantum well", "first, quantum wells, and "third In the case of a quantum co-quote, a parent-child, a single-: sub-well or a plurality of quantum wells that generally share similar characteristics. [Embodiment]

本申請案揭示照明裝置,其包括··—發光二極體組件, 該組件包含與一再發射之半導體構造組合的一發光二極 體X及與.亥發光一極體組件之一發射表面光學接觸或光 子耦口的光予兀件。该光學元件較佳具有相對較高的折 射率以增強從該發光二極體組㈣合光,並且較佳係或包 含-擷取器但亦可以係或包含一封裝物。通常而言,該發 光二極體能夠以-第一波長發射光而且該再發射之半導體 構造能夠以該第一波長吸收光並以一第二波長再發射光。 口亥再毛射之半導體構造包括未定位在一 接面内白勺一電位 井。忒再發射之半導體構造之該等電位井通常但不必係量 子井。 在典型運#中,料光二極體發射光子以回應一電流而 且该再發射之半導體構造發射光子以回應從該發光二極體 發射的該等光子之一部分的吸收。在需要的情況下,該再 發射之半導體構造可以另外包括緊密或緊接鄰近於該電位 井之一吸收層。吸收層通常具有一帶隙能量,其係小於或 等於由該發光二極體發射的光子之能量且大於該再發射之 半導體構造之電位井的轉變能量。在典型運轉中,吸收層 121770.doc -13- 200807769 協助吸收從該發光二極體發射的光子。該再發射之半導體 構造可另外包括未定位在一 pn接面内的至少一個第二電位 井’其具有不專於該第一電位井之轉變能量的一第二轉變 能量。在某些具體實施例中,該發光二極體係一 uv發光 二極體。在一項此類具體實施例中,該再發射之半導體構 造包括未定位在一 pn接面内的至少一個第一電位井,其具 有對應於藍波長光的一第一轉變能量;未定位在一 pn接面 内的至少一個第二電位井,其具對應於綠波長光的一第二 轉變能量;以及未定位在pn接面内的至少一個第三電位 井’其具有對應於紅波長光的一第三轉變能量。 在某些具體實施例中,該發光二極體係一可見光發射之 發光二極體,通常係一綠、藍或紫色發光二極體,更通常 係一綠或藍色發光二極體,且最通常係一藍色發光二極 體。在一項具體實施例中,該再發射之半導體構造包括未 定位在一 pn接面内的至少一個第一電位井,其具有對應於 黃或綠波長光(更通常為綠波長光)的一第一轉變能量;以 及未定位在一 pn接面内的至少一個第二電位井,其具有對 應於橘或紅波長光(更通常為紅波長光)的一第二轉變能 畺。5亥再發射之半導體構造可包括額外電位井及額外吸收 層。 在某些具體實施例中,該發光二極體具有僅一個叩接 面,而且該再發射之半導體構造具有未定位在一卯接面内 的僅個電位井,該電位井具有對應於(例如)綠波長光之 一轉變能量。在此類情況下,該發光二極體以比綠波長短 121770.doc -14- 200807769 的一波長(例如藍、紫或uv光波長)而發射光 該發光二極體以及該再發射之半導體構造可使用已知的 半導體處理技術在單一晶圓上於單一製造步驟或程序中加 、生長在此仿況下,該發光二極體以及該再發射之半導 體構造較佳利用相同的材料組合,例如ZnSe。或者,該發 光二極體以及該再發射之半導體構造可在分離的程序中 以生長或製造並接著與一接合劑接合在一起,或另外接著 切割成個別晶粒(在應用對應於在一發光二極體晶圓中形 成的一發光二極陣列之一光學元件或光學元件陣列之前或 之後)。在另一情況下,該發光二極體以及該再發射之半 v體構造可保持分離,例如與一擷取器或另一光學元件之 不同表面接合或另外結合或耦合。 可使用任何適當的發光二極體。所揭示的裝置之元件 (包含該發光二極體以及該再發射之半導體構造)可由任何 適當的半導體組成,該等半導體包含:Iv族元素,例如si 或以(而非在發光層中);ΙΠ-V化合物,例如InAs、AUs、 GaAs、inp、A1P、Gap、InSb、八咖、以讥及其合金,⑴ vi 化合物’例如 ZnSe、CdSe、BeSe、MgSe、ZnTe、 CdTe、BeTe、MgTe、ZnS、⑽、㈣、Mgs及其合金; 或以上任何者之合金。在適當的情況下,該等半導體可以 藉由任何適當方法或藉由任何適當摻雜劑之内含物加以η 摻雜或ρ摻雜。在一項典型具體實施例中,該發光二極體 係一 III-V半導體裝置而且該再發射之半導體構造係一 VI半導體裝置。 121770.doc -15- 200807769 在某些具體實施例中,根據下列考量選擇該裝置之一組 件之各層的組成物,例如該發光二極體或該再發射之半導 體構造:每一層對於具有針對該層所給定的厚度之基板而 吕通常係假晶的或與該基板晶格匹配。或者,每一層對緊 接鄰近層可以係假晶的或與其晶格匹配。通常選擇電位井 層材料及厚度以便提供一所需轉變能量,其將對應於欲從 該量子井加以發射的光之波長。例如,圖2中標識為46〇 nm' 540 nm以及630 11111的點表示Cd(Mg)ZnSe合金其具 有接近於InP基板之晶格常數的晶格常數(5·8687埃或 0.58687 nm)以及對應於 46〇 nm(藍)、54〇 nm(綠)以及 63〇 nm(紅)之波長的帶隙能量。在一電位井層係足夠薄以致量 子化將轉變能量提升至該井中的積體帶隙能量以上之情況 下,該電位井可視為一量子井。每一量子井層之厚度決定 該量子井中的量子化能量之數量,該能量係加入體積帶隙 能量以在該量子井中產生轉變能量。因此,可以藉由調整 篁子井層厚度而調諧與每一量子井相關聯的波長。通常而 口 里子井層的厚度係在1 nm與1〇〇 nm之間,更通常而言 係在2 nm與35 nm之間。通常而言,量子化能量轉化為相 對於單獨依據帶隙能量所期望的20至50 nm的波長減小。 該發射層中的壓受力亦改變電位井及量子井的轉變能量, 該壓叉力包含由假晶層之間的晶格常數之不良匹配所產生 的壓受力。 用於計算受力或未受力電位井或量子井之轉變能量的技 術在α亥技術中已為人所知,例如Herbert Kroemer提出的工 121770.doc -16- 200807769 程量子力學,材料科技與應用物理(紐澤西州Englew〇od 市進修部,1994)第54至63頁;以及_,郝出的量 子井雷射(加州聖地牙哥市學術出版社,1993)第72至乃 頁一者係以引用的方式併入本文中。 • 册可選擇任何適當的發射波長,包含紅外、可見及紫外頻 • V中的波長。在某些具體實施例中,選擇發射波長以便藉 由該裝置發射的光之組合式輸出建立可藉由二、三或更多 ㈠ 早色光源之組合加以產生的任何顏色之外觀,該等顏色包 含白或接近白色、彩色、深紅色、青色等。在某些具體實 施例中,該裝置以一不可見红外或紫外波長且以作為該裝 置係在運轉中的指示之可見波長而發射光。通常而言,該 發光二極體發射最短波長之光子,因此從該發光二極體發 射的光子具有足夠的能量來驅動該再發射之半導體構造中 的電位井。在一項典型具體實施例中,該發光二極體係一 III-V半導體裝置(例如發射藍光以GaN基礎的發光二極 體),而且該再發射之半導體構造係一 n—VI半導體裝置。 圖1係表示一再發射之半導體構造中的半導體之傳導頻 帶及價頻帶之頻帶圖。層厚度並非按比例表示。表I指示 • 此具體實施例中的層1至9之組成物以及該組成物之帶隙能 - 量(Eg)。此構造可生長於InP基板上。 121770.doc -17- 200807769 表iThe present application discloses a lighting device comprising: a light emitting diode assembly comprising an emitting diode in combination with a re-emitting semiconductor structure and an optical surface of an emitting surface of a light emitting diode assembly Or the light of the photon coupling. Preferably, the optical element has a relatively high refractive index to enhance illumination from the group of light-emitting diodes (4), and preferably or comprises a picker but may also be or comprise a package. Generally, the light-emitting diode is capable of emitting light at a first wavelength and the re-emitting semiconductor structure is capable of absorbing light at the first wavelength and re-emitting light at a second wavelength. The semiconductor structure of the mouth re-hairing includes a potential well that is not positioned in a junction. The potential wells of the re-emitting semiconductor construction are typically, but not necessarily, quantum wells. In a typical operation, the photodiode emits photons in response to a current and the re-emitting semiconductor structure emits photons in response to absorption of a portion of the photons emitted from the LED. The re-emitting semiconductor construction may additionally include an absorbing layer adjacent to or adjacent to the potential well, if desired. The absorber layer typically has a band gap energy that is less than or equal to the energy of the photons emitted by the light emitting diode and greater than the transition energy of the potential well of the reemitting semiconductor structure. In a typical operation, the absorbing layer 121770.doc -13-200807769 assists in absorbing photons emitted from the luminescent diode. The re-emitting semiconductor construction can additionally include at least one second potential well not positioned within a pn junction having a second transition energy that is not specific to the transition energy of the first potential well. In some embodiments, the light emitting diode system is a uv light emitting diode. In one such embodiment, the re-emitting semiconductor construction includes at least one first potential well not positioned within a pn junction having a first transition energy corresponding to blue wavelength light; not positioned At least one second potential well within a pn junction having a second transition energy corresponding to green wavelength light; and at least one third potential well not positioned within the pn junction having 'corresponding to red wavelength light A third transformation energy. In some embodiments, the light-emitting diode of a light-emitting diode is generally a green, blue or purple light-emitting diode, more usually a green or blue light-emitting diode, and most Usually a blue light emitting diode. In a specific embodiment, the re-emitting semiconductor construction includes at least one first potential well not positioned within a pn junction having a yellow light corresponding to yellow or green wavelength light (more typically green wavelength light) a first transition energy; and at least one second potential well not positioned within a pn junction having a second transition energy 对应 corresponding to orange or red wavelength light, more typically red wavelength light. The 5H re-emitting semiconductor construction may include additional potential wells and additional absorber layers. In some embodiments, the light emitting diode has only one splicing surface, and the re-emitting semiconductor construction has only one potential well that is not positioned within a splicing surface, the potential well having a corresponding One of the green wavelength lights converts energy. In such cases, the light-emitting diode emits light at a wavelength shorter than the green wavelength of 121770.doc -14-200807769 (eg, blue, violet, or uv light wavelength) and the re-emitting semiconductor The configuration can be applied and grown in a single fabrication step or program on a single wafer using known semiconductor processing techniques. The LED and the re-emitting semiconductor construction preferably utilize the same combination of materials. For example ZnSe. Alternatively, the light emitting diode and the re-emitting semiconductor construction can be grown or fabricated in a separate process and then bonded together with a bonding agent, or otherwise cut into individual grains (in application corresponding to a luminescence) One or both of the optical elements or optical element arrays of a light-emitting diode array formed in the diode wafer. In another aspect, the light emitting diode and the re-emitting half-body configuration can remain separate, such as with or otherwise coupled or coupled to different surfaces of a picker or another optical component. Any suitable light emitting diode can be used. The elements of the disclosed device, including the light emitting diode and the re-emitting semiconductor structure, may be comprised of any suitable semiconductor comprising: an Iv group element such as Si or (in the luminescent layer); ΙΠ-V compounds, such as InAs, AUs, GaAs, inp, A1P, Gap, InSb, 八咖, 讥 and their alloys, (1) vi compounds 'such as ZnSe, CdSe, BeSe, MgSe, ZnTe, CdTe, BeTe, MgTe, ZnS, (10), (4), Mgs and alloys thereof; or alloys of any of the above. Where appropriate, the semiconductors may be n-doped or p-doped by any suitable method or by inclusion of any suitable dopant. In a typical embodiment, the light emitting diode is a III-V semiconductor device and the re-emitting semiconductor structure is a VI semiconductor device. 121770.doc -15- 200807769 In some embodiments, the composition of each layer of one of the components of the device is selected according to the following considerations, such as the light emitting diode or the re-emitting semiconductor construction: each layer has The substrate of the given thickness of the layer is typically pseudo-crystal or lattice matched to the substrate. Alternatively, each layer pair may be pseudomorphic or lattice matched to the adjacent layer. The potential well layer material and thickness are typically selected to provide a desired transition energy that will correspond to the wavelength of light to be emitted from the quantum well. For example, the dots identified as 46〇nm' 540 nm and 630 11111 in FIG. 2 indicate that the Cd(Mg)ZnSe alloy has a lattice constant (5·8687 angstroms or 0.58687 nm) close to the lattice constant of the InP substrate and corresponds to Band gap energy at wavelengths of 46 〇 nm (blue), 54 〇 nm (green), and 63 〇 nm (red). A potential well can be considered a quantum well if the potential well system is sufficiently thin that the quantum energy increases the energy of the transition above the bulk bandgap energy in the well. The thickness of each quantum well layer determines the amount of quantized energy in the quantum well that adds volume band gap energy to produce transition energy in the quantum well. Thus, the wavelength associated with each quantum well can be tuned by adjusting the thickness of the dice well layer. Typically, the thickness of the sub-wellbore is between 1 nm and 1 〇〇 nm, and more typically between 2 nm and 35 nm. In general, the quantized energy is converted to a wavelength reduction of 20 to 50 nm as desired with respect to the band gap energy alone. The compressive force in the emissive layer also changes the transition energy of the potential well and the quantum well, which includes the compressive force generated by the poor matching of the lattice constants between the pseudomorphic layers. Techniques for calculating the energy of transitions in stressed or unstressed potential wells or quantum wells are known in the alpha technology, such as the work of Herbert Kroemer, 121770.doc -16-200807769, Quantum Mechanics, Materials Technology and Applied Physics (Englew〇od City Training Department, New Jersey, 1994), pp. 54-63; and _, Hao Quan's Quantum Well Laser (San Diego, California Academic Press, 1993) 72nd to 1st page This is incorporated herein by reference. • Select any suitable emission wavelength, including wavelengths in the infrared, visible, and ultraviolet frequencies. In some embodiments, the emission wavelength is selected such that the combined output of light emitted by the device establishes the appearance of any color that can be produced by a combination of two, three or more (a) early color sources, such colors Contains white or near white, color, deep red, cyan, etc. In some embodiments, the device emits light at an invisible infrared or ultraviolet wavelength and at a visible wavelength that is indicative of the device being in operation. Generally, the light emitting diode emits photons of the shortest wavelength, so that photons emitted from the light emitting diode have sufficient energy to drive the potential well in the re-emitting semiconductor structure. In a typical embodiment, the light emitting diode system is a III-V semiconductor device (e.g., a GaN-based light emitting diode that emits blue light), and the re-emitting semiconductor structure is an n-VI semiconductor device. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a band diagram showing the conduction band and valence band of a semiconductor in a re-emitting semiconductor structure. The layer thickness is not to scale. Table I indicates the composition of layers 1 to 9 in this embodiment and the band gap energy (Eg) of the composition. This configuration can be grown on an InP substrate. 121770.doc -17- 200807769 Table i

層 組成物 帶隙能量(Eg) 1 Cdo.24Mgo.43Zno.33Se 2.9 eV 2 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 3 Cd〇j〇Zn〇3〇Se 1.9 eV 4 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 5 Cdo.24Mgo.43Zno.33Se 2.9 eV 6 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 7 Cdo.33Zno.67Se 2.3 eV 8 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 9 Cdo.24Mgo.43Zno.33Se 2.9 eV 層3表示一單一電位井,其係具有約1〇 nm的厚度之一發 射紅光量子井。層7表示一單一電位井,其係具有約1〇 nm 的厚度之一發射綠光量子井。圖2、4、6及8表示吸收層, 每一層具有約1000 nm的厚度。層1λ 5及9表示支撐層。支 撐層係通常選擇為對於從量子井3及7以及從短波長發光二 極體發射的光係實質上透明的。或者,該裝置可包括藉由 吸收層及/或支撐層分離的多個發射紅光或綠光電位井或 量子井。 在不希望文理論束缚的情況下,咸信由圖丨表示的具體 實靶例依據下列原理而運轉:由該發光二極體發射且撞擊 在4再發射之半導體構造上的藍波長光子可加以吸收並從 $射綠光里子井7加以再發射為綠波長光子或從發射紅光 ϊ子井3加以再發射為紅波長光子。一短波長光子之吸收 曰產生電子及電洞對,其可接著在量子井中與一光子之 121770.doc 200807769 發射再組合。從該裝置發射的藍、綠以及紅波長光之多色 組合可顯現為白色或接近白色。從該褒置發射的藍、綠以 及紅波長光之強度可採用任何適當方式加以平衡,該方式 包含操縱每一種類型的量子井之數目,使用濾波器或反射 層,以及操縱吸收層之厚度及組成物。圖3表示從該裝置 之一項具體實施例發射的光之光譜。 再次參考由圖1表示的具體實施例,吸收層2、4、5及8 可經調適用以藉由下列方式吸收從該發光二極體發射的光 子.選擇用於該等吸收層的一帶隙能量,其係在從該發光 :極體發射的光子之能量與量子井3及7之轉變能量中間。 藉由吸收層2 4 6及8中光子之吸收所產生的電子及電洞 對通常在與—光子之伴隨發射再組合之前由量子井3及7加 以捕獲。吸收層可視需要地在其厚度之全部或一部分中具 ^組成物方©的梯度’以便朝電位井以漏斗形式輸送或引 ‘電子及/或電洞◊在某些具體實施例中,該發光二極體 以及該再發射之半導體構造係提供在單一半導體單元中, 即該發光二極體以及該再發射之半導體構造可在一系列製 造步驟中生長於同一晶圓上。此半導體單元通常包含定位义 pn接面内的-第-電位井及未定位在—pn接面内的一 第-電位井。該等電位井通f係量子井^該單元能夠以二 個波長發射光,一個波長對應於該第一電位井(即由該發 光二極體發射的光)之轉變能量而且第二波長對應於該第 =電位井(即由該再發射之半導體構造發射的光)之轉變能 里在八型運轉中,该第一電位井發射光子以回應穿過該 121770.doc •19- 200807769 pn接面的電流而且該第二電位井發射光子以回應從該第一 電位井發射的光子之一部分的吸收。該半導體單元可額外 包括包圍或緊密或緊接鄰近於該第二電位井的一或多個吸 收層。吸收層通常具有一帶隙能量,其係小於或等於該第 一電位井之轉變能量且大於該第二電位井之轉變能量。在 典型運轉中,吸收層協助吸收從該第一電位井發射的光 子。該半導體單元可包括定位在該pn接面内或未定位在該 pn接面内的額外電位井,以及額外吸收層。 圖4係表示此類半導體單元中的半導體之傳導頻帶及價頻 帶之頻帶圖。層厚度並非按比例表示。表II指示此具體實施 例中的層1至14之組成物以及該組成物之帶隙能量(Eg)。Layer composition band gap energy (Eg) 1 Cdo.24Mgo.43Zno.33Se 2.9 eV 2 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 3 Cd〇j〇Zn〇3〇Se 1.9 eV 4 Cd〇.35Mg〇 .27Zn〇.38Se 2.6 eV 5 Cdo.24Mgo.43Zno.33Se 2.9 eV 6 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 7 Cdo.33Zno.67Se 2.3 eV 8 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 9 Cdo.24Mgo.43Zno.33Se 2.9 eV Layer 3 represents a single potential well that emits a red quantum well with a thickness of about 1 〇 nm. Layer 7 represents a single potential well that emits a green quantum well with a thickness of about 1 〇 nm. Figures 2, 4, 6 and 8 show absorbing layers, each having a thickness of about 1000 nm. Layers 1λ 5 and 9 represent support layers. The support layer is typically selected to be substantially transparent to the light systems emitted from quantum wells 3 and 7 and from short wavelength light emitting diodes. Alternatively, the apparatus can include a plurality of red or green light potential wells or quantum wells separated by an absorber layer and/or a support layer. Without wishing to be bound by the theory, the specific real target represented by the diagram is operated according to the following principle: blue wavelength photons emitted by the light emitting diode and impinging on the 4 re-emitting semiconductor structure can be used. It is absorbed and re-emitted from the green light neutron well 7 into a green wavelength photon or re-emitted from a red light dice well 3 into a red wavelength photon. The absorption of a short-wavelength photon produces an electron and hole pair that can then be recombined with a photon of 121770.doc 200807769 in a quantum well. The multicolor combination of blue, green, and red wavelength light emitted from the device can appear white or nearly white. The intensity of the blue, green, and red wavelength light emitted from the device can be balanced in any suitable manner, including manipulating the number of each type of quantum well, using a filter or reflective layer, and manipulating the thickness of the absorber layer and Composition. Figure 3 shows the spectrum of light emitted from a particular embodiment of the apparatus. Referring again to the specific embodiment illustrated by Figure 1, the absorbing layers 2, 4, 5 and 8 can be adapted to absorb photons emitted from the luminescent diode by the following means. A band gap is selected for the absorbing layers. The energy is intermediate between the energy of the photons emitted from the illuminant: the polar body and the energy of the quantum wells 3 and 7. The electrons and holes generated by the absorption of photons in the absorbing layers 2 4 6 and 8 are captured by the quantum wells 3 and 7 before being recombined with the accompanying emission of the photons. The absorbing layer may optionally have a gradient of constituents in all or a portion of its thickness for transporting or directing electrons and/or holes in the funnel toward the potential well. In certain embodiments, the illuminating The diode and the re-emitting semiconductor structure are provided in a single semiconductor unit, that is, the light emitting diode and the re-emitting semiconductor structure can be grown on the same wafer in a series of fabrication steps. The semiconductor unit typically includes a -first potential well positioned within the pn junction and a first potential well not positioned within the -pn junction. The equipotential well is capable of emitting light at two wavelengths, one wavelength corresponding to a transition energy of the first potential well (ie, light emitted by the light emitting diode) and the second wavelength corresponding to The transition energy of the first potential well (ie, the light emitted by the re-emitting semiconductor structure) is in an eight-type operation, and the first potential well emits photons in response to passing through the 121770.doc •19-200807769 pn junction And the second potential well emits photons in response to absorption of a portion of the photons emitted from the first potential well. The semiconductor unit can additionally include one or more absorber layers surrounding or in close proximity to or immediately adjacent to the second potential well. The absorber layer typically has a band gap energy that is less than or equal to the transition energy of the first potential well and greater than the transition energy of the second potential well. In a typical operation, the absorber layer assists in absorbing photons emitted from the first potential well. The semiconductor unit can include an additional potential well positioned within the pn junction or not positioned within the pn junction, and an additional absorber layer. Fig. 4 is a band diagram showing a conduction band and a valence band of a semiconductor in such a semiconductor unit. The layer thickness is not to scale. Table II indicates the composition of layers 1 to 14 in this specific example and the band gap energy (Eg) of the composition.

表IITable II

層 組成物 帶隙能量(Eg) 1 InP基板 1.35 eV 2 η 摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 3 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 4 Cd〇j〇Zn〇.3〇Se 1.9 eV 5 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 6 η 摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 7 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 8 Cdo.33Zno.67Se 2.3 eV 9 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 10 η 摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 11 未摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 12 Cd〇.3lMg〇.32Zn〇.37Se 2.7 eV 13 未摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 14 p 摻雜 Cdo.24Mgo.43Zno.33Se 2.9 eV 121770.doc -20- 200807769 層 10、11、12、η 菸 η 主一 、, 及14表不一Ρη接面,或更明確而言, 一梢接面,因為φ Ρ,凑# 口為中間未摻雜("内在"摻雜)層u、12及13係 推:層10與ρ換雜層14之間。層12表示該-接面内 Γ:,井,其係具有約10㈣之厚度的量子井。或 …置可包括該ρη接面内的多個電位井或量子井。層 4及8表示未在—ρη接面内的第二及第三電位井,每一個; 位井均為具有約1 〇 与度的里子井。或者,該裝置可 ^括未在_接面内的額外電位井或量子井。在另―替代 例中’ δ亥裝置可包括未在該pn接面内的單—電位井或量子 井。層3、5、7及9表示吸收層,每—層均具有約剛⑽ 的厚度。圖中未顯示的電接點(未顯示)提㈣於向該pn接 面供應電流的路徑。電接點會導電且通常係由導電金屬組 成。正電接點係直接或透過中間結構間接與層14電連接。 負電接點係直接或透過中間結構間接與層工U、4、 5、6、7、8、9或10之一或多個電連接。 、 在不希望受理論束缚的情況下,咸信此具體實施例依據 下列原理而運轉:當電流從層14傳遞至層10時,藍波長光 子係從該Pn接面中的量子井(12)發射。在層14之方向上行 進的光子可能會離開該裝置。在相反方向上行進的光子可 加以吸收並從第二量子井(8)再發射為綠波長光子或從第三 量子井⑷再發射為紅波長光子。—藍波長光子之吸收會I 生-電子及電洞對’其可接著在該等第二或第三量子井中 與-光子之發射再組合。在層14之方向上行進的綠或紅波 長光子可能會離開該褒置。從該裝置發射的藍、綠以及紅 121770.doc • 21 · 200807769 波長光之多色組合可顯現為白色或接近白色。從該裝置發 射的藍、綠及紅波長光之強度可採用任何適當方式加以平 衡’該方式包含操縱每一種類型的電位井之數目以及使用 濾波器或反射層。圖3表示從該裝置之一項具體實施例發 射的光之光譜。 再次參考圖4,吸收層3、5、7及9可尤其適合於吸收從 第 i子井(12)發射的光子,因為該等吸收層具有在第一Layer composition band gap energy (Eg) 1 InP substrate 1.35 eV 2 η doped Cdo.24Mgo.43Zno.33Se 2.9 eV 3 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 4 Cd〇j〇Zn〇.3〇 Se 1.9 eV 5 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 6 η doped Cdo.24Mgo.43Zno.33Se 2.9 eV 7 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 8 Cdo.33Zno.67Se 2.3 eV 9 Cd〇.35Mg〇.27Zn〇.38Se 2.6 eV 10 η doped Cdo.24Mgo.43Zno.33Se 2.9 eV 11 undoped Cdo.24Mgo.43Zno.33Se 2.9 eV 12 Cd〇.3lMg〇.32Zn〇.37Se 2.7 eV 13 undoped Cdo.24Mgo.43Zno.33Se 2.9 eV 14 p doped Cdo.24Mgo.43Zno.33Se 2.9 eV 121770.doc -20- 200807769 Layers 10, 11, 12, η smoke η main one,, and 14 is not a Ρ junction, or more specifically, a tip junction, because φ Ρ, make #口 is the middle undoped ("intrinsic" doped) layer u, 12 and 13 push: layer 10 is between the ρ-division layer 14. Layer 12 represents the in-plane Γ: well, which is a quantum well having a thickness of about 10 (four). Or ... may include a plurality of potential wells or quantum wells within the ρη junction. Layers 4 and 8 represent the second and third potential wells that are not in the -ρη junction, each of which is a lining having approximately 1 〇 and degrees. Alternatively, the device can include additional potential wells or quantum wells that are not in the junction. In another alternative, the "delta device" may include a single-potential well or a quantum well that is not within the pn junction. Layers 3, 5, 7, and 9 represent absorbent layers, each having a thickness of about just (10). Electrical contacts (not shown) not shown in the figure provide (d) a path for supplying current to the pn junction. The electrical contacts are electrically conductive and typically consist of a conductive metal. The positive electrical contacts are electrically connected to the layer 14 either directly or indirectly through the intermediate structure. The negative electrical contact is electrically connected to one or more of the layers U, 4, 5, 6, 7, 8, 9 or 10 directly or indirectly through the intermediate structure. Without wishing to be bound by theory, it is believed that this embodiment operates according to the following principles: when current is transferred from layer 14 to layer 10, the blue wavelength photon is from the quantum well in the Pn junction (12) emission. Photons that are advanced in the direction of layer 14 may leave the device. Photons traveling in opposite directions can be absorbed and re-emitted from the second quantum well (8) into green wavelength photons or re-emitted from the third quantum well (4) into red wavelength photons. - The absorption of blue wavelength photons will be combined with the electron and hole pairs, which can then be combined with the emission of - photons in the second or third quantum wells. Green or red wavelength photons traveling in the direction of layer 14 may leave the device. Blue, green, and red emitted from the device 121770.doc • 21 · 200807769 The multicolor combination of wavelength light can appear white or nearly white. The intensity of the blue, green and red wavelength light emitted from the device can be balanced in any suitable manner' which involves manipulating the number of potential wells of each type and using a filter or reflective layer. Figure 3 shows the spectrum of light emitted from a particular embodiment of the apparatus. Referring again to Figure 4, the absorbing layers 3, 5, 7 and 9 may be particularly adapted to absorb photons emitted from the i-th well (12) since the absorbing layers have

ΐ子井(12)之轉變能量與第二及第三量子井及句之轉變 能量中間的帶隙能量。藉由吸收層3、5、7及9中光子之吸 收所產生的電子及電洞對通常在與一光子之伴隨發射再組 ΰ之七由弟一及弟二ϊ子井8及4加以捕獲。吸收層可視需 要地加以摻雜(通常像周圍層一樣),其在此具體實施例中 為η摻雜。吸收層可視需要地在其厚度之全部或一部分中 具有組成物方面的梯度,以便朝電位井以漏斗形式輸送或 引導電子及/或電洞。 在該發光二極體係—可見波長發光二極體的情況下,該 再發射之半導體構造的各層對於從該發光二極體發射的光 可旎係部分透明的。或者,例如在該發光二極體係一 UV 波長發光二極體的情況下’再發射之半導體構造的各層之 -或多個可能阻塞從該發光二極體發射的光之一較大部分 或實f上或完全全部’因此從該裝置發射的光之一較大部 分或m或完全全部係從該再發射之半導體構造再發射 的光。在该發光二極體係一 ^波長發光二極體的情況 下’該再發射之半導體構造可包含發射紅光、綠光以及藍 121770.doc -22- 200807769 光量子井。 衣置可包括傳導、半傳導或非傳導材料之額外層。可 :加電接觸層以提供用於向該發光二極體供應電流的一路 仫办可佈置該等電接觸層以便使該發光二極體通電的電流 亦穿過該再發射之半導體構造。或者,該再發射之半導體 構造之-部分可加以㈣掉以界定—孔或孔徑,透過該孔 或孔匕可與4發光二極體之p或η層電接觸。可添加光遽波The energy of the band gap between the energy of the transformation of the scorpion well (12) and the energy of the second and third quantum wells and the transition of the sentence. The electrons and holes generated by the absorption of photons in the absorbing layers 3, 5, 7 and 9 are captured by the brothers 1 and 2 of the scorpion wells 8 and 4, which are usually combined with a photon. . The absorber layer can optionally be doped (typically like a surrounding layer), which in this embodiment is n-doped. The absorbent layer may optionally have a compositional gradient in all or a portion of its thickness to transport or direct electrons and/or holes in the form of a funnel toward the potential well. In the case of the light-emitting diode system, the visible-wavelength light-emitting diode, the layers of the re-emitting semiconductor structure are partially transparent to the light emitted from the light-emitting diode. Or, for example, in the case of the light-emitting diode system, a UV-wavelength light-emitting diode, or a plurality of layers of the semiconductor structure that are re-emitted, or a plurality of light that may block emission from the light-emitting diode. f is either completely or completely 'so a greater portion or m or all of the light emitted from the device is re-emitted from the re-emitting semiconductor construction. In the case of the light-emitting diode system - a wavelength light-emitting diode, the re-emitting semiconductor structure may comprise a red, green and blue 121770.doc -22-200807769 photoquantum well. The garment may comprise an additional layer of conductive, semi-conductive or non-conductive material. The contact layer can be energized to provide a means for supplying current to the light-emitting diodes. The electrical contacts can be arranged to pass current through the redistributed semiconductor structure. Alternatively, the portion of the re-emitting semiconductor structure can be (4) dropped to define a hole or aperture through which the p or n layers of the four light emitting diodes can be in electrical contact. Optical ripple can be added

層以改變或校正由調適的發光二極體發射之&中的光波長 之平衡。 在某些具體貫施例中,所揭示的光源藉由以藍、綠、黃 及紅頻帶中的四個主要波長發射光而提供白或接近白光。、 在替代性具體實施例中,該光源藉由以藍及黃頻帶中的二 個主要波長發射光而產生白或接近白光。在其他具體實施 财’該光源以實質上單—可見顏色(例如綠色)而發射。 該裝置包括額外半導體元件,其包括主動或被動組件, 例如電阻器、二極體、齊納二極體、電容器、電晶體、雙 極電晶體、FET電晶體、M〇SFET電晶體、絕、緣間極雙極 電晶體、光電晶體、光偵測器、SCR、閉流體、三端雙向 矽控開關、電堡調節器以及其他電路元件。該裝置可包 括-積體電路。該裝置可包括一顯示器面板或一照明面 板0 所揭不之光源中包含的該發光二極體以及該再發射之半 導體構造可藉由任何適當方法加以製造,該方法可包含分 子束麻θ0 (MBE)、化學汽相沉積、液相蟲晶以及汽相蟲 12I770.doc •23- 200807769 晶。該裝置之元件可包含任何適當的基板。典型基板材料 包含Si、Ge、GaAs、InP、藍寶石、sic以及。該基板 可以係η摻雜、p摻雜或半絕緣的,此可藉由任何適當方法 或藉由任何適當摻雜劑之内含物而達到。或者,該裝置之 το件可以沒有一基板。在一項具體實施例中,該裝置之元 件可加以形成於一基板上並接著與該基板分離。該裝置之 元件亦可藉由任何適當方法加以接合在一起,該方法包含 使用黏性或焊接材料、壓力、熱或其組合。此類方法可2 於將(例如)該發光二極體(例如一發光二極體晶粒)與該再 發射之半導體構造接合,或將該發光二極體與該光學元件 (例如一擷取器)接合,或將該再發射之半導體構造與該光 學元件接合。有用的半導體晶圓接合技術包含由q._y Tong及U. G5sele所寫文章:半導體晶圓接合(紐約 Wiley及Sons,1999)之第4及10章中說明的技術。亦可使用 美國專利5,915,193 (Tong等人)及6,563,133 (T〇ng)中說明 的晶圓接合方法。用於將GaN與ZnSe晶圓接合的方法係說 明在Murai專人提出的日本應用物理雜諸43第ι〇Α號第 L1275頁(2004)中。在某些具體實施例中,一接合層係出 現在該發光二極體與該再發射之半導體構造之間。該接人 層可包含(例如)一透明黏性層、無機薄膜、可熔合破璃粉 或其他適當的接合劑。接合層之額外範例係說明在美國專 利公告案弟2005/0023545號(Camr as等人)中。通常而士 建立的接合係透明的。接合方法可包含介面接合,或僅在 邊緣處接合該等元件(例如該發光二極體以及該再發射之 121770.doc -24- 200807769 半導體構造)的技術,即邊緣接合。可視 折射率匹配層或填隙空間。 ,可包含 〜發光二極體係通常以―封裝形式出冑,該封裝 -屬頊部上的-發光二極體晶粒或晶片 -極體晶粒係以其最基本的形式(即以 圓 序::製造的個別組件或晶片的形式) :广::片可包含適於施加電源以使該裝置通電的電 曰鬥.,且件或晶片之個別層及其他功能元件係通常形成於 日日'級上’且已完成的晶圓係最終切割成個別件部分以產 生多重發光二極體晶粒。該金屬頭部具有其中安裝該發光 —極晶粒的一反射杯,以及與該發光二極體晶粒連接的電 引線。該封裝進-步包含封包該發光二極體晶粒的—模製 透明樹脂。該封裝樹脂通常具有一標稱半球前表面以部分 地校準從該發光二極體晶粒發射的光。一發光二極體組件 可以係或包括一發光二極體晶粒或與—再發射之半導體構 造或其他元件組合的一發光二極體晶粒。 以上說明的光學元件可加以分離地製造並接著接觸或緊 密接近於一發光二極體組件之一表面,該光學元件可用於 從該表面耦合光或"擷取"光並減少在該組件内捕捉的光之 數里。此類元件係稱為擷取器。擷取器通常具有一輸入表 面,其經尺寸調整並成形用以實質上與該發光二極體組件 之 主要發射表面配合。 擷取器可用於提供高亮度發光二極體封裝或光源。此類 封凌之忒發光二極體組件可以係一發光二極體/再發射之 121770.doc -25- 200807769 半導體構造組合,作為分離元件或作為半導體單元,如以 上或目前待審的美國專利申請案USSN 11/〇〇9217或ussn 11/009241中所說明,該等巾請㈣以引用的方式併入本 文中。 在圖5中,一發光二極體封裝1〇包含安裝於一頭部或其 他架座14上的一發光二極體組件12。該發光二極體組件二 及架座係一般基於簡單而描述,但是讀者應瞭解其可以包 含該技術中已為人所知的傳統設計特徵,以及如以上說明 的再發射層。該發光二極體組件之主要發射表面Ua、底 部,面12b以及側表面12c係顯示在一簡單的矩形配置中,_ 但是亦預期其他已知組態,例如形成倒轉截金字塔形狀的 斜側表面。至该發光二極體組件的電接點亦基於簡單而未 加以顯示,但可加以提供在該發光二極體組件之任何表面 上,此已為人所知。在示範性具體實施例中,該發光二極 體組件具有二個接點,二者皆係佈置在該發光二極體組件 之底部表面i2b上,如"覆晶"發光二極體組件設計之情 況。此外,架座U可以作為支樓基板、電接點、散熱片、 及/或反射器杯。 發光二極體封裝1〇亦包含一透明光學元件16,其封裝或 包圍發光二極體組件12。光學元件16具有一折射率,盆係 在該發光二極體組件(更精確而言,係接近於發射表面、以 的該發光二極體組件之外部部分)與周圍媒介(通常係空幻 之折射率中間。在許多具體實施例中,希望選擇用於元件 16的材料,其折射率係盡可能高但實質上不超過該發光二 121770.doc -26- 200807769 極體組件之折射率,因為該發光二極體組件與元件16之間 的折射率差異越小’則在該發光二極體組件内捕捉並損失 的光會越少。如圖所示的光學元件16具有彎曲輸入表面, 此可有助於確保光係從該發光二極體封裝透射至周圍媒 ’I並亦可用於至少冑分地聚焦或校準由該發光二極體电 件發射的光。具有其他形狀(包含以下進_步說明的錐形) 之光學元件亦可用於校準光。光學元件16可以係在該發光 二極體組件上形成於適當位置處的一封裝物,在此情況下 该封裝物通常係或包括光透射環氧樹脂切樹脂。 發光二極體封裝10另外具有光學元件16與該發光二極體 、、且件之間^圖案化低折射率層j 8,其具有選擇性地保存 在該發光二極體組件中·的某些光以便增強發射表面 12a上局部孔徑或區域2〇中的亮度之效應。圖案化低折射 率層18係實質上與側表面12。及除孔徑2〇以外的發射表面 12a之部分光學接觸,而光學元件“係與孔徑之區域上 的發射表面12a之部分光學接觸。(在此方面,,,光學接點,, 指在-起間隔足夠近(包含但不限於直接實體接觸)的表面 或媒介,因此(例如)該低折射率層或透明元件之折射率特 f生S控制或貝質上影響在該發光二極體組件内傳播的至少 某:光之王内反射。通常而t,該等表面或媒介係在彼此 的衰減波内,例如由1〇〇、5〇或25 nm或更小的間隙所分 離根本不包含間隙。)圖案化低折射率層丨8具有一折射 率,其實質上低於該發光二極體組件之折射率以及透明元 牛 折射率。層1 8在預計促進光捕捉的位置處亦係在光 121770.doc •27- 200807769 學亡較厚。藉由光學上較厚,意味著其厚度係大到足以避 免受阻全内反射’或該層(例如光學元件16)之一側上的該 媒介之折射率特性並不控制或實f上影f在該層(例如: 光二極體12)之另-側上之該媒介中傳播的至少某些光之 内反射車乂佳而5,e亥圖案化低折射率層之厚度係大於 :空中重要光能量之波長的十分之一,更佳係大於波長的 :半,最佳係大於約一個波長。藉由層18之"圖案化",還 忍味者包含下列具體實施例:層18在該發光二極體之發射 表面上係連續的,但在孔徑20中使其極薄(因此不能有效 地維持全内反射),並且在別處使其光學上較厚。有利的 係,層18係透明介電材料或至少包括該發光二極體組件之 表面上的一此類材料層。此等材料具有優於反射塗層的優 ‘:、°亥專塗層係藉由(例如)簡單地施加一金屬層於該發光 二極體而製造,因為介電材料可以提供對於該發光二極體 組件内大部分光的1〇〇%反射(藉由TIR),而簡單的金屬塗 層具有實質上小於100%反射率,在高入射角情況下尤為 如此。 圖案化低折射率層18以減小該發光二極體之其他部分 (例如超出孔徑20的發射表面12a之部分)的亮度為代價而增 強u亥务光一極體之某些部分(例如孔徑2 0中的部分)的亮 度。此效應依賴於在運轉期間具有足夠低的内部損失之該 發光二極體組件以支持該發光二極體組件内所發射的光之 多次回彈反射。因為在發光二極體組件製造及設計方面已 取知進步,所以自表面或容積吸收的損失可望減少,内部 121770.doc -28- 200807769 以及本文說明的亮度增強效應可望提The layer changes or corrects the balance of the wavelengths of light in the & emitted by the adapted light-emitting diode. In some specific embodiments, the disclosed light source provides white or near white light by emitting light at four major wavelengths in the blue, green, yellow, and red bands. In an alternative embodiment, the light source produces white or near white light by emitting light at two major wavelengths in the blue and yellow bands. In other embodiments, the light source is emitted in a substantially single-visible color (e.g., green). The device includes additional semiconductor components including active or passive components such as resistors, diodes, Zener diodes, capacitors, transistors, bipolar transistors, FET transistors, M〇SFET transistors, Inter-edge bipolar transistors, optoelectronic crystals, photodetectors, SCRs, fluid-closed, three-terminal bidirectional tamper switches, electric bucks regulators and other circuit components. The device can include an integrated circuit. The device may include a display panel or the light emitting diode included in the light source uncovered by the illumination panel 0 and the re-emitting semiconductor structure may be fabricated by any suitable method, which may include molecular beam θ0 ( MBE), chemical vapor deposition, liquid phase crystals and vapor phase worms 12I770.doc •23- 200807769 crystal. The components of the device can comprise any suitable substrate. Typical substrate materials include Si, Ge, GaAs, InP, sapphire, sic, and. The substrate can be n-doped, p-doped or semi-insulating, which can be achieved by any suitable method or by inclusion of any suitable dopant. Alternatively, the device may have no substrate. In a specific embodiment, the components of the device can be formed on a substrate and then separated from the substrate. The components of the device may also be joined together by any suitable method, including the use of viscous or solder materials, pressure, heat, or combinations thereof. Such a method can be used to bond, for example, the light emitting diode (eg, a light emitting diode die) to the re-emitting semiconductor structure, or the light emitting diode and the optical component (eg, a capture) The bonding or bonding of the re-emitting semiconductor structure to the optical component. Useful semiconductor wafer bonding techniques include those described in Q._y Tong and U. G5sele, Chapters 4 and 10 of Semiconductor Wafer Bonding (New York Wiley and Sons, 1999). The wafer bonding method described in U.S. Patent Nos. 5,915,193 (Tong et al.) and 6,563,133 (T〇ng) can also be used. A method for bonding GaN to a ZnSe wafer is described in Japanese Applied Physics, No. 43, pp. L1275 (2004) by Murai. In some embodiments, a bonding layer is present between the light emitting diode and the re-emitting semiconductor construction. The access layer can comprise, for example, a transparent adhesive layer, an inorganic film, a fusible glass frit or other suitable cement. Additional examples of bonding layers are described in U.S. Patent Publication No. 2005/0023545 (Camr as et al.). Usually the joints established by the warriors are transparent. The bonding method may comprise an interface bonding, or a technique of bonding only the elements (e.g., the light emitting diode and the re-emitting 121770.doc -24-200807769 semiconductor construction) at the edge, i.e., edge bonding. Visible index matching layer or gap space. Included, the luminescent diode system is usually in the form of a package, which is a light-emitting diode die or a wafer-pole body die in its most basic form (ie in a circular order) ::In the form of individual components or wafers manufactured): Wide: The sheet may comprise an electric hopper adapted to apply a power source to energize the device, and individual layers of the piece or wafer and other functional components are typically formed on a daily basis. The 'on-stage' and completed wafers are finally cut into individual pieces to create multiple light-emitting diode grains. The metal head has a reflective cup in which the light-emitting diode is mounted, and an electrical lead connected to the light-emitting diode die. The package further comprises a molded transparent resin encapsulating the light emitting diode dies. The encapsulating resin typically has a nominal hemispherical front surface to partially align the light emitted from the luminescent diode dies. A light emitting diode component can be or include a light emitting diode die or a light emitting diode die in combination with a re-emitting semiconductor structure or other component. The optical elements described above can be fabricated separately and then contacted or in close proximity to one of the surfaces of a light emitting diode assembly that can be used to couple light from the surface or "take" light and reduce the component The number of light captured inside. Such components are referred to as pickers. The picker typically has an input surface that is sized and shaped to substantially mate with the primary emitting surface of the LED assembly. The picker can be used to provide a high brightness light emitting diode package or light source. Such a sealed LED component can be a light-emitting diode/re-emission 121770.doc -25-200807769 semiconductor construction combination, as a discrete component or as a semiconductor unit, such as the above or currently pending US patent The application is described in USSN 11/〇〇 9217 or ussn 11/009241, which is incorporated herein by reference. In Fig. 5, a light emitting diode package 1A includes a light emitting diode assembly 12 mounted on a head or other mount 14. The LED assembly and pedestal are generally described on a simple basis, but the reader should understand that it can encompass conventional design features that are well known in the art, as well as the re-emitting layer as described above. The main emitting surface Ua, the bottom surface, the surface 12b and the side surface 12c of the light emitting diode assembly are shown in a simple rectangular configuration, but other known configurations are also contemplated, such as forming an oblique side surface of an inverted truncated pyramid shape. . The electrical contacts to the LED assembly are also based on simplicity and are not shown, but may be provided on any surface of the LED assembly, as is known. In an exemplary embodiment, the LED assembly has two contacts, both of which are disposed on the bottom surface i2b of the LED assembly, such as a "Crystal" LED assembly. Design situation. In addition, the mount U can serve as a support base, electrical contacts, heat sinks, and/or reflector cups. The light emitting diode package 1 also includes a transparent optical element 16 that encloses or encloses the light emitting diode assembly 12. The optical element 16 has a refractive index, and the basin is attached to the light-emitting diode assembly (more precisely, to the emitting surface, to the outer portion of the light-emitting diode assembly) and the surrounding medium (usually an optical refractory refraction) In the middle of many embodiments, it is desirable to select a material for element 16 that has a refractive index that is as high as possible but does not substantially exceed the refractive index of the polar body component of the light-emitting diode 121770.doc -26-200807769 because The smaller the difference in refractive index between the LED assembly and the component 16 is, the less light is captured and lost within the LED assembly. The optical component 16 as shown has a curved input surface, which can Helping to ensure that the light system is transmitted from the light emitting diode package to the surrounding medium 'I and can also be used to at least minutely focus or calibrate the light emitted by the light emitting diode. Other shapes (including the following) The tapered element of the step can also be used to calibrate light. The optical element 16 can be attached to a package at the appropriate location on the light emitting diode assembly, in which case the package is typically A light transmissive epoxy resin is included. The light emitting diode package 10 further has an optical element 16 and the light emitting diode, and a patterned low refractive index layer j 8 is selectively stored therein. Some of the light in the LED assembly is used to enhance the effect of brightness in the local aperture or region 2〇 on the emitting surface 12a. The patterned low refractive index layer 18 is substantially parallel to the side surface 12. And in addition to the aperture 2〇 The portion of the emitting surface 12a is in optical contact, and the optical element "is in optical contact with a portion of the emitting surface 12a over the area of the aperture. (In this respect, the optical contact, refers to the spacing at the beginning is close enough (including but a surface or medium that is not limited to direct physical contact, such that, for example, the refractive index of the low refractive index layer or transparent element affects or preferentially affects at least some of the light propagating within the light emitting diode assembly: light The internal reflection of the king. Usually, t, the surfaces or media are within the attenuation waves of each other, for example, separated by a gap of 1 〇〇, 5 〇 or 25 nm or less. There is no gap at all.) Patterned low refraction Rate layer 丨8 There is a refractive index which is substantially lower than the refractive index of the LED assembly and the refractive index of the transparent element. The layer 18 is also in the position of light expected to promote light trapping. 121770.doc • 27-200807769 Thick. By optically thicker, meaning that the thickness is large enough to avoid hindered total internal reflection' or the refractive index characteristics of the medium on one side of the layer (eg, optical element 16) are not controlled or real The shadow f is reflected in at least some of the light propagating in the medium on the other side of the layer (for example, the photodiode 12), and the thickness of the patterned low refractive index layer is greater than: One tenth of the wavelength of the important light energy in the air, more preferably greater than the wavelength: half, the best system is greater than about one wavelength. By layer "patterning", the taster includes the following specific embodiments. The layer 18 is continuous over the emitting surface of the light-emitting diode, but is extremely thin in the aperture 20 (and therefore does not effectively maintain total internal reflection) and is optically thick elsewhere. Advantageously, layer 18 is a transparent dielectric material or a layer of such material comprising at least the surface of the light emitting diode component. These materials have superior performance over reflective coatings by: for example, simply applying a metal layer to the light-emitting diode, since a dielectric material can provide for the light-emitting diode The majority of the light in the polar body assembly is reflected by 1% (by TIR), while the simple metal coating has substantially less than 100% reflectivity, especially at high incident angles. Patterning the low refractive index layer 18 enhances certain portions of the u-light photo-polar body at the expense of reducing the brightness of other portions of the light-emitting diode (eg, portions of the emission surface 12a beyond the aperture 20) (eg, aperture 2 The brightness of the part of 0). This effect relies on the light emitting diode assembly having a sufficiently low internal loss during operation to support multiple rebound reflections of light emitted within the light emitting diode assembly. Since improvements have been made in the manufacture and design of light-emitting diode components, losses from surface or volume absorption are expected to be reduced, and internal brightness enhancement effects are expected to be described in the internal 121770.doc -28-200807769 and the description herein.

輸出時可能更有效。 量子效率可望增加, 供穩定增加的利益。 減少體積吸收。藉由 退订組合以增加整個頂部表面上的光 在示範性具體實施例中,多數底部表 面Ub係高反射材料,例如金屬或介電堆疊。較佳而言, 孩反射裔在發光二極體發射波長情況下具有大於9〇%的反 射率,更佳大於95。/。的反射率,最佳大於99%的反射率。 再次參考圖5,例如一任意發射點來源22發射光線24。 發光二極體組件12及透明元件16之折射率的情況係,首次 遇到發光二極體/光學元件介面上的發射表面12a之光線將 得以透射至元件16中且由該元件折射。然而,圖案化層18 會改變該位置處的介面以對光線24進行全内反射。該光線 牙過該發光二極體組件之厚度,從背表面l2b反射,並再 -入遇到發射表面12a,此次因為缺乏如圖5所示的層1 8而逃 入透明元件1 6。因此以由低折射率層丨8所覆蓋的發射表面 12a之部分為代價,使孔徑20處的發射表面12a之部分更明 免(每單位面積及每單位立體角更多光通量)。 在圖5之具體實施例中,該發光二極體内撞擊低折射率 層18的某些光在其相對於發射表面i2a垂直向量的入射角 係足夠小以致其簡單地穿過低折射率層1 8的情況下仍可以 逃入元件16。因此,撞擊該發光二極體組件之低折射率塗 121770.doc -29- 200807769 布部分的光將具有非零但比未塗布部分小的逃離角範圍。 在替代性具體實施例中,低折射率層18可以採用良好垂直 ^射反射器(例如反射金屬或干涉反射器)加以覆蓋以增加 =光—極體組❹的光之再循環並進―步增強孔徑减 的冗度’而不會損失由低折射率層Μ提供的现之利益。 可視需要地,一 +、、牛g _ t V反射益可加以固定在外部發光二極體 組件表面與低折射率層18之間。 、t適當的低折射率層18包含氟化鎂、敦化〜夕石、溶膠 缝膠&齓化合物以及矽樹脂之塗層。氣凝膠材料亦適 用因為其可以達到約12或更小或甚至約μ或更小的極 -有效折射率氣凝膠係藉由—凝膠之高溫及壓力臨界點 烘乾而製造,該凝膠係由㈣溶㈣充的膠狀⑦石結構單 7L所、、且成。所獲得的材料係欠密微孔媒介。低折射率層18 的示範性厚度係從約5G至⑽,_ nm,較佳從約至 靡·’此取決於材料之折射率。層18之折射率係在可 以係模製樹脂或其他封裝物材料的光學元件16之折射率以 下並且在°亥1光一極體組件或接近發射表面的該發光二 極體組件之部分之扮,、,τ χ 乂 折射率以下。較佳而言,層1 8之折射率 係小於約1 · 5,f # τ / 、, ;·4。低折射率層18可以係介電材 料之實心層’或該發光二極體組件與透明元件16之間的真 空或氣體填充間隙。 料光_極體組件之外部表面可以係光學上光滑的,即 ’、有]於、、勺20 nm的表面處理層L。外部發光二極體表面 之某些、全部或部分亦可以係光學上粗糙的,即具有大於 121770.doc -30· 200807769 約20 nm的表面處理層Ra。邊緣或頂部表面之部分亦可以 相對於纟亥發光二極體組件之基底成 紙成非直角。此專角的範圍It may be more efficient when outputting. Quantum efficiency is expected to increase, providing benefits for increased stability. Reduce volume absorption. By unbinding the combination to increase light across the top surface In an exemplary embodiment, most of the bottom surface Ub is a highly reflective material, such as a metal or dielectric stack. Preferably, the child has a reflectance greater than 9〇%, more preferably greater than 95, at the emission wavelength of the light emitting diode. /. The reflectivity is optimally greater than 99% reflectivity. Referring again to FIG. 5, for example, an arbitrary transmit point source 22 emits light 24. In the case of the refractive index of the light-emitting diode assembly 12 and the transparent member 16, the light that first encounters the emitting surface 12a of the light-emitting diode/optical element interface will be transmitted into and refracted by the element 16. However, the patterned layer 18 changes the interface at that location to provide total internal reflection of the light 24 . The light passes through the thickness of the light-emitting diode assembly, reflects from the back surface 12b, and re-enters the emitting surface 12a, this time escaping into the transparent element 16 due to the lack of the layer 18 as shown in FIG. Therefore, at the expense of the portion of the emitting surface 12a covered by the low refractive index layer 丨8, the portion of the emitting surface 12a at the aperture 20 is more visible (more luminous flux per unit area and per unit solid angle). In the embodiment of FIG. 5, some of the light that strikes the low refractive index layer 18 within the light emitting diode is sufficiently small at its angle of incidence with respect to the vertical vector of the emitting surface i2a that it simply passes through the low refractive index layer. In the case of 18, it is still possible to escape component 16. Therefore, the light of the low refractive index coating 121770.doc -29-200807769 portion of the light-emitting diode assembly will have a range of escape angles that are non-zero but smaller than the uncoated portion. In an alternative embodiment, the low refractive index layer 18 may be covered with a good vertical reflector (eg, a reflective metal or an interference reflector) to increase the recirculation of the light of the photo-polar group and further enhance The reduction in aperture reduction' does not lose the current benefits provided by the low refractive index layer. Optionally, a +, , , g _ t V reflection can be fixed between the surface of the external light-emitting diode component and the low refractive index layer 18. The appropriate low refractive index layer 18 comprises a coating of magnesium fluoride, dendrite, sol-gel compound, bismuth compound, and enamel resin. Aerogel materials are also suitable because they can achieve a pole-effective refractive index aerogel of about 12 or less or even about μ or less by drying at a high temperature and pressure critical point of the gel. The glue is made up of (4) dissolved (four) charged colloidal 7 stone structure single 7L. The material obtained is an under-tight microporous medium. An exemplary thickness of the low refractive index layer 18 is from about 5G to (10), _nm, preferably from about 靡 to 靡 depending on the refractive index of the material. The refractive index of layer 18 is at least below the refractive index of optical element 16 that can be molded into a resin or other encapsulant material and is part of the light emitting diode assembly at or near the emitting surface. , τ χ 乂 refractive index below. Preferably, the refractive index of layer 18 is less than about 1 · 5, f # τ / , , ;·4. The low refractive index layer 18 can be a solid layer of dielectric material or a vacuum or gas filled gap between the light emitting diode assembly and the transparent element 16. The outer surface of the illuminant _ polar body assembly may be optically smooth, i.e., having a surface treatment layer L of 20 nm. Some, all or part of the surface of the external light-emitting diode may also be optically rough, i.e. having a surface treatment layer Ra of greater than 121770.doc -30. 200807769 and about 20 nm. Portions of the edge or top surface may also be formed at a non-orthogonal angle relative to the base of the illuminating diode assembly. The scope of this special angle

可以從與正交方向的L| . I 又刀Π的υ至45度。此外,該發光二極體組件 之多數或少數表面不必係平坦的。例如,該發光二極體組 件之該發射表面之-凸起部分或各部分可以接觸該光學元 件之-般平坦底部表面以至少界定圖5至7中的孔徑2 〇、 20a以及34。It can be from the angle of L|.I in the orthogonal direction to 45 degrees. Moreover, most or a few of the surfaces of the light emitting diode assembly need not be flat. For example, the raised portion or portions of the emitting surface of the light emitting diode assembly can contact the generally flat bottom surface of the optical element to define at least the apertures 2 〇, 20a and 34 of Figures 5-7.

藉由低折射率層18之實質缺乏所界定的孔徑20之形狀可 以係圓形、矩形、正方形、或多邊形或非多邊形或規則或 不規則的更複雜形狀。亦預期多個孔徑,#以下更詳細地 說明。孔徑形狀通常選擇為預計應用之功能,並且可加以 修勇以最佳化總系統性能。亦預期採用低折射率塗布區域 之連續或不連續的圖案或網路來圖案化該孔徑之表面,或 為該低折射率層提供厚度或折射率或二者方面的梯度以修 改忒孔徑之表面上的光輸出之分佈。該孔徑亦可以覆蓋整 個頂部發射表面12a,其中採用低折射率層覆蓋側表面12c 之至少部分。 參見圖6,其顯示類似於發光二極體封裝10的一發光二 極體封裝10a,但是其中已藉由包含中心孔徑内的低折射 率塗布區域之網路而修改低折射率層18。修改的低折射率 層係因此標識為1 8a,並且修改的中心孔徑係標識為2〇a。 其他元件保留圖5中使用的參考編號。如圖所示,低折射 率區域之網路可加以配置在一圖案中,該圖案在該孔徑之 邊緣附近係相對較密集的,因此在該區域中透射係相對較 121770.doc 200807769 低。修剪透過孔徑的透射之能力可用於高亮度發光二極 體’其中系統設計需要特定空間均勻性或輸出分佈。一孔 徑内的低折射率媒介之此類配置同樣可應用於其他揭示的 具體實施例,包含但不限於圖7、8及10至12之具體實施 例。 该孔徑可採用一低折射率材料加以塗布,該材料具有相 對於界疋該孔徑的低折射率材料(基於方便,稱為"周圍低 折射率材料’’)之不同厚度或不同折射率或二者。此類設計 $活性可用於修改由封裝式發光二極體發射的光之角度分 佈例如,採用具有光學元件16與周圍低折射率材料的折 射率之間的折射率之材料來塗布孔徑2〇或2〇a將限制由該 孔徑發射的光之角度的範圍。此舉將使通常以大角度發射 的光在該發光二極體組件内得以再循環,並增加一定角度 範圍内的光之輸出,其可由相關聯的光學系統加以更有效 率地使用。例如,用於電子投影系統的收集光學器件並非 有效率地使用常用F/2t〇F/2.5接受設計角度以外的光。 現在參見圖7,一發光二極體封裝30包含一透明光學元 件32,其係與發光二極體組件12部分地光學接觸且與該發 光一極體組件部分地隔開以界定二者之間的一實質氣隙 34透明元件32具有一輸入表面32a及一輸出表面32b,該 輸入表面32a係:小於輸出表面32b ;小於該發光二極體組 件之發射表面12 a ;並且與該發射表面之一部分光學接觸 以界疋孔徑34。在此方面,該輸入表面係,,小,,於該輸出表 面,因為其具有較小的表面積,並且該輸出表面係相應地 121770.doc -32- 200807769 大於該輸入表面,因為其具有較大的表面積。光學元件32 與發射表面12a之間之形狀方面的差異會產生一氣隙%, 其在接觸區域(孔徑34)周圍形成一圖案化低折射率層。因 此可在孔搜34處藉由具有高亮度的透明元件32有效率地擷 取由该發光二極體組件產生的光。光學元件32及本文揭示 的其他光學元件可在接觸點處藉由任何適當構件與該發光 二極體組件接合,或其可加以保持在適當位置而不與該發 光二極體組件之發射表面接合。關於發光二極體封裝中的 非接合光學元件之另外的說明可在共同冑渡的冑國專利申 請公告案US 2006/0091784 (Connor等人)中找到,該公告 案之名稱為”具有非接合光學元件之發光二極體封裝,,,其 係全部以引用的方式併入本文中。如以上說明,藉由插入 其折射率係在發光二極體組件12與透明元件32的折射率之 間的一材料層,可以減小由發光二極體之發射表面i2a發 射至孔徑34上之光學元件32中的光之角度的範圍。 用於減小所收集的光之角度的範圍或用於(至少部分地) 杈準所收集的光之另一方法係使用一透明元件,其具有一 或多個錐形側壁,如s _ ,. 如圖8所不。此處,發光二極體封裝40 係類似於發光二極體封裝3〇,但是光學元件42替代光學元 件32 το件42具有一輸入表面42&及一輸出表面,該輸 入表面42a係·小於輸出表面心;小於該發光二極體組件 之t射表面12a,並且與該發射表面之—部分光學接觸以 界定孔徑44。光學元件42與發射表面⑴之間之形狀方面 、、- έ產生氣隙46,其在接觸區域(孔徑44)周圍形成 121770.doc -33- 200807769 一圖案化低折射率層。此外,光學元件42包含錐形側表面 42d ’其係反射的以便校準從該發光二極體組件進入 輸入表面42a的高度傾斜光之某些光。可藉由支援tir的低 折射率媒介或藉由施加反射材料(例如金屬層或干涉反射 裔或其組合)而提供側表面42c、42d之反射率。 透過流體、熱束缚無機玻璃、塑膠無機玻璃,或藉由為 4务光一極體組件之該發射表面提供光學光滑處理層(表The shape of the aperture 20 defined by the substantial lack of the low refractive index layer 18 can be circular, rectangular, square, or polygonal or non-polygonal or more complex or regular or irregular. Multiple apertures are also contemplated, as explained in more detail below. The aperture shape is typically chosen to function as an intended application and can be modified to optimize overall system performance. It is also contemplated to pattern the surface of the aperture with a continuous or discontinuous pattern or network of low refractive index coated regions, or to provide a thickness or index of refraction or a gradient in both for the low refractive index layer to modify the surface of the aperture. The distribution of the light output on it. The aperture may also cover the entire top emitting surface 12a, wherein at least a portion of the side surface 12c is covered with a low refractive index layer. Referring to Figure 6, a light emitting diode package 10a similar to the light emitting diode package 10 is shown, but wherein the low refractive index layer 18 has been modified by a network comprising a low refractive index coated region within the central aperture. The modified low refractive index layer is thus identified as 18a and the modified central aperture is identified as 2〇a. The other components retain the reference numbers used in Figure 5. As shown, the network of regions of low refractive index can be placed in a pattern that is relatively dense near the edge of the aperture, so that the transmission system is relatively low in this region. The ability to trim the transmission through the aperture can be used for high brightness LEDs where system design requires specific spatial uniformity or output distribution. Such a configuration of low refractive index media within a bore is equally applicable to other disclosed embodiments including, but not limited to, the specific embodiments of Figures 7, 8 and 10-12. The aperture may be coated with a low refractive index material having a different thickness or a different refractive index relative to the low refractive index material of the aperture (referred to as "peripheral low refractive index material'') both. Such a design $activity can be used to modify the angular distribution of light emitted by the packaged light emitting diode, for example, by coating a material having a refractive index between the refractive index of the optical element 16 and the surrounding low refractive index material. 2〇a will limit the range of angles of light emitted by the aperture. This will allow light that is typically emitted at a large angle to be recirculated within the light-emitting diode assembly and increase the output of light over a range of angles that can be used more efficiently by the associated optical system. For example, collection optics for electronic projection systems do not efficiently use light other than the design angle of the conventional F/2t〇F/2.5. Referring now to Figure 7, a light emitting diode package 30 includes a transparent optical component 32 that is in partial optical contact with the light emitting diode assembly 12 and is partially spaced from the light emitting diode assembly to define therebetween. a substantial air gap 34 transparent element 32 has an input surface 32a and an output surface 32b, the input surface 32a being smaller than the output surface 32b; smaller than the emitting surface 12a of the LED assembly; and the emitting surface A portion of the optical contact is to define the aperture 34. In this aspect, the input surface is, small, on the output surface because it has a smaller surface area, and the output surface is correspondingly 121770.doc -32-200807769 larger than the input surface because it has a larger Surface area. The difference in shape between the optical element 32 and the emitting surface 12a creates an air gap % which forms a patterned low refractive index layer around the contact area (aperture 34). Therefore, the light generated by the light-emitting diode assembly can be efficiently extracted by the transparent member 32 having high luminance at the hole search 34. Optical element 32 and other optical elements disclosed herein can be joined to the light emitting diode assembly at any point of contact by any suitable means, or can be held in place without engaging the emitting surface of the light emitting diode assembly . A further description of a non-bonding optical component in a light-emitting diode package can be found in the co-pending patent application publication US 2006/0091784 (Connor et al.), which is entitled "Non-joined" Light-emitting diode packages for optical components, all of which are incorporated herein by reference. As explained above, by inserting their refractive index between the refractive index of the light-emitting diode assembly 12 and the transparent element 32 a layer of material that reduces the range of angles of light emitted by the emitting surface i2a of the light emitting diode into the optical element 32 on the aperture 34. A range for reducing the angle of the collected light or for Another method of at least partially aligning the collected light is to use a transparent element having one or more tapered sidewalls, such as s _ , as shown in Figure 8. Here, the LED package 40 Similar to the light-emitting diode package 3, but the optical element 42 replaces the optical element 32. The member 42 has an input surface 42& and an output surface, the input surface 42a is smaller than the output surface; less than the light-emitting diode Component The surface 12a is exposed and partially optically contacted with the emitting surface to define an aperture 44. In terms of the shape between the optical element 42 and the emitting surface (1), - an air gap 46 is created, which is around the contact area (aperture 44) Forming a patterned low refractive index layer 121770.doc -33 - 200807769. Further, the optical element 42 includes a tapered side surface 42d' that is reflective to align the highly oblique light entering the input surface 42a from the light emitting diode assembly Certain light may provide reflectivity of the side surfaces 42c, 42d by supporting a low refractive index medium of tir or by applying a reflective material such as a metal layer or an interference reflector or a combination thereof. , plastic inorganic glass, or by providing an optically smooth treatment layer to the emitting surface of the 4th optical component

面糙度RA小於約50 nm,較佳小於約2〇打⑷並接著將表面 保持為彼此接近,光學元件42可與該發光二極體組件之發 光表面光學接觸。此外,光學元件42可以係複合結構,其 中使包括表面42a、42e、42d的下錐形部分與包括表面心 的上透鏡$ 分分離製造,而且:個部分藉由傳統構件加 以黏者或另外接合在—起。提供虛線以更清楚地顯示二個 部分。以下提供複合光學元件、設計考量以及相關聯的利 益之更多說明。 將-換型用於決定利用圖案化低折射率層的封裝式發光 二極體以及與輸出孔徑搞合的錐形光學it件之亮度方㈣ 可此增加。採用碳化矽之材料特性(折射率為1 η)模製一 發光二極體晶粒,其具有一發射區域、一吸收區域、以及 斜邊緣小平面以便表示—典型發光:㈣晶粒 為。-倒轉截金字塔形錐形光學元件係與該發光二極體曰 粒之心、平面或發射表面光學耦合1光學元件之材料= I·生係妷化矽之材料特性。如從該光學元件之輸入及輪出表 面觀看-樣’從前面看’該發光二極體晶粒具有—正方形 121770.doc -34· 200807769 形狀。該模型進一步將該光學元件之該輸出表面與具有 BK7玻璃之材料特性的一半球透鏡耦合,其中該透鏡的直 徑係十倍於該正方形發光二極體晶粒之發射表面的寬度, 並且該透鏡的曲率半徑係五倍於該發光二極體晶粒之發射 表面的寬度。該光學元件之該輸入表面的大小係以增量方 式從100%的該發光二極體晶粒之發射面積改變為4%,同 時保持該光學元件之高度的縱橫比為22倍於該光學元件 之該輸出表面之寬度,並且保持該輸出表面之寬度為2倍 於4輸入表面之寬度。因為該光學元件之大小變為小於該 發光二極體晶粒之發射表面之大小,所以折射率為丨的媒 "係假疋用於覆蓋该光學元件輸入表面外面的該發光二極 體aa粒之發射表面之部分,從而形成一低折射率圖案化 層,其採用對該光學元件輸入表面的補充方式覆蓋該發光 一極體晶粒之發射表面。計算由該光學元件發射的部分功 率(表示該發光二極體封裝之相對光輸出)以及由該光學元 件之輸出表面發射的相對輻射量(流明/(cm2sr)(表示該發光 二極體封裝之相對亮度)。圖9以一般方式描述所觀察到的 趨勢。曲線50係發射的相對部分功率;曲線52係相對輻射 里。結果確定,隨著孔徑大小的減小,從該封裝獲得較少 的總光輸出,但是亮度(較小孔徑中)可以明顯地增加。 利用一發光二極體組件的光源構造期望類似於該模型的 結果,該組件即與一再發射之半導體構造組合的一發光二 極體晶津立,例士口#中該#發射之半導體構造係佈置在該發 光一極體晶粒頂上,並且該光學元件(例如擷取器)係佈置 121770.doc -35- 200807769 在與該發光二極體組件之該發射表面光學耦合的該再發射 之半導體構造頂上。 所揭示的具體實施例之該圖案化低折射率層可以包括一 間隙或施加於該發光二極體組件的低折射率材料之一塗 層。用於採用低折射率材料或將形成一干涉反射器的個別 層而塗布該發光二極體組件的適當方法(使用液體)包含旋 塗、噴塗、浸塗以及將塗層分配於該發光二極體組件上。The face roughness RA is less than about 50 nm, preferably less than about 2 baht (4) and then the surfaces are held in close proximity to one another, and the optical element 42 can be in optical contact with the light emitting surface of the light emitting diode assembly. Further, the optical member 42 may be a composite structure in which a lower tapered portion including the surfaces 42a, 42e, 42d is separated from an upper lens including a surface core, and the portions are adhered or otherwise joined by a conventional member. At the beginning. Dotted lines are provided to show the two parts more clearly. Further descriptions of composite optics, design considerations, and associated benefits are provided below. The use of the -change type for determining the brightness of the packaged light-emitting diode using the patterned low-refractive-index layer and the tapered optical element of the output aperture can be increased. A light-emitting diode grain having an emission region, an absorption region, and a beveled edge facet is formed by using the material property of the tantalum carbide (refractive index of 1 η) to represent - typical luminescence: (iv) grain. - Inverted pyramidal cone-shaped optical element is optically coupled to the center, plane or emitting surface of the luminescent particle, the material of the optical element, and the material properties of the I. The light-emitting diode dies have a shape of - square 121770.doc - 34 · 200807769 as viewed from the input and the wheeled surface of the optical element. The model further couples the output surface of the optical element to a hemispherical lens having material properties of BK7 glass, wherein the diameter of the lens is ten times the width of the emitting surface of the square light emitting diode die, and the lens The radius of curvature is five times the width of the emitting surface of the light-emitting diode die. The size of the input surface of the optical element is incrementally changed from 100% of the emission area of the light-emitting diode die to 4% while maintaining the aspect ratio of the height of the optical element 22 times that of the optical element The width of the output surface is maintained and the width of the output surface is maintained twice the width of the 4-input surface. Since the size of the optical element becomes smaller than the size of the emitting surface of the light-emitting diode die, the medium having a refractive index of 丨 is used to cover the light-emitting diode aa outside the input surface of the optical element. A portion of the surface of the particle emitting surface to form a low index patterning layer that covers the emitting surface of the light emitting body die in a complementary manner to the input surface of the optical element. Calculating a portion of the power emitted by the optical component (representing the relative light output of the LED package) and the amount of relative radiation emitted by the output surface of the optical component (lumens / (cm2sr) (representing the LED package) Relative brightness. Figure 9 depicts the observed trend in a general manner. Curve 50 is the relative power of the emission; curve 52 is the relative radiation. The result is determined that as the aperture size decreases, less is obtained from the package. Total light output, but brightness (in smaller apertures) can be significantly increased. Light source construction using a light-emitting diode assembly is expected to be similar to the results of the model, ie, a light-emitting diode combined with a re-emitting semiconductor construction体晶津立, 例士口# The semiconductor structure of the # emitted is arranged on top of the light-emitting one-pole crystal, and the optical element (for example, a picker) is arranged 121770.doc -35-200807769 The re-emitting semiconductor structure optically coupled to the emitting surface of the light emitting diode assembly. The patterned low refractive index layer of the disclosed embodiment may A coating comprising a gap or a low refractive index material applied to the light emitting diode assembly. A suitable method for coating the light emitting diode assembly with a low refractive index material or an individual layer that will form an interference reflector (Using liquid) comprises spin coating, spray coating, dip coating, and dispensing a coating onto the light emitting diode assembly.

液體塗層可由隨後得到固化的單體、溶劑、聚合物、無機 玻璃形成材料、溶膠凝膠以及氣凝膠組成。塗布自氣態的 低折射率材料之適當方法包含在該發光二極體組件上進行 化學汽相沉積或使蒸汽冷凝。該發光二極體組件亦可採用 低折射率材料藉由喷濺、汽相沉積或其他傳統物理汽相沉 積方法加以塗布。 可將該等塗層施加於處在晶圓級的大量發光二極體(切 ^ 或在晶圓得以切割之後但在安裝之前,在將該 备光一極體組件安裝於頭部或其他支撐物上之後,以及在 進仃與忒發光二極體組件的電連接之後施加該等塗層。亦 可在將一再發射之半導體構造晶圓與包含個別發光二極體 =一陣列的一發光二極體晶圓接合之後施加塗層。可以在 &加低折射率塗層之前或之後形成該孔徑。後塗層圖案化 方去之選擇可取決於所選擇的特定低折射率材料,及盆與 t導體處理的相容性。例如,-晶圓可採用光阻加以覆: 折射率淨展建立開口’其中需要孔徑’沉積-適當低 斤射革u,並接著使用適當溶劑執行剝除。或者,可在 121770.doc -36 - 200807769 整個晶圓或發光二極體組件上沉積低折射率材料,可以將 圖案化光阻層應用為光罩,並且使用適當的技術 (例如反應離子㈣)移除低折射率材料。纽層可視命要 地採用適當溶劑加以剝離。用於圖案化低折射率材二 他技術包含雷射燒㈣陰影輕,其可尤其用於在典型光 微影剝離或顯影溶液中可溶解的材料。用於剝除低黏著區 域之不合需要的塗層之適當方法包含首先施加一接合材料 並接著移除該接合材料,其中該接合材料能夠從該孔徑區 域移除塗層但允許周圍塗層保持完整。亦可圖案化低折射 率塗層以形成其中可以進行與該發光二極體組件的電連接 之區域。參見(例如)美國專利公告案us 2〇〇3/〇ιιΐ667 μ (Schuben),該公告案係以引用的方式併入本文中。 金屬反射層可藉由傳統程序進行施加,並㈣要進行圖 案化以^供一孔徑及適當的電絕緣。 現在轉向圖10,可以看出其中具有一發光二極體封裝 其利用錐形光學元件62以從發光二極體組件12輕合 光。如結合圖8之光學元件42所說明,光學元件62亦具有 複合構造’即其包括接合在一起的至少二個區段Μ、“。 該等區段具有輸入表面64a、66a,輸出表面㈣卜,以 及反射側表面64c、64d、66c、66d,如圖所示。元件以之 錐形侧表面採用非成像方式(至少部分地)再引導或校準自 緊密固定的發光二極體之發射表面12a的光。採用錐形元 件62及本文揭示的其他錐形元件,該等側表面不必係平面 的。其可以圓錐形的、彎曲的(包含拋物線的)或任何適當 121770.doc • 37 · 200807769 組合,此取決於預計的應用以及設計約束。所揭示的錐妒 疋件可以具有該技術中已知為CPC("複合"拋物線 / 的元件之形狀。 ° ) 在許多情形下希望使用高折射率材料形成光學錐形元件 以減少由輸入表面64a界定之孔徑上的發光二極體=發射 表面Ua上的反射,因此有效率地從發光二極體組件如 ^光,或從該組件擷取光。料望在許多情形下使用具有 咼熱導率及高熱穩定性的材料而製造光學元件。以此方 式,該光學元件不僅可以執行光學功能而且亦可以執行敎 管理功能。藉由將(例如)光學元件與一散熱片熱耗合,; 以取得另外的熱管理利益’此在共同讓渡的美國專利申請 公告案2006/0091414 (Ouderkirk等人)中更詳細地加以說 明,δ亥公告案之名稱為"具有前表面熱擷取器之發光二極 體封裝",其係全部以引用的方式併入本文中。 遺撼的係,在發光二極體發射波長情況下具有足夠高的 折射率(例如大於以、2.〇或甚至2.5),及/或具有大於〇2 慨睛的熱導率之透明材料趨向於製造成本較昂貴及/或 困難。既具有高折射率又且古+ 〃有阿熱導率的材料包含金剛 石、碳化石夕(SiC)以及藍寶石⑷2〇3)。此等無機材料係較 昂貴’實體上很硬’而且難以成形及抛光為光學級別處理 層。碳化石夕亦特定展現稱為細微管的一類缺陷,其可以導 致光的散射。碳化石夕亦具有導電性,且同樣地亦可提供電 接點或電路功能。若散射係限於該元件之輸人端附近的一 位置,則光學錐形元件内的散射係可以接受的。然而,製 121770.doc -38- 200807769 丄具:足夠長度的錐形元件以有效率地麵合自—發光二極 豆、、且之光將比較昂貴且消耗時間。在製造單件 元件中的另,係,材料…能相=:== ^ 使該發光:㈣組件個職與㈣形元件組裝 二二 =:'因’可能有利的係將該錐形元件分成 小製造成本Γ 段係採用不同光學材料製造,以減 第區&合乎需要地與該發光二極體 且係採用-第一光學材料心Μ 千九予接觸, $先予材科製造,該第-光學材料具有高折 、約等於該發射表面上的該發光二極體組件之折 ,率)、⑥熱導率、及/或高熱穩定性。在此方面,高熱穩 定性指具有約600°C或更高的分解溫度之材料。 一第二區段係與該第一區段接合並係採用一第二光學材 料製造,該第二光學材料可具有較低的材料成本且比該第 -光學材料更易於製造。該第二光學材料可具有相對於該 第一光學材料的較低折射率、較低熱導率或二者。例如, 該第二光學材料可以包括玻璃、聚合物、陶瓷、陶瓷奈米 粒子填充聚合物以及其他光學透明材料。適當的玻璃包含 包括鉛、锆、鈦以及鋇之氧化物的玻璃。該等玻璃可以採 用包含鈦酸鹽、鍅酸鹽以及錫酸鹽之化合物加以製造。適 當的陶瓷奈米粒子包含氧化錘、氧化鈦、氧化鋅以及硫化 辞〇 由一第三光學材料組成的一第三區段可與該第二區段接 合以進一步協助將該發光二極體之光與外部環境轉合。在 121770.doc -39- 200807769 一項具體實施例中’配置三個區段的折射率以便 npwn3,從而最小化與該錐形元件相關聯的總菲涅爾表 面反身于〇 超大透鏡元件(例如圖8所示的光學#件42之上部分)可 以有利地放置或形成於所揭示的簡單或複合錐形元件之輸 出端。抗反射塗布亦可加以提供在此類透鏡元件之表面及/ 或所揭示的光學元件(包含錐形或其他校準元件)之輸入及 輸出表面上。The liquid coating may be composed of a monomer, a solvent, a polymer, an inorganic glass forming material, a sol gel, and an aerogel which are subsequently cured. A suitable method of coating a low refractive index material from a gaseous state involves chemical vapor deposition or condensation of the vapor on the light emitting diode assembly. The light emitting diode assembly can also be coated with a low refractive index material by sputtering, vapor deposition or other conventional physical vapor deposition methods. The coatings can be applied to a plurality of light-emitting diodes at the wafer level (either after cutting or after the wafer is cut but before mounting, mounting the light-emitting one-pole assembly on the head or other support) After applying the coating, the coating is applied after the electrical connection between the germanium and the germanium LED assembly. The semiconductor wafer can be re-emitted and a light-emitting diode comprising an individual light-emitting diode = an array. The coating is applied after the wafer is bonded. The aperture can be formed before or after the low refractive index coating is applied. The choice of the post-coating pattern can depend on the particular low refractive index material selected, and the basin and The compatibility of the t-conductor treatment. For example, the wafer can be coated with a photoresist: the net refractive index is established by the opening 'which requires the pore size' deposition - the appropriate low-calorie leather u, and then the stripping is performed using a suitable solvent. A low refractive index material can be deposited on the entire wafer or LED assembly at 121770.doc -36 - 200807769. The patterned photoresist layer can be applied as a mask and transferred using appropriate techniques (eg reactive ions (4)). Low-refractive-index material. The layer can be peeled off with a suitable solvent. It is used to pattern low-refractive-index materials. The other technology includes laser-burning (4) light shading, which can be especially used in typical photolithographic stripping or developing solutions. Dissolvable material. A suitable method for stripping an undesirable coating of a low adhesion zone involves first applying a bonding material and then removing the bonding material, wherein the bonding material is capable of removing the coating from the aperture region but Allowing the surrounding coating to remain intact. The low refractive index coating can also be patterned to form areas in which electrical connection to the light emitting diode assembly can be made. See, for example, U.S. Patent Publication 2 2 3/〇ιιΐ667 μ (Schuben), which is incorporated herein by reference. The metal reflective layer can be applied by conventional procedures and (iv) patterned to provide an aperture and appropriate electrical insulation. Turning now to Figure 10 It can be seen that there is a light emitting diode package that utilizes a tapered optical element 62 to lightly mate light from the light emitting diode assembly 12. As explained in connection with optical element 42 of FIG. The optical element 62 also has a composite construction 'i.e., it includes at least two sections 接合," joined together. The sections have input surfaces 64a, 66a, an output surface (four), and reflective side surfaces 64c, 64d, 66c, 66d, as shown. The element has a tapered side surface that is non-imaged (at least partially) redirected or calibrated from the light of the closely-fixed emitting surface 12a of the light-emitting diode. The tapered element 62 is disclosed herein For other tapered elements, the side surfaces need not be planar. They may be conical, curved (including parabolic) or any suitable combination of 121770.doc • 37 · 200807769, depending on the intended application and design constraints. The disclosed cone element can have the shape of a component known in the art as CPC ("composite" parabola/. °) In many cases it is desirable to form an optically tapered element using a high refractive index material to reduce reflections on the light emitting diodes on the aperture defined by the input surface 64a = emission surface Ua, thus efficiently from the light emitting diode assembly Such as ^ light, or draw light from the component. It is expected that optical components will be fabricated using materials having thermal conductivity and high thermal stability in many cases. In this way, the optical component can perform not only optical functions but also 敎 management functions. By arranging, for example, an optical component with a heat sink, in order to obtain additional thermal management benefits, which is described in more detail in the commonly assigned U.S. Patent Application Publication No. 2006/0091414 (Ouderkirk et al.). The name of the AH Hai Announcement is "Light Emitting Diode Package with Front Surface Thermal Picker", which is incorporated herein by reference in its entirety. A system of remains having a sufficiently high refractive index (eg, greater than, 2., or even 2.5) at the emission wavelength of the light-emitting diode, and/or a transparent material having a thermal conductivity greater than 〇2 It is expensive and/or difficult to manufacture. Materials with both high refractive index and ancient + 阿 a thermal conductivity include diamond, carbon carbide (SiC) and sapphire (4) 2〇3). Such inorganic materials are relatively expensive & 'hard" and are difficult to form and polish into optical grade treatment layers. Carbonized carbide also specifically exhibits a type of defect known as a microtubule that can cause scattering of light. Carbonized carbide is also electrically conductive and can also provide electrical contact or circuit functionality. If the scattering is limited to a location near the input end of the component, the scattering within the optically tapered element is acceptable. However, the manufacture of 121770.doc -38-200807769 cookware: a tapered element of sufficient length to efficiently align with the light-emitting diode, and the light will be more expensive and time consuming. In the manufacture of a single-piece component, the system, the energy source can be: === ^ to make the luminescence: (4) assembly and (4) component assembly 22 =: 'Because' may be beneficial to divide the cone component into The small manufacturing cost is manufactured by using different optical materials to reduce the area & the desired light-emitting diode and the first optical material is used to make contact with the first optical material. The first optical material has a high fold, approximately equal to the fold of the light emitting diode component on the emitting surface, 6 thermal conductivity, and/or high thermal stability. In this regard, high heat stability refers to a material having a decomposition temperature of about 600 ° C or higher. A second section is joined to the first section and fabricated from a second optical material that can have a lower material cost and is easier to manufacture than the first optical material. The second optical material can have a lower index of refraction, a lower thermal conductivity, or both relative to the first optical material. For example, the second optical material can include glass, polymers, ceramics, ceramic nanoparticle-filled polymers, and other optically transparent materials. Suitable glasses include glasses including lead, zirconium, titanium, and antimony oxides. These glasses can be made using compounds containing titanates, silicates, and stannates. Suitable ceramic nanoparticles comprising an oxidizing hammer, titanium oxide, zinc oxide, and a vulcanized reed, a third segment of a third optical material engageable with the second segment to further assist in the light emitting diode Light is transferred to the external environment. In a specific embodiment, 121770.doc -39-200807769 'configures the refractive index of the three segments so that npwn3, thereby minimizing the total Fresnel surface associated with the tapered element against the 〇 super large lens element (eg The upper portion of the optical member 42 shown in Figure 8 can advantageously be placed or formed at the output of the disclosed simple or composite tapered member. Anti-reflective coatings can also be provided on the surface of such lens elements and/or on the input and output surfaces of the disclosed optical elements (including tapered or other calibration elements).

在一不範性配置中,該發光二極體晶粒可以包括〇.4 mm 厚sic薄板上的! mmxl mm GaN接面。錐形元件62之第一 區段64可由SiC組成。第二區段66可由LASF35,即具有 η 2.0的非吸收、非散射高折射率玻璃組成。可以按需要 k擇口亥等第-與第二區段之間的接面之寬度尺寸以及該第 一區奴之輸出尺寸以最佳化至折射率為丨〇的周圍環境之 總光輸出。該0.4 _厚SiC薄板之邊緣可漸縮成12度的負 斜率以完全阻止該發光m件之側表面上的光反射之 …杈式此斜率可按需要加以修剪,因為與標準封裝發 先二極體相比,該發光二極體接面及Sic薄板内的吸收及 月射將改夂整合模式結構。例如,可能希望使用正斜率 (其中發光二極體接面之寬度係小於Sic薄板之寬度)以便將 予拉式k吸收接面引導開。採用此方式,薄板可視 為該錐形元件之一部分。 广區段64可與-散熱片麵合,如先前所提到。第二區 可使用傳統接合技術與第—區段64接合。若使用一接 121770.doc 200807769 合材料,則其可以具有在所接合之二種光學材料之間的折 f率以便減少菲淫爾反射。其他有用接合技術包含半導體 晶圓接合技術中已知的晶圓接合技術。有用的半導體晶圓 接合技術包含以上說明的技術。 圖11所示的發光二極體封裝70利用一複合錐形元件72, 其中具有藉由錐形反射側壁與一較大輸出表面7讣連接的 -輸入:面74a之一第一區段74係封裝在一第二區段% 中,該第二區段亦具有一輸入表面76a(與輸出表面7似 延伸)及-更大輸出表面76b。使輸出表面⑽彎曲以為複 合元件72提供可用於進—步校準或聚焦的光學功率。區段 74之錐形侧表面係顯示為具有低折射率材料之—塗㈣, 其用於促進此類表面上的TIR。該材料較佳具有低於第— 區段74、第二區段76以及發光二極體組件12之折射率的 折射率。«塗層78亦可施加於發光二極體組件Η之未盘 區段74接觸的發射表面12a之部分,及/或側表面仏(參: 圖5)。在構造發光二極體封裝7〇中,第一區段74可鄉射 表面12a之所需孔徑區接合(或簡單地放置於其上),並:封 裝材料的先驅物液體可採用足夠的數量進行計量以封裝該 發光二極體組件及該第-區段,’然後固化該先驅物材料Z 形成完成的第二區段76。適用於此目的之材料包含傳統封 裝配方,例如讀脂或環氧樹脂材料。該封I亦可包含 過塗層78與第-區段76之侧耦合的-散熱片。即使在沒有 此類散熱片的情況下’使用具有高熱導率的錐形元件:第 一區段仍可以將大量熱質量加入該發光二極體組件,從而 121770.doc -41- 200807769 至少為使用調變驅動電流的脈衝式運轉提供某些利益。 藉由傳統構件,例如藉由個別地製造錐形組件、將第一 片斷與該發光二極體組件接合、並接著添加連續片斷,可 以製造本文揭示的簡單錐形元件及複合錐形元件。或者, 可以使用精確的研磨技術來製造簡單及複合錐形元件,該 等技術係揭示在共同讓渡的美國專利申請公告案 2006/0094340 (〇uderkirk等人)中,該公告案之名稱為"光 學及半導體元件之製程";以及美國專利申請公告案 2006/0094322 (Ouderkirk等人)中,該公告案之名稱為,,發 光陣列之製程”,二者係全部以引用的方式併入本文中。 簡言之,製備一工件,其包含所需光學材料之一或多個 層。該工件可以採用較大袼式,例如晶圓或纖維片斷。接 著一精確圖案化研磨劑開始與該工件接觸以便在該工件中 研磨通道。當研磨結束時,該等通道界定多個突出部分, 其可以採用簡單或複合錐形元件的形式。該等錐形元件可 從該工件個別地加以移除並且每次一個地與分離之發光二 極體組件接合,或者錐形元件之一陣列可以方便地與發光 二極體組件之一陣列接合。 此外’光學元件(例如擷取器)可使用於在2〇〇6年5月3曰 申請之共同讓渡的美國專利申請案11/381,512(律師訴訟號 為62114US002)中說明的技術加以製造,並且可以使用於 在2006年5月3日申請之共同讓渡的美國專利申請案第 11/3 81,518號(律師訴訟號為61216US002)中揭示的高折射 率材料加以製造,該二個待審申請案係以引用的方式併入 121770.doc -42- 200807769 本文中。 當使用其輸人表面係小於該發光二極體組件之該發射表 面的光學麵合元件時,可以考量將多個此類元件與同一發 射表面之不同部分耦合。 有利的係’此類方法可以用於藉由簡單地採用複數個較 J兀件替代-單-光學錐形元件而減少從該發光二極體組 :輕合給定數量之光所必需的光學材料之數量。當處理昂 貴且難以操作的材料(例如金剛石、Sic以及藍寶石)時,材 料使用方面的差異可能尤其重要。例如,冑用較小光學錐 形元件之一 2x2陣列替代一單一光學錐形元件可以減小高 折射率(第一)光學材料之需要的厚度達2以上的因數,並且 一 3x3陣列可以減小需要的厚度達3以上的因數。奇怪的 是,即使光可能未從該等光學元件的輸入表面之間之適當 位置處的該光發二極體得以有效率地發射,模型化顯示此 方法將具有很高的淨擷取效率。 使用多個光學耦合元件(例如錐形元件)之另一優點係, 在該等元件之間形成可用於各種目的之間隙或空間。例 如,可以採用鬲折射率流體、金屬熱導體、電導體、熱傳 輸流體以及其組合來填充該等間隙或空間。 對一發光二極體封裝執行模型化,在該封裝中該發光二 極體晶粒係由Sic及一吸收層構造,該吸收層得以調整以 便在該發光二極體晶粒内產生之30%的光在浸沒於丨·52折 射率媒介中時係從該發光二極體發射。此表示典型的發光 二極體裝置。該模型使用與該發光二極體之發射表面耦合 121770.doc -43· 200807769 的光予錐形70件之3x3陣列,如圖12之發光二極體封裝8〇 斤示圖中所不的發光二極體晶粒12'具有斜側表面12c,及 刖赉射表面12a,,三個光學錐形元件82、84、86係顯示為 分別在其輸入表面82a、84a、8以上與該前射表面耦合。 應注意在較小光學元件之間形成的空間或間隙83、85。輪 出表面82b、84b、86b與具有輸出表面湯的較大光學錐形 元件88之輸人表面8㈣合。該模型亦錢—球形透鏡(圖 中未顯示其相對於錐形元件Μ係超大的,該透鏡之平 坦表面係附於輸出表面m,該透鏡係採用BK7破場 (η=1·52)製造。錐形元件88係模製為由以奶_約2)組 成。該模型因此評估用於較小錐形元 、、 以及用於包圍該發光二極體組件之考境二抖’ 心衣纟兄空間(包含間隙 83、85)的不同材料。 “ 模製的發光二極體封裝之計算的於 乐抑 才的輸出功率(例如以瓦牿 為皁位)係如下作為小錐形元件 、 %予材枓(該表中指定 ΠΑΠ)及環境材料(表πΐ中指定為”^。之_函數· …、 表III 材料 BK7 'ojoi ----- 0.537 ” A”光學 SiC 材料 LASF3T~ """""BK7~~In an unconventional configuration, the LED die can be included on a 〇.4 mm thick sic plate! Mmxl mm GaN junction. The first section 64 of the tapered element 62 can be comprised of SiC. The second section 66 can be comprised of LASF 35, a non-absorbent, non-scattering, high refractive index glass having η 2.0. The width dimension of the junction between the first and second sections, as well as the output size of the first zone slave, may be selected as needed to optimize the total light output to the surrounding environment of refractive index 丨〇. The edge of the 0.4 _ thick SiC thin plate can be tapered to a negative slope of 12 degrees to completely prevent light reflection on the side surface of the illuminating m piece... This slope can be trimmed as needed because it is the same as the standard package. Compared with the polar body, the absorption and the moonlight in the junction of the LED and the Sic sheet will change to the integrated mode structure. For example, it may be desirable to use a positive slope (where the width of the junction of the LEDs is less than the width of the Sic sheet) to direct the pre-k-absorption junction. In this way, the sheet can be considered as part of the tapered element. The wide section 64 can be combined with a heat sink as previously mentioned. The second zone can be joined to the first section 64 using conventional joining techniques. If a material of 121770.doc 200807769 is used, it can have a fold rate between the two optical materials joined to reduce the phenanthrene reflex. Other useful bonding techniques include wafer bonding techniques known in semiconductor wafer bonding technology. Useful semiconductor wafer bonding techniques include the techniques described above. The LED package 70 shown in Figure 11 utilizes a composite tapered element 72 having a first input 74 of one of the faces 74a connected by a tapered reflective sidewall to a larger output surface 7A. The package is packaged in a second section %, which also has an input surface 76a (extending like the output surface 7) and a larger output surface 76b. The output surface (10) is curved to provide the composite element 72 with optical power that can be used for further calibration or focusing. The tapered side surface of section 74 is shown as a coating (4) having a low refractive index material that is used to promote TIR on such surfaces. The material preferably has a refractive index lower than that of the first segment 74, the second segment 76, and the light emitting diode assembly 12. The coating 78 can also be applied to portions of the emitting surface 12a that are in contact with the unlit portion 74 of the light-emitting diode assembly, and/or side surfaces (see Figure 5). In the construction of the light-emitting diode package 7, the first section 74 can be joined (or simply placed thereon) to the desired aperture area of the surface 12a, and the precursor liquid of the encapsulating material can be used in a sufficient amount. Metering is performed to encapsulate the light emitting diode assembly and the first segment, and then the precursor material Z is cured to form a completed second segment 76. Materials suitable for this purpose include conventional sealers such as grease or epoxy materials. The seal I may also include a heat sink that is coupled to the side of the first section 76 by the coating 78. Even in the absence of such a heat sink, 'using a tapered element with high thermal conductivity: the first section can still add a large amount of thermal mass to the light-emitting diode component, thus 121770.doc -41- 200807769 at least for use The pulsed operation of the modulated drive current provides certain benefits. The simple tapered elements and composite tapered elements disclosed herein can be fabricated by conventional means, such as by separately fabricating a tapered assembly, joining a first segment to the light emitting diode assembly, and then adding a continuous segment. Alternatively, precise grinding techniques can be used to fabricate simple and composite tapered elements, which are disclosed in commonly assigned U.S. Patent Application Publication No. 2006/0094340 (〇uderkirk et al.), which is entitled " The process of optical and semiconductor components "; and the US Patent Application Publication No. 2006/0094322 (Ouderkirk et al.), the name of the publication is, the process of illuminating arrays, both of which are incorporated by reference. Briefly, a workpiece is prepared that contains one or more layers of the desired optical material. The workpiece can be of a larger size, such as a wafer or fiber segment. A precise patterning of the abrasive begins with the The workpiece contacts to grind the channels in the workpiece. When the polishing is complete, the channels define a plurality of projections, which may take the form of simple or compound tapered elements that can be individually removed from the workpiece And each time it is joined to a separate light-emitting diode assembly, or an array of tapered elements can be conveniently arranged with the array of light-emitting diode components In addition, the 'optical element (e.g., the picker) can be used in the U.S. Patent Application Serial No. 11/381,512 (Attorney Docket No. 62114 US 002), which is incorporated herein by reference. The technology is manufactured and can be used in the manufacture of high refractive index materials disclosed in U.S. Patent Application Serial No. 1 1/3 81,518 (Attorney Docket No. 61216 US 002) filed on May 3, 2006. The two copending applications are incorporated by reference herein in the entirety of the entire disclosure of the entire disclosure of the entire disclosure of the disclosure of Consideration is given to coupling a plurality of such elements to different portions of the same emitting surface. Advantageously, such a method can be used to reduce the illumination from the luminescence by simply replacing a single-optical tapered element with a plurality of J-shaped members. Diode group: The amount of optical material necessary to light a given amount of light. When dealing with expensive and difficult to handle materials such as diamond, Sic, and sapphire, differences in material usage may be especially For example, replacing a single optical tapered element with a 2x2 array of smaller optical tapered elements can reduce the required thickness of the high refractive index (first) optical material by a factor of 2 or more, and a 3x3 array can Reducing the required thickness by a factor of three or more. Surprisingly, even though the light may not be efficiently emitted from the appropriate position between the input surfaces of the optical elements, the model displays this The method will have a high net extraction efficiency. Another advantage of using multiple optical coupling elements (e.g., tapered elements) is that a gap or space can be formed between the elements for various purposes. For example, 鬲 can be used A refractive index fluid, a metallic thermal conductor, an electrical conductor, a heat transfer fluid, and combinations thereof, fill the gaps or spaces. Modeling a light-emitting diode package in which the light-emitting diode die is constructed of Sic and an absorber layer that is adjusted to produce 30% of the light-emitting diode die The light is emitted from the light-emitting diode when immersed in the 折射率·52 refractive index medium. This represents a typical light-emitting diode device. The model uses a light-conducting 70-piece 3x3 array coupled with the emitting surface of the light-emitting diode 121770.doc-43·200807769, as shown in the light-emitting diode package of FIG. The diode die 12' has a beveled surface 12c, and a diffractive surface 12a, and the three optically tapered elements 82, 84, 86 are shown as being above their input surfaces 82a, 84a, 8, respectively. Surface coupling. Attention should be paid to the spaces or gaps 83, 85 formed between the smaller optical elements. The take-up surfaces 82b, 84b, 86b merge with the input surface 8(4) of the larger optical cone element 88 having the output surface soup. The model is also a money-spherical lens (not shown in the figure is super-large with respect to the tapered element, the flat surface of the lens is attached to the output surface m, and the lens is manufactured by BK7 breaking field (η=1·52) The tapered element 88 is molded to consist of milk to about 2). The model therefore evaluates different materials for smaller cone elements, and for the surrounding environment of the light-emitting diode assembly (including gaps 83, 85). “The output power of the molded LED package is calculated as the soap level. For example, it is used as a small cone element, % pre-material (specified in the table) and environmental materials. (Table πΐ is specified as "^."_function·..., Table III Material BK7 'ojoi ----- 0.537 ” A” Optical SiC Material LASF3T~ """""BK7~~

Sic LASF35 真空 0.754 0.665 0.466 當此等數值係使用一單一Sic錐形元件、 3 = 3陣列而標準化為一系統之功率 代替較小元件之 (表IV): 1得下列結果 121770.doc -44- 200807769Sic LASF35 Vacuum 0.754 0.665 0.466 When these values were normalized to the power of one system using a single Sic cone element, 3 = 3 array instead of the smaller ones (Table IV): 1 The following results were obtained 121770.doc -44- 200807769

表IV 光學材料 SiC LASF35 ΒΚ7 直空 ”ΑΠ光學 材料 SiC 100% 99% 94% 92% LASF35 101% ^4%~ 85% 81% BK7 ---~_ ~~76% Γ 76% ------ 65% 57% 表IIIMV顯示—光學錐形元件不必在該發光二極體之發 射表面的整個區域上進行光學輕合以有效率地擷取光。該Table IV Optical Materials SiC LASF35 ΒΚ7 Straight-space "ΑΠ Optical Materials SiC 100% 99% 94% 92% LASF35 101% ^4%~ 85% 81% BK7 ---~_ ~~76% Γ 76% ---- -- 65% 57% Table III MV shows that the optical cone element does not have to be optically combined over the entire area of the emitting surface of the light emitting diode to efficiently extract light.

等表亦顯示小錐形元件之間的環境容積可以具有低折射率 而不引起擷取效率方面的實質減小。包括利用一發光二極 體及-再發射之半導體構造的—發光:極體組件之光源期 望類似的結果。 可以採用-材料填充環境容積以增加擷取效率。填充材 料可以係流體、有機或無機聚合物、無機粒子填充聚合 物、鹽或玻璃。適當的無機粒子包含氧化錄、氧化欽以及 硫化鋅。適當时錢體包含在該發光H運轉溫度 下及對由該發光二極體產生的光會穩定的任何有機流體。 在某些情況下,該流體應該亦具有低電導率及離子濃度。 適當的流體包含水、i化碳氫化合物以及芳香及雜環碳氫 化合物。填充材料亦可以用於將光學錐形元件與該發光二 極體組件接合。 該等光學元件之間的空間之至少一部分可以具有施加的 金屬以將電流分配給該發光二極體組件,<從該發光二極 體組件移除熱,或二者。因為金屬具有可測量的光吸收, 所以希望其能夠最小化吸收損失。此舉可藉由下列方式而 121770.doc -45· 200807769 完成:最小化該金屬與該發光二極體組件的接觸區域,並 藉由在該金屬與該發光二極體組件表面、該光學元件或二 者之間引入低折射率材料而減少與該金屬的光學搞合。例 如,可以採用由與一上金屬層進行電傳導的低折射率材料 所包圍的金屬接點之—陣列而圖案化該接觸區域。朱見 (例如)以上參考的,667 公告案。適當的低折射率 材料包含氣體或真空、碳氣化合物(例如可從明尼&㈣ 聖保羅市的3M公司購得之氟惰性物(fWinert))、水以 及碳氫化合物。該金屬可以延伸至包圍該光學元件的媒介 中’其中可以移除熱。 亦可在該等錐形元件之間提供流體以移除額外的熱。光 學錐形元件之陣列可以在正方形陣列(例如Μ、…等)、 矩形陣列(例如2x3、2x4等)或六邊形陣列中。冑別光學雜 形元件可以在其輸入或輸出表面上為正方形、矩形、三角 形、圓形或其他所需形狀的斷面。陣列可以在該發光二極 體的整個發射表面上延伸,或超出整個發射表面,或僅在 其-部分上延伸。採用低軟化溫度焊料玻璃、軟化無機塗 層(例如硫化鋅、高折射率产俨 〃㈣羊机體、聚合物、陶瓷填充聚合 勿)’或錯由提供具有很光滑且平坦之表面的光學元件及 體’以及將該發光二極體組件以機械方式保持在 :替予I 入表面上,可以將錐形元件附於該發光 一極體之發射表面。 圖描述具有多個光學元件 4及圖案化低折射率層 的另一發光二極體封裝9〇。圖案化低折射率層%包含如 121770.doc -46 - 200807769 S所示的一個孔徑,其上佈置與該發光二極體組件之發射 表面12a光學接觸的光學元件92、94。層%亦與發光二極 體組件之發射表面12a以及發光二極體組件之側表面12〇光 予接觸。發光二極體封裝90進一步包含顯示為在低折射率 層96之一部分頂上的一金屬接點98。儘管圖η中未顯示, 但是圖案化層96亦係圖案化在金屬接點98附近,並且金屬 接點98合乎需要地穿過層96中的孔以提供電接點給發光二 極體組件12。可以在該發光二極體組件上的另一位置處提 供一第二電接點,此取決於晶片設計。 可用於所揭示的光源之擷取器及其他光學元件可以具有 各種形狀、大小以及組態。例如,亦已發現收斂光學元件 可用於有效率從發光二極體組件擷取光並修改發射的光之 角度刀佈。此類封裝之該發光二極體組件可以係一發光二 極體/再發射之半導體構造組合,作為分離的元件或作為 半導體單7L,如以上或目前待審的美國專利申請案 11/009217或 USSN 1 1/009241 中所說明 引用的方式併入本文中。 該等申請案係以 4等光學7L件可以有效率地從發光二極體組件擷取光, 並修改發射的光之角度分佈。每一個光學元件係與發光二 極體組件(或發光二極體組件陣列)之該發射表面光學耦合 以有效率地擷取光並修改發射的光之發射圖案。包含光學 元件的發光二極體來源可用於各種應用,包含(例如)液: 顯示器中的背光或背光標記。 包括本文中說明的收斂光學元件之光源可適用於背光、 121770.doc -47- 200807769 邊緣發光以及直接發光構造。楔形光學元件係尤其適用於 邊緣發光背光,其中該光源係沿該背光之外部部分而佈 置。金字塔形或圓錐形收斂光學元件可尤其適用於直接發 光责光。此類光源可用作單一光源元件,或可加以配置在 一陣列中,此取決於特定背光設計。 對於直接發光背光而言,該等光源係一般佈置在一擴散 或鏡面反射器與可以包含稜鏡膜、擴散器以及反射偏光器 之一上膜堆疊之間。此等光源可用於朝觀看者引導從該光 源發射的光’其具有最有用範圍的視角且具有均勻亮度。 示範性稜鏡膜包含亮度增強膜,例如可從明尼蘇達州聖保 羅市的3M公司購得之beftm。示範性反射偏光器包含亦可 從明尼蘇達州聖保羅市的3M公司購得之DBEF™。對於邊 緣發光背光而言,可固定該光源以將光注入一中空或實心 光導中。該光導下面一般具有一反射器及一上職堆疊,如 以上說明。 圖14係說明依據一項具體實施例的一光源之示意側視 圖。該光源包括一光學元件99以及一發光二極體組件12。 光學70件99具有一三角形斷面,其有一基底120以及二個 收敛側140 ’其係接合成與基底120相對以形成一頂點 130 °該頂點可以係一點(如圖14中於13〇處所示),或可以 係純的,如在截三角形(由虛線135所示)中。一鈍頂點可以 係平坦的、圓的或其組合。該頂點係小於該基底且較佳常 駐於該基底上。在某些具體實施例中,該頂點只係該基底 大小的20%。較佳而言,該頂點只係該基底大小的1〇%。 121770.doc -48- 200807769 在圖14中,頂點13〇係處於基底120的中心上方。然而,亦 預期該頂點並非處於中心或偏離該基底之中心的具體實施 例。 光學元件99係與發光二極體組件12光學耦合(或光學接 觸)以擷取由發光二極體組件12發射的光。發光二極體組 件12之主要發射表面12a係實質上平行於且緊密接近於光 學元件99之基底120。發光二極體組件12及光學元件99可 採用若干方式加以光學耦合,該等方式包含接合或非接合 組態’其係在以下更詳細地說明。 光學元件99之收斂側i4〇a至i4〇b用於修改由發光二極體 組件12發射的光之發射圖案,如由圖14中的箭頭16(^至 160b所示。一典型裸發光二極體組件以第一發射圖案發射 光。通常而言,第一發射圖案一般係正向發射或具有實質 正向务射組件。一收斂光學元件(例如圖14中描述的光學 凡件99)將第一發射圖案修改成第二不同的發射圖案。例 如,楔形光學元件引導由該發光二極體組件發射的光以產 生/、一個瓣的一側發射圖案。圖丨4顯示由該發光二極體組 件發射且進入該基底上的光學元件99之示範性光線16(^至 16〇b。在形成與收斂侧M〇a的相對較低入射角之方向上發 射的一光線將在其離開光學元件2 〇之高折射率材料並進入 周圍媒;I (例如空氣)時得到折射。示範性光線1顯示以 關於垂直線的較小角度入射之一此類光線。以較大入射角 (;或專於界角之角)發射的不同光線將在其遇到的第 一收斂側(140a)上進行全内反射。然而,在一收斂光學元 121770.doc -49- 200807769 件(例如圖14所成明的收斂光學元件)中,反射的光線將隨 後以車乂小的人射角遇到第:收斂側(工杨),其中反射的光 線將付到折射且經允許離開該光學元件。—示範性光線 160b說明一此類光路徑。 、 -有至夕m斂側的_光學元件可以將—第—光發射 圖案修改成一第二不同的光發射圖案。例如,可以採用此 ^收斂光學tl件將_般正向發射光圖案修改成一第二一般 側^射光圖案。換言之,高折射率光學it件可經成形用以 引導由錢光—極體組件發射的光,以產生—側發射圖 案右4光¥疋件係旋轉式對稱的(例如成形為一圓錐 體):則所獲得的光發射圖案將具有一環形分佈,即發射 的光之強度將集中在該光學元件周圍的圓形圖案中。若 (例士)$干TL件係成形為楔形物(例#參見圖16),則側 毛射圖案將具有二個瓣,即光強度將集中在二個區中。在 對稱楔形物情況下’將二個敎位在該光學㈣之相對側 (相對區)上。對於具有複數個收敛側的光學元件而 θ ’側發射圖案將具有複數個對應瓣。例如,對於成形為 四側金字塔形物的一光學元件而言,所獲得的側發射圖案 將具有四個瓣。該側發射圖案可以係對稱或不對稱的。當 將該光學元件之頂點放置成與該基底或發射表面不對: 時’將產生-不對稱圖案。技術人士應瞭解用於產生 各種所需不同發射圖案的此類配置及形狀之各種改變。 在某些具體實施例中,該側發射圖案具有一強度分佈, 其有至少3G。的最大極角,如在強度線繪圖中所測量。在 121770.doc 200807769 其他具體實施例中 —丄 平’該側發射圖案具有處於至少30。之極 角中心的強度分你 师。目前揭示的光學元件亦可具有其他強 度分佈,包含「々丨上 J如)具有最大極角及/或處於45。及60。極角 中心的極角之強度分佈。 光予元件可以具有各種形式。每一個光學元件均具 有土底 頂點以及至少一個收斂側。該基底可以且有 任何形狀(例如正方形、圓开)、對稱或不對稱、規則:不 、)亥頂點可以係-點、-線或-表面(在鈍頂點的情 况下+管特定收斂形⑼’該頂點係在纟面積方面小於 該基底,因此該(等)侧從該基底朝該頂點收斂。一收斂光 學元件亦可成形為一金字塔形物、一圓錐體、一楔形物或 其組口。此等形狀之每一個亦在該頂點附近加以截去,從 而形成-鈍頂點。-收斂光學元件亦可以具有多面形狀, 其有一多邊基底以及至少二個收斂侧。例如,一金字塔形 物或楔形光學元件可以具有—矩形或正方形基底以及四個 側,其中該等側之至少二個係收斂側。其他側可以係平行 側,或者可以係發散或收斂的。該基底之形狀不必係對稱 的並且可加以成形為(例如)梯形、平行四邊形、四邊形或 其他多邊形。在其他具體實施例中,一收斂光學元件可以 具有一圓形、橢圓形或一不規則形但為連續的基底。在此 等具體實施例中,該光學元件可視為具有—單一收斂侧。 例如,具有一圓形基底的一光學元件可成形為一圓錐體。 一般而言,一收斂光學元件包括一基底、(至少部分地)常 駐於該基底上的一頂點、以及接合該頂點與該基底以完成 121770.doc -51 200807769 該立體的一或多個收斂側。 圖15a顯示成形為具有一基底220、一頂點230以及四個 側2 4 0之四側金子塔形物的一收敛光學元件2 〇 〇之一項具體 實施例。在此特定具體實施例中,基底22〇可以係矩形或 正方形的而且頂點230係處於該基底的中心上方(該頂點在 垂直於該基底之平面之一線2丨〇上的投影係處於基底22〇的 中心上方)。圖15a亦顯示發光二極體組件12,其具有接近 於且平行於光學元件2〇〇之基底22〇的發射表面12a。發光 二極體組件12及光學元件200係在該發射表面(基底介面)上 光學耦合。可以採用以下更詳細說明的若干方式達到光學 麵合。例如,可以將該發光二極體組件及該光學元件接合 在一起。在圖15a中,該發光二極體組件之該基底及該發 射表面係顯示為實質上在大小上匹配。在其他具體實施例 中’該基底可以係大於或小於該發光二極體組件之發射表 面0 圖15b顯示一收斂光學元件2〇2之另一具體實施例。此 處,光學元件202具有一六邊形基底222、一鈍頂點232以 及八個側242。該等側在該基底與該頂點之間延伸而且每 一個側朝頂點232收斂。頂點232係鈍的並且形成一表面, 其係亦成形為一六邊形,但小於該六邊形基底。 圖15c顯不具有二個收斂側244、一基底224以及一頂點 234的光學元件204之另一具體實施例。在圖15c中,該 光子兀件係成形為一楔形物並且頂點234形成一線。其他 一個側係顯示為平行側。從頂部觀看,光學元件2〇4係描 121770.doc -52- 200807769 述在圖17d中。 楔形光學元件之替代性具體實施例亦包含具有收斂及發 散侧之組合的形狀,例如圖16所示的光學元件2〇6。在圖 16之具體實施例中,楔形光學元件2〇6像一斧頭。二個發 散侧142用於校準由該發光二極體組件發射的光。二個收 斂側144在頂部處收斂,從而形成一頂點132,該頂點當從 該側觀看時係成形為常駐於該基底上方的一線(參見圖 14),但是當如圖16(或圖17e)所示觀看時具有延伸至超出 該基底的部分。收斂側144允許由該發光二極體組件12發 射的光得以再引導至該等側,如圖14所示。其他具體實施 例包含楔形’其中所有側均收傲,(例如)如圖17f所示。 該光學元件亦可成形為一圓錐體,其具有圓形或橢圓形 基底、(至少部分地)常駐於該基底上方的一頂點以及接合 δ亥基底與該頂點之一單一收斂侧。如在以上說明的金字拔 形及楔形中一樣,該頂點可以係一點、一線(直線或曲線) 或其可以係鈍的,從而形成一表面。 圖17a至17i顯示一光學元件之若干替代性具體實施例的 俯視圖。圖17a至17f顯示該頂點係處於該基底中心上方的 具體實施例。圖17g至17i顯示該頂點係偏斜或傾斜的而且 並非處於該基底中心上方的不對稱光學元件之且體實施 例。 圖17a顯示一金字塔形光學元件,其具有一正方形美 底、四個側以及處於該基底中心上方的一純頂點2 3 0 a 圖17h顯示一金字塔形光學元件,其具有一正方形基底、 121770.doc -53- 200807769 四個側以及偏離中心的一鈍頂點23〇h。圖17b顯示具有一 正方形基底及成形為一圓之一鈍頂點23〇b的一光學元件之 一具體實施例。在此情況下,該等收斂側係彎曲的,因此 δ玄正方形基底係與該圓形頂點接合。圖17 c顯示一金字塔 形光學元件,其具有一正方形基底、四個三角形側,該等 側在一點處收斂以形成一頂點230c,其係處於該基底中心 上方。圖17i顯示一金字塔形光學元件,其具有一正方形 基底、四個三角形側,該等側在一點處收斂以形成一頂點 23Οι ’其係在該基底上方偏斜(並非處於基底中心上方)。 圖17d至17g顯示楔形光學元件。在圖i7d中,頂點23〇d 形成一線’其常駐於該基底上方且處於該基底中心上方。 在圖17e中,頂點230e形成一線,其係處於該基底中心上 方且部分地常駐於該基底上方。頂點23 〇e亦具有延伸至超 出该基底的部分。圖17e中描述的俯視圖可以係圖16之透 視圖所示且在以上說明的光學元件之俯視圖。圖丨7f及圖 17g顯示具有形成一線的一頂點及四個收斂側的一楔形光 學元件之一項替代性具體實施例。在圖17f中,頂點23〇f係 處於該基底中心上方,而在圖17g中,頂點23〇g係偏斜 的。 圖18a至18c顯示依據替代性具體實施例的一光學元件之 側視圖。圖1 8a顯示一光學元件之一項具體實施例,該光 學元件具有一基底35〇以及側340與341,其在基底35〇上開 始並朝常駐於基底350上方之一頂點330收斂。可視需要 地,該等側可以朝一鈍頂點331收斂。圖18b顯示一光學元 121770.doc -54- 200807769 件之另一具體實施例,該光學元件具有一基底352、一收 斂側344以及垂直於該基底的一側342。二個側342及344形 成常駐於該基底之邊緣上方的一頂點332。可視需要地, 该頂點可以係一鈍頂點3 3 3。圖1 8 c顯示具有一般三角形斷 面的一替代性光學元件之一側視圖。此處,基底325及側 345與347—般形成一三角形,但是側345與347係非平面表 面。在圖18c中,該光學元件具有一彎曲左側345及一小平 面式右側(即,其係三個較小平坦部分347a至347c的組 合)。該等側可以係彎曲的、分段式、小平面式、凸起 的、凹進的或其組合。此類形式的側仍可用於類似於以上 說明的平面或平但側而修改所擷取的光之角度發射,但提 供最終光發射圖案之增加的客製化程度。 圖19a至19e描述光學元件420a至420e之替代性具體實施 例,該等光學元件具有分別在每一個基底422a至422e與頂 點43 0a至430e之間延伸的非平面側440a至440e。在圖i9a 中,光學元件420a具有側440a,其包括二個小平面式部分 441a及442a。基底422a附近的部分442a係垂直於基底 422a,而部分44 la朝頂點430a收斂。同樣地,在圖19b至 19c中,光學元件420b至420c具有側440b至440c,其係藉 由分別接合二個部分44 lb至441c及442b至442c而形成。在 圖19b中,收敛部分441b係凹進的。在圖19c中,收傲部分 441c係凸起的。圖19d顯示一光學元件420d,其具有藉由 接合部分4414及442(1而加以形成的二個側440(1。此處,基 底422d附近的部分442d朝鈍頂點430d收斂,並且最頂部部 121770.doc -55- 200807769 分441d係垂直於鈍頂點430d之表面。圖be顯示具有彎曲 側440e的一光學元件420e之一替代性具體實施例。此處, 側440e係S形的,但是一般朝鈍頂點43〇e收斂。當該等側 係採用二或更多個部分形成時,如圖工9a至【%所示,較佳 的係配置該等部分以便該側一般仍係收斂的,儘管其可以 具有非收斂部分。 較佳的係,該基底之大小係與該發射表面上的該發光二 極體組件之大小匹配。圖2〇a至20d顯示此類配置之示範性 具體實施例。在圖20a中,具有一圓形基底55〇a的一光學 元件係與具有一正方形發射表面57〇a的一發光二極體組件 光學耦合。此處,該基底及該發射表面係藉由具有圓形基 底550a之直徑’’d1’而匹配,該直徑係等於正方形發射表面 5 70&之對角線尺寸(亦為”(1”)。在圖2〇1)中,具有一六邊形 基底550b的一光學元件係與具有一正方形發射表面57〇b的 一發光二極體組件光學耦合。此處,六邊形基底55〇b之高 度nhn與正方形發射表面57〇b之高度”h”匹配。在圖2〇c中, 具有一矩形基底550c的一光學元件係與具有一正方形發射 表面570c的一發光二極體組件光學耦合。此處,該基底及 忒發射表面之寬度nw"係匹配的。在圖2〇d中,具有一正方 形基底550d的一光學元件係與具有一六邊形發射表面57〇d 的發光一極體組件光學耗合。此處,該基底及該發射表 面之高度”h”係匹配的。當然,其中該基底及該發射表面 得以相同地成形並具有相同的表面積之一簡單配置亦滿足 此準則。此處,該基底之表面積係與該發光二極體組件之 121770.doc •56- 200807769 表面而吕,具有1·4ΐ mm直徑的圓形基底將視為在大小上 匹配。亦可以使該基底之大小稍小於該發射表面之大小。 此舉可以在下列情況下具有優點··目標之一係最小化光源 之表觀大小’如在共同擁有的美國專利申請公告案 2006/0091411 (〇uderkirk等人)中所說明,該公告案之名稱 為"高亮度發光二極體封裝”。 圖2 1顯不一光源之另一具體實施例,該光源包括一收斂 光學7G件624,其係與配置在一陣列612中的複數個發光二 極體組件614a至14c光學耦合。當紅、綠及藍發光二極體 係在該陣列中組合以在混合的情況下產生白光時,此配置 可能尤其有用。在圖21中,光學元件624具有收斂側646以 將光再引導至該等側。光學元件624具有成形為一正方形 的一基底624,其係與發光二極體組件之陣列6丨2光學耦 合。發光二極體組件之陣列612亦形成一正方形形狀(具有 邊616)。 本文揭示的光學元件可以藉由傳統構件或藉由使用精確 的研磨技術加以製造,該等技術係揭示在下列專利中:共 同讓渡的美國專利申請公告案2006/0094340 (〇uderkirk等 人),其名稱為”光學及半導體元件之製程";美國專利申請 公告案2006/0094322 (Ouderkirk等人),其名稱為”光發射 陣列之製程”;以及美國專利申請案第11/288〇71號,其名 稱為”光學元件之陣列及其製造方法"(律師檔案號為 60914US002),於2005年11月22日提出申請。 所揭示的光學元件(特定包含擷取器)係透明的且較佳具 121770.doc -58- 200807769The table also shows that the environmental volume between the small tapered elements can have a low refractive index without causing a substantial reduction in extraction efficiency. Including the use of a light-emitting diode and a re-emitting semiconductor construction - illumination: the source of the polar body assembly is expected to have similar results. The environmental volume can be filled with - material to increase the efficiency of the extraction. The filler material can be a fluid, an organic or inorganic polymer, an inorganic particle filled polymer, a salt or a glass. Suitable inorganic particles include oxidized, oxidized, and zinc sulfide. Where appropriate, the body of money contains any organic fluid that is stable at the operating temperature of the luminescent H and that is stable to the light produced by the luminescent diode. In some cases, the fluid should also have low conductivity and ion concentration. Suitable fluids include water, i-hydrocarbons, and aromatic and heterocyclic hydrocarbons. A filler material can also be used to bond the optically tapered element to the light emitting diode assembly. At least a portion of the space between the optical elements can have an applied metal to distribute current to the light emitting diode assembly, < remove heat from the light emitting diode assembly, or both. Because metals have measurable light absorption, it is desirable to minimize absorption losses. This can be accomplished by the following method 121770.doc -45. 200807769: minimizing the contact area of the metal with the light emitting diode assembly, and by the metal and the surface of the light emitting diode assembly, the optical component Or introducing a low refractive index material between the two to reduce the optical fit with the metal. For example, the contact area can be patterned using an array of metal contacts surrounded by a low refractive index material that conducts electricity with an upper metal layer. Zhu Jian (for example) referenced above, the 667 announcement. Suitable low refractive index materials include gases or vacuum, carbon gas compounds (e.g., fluorine inerts (fWinert) available from Minni & (4) San Francisco, St. Paul), water, and hydrocarbons. The metal can extend into the medium surrounding the optical element 'where heat can be removed. Fluid may also be provided between the tapered elements to remove additional heat. The array of optically tapered elements can be in a square array (e.g., Μ, ..., etc.), a rectangular array (e.g., 2x3, 2x4, etc.) or a hexagonal array. Screening optical hybrid components can have square, rectangular, triangular, circular or other shapes of desired shape on their input or output surfaces. The array may extend over the entire emitting surface of the light emitting diode, or beyond the entire emitting surface, or only over portions thereof. Use low softening temperature solder glass, softening inorganic coating (such as zinc sulfide, high refractive index 俨〃 (4) sheep body, polymer, ceramic filling polymerization) or faulty to provide optical components with a very smooth and flat surface And the body 'and mechanically holding the light-emitting diode assembly on the surface of the I-input, the tapered element can be attached to the emitting surface of the light-emitting body. The figure depicts another light emitting diode package 9A having a plurality of optical elements 4 and a patterned low refractive index layer. The patterned low refractive index layer % comprises an aperture as shown in 121770.doc - 46 - 200807769 S, on which optical elements 92, 94 are placed in optical contact with the emitting surface 12a of the light emitting diode assembly. The layer % is also in contact with the emitting surface 12a of the light emitting diode assembly and the side surface 12 of the light emitting diode assembly. The light emitting diode package 90 further includes a metal contact 98 shown as being over a portion of the low refractive index layer 96. Although not shown in FIG. 7, patterned layer 96 is also patterned adjacent metal contacts 98, and metal contacts 98 desirably pass through holes in layer 96 to provide electrical contacts to light emitting diode assembly 12. . A second electrical contact can be provided at another location on the LED assembly, depending on the wafer design. The pickers and other optical components that can be used with the disclosed light sources can have a variety of shapes, sizes, and configurations. For example, converging optical elements have also been found to be useful for angled knives that efficiently extract light from the illuminating diode assembly and modify the emitted light. The light-emitting diode assembly of such a package may be a combination of a light-emitting diode/re-emissive semiconductor construction, as a separate component or as a semiconductor single 7L, as described in the above or currently pending US patent application 11/009217 or The manners cited in USSN 1 1/009241 are incorporated herein by reference. These applications are capable of efficiently extracting light from the light-emitting diode assembly with a 4 optical 7L piece and modifying the angular distribution of the emitted light. Each of the optical components is optically coupled to the emitting surface of the light emitting diode assembly (or array of light emitting diode components) to efficiently extract light and modify the emission pattern of the emitted light. Sources of light-emitting diodes containing optical components can be used in a variety of applications, including, for example, liquid: backlights or backlight marks in displays. Light sources including the converging optical elements described herein are suitable for use in backlights, 121770.doc-47-200807769 edge illumination, and direct illumination construction. Wedge optics are particularly useful for edge-lit backlights where the source is disposed along an outer portion of the backlight. Pyramidal or conical converging optical elements are particularly suitable for direct illumination. Such light sources can be used as a single light source component or can be configured in an array depending on the particular backlight design. For direct illumination backlights, the light sources are typically disposed between a diffused or specular reflector and a stack of films that may include a ruthenium film, a diffuser, and a reflective polarizer. These light sources can be used to direct the light emitted from the light source towards the viewer, which has the most useful range of viewing angles and has uniform brightness. Exemplary enamel films include brightness enhancement films such as beftm available from 3M Company, St. Paul, Minnesota. Exemplary reflective polarizers include DBEFTM, also available from 3M Company, St. Paul, Minnesota. For edge-lit backlights, the source can be fixed to inject light into a hollow or solid light guide. The light guide generally has a reflector and a top stack below, as explained above. Figure 14 is a schematic side elevational view of a light source in accordance with an embodiment. The light source includes an optical component 99 and a light emitting diode assembly 12. The optical 70 member 99 has a triangular cross section having a base 120 and two converging sides 140' that are joined to oppose the base 120 to form a apex 130. The apex can be tied a little (as shown in Fig. 14 at 13 〇 Show), or may be pure, as in a truncated triangle (shown by dashed line 135). A blunt vertex can be flat, round, or a combination thereof. The apex is smaller than the substrate and preferably resides on the substrate. In some embodiments, the apex is only 20% of the size of the substrate. Preferably, the apex is only 1% of the size of the substrate. 121770.doc -48- 200807769 In FIG. 14, the apex 13 is above the center of the substrate 120. However, it is also contemplated that the apex is not centered or deviated from the center of the substrate. Optical element 99 is optically coupled (or optically contacted) to light emitting diode assembly 12 to capture light emitted by light emitting diode assembly 12. The primary emitting surface 12a of the LED assembly 12 is substantially parallel to and in close proximity to the substrate 120 of the optical component 99. Light-emitting diode assembly 12 and optical element 99 can be optically coupled in a number of ways, including bonded or non-joined configurations, which are described in greater detail below. The convergence sides i4〇a to i4〇b of the optical element 99 are used to modify the emission pattern of the light emitted by the LED assembly 12, as indicated by arrows 16 (^ to 160b in Fig. 14). A typical bare illumination II The polar body assembly emits light in a first emission pattern. In general, the first emission pattern is generally forward-emitting or has a substantially forward-going component. A converging optical element (such as optical component 99 depicted in Figure 14) will The first emission pattern is modified to a second different emission pattern. For example, the wedge-shaped optical element directs light emitted by the light-emitting diode assembly to produce /, a side emission pattern of one of the petals. Figure 4 shows the light-emitting diode An exemplary ray 16 (^ to 16 〇b) of the optical element 99 emitted by the body assembly and entering the substrate. A ray emitted in a direction that forms a relatively low angle of incidence with the convergence side M〇a will exit the optics Element 2 高 high refractive index material and enters the surrounding medium; I (such as air) is refracted. Exemplary ray 1 shows one of such rays incident at a smaller angle with respect to the vertical line. At a larger angle of incidence (; or Specialized in the corner of the corner The different rays will be totally internally reflected on the first convergence side (140a) they encounter. However, in a convergent optical element 121770.doc -49 - 200807769 (such as the converging optical element illustrated in Figure 14) The reflected light will then encounter the first angle of the person with the rut: the convergence side (worker Yang), where the reflected light will be refracted and allowed to leave the optical element. - Exemplary light 160b illustrates one such The light path can be modified to a second different light emission pattern. For example, the convergence light tl can be used to emit light. The pattern is modified into a second general side light-emitting pattern. In other words, the high-refractive-index optical element can be shaped to direct the light emitted by the money-polar body assembly to produce a side-emitting pattern of the right-side light-emitting unit. Symmetrical (for example, shaped as a cone): the resulting light-emitting pattern will have an annular distribution, ie the intensity of the emitted light will be concentrated in a circular pattern around the optical element. Dry TL parts For a wedge (example #see Figure 16), the side-hair pattern will have two lobes, ie the light intensity will be concentrated in two zones. In the case of a symmetrical wedge, the two 敎 positions in the optics (four) On the opposite side (opposing zone). For an optical element having a plurality of convergent sides, the θ ' side emission pattern will have a plurality of corresponding lobes. For example, for an optical component shaped as a four-sided pyramid, the obtained The side emission pattern will have four lobes. The side emission pattern may be symmetrical or asymmetrical. When the apex of the optical element is placed incorrectly with the substrate or emitting surface: 'will produce an asymmetrical pattern. Various changes to such configurations and shapes for producing various desired different emission patterns are known. In some embodiments, the side emission pattern has an intensity distribution that has at least 3G. The maximum polar angle, as measured in the intensity line plot. In other embodiments - 121770.doc 200807769 - the side emission pattern has at least 30. The intensity of the center of the pole is divided into your division. The optical elements disclosed so far may also have other intensity distributions, including "maximum polar angles" and/or intensity distributions of polar angles at the center of the polar angles of 45 and 60. The light-emitting elements may have various forms. Each optical element has a soil bottom vertex and at least one convergence side. The substrate can have any shape (eg square, rounded), symmetrical or asymmetrical, regular: no, and the apex can be a point-point, a line Or - surface (in the case of a blunt vertex + tube specific convergent shape (9) 'the vertex is smaller than the base in terms of the area of the crucible, so the (equal) side converges from the base towards the vertex. A convergent optical element can also be shaped as a pyramid, a cone, a wedge or a group of mouths. Each of these shapes is also truncated near the apex to form a blunt vertex. The converging optical element may also have a multi-faceted shape with a a polygonal base and at least two converging sides. For example, a pyramid or wedge optical element may have a rectangular or square base and four sides, wherein at least the sides The two sides are convergent sides. The other sides may be parallel sides or may be divergent or convergent. The shape of the base need not be symmetrical and may be shaped, for example, as a trapezoid, a parallelogram, a quadrangle or other polygons. In an embodiment, a converging optical element can have a circular, elliptical or irregular shape but a continuous substrate. In such embodiments, the optical element can be considered to have a single convergence side. For example, having a An optical component of the circular substrate can be formed as a cone. Generally, a converging optical component includes a substrate, an apex (at least partially) resident on the substrate, and the apex and the substrate are bonded to complete 121770 .doc -51 200807769 One or more convergence sides of the solid. Figure 15a shows a converging optical element 2 shaped to have a base 220, a vertex 230 and four sides of the four sides of the gold tower. A specific embodiment. In this particular embodiment, the substrate 22 can be rectangular or square and the apex 230 is at the center of the substrate. The projection (the projection of the apex on a line 2 垂直 perpendicular to the plane of the substrate is above the center of the substrate 22 )). Figure 15a also shows the light emitting diode assembly 12 having proximity and parallel to the optical element 2 The emitting surface 12a of the substrate 22 is formed. The light emitting diode assembly 12 and the optical element 200 are optically coupled on the emitting surface (substrate interface). The optical surface can be achieved in several ways as described in more detail below. For example, The light emitting diode assembly and the optical component can be bonded together. In Figure 15a, the substrate and the emitting surface of the light emitting diode assembly are shown to substantially match in size. In other embodiments 'The substrate may be larger or smaller than the emitting surface of the light emitting diode assembly. FIG. 15b shows another embodiment of a converging optical element 2〇2. Here, optical element 202 has a hexagonal base 222, a blunt vertex 232, and eight sides 242. The sides extend between the base and the apex and each side converges toward the apex 232. The apex 232 is blunt and forms a surface that is also shaped as a hexagon but smaller than the hexagonal substrate. Figure 15c shows another embodiment of optical element 204 having two converging sides 244, a base 224, and a vertex 234. In Figure 15c, the photonic element is shaped as a wedge and the apex 234 forms a line. The other side system is shown as a parallel side. Viewed from the top, the optical element 2 〇 4 is described in Figure 17d. Alternative embodiments of the wedge shaped optical element also include shapes having a combination of convergence and divergence sides, such as optical element 2〇6 shown in FIG. In the particular embodiment of Figure 16, the wedge shaped optical element 2〇6 is like an axe. Two diverging sides 142 are used to calibrate the light emitted by the light emitting diode assembly. The two converging sides 144 converge at the top to form a vertex 132 that, when viewed from the side, is shaped as a line that resides above the substrate (see Figure 14), but when as shown in Figure 16 (or Figure 17e) The portion shown extends to a portion that extends beyond the substrate. The convergence side 144 allows light emitted by the LED assembly 12 to be redirected to the sides, as shown in FIG. Other embodiments include a wedge shape in which all sides are proud, for example as shown in Figure 17f. The optical element can also be shaped as a cone having a circular or elliptical base, (at least partially) an apex that resides above the substrate, and a single converging side that joins one of the vertices and the apex. The vertices may be one point, one line (straight line or curved line) or they may be blunt as in the above description of the gold drawing and the wedge shape, thereby forming a surface. Figures 17a through 17i show top views of several alternative embodiments of an optical component. Figures 17a through 17f show a particular embodiment of the apex system above the center of the substrate. Figures 17g through 17i show an embodiment of the asymmetric optical element with the apex skewed or slanted and not above the center of the substrate. Figure 17a shows a pyramidal optical element having a square bottom, four sides and a pure apex 2 3 a above the center of the substrate. Figure 17h shows a pyramidal optical element having a square base, 121770. Doc -53- 200807769 Four sides and a blunt vertex 23〇h off center. Figure 17b shows a specific embodiment of an optical component having a square substrate and shaped as a blunt vertex 23〇b of a circle. In this case, the converging sides are curved so that the δ meta-square base is joined to the circular apex. Figure 17c shows a pyramidal optical element having a square base and four triangular sides that converge at a point to form a apex 230c that is above the center of the substrate. Figure 17i shows a pyramidal optical element having a square base, four triangular sides that converge at a point to form a vertex 23Οι' that is skewed above the substrate (not above the center of the substrate). Figures 17d to 17g show wedge shaped optical elements. In Figure i7d, the apex 23〇d forms a line 'which resides above the substrate and above the center of the substrate. In Figure 17e, apex 230e forms a line that is above the center of the substrate and partially resides above the substrate. The apex 23 〇e also has a portion that extends beyond the substrate. The top view depicted in Figure 17e can be a top view of the optical component shown in the perspective view of Figure 16 and described above. Figure 7f and Figure 17g show an alternative embodiment of a wedge-shaped optical component having a vertex forming one line and four converging sides. In Fig. 17f, the apex 23〇f is above the center of the substrate, and in Fig. 17g, the apex 23〇g is skewed. Figures 18a through 18c show side views of an optical component in accordance with an alternative embodiment. Figure 18a shows a specific embodiment of an optical component having a substrate 35〇 and sides 340 and 341 that begin on the substrate 35〇 and converge toward a vertex 330 that resides above one of the substrates 350. These sides may converge toward a blunt vertex 331 as needed. Figure 18b shows another embodiment of an optical element 121770.doc-54-200807769 having a substrate 352, a converging side 344, and a side 342 perpendicular to the substrate. The two sides 342 and 344 form a vertex 332 that resides above the edge of the substrate. Optionally, the vertex can be a blunt vertex 3 3 3 . Figure 1 8 c shows a side view of an alternative optical component having a generally triangular cross-section. Here, the base 325 and the sides 345 and 347 generally form a triangle, but the sides 345 and 347 are non-planar surfaces. In Figure 18c, the optical element has a curved left side 345 and a small planar right side (i.e., it is a combination of three smaller flat portions 347a through 347c). The sides may be curved, segmented, faceted, raised, recessed, or a combination thereof. Such forms of side can still be used to modify the angular emission of the extracted light, similar to the plane or flat side described above, but provide an increased degree of customization of the final light emission pattern. Figures 19a through 19e illustrate alternative embodiments of optical elements 420a through 420e having non-planar sides 440a through 440e extending between each of the substrates 422a through 422e and the top ends 43a through 430e, respectively. In Figure i9a, optical element 420a has a side 440a that includes two faceted portions 441a and 442a. Portion 442a near substrate 422a is perpendicular to substrate 422a, while portion 44la converges toward apex 430a. Similarly, in Figs. 19b to 19c, the optical elements 420b to 420c have sides 440b to 440c which are formed by joining the two portions 44b to 441c and 442b to 442c, respectively. In Fig. 19b, the converging portion 441b is recessed. In Fig. 19c, the arrogant portion 441c is convex. Figure 19d shows an optical element 420d having two sides 440 formed by the joint portions 4414 and 442 (1. Here, the portion 442d near the base 422d converges toward the blunt apex 430d, and the topmost portion 121770 .doc -55- 200807769 points 441d are perpendicular to the surface of the blunt apex 430d. Figure OB shows an alternative embodiment of an optical element 420e having a curved side 440e. Here, the side 440e is S-shaped, but generally The blunt apex 43 〇e converges. When the side systems are formed using two or more portions, as shown in Figures 9a to [%, it is preferred to configure the portions so that the side generally still converges, although It may have a non-convergent portion. Preferably, the size of the substrate matches the size of the light emitting diode assembly on the emitting surface. Figures 2A through 20d show exemplary embodiments of such a configuration. In Fig. 20a, an optical component having a circular substrate 55A is optically coupled to a light emitting diode assembly having a square emitting surface 57A. Here, the substrate and the emitting surface are provided by Diameter of the circular base 550a Matching 'd1', the diameter is equal to the diagonal dimension of the square emitting surface 5 70 & (also "(1"). In Figure 2A), an optical component having a hexagonal substrate 550b Optically coupled to a light emitting diode assembly having a square emitting surface 57〇b. Here, the height nhn of the hexagonal substrate 55〇b matches the height “h” of the square emitting surface 57〇b. In c, an optical component having a rectangular substrate 550c is optically coupled to a light emitting diode assembly having a square emitting surface 570c. Here, the width and width of the substrate and the emitting surface are matched. In 〇d, an optical component having a square substrate 550d is optically constrained to a light-emitting monopole assembly having a hexagonal emitting surface 57〇d. Here, the height of the substrate and the emitting surface is "h" Matching. Of course, a simple configuration in which the substrate and the emitting surface are identically shaped and have the same surface area also satisfies this criterion. Here, the surface area of the substrate is associated with the light emitting diode assembly 121770.doc • 56- 2 00807769 The surface of the circular base with a diameter of 1.4 mm is to be matched in size. It is also possible to make the size of the substrate slightly smaller than the size of the emitting surface. This can have advantages in the following cases. One is to minimize the apparent size of the light source as described in the commonly-owned U.S. Patent Application Publication No. 2006/0091411 (〇uderkirk et al.), which is entitled "High Brightness Light Emitting Diode Package" Another embodiment of a light source is shown in Fig. 2. The light source includes a converging optical 7G member 624 optically coupled to a plurality of light emitting diode assemblies 614a through 14c disposed in an array 612. This configuration may be particularly useful when red, green, and blue light emitting diodes are combined in the array to produce white light in the case of mixing. In Figure 21, optical element 624 has a converging side 646 to redirect light to the sides. Optical element 624 has a base 624 shaped as a square that is optically coupled to array 6丨2 of the light emitting diode assembly. The array 612 of light emitting diode assemblies also form a square shape (with sides 616). The optical elements disclosed herein may be fabricated by conventional means or by the use of precise grinding techniques, which are disclosed in the following patents: commonly assigned U.S. Patent Application Publication No. 2006/0094340 (〇uderkirk et al.), The name is "Processing of Optical and Semiconductor Components"; US Patent Application Publication No. 2006/0094322 (Ouderkirk et al.), entitled "Process of Light Emitting Array"; and U.S. Patent Application Serial No. 11/288,71 The name is "Array of Optical Components and Its Manufacturing Method" (Attorney's File No. 60914US002), filed on November 22, 2005. The disclosed optical component (specifically including the picker) is transparent and preferably has 121770.doc -58-200807769

:相對較高的折射率。光學元件之適當材料包含但不限於 ^機材料’例如南折射率玻璃(例如可從商標為Μ川的 紐約胞偏市首德北美公司購得之LASF35型首 德玻璃)以及陶兗(例如藍寶石、氧化鋅、氧化锆、金剛石 、反化Μ L寶石、氧化鋅、金剛石以及碳化石夕係尤 其有用,因為此等材料亦具有相對較高的熱導率(0.2至5.0 m Κ) ’亦預期回折射率聚合物或奈米粒子填充聚合 物。適當的聚合物可以係熱塑及熱固聚合物。熱塑聚合物 可以包含聚碳酸脂以及環烯烴共聚物。熱固聚合物可以係 ⑴+ 丙稀I ' %氧Μ脂、碎樹脂以及該技術中其他已知 的聚合物。適當的陶兗奈米粒子包含氧化錯、氧化欽、氧 化鋅以及硫化辞。 /光予元件的折射率(η。)係較佳類似於發光二極體組件 之黍射表面的折射率(ne)。較佳而言,二者之間的差異係 不大於0.2 (|nc)-ne4〇.2)〇可視需要地,該差異可以係大於 ,此取決於所用的材料。例如,該發射表面可以具有 1.75的折射率。適當的光學元件可以具有等於或大於丨乃 的折射率(ηβΐ.75)之折射率,包含(例如)n〇y 9, η。。」 以及11。22.3。可視需要地,11。可以低於1(例如11(^1.7)。較 佳而言,該光學元件的折射率係與主要發射表面的折射率 匹配。在某些具體實施例中,該光學元件及該發射表面之 折射率可以在數值上相同(nt)=ne)。例如,具有1=176的藍 寶石發射表面可與藍寶石光學元件匹配,或與具有〜=ΐ76 的SF4玻璃光學元件(可從商標為SF4的紐約Elmsf〇rd市的 121770.doc •59- 200807769 θ亥發射表面的表面積匹配。 同樣地,當一光學元件係與發光二極體組件之一陣列搞 合時’該發射表面側上的該陣列之大小較佳可與該光學元 件之該基底之大小匹。再次說明,料狀形狀不必與 該基底之形狀匹配,只要其在至少一個尺寸(例如直徑、 寬度、高度或表面積)上係匹配的。 或者,該發射表面上的該發光二極體組件之大小或該發 光二極體組件陣列之組合大小可以小於或大於該基底之^ 小。圖19a及19c顯示該發光二極體組件(分別為4i〇a及 4i〇c)之發射表面(分別為412a及412c)之大小係與該基底 (分別為422a及422c)之大小匹配的具體實施例。圖19b顯示 具有大於基底422b的一發射表面4丨2b之一發光二極體組件 41〇b。圖I9d顯示發光二極體組件之一陣列412d,該陣列 具有發射表面412d上的一組合大小,其係大於基底42^之 大小。圖19e顯示具有小於基底422e的一發射表面41以之 一發光二極體組件41 〇e。 例如,若遠發光二極體組件之發射表面係具有1瓜瓜側 的一正方形,則可以使該光學元件基底具有一匹配的正方 形,其具有1 mm側。或者,一正方形發射表面可與一矩形 基底光學耦合,該矩形使其側之一在大小上與該發射表面 側之大小匹配。該矩形之非匹配側可以大於或小於該正方 形之側。可視需要地,可以使一光學元件具有一圓形基 底’其具有等於該發射表面之對角線尺寸的一直徑。例 如’基於此申請案之目的’對於1 mmx 1 mm的正方形發射 121770.doc -57- 200807769 首德北美公司構得)匹配。在其他具體實施例巾,該光學 元:之折射率可以高於或低於該發射表面之折射率。當: 用高折射率材料製造時,光學元件由於其高折射率而^ 自該發光二極體組件的光擷取並由於其形狀而修改光:: 射分佈’從而提供修剪的光發射圖案。 配置,但是亦預期其他已知組態’例如形成截倒轉金字塔 形發光二極體組件形狀的斜側表面。i該發光二極體組件 的電接點亦基於簡單而未加以顯示’但可加以提供在該晶 在此整個揭示内容中’發光二極體組件12基於簡單而加 Λ般描述,但疋除以上說明的再發射結構以外可以包含 該技術中已知的傳統設計特徵。例如,該發光二極體組: 可以包含截然不同的ρ摻雜及η摻雜半導體層、緩衝層、基 板層以及覆蓋物層。已顯示一簡單的矩形發光二極體組: 粒之任何表m已為人的所知。在示範性具體實施例 中,該發光二極體組件具有二個接點,二者在"覆晶"設計 中皆係佈置於底部表面上。本揭示内容並非預計限制該光 學兀件之形狀或該發光二極體組件之形狀,而僅提供說明 性範例。 當一發光二極體組件之一光學元件與一發射表面之間的 最小間隙係不大於衰減波時,該光學元件係視為與該發光 二極體組件光學耦合或光學接觸。可以藉由將該發光二極 體組件及該光學元件實體上緊㈣置在—起而達到光學搞 合。圖14顯示在發光二極體組件12之發射表面工。與光學 元件99之基底12〇之間的一間隙15〇。通常而言,間隙15〇 121770.doc -60 - 200807769 係一氣隙且對於促進受阻全内反射而言通常係很小。例 如’在圖14中,若間隙1 5 0係約空氣中的光波長,則光學 元件99之基底120係在光學上接近於發光二極體組件12之: Relatively high refractive index. Suitable materials for optical components include, but are not limited to, mechanical materials such as south refractive index glass (for example, LSAT 35 Shoude glass available from Shoude North America, Inc., New York, and the sapphire). Zinc oxide, zirconia, diamond, antimony, sapphire, zinc oxide, diamond and carbon carbide are particularly useful because these materials also have a relatively high thermal conductivity (0.2 to 5.0 m Κ). The refractive index polymer or nanoparticle-filled polymer. Suitable polymers may be thermoplastic and thermoset polymers. Thermoplastic polymers may comprise polycarbonate and cyclic olefin copolymers. Thermoset polymers may be (1)+ Propylene I '% oxose, crushed resin and other polymers known in the art. Suitable pottery nanoparticles contain oxidative, oxidized, zinc oxide and sulfurized. /Refractive index of the light element η.) is preferably similar to the refractive index (ne) of the emitting surface of the light-emitting diode assembly. Preferably, the difference between the two is not more than 0.2 (|nc)-ne4〇.2)〇 The difference can be greater than necessary, as needed This depends on the materials used. For example, the emitting surface can have a refractive index of 1.75. Suitable optical elements may have a refractive index equal to or greater than the refractive index (ηβ ΐ.75) of ruthenium, including, for example, n 〇 y 9, η. . And 11. 22.3. As needed, 11. It may be lower than 1 (e.g., 11 (^1.7). Preferably, the refractive index of the optical element matches the refractive index of the primary emitting surface. In some embodiments, the optical element and the refraction of the emitting surface The rate can be numerically the same (nt) = ne). For example, a sapphire emitting surface with 1=176 can be matched to a sapphire optical component, or with an SF4 glass optical component with ~=ΐ76 (available from Elmsf〇rd, New York, under the trademark SF4, 121770.doc • 59-200807769 θ海The surface area of the emitting surface is matched. Similarly, when an optical component is coupled to an array of light emitting diode components, the size of the array on the emitting surface side is preferably comparable to the size of the substrate of the optical component. Again, the shape of the material does not have to match the shape of the substrate as long as it matches at least one dimension (eg, diameter, width, height, or surface area). Alternatively, the light emitting diode assembly on the emitting surface The size or the combined size of the array of light emitting diode components may be smaller or larger than the size of the substrate. Figures 19a and 19c show the emitting surfaces of the light emitting diode assemblies (4i〇a and 4i〇c, respectively) (respectively The size of 412a and 412c) is a specific embodiment matching the size of the substrate (422a and 422c, respectively). Figure 19b shows one of the emission surfaces 4丨2b having a larger than the substrate 422b. Body assembly 41〇b. Figure I9d shows an array 412d of light emitting diode assemblies having a combined size on the emitting surface 412d that is larger than the size of the substrate 42. Figure 19e shows an emission having a smaller than substrate 422e The surface 41 is formed by one of the light emitting diode assemblies 41 〇 e. For example, if the emitting surface of the far light emitting diode assembly has a square on the side of the melon, the optical element substrate can have a matching square. Having a 1 mm side. Alternatively, a square emitting surface can be optically coupled to a rectangular substrate having one of its sides sized to match the size of the emitting surface side. The non-matching side of the rectangle can be larger or smaller than the square. Alternatively, an optical element can be provided with a circular base having a diameter equal to the diagonal dimension of the emitting surface. For example, 'for the purposes of this application' a square emission of 1 mm x 1 mm 121770.doc -57- 200807769 Shoude North American company constructed) matching. In other embodiments, the optical element may have a refractive index that is higher or lower than the refractive index of the emitting surface. When: fabricated from a high refractive index material, the optical element extracts from the light of the light emitting diode assembly due to its high refractive index and modifies the light due to its shape to provide a trimmed light emission pattern. Configuration, but other known configurations are also contemplated' such as forming a beveled side surface that shapes the truncated pyramidal shaped LED assembly. i The electrical contacts of the light-emitting diode assembly are also based on simplicity and are not shown 'but can be provided in the crystal throughout the disclosure. The light-emitting diode assembly 12 is described based on simplicity, but is removed Other design features known in the art may be included in addition to the re-emitting structures described above. For example, the group of light-emitting diodes: may comprise distinct p-doped and n-doped semiconductor layers, buffer layers, substrate layers, and cover layers. A simple rectangular light-emitting diode set has been shown: Any form of grain m is known. In an exemplary embodiment, the light emitting diode assembly has two contacts that are disposed on the bottom surface in a "cladding" design. The present disclosure is not intended to limit the shape of the optical element or the shape of the light emitting diode assembly, but merely provides an illustrative example. When the minimum gap between one of the optical elements of a light-emitting diode assembly and an emitting surface is no greater than the attenuation wave, the optical element is considered to be optically coupled or optically contacted with the light-emitting diode assembly. The optical engagement can be achieved by placing the light-emitting diode assembly and the optical element physically tightly (four). FIG. 14 shows the surface of the emitter of the LED assembly 12. A gap 15 〇 is formed with the substrate 12 of the optical element 99. In general, the gap 15〇 121770.doc -60 - 200807769 is an air gap and is generally small for promoting hindered total internal reflection. For example, in Fig. 14, if the gap 150 is about the wavelength of light in the air, the substrate 120 of the optical element 99 is optically close to the LED assembly 12.

發射表面12a。較佳而言,間隙15〇之厚度係小於空氣中的 光波長。在使用多個光波長的發光二極體中,間隙1 5 〇較 佳至多係最長波長之數值。適當的間隙大小包含2 5 nm、 50 nm以及1〇〇 nm。較佳而言,最小化該間隙,例如在將 該光學元件之該發光二極體組件及輸入孔徑或基底拋光為 光學平度並將晶圓接合在一起的情況下。 另外’較佳的係’間隙15 0在發射表面12 a與基底12 〇之 間的接觸區域上係實質上均勻的,並且發射表面12a以及 基底120具有小於2〇 nm(較佳小於5 nm)的糙度。在此類組 態中,在逃逸圓錐體外面或以一角度從發光二極體組件12 發射、通常在該發光二極體組件及空氣介面上進行全内反 射的光線將改為得以透射至光學元件2〇中。為促進光學耦 合,基底120之表面可經成形用以與發射表面12&匹配。例 如,右發光二極體組件12之發射表面12a係平坦的,如圖 不,則光學元件99之基底120亦可以係平坦的。 者,右忒發光二極體組件之該發射表面係彎曲的(例如 U凹進)則,亥光學凡件之該基底可經成形用以盥該發 表面配合(例如稍微凸起)。以120之大小可以係小於、 於或大於發光二極體組件之發射表面⑵。基底MO可以 斷面形狀上與發光二極體組件12相同或不同。例如,該 光二極體組件可以具有一正方形發射表面,而該光學元 121770.doc • 61 - 200807769 具有一圓形基底。熟習技術人士應明白其他變化。 適當的間隙大小包含100 nm、50 nm以及25 nm。較佳而 言’最小化該間隙,例如在將該發光二極體組件以及該光 學元件之該輸入孔徑或基底拋光為光學平度並將晶圓接合 在一起的情況下。可以藉由施加高溫及壓力以提供光學耦 合配置而將該光學元件及該發光二極體組件接合在一起。 可以使用任何已知的晶圓接合技術。示範性晶圓接合技術 係說明在美國專利申請公告案2〇〇6/〇〇9434〇 人)中,该公告案之名稱為”光學及半導體元件之製程,,。 在有限間隙情況下,可以藉由在該發光二極體組件之該 發射表面與該光學元件之該基底之間添加一薄光學傳導層 而達到或增強光學耦合。圖22顯示(例如)圖丨4所示但具有 佈置於間隙15〇内的一薄光學傳導層66〇之一光學元件^發 光二極體組件之一部分示意側視圖。像間隙15〇一樣,光 學傳導層660之厚度可以係100 nm、5〇 nm、乃nm或較 :卜> 較佳而言,該_合層之折射率係與該發射表面或 该光學元件之折射率緊密匹配。—光學傳導層可用於接合 及非接合(機械去耦合)組態。在接合具體實施例中,該光 學傳導層可以係會透射光的任何適t接合劑,包含(例^ 透明黏性層、無機薄膜、可炼合玻璃粉或其他類似接人 劑。接合組態之額外範例係說明在(例如)美國專利公 第U.S· 2〇〇2/〇030194號中,該公告案之名稱為,,呈改^ 光擷取效率之發光二極體”(Camras等人),於⑽^ 121770.doc -62- 200807769 在非接&具體實施例中,一获# -代触4 么先一極體組件可與該光學 凡件光予輕合而無需在該發光二極體組件與該光學元件之 間使用任何黏者劑或其他接合劑。非接合具體實施例允許 該發光二極體組件以及該光學元件得以機械去耦合並得以 允許彼此獨立地移動。例如,該光學元件可以相對於該發 光極體、、且件而棱向移動。在另一範例中,該光學元件以 及該發光:極體組件可自由膨脹,因為每—個組件均在運 轉期間變熱。在此類機械去耦合系統中,由膨脹產生的多 數偏轉或垂直應力不會從一個組件傳送至另一個組件。換 言之,一個組件之移動不會機械地影響其他組件。此組態 在下列情況下可能尤為需要:發光材料易碎,在該發光二 極體組件與該光學元件之間存在膨脹係數失配,以及重複 地開啟並關閉該發光二極體。 藉由將該光學元件放置成在光學上接近於該發光二極體 組件(二者之間僅有很小的氣隙),可以製造機械去耦合組 悲。该氣隙應該小到足以促進受阻全内反射,如以上說 明0 或者’如圖22所示,若一薄光學傳導層66〇(例如折射率 匹配流體)允許光學元件99及發光二極體組件12獨立地移 動’則可以在該光學元件與該發光二極體組件之間的間隙 150中添加該薄光學傳導層。適合於該光學傳導層66〇的材 料之範例包含折射率匹配油,以及具有類似光學特性的其 他液體或凝膠體。可視需要地,光學傳導層660亦可以係 熱傳導的。 121770.doc -63 · 200807769 該光學元件以及該發光二極體組件可使用任何已知的封 裝材料加以封裝在一起’以製造最終的發光二極體封裝或 光源。封裝該光學元件以及該發光二極體組件可提供一方 式以在非接合具體實施例中將其保持在一起。 頟外的非接合組態係說明在共同擁有的美國專利申請公 告案20〇6/0091784 (Conn〇r等人)中,該公告案之名稱為"具 非接合光學元件之發光二極體封裝,,。 該光學元件可以採用單一構造(例如自單一材料塊的切 邛刀)加以製造,或可以藉由在一複合構造中將二或更 多個區段接合在一起而加以製造。 一第一區段合乎需要地與該發光二極體組件光學接觸, 且係採用一第一光學材料製造,該材料具有高折射率(較 佳約等於該發射表面上的該發光二極體組件之折射率), 並可視需要地具有高熱導率及/或高熱穩定性。在此方 面,高熱穩定性指具有約600。〇或更高的分解溫度之材 料。該第一區段之厚度較佳為光學厚(例如有效地係至少$ 微米,或光波長的10倍)。 碳化石夕亦具有導電性,且同樣地亦可提供電接點或電路 功能。若散射係限於該光學元件之輸入端或基底附近的一 位置,則光學元件内的散射係可以接受的。然而,製造具 有足夠長度的光學元件以有㈣地從—I光二㈣組件柄 合光將比較昂貴且消耗時間。在製造單件光學元件中的另 一挑戰係,材料收益可能相對較低,並且形狀因數可能迫 使該發光二極體組件個別地與該光學元件組裝在一起。基 121770.doc -64- 200807769 於此等原0 ’可能有利的係將該光學元件分成二(或更多〕 個區段,豸等區段係採用不同光學材料製造,以減小製造 成本。 σ 一第二區段係與該第一區段接合並係採用一第二光學材 料製造’該第二光學材料可能具有較低的材料成本且比該 第-光學材料更易於製造。該第二光學材料可具有相對於 該第-光學材料的較低折射率、較低熱導率或二者。例 如’該第二光學材料可以包括玻璃、聚合物、陶瓷、陶瓷 奈米粒子填充聚合物以及其他光學透明材料。適當的破璃 包含包括鉛、锆、鈦以及鋇之氧化物的玻璃。該等玻璃可 以採用包含鈦酸鹽、錯酸鹽以及錫酸鹽之化合物加以製 造。適當的陶竞奈米粒子包含氧化錯、氧化鈦、氧化辞以 及硫化鋅。 可視需要地,由一第2光學材料組成的—第三區段可# 該第二區段接合以$ 一步協助將該發光二極體之光與外部 % i兄耦合。在一項具體實施例中,配置三個區段的折射率 以便ηριιρη3,從而最小化與該光學元件相關聯的總菲涅 爾表面反射。 所揭不的光源可以係一組件或一繪圖顯示器裝置之關鍵 組件’該裝置如大或小螢幕視訊監視器、電腦監視器或顯 不為、電視、電話裝置或電話裝置顯示器、個人數位助理 或個人數位助理顯示器、尋呼機或尋呼機顯示器、計算器 或计异裔顯不裔、遊戲機或遊戲機顯示器、玩具或玩具顯 不裔、大或小器具或大或小器具顯示器、汽車儀錶板或汽 121770.doc -65- 200807769 車儀錶板顯示器、、、左由 板或船舶儀錶板^ 汽車内部顯示器、船舶儀錄 空傷祭把杰分‘、、' 不盗、船舶内部或船舶内部顯示器、航 :$儀錶板顯示器、航空内部或航空内部顯示 控制裝置或交通控制I置顯示器、廣告顯示器、 贗告標記。 所揭示的光源可以么 3, ^ ? 係一液晶顯示器(LCD)或作為該顯示 态之背光的類似顯+时 告 —、态之一組件或關鍵組件。在某些具體The surface 12a is emitted. Preferably, the thickness of the gap 15 is less than the wavelength of light in the air. In a light-emitting diode using a plurality of light wavelengths, the gap of 15 〇 is preferably at most the value of the longest wavelength. Appropriate gap sizes include 25 nm, 50 nm, and 1 〇〇 nm. Preferably, the gap is minimized, for example, by polishing the light emitting diode assembly and the input aperture or substrate of the optical component to optical flatness and bonding the wafers together. Further, the 'better line' gap 150 is substantially uniform over the contact area between the emitting surface 12a and the substrate 12", and the emitting surface 12a and the substrate 120 have less than 2 〇 nm (preferably less than 5 nm). Roughness. In such a configuration, light emitted from the illuminating cone or at an angle from the illuminating diode assembly 12, typically totally internally reflected on the illuminating diode assembly and air interface, will be transmitted to the optical Component 2 is in the middle. To facilitate optical coupling, the surface of the substrate 120 can be shaped to match the emitting surface 12& For example, the emitting surface 12a of the right LED assembly 12 is flat. If not, the substrate 120 of the optical component 99 can also be flat. The emitting surface of the right-hand LED assembly is curved (e.g., U-recessed), and the substrate of the optical component can be shaped to fit the surface (e.g., slightly raised). The size of 120 may be less than, greater than, or greater than the emitting surface (2) of the LED assembly. The substrate MO may be the same or different in cross-sectional shape as the light-emitting diode assembly 12. For example, the photodiode assembly can have a square emitting surface and the optical element 121770.doc • 61 - 200807769 has a circular base. Those skilled in the art should be aware of other changes. Appropriate gap sizes include 100 nm, 50 nm, and 25 nm. Preferably, the gap is minimized, e.g., where the light emitting diode assembly and the input aperture or substrate of the optical component are polished to optical flatness and the wafers are bonded together. The optical component and the light emitting diode assembly can be joined together by applying a high temperature and pressure to provide an optically coupled configuration. Any known wafer bonding technique can be used. The exemplary wafer bonding technique is described in the US Patent Application Bulletin 2〇〇6/〇〇9434〇), the name of the announcement is “Optical and semiconductor components manufacturing process,. In the case of limited gaps, Optical coupling is achieved or enhanced by adding a thin optically conductive layer between the emitting surface of the light emitting diode component and the substrate of the optical component. Figure 22 shows, for example, Figure 4 but with A thin optically-conductive layer 66 in the gap 15〇 is an optical component of the light-emitting diode assembly. A portion of the light-emitting diode assembly is a side view. Like the gap 15〇, the thickness of the optically conductive layer 660 can be 100 nm, 5 〇 nm, Preferably, the index of refraction of the layer is closely matched to the refractive index of the emitting surface or the optical element. The optically conductive layer can be used for bonding and non-bonding (mechanical decoupling). Configuration. In a bonding embodiment, the optically conductive layer can be any suitable t-bonding agent that transmits light, including (for example, a transparent adhesive layer, an inorganic film, a temperable glass frit, or other similar attractant. Joint group An additional example of the state is described in, for example, U.S. Patent No. 2, 2, No. 030,194, the name of which is a light-emitting diode that is improved in light extraction efficiency (Camras et al.) (10)^121770.doc -62-200807769 In the non-connected & embodiment, a #-代触4 first-pole component can be lightly coupled with the optical component light without Any adhesive or other bonding agent is used between the light emitting diode assembly and the optical element. Non-bonding embodiments allow the light emitting diode assembly and the optical element to be mechanically decoupled and allowed to move independently of each other. The optical component can be moved in an angular direction relative to the light emitting body, and the member. In another example, the optical component and the light emitting body assembly can be freely expanded because each component is changed during operation. Heat. In such mechanical decoupling systems, most of the deflection or vertical stress generated by expansion does not transfer from one component to another. In other words, the movement of one component does not mechanically affect other components. It may be particularly desirable in the following situations: the luminescent material is fragile, there is an expansion coefficient mismatch between the luminescent diode component and the optical component, and the light emitting diode is repeatedly turned on and off. By placing the optical component The optical proximity of the light-emitting diode assembly (with only a small air gap between them) can create a mechanical decoupling group. The air gap should be small enough to promote hindered total internal reflection, as explained above. 0 or 'as shown in FIG. 22, if a thin optically conductive layer 66 (eg, an index matching fluid) allows the optical element 99 and the light emitting diode assembly 12 to move independently', then the optical element and the light emitting diode can be The thin optically conductive layer is added to the gap 150 between the body components. Examples of materials suitable for the optically conductive layer 66A include index matching oils, as well as other liquids or gels having similar optical properties. Optically conductive layer 660 can also be thermally conductive, as desired. 121770.doc -63 · 200807769 The optical component and the light emitting diode assembly can be packaged together using any known packaging material to make the final light emitting diode package or light source. Encapsulation of the optical component and the light emitting diode assembly can be provided in a manner to hold it together in a non-engaged embodiment. The non-joined configuration of the non-joined optical element is described in the commonly-owned U.S. Patent Application Publication No. 20/6/009, 784 (Conn〇r et al.). Package,,. The optical element can be fabricated in a single configuration (e.g., from a dicing knife of a single piece of material) or can be fabricated by joining two or more sections together in a composite construction. A first segment is desirably optically contacted with the light emitting diode assembly and is fabricated from a first optical material having a high refractive index (preferably approximately equal to the light emitting diode assembly on the emitting surface) Refractive index), and optionally high thermal conductivity and/or high thermal stability. In this regard, high thermal stability means having about 600. 〇 or higher decomposition temperature material. The thickness of the first segment is preferably optically thick (e.g., effectively at least $ microns, or 10 times the wavelength of light). Carbonized carbide is also electrically conductive and can also provide electrical contacts or circuit functions. If the scattering is limited to a position near the input end of the optical element or near the substrate, the scattering within the optical element is acceptable. However, fabricating an optical component of sufficient length to have a (4) glaze from the -I optical two (four) component handle would be relatively expensive and time consuming. Another challenge in the manufacture of a one-piece optical component is that the material benefits may be relatively low, and the form factor may force the light-emitting diode assembly to be individually assembled with the optical component. Base 121770.doc -64-200807769 It may be advantageous to divide the optical component into two (or more) segments, which are fabricated from different optical materials to reduce manufacturing costs. σ a second segment is bonded to the first segment and is fabricated from a second optical material. The second optical material may have a lower material cost and is easier to manufacture than the first optical material. The optical material can have a lower index of refraction, a lower thermal conductivity, or both relative to the first optical material. For example, the second optical material can include glass, polymer, ceramic, ceramic nanoparticle-filled polymer, and Other optically transparent materials. Suitable glass contains glass containing oxides of lead, zirconium, titanium and niobium. These glasses can be made from compounds containing titanates, acid salts and stannates. The nanoparticle comprises oxidative error, titanium oxide, oxidized sulphur, and zinc sulfide. Optionally, a third segment of the second optical material may be joined by the second segment to assist the hair in one step. The light of the photodiode is coupled to the outer %i brother. In a specific embodiment, the refractive indices of the three segments are configured such that ηριιρη3, thereby minimizing the total Fresnel surface reflection associated with the optical element. A non-light source can be a component or a key component of a graphics display device. The device is such as a large or small screen video monitor, a computer monitor or display, a television, a telephone device or a telephone device display, a personal digital assistant or a personal digital device. Assistant display, pager or pager display, calculator or meter display, gaming or game console display, toy or toy display, big or small appliance or large or small appliance display, car dashboard or steam 121770. Doc -65- 200807769 Car dashboard display,, left-hand board or ship dashboard ^ Car interior display, ship instrument record empty injury sacrifice, Jie Jie ',, 'Do not steal, ship interior or ship internal display, navigation: $ Dashboard display, aeronautical internal or aeronautical internal display control or traffic control I display, advertising display, advertising mark. ? Mody source 3, a liquid crystal ^ based display (LCD) or as a backlight of the display state of substantially similar report the + -., One component or the state in certain critical components

…藉由使由该半導體裝置發射的顏色與該液晶顯 不斋之濾色器匹配,杜 、 寺別调適該半導體裝置以將背光用於 一液晶顯示器。 所揭不的光源可以係一照明裝置之一組件或關鍵組件, 该照明裝置如獨立或内建照明固定器或燈、景觀或建築照 明固定器、手持或垂直安裝燈、汽車前燈或尾燈、汽車内 邠照明固定器、汽車或非汽車信號裝置、道路照明裝置、 =通控㈣號裝ϊ、船舶燈或信號裝置或内部照明固定 益航空燈或信號裝置或内部照明固定器、大或小器具或 大或小器具燈等;3戈用作紅外、可見或紫外輻射之來源的 任何裝置或組件。 在某些情況下’一光源包含··⑷一發光二極體,其能夠 '第一波長發射光,(b)—再發射之半導體構造,其包含 未疋位在一 pn接面内的一電位井,其中該再發射之半導體 構造具有一發射表面;(c)一圖案化低折射率層,其與該發 射表面之一第一部分光學接觸,其中該圖案化層具有一第 一折射率·,α及⑷學元件,纟具有與該發射表面之一 121770.doc -66 - 200807769 第二部分光學接觸的一輸入表面’其中該光學元件具有高 於該第一折射率的一第二折射率。在某些情況下該圖: 化低折射率層在該發射表面上為在該光源内產生的至少某 些光提供全内反射。 > 在某些情況下,一光源包含:⑷一發光二極體組件,i 包含:⑴-發光二極體,其能夠以一第一波長發射光;以 及(π)-再發射之半導體構造,纟包含未定位在,接面 内的-電位井’其中該再發射之半導體構造具有—發射表 面;(b)用力將由該發光二極體組件產生的光之至少某些全 内反射回至該發光二極體組件中的構件,纟中該反射構件 係與該發射表面之-第—部分光學接觸;以及⑷__光學元 件,其具有與不同於該第—部分的該發射表面之—第二部 分光學接觸的一輸入表面。 在某些情況下’一光源包含:⑷一發光二極體組件,其 包含.⑴一發光二極體,其能夠以一第一波長發射光;以 及(u)—再發射之半導體構造其包含未定位在一pn接面 内的電位井,其巾該再發射之半導體構造具有__發射表 面,以及(b)—杈準光學元件,其具有一輸入表面以及一輸 出表面在某些情況下,該輸入表面係與該發射表面之至 少-部分光學接觸。在某些情況下,該光學元件包含一第 一部分,其包含該輸入表面且係由一第一材料組成。在某 些情況下,該光學元件包含一第二部分,&包含該輸出端 且係由一第二材料組成。在某些情況下,該第一材料具有 大於該第二材料之折射率的—折射率。在某些情況下,該 121770.doc -67- 200807769 第-部分具有大於該第二材料之熱導率的一熱導率。 在某些情況下’一光源包含:⑷一發光二極體組件,复 包含:⑴-發光二極體,其能夠以一第一波長發射光;: 及⑻-再發射之半導體構造,其包含未定位在一pn接面 .㈣-電位井’其中該再發射之半導體構造具有—發射表 _ ® ;以及隨個光學元件,其中每一個此類光學元件均 具有一輸入表面。在某些情況下,該光學元件得到尺寸調 f以便該等輸人表面係彼此隔開且係與該發射表面之不同 部分光學接觸。 在某些情況下’一光源包含:⑷一發光二極體組件,其 包含定位在-pn接面内的一第一電位井以及未定位在一叩 接面内的-第二電位井,其中該發光二極體組件具有一發 射表面,(b)圖案化低折射率層,其係與該發射表面之一 弟-部分光學接觸,其中該圖案化層具有一第一折射率; 以及⑷一$學元彳,其具有與該發射表面之一第二部分光 學接觸的-輸入表面。在某些情況下,該光學元件具有高 於該第-折射率的一第二折射率。在某些情況下,該圖案 化低折射率層在該發射表面上為在該光源内產生的至少某 些光提供全内反射。 2某些情況下,一光源包含:(a)一發光二極體組件,其 包含定位在一叩接面内的一第一電位井以及未定位在一 {Η! 接面内^第二電位井,其中該發光二極體組件具有-發 射表面;(b)用於將由該發光二極體組件產生的光之至少某 二王内反射回至該發光二極體組件中的構件,其中該反射 121770.doc • 68 - 200807769 構件係與4發射表面之-第—部分光學接觸;以及⑷一光 學元件’其具有與不同於該第-部分的該發射表面之-第 二部分光學接觸的一輸入表面。 在某些情況下,一光源包含:(a)一發光二極體組件,其 包含定位在一 pn接面内的一第一電位井以及未定位在一冲 接面内的-第_電位井’其中該發光二極體組件具有一發 射表面;以及(b) 一校準光學元件,其具有一輸入表面以及 輸出表©在某些情況下’該輸人表面係與該發射表面之 至少一部分光學接觸。在某些情況下,該光學元件包含一第 一部分,其包含該輸入表面且係由一第一材料組成。在某 些情況下’該光學元件包含一第二部分,#包含該輸出表 面且係由一第二材料組成。在某些情況下,該第一材料具 有大於該第二材料之折射率的一折射率。在某些情況下, 该第一材料具有大於該第二材料之熱導率的一熱導率。 在某些h況下,一光源包含:(a)一發光二極體組件,其 包含定位在一 pn接面内的一第一電位井以及未定位在一叩 接面内的一第二電位井,其中該發光二極體組件具有一發 射表面;以及(b)複數個光學元件,其中每一個此類光學元 件均具有一輸入表面。在某些情況下,該光學元件得到尺 寸調整以便該等輸入表面係彼此隔開且係與該發射表面之 不同部分光學接觸。 在某些情況下,一光源包含:一發光二極體,其能夠 以一第一波長發射光且具有一發射表面;(b)一再發射之半 導體構造,其包含未定位在一 pn接面内的一電位井;(c) 一 121770.doc -69- 200807769 圖案化低折射率層,其與該發射表面之一第一部分光學接 觸w亥圖案化層具有一第一折射率;以及(d)—光學元件, 其具有與該發射表面之一第二部分光學接觸的一輸入表 面。在某些情況下,該光學元件具有高於該第一折射率的 一第二折射率。在某些情況下,該圖案化低折射率層在該 發射表面上為在該光源内產生的至少某些光提供全内反 射。 在某些情況下,一光源包含:一發光二極體組件,其 包含:(i) 一發光二極體,其能夠以一第一波長發射光且具 有一發射表面;以及(Π)—再發射之半導體構造,其包含 未定位在一 pn接面内的一電位井;(b)用於將由該發光二極 體組件產生的光之至少某些全内反射回至該發光二極體組 件中的構件,其中該反射構件係與該發射表面之一第一部 为光學接觸,以及(c) 一光學元件,其具有與不同於該第一 部分的該發射表面之一第二部分光學接觸的一輸入表面。 在某些情況下,一光源包含:(a)一發光二極體組件,其 包含:⑴一發光二極體,其能夠以一第一波長發射光且具 有一發射表面;以及(ii) 一再發射之半導體構造,其包含 未定位在一 pn接面内的一電位井;以及(b) 一校準光學元 件,其具有一輸入表面以及一輪出表面。在某些情況下, 該輸入表面係與該發射表面之至少一部分光學接觸。在某 些情W ’該光學元件包含n分’丨包含該輸入表 面且係由一第一材料組成。在某些情況下,該光學元件包 含-第二部分,其包含該輸出表面且係由一第二材料組 121770.doc •70· 200807769 成在某些情況下,該第一材料具有大於該第二材料之折 射率的-折射率。在某些情況下,該第一材料具有大於該 第二材料之熱導率的一熱導率。 在某~ “況下,一光源包含:0)—發光二極體組件,其 • 包3 ·⑴一發光二極體,其能夠以一第一波長發射光且具 . 卜發射表面;⑼―再發射之半導體構造,其包含未定 位2 一 pn接面内的一電位井;以及(…複數個光學元件,其 2母-光學7L件均具有—輸人表面。在某些情況下,該光 子-件得到尺寸凋整以便該等輸入表面係彼此隔開且係與 口亥發射表面之不同部分光學接觸。 在,些情況下,-光源包含··⑷—發光二極體,其能夠 乂第波長發射光;(b)—再發射之半導體構造,其包含 未定位在一 pn接面内的一電位井且具有一發射表面,·以及 (0光擷取器,其具有與該發射表面光學接觸的一輸入表 面。 在某些情況下,一光源包含ya)一發光二極體組件,其 包含定位在一 pn接面内的一第一電位井以及未定位在一忡 接面内的一第二電位井,其中該發光二極體組件具有一發 射表面,以及(b)光擷取器,其具有與該發射表面光學接 觸的一輸入表面。 在某些情況下,-光源包含··⑷一發光二極體,其能夠 以一第一波長發射光且具有一發射表面;(b)一再發射之半 導體構造,其包含未定位在一 pn接面内的一電位井,·以及 (c)一光擷取器,其具有與該發射表面光學接觸的一輸入表 121770.doc -71 - 200807769 面0 在杲些情況下,一开、,原勺八· γ、 尤原包含.(a)—發光二極 盆 以一第一波長發射光且於从 /、此約 (b)一再發射之半導體構造,其包合 未定位在-pn接面内的—電位井且具有—發射表面;以及 ⑷-圖案化低折射率層,其與少於該發射表面之全部的1 發射表面之一第一部分光學接觸。在某些情況下,該圖; 化層具有低於该發射表面之折射率的—折射率。By matching the color emitted by the semiconductor device to the color filter of the liquid crystal display, Du and Si do adapt the semiconductor device to use the backlight for a liquid crystal display. The disclosed light source can be a component or a key component of a lighting device such as a stand-alone or built-in lighting fixture or lamp, a landscape or architectural lighting fixture, a hand or vertical mounting light, a car headlight or a taillight, Automotive interior lighting fixtures, automotive or non-vehicle signaling devices, road lighting, = central control (four) mounting, marine lights or signaling devices or internal lighting fixed-air lights or signaling devices or internal lighting fixtures, large or small Appliances or large or small appliance lights, etc.; any device or component used as a source of infrared, visible or ultraviolet radiation. In some cases, a light source comprises (4) a light-emitting diode capable of 'a first wavelength emitting light, (b) a re-emitting semiconductor structure comprising a first unpinned in a pn junction a potential well, wherein the re-emitting semiconductor construction has an emitting surface; (c) a patterned low refractive index layer in optical contact with a first portion of the emitting surface, wherein the patterned layer has a first index of refraction An alpha and (4) element having an input surface optically in contact with a second portion of the emitting surface 121770.doc-66 - 200807769 wherein the optical element has a second index of refraction above the first index of refraction . In some cases the pattern: a low refractive index layer provides total internal reflection on the emitting surface for at least some of the light generated within the source. > In some cases, a light source comprises: (4) a light emitting diode assembly, i comprising: (1) a light emitting diode capable of emitting light at a first wavelength; and (π)-reemitting semiconductor structure , 纟 includes a -potential well that is not positioned within the junction, wherein the re-emitting semiconductor construction has an emission surface; (b) forcefully reflects at least some of the light generated by the LED assembly back to a member of the light emitting diode assembly, wherein the reflective member is in optical contact with a first portion of the emitting surface; and (4) an optical element having a different emitting surface than the first portion An input surface for two parts of optical contact. In some cases, a light source comprises: (4) a light-emitting diode assembly comprising: (1) a light-emitting diode capable of emitting light at a first wavelength; and (u) a re-emitting semiconductor structure comprising a potential well not positioned within a pn junction, the re-emitting semiconductor construction having a __emissive surface, and (b) a quasi-optical element having an input surface and an output surface in some cases The input surface is in optical contact with at least a portion of the emitting surface. In some cases, the optical component includes a first portion that includes the input surface and is comprised of a first material. In some cases, the optical component includes a second portion, & includes the output and is comprised of a second material. In some cases, the first material has a refractive index greater than the refractive index of the second material. In some cases, the 121770.doc -67- 200807769 portion has a thermal conductivity greater than the thermal conductivity of the second material. In some cases, a light source comprises: (4) a light-emitting diode assembly, comprising: (1) a light-emitting diode capable of emitting light at a first wavelength; and (8)-re-emitting semiconductor structure, comprising Not positioned at a pn junction. (d) - potential well 'where the re-emitting semiconductor construction has an emission meter _ ® ; and an optical component, each of which has an input surface. In some cases, the optical element is sized so that the input surfaces are spaced apart from each other and in optical contact with different portions of the emitting surface. In some cases, a light source includes: (4) a light emitting diode assembly including a first potential well positioned within the -pn junction and a second potential well not positioned within a junction surface, wherein The light emitting diode assembly has an emitting surface, (b) a patterned low refractive index layer in optical contact with one of the emitting surfaces, wherein the patterned layer has a first refractive index; and (4) a $学元彳 having an input surface in optical contact with a second portion of the emitting surface. In some cases, the optical element has a second index of refraction that is higher than the first index of refraction. In some cases, the patterned low refractive index layer provides total internal reflection on the emitting surface for at least some of the light generated within the source. 2 In some cases, a light source comprises: (a) a light-emitting diode assembly comprising a first potential well positioned in a splicing surface and not positioned in a {Η! junction surface ^ second potential a well, wherein the light emitting diode assembly has an emitting surface; (b) a member for internally reflecting at least some of the light generated by the light emitting diode assembly back into the light emitting diode assembly, wherein Reflection 121770.doc • 68 - 200807769 The component is in optical contact with the first portion of the 4th emitting surface; and (4) an optical element having an optical contact with the second portion of the emitting surface different from the first portion Enter the surface. In some cases, a light source includes: (a) a light emitting diode assembly including a first potential well positioned within a pn junction and a -th potential well not positioned within a splicing surface 'where the light emitting diode assembly has an emitting surface; and (b) a calibrating optical element having an input surface and an output meter © in some cases 'the input surface and at least a portion of the emitting surface are optical contact. In some cases, the optical component includes a first portion that includes the input surface and is comprised of a first material. In some cases the optical element comprises a second portion, # comprising the output surface and consisting of a second material. In some cases, the first material has a refractive index greater than the refractive index of the second material. In some cases, the first material has a thermal conductivity greater than the thermal conductivity of the second material. In some cases, a light source includes: (a) a light emitting diode assembly including a first potential well positioned within a pn junction and a second potential not positioned within a junction plane a well wherein the light emitting diode assembly has an emitting surface; and (b) a plurality of optical elements, each of which has an input surface. In some cases, the optical component is sized such that the input surfaces are spaced apart from each other and in optical contact with different portions of the emitting surface. In some cases, a light source includes: a light emitting diode capable of emitting light at a first wavelength and having an emitting surface; (b) a re-emitting semiconductor structure including not positioned within a pn junction a potential well; (c) a 121770.doc -69-200807769 patterned low refractive index layer having a first refractive index in optical contact with a first portion of the emitting surface; and (d) An optical element having an input surface in optical contact with a second portion of the emitting surface. In some cases, the optical element has a second index of refraction that is higher than the first index of refraction. In some cases, the patterned low refractive index layer provides total internal reflection on the emitting surface for at least some of the light generated within the source. In some cases, a light source includes: a light emitting diode assembly comprising: (i) a light emitting diode capable of emitting light at a first wavelength and having an emitting surface; and (Π)- a semiconductor structure that emits a potential well that is not positioned within a pn junction; (b) for internally reflecting at least some of the light generated by the light emitting diode assembly back to the light emitting diode assembly a member, wherein the reflective member is in optical contact with a first portion of the emitting surface, and (c) an optical member having optical contact with a second portion of the emitting surface different from the first portion An input surface. In some cases, a light source comprises: (a) a light emitting diode assembly comprising: (1) a light emitting diode capable of emitting light at a first wavelength and having an emitting surface; and (ii) repeatedly A semiconductor structure that emits a potential well that is not positioned within a pn junction; and (b) a calibration optical component having an input surface and a wheeled surface. In some cases, the input surface is in optical contact with at least a portion of the emitting surface. In some cases, the optical component comprises n minutes, comprising the input surface and consisting of a first material. In some cases, the optical component includes a second portion that includes the output surface and is comprised of a second material set 121770.doc • 70· 200807769. In some cases, the first material has a greater than the first The refractive index of the two materials - the refractive index. In some cases, the first material has a thermal conductivity greater than the thermal conductivity of the second material. In a certain case, a light source comprises: 0) - a light-emitting diode assembly, wherein: • a package 3 · (1) a light-emitting diode capable of emitting light at a first wavelength and having an emission surface; (9) a re-emitting semiconductor construction comprising a potential well within a non-positioned 2-pn junction; and (...a plurality of optical elements, the two female-optical 7L members each having an input surface. In some cases, the The photon-pieces are sized so that the input surfaces are spaced apart from each other and are in optical contact with different portions of the emissive surface. In some cases, the -light source comprises (4) - a light-emitting diode capable of a first wavelength emitting light; (b) a re-emitting semiconductor structure comprising a potential well not positioned within a pn junction and having an emitting surface, and (0 optical picker having the emitting surface An input surface for optical contact. In some cases, a light source includes ya) a light emitting diode assembly including a first potential well positioned within a pn junction and not positioned within a splicing surface a second potential well, wherein the light emitting diode group The device has an emitting surface, and (b) a light picker having an input surface in optical contact with the emitting surface. In some cases, the light source comprises (4) a light emitting diode capable of a first wavelength emitting light and having an emitting surface; (b) a re-emitting semiconductor structure comprising a potential well not positioned within a pn junction, and (c) a light picker having An input table for optical contact of the emitting surface 121770.doc -71 - 200807769 Face 0 In some cases, one open, the original spoon eight · γ, the special contains: (a) - the light-emitting diode is at a first wavelength a semiconductor structure that emits light and re-emits from /, about (b), includes a potential well that is not positioned within the -pn junction and has an -emitting surface; and (4)-patterned low refractive index layer, A first portion of the first emitting surface that is less than all of the emitting surface is in optical contact. In some cases, the layer has a refractive index that is lower than the refractive index of the emitting surface.

在某些情況下’一光源包含:⑷一發光二極體組件,立 包含定位在—pn接面内的—第-電位井以及未^位在一 pn 接面内的-第二電位井’其中該發光二極體組件具有一發 射表面,以及(b)-®案化低折射率層,其與少於該發射表 面之全部的該發射表面之—第__部分光學接觸。在某些情 況下’該圖案化層具有低於該發射表面之折射率的一= 率 〇 在某些情況下,一光源包含:⑷一發光二極體,其能夠 以一第一波長發射光且具有一發射表面;(b) 一再發射之半 導體構造,其包含未定位在一 pn接面内的一電位井·以及 (C) 一圖案化低折射率層’其與少於該發射表面之全部的該 發射表面之一第一部分光學接觸。在某些情況下,該圖案 化層具有低於該發射表面之折射率的一折射率。在某些情 況下,一繪圖顯示器或一照明裝置包含該光源。 熟習技術人士將明白本發明之各種修改及變更,而不脫 離本發明之範疇及精神,而且應瞭解本發明並非不適當地 限於以上提出的說明性具體實施例。 121770.doc -72- 200807769 【圖式簡單說明】 二1係-構造中的半導體之傳導頻帶及價 ▼圖。層厚度並非按比例表示; 千一頻 圖2係指示各種Π-VI二進位化合物 人 及帶隙能量之曲線圖; u孟的晶格常數 圖3係表示從—裝置發射的光之光譜的曲線圖; 圖4係一構造中的丰莫辦夕/电、耸 …… 傳導頻帶及價頻帶之平坦頻 ▼圖,層厚度並非按比例表示; 、 面圖圖认6係具有一亮度增強層的發光二極體封裝之示意斷 圖7及8係具有亮度增強 二極體封農之示意斷面圖;…疋件的多個發光 圖=:曲線圖’其顯示與一發光二極體组件之前發射 表:上的錐形元件之足跡大小成函數關係的該發光二極體 組件之模型化亮度及光輸出; 本圖10至12係示意斷面圖,其顯示利用複合錐形元件的發 光一極體封裝,並且pi 1 9 圖12進一步顯示與一發光二極體組件 耦曰的多個錐形元件; 圖13係具有一亮度增強層及多個光學 極體封裝之示意斷面圖; 乃土光一 圖14係說明一光學元件及發光二極體組件組態之一示音 側視圖; 〜 圖15a至15c係額外光學元件之透視圖; 圖16係具有另一光學元件的一光源之透視圖; 121770.doc -73· 200807769 圖17a至17i係額外光學元件之俯視圖; 圖18a至18c係說明替代性光學元件之示意正視圖; 圖1%至1 %係併入光學元件及發光二極體組件的額外光 源之示意侧視圖; 、、且合之仰视 圖20a至20d係光學元件/發光二極體組件的 圖; 圖21係一光學元件及一發光二極體組件陣列 圖;以及 透視 圖22係另一光學元件/發光二極體組件的紐人 視圖。 S之部分側 【主要元件符號說明】 1 支撐層 2 吸收層 3 單一電位井 4 吸收層 5 支撐層 6 吸收層 7 單一電位井 8 吸收層 9 支撐層 10 發光一極體封裝 10a 發光一極體封裝 11 中間未摻雜層 12 發光二極體組件 121770.doc -74. 200807769 12f 發光二極體晶粒 12a 發射表面 12a’ 前發射表面 12b 底部表面 12c 側表面 12c, 斜側表面 13 中間未摻雜層 14 p摻雜層/架座 16 透明光學元件 18 圖案化低折射率層 18a 低折射率層 20 孔徑 20a 孔徑 22 發射點來源 24 光線 30 發光二極體封裝 32 透明光學元件 32a 輸入表面 32b 輸出表面 34 孔徑 36 氣隙 40 發光二極體封裝 42 光學元件 42a 輸入表面 121770.doc -75- 200807769 42b 輸出表面 42c 側表面 42d 側表面 44 孔徑 46 氣隙 50 曲線 52 曲線 60 發光二極體封裝 62 光學元件 64 第一區段 64a 輸入表面 64b 輸出表面 64c 反射側表面 64d 反射側表面 66 第二區段 66a 輸入表面 66b 輸出表面 66c 反射側表面 66d 反射側表面 70 發光二極體封裝 72 複合件 74 第一區段 74a 輸入表面 74b 輸出表面 121770.doc - 76 - 200807769 76a 輸入表面 76b 輸出表面 78 塗層 80 發光二極體封裝 82 光學元件 82a 輸入表面 82b 輸出表面 83 間隙 84 光學元件 84a 輸入表面 84b 輸出表面 85 間隙 86 光學元件 86a 輸入表面 86b 輸出表面 88 錐形元件 88a 輸入表面 88b 輸出表面 90 發光二極體封裝 92 光學元件 94 光學元件 96 圖案化低折射率層 98 金屬接點 99 光學元件 121770.doc -77- 200807769 120 基底 130 頂點 132 頂點 135 虛線 140 收斂側 140a 第一收斂側 ^ 140b 第二收斂側 142 發散側 150 間隙 160a-160b 光線 200 收斂光學元件 202 收斂光學元件 204 光學元件 206 光學元件 210 線 220 基底 222 六邊形基底 224 基底 230 頂點 230a 鈍頂點 230b 鈍頂點 230c 頂點 230d 頂點 230e 頂點 121770.doc -78- 200807769 230f 頂點 230g 頂點 230h 純頂點 230i 頂點 232 鈍頂點 234 頂點 240 側 242 側 244 收斂側 325 基底 330 頂點 331 純頂點 332 頂點 333 鈍頂點 340 側 341 側 342 側 344 收斂側 345 側 347 側· 347a-347c 平坦部分 350 基底 352 基底 410a-410e 發光二極體組件 121770.doc •79- 200807769 412a-412e 發射表面 420a-420e 光學元件 422a-422e 基底 430a-430e 頂點 440a-440e 側 441a-441d 部分 442a-442d 部分 550a 圓形基底 550b 六邊形基底 550c 矩形基底 550d 正方形基底 570a 正方形發射表面 570b 正方形發射表面 570c 正方形發射表面 570d 六邊形發射表面 612 陣列 614a-14c 發光二極體組件 616 邊 624 收斂光學元件 646 收斂側 660 薄光學傳導層 121770.doc -80-In some cases, a light source includes: (4) a light-emitting diode assembly, a first-potential well positioned in a -pn junction, and a second potential well not in a pn junction. Wherein the light emitting diode assembly has an emitting surface, and (b)-cases a low refractive index layer that is in optical contact with the __ portion of the emitting surface that is less than all of the emitting surface. In some cases, the patterned layer has a refractive index lower than the refractive index of the emitting surface. In some cases, a light source comprises: (4) a light emitting diode capable of emitting light at a first wavelength. And having an emitting surface; (b) a re-emitting semiconductor structure comprising a potential well not positioned within a pn junction and (C) a patterned low refractive index layer & less than the emitting surface All of the first portion of the emitting surface is in optical contact. In some cases, the patterned layer has a refractive index that is lower than the refractive index of the emitting surface. In some cases, a drawing display or a lighting device includes the light source. A person skilled in the art will recognize the various modifications and variations of the present invention without departing from the scope and spirit of the invention, and it should be understood that the invention is not limited to the illustrative embodiments set forth above. 121770.doc -72- 200807769 [Simple description of the diagram] The conduction band and price of the semiconductor in the two-system-structure ▼. The layer thickness is not to scale; 千千频图2 is a graph showing the human and band gap energies of various Π-VI binary compounds; u Meng's lattice constant Fig. 3 is a curve showing the spectrum of light emitted from the device Figure 4 is a diagram of a structure in the circumstance of electricity, electricity, towering ... Conductive frequency band and valence band flat frequency map, layer thickness is not to scale; 、, surface diagram 6 series has a brightness enhancement layer Illustrated diagrams of the light-emitting diode package, Figures 7 and 8 are schematic cross-sectional views of the brightness-enhanced diode package; a plurality of illumination patterns of the element:: a graph 'before the display and a light-emitting diode assembly Emissive table: modeled brightness and light output of the light-emitting diode assembly as a function of footprint size of the tapered element; Figures 10 through 12 are schematic cross-sectional views showing the illumination using a composite tapered element Pole body package, and pi 1 9 Figure 12 further shows a plurality of tapered elements coupled to a light emitting diode assembly; Figure 13 is a schematic cross-sectional view of a brightness enhancement layer and a plurality of optical pole body packages; Figure 14 shows a optical component Figure 15a to 15c are perspective views of additional optical components; Figure 16 is a perspective view of a light source having another optical component; 121770.doc -73· 200807769 17a to 17i are top views of additional optical components; Figures 18a to 18c are schematic front views illustrating alternative optical components; Figure 1% to 1% are schematic side views of additional light sources incorporating optical components and light emitting diode components; And the bottom view 20a to 20d are diagrams of the optical element/light emitting diode assembly; FIG. 21 is an array of optical elements and a light emitting diode assembly; and the perspective view 22 is another optical element / light emitting A button view of the polar body assembly. Partial side of S [Main component symbol description] 1 Support layer 2 Absorption layer 3 Single potential well 4 Absorption layer 5 Support layer 6 Absorption layer 7 Single potential well 8 Absorption layer 9 Support layer 10 Light-emitting one-pole package 10a Light-emitting one Package 11 intermediate undoped layer 12 light emitting diode assembly 121770.doc -74. 200807769 12f light emitting diode die 12a emitting surface 12a' front emitting surface 12b bottom surface 12c side surface 12c, oblique side surface 13 undoped Heterogeneous layer 14 p-doped layer/rack 16 transparent optical element 18 patterned low refractive index layer 18a low refractive index layer 20 aperture 20a aperture 22 emission point source 24 light 30 light emitting diode package 32 transparent optical element 32a input surface 32b Output Surface 34 Aperture 36 Air Gap 40 Light Emitting Diode 42 Optical Element 42a Input Surface 121770.doc -75- 200807769 42b Output Surface 42c Side Surface 42d Side Surface 44 Aperture 46 Air Gap 50 Curve 52 Curve 60 LED Package 62 optical element 64 first section 64a input surface 64b output surface 64c reflective side surface 64 d reflective side surface 66 second section 66a input surface 66b output surface 66c reflective side surface 66d reflective side surface 70 light emitting diode package 72 composite 74 first section 74a input surface 74b output surface 121770.doc - 76 - 200807769 76a Input surface 76b Output surface 78 Coating 80 Light-emitting diode package 82 Optical element 82a Input surface 82b Output surface 83 Clearance 84 Optical element 84a Input surface 84b Output surface 85 Clearance 86 Optical element 86a Input surface 86b Output surface 88 Tapered element 88a Input surface 88b Output surface 90 Light-emitting diode package 92 Optical element 94 Optical element 96 Patterned low refractive index layer 98 Metal contact 99 Optical element 121770.doc -77- 200807769 120 Base 130 Vertex 132 Vertex 135 Dashed line 140 Convergence side 140a first convergence side ^ 140b second convergence side 142 diverging side 150 gap 160a-160b ray 200 convergence optical element 202 convergence optical element 204 optical element 206 optical element 210 line 220 substrate 222 hexagonal substrate 224 substrate 230 apex 230a Vertex 230b Blunt Vertex 230c Vertex 230d Vertex 230e Vertex 121770.doc -78- 200807769 230f Vertex 230g Vertex 230h Pure Vertex 230i Vertex 232 Blunt Vertex 234 Vertex 240 Side 242 Side 244 Convergence Side 325 Base 330 Vertex 331 Pure Vertex 332 Vertex 333 Blunt Vertex 340 side 341 side 342 side 344 convergence side 345 side 347 side · 347a-347c flat portion 350 base 352 base 410a-410e light emitting diode assembly 121770.doc • 79- 200807769 412a-412e emission surface 420a-420e optical element 422a- 422e substrate 430a-430e apex 440a-440e side 441a-441d portion 442a-442d portion 550a circular substrate 550b hexagonal substrate 550c rectangular substrate 550d square substrate 570a square emission surface 570b square emission surface 570c square emission surface 570d hexagonal emission Surface 612 array 614a-14c light emitting diode assembly 616 edge 624 convergence optical element 646 convergence side 660 thin optical conduction layer 121770.doc -80-

Claims (1)

200807769 十、申請專利範圍·· 1 · 一種光源,其包括: 一發光二極體(LED )組件,其具有一發射表面且包 含一發光二極體以及一再發射之半導體構造,該發光二 極體能夠以一第一波長發射光,並且該再發射之半導體 構造包含未定位在一 pn接面内的一第二電位井;以及 一光學元件’其具有一輸入表面以及一輸出表面,該 輸入表面係與該發射表面之至少一部分光學接觸。 2·如請求項1之光源,其中該第二電位井係或包含一量子 井0 3·如請求項!之光源,其中該發光二極體包含定位在一卯 接面内的一第一電位井。 4·如請求们之光源’其中該發射表面係一發光二極體晶 =之—表面’並且其中該光學元件係、佈置在該發光二極 體晶粒與該再發射之半導體構造之間。 5·如請求項4之光源,其中該再菸鼾少、上、# A 亦與- 八T 4冉^射之+導體構造係與該 元予件之該輸出表面接合。 6·如#求項丨之光源,其中 體構 /、中及發射表面係該再發射之半導 一表面,並且JL中兮五欢 置在該發光—極- ^ 、之半導體構造係佈 知尤一極體與该光學元件之間。 7.如請求項6之光源,其中該再 :° 一接合展 ^ X射之半導體構造係藉由 ° ^附於該發光二極體。 8 ·如請求項6 | 貝6之先源,其中該再發 發光二極舻I女 ^ %之半導體構造以及該 桎體具有形成於該同一半 w 等體晶圓上的一單式構 121770.doc 200807769 造。 9. 10 11. 12 13 14. 15. 如4求項丨之光源,其中該光學元件包括一封裝物。 如明求項1之光源,其中該光學元件包括一擷取器。 如明求項1之光源,其中該光學元件包括一透鏡。 如清求項1之光源,其進一步包括與該發射表面之一第 4分光學接觸的一圖案化低折射率層,該圖案化層具 有第一折射率,而且其中該光學元件之該輸入表面係 與忒發射表面之一第二部分光學接觸,該光學元件具有 同於该第一折射率之一第二折射率。 女明求項1之光源,其進一步包括用於將由該發光二極 體、、且件產生的該光之至少某些全内反射回至該發光二極 體組件中的構件,該反射構件係與該發射表面之一第一 部分光學接觸,而且其中該光學元件之該輸入表面係與 不同於該第一部分的該發射表面之一第二部分光學接 觸。 如哨求項1之光源,其中該光學元件包括一第一部分, 其包括該輸入表面且係由一第一材料組成,而且其中該 光學元件包括一第二部分,盆 一、, 刀 八已^括§亥輸出端且係由一第 二材料組成,並且其中該繁一 /弟材科具有大於該第二材料 之折射率的一折射率。 y項1之光源,其中該光學元件係複數個光學元件 每—個此類光學元件均具有—輸人表面; 專光學元件得到尺寸調整以 ^ 口 而且係與該發光表面之不W…輸表面係彼此隔開 <不冋部分光學接觸。 12I770.doc -2- 200807769 1 6.如請求項1之光源,其中該光學元件包含一基启 幻氐、二個 收斂側以及二個發散側。 1 7.如請求項1之光源,其中該光學元件經成形用以 W導由 該發光二極體組件發射的光以產生一側發射圖案。 1 8·如請求項1之光源,其中該光學元件包含一基底、 ~ λ]、於 忒基底的一頂點、以及在該基底與該頂點之間延伸的一 收斂側。 19·如請求項1 8之光源,其中嗜其矻 八Τ|底係該光學兀件之該輸入 表面,並且該基底係在大+ μ 丁丄_ »々t 上不大於該發光二極體組件 之該發射表面。 20· —種繪圖顯示器裝置,政 ,、匕括如請求項1之光源。 2 1 _ —種照明裝置,其包括如 月衣項1之光源。 121770.doc200807769 X. Patent Application Scope 1 · A light source comprising: a light emitting diode (LED) assembly having an emitting surface and comprising a light emitting diode and a re-emitting semiconductor structure, the light emitting diode Capable of emitting light at a first wavelength, and the re-emitting semiconductor construction includes a second potential well not positioned within a pn junction; and an optical component having an input surface and an output surface, the input surface Is in optical contact with at least a portion of the emitting surface. 2. The source of claim 1, wherein the second potential well system or comprises a quantum well 0 3 such as a request item! The light source, wherein the light emitting diode comprises a first potential well positioned within a junction. 4. The light source of the request, wherein the emitting surface is a light emitting diode = surface - and wherein the optical element is disposed between the light emitting diode die and the re-emitting semiconductor structure. 5. The light source of claim 4, wherein the re-smoke, upper, #A, and -8T4冉^+conductor structures are bonded to the output surface of the element. 6·#################################################################################################### Especially between the polar body and the optical element. 7. The light source of claim 6, wherein the semiconductor structure of the junction is attached to the light emitting diode by °. 8) The request source 6 | the source of the Bay 6, wherein the re-emitting diode is a semiconductor structure and the body has a single structure 121770 formed on the same half-wa .doc 200807769 made. 9. 10 11. 12 13 14. 15. A light source as claimed in Fig. 4, wherein the optical element comprises a package. The light source of claim 1, wherein the optical component comprises a picker. The light source of claim 1, wherein the optical component comprises a lens. The light source of claim 1, further comprising a patterned low refractive index layer in optical contact with a fourth of the emitting surface, the patterned layer having a first index of refraction, and wherein the input surface of the optical component And being in optical contact with a second portion of one of the emission surfaces, the optical element having a second index of refraction that is the same as the first index of refraction. The light source of claim 1, further comprising: a member for totally internally reflecting at least some of the light generated by the light emitting diode, and the member, into the light emitting diode assembly, the reflective member A first portion of the emitting surface is in optical contact with the first portion of the emitting surface, and wherein the input surface of the optical element is in optical contact with a second portion of the emitting surface that is different from the first portion. The light source of claim 1, wherein the optical component comprises a first portion comprising the input surface and consisting of a first material, and wherein the optical component comprises a second portion, the basin one, the knife eight has ^ The output end is comprised of a second material, and wherein the one or the other has a refractive index greater than the refractive index of the second material. The light source of item y, wherein the optical element is a plurality of optical elements each of the optical elements has an input surface; the specialized optical element is sized and connected to the light emitting surface. They are separated from each other by a portion of the optical contact. 12I770.doc -2-200807769 1 6. The light source of claim 1, wherein the optical element comprises a base illusion, two convergence sides, and two diverging sides. The light source of claim 1, wherein the optical element is shaped to direct light emitted by the light emitting diode assembly to produce a side emission pattern. 18. The light source of claim 1, wherein the optical element comprises a substrate, ~λ], a vertex at the substrate, and a converging side extending between the substrate and the vertex. 19. The light source of claim 18, wherein the bottom surface is the input surface of the optical element, and the substrate is not larger than the light emitting diode on the large + μ 丄 丄 々 々 々 The emitting surface of the component. 20·- A kind of drawing display device, and the light source of claim 1 is included. 2 1 _ - A lighting device comprising a light source such as a moonsuit item 1. 121770.doc
TW096121064A 2006-06-12 2007-06-11 LED device with re-emitting semiconductor construction and optical element TW200807769A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80454106P 2006-06-12 2006-06-12
US80482406P 2006-06-14 2006-06-14

Publications (1)

Publication Number Publication Date
TW200807769A true TW200807769A (en) 2008-02-01

Family

ID=38832111

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096121064A TW200807769A (en) 2006-06-12 2007-06-11 LED device with re-emitting semiconductor construction and optical element

Country Status (6)

Country Link
EP (1) EP2033236A4 (en)
JP (1) JP2009540615A (en)
KR (1) KR20090016694A (en)
CN (1) CN101467274B (en)
TW (1) TW200807769A (en)
WO (1) WO2007146860A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100127286A (en) * 2008-03-21 2010-12-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. A luminous device
US7741134B2 (en) * 2008-09-15 2010-06-22 Bridgelux, Inc. Inverted LED structure with improved light extraction
DE102009020127A1 (en) * 2009-03-25 2010-09-30 Osram Opto Semiconductors Gmbh led
JP2012033823A (en) 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
JP2013541220A (en) 2010-10-27 2013-11-07 コーニンクレッカ フィリップス エヌ ヴェ LAMINATED SUPPORT FILM FOR MANUFACTURING LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD
DE102012102119A1 (en) 2012-03-13 2013-09-19 Osram Opto Semiconductors Gmbh Area light source
JP6097084B2 (en) 2013-01-24 2017-03-15 スタンレー電気株式会社 Semiconductor light emitting device
US10199549B2 (en) * 2013-05-15 2019-02-05 Lumileds Llc Light emitting device with an optical element and a reflector
EP2953176A1 (en) * 2014-06-02 2015-12-09 Swarovski Energy GmbH Lighting device
JP6758313B2 (en) * 2015-03-20 2020-09-23 シグニファイ ホールディング ビー ヴィSignify Holding B.V. UV-C water purifier
EP3275021B1 (en) * 2015-03-26 2020-05-06 Lumileds Holding B.V. Light source
CN105429002B (en) * 2015-11-23 2018-10-19 深圳瑞波光电子有限公司 A kind of quanta trap semiconductor laser epitaxial structure and quantum-well laser
WO2018208964A1 (en) * 2017-05-09 2018-11-15 Forelux Inc. Optical apparatus for non-visible light applications
US11650403B2 (en) 2019-02-08 2023-05-16 Meta Platforms Technologies, Llc Optical elements for beam-shaping and illumination

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3014339B2 (en) * 1997-04-25 2000-02-28 カナレ電気株式会社 Semiconductor device having quantum wave interference layer
JP3559446B2 (en) * 1998-03-23 2004-09-02 株式会社東芝 Semiconductor light emitting element and semiconductor light emitting device
DE19955747A1 (en) * 1999-11-19 2001-05-23 Osram Opto Semiconductors Gmbh Optical semiconductor device with multiple quantum well structure, e.g. LED, has alternate well layers and barrier layers forming super-lattices
JP2001339121A (en) * 2000-05-29 2001-12-07 Sharp Corp Nitride semiconductor light emitting device and optical device including the same
JP3791765B2 (en) * 2001-06-08 2006-06-28 豊田合成株式会社 Group III nitride compound semiconductor light emitting device
US6784460B2 (en) * 2002-10-10 2004-08-31 Agilent Technologies, Inc. Chip shaping for flip-chip light emitting diode
KR100641989B1 (en) * 2003-10-15 2006-11-02 엘지이노텍 주식회사 Nitride semiconductor light emitting device
KR101163091B1 (en) * 2004-08-06 2012-07-20 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Led lamp system
US7329982B2 (en) * 2004-10-29 2008-02-12 3M Innovative Properties Company LED package with non-bonded optical element
US7330319B2 (en) * 2004-10-29 2008-02-12 3M Innovative Properties Company High brightness LED package with multiple optical elements

Also Published As

Publication number Publication date
KR20090016694A (en) 2009-02-17
EP2033236A1 (en) 2009-03-11
CN101467274A (en) 2009-06-24
EP2033236A4 (en) 2014-10-22
CN101467274B (en) 2012-02-29
JP2009540615A (en) 2009-11-19
WO2007146860A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
TW200807769A (en) LED device with re-emitting semiconductor construction and optical element
US20070284565A1 (en) Led device with re-emitting semiconductor construction and optical element
Hui et al. Design of vertically-stacked polychromatic light-emitting diodes
US7541610B2 (en) LED device with re-emitting semiconductor construction and converging optical element
US7952110B2 (en) LED device with re-emitting semiconductor construction and converging optical element
US8354682B2 (en) Radiation emitting element
KR101898680B1 (en) Nano-structured light emitting device
KR102153649B1 (en) A light emitting diode component
US9070827B2 (en) Optoelectronic device and method for manufacturing the same
JP2009540614A (en) Adaptive LED device having a re-emitting semiconductor construction
JP2007053358A (en) Light emitting device
TW201203598A (en) Light emitting devices with improved light extraction efficiency
KR20100097205A (en) Down-converted light emitting diode with simplified light extraction
JP2008205468A (en) Group iii nitride diode on low refractive index carrier substrate
Guo et al. Enhancing the light extraction of AlGaN-based ultraviolet light-emitting diodes in the nanoscale
TW200810156A (en) LED device with re-emitting semiconductor construction and reflector
JP2013033978A (en) Semiconductor light-emitting element
TWM341940U (en) Light emitting diode device
CN113838958A (en) Light emitting element
TW201006004A (en) A photonic crystal equipped solid state light-emitting component
US20140167097A1 (en) Optoelectronic device and method for manufacturing the same