TW200809825A - Optical pick-up unit for use in a multi-disc optical player - Google Patents

Optical pick-up unit for use in a multi-disc optical player Download PDF

Info

Publication number
TW200809825A
TW200809825A TW96103947A TW96103947A TW200809825A TW 200809825 A TW200809825 A TW 200809825A TW 96103947 A TW96103947 A TW 96103947A TW 96103947 A TW96103947 A TW 96103947A TW 200809825 A TW200809825 A TW 200809825A
Authority
TW
Taiwan
Prior art keywords
class
pickup unit
optical
optical pickup
record carrier
Prior art date
Application number
TW96103947A
Other languages
Chinese (zh)
Inventor
Sjoerd Stallinga
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200809825A publication Critical patent/TW200809825A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Abstract

An optical pick-unit unit for scanning a record carrier having at least one information layer, wherein the record carrier is first type of record carrier and/or at least a second type of record carrier, the optical pick-up unit comprising: at least one radiation source; at least one objective lens; at least one first optical element changeable between a first state and at least a second state; at least one second optical element with at least one structured surface for providing a wavefront aberration compensation comprising a polarization sensitive material, the structured surface having annular zones, each annular zones having a width, the annular zones forming a first stepped profile having a pattern of steps, wherein each step comprises additionally to the width of the width of the annular zone forming the step, a height. The structured surface comprises at least a second stepped profile with a number of steps forming the pattern of steps, wherein the first stepped profile and the at least second stepped profile are separated by an annular zone and the number of steps forming the pattern of steps of the first stepped profile and the number of steps forming the pattern of steps of the second stepped profile are equal in order to form at least one repetitive pattern of steps.

Description

200809825 九、發明說明: 【發明所屬之技術領域】 本發明關㈣於掃i至少具有—資訊層之紀錄載體之 -種光學拾取單元,其中根據請求項i之前文,該紀錄載 體係一具有一第一格式之第一類型紀錄載體及/或至少一 具有一第二格式之第二類型紀錄載體。 本發明進一步關於一種具有此—光學拾取單元之光碟 機0 本發明進一步關於一種具有一結構化表面之光學元件。 本發明進一步關於在掃瞄一第一類型之紀錄載體及一第 二類型之紀錄載體時,一種補償波前像差之方法。 【先前技術】 從WO 03/049095 A2知悉此一光學拾取單元。 在此領域,現在有需要用於提供光學掃瞄器件,所謂的 光學拾取單元(OPU)之光學儲存器,以掃瞄各種不同類型 之光學紀錄載體’特別係具有南資訊密度之紀錄載體,諸 如藍光光碟(BD格式)、多樣化數位光碟(dvd-格式)、高密 度多樣化數位光碟(HD-DVD-格式)及光碟(CD-格式)。每 一该4前述具有該紀錄載體之一不同實體設定,以為了達 成一不同之資訊儲存密度’特別係一不同之資訊層深度。 掃瞄一資訊層意指自該資訊層讀取資訊及/或寫入資訊 於該資訊層上及/或自該紀錄載體之資訊層抹除資訊。 資訊密度意指該資訊層每單元區域儲存資訊之量。 一紀錄載體包含一帶有一反射層之基底、至少一資訊層 118305.doc 200809825 及所明的覆蓋層,其一般而言係一由一聚合物製成之一 透明層,特別係聚碳酸酯(pc)。 資λ層深度思指該資訊層相對於一輻射光束入射之該紀 錄載體之該表面之距離。 不同類型之紀錄載體具有不同厚度之覆蓋層。舉例而 口 HD DVD具有一覆蓋層d= 〇·6公釐,其中紀錄載 體具有一覆蓋層cH 〇·ΐ公釐。因此,該資訊層深度係因 , 紀錄載體具有不同覆蓋厚度而不同,特別係HD_DVD及 BD。具有多於一資訊層像是雙層BD之該紀錄載體,根據 该等貧訊層之間之一間隔包含不同資訊層深度之資訊層。 首先,該資訊密度可藉由使用雙層或三層紀錄載體增 加,舉例而言,該雙層BD。其次,該資訊密度可藉由將 掃瞄資訊於該資訊層或自該資訊層掃瞄資訊之稱為掃瞄點 之该輻射光點之大小減小而增加。該掃瞄點之大小視形成 該掃瞄點之該輻射光束之波長λ及該數值孔徑NA而定。該 掃瞄點之大小可藉由增加該數值孔徑NA& /或減少該波長λ 而減小。 在一用於掃瞄該等前述類型之紀錄載體之光學掃瞄器件 中’主要使用二種波長λι=780奈米,人2=650奈米及人3=405 奈米之藍光雷射。最小波長λ3=405奈米係用於掃瞄該高密 度資訊儲存紀錄載體,像是HD-DVD、雙層BD及BD紀錄 載體。該用於掃瞒HD-DVD之掃瞒器件在一數值孔徑 ΝΑ-〇·65及3紀錄載體具有一覆蓋層厚度6奈米下操 作0 118305.doc 200809825 然而,該用於掃瞄BD紀錄載體之掃瞄器件在一數值孔 徑ΝΑ=0·85及具有一覆蓋層厚度d=0.1奈米之一紀錄載體下 操作。 該前述光學拾取單元一般包含放射至少一輻射光束之至 少一輻射光源、至少一分光器,以及由至少一輻射光束形 成一掃瞄光點之至少一物鏡,並且將該掃瞄光點導向該資 δίΐ層。该輕射光束沿者^ 一光轴傳播’通過該等沿著該光學 拾取單元之該光軸配置之前述光學部件,並且該掃猫光點 掃目苗該資訊入該資訊層或自該資訊層掃目苗該資訊。該掃目苗 光點係由該反射層反射,沿著該光軸傳播,並且由該分光 器導向一偵測元件,偵測該反射之掃瞄光點。 一般而言,一光栅元件配置於該輻射源後,由該放射之 ^射光束开》成二個輻射光束’以為了執行一聚焦錯誤校正 及一跟蹤錯誤校正。應該要了解的是,該三個輻射光束相 應地傳播通過該光學拾取單元,並且也由該偵測元件债 測。使用變換成電信號之該測得之信號,可執行該聚焦及 跟縱錯誤校正。 依照該物鏡之該數值孔徑ΝΑ及該不同類型紀錄載體之 該覆蓋層厚度d之不同,一不同量之波前像差,特別是該 球面像差,發生在該掃瞄光點。 為了執行該波前像差之一補償,提出了不同的解決辦 法。該 WO 03/060892 A2、US 2005/0063282 A1、 US 2005/0163015 A1&us 2〇〇5/〇122883 Ai 中提出一光 學掃瞄器#,用於掃瞄具有不同資訊密度,特別是具有不 118305.doc 200809825 同資訊層深度之紀錄載體。 【發明内容】 該揭示之光學掃瞄器件包含一用於放射三個輻射光束之 輻射源,至少一用於將該掃瞄光點導向該個別之資訊層之 物鏡系統。欲掃瞄之該等紀錄載體具有不同資訊層深度。 一包括之光學元件具有一稱作相結構之繞射結構,並帶有 一非區域(non-zoneic)階級外形。該光學元件包括一雙折 射材料,其對該輻射光束之不同偏振敏感。 該光學元件之表面之階級外形係設計以引出波前修改至 该個別的輻射光束,其中該等波前修改之量係因該等輻射 光束帶有不同波長而各自不同。 WO 03/049095 A2揭示一用於掃瞄兩個不同類型之紀錄 載體之光學掃瞄器件,特別是使用一帶有一波長λ=405奈 米之輪射光束之一雙層Bd及一 BD紀錄載體。所揭示之該 光學掃瞄器件包含一單一輻射源,其放射一具有一波長 入405奈米之輻射光束,以及包括一雙折射材料之一光學 70件,該雙折射材料具有一帶有一繞射結構之表面,以為 了在掃瞄該雙層BD紀錄載體之情況下,因該物鏡經最佳 化至该單層BD之該資訊層深度之事實,補償發生於該掃 目田光點之該波前像差。 此解決辦法不適合在掃瞄一 BD及一 HD-DVD期間發生之 忒波則像差之補償,因為該BD及HD-DVD紀錄載體之資訊 層冰度相較於該雙層BD及該等BD紀錄載體之資訊層 非常一又 7之事實。因此,在該BD及該HD-DVD紀錄载體 H8305.doc 200809825 之情況,欲補償之該波前像差非常高。 因此,本發明之一個目標係提供在一開始提及之類型之 一種光學拾取單元,其能夠補償在掃瞄該等 載體之紀錄載體,像是BD,HD_DVD,CD及二:;錄 發生之波前像差。200809825 IX. Description of the Invention: [Technical Field] The present invention relates to an optical pickup unit having at least a record carrier of an information layer, wherein the record carrier has one according to the request i A first type of record carrier of the first format and/or at least one second type of record carrier having a second format. The invention further relates to an optical disk drive having such an optical pickup unit. The invention further relates to an optical component having a structured surface. The invention further relates to a method of compensating for wavefront aberrations when scanning a first type of record carrier and a second type of record carrier. [Prior Art] This optical pickup unit is known from WO 03/049095 A2. There is a need in the art to provide an optical scanning device, an optical storage device of the so-called optical pickup unit (OPU), for scanning various types of optical record carriers, particularly for record carriers having a south information density, such as Blu-ray Disc (BD format), diversified digital disc (dvd-format), high-density diversified digital disc (HD-DVD-format) and optical disc (CD-format). Each of the aforementioned 4 has a different entity setting of the record carrier in order to achieve a different information storage density', in particular a different information layer depth. Scanning an information layer means reading information from the information layer and/or writing information on the information layer and/or erasing information from the information layer of the record carrier. Information density refers to the amount of information stored in each unit area of the information layer. A record carrier comprises a substrate with a reflective layer, at least one information layer 118305.doc 200809825 and a cover layer as generally described, which is generally a transparent layer made of a polymer, in particular polycarbonate (pc) ). The λ layer depth refers to the distance of the information layer from the surface of the record carrier into which a radiation beam is incident. Different types of record carriers have overlays of different thicknesses. For example, the HD DVD has a cover layer d = 〇 · 6 mm, wherein the record carrier has a cover layer cH ΐ · ΐ mm. Therefore, the depth of the information layer is different because the record carrier has different coverage thicknesses, especially HD_DVD and BD. The record carrier having more than one information layer image is a double layer BD, and the information layer of different information layer depths is included according to one interval between the layers of the poor layer. First, the information density can be increased by using a two- or three-layer record carrier, for example, the two-layer BD. Secondly, the information density can be increased by reducing the size of the radiation spot, which is called the scanning point, by scanning information from the information layer or from the information layer. The size of the scanning point depends on the wavelength λ of the radiation beam forming the scanning point and the numerical aperture NA. The size of the scan point can be reduced by increasing the numerical aperture NA&/or decreasing the wavelength λ. In an optical scanning device for scanning these types of record carriers, 'two types of blue lasers of wavelength λι = 780 nm, human 2 = 650 nm and human 3 = 405 nm are used. The minimum wavelength λ3 = 405 nm is used to scan the high-density information storage record carrier, such as HD-DVD, dual-layer BD and BD record carrier. The broom device for brooming HD-DVD operates on a numerical aperture ΝΑ-〇·65 and 3 record carrier having a cover layer thickness of 6 nm. 0 118305.doc 200809825 However, the scan BD record carrier The scanning device operates under a numerical aperture ΝΑ = 0.85 and a record carrier having a blanket thickness d = 0.1 nm. The optical pickup unit generally includes at least one radiation source that radiates at least one radiation beam, at least one beam splitter, and at least one objective lens that forms a scan spot by at least one radiation beam, and directs the scan spot to the δίΐ Floor. The light beam propagates along the optical axis of the optical component through the optical axis disposed along the optical axis of the optical pickup unit, and the scanning spot is scanned into the information layer or from the information The layer sweeps the seedlings for this information. The lightning spot is reflected by the reflective layer, propagates along the optical axis, and is guided by the optical splitter to a detecting component to detect the reflected scanning spot. In general, after a grating element is disposed in the radiation source, the radiation beam is split into two radiation beams to perform a focus error correction and a tracking error correction. It should be understood that the three radiation beams are correspondingly propagated through the optical pickup unit and are also measured by the detection element. The focus and tracking error correction can be performed using the measured signal transformed into an electrical signal. Depending on the numerical aperture of the objective lens and the thickness d of the cover layer of the different types of record carriers, a different amount of wavefront aberration, particularly the spherical aberration, occurs at the scanning spot. In order to perform one of the wavefront aberrations, different solutions have been proposed. An optical scanner # is proposed in WO 03/060892 A2, US 2005/0063282 A1, US 2005/0163015 A1 & us 2〇〇5/〇122883 Ai for scanning different information densities, in particular having 118305.doc 200809825 The record carrier with the depth of the information layer. SUMMARY OF THE INVENTION The disclosed optical scanning device includes a radiation source for emitting three radiation beams, at least one objective lens system for directing the scanning spot to the individual information layers. The record carriers to be scanned have different information layer depths. An optical component included has a diffractive structure called a phase structure with a non-zoneic class profile. The optical component includes a birefringent material that is sensitive to the different polarizations of the radiation beam. The level profile of the surface of the optical element is designed to extract the wavefront modification to the individual radiation beams, wherein the amount of the wavefront modification is different for each of the radiation beams having different wavelengths. WO 03/049095 A2 discloses an optical scanning device for scanning two different types of record carriers, in particular using a double layer Bd with a wavelength of λ = 405 nm and a BD record carrier. The optical scanning device disclosed includes a single radiation source that emits a radiation beam having a wavelength of 405 nm and an optical device comprising one of a birefringent material having a diffraction structure. a surface for compensating for the wavefront of the spot of the sweeping field in order to scan the double-layer BD record carrier for the fact that the objective lens is optimized to the depth of the information layer of the single-layer BD Aberration. This solution is not suitable for the compensation of the aberrations caused by the chopping during the scanning of a BD and an HD-DVD, because the information layer ice of the BD and HD-DVD record carriers is compared to the double layer BD and the BD. The fact that the information layer of the record carrier is very one and seven. Therefore, in the case of the BD and the HD-DVD record carrier H8305.doc 200809825, the wavefront aberration to be compensated for is very high. Accordingly, it is an object of the present invention to provide an optical pickup unit of the type mentioned at the outset which is capable of compensating for recording carriers that scan such carriers, such as BD, HD_DVD, CD and two; Pre-aberration.

本發明之一個進一#目標係提#一種光碟冑,其能夠掃 瞄不同類型之紀錄載體,像是2〇及HD_DVD、、DVD 等等。 本發明之-個進一步目標係提供一種用於在一掃瞄不同 類型光學載體之光學拾取單元中波前像差補償之方法。 根據本發明之一態樣,該目標係參照在開始提及之該光 予扣取單元達成,因為該結構化表面至少包含一帶有形成 -階級圖案之-第二數量階級之第二階級外形,其中該第 P白級外形及至少該第二階級外形係由一環狀帶分開,並 且該第一階級外形之階級之數量與該第二階級外形之階級 之數里相等’以為了至少形成一重複的階級圖案。One of the objects of the present invention is an optical disc cartridge capable of scanning different types of record carriers such as 2〇 and HD_DVD, DVD, and the like. A further object of the present invention is to provide a method for wavefront aberration compensation in an optical pickup unit that scans different types of optical carriers. According to one aspect of the invention, the object is achieved with reference to the light-forwarding unit mentioned at the outset, since the structured surface comprises at least a second-order shape with a second-order class of a formation-class pattern, Wherein the Pth white level profile and at least the second class profile are separated by an endless belt, and the number of classes of the first class profile is equal to the number of classes of the second class profile to form at least one Repeated class pattern.

根據本發明,為了了解一結構化表面之功能,該光學拾 取單元(OPU)之該工作原則在以下簡短說明。該光學拾取 單元適合掃瞄一第一類型之紀錄載體及/或至少一第二類 型之紀錄載體,其中該第一類型之紀錄載體,特別是一 BD,具有一第一格式,並且該第二類型之紀錄載體,特 別疋一HD-DVD具有一第二格式。該第一類型之紀錄載體 及該第二類型之紀錄載體具有不同厚度之覆蓋層,造成一 不同之資吼層深度。該OPU之該數值孔徑NA也不同:BD 118305.doc -9- 200809825 是 ΝΑΒΟ=0·85並且 HD-DVD是 NAHD_DVD=〇.65。 每一紀錄載體之該資訊層可在鄰近凹槽之間包含凹槽及 連接盤,#中鄰近凹槽之間之距離因不同類型之紀錄載體 而不同。 繞射輻射光束内之該等輻射光束係聚焦於該第一或該第 該光學拾取單元至少包含一輻射源,較佳的是一半導體 雷射’放射-具有-較佳波似=405奈米之輕射源,其 中该輻射光束沿著一光路徑傳播。該光學拾取單元進一步 包含一光柵元件,用於接收該輻射光束以產生一第η順= 繞射輻射光束及至少第爪及第_序之繞射輻射光束,稱作 輔助輻射光束,當該輻射光束通過該光柵元件時,其中以 及1不等於η。在第n順序繞射輻射光束以及第m及第丨順序 類型之紀錄載體之—f訊層i ’以便形成該第_序繞射 輪射光束之-掃晦光點。該第n順序繞射輕射光束之光點 係聚焦於從之掃瞒資訊之該連接盤或—凹槽。該第爪及第! 順序繞射輻射光束可聚焦於該鄰近之凹槽或連接盤,或是 Η刀聚焦於連接盤至凹槽之變遷段,視掃猫之紀錄載體種 類而定。 該掃瞒光點㈣該資訊於該紀錄載體之資訊層上,或是 自忒紀錄载體之該資訊層掃瞄該資訊,其中該第茁及第_ 序、凡射幸田身φ光束可用力執行該聚焦錯誤跟縱及/或徑向錯 获' 跟縱。 凹槽中之標號或凹處,根 之輻射光束在讀取期間調 由於該資訊層之該等連接盤或 據該紀錄載體上之資訊,該反射 H8305.doc -10- 200809825 變。該反射之輻射光束及該反射之輔助光束在導向一偵測 元件前,通過一進一步之光學元件,舉例而言,一四分之 -波片及-準直透鏡。該偵測元件包含偵測該主要輻射光 束及該輔助輻射光束之偵測元件部件。本文中,該偵測元 件部件係在-般將㈣測之n射光束之光轉換成電信號之 光象限制元件部件中。該電信號係提供至一產生一聚焦 錯誤信號及跟鞭錯誤信號之聚焦錯誤谓測環4。如果該掃 晦光點不在所要之位置’該等錯誤信號係用於調整該光學 拾取單元内之光學部件。 較佳的是,該偵測元件至少包含三個光象限偵測元件部 件’每一光象限制元件部件具有一用於伯測該入射輻射 光束之光敏表面。 該:射光束係通過厚度d之該覆蓋層聚焦於該紀錄載體 之5亥貧訊層上。由該輻射光束形成該輻射光束點,稱作掃 目田光點之该物鏡係以補償經由該覆蓋層造成之—球面像差 之此-方法設計,因為在該資訊層之該掃晦光點一般係) 像差。 …、 狀 处該光學拾取單元包含一第一光學元件,其可在一第 恶與至少一第二狀態之間改變。 為了執行補償因該第—_刑 > 茨弟類型紀錄載體及該第二類型紀錄 人U層/木度之不同而在該掃_光點發生之波前像差,' :二偏振敏感材料並具有-結構化表面之-第二光學元 二匕括於該輻射光束之該*學路㈣。較佳的是,帶有 该結構化表面之該光學元件係包括於該光東分離部件: 118305.doc 200809825 別是一偏振光束分離器,與至少該一物鏡之間。該結構化 表面包含具有一寬度之角區域,其中形成一具有一階級圖 案之階級外形,其中每一階級之寬度係由該對應之角區域 形成。每一鄰近階級具有一高度;階級組合至一階級外 形’形成該階級外形之高度。 根據本發明’該結構化表面至少包含兩個階級外形,其 具有形成一階級圖案之許多階級,其中該第一階級外形及 至少該第二階級外形係由一環狀帶分開,並且形成該第一 p白、’及外幵》之階級圖案之階級數量與形成該第二階級外形之 階級圖案之階級數量相等。藉此,有助益地,一重複階級 圖案係由該兩個階級外形形成。因此,該重複階級圖案形 成一週期性的繞射結構。 本文中,該階級外形之邊界配置在一欲校正像差功能等 於整數倍數λ之半徑配置。 因為該第二光學元件之該偏振敏感材料,該第二光學元 件之该繞射結構是否影響該輻射光束係視該輻射光束之該 偏振而疋。該輪射光束之該光學路徑内每-光學部件加一 不同里之波前像差至該輻射光點。 °亥^級之圖案,也稱作相階級,可製成對於一偏振方向 有效,並且斜於兄 t於另一正交偏振方向大致上無效,因為針對 該一偏振與該正交偏振所觀察之該折射率 …、 根據本發明之 階級外形,:a:由 一較佳之具體實施例,In accordance with the present invention, in order to understand the function of a structured surface, the principle of operation of the optical pickup unit (OPU) is briefly described below. The optical pickup unit is adapted to scan a first type of record carrier and/or at least a second type of record carrier, wherein the first type of record carrier, in particular a BD, has a first format, and the second A type of record carrier, in particular a HD-DVD has a second format. The first type of record carrier and the second type of record carrier have overlay layers of different thicknesses resulting in a different depth of the layer. The numerical aperture NA of the OPU is also different: BD 118305.doc -9- 200809825 is ΝΑΒΟ=0·85 and HD-DVD is NAHD_DVD=〇.65. The information layer of each record carrier may include a groove and a land between adjacent grooves, and the distance between adjacent grooves in # differs depending on the type of record carrier. The radiation beam in the diffracted radiation beam is focused on the first or the first optical pickup unit comprising at least one radiation source, preferably a semiconductor laser 'radiation-having-better wave=405 nm a light source, wherein the radiation beam propagates along an optical path. The optical pickup unit further includes a grating element for receiving the radiation beam to generate an η s = diffracted radiation beam and at least a first and a first order diffracted radiation beam, referred to as an auxiliary radiation beam, when the radiation When the beam passes through the grating element, where 1 and 1 are not equal to η. The n-th order diffracted radiation beam and the -f signal layer i' of the mth and third order record carriers are formed to form a broom spot of the first-order diffracted beam. The nth order diffracts the light spot of the light beam to focus on the land or groove from which the broom information is viewed. The claw and the first! The sequential diffracted radiation beam can be focused on the adjacent groove or lands, or the trowel can be focused on the transition from the lands to the grooves, depending on the type of record carrier that sweeps the cat. The broom spot (4) the information is on the information layer of the record carrier, or the information layer of the record carrier is scanned for the information, wherein the third and the _ Perform this focus error with vertical and/or radial misalignment. The mark or recess in the groove, the radiation beam of the root is adjusted during the reading due to the lands of the information layer or according to the information on the record carrier, the reflection H8305.doc -10- 200809825 changes. The reflected radiation beam and the reflected auxiliary beam pass through a further optical component, for example, a quarter-wave plate and a collimating lens, before being directed to a detecting element. The detecting component includes detecting component components for detecting the primary radiation beam and the auxiliary radiation beam. Herein, the detecting element component is converted into a light-restricting element component of the electric signal by the (four) measured n-beam. The electrical signal is supplied to a focus error preamble 4 which produces a focus error signal and a whip error signal. If the sweep spot is not in the desired position, the error signals are used to adjust the optical components within the optical pickup unit. Preferably, the detecting element comprises at least three light quadrant detecting element parts. Each light image limiting element part has a photosensitive surface for detecting the incident radiation beam. The beam is focused by the cover layer of thickness d on the 5th layer of the record carrier. The radiation beam is formed by the radiation beam, which is called the objective lens of the sweeping field to compensate for the spherical aberration caused by the cover layer, because the broom spot in the information layer is generally Department) Aberration. The optical pickup unit includes a first optical element that is changeable between a first evil and at least a second state. In order to perform compensation for the wavefront aberration occurring at the sweeping point due to the difference between the first and the second type of record carrier and the second type of recorder U layer/woodness, ': two polarization sensitive material And having a - structured surface - the second optical element is included in the radiation path of the radiation beam (four). Preferably, the optical component with the structured surface is included in the optically separated component: 118305.doc 200809825 is another polarization beam splitter, and at least the objective lens. The structured surface includes an angular region having a width in which a class profile having a class pattern is formed, wherein the width of each class is formed by the corresponding angular region. Each adjacent class has a height; the class combination to a class external shape forms the height of the class shape. According to the invention, the structured surface comprises at least two class profiles having a plurality of classes forming a class pattern, wherein the first class profile and at least the second class profile are separated by an endless belt and form the The number of classes in the class pattern of a white, 'and outer scorpion' is equal to the number of classes that form the class pattern of the second class. By this, it is helpful to have a repeating class pattern formed by the two class shapes. Therefore, the repeating class pattern forms a periodic diffraction structure. Herein, the boundary of the class outline is arranged in a radius configuration in which the aberration function is equal to an integral multiple λ. Because of the polarization sensitive material of the second optical component, whether the diffractive structure of the second optical component affects the radiation beam is dependent on the polarization of the radiation beam. In the optical path of the laser beam, a different wavefront aberration is added to each optical component to the radiation spot. The pattern of the level of the level, also known as the phase, can be made effective for one polarization direction, and is obliquely ineffective for the other orthogonal polarization direction because it is observed for the polarization and the orthogonal polarization. The refractive index..., according to the class shape of the present invention, a: by a preferred embodiment,

118305.doc 實施例,至少提供一進一步 進一步階級外形之階級圖案 及第二階級外形之階級圖案 -12- 200809825 之:級數量,形成至少一具有至少—帶有重複之相等階級 數里之圖案階級之結構化表面之該等階級外形。 »玄光予7L件t至少一結構化表Φ包含帶有該階級圖案之 一相同數量之階級之三個階級外形。關於該物鏡之光瞳之 該光學元件之至少-結構化表面之戴面可於是分成複數個 區域’每-區域由-階級外形構成,其表示該階級外形包 含相同數量之階級,其中每一階級具有一高度。 此一光學元件中 可受該階級之數量 該輻射光束中引入之波前像差之量, 以及個別之該選取階級高度及寬度影 由於為等不同f訊層深度在該掃目培光點中引人之該等波 前像差將在之後簡短解釋: 沿著一光學路徑傳播之一輻射光束具有一帶有一預定外 形之波前W,其由以下方程式提供: W = 土 λ 2π 其中’ λ係該輻射光束之該波長,並且φ係該輻射光束 之相。 在該輻射光束通過之每一光學部件中,引入波前像差 Wabb,因為在實際情況中,該光學部件係非完善的。對於 一圓孔之波刖像差可由表示一完整組之表面變形之所謂的 任尼克多項式(Zernike P〇lynomial)描述,藉其一任意波像 差可擴張成固定大小之離散形狀。此使得將該波前像差分 類,並且量化描述該表面變形變得可能。該等任尼克多項 118305.doc -13 - 200809825 式係在該光學元件之出口氺日备0 4 卞心出口九目里及包含一半徑項R(r)之極座 標中律定’其表示成及m , ^ K以及一相依於該方位角φ之項, 由: Ζ:(^φ) = Κ- sin(m^) f〇r m>〇 cos(m^) f〇r /72 < 〇 1 for m = 〇5 其中該孔徑經規格化,因此㈣...i,並且該方位角φ係 在該X軸反時針方向測量。x=r.c〇s +、ynh小。 該等指數nh代表個別之徑向方位順序。這些指數係 由於所使用之約定,並^與該第讀第_序之繞射輕射 光束之η及m混淆。 舉例而言,第-順序波前像差係波前傾斜或失真、第二 順序波前像差係欄位及㈣、之像差及曲率、第三順序波前 像差係球面收差。球面像差係該第四順序之波前像差。散 焦及球面像差係圓對稱,並且因該光軸上對稱物件點發 生’其表示它們在垂直於該光軸之該平面内任何方向上係 相依的。 -具有該輻射光束之光學路徑内—光軸之光學元件之引 入引起額外的波前像差’並藉以引起該輻射光束内一波前 修改ΔΙ。自該資訊層深度之—設計值離差之—特定資訊 層=度之該紀錄載體之資訊層上之掃晦光點將㈣面像差 所古。舉例而f ’此可藉由加入帶有朝向該資訊層深度之 該輻射光束㈣相反符號之該相狀球面像差引人波前像 差來補償。該波前修改鳄係該波前…之形狀及可能一第 118305.doc -14- 200809825 一、一第二等順序之形狀之一修改,或是可引入該輻射光 束中一連續的相改變。一固定之相改變意指在取用該波前 修改AW之係數2π後,該結果波前係固定的。該輻射光束 之該相改變ΔΦ係由以下方程式提供·· 該光學元件補償該物鏡引入之波前像差之量,特別是球 面像差’此像差係因針對BD紀錄載體與HD-DVD紀錄載體 而言,該掃目苗光點上不同類型紀錄載體之資訊層深度相異 所致。該球面像差内之不同係得自於2 31 μιη=1 16 λ rms。该像差函數之對應之尖峰值係估計為3 ·9入。 可補償之球面像差量之差係介於一雙層BD之兩層級之 間,約 10 Γηλ/μιη·25 μιη=0_25 λ rms,其造成約 〇·84 λ之像 差函數之一相對應之尖峰值。 一產生一帶有一小於λ之尖峰值像差之合適之繞射結構 係-非週期性結構’舉例而言’該環狀帶之階級高度之順 序係非一重複之順序。此非週期性繞射結構係在 WO 03/G49G95 Α2中描述。為了校正大於兩類型之紀錄载 體之間兩球面像差内之差λ,-非週期性之相結構係非較 佳的,特別是當該第-及第二類型之紀錄載體之該掃瞒波 長係大約相同日夺,舉例而言,之於掃晦BD及HD_DVD。 因此’執行該波前像差之補償之該第二光學元件需要包 含一不同之結構,特別是一週期性結構化表面。 對於該掃目咖及HD_DVD而言,該前述之週期性結構化 118305.doc -15- 200809825 表面具有重複的至少兩階級外形係有助益的。 偏振敏感材科,諸如雙折射材料,係當通過時,影響該 輪射光束之材料。—由—偏振材料製成之光學元件,視立 偏振在光束作用不同。舉例而言,用於此光學元件 之此偏振敏感材料可係聚合及/或結晶的材料,或是液晶 聚合物。 偏振描述用於該相對於該輻射光束之傳播之—方向之電 場向量E—之偏振之平面,其係該光軸。偏振描述該輕射光 束具有一相對於該輕射光束之傳播之-方向之電場向量, 其一般而言係該光軸。第—偏振係關於_具#該電場向量 之第-定向之輻射光束’並且第二偏振係關於一具有一第 :定:之輻射光束’其中該第一定向—般而言係正交於該 第一疋向。一射光束之該偏振可由—電光元件修改:該 偏振是否改變,視該電光元件之狀態而定。 激發在該第一狀態中之該電光元件之該輻射光束具有一 相對於激發在該第二狀態中之該光電元件之該輕射光束之 弟-偏振’其具有—不同於該第—偏振之第二偏振。 根據本發明—進—步較佳具體實施例,階級之圖案至少 包含三個階級’其中該階級外形具有—第一高度。該等古 射率n係由該方程式獲得: Φ118305.doc embodiment, at least providing a class pattern of further class shape and a class pattern of the second class shape -12-200809825: the number of levels forming at least one of the class classes having at least the same number of classes with repetitions The class shape of the structured surface. »Xuanguang to 7L pieces t At least one structured table Φ contains three class shapes with the same number of classes of the class pattern. The at least-structured surface of the optical element relating to the pupil of the objective lens can then be divided into a plurality of regions 'per-region consisting of a class profile, which means that the class profile contains the same number of classes, each class Has a height. The amount of wavefront aberration introduced into the radiation beam by the number of the class in the optical element, and the height and width of the selected class are different in the scanning spot. The wavefront aberrations that are introduced will be briefly explained later: One of the radiation beams propagating along an optical path has a wavefront W with a predetermined shape, which is provided by the following equation: W = soil λ 2π where ' λ The wavelength of the radiation beam, and φ is the phase of the radiation beam. In each optical component through which the radiation beam passes, a wavefront aberration Wabb is introduced because in practice the optical component is imperfect. The wavefront aberration for a circular aperture can be described by a so-called Zernike P〇lynomial, which represents a complete set of surface deformations, by which an arbitrary wave aberration can be expanded into a discrete shape of a fixed size. This makes it possible to classify the wavefront image and to quantify the surface deformation. The nickname 118305.doc -13 - 200809825 is based on the exit of the optical component. The output of the optical component is 0 4 卞心出口九目 and the polar coordinate containing a radius term R(r) m , ^ K and a term dependent on the azimuth φ, by: Ζ:(^φ) = Κ- sin(m^) f〇r m>〇cos(m^) f〇r /72 < 〇 1 for m = 〇5 where the aperture is normalized, so (d)...i, and the azimuth φ is measured counterclockwise in the X-axis. x=r.c〇s +, ynh is small. These indices nh represent individual radial orientation sequences. These indices are due to the conventions used and are confused with the η and m of the diffracted light beam of the first reading. For example, the first-order wavefront aberration is a wavefront tilt or distortion, the second sequential wavefront aberration field and (4), the aberration and curvature, and the third-order wavefront aberration is a spherical aberration. The spherical aberration is the wavefront aberration of the fourth order. The defocus and spherical aberrations are circularly symmetrical, and because of the point on the optical axis, the symmetrical object points occur, which indicates that they are dependent in any direction perpendicular to the plane of the optical axis. - the introduction of an optical element having an optical axis within the optical path of the radiation beam causes an additional wavefront aberration &' and thereby causing a wavefront modification within the radiation beam to modify ΔΙ. From the depth of the information layer—the deviation of the design value—the specific information layer=degree of the broom spot on the information layer of the record carrier will be (4) surface aberration. For example, f' can be compensated for by introducing a phasefront aberration with the opposite spherical sign of the radiation beam (4) towards the depth of the information layer. The wavefront modifies the crocodile's shape and may be modified by one of the shapes of the first, second, or second order, or a continuous phase change in the radiant beam may be introduced. A fixed phase change means that the resulting wavefront is fixed after modifying the coefficient 2π of the AW before the wave is taken. The phase change ΔΦ of the radiation beam is provided by the following equation: · The optical component compensates for the amount of wavefront aberration introduced by the objective lens, especially the spherical aberration'. This aberration is for the BD record carrier and the HD-DVD record. In terms of the carrier, the information layers of different types of record carriers on the spot of the sweeping seed are different in depth. The difference in the spherical aberration is obtained from 2 31 μηη=1 16 λ rms. The corresponding peak value of the aberration function is estimated to be 3 · 9 in. The difference between the compensated spherical aberration amounts is between two levels of a double-layer BD, about 10 Γηλ/μιη·25 μιη=0_25 λ rms, which causes one of the aberration functions of about 〇·84 λ to correspond. The peak of the peak. A suitable diffraction structure-aperiodic structure with a sharp peak aberration less than λ is produced. For example, the order of the class height of the annular band is not a repeating sequence. This non-periodic diffraction structure is described in WO 03/G49G95 Α2. In order to correct the difference λ between the two spherical aberrations between the two types of record carriers, a non-periodic phase structure is not preferred, especially when the broom of the first and second types of record carriers The wavelengths are approximately the same, for example, on broom BD and HD_DVD. Thus the second optical element performing the compensation of the wavefront aberration needs to comprise a different structure, in particular a periodically structured surface. For the sweeping coffee and HD_DVD, the aforementioned periodic structuring 118305.doc -15-200809825 surface has a repeating at least two-stage shape that is helpful. Polarization sensitive materials, such as birefringent materials, affect the material of the laser beam as it passes. - An optical component made of a polarizing material that has a different effect on the beam. For example, the polarization-sensitive material used for the optical element may be a material that polymerizes and/or crystallizes, or a liquid crystal polymer. The polarization describes the plane of polarization for the electric field vector E of the direction of the propagation of the radiation beam, which is the optical axis. Polarization describes the light beam having an electric field vector relative to the direction of propagation of the light beam, which is generally the optical axis. a first-polarization system with respect to a first-oriented radiation beam of the electric field vector and a second polarization system having a first-order radiation beam, wherein the first orientation is generally orthogonal to The first direction. The polarization of a beam of light can be modified by an electro-optic element: whether the polarization changes, depending on the state of the electro-optic element. The radiation beam that excites the electro-optic element in the first state has a dipole-polarization relative to the light beam that excites the optoelectronic component in the second state - it has - unlike the first polarization Second polarization. According to a preferred embodiment of the invention, the pattern of the class comprises at least three classes 'where the class profile has a first height. These archaeological rates n are obtained from the equation: Φ

λ 度h及該階級之影響,以及在該相對應相上之該材料之: 依該光學元件内輻射光束 入射之該偏振之情況 η可是 HB305.doc -16- 200809825 “該光學元件之材料之異常折射率)或是n。(該正常折射 率),其中η。不同於〜。 此造成用於該異常及該正常模式兩不同對應相: Φ = ^ ' h e ------- R 及 φ = ' D h . 〇 ------ )The λ degree h and the influence of the class, and the material on the corresponding phase: Depending on the polarization of the radiation beam incident on the optical element, η may be HB305.doc -16- 200809825 "Material of the optical component Anomalous refractive index) or n (the normal refractive index), where η is different from ~. This causes two different corresponding phases for the anomaly and the normal mode: Φ = ^ ' he ------- R And φ = ' D h . 〇------ )

R 表達引入該個別紀錄載體之個別資訊層上之該掃目苗光點 之不同量之波前像差。 該等相%與仏規模之比例,表達以: ^ = n〇 - 1 φβ , 其在實際情況中,視所使用的材料,相當接近〇·75,其 表示3:4。此暗示採用一階級數” 對於Ν 3,该正常模式可採用於掃瞄該bd紀錄載體,並 且用於知瞄該HD-DVD紀錄載體之該異常模式。具有卜〇, 、 丨,2之該三個單一階級之該等高度之總和形成之該外形之 该等高度係得自: hj-j· η。- 1 藉此,用於該BD紀錄载體之該等相係以之整數倍,並 且用於該HD-DVD之該等紀錄載體係8·π/3之倍數。此表示 3正$杈式對應於該光學元件之該階級外形之該第〇繞 射順序’並且該異常模式對應於該光學元件之該階級外形 之该m二第-1繞射順序。該對於H]>dvd之繞射效率係接近 118305.doc 200809825 27/4·π2==68% 〇 該最小角區域之對應寬度大約係η·4微米。 根據進步較佳之具體實施例,該階級之圖案至少包 含四個階級,其造成一該階級外形之第二高度。 該階級外形内之四個階級對應於汉=4及』=〇,丨,2, 3,以 及: 5 之一高度,因此用於該BD紀錄載體之該等相係2π之整 數倍數,並且用於該HD-DVD之該等相係3π/2之倍數。此 表示該異常模式對應於該m=〇繞射順序,並且該正常模式 對應於該m=l繞射順序。對於該HD-DVD,該繞射接著有 效率地非常接近8/π2=81%。 忒欲杈正像差函數及該繞射結構之該等高度外形係繪示 於圖4。該像差函數(以半徑測量)係得自於: Φ-6 l-224xr2-32.375xr4-9.459xr6-1.209xr8 5 其中當該半徑光瞳座標係以公釐提供。該對應物鏡之光 目里直徑採為3.0公釐,用以掃瞄一 BD#錄載體。該用於掃 瞄一 HD-DVD紀錄載體之有效率光瞳直徑係接著得自於: 〇·65/〇·85·3·0 mm=2.29 mm 〇 此係因為用於該HD-DVD紀錄載體之該光瞳直徑隨該數 值孔徑NA調整比例,用於該HD-DVD紀錄载體係 ΝΑ=0·65,並且用於該BD紀錄載體係ΝΑ=〇·85。 該最小區域係該外部區域,並具有一寬度8·5微米,該 較佳之階級高度係〇·5226微米,並且該最大階級高度係 118305.doc -18- 200809825 1_57微米(對於一具有n〇=1 575及ne=1 775之材料)。可知 道,該每一階級外形具有四階級之階級外形造成一較該具 有三個階級之階級外形更高之效率。相較於一具有三階級 之階級外形,欲使用之寬度係較小。 根據本發明一進一步較佳具體實施例,該階級圖案包含 具有不同寬度之階級。 該階級之寬度影響該階級外形之總寬度。具有不同寬度 之階級對使用於接合一使用一固定階級數量之階級外形之 寬度係有助益的。 根據本發明一進一步較佳具體實施例,該波前像差補償 包括球面像差。 球面像差特別是在假使該光學紀錄播放器之物鏡將該掃 瞄光點聚焦於具有一不同於該物鏡為之校正之該資訊層深 度之資訊層深度之資訊層時發生。此發生於一光學拾取單 元内,其經設計以掃瞄一具有一第一格式之第一類型之紀 錄載體,其中該第一格式包括一第一資訊層深度,並且其 係用於掃瞄一具有一帶有一第二資訊層深度之第二袼式之 苐一類型紀錄載體。 球面像差可藉由加入由該光學元件引入之額外之球面像 差校正,該光學元件包含一敏感材料及一具有階級外形之 結構化材料。一量之球面像差適於補償引入至一輻射光束 之波前像差,其已通過具有一具有階級外形之結構化表面 之该光學元件,其中該等階級外形具有一階級之重複 案。 ’ 118305.doc -19- 200809825 根據本發明一進一步較佳之具體實施例,該光學元件之 材料係m折射率ne之雙折射材料,用於該具有 一平行於該光軸之偏振之輻射光束,並且至少一第二折射 率η。,用於該具有-垂直於該第一偏振之第二偏振之輻射 光束,該第-折射率〜及該第二折射率η。係不同的,造成 對該輻射光束-不同像差量之引入,其中引入帶有第一偏 振之輻射光束係有別於帶有第二偏振之輻射光束。 視該輻射光束之該偏振的情況,當通過一雙折射材料之 -光學部件,雙折射造成將—㈣光束之—射線分割成兩 射線,該正常射線及該異常射線◊雙折射材料之例子係方 解石結晶、玻璃紙或液晶。 」亥雙折射係由:Δη、,量化,其中如果〜係用於該異 吊射線之折射率,則n〇係用於該正常射線之該折射率。該 正常及異常射線皆折射。在此所考慮僅在特殊之情況下, 也就是一階級外形.,像是每一階級表示一相,其對於一第 :偏振狀態係2π之一倍數,當該光學元件在此第一偏振狀 二守"亥光學元件對該光束不具有影響,但是當其在該第 二正交偏振狀態時,對該光束具有一絕對影響。 在該偏振分光器配置後,該偏振本身係相對地受前述之 Λ第光學元件影響。因此,選擇該直角偏振,額外的球 面像差係藉由該光學元件之階級外形引入至具有該第二偏 振狀態之該輻射光束。具有該第一偏振狀態之該輻射光束 偏振不文影響,其表示無額外球面像差引入該輻射光束。 接著,實現一執行該波前像差,特別是該球面像差之補 H8305.doc -20- 200809825 償之光學元件。 根據一進一步之動:彳土 1> 較么/、體實施例,該第一折 第二折射率η。根據一方鞀七仫& ^ 耵旱\及該 ^^M#:〇.65.(ne„1)<(n〇_1)<〇85(ne_i)〇 & 式遵 該異常折射ne與該正常折 有的。-具有雙折射特性,以用於一光學拾 之例子係:方解石、石英、機械延伸聚合物膜。 根據一進一步較佳具體實施例,該雙折射 聚合物。 、,從日曰 液晶聚合物相結構可藉由在該單體相複製於-帶有模子 之基體上’該模子將該階級外形壓入該膜,之後,該結構 藉由聚合固定,如同例如紫外照明可達成的—樣。該折射 率之差An=ne-n()係大致介於〇.丨與〇 3之間之範圍。 根據一進一步具體實施例,對於該第二偏振之輻射光 束,球面像差之量大體上係零。 有益的是,該第二光學元件經設計,諸如值為零之一球 面像差之量引入至通過該光學元件之輻射光束。 根據一進一步具體實施例,對於該第一偏振之輻射光 束,球面像差之量大體上係零。 接著,一球面像差使用一帶有該倒反偏振之輻射光束引 入。有助益地,該第二光學元件經設計,因此值為零之一 球面像差之量引入至通過該光學元件之輻射光束。 根據本發明一進一步具體實施例,該光學元件配置於該 光學拾取單元,以為了接收一準直狀態中之該第一輻射光 118305.doc -21 - 200809825 束。 對於將該元件置於-準直光束之原因係,相對於該物 鏡,其位置較佳係固定,以為了當該元件之(横向)位置相 對於該物鏡因例如偏位而改變時避免彗形像差。入射於該 物鏡之光束較佳係準直的,以為了避免用於碟片或紀錄= 體之該放大之改變至制器,其可發生在當該物鏡之轴位 置為了保持該掃瞄光點聚焦而改變時。 根據本發明一進一步較佳具體實施例,該光學拾取單元 包含-準直透鏡,其中該第二光學元件配置於該準直透鏡 與至少該一物鏡之間。 使用一準直透鏡於該光學元件前係一瞄準該輻射光束之 簡單方法。 根據本發明一進一步較佳具體實施例,該光學拾取單元 匕a第一物鏡經配置以形成一掃瞄光點於一第三類型紀 錄載體之資訊層上,以為了獲得一用於至少掃瞄三種不同 類型具有不同格式之紀錄載體之光學拾取單元。 當使用一具有一第一波長λι=4〇5奈米之一輻射光束執行 BE^HD-DVD之掃瞄時,DVD及/或CD之掃瞄係使用一第 一波長執行,特別是人2=780奈米用於CD及/或λ3 = 650奈米 ' 口此’為了知瞎該不同類型之紀錄載體,舉例 而5,一光學拾取單元包含三個放射前述波長λι、^及心 幸田射光源。為了最佳化一 CD及/或DVD之該資訊層上該 帝田光點之形成’一第二物鏡係較佳配置於該光學拾取單 兀内。此係由於用於該CD及該DVD之波長、數值孔徨及 118305.doc -22- 200809825 資訊層深度有別於該BD及該HD_DVD之事實,並且因此需 要一物鏡經設計以校正不同量之球面像差。 根據本發明一進一步較佳具體實施例,該至少一物鏡係 可裝載於一致動器内,以相對於該紀錄載體之資訊層深度 機械地改變該物鏡之位置。 當掃瞒該紀錄載體,該聚焦錯誤校正係藉由使用該债測 =件偵測該掃猫光點之焦點,並且調整該物鏡之位置以執 仃。相對於該紀錄載體之資訊層深度該物鏡之位置之調整 大致上係藉由一致動器機械地執行。 内一標準部件。 該光學拾取單元 上之輻射光束之 包含此一致動器係作為該光學拾取單元 根據本發明一進一步較佳具體實施例, u 3用於引入一導向該紀錄載體之資訊層 政焦之進一步光學元件。R expresses different amounts of wavefront aberrations of the spotted spot on the individual information layers of the individual record carrier. The ratio of the % of the phase to the scale of the enthalpy is expressed as: ^ = n〇 - 1 φβ , which in practice depends on the material used, which is quite close to 〇·75, which represents 3:4. This implies the use of a class number. For Ν 3, the normal mode can be used to scan the bd record carrier and to detect the abnormal pattern of the HD-DVD record carrier. With the dice, 丨, 2 The heights of the shapes formed by the sum of the heights of the three single classes are derived from: hj-j· η. - 1 whereby the phases for the BD record carrier are integer multiples, And the record carriers for the HD-DVD are a multiple of 8·π/3. This means that the 3 positive $杈 corresponds to the second diffraction order of the class profile of the optical element' and the abnormal mode corresponds to The m-two-1st diffraction order of the class profile of the optical element. The diffraction efficiency for H]>dvd is close to 118305.doc 200809825 27/4·π2==68% 〇 the minimum angular region The corresponding width is approximately η·4 μm. According to a preferred embodiment of the advancement, the pattern of the class contains at least four classes which result in a second height of the class profile. The four classes within the class shape correspond to Han. =4 and 』=〇, 丨, 2, 3, and: 5 one height, so for this BD The phases of the record carrier are integer multiples of 2π, and are used for multiples of the phase system 3π/2 of the HD-DVD. This indicates that the abnormal mode corresponds to the m=〇 diffraction order, and the normal mode corresponds to In the m=l diffraction order, for the HD-DVD, the diffraction is then very close to 8/π2=81% efficiently. The positive aberration function and the height profile of the diffraction structure are drawn. Shown in Figure 4. The aberration function (measured in radius) is derived from: Φ-6 l-224xr2-32.375xr4-9.459xr6-1.209xr8 5 where the radius of the pupil coordinate system is provided in mm. The objective lens has a diameter of 3.0 mm for scanning a BD# record carrier. The effective aperture diameter for scanning an HD-DVD record carrier is then obtained from: 〇·65/〇 ·85·3·0 mm=2.29 mm 因为This is because the aperture diameter of the HD-DVD record carrier is adjusted according to the numerical aperture NA, and the HD-DVD record carrier system is ΝΑ=0·65, And for the BD record carrier system 〇 = 〇 85. The minimum area is the outer area, and has a width of 8 · 5 microns, the preferred class height system 〇 · 5 226 microns, and the maximum class height is 118305.doc -18- 200809825 1_57 microns (for a material with n〇=1 575 and ne=1 775). It can be known that each class shape has a four-class class shape. This results in a higher efficiency than the class with three classes. Compared to a class shape with three classes, the width to be used is small. According to a further preferred embodiment of the invention, the class pattern comprises Classes with different widths. The width of the class affects the overall width of the class's shape. Classes with different widths are useful for joining a width that uses a fixed class number of class shapes. According to a further preferred embodiment of the invention, the wavefront aberration compensation comprises spherical aberration. The spherical aberration occurs especially if the objective lens of the optical recording player focuses the scanning spot on an information layer having an information layer depth different from the depth of the information layer corrected by the objective lens. This occurs in an optical pickup unit that is designed to scan a first type of record carrier having a first format, wherein the first format includes a first information layer depth and is used for scanning one A second type of record carrier having a second information layer depth. Spherical aberrations can be corrected by the addition of additional spherical aberration introduced by the optical element, which comprises a sensitive material and a structured material having a class appearance. A quantity of spherical aberration is adapted to compensate for the wavefront aberration introduced into a radiation beam that has passed through the optical element having a structured surface having a class shape having a class of repetitions. According to a further preferred embodiment of the present invention, the material of the optical element is a birefringent material having a refractive index ne, for the radiation beam having a polarization parallel to the optical axis, And at least a second refractive index η. And for the radiation beam having a second polarization perpendicular to the first polarization, the first refractive index 〜 and the second refractive index η. The difference is caused by the introduction of different amounts of aberrations to the radiation beam, wherein the introduction of the radiation beam with the first polarization is different from the radiation beam with the second polarization. Depending on the polarization of the radiation beam, when passing through an optical component of a birefringent material, birefringence causes the beam of the (four) beam to be split into two rays, an example of the normal ray and the anomalous ray ◊ birefringent material. Calcite crystal, cellophane or liquid crystal. The double birefringence is determined by: Δη, Quantification, wherein if ~ is used for the refractive index of the different ray, n 〇 is used for the refractive index of the normal ray. Both normal and abnormal rays are refracted. It is considered here only in special cases, that is, a class shape. For example, each class represents a phase, which is a multiple of a polarization state 2π, when the optical element is in this first polarization. The second optical device does not have an effect on the beam, but has an absolute influence on the beam when it is in the second orthogonal polarization state. After the polarization beam splitter is configured, the polarization itself is relatively affected by the aforementioned optical element. Therefore, the right-angle polarization is selected, and the additional spherical aberration is introduced into the radiation beam having the second polarization state by the class profile of the optical element. The polarization of the radiation beam having this first polarization state is not affected, which means that no additional spherical aberration is introduced into the radiation beam. Then, an optical component that performs the wavefront aberration, in particular, the spherical aberration is compensated for H8305.doc -20-200809825. According to a further act: bauxite 1> compared to the body embodiment, the first fold second refractive index η. According to one of the seven 仫 仫 & ^ 耵 drought \ and the ^ ^ M #: 〇. 65. (ne „ 1) < (n 〇 _1) < 〇 85 (ne_i) 〇 & And the normal refractive index - having birefringence characteristics for an optical pickup system: calcite, quartz, mechanically stretched polymer film. According to a further preferred embodiment, the birefringent polymer. The liquid crystal polymer phase structure can be pressed into the film by replicating the monomer phase onto the substrate with the mold, and then the structure is fixed by polymerization, such as, for example, ultraviolet light. The illumination can be achieved. The difference in refractive index An = ne-n () is substantially in the range between 〇. 丨 and 〇 3. According to a further embodiment, for the second polarized radiation beam, The amount of spherical aberration is substantially zero. Advantageously, the second optical element is designed to be introduced into the radiation beam passing through the optical element by an amount of spherical aberration of zero. According to a further embodiment, For the first polarized radiation beam, the amount of spherical aberration is substantially zero. A spherical aberration is introduced using a radiation beam with the inverted polarization. Advantageously, the second optical element is designed such that a value of one spherical aberration is introduced into the radiation passing through the optical element. According to a further embodiment of the invention, the optical component is disposed in the optical pickup unit for receiving the first radiant light 118305.doc -21 - 200809825 in a collimated state. The reason for collimating the beam is that the position is preferably fixed relative to the objective lens in order to avoid coma aberration when the (transverse) position of the element is changed relative to the objective lens by, for example, a misalignment. The beam of the objective lens is preferably collimated in order to avoid the change of the magnification for the disc or record = body, which may occur when the axis position of the objective lens is changed to maintain the focus of the scanning spot. According to a further preferred embodiment of the present invention, the optical pickup unit comprises a collimating lens, wherein the second optical element is disposed between the collimating lens and at least the objective lens. A simple method of aiming the radiation beam in front of the optical element with a collimating lens. According to a further preferred embodiment of the present invention, the first objective lens of the optical pickup unit 匕a is configured to form a scanning spot. An information layer of the third type of record carrier for obtaining an optical pickup unit for scanning at least three different types of record carriers having different formats. When using one having a first wavelength λι=4〇5 nm When the radiation beam is scanned by BE^HD-DVD, the scanning of the DVD and/or CD is performed using a first wavelength, especially for people 2=780 nm for CD and/or λ3 = 650 nm. In order to know the different types of record carriers, for example, 5, an optical pickup unit comprises three radiation wavelengths λι, ^ and Xin Xingtian source. In order to optimize the formation of the steed light spot on the information layer of a CD and/or DVD, a second objective lens system is preferably disposed in the optical pickup unit. This is due to the fact that the wavelengths of the CD and the DVD, the numerical aperture and the depth of the information layer of 118305.doc -22-200809825 are different from the BD and the HD_DVD, and therefore an objective lens is required to correct the different amounts. Spherical aberration. In accordance with a further preferred embodiment of the present invention, the at least one objective lens can be loaded within the actuator to mechanically change the position of the objective lens relative to the depth of the information layer of the record carrier. When the record carrier is broomed, the focus error correction detects the focus of the sweeping cat spot by using the debt test, and adjusts the position of the objective lens to perform the operation. The adjustment of the position of the objective lens relative to the depth of the information layer of the record carrier is substantially mechanically performed by an actuator. A standard part inside. The radiation beam on the optical pickup unit includes the actuator as the optical pickup unit. According to a further preferred embodiment of the present invention, u 3 is used to introduce a further optical component of the information layer directed to the record carrier. .

散焦至該像差函數’該掃猫光點之最小尺 特徵尺寸’之一增加係可達到的。藉其,該 像差函數之该斜率之一最大值可減少 狀帶寬度可增加。 並且口此-最小裱 5亥加入之散焦增加HD-DVD之自由、宣& 該球面像差之術靖,並且同時 的自由運作距離,❹5,約14微米之額外 φ=102 55” 杬之像差函數,為: 2-r'28-1 18-4-9.368.r6-i.633.r8, 118305.doc -23 - 200809825 其中該像差函數不㈣先前提到主要屬該第__名稱,其 係該散焦名稱中一函數。該最佳散焦球面像差比例A2A。 之值係得自於以下像差函數: w-A40(6p4-6p2+l)+A20(2pM),An increase in defocusing to the aberration function 'the minimum size feature size of the sweeping cat spot' is achievable. By this, the maximum value of one of the slopes of the aberration function can be reduced to increase the width of the strip. And this mouth-minimum 裱5 加入 join the defocus increase HD-DVD freedom, Xuan & the spherical aberration of the Jing, and the simultaneous free running distance, ❹ 5, about 14 microns extra φ = 102 55" 杬The aberration function is: 2-r'28-1 18-4-9.368.r6-i.633.r8, 118305.doc -23 - 200809825 where the aberration function is not (4) previously mentioned mainly as the first _ _ name, which is a function of the defocus name. The optimal defocus spherical aberration ratio A2A is derived from the following aberration function: w-A40(6p4-6p2+l)+A20(2pM) ,

其中,任尼克(Zernike)-類型球面像差a4〇之量係固定, 並且其中該任尼克類型散焦之量係可變的。W係以入之 正體則里w亥徑向變數P係界定於該徑向變數r與該光瞳半 控之間之比例,因此其採用之值:0<ρ<1。 此目標係最小化該斜率$在該範圍〇<p<1内採用之絕對 值之最。依照该比例八2〇/八4〇,在該光瞳邊緣p=l時, 或疋在律定之該local extreme時,找到此最大值。 接著,以下得到以下關係: dw = 24A4〇p3 + (4A2〇 ^ 12A4〇)p 及 d2W …2 = +4為❶一 12 為。。 藉此’該局部極值係於:Among them, the amount of Zernike-type spherical aberration a4〇 is fixed, and the amount of the Nick type defocusing is variable. In the normal body of the W system, the radial variable P is defined as the ratio between the radial variable r and the pupil half control, so the value is: 0 < ρ < This goal is to minimize the slope value in the range 〇<p<1 to use the absolute value. According to the ratio of 〇8〇/八四〇, this maximum value is found when the edge of the pupil is p=l, or 疋 is at the local extreme of the law. Next, the following relationship is obtained: dw = 24A4〇p3 + (4A2〇 ^ 12A4〇)p and d2W ... 2 = +4 are ❶12. . By this, the local extremum is tied to:

P ΤβP Τβ

-3A4Q」提供至: dW 8 Π 在ρ=1之該斜率值係: dW φ ^ 12A- Ά 1 + 3A4〇 J。 該兩斜率之該絕對值係相等,如果: 118305.doc -24- 200809825 8 3/2 「 7? - 1 — 20 L 3Α4〇_ =12 1 -f L 3A40 其供该答案,如果: △20 一一 3 A4〇 2 〇 藉此,該像差函數係得自:-3A4Q" is supplied to: dW 8 该 The slope value at ρ = 1 is: dW φ ^ 12A- Ά 1 + 3A4 〇 J. The absolute values of the two slopes are equal if: 118305.doc -24- 200809825 8 3/2 "7? - 1 - 20 L 3Α4〇_ =12 1 -f L 3A40 It is for this answer if: △20 One by one 3 A4〇2 〇 By this, the aberration function is derived from:

W = A 40 6p4 — 9p2 + 於: 並且該斜率之最大絕對值係得W = A 40 6p4 — 9p2 + at: and the maximum absolute value of the slope is

dWdW

6A 40 度, 具有N個階級之階級外形之該 以及一光瞳半徑a接著係大約得 最小繞射環之最大寬 自於:6A 40 degrees, with a class shape of N classes and a radius of a followed by a maximum width of the minimum diffraction ring from:

a 〇 該階級外形一較佳設計視a=115公釐、n=4,並且 八40-^/5父1.16=2.59且〜_=18.4微米。如前討論,此可有助 益於藉加入一散焦執行。 在一進一步較佳具體實施例中,該光學拾取單元至少包 含一第二輻射光源,放射一帶有一第二波長λ2之輻射光 束’其用於至少掃瞎一第三類型具有一第三格式之紀錄載 體。 該光學拾取單元適合用於掃瞄CD、DVD、BD及 HD-DVD紀錄載體。該包括一雙折射材料之光學元件經設 計以將該週期操作間隙自BD推至HD-DVD。為了在掃瞄該 118305.doc -25- 200809825 第二類型之紀錄載體之一紀錄載體時,特別是一 cd時, 擁有該掃瞄光點之一可實行之品質,當該相同物鏡用於兩 波長時’該光學元件之該結構化表面之該階級外形會負面 地衫響3掃目^光點之品質。因此,—可掃瞒該前述四種類 型之紀錄載體之光學拾取單元包括一具有一適合用於掃瞄 一 CD之一波長之輕射光束,並且一第二物鏡係接合於該 第二類型之紀錄載體之資訊層深度,也就是光碟。因此, 能夠掃瞄前述四類型紀錄載體之一光學拾取單元包括一具 有一適合用於掃瞄一CD之波長之輻射光源,以及一第二 物鏡,接合於紀錄載體,也就是CD,之該第三類型之該 資訊層深度。 根據進一步較佳具體實施例,該個別物鏡可裝載於一 致動器内,以相對於該紀錄載體之資訊層之深度,機械地 改變該物鏡之位置。 在每一標準光學拾取單元中,該物鏡係裝载於一致動器 内以為了執行該聚焦錯誤校正及/或該跟縱錯誤校正。 根據本發明一進一步較佳具體實施例,該光學元件連接至 該第一物鏡。 此係有助益的,因為該對於適合之環有點低的耐受度, 關於該物鏡之該光學元件係可達到的。本文中,該耐$度 可如以下評估··關於該物鏡,該光學元件之一適合之環可 增加一額外之波前像差,也就是該關係表達之慧形像差· Α3ΐ = 8χΔχΑ40, 其中,Α係以該光瞳半徑之單位測量之位移之量。根據 118305.doc -26- 200809825 該等RMS像差值: A,= X 8Δ X A: = x A: Ο 對於Α3,Μ3<30 πιλ之需要2RMS像差值,該適合之環必 須滿足該關係:Α<〇·〇〇41,其牵涉到一用於該光瞳3公釐 用於一BD之直徑之約4·7微米之準確度。此一精確度要求 該光學部件高精確度之製造,以及該光學元件與該物鏡之 間之相對位置。 根據本發明一進一步較佳之具體實施例,該第一及該第 二物鏡係裝載於一致動器内。 接著’該第一物鏡與該第二物鏡之該相對位置係固定 的 進一步優點係,藉由一致動器,兩物鏡皆可移動, 其減少生產之成本。 本發明之目標係由一包含帶有該前述具體實施例之該光 學拾取單元之光碟機解決。 该光碟機係適合用於掃瞄該等不同類型之紀錄載體,也 就是CD、DVD、BD及HD_DVD。一執行該球面像差之補 仏之光學凡件之使用係由於用於bd&hd_dvd該等不同之a 〇 A better design of the class shape is a = 115 mm, n = 4, and eight 40-^/5 parent 1.16 = 2.59 and ~_ = 18.4 microns. As discussed earlier, this can be helpful by adding a defocusing implementation. In a further preferred embodiment, the optical pickup unit comprises at least a second radiation source radiating a radiation beam having a second wavelength λ2 for recording at least a third type having a third format Carrier. The optical pickup unit is suitable for scanning CD, DVD, BD and HD-DVD record carriers. The optical element comprising a birefringent material is designed to push the periodic operating gap from the BD to the HD-DVD. In order to scan the record carrier of one of the record carriers of the type 118305.doc -25- 200809825, in particular a cd, possess one of the quality qualities of the scanning spot, when the same objective lens is used for two At the wavelength, the class shape of the structured surface of the optical element will negatively illuminate the quality of the spot. Therefore, the optical pickup unit that can bounce the four types of record carriers includes a light beam having a wavelength suitable for scanning a CD, and a second objective lens is coupled to the second type. The depth of the information layer of the record carrier, that is, the disc. Therefore, one of the optical pickup units capable of scanning the aforementioned four types of record carriers includes a radiation source having a wavelength suitable for scanning a CD, and a second objective lens coupled to the record carrier, that is, the CD. The depth of the information layer of the three types. According to a further preferred embodiment, the individual objective lens can be loaded into an actuator to mechanically change the position of the objective lens relative to the depth of the information layer of the record carrier. In each of the standard optical pickup units, the objective lens is loaded in the actuator for performing the focus error correction and/or the vertical error correction. According to a further preferred embodiment of the invention, the optical element is coupled to the first objective lens. This is helpful because it is somewhat less tolerant for a suitable ring, which is achievable with respect to the objective of the objective. In this paper, the resistance can be evaluated as follows. Regarding the objective lens, one of the optical elements can be added to the ring to add an additional wavefront aberration, that is, the coma aberration expressed by the relationship Α3ΐ = 8χΔχΑ40, Wherein, the lanthanum is the amount of displacement measured in units of the pupil radius. According to 118305.doc -26- 200809825 These RMS aberrations: A, = X 8Δ XA: = x A: Ο For Α3, Μ3<30 πιλ requires a 2RMS aberration, and the appropriate ring must satisfy this relationship: Α <〇·〇〇41, which involves an accuracy of about 4·7 μm for the diameter of a BD for a BD. This accuracy requires high precision fabrication of the optical component and the relative position of the optical component to the objective lens. In accordance with a further preferred embodiment of the present invention, the first and second objective lenses are loaded within the actuator. A further advantage of the relative position of the first objective lens and the second objective lens is that the two objective lenses are movable by the actuator, which reduces the cost of production. The object of the present invention is solved by an optical disk drive comprising the optical pickup unit of the foregoing specific embodiment. The optical drive is suitable for scanning these different types of record carriers, namely CD, DVD, BD and HD_DVD. The use of an optical component that performs the complement of the spherical aberration is due to the difference between bd&hd_dvd.

資Λ層冰度允許一最佳化之高密度紀錄載體及hd-DVD 之掃瞄。至少一第二輻射源之使用及一第二物鏡額外允許 CD及DVD之掃瞒。 名目祆係如前述,進一步由用於提供一光學拾取單元内 波則像差之補償之_光學元件解決,纟中該光學元件包含 敏感材料,並且具有一至少帶有一重複階級外形之結構 118305.doc -27- 200809825 化表面’該階級外形具有一階級圖案,每一階級具有一高 度及寬度。 一般而言,該前述光學元件可支援一光學拾取單元。本 文中’該光學元件具有前面討論之該光學拾取單元之該等 特性之所有特性。 備4尊特性,違光學元件可引入波前像差至該紀錄載 體之資訊層之掃瞄光點。 該目標也係由一欲用於一光碟機之一光學拾取單元之方 法解決,以在掃瞄一紀錄載體時,執行波前像差之補償, 根據在一開始提到的一方法,因為修改該光學拾取單元之 至少一光學元件之該光學特徵之一進一步步驟,以為了藉 由使用一波前像差至該大於λ之掃瞄光點,補償一掃瞄光 點内该波前像差,該波前像差係由於第一類型之紀錄载體 之該第一資訊層深度係有別於第二類型紀錄載體之該第二 資訊層深度。 — 此係有助盈的,因為引入該掃瞄光點之該球面像差造成 一不好的掃瞎效能。此係藉由使用該前述方法校正。 如則述’根據該方法之一進一步較佳態樣,該補償係依 據在光學拾取單元内,該—前述視—光學元件上,該輕 射光束入射之偏振情況,由引入一量之球面像差至: 光點執行。 ^ 要了解的疋,$述特徵及該等應在以下解釋之特徵 並不僅可用於所提#之έ人 吓捉t、之組合内,也可用於其他組合或單 使用,而不超出本發明之範圍。 118305.doc -28- 200809825 【實施方式】 現在’本發明將根據具體實施例,參考圖形之附加圖示 在以下說明。 ,為了㈣之方便,資訊儲存媒體稱作紀錄載體。掃瞒資 讯可包括寫入資訊至、讀取及/或抹除一紀錄载體之一資 訊層之資訊。 、 圖!崤示—光學掃㈣件之—概要視圖,特別是為了在 2碟機内使用之-光學拾取單元,其適合用於 知目田紀錄載體12 °該資訊係储存於該紀錄載體12之一資 訊層14上。 、 根據本發明,該㈣拾取單元1G適合用於掃i纪錄載體 12上之#訊’其具有—高紀錄密度以及—用於該紀錄資訊 之大谷1,較佳的是HD_DVDs(高密度多樣化數位光碟)及 BD(藍光光碟p本發明一較佳具體實施例能夠掃瞄四類型 之紀錄載體:CD、DVD、BD及HD-DVD。 該紀錄載體12包含一基體24及一透明層,在它們之間至 少配置一資訊層丨4。在一雙層紀錄載體之情況下,舉例而 言,如一雙層BD ,兩資訊層係配置於該透明層後,也稱 作覆盍層18,於該紀錄載體12内一不同深度,分開約乃微 米。在此未繪示之一進一步透明層將該兩資訊層分開。該 個別之透明層,即該覆蓋層,對於不同類型之紀錄載體12 具有不同厚度。該透明層,也稱作覆蓋層18,具有保護該 取上層之育訊層14之功能,雖然該基體24提供該機械支 援0 118305.doc 29- 200809825 資訊可以光學可偵測標記之格式,儲存於該紀錄載體12 之資訊層14中,該標記配置大致以平行、同心或螺旋之執 跡’圖1中未指出。該等標記可係以任何光學可讀取模 式’舉例而言,以該帶有反射係數之凹槽或區域之該格 式’或是不同於周圍之磁化方向,或是這些格式之一組 合0 該等不同類型之紀錄載體12可由該紀錄載體12之一不同 結構區分,也就是該覆蓋層18之一厚度16之不同,配置於 輻射光束21入射之該紀錄載體之該表面20上。該紀錄載體 12進一步包含一反射層22,其係配置於該紀錄載體之資訊 層14與該基體24之間。 該第一類型之紀錄載體,也就是該HD-DVD典型具有該 覆蓋層18之一厚度d = 0.6公釐,然而該BD紀錄載體典型 具有該覆蓋層之一厚度d = 0.1公釐。對於一進一步類型之 紀錄載體,即該雙層BD紀錄載體,其中配置一本文未繪 示之該第二資訊層14,本文未繪示之一額外之間隔層經設 計以將該兩資訊層分開。 該紀錄載體12之該表面20與該資訊層14之間之一距離稱 作資訊層深度25。因此,該第一類型紀錄載體包含一第一 資訊層深度25、並且該第二類型紀錄載體包含一第二資訊 層深度25M。 該輻射光束21係由一輻射源26放射,其較佳係一半導體 雷射。該放射之輻射光束代表性地具有一波長λ=4〇5奈 米0 H8305.doc -30- 200809825 即使在圖1 a緣示及在此討論之該具體實施例中,僅一賴 射源26繪示且討論,根據本發明,該〇pu也可包含一第二 及/或第三輕射源’其放射具有一波長χ2=78〇奈米及/或 λ3 = 650奈米之一第二及/或第三輻射光束,以為了掃瞄一 光學拾取單元内不同類型之紀錄載體。根據本發明,該輻 射源2 6放射該輻射光束2 1,其具有一適合用於掃瞄 HD-DVD及BD紀錄載體之波長人1==4〇5奈米。The asset layer ice allows for an optimized high density record carrier and hd-DVD scan. The use of at least one second source of radiation and a second objective lens additionally allow for the broom of the CD and DVD. The terminology is as described above, further solved by an optical component for providing compensation for wavefront aberrations in an optical pickup unit, wherein the optical component comprises a sensitive material and has a structure 118305 having at least one repeating class profile. Doc -27- 200809825 The surface of the class has a class pattern, and each class has a height and width. In general, the aforementioned optical component can support an optical pickup unit. The optical element herein has all of the characteristics of the features of the optical pickup unit discussed above. With four features, the optical component can introduce a wavefront aberration to the scanning spot of the information layer of the record carrier. The object is also solved by a method for an optical pickup unit of an optical disc drive to perform wavefront aberration compensation when scanning a record carrier, according to a method mentioned at the outset, because of the modification One of the optical features of the at least one optical component of the optical pickup unit is further stepped to compensate for the wavefront aberration in a scan spot by using a wavefront aberration to the scan spot greater than λ, The wavefront aberration is due to the fact that the first information layer depth of the first type of record carrier is different from the second information layer depth of the second type of record carrier. — This is helpful because the spherical aberration introduced into the scanning spot causes a bad broom performance. This is corrected by using the aforementioned method. According to a further preferred aspect of the method, the compensation is based on the polarization of the light beam incident on the optical-to-optical unit, and the spherical image is introduced by a quantity. Poor to: Light point execution. ^ The features to be understood, the features described and the features that should be explained below are not only applicable to the combination of the mentioned persons, but also for other combinations or single use without exceeding the present invention. The scope. 118305.doc -28- 200809825 [Embodiment] Now, the present invention will be described below with reference to additional figures of the drawings in accordance with the specific embodiments. For the convenience of (4), the information storage medium is called a record carrier. The broom information may include writing information to, reading and/or erasing information of one of the record carriers. , Figure! — — 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 概要 光学 概要 光学 概要 概要 概要 概要 光学 概要 概要14 on. According to the present invention, the (four) pickup unit 1G is adapted to scan the i-record on the record carrier 12, which has a high recording density and - a large valley 1 for the recorded information, preferably HD_DVDs (high density diversity) Digital Video Disc) and BD (Blu-ray Disc) A preferred embodiment of the present invention is capable of scanning four types of record carriers: CD, DVD, BD and HD-DVD. The record carrier 12 includes a substrate 24 and a transparent layer. At least one information layer 4 is disposed between them. In the case of a double-layer record carrier, for example, a double-layer BD, two information layers are disposed on the transparent layer, also referred to as a cover layer 18, The record carrier 12 has a different depth and is separated by about a micron. A further transparent layer is not shown here to separate the two information layers. The individual transparent layer, that is, the cover layer, has a different type of record carrier 12 The transparent layer, also referred to as the cover layer 18, has the function of protecting the upper layer of the layer 14 of the upper layer, although the substrate 24 provides the mechanical support 0 118305.doc 29- 200809825 information can be optically detectable Format, save In the information layer 14 of the record carrier 12, the indicia configuration is substantially in the form of parallel, concentric or spiral 'not shown in Figure 1. The indicia can be in any optically readable mode', for example The format of the groove or region with reflection coefficients is either different from the surrounding magnetization direction, or a combination of one of these formats. The different types of record carriers 12 can be distinguished by a different structure of the record carrier 12, That is, the difference in thickness 16 of the cover layer 18 is disposed on the surface 20 of the record carrier on which the radiation beam 21 is incident. The record carrier 12 further includes a reflective layer 22 disposed on the information layer 14 of the record carrier. Between the substrate 24, the first type of record carrier, that is, the HD-DVD typically has a thickness d = 0.6 mm of the cover layer 18, however, the BD record carrier typically has a thickness d of the cover layer. = 0.1 mm. For a further type of record carrier, that is, the double-layer BD record carrier, wherein a second information layer 14 not shown herein is disposed, an additional spacer layer is not shown herein. Separating the two information layers. The distance between the surface 20 of the record carrier 12 and the information layer 14 is called the information layer depth 25. Therefore, the first type of record carrier includes a first information layer depth of 25, And the second type of record carrier comprises a second information layer depth of 25 M. The radiation beam 21 is emitted by a radiation source 26, preferably a semiconductor laser. The radiation beam typically has a wavelength λ = 4〇5纳米0 H8305.doc -30- 200809825 Even in the specific embodiment shown in Fig. 1a and discussed herein, only one source 26 is shown and discussed, according to the present invention, the 〇pu A second and/or third light source may be included which emits a second and/or third radiation beam having a wavelength of =2=78〇N and/or λ3=650 nm for scanning one Different types of record carriers in the optical pickup unit. According to the invention, the radiation source 26 emits the radiation beam 2 1 having a wavelength of 1 == 4 〇 5 nm suitable for scanning HD-DVD and BD record carriers.

忒輻射光束2 1進入一繞射光柵元件28,以下稱作光柵元 件28,其將該輻射光束21轉換成一主要輻射光束及至少兩 辅助輻射光束,每一輔助輻射光束鄰近該主要輻射光束。 該主要輻射光束及該等辅助輻射光束在此未分開地繪示。 忒主要輻射光束及該兩辅助輻射光束係用於執行該光學拾 取單元10内該跟蹤錯誤校正及/或該聚焦錯誤校正,將在 之後描述。 以下該經繞射之輕射光束分配參考數字3〇。n繞射之 輻射光束30包含—第η順序繞射之㈣光束,其較佳係一 零順序繞射之輕射光束’以及—第m及第_序輻射光束, 其較佳係_±第—順序繞射之㈣光束。也可能選擇該輔 助f射之輻射光束之其它繞射順序,以為了實施該經繞射 之輻射光束30。 徑==射^韓射光束3G沿著該光學拾取單㈣之一光路 傳播’亚且通過-分光元件34。該分光器34較佳係_ 立方偏振分光器34。該分 、 及刀先裔也可係一板偏振分光器。 ㈣送之光束36係主要平行於該入射平導偏振)偏 118305.doc &gt;31- 200809825 振,並且該反射之光束係主要垂直於該入射平面(s-偏振) 偏振。 已通過該分光器34之該輻射光束36係由一瞄準元件38, 舉例而言,一準直透鏡,並且由一反射元件,諸如一鏡面 40,導向一物鏡42。包含兩物鏡之該〇pu也係本發明之一 部份。該至少一物鏡42將該輻射光束36聚焦於該紀錄載體 12之該資訊層14上。本文中,形成一輻射光點,稱作掃瞄 光點44。 該輻射光點44自該紀錄載體12之該反射層反射,並且沿 著該光學路徑以返回輻射光束45傳播,在已通過一柱面透 鏡4 8後’藉由該分光器3 4反射並碰撞於一憤測元件4 6上, 該柱面透鏡48將該返回輻射光束45聚焦於該偵測元件46 上。該返回輻射光束45包括該主要輻射光束,以及該等辅 助輻射光束。 該偵測元件46包含輻射接收偵測元件部件50、52及 54,其中每一偵測元件部件50、52及54至少配有一輻射敏 感區域,其將該入射輻射光束轉成一電信號。該偵測元件 46之一較佳具體實施例係詳細概要繪示於圖lb。 該偵測元件46 —般而言包含三種輻射偵測元件部件5〇、 52及54,其一般而言係具有四分開的輻射敏感表面之象限 貞測元件部件。舉例而言,圖1 b中繪示用於4貞測元件部件 50之該四輻射敏感表面A1至A4,用於偵測元件部件52之 該四輻射敏感表面C 1至C4,以及用於偵測元件部件54之 該四輻射敏感表面B 1至B4。其也可能使用僅具有兩輕射 118305.doc -32- 200809825 破感區域之摘測元件部件’或是使用具有多於四輕射敏感 區域之摘測元件部件。在A1至C4每一輻射敏感區域上, 得自該輻射光束入射之該電信號可用於執行該徑向跟蹤錯 誤校正及/或聚焦錯誤校正。 根據本發明,該光學拾取單元10進一步包含一第一光學 元件56,其係可在一第一狀態與至少一第二狀態間改變, 其中该第一狀態中,該第一光學元件5 6以一不同於第二狀 態中之該第一光學元件56之方法影響該第一輻射光束36之 偏振。舉例而言,該第一光學元件5 6係一包含插入於兩透 明平面板間之液晶分子之電光元件,該兩透明平面板具有 可傳導透明層,形成於其内部表面上,其形成該等用於該 液晶之電極,以及具有該第一光學元件56之電極。 該第一光學元件56在一第一狀態轉動該入射輻射光束之 偏振90°,並且不影響在一第二狀態之該入射輻射之偏 振。 該第一光學元件56係特別是一平面晶體,其包含一液晶 層,插入於兩透明平面板之間,其具有可傳導透明層,形 成於其内部表面上,其形成該電光元件之電極。將一電壓 應用至該電極允許該電光元件自一第一狀態至一第二狀態 之轉換,反之亦然。該電壓之應用造成一液晶單分子之準 直,一般而言係平行於該物鏡42之該光軸。在該第二狀態 中’稱作不具應用電壓之該關閉狀態,當通過該液晶單分 子時,該入射輻射光束之偏振轉動9〇。。在開啟狀態中, 該液晶單分子5 6對通過該液晶單分子之該輻射光束之偏振 118305.doc -33 - 200809825 不具影響。較佳的是 米0 5亥液晶層係相對薄 典型係4-6微 接著,該第一光學元件56能夠藉由 該第一光學元件56之電極 間轉變輻射光束之偏振。 件控制,其未繪示於此, ’在該第一 較佳的是, 其具有一關 量之波前像差輸入信號。 將一外部電壓應用至 偏振與該第二偏振之 該外部電壓係由一器 於該掃瞄光點44内一 用於-光學元件之一替代方法為一半波板,其可藉由機 械構二繞著—平行於該絲之軸轉動—大祕度之角度。 在:疋向上’該入射輻射光束之偏振係不受影響,在該第 二定向,該入射光束之偏振轉動超過9〇度。 一進一步光學部件,—包括—偏振敏感材料之第二光學 凡件係包括於該光學路徑内該物鏡42之前面。該第二光學 元件6〇包含’特別是一雙折射材料,諸如一液晶聚合物部 件’將其本身單分子沿著該第二光學元件之材料之一 對準。 '•亥第一光學元件60之材料具有兩折射指數:該異常折射 指數ne及該正常折射指數η。。該雙折射光學元件之折射指 數,因一具有一垂直於該材料之光軸之偏振之入射輻射光 束而為η。,並且因一具有一平行於其光軸之偏振之入射輻 射光束而為ne。 接著’對於該輕射光束之偏振之依賴,該韓射光束上— 不同光學效應係可達到的。該光學效應係由該第二光學元 件60達成,其至少包含一具有一包含帶有一特定寬度之環 H8305.doc -34- 200809825 狀帶之階級外形之結構化表面。 當該第一偏振係垂直於該光轴時,具有一入射於該光學 兀件60上一第一偏振之該輻射光束%以該折射係數n。繞 射’並且當該第一偏振係平行於該光軸時,以該折射指數 ne繞射。接著,根據相較於一第一類型紀錄載體,一第二 類型紀錄載體之該不同資訊層深度,波前像差可引入該輻 射光束’諸如球面像差,以補償該發生之波前像差。 本文中,該物鏡42之距離已最佳化至該第一類型紀錄載 體之該資訊層深度25,該紀錄載體需要球面像差之進一步 引入至執行該第二類型紀錄載體之掃瞄之該輻射光束。另 外’一改變元件62引入係較佳的,其特別係一四分之一波 長阻尼器板。該改變元件62係差入於該光學元件6〇與該物 鏡42之間。在這裡,達到該偏振分光器34内,該反射與該 入射輻射光束間偏振内一 90。旋轉。 結論’根據本發明之該光學拾取單元1〇包含一輻射源 26 ’放射一輻射光束,特別是一波長入=4〇5奈米、一電光 兀件56及一光學元件60,其中該電光元件56選擇性地改變 3亥幸S射光束之偏振,並且該光學元件6〇引入球面像差至該 輪射光束。該光學拾取單元10包含之該物鏡42係裝載於一 致動裔内’該致動器執行相對於對該紀錄載體之該資訊層 之距離之位置之一機械改變。較佳的是,在一適合用於掃 瞒四種不同類型紀錄載體之具體實施例中,包含一圖“中 未繪示之第二物鏡。 圖2a及圖2b概要繪示關於該光學拾取單元1〇之輸出之情 118305.doc -35- 200809825 況’其中僅繪示該紀錄載體、該物鏡42及該光學元件60。 緣不於圖2a之情況係關於具有一數值孔徑να=〇·85及一覆 蓋層厚度dU公釐之該BD紀錄載體,並且圖2b中之該情 況係關於掃瞄具有一數值孔徑ΝΑ=0·65及一覆蓋層厚度 d=0.6公釐之該hd-DVD紀錄載體之該情況。 可清楚知道,在該紀錄載體12之該資訊層14上形成該掃 瞎光點44係由該物鏡42及具有該厚度16之該覆蓋層18執 行。此係因為該覆蓋層1 8係一透明材料,舉例而言,一聚 碳酸酯作用為一光學部件。 因此,該物鏡42之一開口表面與該資訊層14之間之一距 離’其係為了 一具有一資訊層深度丨6之紀錄載體最佳化係 不適合用於一具有一第二資訊層深度之第二類型載體,因 為該覆蓋層1 8之額外聚焦係不同的。 由於一 BD與一 HD_DVD碟之間該覆蓋層厚度16之差大約 係500微米之事實,其仍可能取得該第二類型紀錄載體之 該資訊層14上一掃瞄光點44,可是該掃瞄光點料之品質係 因此不同於該第二類型紀錄載體,並且在實際情況下不足 以掃瞄該第二類型紀錄载體。 根據本發明,一額外波前像差,特別是一球面像差係由 該第二光學元件60引入,以該輻射光束36在入射於該物鏡 42上之前,首先通過一該光學元件6〇之此一方法配置於該 物鏡42前面。藉由該繁-L - a &lt; 秸田邊弟一先學疋件60,一球面像差引入該 幸田射光束3 6如果忒輪射光束3 6之偏振係該階級外形,在 此未繪不,可疋在圖3至5解釋,導致該輻射光束%一輕微 118305.doc -36 - 200809825 的繞射,造成該引入之球面像差。 根據本發明,包含環狀帶之該階級外形至少包括一重複 階級圖案,其具有一特定高度90及一相關於該環狀帶寬度 之寬度。在此未繪示,但可能以原理說明,即可使用一光 學元件60經設計具有在該第二光學元件60之相反面上兩結 構化表面61。 圖3a繪示具有階級外形64、66、68及70之該光學元件 60,其中該階級外形64之一半徑72係有別於該階級外形66 之一半徑94。其中該參考數字74繪示該光學元件6〇之中 心’其係光學轴。 圖3b,其係圖3a之該方向AA上該光學元件之一部份, 繪示四階級外形64、66、68及70。可了解的是,在該階級 外形64至68之情況下,每一階級外形包含階級76、78、8〇 及82 ’並且在該階級外形7〇之情況下,包含三階級84、% 及88。每一階級包含一高度,以參考數字9〇指出,以及一 見度,以參考數字92指出。一階級之寬度92係由該打字環 狀帶表示。該環狀帶關於一特定寬度92之一環狀區域。 A距離72也述關於该結構化外形64之中心74之半徑。該 P白級外形66之半徑係由該距離94表示。該等前述距 離72及 94係該等階級外形64及66之邊界,並且對應一半徑配置, 中μ名人枚正像差函數係等於一整數乘以波長人。此將參 照圖3、4及5解釋。 可以了解的疋,該階級外形64 ' 66及68包含四階級,其 中三個階級具有一转定古 ^ 将疋阿度90,並且該第四階級係一具有 118305.doc -37- 200809825 一等於零之高度。因此,該階級外形70包含三階級:兩階 級具有一高度90,以及一第三階級具有一高度等於零。該 尸白級外形之南度9 〇之總和造成該階級外形6 4、6 6及6 8之一 總咼度96’ ’並且該等高度90之總和造成該階級外形7〇之一 總高度96。 因此,可以了解的是該階級外形70之高度96係不同於該 階級外形64、6 6及6 8之個別高度。用於該異常及正常模式 之相對相之決定值係一單一階級之該等高度9〇,因為該高 度90 (hj)決定該輻射光束之繞射射線之圖案,藉由該階級 圖案之該等階級繞射。 圖4中,用於具有七個階級外形、每一階級外形具有三 個階級之該第二光學元件60之一結構化表面6丨之一例子可 與一經計算像差函數100—起看。可看到的是,該階級外 形98包含具有該等個別階級之一高度9〇之階級。使用用於 该階級外形之相同參考數字,因為該階級外形都具有相同 數里之卩白級,並且因此視為重複之階級外形。該等個別階 級之該等寬度92係不同的,以為了在該等外形98之該等邊 界之間及該光學元件60之中心實施該等要求之距離1〇2, 104, 106, 108, 1 10, 1 12, 1 14。 圖5繪示包含七階級外形之第二光學元件6〇之該結構化 表面61之一進一步具體實施例,總共有六階級外形ιΐ6以 及一階級外形118。可以了解的是該階級外形116包含四個 階級’其中該階級圖案118包含三個階級。一經計算像差 函數120也繪不於圖5,其中該像差函數12〇係使用包含該 118305.doc -38- 200809825 帶有該階級外形116及該階級外形ιι8之結構化表面η之, 第二光學元件60取得。該階級外形118之高度%係小於該 階級外形11 6之咼度96f ’其中該等階級之該等高产係相 等。 ^ 圖6包含談第二光學元件60之該結構化表面“之一進一 步具體實施例,其進一步包含階級外形124,其中每一階 級外形124具有四階級。可以理解的是,該等外形124之每 一該等階級之高度90係相等的,造成用於該個別階級外形 124之一相等的高度96,並且因此在該結構化表面之一重 複週期性結構内。 繪示於圖4、5及6中,帶有該等結構化表面之該光學元 件之材料包含一偏振敏感材料’特別是一雙折射材料,其 較佳係一液晶聚合物。一用於一液晶聚合物之例子係一具 有一正常折射指數11。=1,575及一異常折射指數〜=1 775之 液晶聚合物,其造成一 0.75之比例,也就是|,其意指採 用一數字Ν之階級,其中Ν=4或Ν=3。 一般而言,該光學元件之材料係以此一方法選取,即該 光學元件60之該雙折射媒體之折射指數遵守以下方程式: 0·65&lt;(η^1)/(η^ΐ)&lt;〇·85。該對應之像差函數也繪示於圖6 以該參考號碼126繪示。 圖7緣示該光學拾取單元10之一具體實施例之一部份, 其包含兩物鏡42及128,其適於掃瞒四種不同類型之紀錄 載體。該第二光學元件60緊縮裝載於該物鏡42。包括一二 向分光鏡40,,以為了反射具有人=4〇5奈米之該輻射光束, 118305.doc -39- 200809825 朝向該物鏡42,並傳送具有χ==65〇奈米及/或λ==78〇奈米之 該輻射光束。 、 該物鏡42經設計以自一具有一波長λι = 4〇5奈米之一輻射 光束36形成在此未繪示之該掃瞄光點44,並且該第二物鏡 128經設計以形成一不同波長之該掃瞄光點44,以為了執 行該第三類型紀錄載體之掃瞄,特別是該CD或dvd。接 著,在使用包括該物鏡128之該光學路徑時,掃瞄該 及/或DVD之情況下,沒有加入額外之球面像差。可以理 解的是,兩物鏡42及128係裝載於一共有致動部件,以長 方形符號130繪示。接著,該物鏡42及128可根據該跟蹤錯 誤校正或該聚焦錯誤校正調整。 该光學元件60包含一結構化表面132,其包含繪示於圖 4、5或6中該等階級外形之一,或是進一步階級外形。根 據本發明,在形成一重複階級圖案之該結構化表面中該等 階級外形係重複的係重要的。 該光學元件60可裝配該結構化表面132,該結構化表面 132包含一第一重複階級圖案及人或一第二重複階級圖案 及/或進一步重複階級圖案。本文中,該第一重複階級圖 案及該第二重複階級圖案係不同的,特別是該第一重複圖 案階級及该弟一重複圖案階級之該等階級之高度係不同 的。每一階級外形可包括一相等寬度之階級及/或不同寬 度之階級。 本發明之範圍也包括一能夠至少掃瞄兩類型紀錄載體之 光碟機,其中該兩類型之紀錄載體具有不同資訊層深度及 118305.doc -40- 200809825 /或不同數值孔徑ΝΑ,其包括一光學元件6〇,其執行該發 生之波前像差之補償。 該發生之波前像差係由一用於該光學拾取單元内之方法 補償,其包含該光學拾取單元之至少一光學元件之修改該 光學特徵之步驟’以為了藉由應用一波前像差至大於入之 该掃目田光點,補償在一掃瞄光點中,由於該第一類型紀錄 載體之該第一資訊層深度係不同於該第二類型紀錄載體之 該第二資訊層深度之事實產生之該波前像差。 此係藉由應用該光學拾取單元内一光學元件達成,其中 該光學元件至少包含一具有一圖案階級之第二階級外形, 其中該第一階級外形及至少該第二階級外形係由一環狀帶 分開,並且該第一階級外形之階級之圖案與該第二階級外 形之階級之圖案係相等的。 【圖式簡單說明】 本發明之這些及其他目標及優點藉由以上說明並參考附 加圖示,將變得更加清楚,其中·· 圖!於圖1&amp;中繪示一光學拾取單元之一概要視圖,以及 圖lb中一用於此一光學拾取單元之一偵測元件之一概要視 圖; 圖2於圖2a中纷示-具有結構化表面之光學元件之—概 要視圖,並且圖2b係圖2a在平面AA之該光學元件之一概 要視圖,其中僅繪示該右邊部份; 广於圖3a中繪示該光學元件之一概要視圖,該用於— 帶有-數值孔徑NA 〇.85之助紀錄載體之該光學透鏡及欲 118305.doc -41 - 200809825 掃瞄之該紀錄載體,並且於圖3b中繪示該光學元件之一概 要視圖’該光學透鏡及該具有一數值孔徑ΝΑ==〇β65 之HD-DVD紀錄載體; 圖4係該像差函數(上曲線)之一概要視圖,以及該光學 元件(第一具體實施例)之一具體實施例之一結構化表面; 圖5係該光學元件(下曲線)之該結構化表面之外形之一 第二具體實施例及該相對應的像差曲線(上曲線); 圖6係一第三具體實施例(下曲線)之該光學元件之該結 構化表面之外形及該相對應之像差函數(上曲線)之一概要 視圖; 圖7,其包含圖7a及7bFig· 7,係包括兩光學透鏡之一光 學拾取單元之一部份之一概要視圖。 【主要元件符號說明】 12 紀錄載體 14 資訊層 16 厚度 18 覆蓋層 20 表面 21 輻射光束 22 反射層 24 基體 25 資訊層深度 26 輻射源 28 繞射光栅元件 118305.doc - 42 - 200809825 30 輻射光束 32 光路徑 34 分光元件 36 光束 38 瞄準元件 40 鏡面 40f 二向分光鏡 42 物鏡 44 掃瞄光點 45 返回輻射光束 46 偵測元件 48 柱面透鏡 50 輻射接收偵測元件部件 52 輻射接收偵測元件部件 54 輻射接收偵測元件部件 56 光學元件 60 第二光學元件 62 改變元件 128 物鏡 130 致動器 132 結構化表面 118305.doc -43The xenon radiation beam 21 enters a diffraction grating element 28, hereinafter referred to as a grating element 28, which converts the radiation beam 21 into a primary radiation beam and at least two auxiliary radiation beams, each auxiliary radiation beam being adjacent to the primary radiation beam. The primary radiation beam and the auxiliary radiation beams are not separately shown here. The primary radiation beam and the two auxiliary radiation beams are used to perform the tracking error correction and/or the focus error correction in the optical pickup unit 10, which will be described later. The diffracted light beam is assigned the reference number 3 以下 below. The n-diffracted radiation beam 30 includes a (fourth) light beam that is diffracted in the ηth order, which is preferably a light-emitting beam that is diffracted in a zero order and a mth and a first order radiation beam, which is preferably a _± - The (four) beam that is sequentially diffracted. It is also possible to select other diffraction sequences of the auxiliary radiation beam for the purpose of implementing the diffracted radiation beam 30. The path == shot + the Han beam 3G propagates along the optical path of the optical pickup unit (four) and passes through the beam splitting element 34. The beam splitter 34 is preferably a cubic polarizing beam splitter 34. The division, and the knife precursor can also be a plate polarizing beam splitter. (4) The transmitted beam 36 is substantially parallel to the incident flat polarization) 118305.doc &gt;31-200809825, and the reflected beam is predominantly perpendicular to the plane of incidence (s-polarization) polarization. The radiation beam 36 that has passed through the beam splitter 34 is guided by an aiming element 38, for example a collimating lens, and directed by an objective element 42 by a reflective element, such as a mirror 40. The crucible pu comprising two objective lenses is also part of the invention. The at least one objective lens 42 focuses the radiation beam 36 onto the information layer 14 of the record carrier 12. Herein, a radiation spot is formed, referred to as a scanning spot 44. The radiation spot 44 is reflected from the reflective layer of the record carrier 12 and propagates along the optical path back to the radiation beam 45, after passing through a cylindrical lens 48, 'reflecting and colliding by the beam splitter 34 The cylindrical lens 48 focuses the returning radiation beam 45 onto the detecting element 46 on an intrusive element 46. The return radiation beam 45 includes the primary radiation beam and the auxiliary radiation beams. The detecting element 46 includes radiation receiving detecting element components 50, 52 and 54, wherein each detecting element component 50, 52 and 54 is provided with at least a radiation sensitive area which converts the incident radiation beam into an electrical signal. A preferred embodiment of the detection element 46 is shown in detail in Figure lb. The detection element 46 generally comprises three types of radiation detecting element components 5, 52 and 54, which are generally quadrant sensing element components having four separate radiation-sensitive surfaces. For example, the four radiation-sensitive surfaces A1 to A4 for the four sensing component parts 50 are shown in FIG. 1b for detecting the four radiation-sensitive surfaces C1 to C4 of the component component 52, and for detecting The four radiation-sensitive surfaces B 1 to B4 of the component component 54 are measured. It is also possible to use a pick-up component part that has only two light-emitting 118305.doc -32-200809825 damage zones or a pick-up component component having more than four light-sensitive areas. On each of the radiation sensitive areas A1 to C4, the electrical signal from which the radiation beam is incident can be used to perform the radial tracking error correction and/or focus error correction. According to the present invention, the optical pickup unit 10 further includes a first optical element 56 that is changeable between a first state and at least a second state, wherein in the first state, the first optical component 56 is A method different from the first optical element 56 in the second state affects the polarization of the first radiation beam 36. For example, the first optical element 56 is an electro-optical element comprising liquid crystal molecules interposed between two transparent planar plates, the transparent planar plates having a conductive transparent layer formed on an inner surface thereof, which forms such An electrode for the liquid crystal, and an electrode having the first optical element 56. The first optical element 56 rotates the polarization of the incident radiation beam by 90 in a first state and does not affect the polarization of the incident radiation in a second state. The first optical element 56 is, in particular, a planar crystal comprising a liquid crystal layer interposed between two transparent planar sheets having a conductive transparent layer formed on an inner surface thereof which forms an electrode of the electro-optic element. Applying a voltage to the electrode allows the electro-optic element to transition from a first state to a second state, and vice versa. The application of this voltage results in the alignment of a liquid crystal single molecule, generally parallel to the optical axis of the objective lens 42. In the second state, the off state is referred to as having no applied voltage, and when passing through the liquid crystal single molecule, the polarization of the incident radiation beam is rotated by 9 。. . In the on state, the liquid crystal single molecule 56 has no effect on the polarization of the radiation beam 118305.doc -33 - 200809825 through the liquid crystal single molecule. Preferably, the liquid crystal layer is relatively thin, typically 4-6 micrometers. Next, the first optical element 56 is capable of transforming the polarization of the radiation beam by the electrodes of the first optical element 56. Piece control, which is not shown here, is preferred in the first embodiment, which has a relative amount of wavefront aberration input signal. Applying an external voltage to the external voltage of the polarization and the second polarization is performed by one of the optical elements in the scanning spot 44. The replacement method is a half-wave plate, which can be mechanically constructed. Rotating around - parallel to the axis of the wire - the angle of greatness. The polarization of the incident radiation beam is unaffected at: 疋 upward, and in this second orientation, the polarization of the incident beam is rotated more than 9 degrees. A further optical component, including a second optical component of the polarization sensitive material, is included in the optical path in front of the objective lens 42. The second optical element 6A comprises, in particular, a birefringent material, such as a liquid crystal polymer component, which aligns its own single molecule along one of the materials of the second optical element. The material of the first optical element 60 has a refractive index: the abnormal refractive index ne and the normal refractive index η. . The refractive index of the birefringent optical element is η due to an incident radiation beam having a polarization perpendicular to the optical axis of the material. And is ne because of an incident radiation beam having a polarization parallel to its optical axis. Then, depending on the polarization of the light beam, the Korean beam is achievable with different optical effects. The optical effect is achieved by the second optical element 60 and includes at least one structured surface having a class profile comprising a ring of a specific width H8305.doc-34-200809825. When the first polarization system is perpendicular to the optical axis, the radiation beam % of a first polarization incident on the optical element 60 has a refractive index n. The diffraction&apos; and the refractive index ne are diffracted when the first polarization is parallel to the optical axis. Then, based on the different information layer depths of a second type of record carrier compared to a first type of record carrier, the wavefront aberration can introduce the radiation beam, such as a spherical aberration, to compensate for the occurring wavefront aberration. . Herein, the distance of the objective lens 42 has been optimized to the information layer depth 25 of the first type of record carrier, the record carrier requiring further introduction of spherical aberration to perform the scanning of the scan of the second type of record carrier beam. Further, a change element 62 is preferred, which is in particular a quarter-wave damper plate. The changing element 62 is interposed between the optical element 6A and the objective lens 42. Here, within the polarization beam splitter 34, the reflection is within a polarization 90 of the incident radiation beam. Rotate. Conclusion The optical pickup unit 1 〇 according to the invention comprises a radiation source 26 ′ radiating a radiation beam, in particular a wavelength of 4 〇 5 nm, an electro-optical element 56 and an optical element 60, wherein the electro-optical element 56 selectively alters the polarization of the 3 s S beam, and the optical element 6 〇 introduces a spherical aberration to the blast beam. The optical pickup unit 10 includes the objective lens 42 mounted within an activator. The actuator mechanically changes relative to a position of the distance to the information layer of the record carrier. Preferably, in a specific embodiment suitable for brooming four different types of record carriers, a second objective lens, not shown, is included in the figure. Figures 2a and 2b schematically illustrate the optical pickup unit. The output of 1〇118305.doc -35- 200809825     only the record carrier, the objective lens 42 and the optical element 60. The reason is not as shown in Figure 2a is about having a numerical aperture να = 〇 · 85 And a BD record carrier having a cover layer thickness of dU mm, and the case in FIG. 2b is for the scan having a numerical aperture ΝΑ=0·65 and a cover layer thickness d=0.6 mm of the hd-DVD record This is the case with the carrier. It is clear that the formation of the broom spot 44 on the information layer 14 of the record carrier 12 is performed by the objective lens 42 and the cover layer 18 having the thickness 16. This is because of the cover layer. 1 8 is a transparent material, for example, a polycarbonate acts as an optical component. Therefore, a distance between an open surface of the objective lens 42 and the information layer 14 is such that it has an information layer depth.纪录6's record carrier optimization system is not suitable for one There is a second type of carrier having a second information layer depth, because the additional focusing of the overlay layer 18 is different. Since the difference of the thickness 16 of the overlay layer between a BD and an HD_DVD disc is about 500 micrometers, It is possible to obtain a scanning spot 44 on the information layer 14 of the second type of record carrier, but the quality of the scanning spot material is therefore different from the second type of record carrier, and in actual cases is insufficient to scan the A second type of record carrier. According to the invention, an additional wavefront aberration, in particular a spherical aberration, is introduced by the second optical element 60, with the radiation beam 36 passing first before being incident on the objective lens 42 A method of the optical element 6 is disposed in front of the objective lens 42. By the conventional -L - a &lt;Tian Tianbiandi first learning element 60, a spherical aberration is introduced into the Koda field beam 3 6 if The polarization of the beam of light beam 36 is the shape of the class, which is not depicted here, and can be explained in Figures 3 to 5, resulting in a diffraction of the radiation beam % a slight 118305.doc -36 - 200809825, resulting in the introduction of the spherical surface Aberration. According to the invention, the package The class outline of the annular band includes at least a repeating class pattern having a specific height 90 and a width associated with the width of the endless belt. Not shown here, but may be explained by principle, an optical may be used Element 60 is designed to have two structured surfaces 61 on opposite sides of the second optical element 60. Figure 3a illustrates the optical element 60 having a class profile 64, 66, 68 and 70, wherein one of the class profiles 64 has a radius The 72-series differs from the radius 94 of the class profile 66. The reference numeral 74 depicts the center of the optical element 6'''''''''''''''''''' In part, the four-class shapes 64, 66, 68, and 70 are shown. It can be understood that in the case of the class shape 64 to 68, each class shape contains the classes 76, 78, 8 and 82' and, in the case of the class profile, includes three classes 84, % and 88. . Each class contains a height, indicated by reference numeral 9〇, and a degree of visibility, indicated by reference numeral 92. The width 92 of a class is indicated by the type of the ring. The endless belt is about an annular region of a particular width 92. The A distance 72 also relates to the radius of the center 74 of the structured profile 64. The radius of the P white outline 66 is represented by the distance 94. The aforementioned distances 72 and 94 are the boundaries of the class profiles 64 and 66, and corresponding to a radius configuration, the mid-m erect positive aberration function is equal to an integer multiplied by the wavelength person. This will be explained with reference to Figures 3, 4 and 5. It can be understood that the class shape 64 '66 and 68 contains four classes, three of which have a turn to be ancient ^ will be Adu 90, and the fourth class has one of 118305.doc -37 - 200809825 one equals zero The height. Thus, the class profile 70 contains three classes: the two orders have a height of 90, and a third class has a height equal to zero. The sum of the 9 degrees south of the corpse-level appearance results in a total of 96'' of the class shape of 6 4, 6 6 and 6 8 and the sum of the heights 90 results in a total height of 96 of the class shape. . Thus, it can be appreciated that the height 96 of the class profile 70 is different from the individual heights of the class profiles 64, 66 and 68. The decision value for the relative phase of the anomaly and normal mode is the height of a single level of 9 〇 because the height 90 (hj) determines the pattern of the diffracted ray of the radiation beam, by virtue of the class pattern Class diffraction. In Fig. 4, an example of a structured surface 6 of the second optical element 60 having seven class shapes having three classes for each class profile can be viewed from a calculated aberration function 100. It can be seen that the class appearance 98 contains a class having a height of one of the individual classes. The same reference numerals are used for the shape of the class, since the class shape has the same white level and is therefore considered a repeating class shape. The widths 92 of the individual classes are different for the purpose of implementing the required distances between the boundaries of the profiles 98 and the center of the optical element 60, 1 , 2, 104, 106, 108, 1 10, 1 12, 1 14. Figure 5 illustrates a further embodiment of the structured surface 61 comprising a second optical element 6 of a seven-stage configuration having a total of six-stage shape ι 6 and a class profile 118. It will be appreciated that the class profile 116 contains four classes 'where the class pattern 118 contains three classes. Once calculated, the disparity function 120 is also not depicted in FIG. 5, wherein the disparity function 12 uses a structured surface η containing the 118305.doc -38-200809825 with the class outline 116 and the class shape ιι8, The second optical element 60 is obtained. The height % of the class profile 118 is less than the degree 96 of the class profile 116, wherein the high ranks of the classes are equal. Figure 6 contains a further embodiment of the structured surface of the second optical component 60, which further includes a class profile 124, wherein each class profile 124 has four classes. It will be appreciated that the profiles 124 The heights of each of these classes are 90 equal, resulting in an equal height 96 for one of the individual class profiles 124, and thus within one of the structured surfaces repeating the periodic structure. Figures 4 and 5 are shown. In 6, the material of the optical element with the structured surface comprises a polarization sensitive material, in particular a birefringent material, which is preferably a liquid crystal polymer. One example for a liquid crystal polymer has A normal refractive index of 11. 1,575 and an abnormal refractive index of =1 775 liquid crystal polymer, which results in a ratio of 0.75, that is, |, which means the use of a number Ν class, where Ν = 4 or Ν = 3. In general, the material of the optical element is selected in such a manner that the refractive index of the birefringent medium of the optical element 60 obeys the following equation: 0·65 &lt;(η^1)/(η^ΐ) &lt;〇·85. The correspondence The aberration function is also depicted in Figure 6 at the reference number 126. Figure 7 illustrates a portion of one embodiment of the optical pickup unit 10 that includes two objective lenses 42 and 128 that are adapted to broom four A different type of record carrier. The second optical element 60 is tightly loaded on the objective lens 42. A dichroic beam splitter 40 is included for reflecting the radiation beam having a person = 4 〇 5 nm, 118305.doc -39 - 200809825 is directed toward the objective lens 42 and transmits the radiation beam having χ==65〇N and/or λ==78〇N. The objective lens 42 is designed to have a wavelength λι = 4〇5奈One of the radiation beams 36 forms a scanning spot 44, not shown, and the second objective 128 is designed to form a scanning spot 44 of a different wavelength for execution of the third type of record carrier. Scanning, especially the CD or dvd. Next, in the case of using the optical path including the objective lens 128, in the case of scanning the and/or DVD, no additional spherical aberration is added. It is understood that two The objective lenses 42 and 128 are mounted on a common actuation component, depicted by a rectangle symbol 130 The objective lenses 42 and 128 can then be adjusted according to the tracking error correction or the focus error correction. The optical component 60 includes a structured surface 132 that includes one of the class shapes depicted in Figures 4, 5 or 6. Or a further class shape. According to the present invention, it is important that the class shapes are repeated in the structured surface forming a repeating class pattern. The optical element 60 can be assembled with the structured surface 132, the structured surface 132 Include a first repeating class pattern and a person or a second repeating class pattern and/or further repeating the class pattern. Here, the first repeating class pattern and the second repeating class pattern are different, in particular the first repeat The height of the pattern class and the class of the younger repeating pattern class are different. Each class shape may include a class of equal width and/or a class of different widths. The scope of the present invention also includes an optical disk drive capable of scanning at least two types of record carriers, wherein the two types of record carriers have different information layer depths and 118305.doc -40 - 200809825 / or different numerical apertures, including an optical Element 6〇, which performs the compensation of the wavefront aberrations that occur. The occurring wavefront aberration is compensated by a method for use in the optical pickup unit, comprising the step of modifying the optical feature of at least one optical component of the optical pickup unit for applying a wavefront aberration The fact that the depth of the first information layer of the first type of record carrier is different from the depth of the second information layer of the second type of record carrier is greater than the depth of the scanning field in the scanning spot. This wavefront aberration is produced. The method is achieved by applying an optical component in the optical pickup unit, wherein the optical component comprises at least a second class profile having a pattern class, wherein the first class profile and at least the second class profile are formed by a ring shape The strips are separated, and the pattern of the class of the first class profile is equal to the pattern of the class of the second class profile. BRIEF DESCRIPTION OF THE DRAWINGS These and other objects and advantages of the present invention will become more apparent from the description and appended claims appended claims <RTIgt; A view, and a schematic view of one of the detecting elements of the optical pickup unit of FIG. 1b; FIG. 2 is a schematic view of the optical element having a structured surface, and FIG. 2b is a schematic view; 2a is a schematic view of one of the optical elements in plane AA, wherein only the right portion is shown; a schematic view of one of the optical elements is shown in Figure 3a, for - with a numerical aperture NA 〇.85 The optical lens of the record carrier and the record carrier of the scan 118305.doc -41 - 200809825, and a schematic view of the optical element is shown in Fig. 3b. The optical lens and the numerical aperture ΝΑ = = 〇β65 HD-DVD record carrier; Figure 4 is a schematic view of one of the aberration functions (upper curve), and a structured surface of one of the optical elements (first embodiment); Figure 5 The optical component a second embodiment of the structured surface of the curve) and the corresponding aberration curve (upper curve); FIG. 6 is a structuring of the optical element of a third embodiment (lower curve) A schematic view of the surface shape and the corresponding aberration function (upper curve); FIG. 7, which includes FIGS. 7a and 7bFig. 7, includes a schematic view of one of the optical pickup units of one of the two optical lenses. . [Main component symbol description] 12 Record carrier 14 Information layer 16 Thickness 18 Cover layer 20 Surface 21 Radiation beam 22 Reflecting layer 24 Substrate 25 Information layer depth 26 Radiation source 28 Diffraction grating element 118305.doc - 42 - 200809825 30 Radiation beam 32 Light path 34 Light splitting element 36 Light beam 38 Aiming element 40 Mirror 40f Dichroic beam splitter 42 Objective lens 44 Scanning spot 45 Returning radiation beam 46 Detecting element 48 Cylindrical lens 50 Radiation receiving detecting element part 52 Radiation receiving detecting element part 54 Radiation receiving detecting element component 56 Optical element 60 Second optical element 62 Changing element 128 Objective lens 130 Actuator 132 Structured surface 118305.doc -43

Claims (1)

200809825 十、申請專利範圍·· ^種用於掃瞒一具有至少一資訊層(14)之紀錄载體(12) 之光學拾取單元,其中該紀錄載體(12)係一具有一第一 格式之第—類型紀錄載體及/或具有一第二格式之至少一 第二類型紀錄載體,該光學拾取單元(1〇)包含: _至少一輻射源(26),其放射一第一輻射光束(21), 其具有一第一波長,用於掃瞄該第一類型紀錄載體及/或 該至少第二類型紀錄載體; -至少一物鏡(42),其用於將一自該第一輻射光束 (21)形成之第一輻射光點(44)導向該第一類型紀錄載體 及/或該至少第二類型紀錄載體之該資訊層(14)上; -至少一第一光學元件(38),其可在一第一狀態與至 少一第二狀態之間改變,其中該第一輻射光束之一偏振 受到在該第一狀態之該第一光學元件(38)與在該第二狀 態之该第一光學元件(38)之影響方式不同,造成通過在 該第一狀悲之該第一光學元件(3 8)之該第一輕射光束 (21)之一第一偏振,以及通過在該第二狀態之該第一光 學元件(38)之該第一輻射光束(21)之一第二偏振; -具有至少一結構化表面(61)之至少一第二光學元件 (60),用於提供一波前像差補償,該至少一第二光學元 件(60)包含一偏振敏感材料,該至少一結構化表面(61) 具有環狀帶’每一該等環狀帶具有一寬度(92),該等環 狀帶形成一弟一階級外形(64、66、68),其具有一第一 數量之階級,形成階級(78、80、82)之一圖案,其中每 118305.doc 200809825 一階級(78、80、82)包含除該形成該階級之環狀帶之寬 度(92)外之一高度(90),其特徵在於該至少一結構化表 面(61)包含至少一第二階級外形(64、66、68),其具有 一第二數量之階級,形成該階級之圖案,其中該第一階 級外形(64、66、68)及該至少第二階級外形(66、68)係 由一環狀帶分開,並且該第一階級外形(64、66、68)之 階級數量與該第二階級外形(64、66、68)之階級數量係 相等的,以為了形成階級之至少一重複圖案。 2·如請求項1之光學拾取單元,其特徵在於提供至少一進 一步階級外形(64、66、68),其中形成該進一步階級外 形之階級(78、80、82)之該圖案之階級數量係等於形成 該第一及第二階級外形(64、66、68)之階級(78、80、 82)之該圖案之階級數量,該等階級外形(64、66、68) 形成該至少一結構化表面(61 ),其具有階級之至少一重 複圖案。 3 ·如請求項1或2之光學拾取單元,其特徵在於該階級之圖 案包含至少三階級(84、86、88),其造成該等階級外形 (70)之一第一高度(96)。 4·如請求項1或2之光學拾取單元,其特徵在於該階級之圖 案包含至少四階級(76、78、80、82),其造成該等階級 外形之一第二高度(96,)。 5·如請求項1或2之光學拾取單元,其特徵在於該階級之圖 案包含階級(76、78、80、82、84、86、88),其具有不 同的寬度(92)。 118305.doc 200809825 6. 如^求項_之光學拾取單元,其特徵在於該波前像差 補4貝包括一球面像差之補償。 7. 如°月求項1或2之光學拾取單元,其特徵在於該光學元件 (⑼)之材料係—雙折射材料,其具有-用於具有-平行 於忒光軸之偏振之該輻射光束之第一折射指數〜,以及 用於:有-垂直於該第一偏振之第二偏振之該輻射光束 之至少一第二折射指數n。,其造成帶有該第一偏振之該 輻射光束(36)與帶有該第二偏振之該輕射光束㈣之一 球面像差相異量之發生。 8·如請求項6之光學拾取單元,其特徵在於該第一折射指 數ne及该第二折射指數η。係根據以下關係彼此相關: 〇.65(ne—ι)&lt;(η〇])&lt;〇 叫〜」)。 如月求項7之光學拾取單元,其特徵在於該雙折射材料 係一液晶聚合物。 10·如請求項6之光學拾取單元,其特徵在於對於該第二偏 振之該輻射光束(36),該球面像差之量大體上係零。 11 _如明求項6之光學拾取單元,其特徵在於對於該第一偏 振之該輻射光束(36),該球面像差之量大體上係零。 12·如請求項6之光學拾取單元,其特徵在於對於該第二偏 振之該輻射光束(36),該球面像差之量係零。 13·如請求項6之光學拾取單元,其特徵在於對於該第一偏 振之該輻射光束(36),該球面像差之量係零。 14·如明求項丨或2之光學拾取單元,其特徵在於該第二光學 几件(60)係配置於該光學拾取單元(1())内,以為了接收 118305.doc 200809825 在一準直狀態之該第一輻射光束(36)。 15·如請求項丨或2之光學拾取單元,其特徵在於該光學拾取 單元(10)包含一準直透鏡,其中該第二光學元件(6〇)配 置於該準直透鏡與至少一物鏡(42)之間。 • 16.如請求項丨或2之光學拾取單元,其特徵在於該光學拾取 早7〇(10)進一步包含一第二物鏡(128),經配置以為了形 成一掃瞄光點(44)於一第三類型紀錄載體(12)之該資訊 層(14)上,以為了取得一用於掃瞄具有不同格式之至少 三不同類型紀錄載體之光學拾取單元。 17·如明求項丨或2之光學拾取單元,其特徵在於該光學拾取 早兀(10)包含一進一步光學元件,其用於執行導向該紀 錄載體之資訊層(14)上之該輻射光束之一散焦。 18·如請求項丨或2之光學拾取單元,其特徵在於該光學拾取 單元(10)包含至少一弟二輪射光束,其放射一具有一第 二波長λ2之輻射光束,其用於掃瞄至少一具有一第三格 式之第三類型紀錄載體。 19·如請求項1或2之光學拾取單元,其特徵在於該等個別物 鏡(42、128)係裝載於一致動器(13〇)内,用於相對於該 ‘紀錄載體(12)之該資訊層(14)之深度而機械地改變該第 一及該第二物鏡(42、128)之位置。 20.如請求項18之光學拾取單元,其特徵在於該第二光學元 件(6 0)係連接至该第一物鏡(4 2 )。 21_如請求項19之光學拾取單元,其特徵在於該第一(42)及 該第二物鏡(128)可藉由該致動器(1;3〇)移動。 118305.doc 200809825 22 · —種包含如請求項1或2之光學拾取單元(10)之光碟機。 23· —種用於提供如請求項1或2之光學拾取單元(10)内之波 前像差補償之光學元件,該光學元件包含一偏振敏感材 料且具有一帶有至少一重複階級外形之結構化表面 (61),該至少一階級外形具有一階級之圖案,每一階級 (78、80、82、86、88)具有一高度(90)及一寬度(90)。 24· —種用於如請求項22之光碟機之一光學拾取單元(1〇)内 之方法,其用於在掃瞄一紀錄載體(12)時執行波前像差 之補償,其中欲掃瞄之該紀錄載體(12)係一具有一第一 格式之第一類型紀錄載體,其中該第一格式包括一第一 資訊層深度(25’),及/或一具有一第二格式之第二類型紀 錄載體,其包括一第二資訊層深度(25,,),該方法包含以 下步驟: -掃瞒該第一類型或該第二類型紀錄載體之該資訊層 (14); - 特徵在於以下步驟: 修改遠光學拾取單元(1〇)之至少一光學元件(6〇)之 光學特徵,以為了藉由應用一波前像差至該大於λ之掃 目田光點,補償在一掃瞄光點(44)中由於該第一類型紀錄 載體之第一資訊層深度(25’)不同於該第二類型紀錄載體 之该第二貧訊層深度(25,j之事實所產生之該波前像差。 25·如請求項24之方法,其特徵在於根據請求項21,在如請 求項1或2之光學拾取單元(1〇)内,該補償係視入射於— 光學元件(60)之該輻射光點(36)之偏振,由引入一球面 像差量至該掃瞄光點(14)而執行。 118305.doc200809825 X. Patent application scope · An optical pickup unit for brooming a record carrier (12) having at least one information layer (14), wherein the record carrier (12) has a first format a first type of record carrier and/or at least one second type of record carrier having a second format, the optical pickup unit (1) comprising: _ at least one radiation source (26) radiating a first radiation beam (21) Having a first wavelength for scanning the first type of record carrier and/or the at least second type of record carrier; at least one objective lens (42) for using a first radiation beam ( 21) forming a first radiation spot (44) directed onto the information layer (14) of the first type of record carrier and/or the at least second type of record carrier; at least a first optical element (38) Between a first state and at least a second state, wherein one of the first radiation beams is polarized by the first optical element (38) in the first state and the first one in the second state The optical element (38) is affected in different ways, resulting in a first polarization of the first optical beam (21) of the first optical element (38), and a first pass of the first optical component (38) in the second state a second polarization of the radiation beam (21); - at least one second optical element (60) having at least one structured surface (61) for providing a wavefront aberration compensation, the at least one second optical component ( 60) comprising a polarization sensitive material, the at least one structured surface (61) having an annular band 'each of the annular bands having a width (92), the annular bands forming a younger class shape (64, 66, 68), which has a first number of classes forming a pattern of one of the classes (78, 80, 82), wherein each 118305.doc 200809825 one class (78, 80, 82) contains a ring that forms the class a height (90) outside the width (92) of the strip, characterized in that the at least one structured surface (61) comprises at least one second level profile (64, 66, 68) having a second number of classes Forming a pattern of the class, wherein the first class profile (64, 66, 68) and the at least second class are outside The shapes (66, 68) are separated by an endless belt, and the number of classes of the first class profile (64, 66, 68) is equal to the number of classes of the second class profile (64, 66, 68), In order to form at least one repeating pattern of the class. 2. An optical pickup unit according to claim 1, characterized in that at least one further class profile (64, 66, 68) is provided, wherein the number of classes of the pattern forming the class (78, 80, 82) of the further class profile is Equal to the number of classes of the pattern (78, 80, 82) forming the first and second class profiles (64, 66, 68), the class shapes (64, 66, 68) forming the at least one structuring Surface (61) having at least one repeating pattern of the class. 3. An optical pickup unit according to claim 1 or 2, characterized in that the pattern of the class comprises at least three classes (84, 86, 88) which result in a first height (96) of one of the class profiles (70). 4. An optical pickup unit according to claim 1 or 2, characterized in that the pattern of the class comprises at least four classes (76, 78, 80, 82) which result in a second height (96,) of one of the class shapes. 5. An optical pickup unit according to claim 1 or 2, characterized in that the pattern of the class comprises classes (76, 78, 80, 82, 84, 86, 88) having different widths (92). 118305.doc 200809825 6. The optical pickup unit of claim _, characterized in that the wavefront aberration complement 4 includes a compensation for spherical aberration. 7. An optical pickup unit according to item 1 or 2, characterized in that the material of the optical element ((9)) is a birefringent material having - for the radiation beam having a polarization parallel to the pupil axis a first refractive index 〜, and for: at least a second refractive index n of the radiation beam having a second polarization perpendicular to the first polarization. It causes the radiation beam (36) with the first polarization to be different from the spherical aberration of the light beam (4) with the second polarization. 8. The optical pickup unit of claim 6, characterized by the first refractive index ne and the second refractive index η. They are related to each other according to the following relationship: 〇.65(ne—ι)&lt;(η〇])&lt;〇 〜~”). An optical pickup unit according to item 7, wherein the birefringent material is a liquid crystal polymer. 10. The optical pickup unit of claim 6, wherein the amount of spherical aberration is substantially zero for the radiation beam (36) of the second polarization. An optical pickup unit according to claim 6, characterized in that the amount of the spherical aberration is substantially zero for the radiation beam (36) of the first polarization. 12. The optical pickup unit of claim 6, wherein the amount of spherical aberration is zero for the radiation beam (36) of the second polarization. 13. The optical pickup unit of claim 6, wherein the amount of spherical aberration is zero for the radiation beam (36) of the first polarization. 14. The optical pickup unit of claim 2 or 2, wherein the second optical component (60) is disposed in the optical pickup unit (1()) for receiving 118305.doc 200809825 in a The first radiation beam (36) in a straight state. The optical pickup unit of claim 2 or 2, wherein the optical pickup unit (10) comprises a collimating lens, wherein the second optical element (6〇) is disposed on the collimating lens and the at least one objective lens ( 42) Between. 16. The optical pickup unit of claim 2 or 2, wherein the optical pickup further comprises a second objective lens (128) configured to form a scan spot (44). The information layer (14) of the third type of record carrier (12) is for obtaining an optical pickup unit for scanning at least three different types of record carriers having different formats. 17. The optical pickup unit of claim 2 or 2, wherein the optical pickup (10) comprises a further optical component for performing the radiation beam directed onto the information layer (14) of the record carrier One is defocused. 18. The optical pickup unit of claim 2 or 2, wherein the optical pickup unit (10) comprises at least one dichroic beam that emits a radiation beam having a second wavelength λ2 for scanning at least A third type of record carrier having a third format. 19. The optical pickup unit of claim 1 or 2, wherein the individual objective lenses (42, 128) are loaded in an actuator (13) for relative to the 'record carrier (12) The depth of the information layer (14) mechanically changes the position of the first and second objective lenses (42, 128). 20. The optical pickup unit of claim 18, wherein the second optical element (60) is coupled to the first objective lens (42). An optical pickup unit according to claim 19, characterized in that the first (42) and the second objective lens (128) are movable by the actuator (1; 3〇). 118305.doc 200809825 22 - A disc player comprising an optical pickup unit (10) as claimed in claim 1 or 2. An optical element for providing wavefront aberration compensation in an optical pickup unit (10) as claimed in claim 1 or 2, the optical element comprising a polarization sensitive material and having a structure with at least one repeating class appearance The surface (61) has a pattern of one class, and each class (78, 80, 82, 86, 88) has a height (90) and a width (90). 24. A method for use in an optical pickup unit (1) of an optical disk drive of claim 22, for performing compensation of wavefront aberrations when scanning a record carrier (12), wherein The record carrier (12) is a first type of record carrier having a first format, wherein the first format includes a first information layer depth (25'), and/or a second format a second type of record carrier comprising a second information layer depth (25,), the method comprising the steps of: - sweeping the information layer (14) of the first type or the second type of record carrier; The following steps: modifying the optical characteristics of at least one optical component (6〇) of the far optical pickup unit (1〇) in order to compensate for a scan light by applying a wavefront aberration to the sweeping field point larger than λ The point (44) is due to the fact that the first information layer depth (25') of the first type of record carrier is different from the second layer of the second type of record carrier (25, j) A method of claim 24, characterized in that According to claim 21, in the optical pickup unit (1) of claim 1 or 2, the compensation is based on the polarization of the radiation spot (36) incident on the optical element (60) by introducing a spherical image The difference is performed to the scanning spot (14). 118305.doc
TW96103947A 2006-02-06 2007-02-02 Optical pick-up unit for use in a multi-disc optical player TW200809825A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06101304 2006-02-06

Publications (1)

Publication Number Publication Date
TW200809825A true TW200809825A (en) 2008-02-16

Family

ID=38093411

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96103947A TW200809825A (en) 2006-02-06 2007-02-02 Optical pick-up unit for use in a multi-disc optical player

Country Status (2)

Country Link
TW (1) TW200809825A (en)
WO (1) WO2007091184A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022564A (en) * 2001-07-06 2003-01-24 Minebea Co Ltd Optical pickup device
KR100828246B1 (en) * 2001-09-20 2008-05-07 엘지전자 주식회사 HOE device and optical pick-up using the same
JP2004326858A (en) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc Optical pickup device and optical system for the same
KR20060047697A (en) * 2004-05-10 2006-05-18 코니카 미놀타 옵토 인코포레이티드 Optical pickup apparatus
WO2006009176A1 (en) * 2004-07-20 2006-01-26 Asahi Glass Company, Limited Liquid crystal lens element and optical head device

Also Published As

Publication number Publication date
WO2007091184A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US7782735B2 (en) Optical pickup device capable of handling a plurality of laser light beams having different wavelengths
US20060023607A1 (en) Optical element, optical head, optical recording reproducing apparatus and optical recording/reproducing method
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP2008541323A (en) Optical scanning device using multiple radiation beams
JP2008052826A (en) Optical pickup device
JP2009015935A (en) Optical pickup, and aberration correction system for optical pickup
US7595472B2 (en) Optical head device
JP2005512254A (en) Optical scanning device
US20080095015A1 (en) Diffractive Part
US8081553B2 (en) Optical pickup apparatus
JP5025349B2 (en) Optical pickup device
TW200809825A (en) Optical pick-up unit for use in a multi-disc optical player
JP4312214B2 (en) Optical pickup device
JP2004206763A (en) Optical information reproducing device, optical information reproducing unit, optical disk and optical information recording or reproducing method
US20060251378A1 (en) Optical arrangement
JP4339222B2 (en) Optical pickup device
JP2007294069A (en) Diffraction element, optical pickup and optical disk disc apparatus
KR20040071703A (en) Optical scanning device
US20060221783A1 (en) Optical head and optical disc apparatus
JP2005025897A (en) Optical pickup device
JP2011150775A (en) Optical pickup apparatus
JP2009271329A (en) Wavelength plate and optical pickup using the same
JP2005503637A (en) Optical scanning device
JP2005327375A (en) Phase optical element and optical pickup device