TW200809180A - Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement - Google Patents

Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement Download PDF

Info

Publication number
TW200809180A
TW200809180A TW96115902A TW96115902A TW200809180A TW 200809180 A TW200809180 A TW 200809180A TW 96115902 A TW96115902 A TW 96115902A TW 96115902 A TW96115902 A TW 96115902A TW 200809180 A TW200809180 A TW 200809180A
Authority
TW
Taiwan
Prior art keywords
sample
calibration
reflectance
samples
data
Prior art date
Application number
TW96115902A
Other languages
Chinese (zh)
Other versions
TWI452283B (en
Inventor
Phillip Walsh
Dale A Harrison
Original Assignee
Metrosol Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/418,846 external-priority patent/US7511265B2/en
Priority claimed from US11/418,827 external-priority patent/US7282703B2/en
Priority claimed from US11/789,686 external-priority patent/US7663097B2/en
Application filed by Metrosol Inc filed Critical Metrosol Inc
Publication of TW200809180A publication Critical patent/TW200809180A/en
Application granted granted Critical
Publication of TWI452283B publication Critical patent/TWI452283B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A reflectometer calibration technique is provided that may include the use of two calibration samples in the calibration process. Further, the technique allows for calibration even in the presence of variations between the actual and assumed properties of at least one or more of the calibration samples. In addition, the technique utilizes a ratio of the measurements from the first and second calibration samples to determine the actual properties of at least one of the calibration samples. The ratio may be a ratio of the intensity reflected from the first and second calibration samples. The samples may exhibit relatively different reflective properties at the desired wavelengths. In such a technique the reflectance data of each sample may then be considered relatively decoupled from the other and actual properties of one or more of the calibration samples may be calculated. The determined actual properties may then be utilized to assist calibration of the reflectometer.

Description

200809180 九、發明說明: 【發明所屬之技術領域】 本發明係關於光學計量學領域。更明確地說,本發明提 供一種方法,藉由該方法可精確校準反射率資料。在一實 施例中,本發明提供一種方法,藉由該方法可精確校準寬 頻真空紫外(νυν)反射率資料。另外,本發明亦提供一種 方法’藉由該方法可執行高度精確的薄膜量測。 【先前技術】 光學反射量測技術由於其非接觸、非破壞性且通常高通 量的性質已長期應用於半導體製造工業中之過程控制應用 中。此等工具中的大多數在光譜區的某部分中操作,該光 譜區跨越深紫外波長及近紅外波長(DUV-NIR通常為2〇〇_ 1000 nm)。朝較薄層的推近及複雜新材料的引入已挑戰此 等儀器之靈敏度。結果,此已迫使努力研發使用較短波長 (在200 nm以下)之光學反射量測儀器,於其中可實現對材 料特性之微小改變的較大靈敏度。在美國申請案第 10/668,642號(於2003年9月23日申請)中描述一種執行此等 里測之方法,該申請案揭示用於真空紫外(νυν)反射計之 系統及方法,其揭示内容以引用方式併入本文中。 為了自反射量測資料獲得有意義的定量結果,需要正規 化或校準經量測之反射率值以便產生絕對反射光譜。在 DUV-NIR區中的較長波長處,傳統上已利用各種技術完成 此。 歸因於絕對反射計系統之複雜性,商用反射計通常量測 120526.doc 200809180 經反射之強度,按照已知的絕對反射率標準對該強度予以 校準。在DUV-祖波長範圍中,因為在此波絲圍^光^ 特性為熟知的且反射率相當穩定,所以通常利用矽晶= (其具有原生Si02層)。 3 對於不同儀器,精密校準步驟不同,但是本質上,通常 所量測之數量為 ' $ 一Z 方程式1 其中,Ir為自樣本反射且由偵測器量測到之強度,且“為 入射強度。Ϊ。通常未知。另外]。將由於環境二、由: 境變化引起之光學系統偏移及光源之強度輪廊偏移而隨時 間流逝變化。在任何給定時間處,由校準程序確定 J = I cal 方程式2 f中Ical為校準標準之經量測強度,且R…為校準標準之假 设反射率。若已知關於校準樣本之足夠資訊,例如,光學 特性、表面粗縫度等,則可利用標準薄膜模型產生R : 利用此IQ經由方程式!執行、校準後續㈣。 Ca, 實施時,此程序假設U之變化僅是由於以上所 化。2或燈強度變化’且不是由於校準標準本身的變 、、*逝之广利用以上方法通常不可偵測校準標準隨時間 化,因為此等變化被簡單地,,校準掉&quot;。顯然,隨 =逝广後續反射率量測之精確性及穩定 於用M產生R-之假設的精確性以及校準樣本本身的轉 120526.doc 200809180 定性。 、-枚準技術涉及併人有移動面鏡之複雜光學配置。在 、、:專利第4,368,983遽(及併入本文中之參考文獻)中提供 等方法之κ例’該專利描述利用多程反射計來量測樣本 之絕對反射率的裝置及方法。 胃雖然此等方法提供獲得經校準之反射率資料之方法,但 :其通吊遭受耗時之事實,涉及相當多的機械運動且不能 : ★易地整合於適合供半導體製造環境中利用的系統中。此 外,許多此等方法經設計以供單一波長反射計中利用,其 中結合波長選擇預單色器利用單一波長偵測器。 理心、地,將需要提供一種技術,藉由該技術可同時快速 且簡單地且以使其本身適合供半導體製造環境中利用之方 式校準寬頻反射量測資料。 美國專利第RE 34,783提出一種校準方法,其中描述一 種方法,該方法包括:自絕對反射率為熟知之校準樣本量 , 測反射率,用絕對值除經量測值以獲得一系統效率係數, 及接著,在不改變照明或光學器件之情況下量測未知材料 之反射率且將該係數應用於經量測值以獲得其絕對值。 實務上,單晶矽晶圓常用作校準樣本,因為其易於獲 得、在製造上可控制且在DUV-NIR區中的光學特性已經良 好特徵化。此方法在〜250 nm以上的波長處相當好地工 作’在該波長處單晶矽之反射率既穩定又可預測。 在較短波長(&lt;250 nm)處,單晶矽晶圓之反射率既不穩 定又不可預測。存在於晶圓上之自然(或”原生”)形成之二 120526.doc 200809180 乳化石夕層的厚度的微小變化可顯著影響經量測之反射率。 另外,已知超薄濕氣層或煙層(在文獻中有日寺稱作*浮 分子污染物或就)將被吸附至表面上,進—步修改在此 光譜區中之樣本反射率。由於在爾計量工具中的重複利 用’污染物膜亦可產生於校準樣本上。此等膜之存在及生 長會改變校準標準之反射率。結果,將單晶石夕晶圓在&lt;25〇 nm的波長處之反射率視作&quot;已知&quot;特性通常是不合理的。 纟國專利第5,798,837號中提出—種克服此問題之方法, 胃專利描述一種光學量測系統,該光學量測系統包括二參 考橢圓偏光計(ellipsometer)及至少一非接觸光學量測設 備,諸如反射計。參考橢圓偏光計用來確定校準樣本之光 學特性。接著,藉由將來自光學量測設備之經量測光學特 性與來自參考橢圓偏光計之經確定光學特性相比較來校準 光學量測設備。 將單獨的參考橢圓偏光計整合於光學量測系統中以便校 , 準弟一光學f測設備是既複雜又昂貴的。此外,若參考橢 圓偏光計要產生精確結果,則必須恰當對準並校準来考擴 圓偏光計本身。 其後,將非常需要研發一種方法,該方法快速且精確地 校準來自以&lt;250 nm的波長操作之光學反射計之寬頻資料 而不會有與將第二參考儀器併入系統中相關聯的複雜性及 費用。 另外,若此方法特別使精確校準在包含VUV光譜區之、皮 長處之反射量測資料成為可能,則其將為有利的,其中第 120526.doc 200809180 二方檢定標準之特性 差。若… 之小的不確定性可導致相當大的誤 產 右此方法能夠獨立墟 全#^ / 確(此4標準之特性以便減少或完 4除其㈣及維護需要,則其將更為理想。 之Γϊ::種使精確校準反射量測工具成為可能的技術 之薄膜t要提供—種技術,藉由該技術,可執行高度精確 測::測。在寬範圍之薄膜應用中利用光學反射率量 、吊利用數學模型記錄並隨後分析樣本之絕對反射 率,以便確定物理特性之種類。 ^ ^田疋里指標(通常被稱作,,適合度,,參數)達到特定 夺W為刀析凡成。不幸的是,利用習知”適合度”參數 了達,之量測精確性有限。因此,其後,#需要研發更靈 敏的適合度”量測以便在薄膜量測中可獲得較高精確性等 【發明内容】 本發明之_實施例提供—種方法,藉由該方法,可快速 且料地校準vuv反射率資料。在-實施例中,該方法使 同日可枝準涵蓋寬範圍波長之反射率資料成為可能。另外, 該技術以非常適合供半導體製造環境中利用的方式操作。 忒方法可為獨立的,因為其可能不需要利用第二參考儀 為。其可提供一種方法,藉由該方法可自動驗證校準結果 以使得將減少及/或完全消除對第三方檢定標準之利用。 在一實施例中,技術包括使用一標準(,,校準,,)樣本,即 使標準樣本由於標準樣本特性的微小變化而在感興趣的波 長處展不出顯著的反射率變化,該樣本仍允許在該等波長 120526.doc 200809180 l的枚準。因此’即使在預期將碰到在使用者感興趣之波 、區中傳統上顯著的校準誤差的情況下,仍可達成校準。 ^此^技術可利用某—校準誤差量的存在,該校準誤 差里可被稱作校準誤差函數。 ί另—實_中’校準過程可包括-種技術,該技術使 用第樣本及第二樣本。第—樣本可包括感興趣之光譜區 中作為樣本特性變化之函數之顯著的反射率變化且第二樣 本在同-光譜區中可具有相對無特點的反射光譜。第一樣 本=作標準或校準樣本,且第二樣本可視作參考樣本。 在一實施例中,光譜區可包括νυν光譜區。 在另-實施例中,提供—種校準技術,丨中標準或校準 樣本可具有相對未知之特性,例外情況為:可假設在感興 趣之光譜區中具有顯著校準誤差函數。因&amp;,若可假設標 準樣本由於樣本特性變化而展示出急劇的反射率變化,則 無需已知標準樣本之確切特性。 在本發明之另—實施例中,提供—種技術,藉由該技術 可執行非常精確的薄膜量測。該方法可為數學擬合演算法 提供更靈敏的&quot;適合度”指標,該指標對原始資料中存在的 雜訊較不敏感。擬合程序可為光譜驅動擬合程序而不是僅 依賴於振幅驅動程序(其通常併入有差異計算)。在此實施 例中’藉由使用急劇、窄的光譜特點之存在可獲得該等量 測。 在-實施例中,藉由光譜驅動擬合程序(其使用被量測 樣本之預期反射光諸與被量測樣本之實際反射光譜的比 120526.doc 11 200809180 率)獲得該等量測。因此,本文所提供之技術使用該等值 之比率而不疋基於預期值與實際值之間的差異。該等技術 在含有急劇光譜特點(例如,對於薄膜樣本通常在vuv區 中展不出的急劇特點)之光譜區中尤其有用。因此,提供 一種資料收斂技術,其可有利地使用所揭示材料之吸收邊 緣效應。以此方式,有利地使用急劇光譜特點(例如,由 干涉或吸收效應引起的光譜特點)以更好確定指示實際量 測值之資料最小值。200809180 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to the field of optical metrology. More specifically, the present invention provides a method by which the reflectance data can be accurately calibrated. In one embodiment, the present invention provides a method by which a wide frequency vacuum ultraviolet (νυν) reflectance data can be accurately calibrated. Additionally, the present invention also provides a method by which highly accurate film measurements can be performed. [Prior Art] Optical reflection measurement techniques have long been used in process control applications in the semiconductor manufacturing industry due to their non-contact, non-destructive and generally high throughput properties. Most of these tools operate in a portion of the spectral region that spans the deep ultraviolet and near infrared wavelengths (DUV-NIR is typically 2〇〇_1000 nm). The approach to thinner layers and the introduction of complex new materials have challenged the sensitivity of such instruments. As a result, this has forced efforts to develop optical reflectance measuring instruments using shorter wavelengths (below 200 nm), in which greater sensitivity to small changes in material properties can be achieved. A method of performing such measurements is described in U.S. Patent Application Serial No. 10/668,642, filed on Sep. 23, 2003. The content is incorporated herein by reference. In order to obtain meaningful quantitative results from the reflectance measurements, it is necessary to normalize or calibrate the measured reflectance values to produce an absolute reflectance spectrum. At longer wavelengths in the DUV-NIR region, various techniques have traditionally been accomplished using various techniques. Due to the complexity of the absolute reflectometer system, commercial reflectometers are typically measured 120526.doc 200809180 The intensity of the reflection is calibrated according to known absolute reflectance standards. In the DUV-progenitor wavelength range, since the characteristics of the filaments are well known and the reflectance is relatively stable, twinning (which has a native SiO 2 layer) is usually utilized. 3 For different instruments, the precision calibration steps are different, but in essence, the quantity usually measured is '$一Z Equation 1 where Ir is the intensity reflected from the sample and measured by the detector, and “is the incident intensity Ϊ. Usually unknown. In addition, it will change with time due to the environment 2, the optical system offset caused by the change of the environment and the intensity of the light source. At any given time, the calibration procedure determines J. = I cal Ical is the measured intensity of the calibration standard in Equation 2 f, and R... is the assumed reflectivity of the calibration standard. If sufficient information about the calibration sample is known, for example, optical properties, surface roughness, etc. R can be generated using a standard film model: Use this IQ to perform, calibrate the subsequent (4) via Equation! Ca, in practice, this procedure assumes that the change in U is only due to the above. 2 or the lamp intensity changes 'and not because of the calibration standard itself The use of the above methods is generally not detectable with the calibration standard over time, because these changes are simply, calibrated &quot;. Obviously, follow-up The accuracy of the luminosity measurement is stable and stable to the accuracy of the assumption that R- is generated by M and the calibration of the sample itself. 120526.doc 200809180 Qualitative. - The quasi-technical technique involves the complex optical configuration of a moving mirror. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The method provides a method of obtaining calibrated reflectance data, but the fact that it is time consuming and involves a lot of mechanical motion and cannot: ★ is easily integrated into a system suitable for use in a semiconductor manufacturing environment. Many of these methods are designed for use in a single wavelength reflectometer, where a wavelength selective pre-monochromator utilizes a single wavelength detector. It is desirable to provide a technique that is both fast and simple at the same time. The broadband reflectance measurement data is calibrated in such a manner as to be suitable for use in a semiconductor manufacturing environment. U.S. Patent No. RE 34,783 proposes a calibration method Therein is described a method comprising: self-absolute reflectance from a well-known calibration sample amount, measuring reflectance, dividing the measured value by an absolute value to obtain a system efficiency coefficient, and then, without changing the illumination or optics The reflectance of the unknown material is measured and applied to the measured value to obtain its absolute value. In practice, single crystal germanium wafers are often used as calibration samples because they are readily available, controllable in manufacturing, and The optical properties in the DUV-NIR region have been well characterized. This method works fairly well at wavelengths above ~250 nm. 'The reflectivity of single crystal germanium at this wavelength is both stable and predictable. At shorter wavelengths (&lt At 250 nm), the reflectivity of single crystal germanium wafers is both unstable and unpredictable. The natural (or "native" formation of the wafer exists on the wafer. 120526.doc 200809180 A small change in the thickness of the emulsified layer can significantly affect the measured reflectance. In addition, it is known that an ultra-thin moisture layer or a smoke layer (in the literature, a Japanese temple called *floating molecular contaminant or just) will be adsorbed onto the surface, and the sample reflectance in this spectral region is further modified. Due to the repeated use in the metrology tool, the 'contaminant film' can also be generated on the calibration sample. The presence and growth of these films can alter the reflectivity of the calibration standard. As a result, it is generally unreasonable to regard the reflectance of a single crystal wafer at a wavelength of &lt;25 〇 nm as &quot;known&quot; characteristics. A method for overcoming this problem is proposed in Japanese Patent No. 5,798,837. The stomach patent describes an optical measurement system comprising a two-reference ellipsometer and at least one non-contact optical measuring device, such as Reflectometer. A reference ellipsometer is used to determine the optical properties of the calibration sample. The optical metrology device is then calibrated by comparing the measured optical characteristics from the optical metrology device to the determined optical properties from the reference ellipsometer. Integrating a separate reference ellipsometer into an optical metrology system is a complex and expensive device. In addition, if the reference ellipsometer is to produce accurate results, it must be properly aligned and calibrated to expand the circular polarimeter itself. Thereafter, it would be highly desirable to develop a method that quickly and accurately calibrates broadband data from an optical reflectometer operating at a wavelength of &lt;250 nm without being associated with incorporating the second reference instrument into the system. Complexity and cost. In addition, it would be advantageous if this method specifically made it possible to accurately calibrate the reflectance data at the skin length including the VUV spectral region, wherein the characteristics of the two-party test standard of the 120526.doc 200809180 are poor. If the small uncertainty of ... can lead to considerable mis-production, this method can be independent of the entire #^ / indeed (the characteristics of this 4 standard in order to reduce or finish 4 (4) and maintenance needs, it will be more ideal Γϊ :: A film that makes accurate calibration of the reflectometry tool possible. A technique is required to perform highly accurate measurements: using optical reflections in a wide range of film applications. Rate, hang using mathematical models to record and then analyze the absolute reflectivity of the sample to determine the type of physical properties. ^ ^Tianjili indicators (usually called, fitness, parameters) to achieve a specific W Unfortunately, the use of the "fitness" parameter is limited, and the accuracy of the measurement is limited. Therefore, afterwards, # need to develop a more sensitive fitness" measurement to obtain a better measurement in the film measurement. High Accuracy, etc. [Invention] The present invention provides a method by which vuv reflectance data can be quickly and materially calibrated. In an embodiment, the method allows the same day to cover a wide range. range Long reflectance data is possible. In addition, the technology operates in a manner that is well suited for use in semiconductor manufacturing environments. The method can be independent because it may not require the use of a second reference. It provides a method. The calibration results can be automatically verified by the method such that the utilization of third party verification criteria will be reduced and/or eliminated altogether. In one embodiment, the technique includes the use of a standard (, calibration, ) sample, even though the standard sample is A small change in the characteristics of the standard sample does not show a significant change in reflectance at the wavelength of interest, and the sample still allows for the registration at the wavelength of 120526.doc 200809180 l. Therefore 'even if it is expected to come across the user Calibration can still be achieved in the case of waves of interest, traditionally significant calibration errors in the zone. ^ This technique can take advantage of the existence of a certain calibration error, which can be referred to as the calibration error function. - The real-medium calibration process may include a technique that uses a first sample and a second sample. The first sample may include a spectral region of interest Significant reflectance changes as a function of sample property change and the second sample may have a relatively uncharacteristic reflectance spectrum in the same-spectral region. The first sample = as a standard or calibration sample, and the second sample may be considered as a reference sample In an embodiment, the spectral region may comprise a νυν spectral region. In another embodiment, a calibration technique is provided, wherein the standard or calibration sample may have relatively unknown characteristics, with the exception that: There is a significant calibration error function in the spectral region. Because &amp;, if it can be assumed that the standard sample exhibits a sharp change in reflectance due to changes in sample characteristics, the exact characteristics of the known standard samples are not required. A technique is provided by which a very accurate film measurement can be performed. This method provides a more sensitive &quot;fitness&quot; indicator for the mathematical fit algorithm, which presents the noise present in the original data. Less sensitive. The fitting program can be a spectrally driven fit program rather than relying solely on amplitude drivers (which typically incorporate difference calculations). In this embodiment, the measurements can be obtained by using the presence of sharp, narrow spectral features. In an embodiment, the measurements are obtained by a spectrally driven fitting procedure that uses the ratio of the expected reflected light of the measured sample to the actual reflected spectrum of the sample being measured, 120526.doc 11 200809180. Therefore, the techniques provided herein use the ratio of the equivalents rather than based on the difference between the expected and actual values. These techniques are especially useful in spectral regions that contain sharp spectral features (e.g., sharp features that are typically not exhibited in the vuv region of a thin film sample). Accordingly, a data convergence technique is provided that can advantageously utilize the absorption edge effects of the disclosed materials. In this way, sharp spectral characteristics (e.g., spectral characteristics caused by interference or absorption effects) are advantageously used to better determine the minimum value of the data indicative of the actual measurement.

在另一實施例中,資料縮減技術可使用兩步驟方法。在 此實施例中,諸如振幅驅動擬合程序之低解析度步驟可首 先用於提供”粗略”量測。接著,諸如光譜驅動擬合程序之 驟可用於提 有利地使用急劇光譜特點之存在的高解析度步 供”精細”量測。在-實施例中,藉由利用以差異為基礎的 ^術(如在”卡方”優點函數中),低解析度步驟可獲得粗略 量測值。高解析度步驟可為光譜驅動步驟,其包括在最初 由低解析度技術識別之感興趣之區中的以比率為基礎的技 術0 在另-實施例中,提供_種反射計校準技術,該技術1 包括在校準過程中利用兩個校準樣本。另外,即使在校』 樣本中之至少一或多者的眚μ 的貢際特性與假設特性之間存在考 化的情況下,該技術仍允許枋 ^ 卜 汗枚準0另外,該技術使用來ί 第一校準樣本之量測與來自 目弟一板準樣本之量測的比率$ 確定校準樣本中之至少一者的杳 考的實際特性。接著,可使用£ 確定之實際特性來輔助校準反射計。 120526.doc 200809180 在利用兩個校準樣本之另一實例 樣本發射之強度與自第二校準樣本反射=用自第一校準 本可在所要波長處展示出相對不反=強度的比率。樣 中,接著,可認為每一樣本之反μ射特性。在此技術 银+之反射率資料 .. 去搞合’^可計算校準#本_之—或 —者相對 著,可蚀田口 6_ 者的實際特性。接 了使用已確疋之實際特性來輔助校準反射叶。 在另一實施例中,提供一種校準— ° 絲太、土 # 士 平匕侍反射率資料之系 …包括自第一校準樣本獲得反射率資料 及自第二校準樣本獲得反射 筮一 ρ % # 十其中弟一校準樣本及 4樣本中之至少—者㈣切特性可不同於校準樣本 之假設特性,且其中第一校準樣本與第二校準樣本之反射 ㈣μ 1方法可進-步包括使用—基於自第一校準樣 本獲得之資料與自第二校準樣本獲得之資料的比率以便輔 助才父準该系統。 在又一實施例中,揭示一種校準一反射計之方法。該方 ^ 法可包括提供第一校準樣本及第二校準樣本,其中第一校 準樣本與第二校準樣本之反射特性不同。該方法進一步包 括自第一校準樣本收集第一組資料且自第二校準樣本收集 第二組資料。該方法亦包括使用第一組資料之至少一部分 與第二組資料之至少一部分的比率來確定第一校準樣本及 第二校準樣本中之至少一者的特性,以使得可校準來自未 知樣本的反射率資料。 在另一實施例中,揭示一種校準一反射計之方法,其中 該反射計在包括深紫外(DUV)波長以下之至少一些波長的 120526.doc -13· 200809180 波長處操作。該方法可包括提供第一校準樣本及第二校準 樣本中第-技準樣本及第二校準樣本之反射特性不 同。該方法進一步包括自第一校準樣本收集第一組資料, 該第一組資料包括對於DUV波長以下之波長收集的至少一 些強度資料。該方法亦包括自第二校準樣本收集第二組資 料,該第二組資料包括對於DUV波長以下之波長收集的至 夕—些強度資料。另外’該方法可包括使用—基於第一組 資料與第二組資料之比率來確定第—校準樣本及第二校準 樣本中之至少一者的反射率,以在包括至少一些duv波長 的波長處辅助校準該反射計。 在又-實施合·!中,冑示一種分析反射計資料之方法。該 方法可包括提供第一反射計樣本及至少一第二反射計: 本,其中第一校準樣本之光學回應特性及第二校準樣本之 光學回應特性不同。該方法可進—步包括自第—反射計樣 本收集第—組光學回應資料及自第二反射計樣本收集第二 =光學回應資料。該方法進—步包括藉由以獨立於在收集 第組光予回應資料及第二組光學回應資料時所使用的入 射反射計強度之方式使用第—組光學回應諸及第二組光 學回應資料來確定第—反射計樣本及第二反射計樣本中之 至少一者的至少一特性。 在審閱以下描述及相關聯之圖式之後,可實現對本發明 之優點之性質的進一步理解。 【實施方式】 在圖1之流程圖1〇2中大致提出通常使用標準樣本來校準 120526.doc -14- 200809180 反射計之方式。如圖中顯而易見’校準過程中第一步驟 ^104是假設對標準樣本之反射特性的認識。掌握此資訊 後,在步驟1〇6中可將自樣本反射之光強度記錄為波長的 函數且校準反射計。隨後,接著可在步驟1〇8中用設備完 全確定未知樣本之反射率。 圖之机私圖202中概述此校準程序之更詳細描述,其 中呈現在計算未知樣本之絕對反射率時所涉及的數學關 係。圖2說明校準程序之流程圖202。在第-步驟204中, 假設對標準樣本之反射特性的認識。接著,在步驟206 中Z錄祆準樣本之強度。接下來,在步驟208中,利用 對標準樣本之假設反射特性的認識來計算源強度輪扉。在 驟10中,5己錄未知樣本之強度。接著,如步驟212中展 不,可計算未知樣本之反射率。接著,可根據步驟214之 ^程式表示未知樣本的反射率。檢查該過程之最後步驟, 員j未知樣本之經量測反射率與校準樣本之假設反射率成 正比例。因此’若假設反射率不精確,則後果為經量測之 反射率亦將不精確。 ;早晶矽晶圓已長期用作在DUV_NIR中操作之反射計的校 準‘準。單晶矽晶圓已證明其係理智的選擇,因為其為普 、存在的、在製造上可控制且在此光譜區中在光學上經良 好特徵化。實務上,利用菲淫耳方程式(Fresnel Equati〇n) 及對原生二氧化矽表面層之光學特性及厚度以及對矽本身 之光予特性的假設認識來計算矽晶圓的假設反射特性。 當用於校準在比約250 11瓜長之波長處操作的反射計時, 120526.doc -15- 200809180 矽晶圓良好工作,因為關於其物理特性之基本假設在此波 長區中對誤差相對不靈敏。換言之,晶圓表面上原生氧化 物層之假設厚度的誤差不會顯著影響樣本之預期反射率且 因此不會消極影響校準過程之精確性。 在圖3中進一步說明此點,圖3中呈現具有自丨〇人變化至 3〇 A之Si〇2厚度之一系列Si〇2/Si樣本的經計算反射光譜。 舉例而言,反射光譜302說明具有1〇 A的Si02層之Si樣本, 而反射光譜304說明具有30 A的Si02層之Si樣本。雖然在 250 nm以上光譜之間的差異相當小,但是其在較短波長處 變得非常顯著。因此,若假設原生氧化物層之厚度為丨〇 A 且其貫際為20 A ’則在低於250 nm之波長處將引入相當大 的校準誤差。 圖4更好地說明此等誤差之效應。此圖中描繪對應於反 射光禮對之比率的一系列曲線。每一對中的第一光譜對應 於自具有’’假設’’原生氧化物厚度(其自1〇 A變化至3〇 A)的 SiOVSi樣本預期之光譜,而每一對中的第二光譜對應於具 有20入之”實際”原生氧化物厚度的Si〇2/Si樣本。因此,圖 4之曲線302對應於10 A假設原生氧化物厚度之反射光譜與 20 A原生氧化物厚度之反射光譜的比率。類似地,圖4之 曲線304對應於15 A假設原生氧化物厚度之反射光譜與2〇 A原生氧化物厚度之反射光譜的比率。以類似方式,曲線 306、308及310分別說明20、25及30 A之假設原生氧化物 厚度與20 Λ之原生氧化物厚度之反射光譜的比率。在此意 義上,該比率基本上被視作對校準誤差的量測,此處稱作 120526.doc •16- 200809180 校準ό吳差函數(CEF)。CEF越接近一,與校準相關聯之誤 差越低。如曲線306所示,在”假設,,厚度等於2〇 a之”實際,, 厚度之情況下,CEF在所有波長處等於一,且校準完全精 確。在假没’’厚度為25 A(僅5 A誤差)之情況下,CEF在短 波長處達到大於1.3之值,而在250 nm以上的波長處維持 小於1.002之值。此表示在VUV中誤差大於3〇%且在較長波 長處誤差小於〜0.2%。因此,雖然在大於25〇 nm之波長處 矽晶圓容易用於校準反射計,但是其不會提供在vuv中精 確校準反射計之實用方式。 另外,通常已知原生Si〇2/Si系統在正常的製造或實驗室 環境中將產生超薄(〜i nm或更小)的有機烴層。另外,在 νυν工具的操作期間,有機材料可累積在膜表面上。藉由 在酸中清洗此類型之污染物層或甚至利用νυν源本身,可 移除此類型之污染物層。然而,波動的有機層在工具利用 期間可使νυν區中之反射特性顯著波動。 由於在典型製造環境中存在基於石夕I烧之化合物,另一 誤差源係在曝露於νυν輻射之表面上基於聚矽氧之污染物 的累積。此&quot;經烘烤&quot;層更難移除。隨時間流逝,此污染物 層累積在原生SiCVSi標準樣本之表面上,從而使標準樣本 之絕對反射率(尤其是在vuv區幻減小。此意謂總是在假 設原生SiCVSi結才冓的情況下產生Rcai的校準程序在vuv中 常會產生錯誤結果。 此等、义化通常會影響每一量测且對vuv反射率資料之可 罪性有顯著影響。需要一種區別校準標準本身中發生之變 120526.doc -17· 200809180 化與由系統變化引 對校準程序的方法 起之I〇 fc化且在此等變化發生時校正絕 5中^^實施例提供—種解決此等問題之替代方法。圖 ::二之流程圖5°2對過程中所包括的步驟提供全面综 以圖顯而易見’該技術要求利用兩個樣本,一標準 樣本及-參考#本。選擇標準樣本以使得預期其在某^並 區内展示出顯著的且在光譜上急劇的CEF。另一方面; 擇參考樣本以使得_其在同—光譜區上展示㈣對無特 點的反射光譜。 ' 該過程之前兩個步驟5〇4及5〇6實際上與圖丨之習知方法 :所描,的步驟相同。亦即,假設對標準樣本特性的認 識’接著’將自樣本反射之光強度記錄為波長函數且利用 其來校準反射計。此時,如步驟⑽所描述,利用經校準 之反射計來量測參考樣本且確定其反射率。一旦已完成 此,便在步驟510中經由評估參考樣本之經量測反射特性 及CEF來確定標準樣本之”實際&quot;特性。掌握對標準樣本之 ’’實際&quot;特性之認識後,接著可在步驟512中精確重新校準 反射計,藉此在該過程之第二步驟中移除由與標準樣本之 π假設”特性相關聯之誤差引起的不精確性。如步驟中 所不,一旦已重新校準儀器,便可精確確定未知樣本之絕 對反射率。 在一實施例中,校準技術視對標準樣本之選擇而定。如 上文所淪述,標準需要在反射計之某光譜區内展示出顯著 且在光譜上急劇的CEF光譜。在很大程度上,樣本之光學 120526.doc •18- 200809180 性質將指定此能力。具體言之,由標準樣本產生之CEF信 號預期會在對應於包含該標準樣本之材料的一或多者的光 學吸收邊緣附近增加。在此光譜區中,樣本特性的小變化 可在經反射信號中產生顯著變化且因此產生大的CEF影 響。其後,反射計因此需要具有足夠的光譜解析度才能確 保偵測到並解決CEF信號之急劇特點。 在經設計以校準VUV反射計之本發明之較佳實施例中, 標準樣本包含沈積於矽基板上之相對厚(〜1〇〇〇〇 的si〇2 層。圖6呈現此標準之CEF曲線,其中對於999〇、ι〇〇〇〇及 10010 A之”假設”Si〇2厚度,繪製三對反射光譜的比率。如 自圖表顯而易見,對應於9990 A假設之光譜602及對應於 10010 A假設之光譜604皆展示出實質的且在光譜上急劇的 CEF特點(在π假設’’厚度等於1 〇〇〇〇 A之’’實際”厚度的情況 下,CEF在所有波長處等於一)。實際上,圖中之資料指示 10 A的誤差(僅表示千分之一份)在νυν反射率結果中將引 入大於200%之不精確性。 與圖4中所呈現之20人的SiOVSi樣本之CEF曲線(在圖4 中,比250 nm長之波長處的CEF值顯示很少誤差(由於即使 假設厚度與實際厚度不同,CEF仍全部接近一的事實)相 反’當假没厚度與實際厚度不同時,圖6中所繪製之loooo A的SiCVSi樣本之CEF值實際上在所有波長處展示出可量 測的誤差。然而,重要的是注意CEF中的最急劇且最強烈 的特點再次發生在VUV中(其係此區中存在8丨〇2吸收邊緣 的直接結果)。 120526.doc -19- 200809180 雖然10000 A的Si〇2/Si樣本為本發明提供例示性標準, 但是由於該樣本由於’’假設”厚度的小誤差而產生之顯著 CEF#號,熟習此項技術者將顯而易見許多其他樣本亦可 同樣起作用。通常,可使用由於,,假設”厚度或某其他假設 樣本特性的小誤差而產生顯著CEF信號的任何樣本。 如本揭示案之範疇内所定義,CEF基本上為標準(或,,校 準”)樣本之1設”反射光譜與”實際”反射光譜的比率。^ 關於標準樣本之假設完全精確,則CEF在所有波長處假設 值為一。相反,若該等假設在某程度上有缺陷,則cef將 展示出大於或小於一之值。假設的不精確性越大,cef值 偏離一越多。 雖然CEF清楚提供對校準精確性之靈敏指標,但是其本 身為不可觀察的。因此,一使用CEF之態樣係利用參考樣 本來使CEF特點明顯。因為在初始校準之後對樣本執行的 所有量測實際上為被研究之樣本之CEF與,,實際&quot;反射光譜 的乘積,所以如此。因此,若量測具有大體上平滑且無特 點之反射光譜之參考樣本,且若CEF不等於一,則在自參 考樣本記錄之反射光譜令⑽的強烈、急劇的特點將非常 明顯。因此,即使先前沒有對參考樣本之,,實際,,反射特性 的洋細e忍减(除非參考樣本在感興趣之光譜區中相對無特 點),有可能容易地評估CEF之特徵,1因此測得關於標準 樣本特性之初始假設的精確性。 下 雖然具有大體上平滑且無特點之反射光譜之任何樣本可 用作參考樣本,但是特別好適合的選擇可為寬頻VUV面 120526.doc -20- 200809180 : 由美國Acton Research公司製造的具有#12〇〇塗層之 寬頻VUV面鏡。圖7中呈現此類型面鏡之典型反射光譜 加。如自該圖顯而易見,此寬頻面鏡將整個vuv區中之 鬲反射率與非$無特點的光譜相組合。自圖7可注意到, ^考樣本在諸如VUV之光譜區(其中標準樣本可展示出顯 著的CEF)中不會展示出急劇特點。用於參考樣本之樣本無 需提供在不同樣本之間為一致的反射光譜。舉例而言,來 自同一製造商的具有同一塗層之同_類型寬頻vuv面鏡在 不2面鏡之間可展示絕對反射率的差異。然而,若為任何 σ疋面鏡提供相對平滑且無特點的反射光譜(至少在感興 趣之光譜範圍中),則面鏡可適合用作參考樣本。此外, 即使參考樣本(諸如,以上所述之面鏡)隨時間流逝展示出 絕對反射率變化,樣本仍適合作為參考樣本。因此,製造 多考樣本之了重複性及隨時間流逝的特性變化不如所要光 譜範圍中樣本之無特點特性重要。 熟習此項技術者將認識到,在諸wVUV之感興趣光譜區 中相對無特點的-類型樣本為在樣本上具有原生氧化物之 矽樣本。當與具有諸如1000 A的SiOVSi之厚氧化物的矽樣 本相比日守,此等樣本相對無特點。因此,如本文所描述, 在替代性實施例中,標準樣本可為1〇00人的8丨〇2/8丨樣本 且參考樣本可為具有原生氧化物層之石夕樣本。 因此,提供一種技術,該技術包括使用一標準樣本,即 使該標準m本由於標準樣本特性的微小變化而在感興趣之 波長處展不出顯著的反射率變化,該標準樣本仍允許在該 120526.doc -21 - 200809180 等波長巾進行校準。即使在義將在使用者感興趣之 區中碰到傳統上顯著的校準誤差的情況下、 、、住 日, 7 J建成校 率。關於此點,該技術可利用某-校準誤差量的存在,亨 才又準娛差1可被稱作校準誤差函數。 因此&amp;準過程可包括—種技術,該技術使用第一樣本 及第二樣本。第一樣本可包括在感興趣之光譜區中作為樣 本:性變化之函數的顯著反射率變化,且第二樣本在同:In another embodiment, the data reduction technique can use a two-step approach. In this embodiment, a low resolution step such as an amplitude driven fitting procedure may be used first to provide a "rough" measurement. Next, a step such as a spectrally driven fitting procedure can be used to advantageously use the high resolution step of the "absolute" measurement of the presence of sharp spectral features. In an embodiment, the coarse-resolution step can be used to obtain a coarse measurement by utilizing a difference-based technique (as in the "chi-square" advantage function). The high resolution step can be a spectrally driven step that includes a ratio-based technique in the region of interest initially identified by the low resolution technique. In another embodiment, a spectrometer calibration technique is provided. Technique 1 involves the use of two calibration samples during the calibration process. In addition, even if there is a test between the tributary characteristics of the 眚μ and the hypothetical characteristics of at least one or more of the samples in the school, the technique allows 枋^ ί The ratio of the measurement of the first calibration sample to the measurement of the quasi-sample from the target. The actual characteristics of the reference of at least one of the calibration samples are determined. Next, you can use the actual characteristics determined by £ to assist in calibrating the reflectometer. 120526.doc 200809180 In another example using two calibration samples, the intensity of the sample emission is reflected from the second calibration sample = the ratio from the first calibration can be used to exhibit a relative non-reverse intensity at the desired wavelength. In the sample, then, the inverse micro-spectral characteristics of each sample can be considered. In this technique, the reflectivity data of silver + .. can be used to calculate the actual characteristics of the ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The actual characteristics that have been confirmed are used to assist in calibrating the reflective leaves. In another embodiment, a calibration is provided - a system of reflectance data from the first calibration sample, and a reflectance data obtained from the first calibration sample and a reflection from the second calibration sample. Ten of the calibrated samples and at least four of the four samples (four) cutting characteristics may be different from the hypothetical characteristics of the calibration samples, and wherein the reflection of the first calibration sample and the second calibration sample (four) μ 1 method may further include using - based The ratio of the data obtained from the first calibration sample to the data obtained from the second calibration sample to assist the system. In yet another embodiment, a method of calibrating a reflectometer is disclosed. The method can include providing a first calibration sample and a second calibration sample, wherein the first calibration sample and the second calibration sample have different reflection characteristics. The method further includes collecting a first set of data from the first calibration sample and collecting a second set of data from the second calibration sample. The method also includes determining a characteristic of at least one of the first calibration sample and the second calibration sample using a ratio of at least a portion of the first set of data to at least a portion of the second set of data such that the reflection from the unknown sample can be calibrated Rate information. In another embodiment, a method of calibrating a reflectometer is disclosed, wherein the reflectometer operates at a wavelength of 120526.doc -13.200809180 including at least some wavelengths below the deep ultraviolet (DUV) wavelength. The method can include providing a difference in reflection characteristics between the first calibration sample and the second calibration sample and the second calibration sample. The method further includes collecting a first set of data from the first calibration sample, the first set of data comprising at least some intensity data collected for wavelengths below the DUV wavelength. The method also includes collecting a second set of data from the second calibration sample, the second set of data comprising the data of the intensity collected for wavelengths below the DUV wavelength. Additionally 'the method can include using - determining a reflectance of at least one of the first calibration sample and the second calibration sample based on a ratio of the first set of data to the second set of data to be at a wavelength comprising at least some of the duv wavelengths Auxiliary calibration of the reflectometer. In addition - implementation of the combined! In the middle, a method of analyzing the reflectometer data is shown. The method can include providing a first reflectometer sample and at least a second reflectometer: wherein the optical response characteristics of the first calibration sample and the optical response characteristics of the second calibration sample are different. The method further includes collecting the first set of optical response data from the first-reflecting meter sample and collecting the second = optical response data from the second reflectometer sample. The method further comprises using the first set of optical responses to the second set of optical response data in a manner independent of the intensity of the incident reflectometer used in collecting the first set of optical response data and the second set of optical response data At least one characteristic of at least one of the first-reflector sample and the second reflectometer sample is determined. A further understanding of the nature of the advantages of the present invention can be realized after a review of the following description and the accompanying drawings. [Embodiment] The manner in which the standard sample is used to calibrate the 120526.doc -14-200809180 reflectometer is generally proposed in the flowchart of Fig. 1 . As is apparent in the figure, the first step in the calibration process, ^104, assumes an understanding of the reflection characteristics of the standard sample. Once you have this information, record the intensity of the light reflected from the sample as a function of wavelength and calibrate the reflectometer in steps 1〇6. Subsequently, the reflectivity of the unknown sample can then be completely determined by the device in step 1〇8. A more detailed description of this calibration procedure is outlined in Figure Private Chart 202, which presents the mathematical relationships involved in calculating the absolute reflectance of an unknown sample. Figure 2 illustrates a flow chart 202 of the calibration procedure. In a first step 204, an understanding of the reflection characteristics of the standard samples is assumed. Next, in step 206, Z records the intensity of the quasi-sample. Next, in step 208, the source intensity rim is calculated using knowledge of the assumed reflection characteristics of the standard samples. In step 10, 5 has recorded the intensity of the unknown sample. Next, as shown in step 212, the reflectance of the unknown sample can be calculated. Next, the reflectance of the unknown sample can be expressed according to the procedure of step 214. Checking the final step of the process, the measured reflectance of the unknown sample is proportional to the assumed reflectance of the calibration sample. Therefore, if the reflectivity is assumed to be inaccurate, the consequence is that the measured reflectance will also be inaccurate. Early crystal wafers have long been used as calibrations for reflectometers operating in DUV_NIR. Single crystal germanium wafers have proven to be a sensible choice because they are conventional, controllable in manufacturing and optically well characterized in this spectral region. In practice, the hypothetical reflection characteristics of tantalum wafers are calculated using Fresnel Equati〇n and the assumption of the optical properties and thickness of the native ceria surface layer and the optical properties of the tantalum itself. When used to calibrate the reflectance operation at wavelengths greater than approximately 250 11 melons, the 120526.doc -15- 200809180 矽 wafer works well because the underlying assumptions about its physical properties are relatively insensitive to errors in this wavelength region. . In other words, the assumed thickness error of the native oxide layer on the wafer surface does not significantly affect the expected reflectivity of the sample and therefore does not negatively impact the accuracy of the calibration process. This is further illustrated in Figure 3, which presents a calculated reflectance spectrum of a series of Si〇2/Si samples having a thickness of Si〇2 varying from 丨〇 to 3〇A. For example, reflection spectrum 302 illustrates a Si sample having a SiO 2 layer of 1 A, and reflection spectrum 304 illustrates a Si sample having a SiO 2 layer of 30 A. Although the difference between the spectra above 250 nm is quite small, it becomes very noticeable at shorter wavelengths. Therefore, if the thickness of the native oxide layer is assumed to be 丨〇 A and its cross-section is 20 A ', a considerable calibration error will be introduced at wavelengths below 250 nm. Figure 4 better illustrates the effects of these errors. A series of curves corresponding to the ratio of the reflected light rituals are depicted in this figure. The first spectrum in each pair corresponds to the expected spectrum of the SiOVSi sample from the ''hypothesis'' native oxide thickness (which varies from 1〇A to 3〇A), and the second spectrum in each pair corresponds to For Si〇2/Si samples with a 20" "actual" native oxide thickness. Thus, curve 302 of Figure 4 corresponds to the ratio of the reflectance spectrum of the native oxide thickness of 10 A to the reflectance spectrum of the 20 A native oxide thickness. Similarly, curve 304 of Figure 4 corresponds to the ratio of the reflection spectrum of 15 A assuming native oxide thickness to the reflection spectrum of 2 Å A native oxide thickness. In a similar manner, curves 306, 308, and 310 illustrate the ratio of the assumed native oxide thickness of 20, 25, and 30 A to the reflectance spectrum of the native oxide thickness of 20 Å, respectively. In this sense, the ratio is essentially considered as a measure of the calibration error, referred to herein as 120526.doc • 16-200809180 Calibration of the Difference Function (CEF). The closer the CEF is to one, the lower the error associated with the calibration. As shown by curve 306, in the case of "assumed, thickness equal to 2 〇 a" actual, thickness, CEF is equal to one at all wavelengths, and the calibration is completely accurate. In the case of a false thickness of 25 A (only 5 A error), the CEF achieves a value greater than 1.3 at short wavelengths and a value less than 1.002 at wavelengths above 250 nm. This means that the error is greater than 3〇% in VUV and less than ~0.2% at longer wavelengths. Therefore, while germanium wafers are easily used to calibrate reflectometers at wavelengths greater than 25 Å, they do not provide a practical way to accurately calibrate reflectometers in vuvs. In addition, it is generally known that a native Si 2 /Si system will produce an ultra-thin (~i nm or smaller) organic hydrocarbon layer in a normal manufacturing or laboratory environment. Additionally, organic materials can accumulate on the surface of the film during operation of the νυν tool. This type of contaminant layer can be removed by washing this type of contaminant layer in acid or even using the νυν source itself. However, the fluctuating organic layer can significantly fluctuate the reflection characteristics in the νυν region during tool utilization. Since there is a compound based on Shi Xi I burned in a typical manufacturing environment, another source of error is the accumulation of polyoxo-based contaminants on the surface exposed to ν υ 辐射 radiation. This &quot;baked&quot; layer is more difficult to remove. Over time, this contaminant layer accumulates on the surface of the native SiCVSi standard sample, thereby making the absolute reflectance of the standard sample (especially in the vuv region). This means always assuming a native SiCVSi junction. The calibration procedure that produces Rcai often produces erroneous results in vuv. These and normalizations usually affect each measurement and have a significant impact on the sinfulness of vuv reflectance data. A change in the calibration standard itself is required. 120526.doc -17· 200809180 The method of calibrating the program is changed from the system change and the correction is made when the change occurs. The embodiment provides an alternative method to solve these problems. Fig.: The flow chart of the second section 5°2 provides a comprehensive overview of the steps involved in the process. 'This technique requires the use of two samples, one standard sample and one reference #本. Select the standard sample to make it expected to be in a certain ^ The zone exhibits a significant and spectrally sharp CEF. On the other hand, the reference sample is selected such that it exhibits (4) a characteristic reflection spectrum on the same-spectral region. The first two steps, 5〇4 and 5〇6, are actually the same as the conventional method of Figure 所: the steps described, that is, assuming that the knowledge of the characteristics of the standard sample 'then' is recorded as the light intensity reflected from the sample as The wavelength function is used and used to calibrate the reflectometer. At this point, the calibrated reflectometer is used to measure the reference sample and determine its reflectivity as described in step (10). Once this has been done, the reference sample is evaluated in step 510. The measured reflectance characteristics and CEF are used to determine the "actual" characteristics of the standard sample. After grasping the 'actual' characteristics of the standard sample, the reflectometer can then be accurately recalibrated in step 512, thereby In the second step of the process, the inaccuracy caused by the error associated with the π hypothesis characteristic of the standard sample is removed. As in the step, once the instrument has been recalibrated, the absolute reflectance of the unknown sample can be accurately determined. In one embodiment, the calibration technique depends on the choice of standard samples. As noted above, the standard needs to exhibit significant and spectrally sharp in a spectral region of the reflectometer. CEF spectroscopy. To a large extent, the optical properties of the sample 120526.doc •18-200809180 will specify this capability. In particular, the CEF signal produced by the standard sample is expected to correspond to the material containing the standard sample. The optical absorption edge of many increases. In this spectral region, small changes in sample characteristics can produce significant changes in the reflected signal and thus have a large CEF effect. Thereafter, the reflectometer therefore needs to have sufficient spectral resolution. In order to ensure that the sharp features of the CEF signal are detected and resolved. In a preferred embodiment of the invention designed to calibrate a VUV reflectometer, the standard sample comprises a relatively thick deposit on the germanium substrate (~1 〇〇〇〇 Si〇2 layer. Figure 6 presents a CEF curve for this standard, where the ratio of three pairs of reflectance spectra is plotted for the "hypothetical" Si〇2 thickness of 999 〇, ι〇〇〇〇, and 10010 A. As is apparent from the graph, the spectrum 602 corresponding to the 9990 A hypothesis and the spectrum 604 corresponding to the 10010 A hypothesis exhibit substantial and spectrally sharp CEF characteristics (in the π hypothesis ''thickness equals 1 〇〇〇〇A In the case of ''actual' thickness, CEF is equal to one at all wavelengths. In fact, the data in the figure indicates an error of 10 A (only one thousandth) and will introduce more than 200% in the νυν reflectivity result. Inaccuracy. CEF curve with the 20-person SiVOSi sample presented in Figure 4 (in Figure 4, the CEF value at a wavelength longer than 250 nm shows little error (since even if the thickness is assumed to be different from the actual thickness) The fact that CEF is still all close to one. In contrast, when the false thickness is different from the actual thickness, the CEF value of the SiCoSi sample of loooo A plotted in Figure 6 actually exhibits a measurable error at all wavelengths. It is important to note that the sharpest and most intense feature in CEF occurs again in VUV (which is a direct result of the 8丨〇2 absorption edge in this region). 120526.doc -19- 200809180 Although 10,000 A of Si〇 2/Si sample An exemplary standard is provided for the present invention, but since the sample has a significant CEF# number due to a small error in the ''hypothetical' thickness), those skilled in the art will appreciate that many other samples may also function equally. Generally, , assuming any thickness or error in a hypothetical sample characteristic that produces a significant CEF signal. As defined in the scope of this disclosure, CEF is essentially a standard (or, calibration) sample. The ratio of the reflectance spectrum to the "actual" reflectance spectrum. ^ The assumptions about the standard sample are completely accurate, then the CEF assumes a value of one at all wavelengths. Conversely, if the hypothesis is defective to some extent, then cef will exhibit greater than Or less than a value. The greater the imprecision of the hypothesis, the more the cef value deviates from one. Although the CEF clearly provides a sensitive indicator of the accuracy of the calibration, it is itself unobservable. Therefore, a CEF model is used. Use the reference sample to make the CEF feature obvious, because all measurements performed on the sample after the initial calibration are actually the CEF of the sample being studied, The actual &quot;reflection spectral product, so this is the case. Therefore, if a reference sample with a substantially smooth and characteristic reflection spectrum is measured, and if the CEF is not equal to one, then the reflection spectrum recorded in the self-reference sample is strongly (10) The sharp features will be very obvious. Therefore, even if there is no previous reference to the sample, the actual, the fineness of the reflection characteristics is tolerated (unless the reference sample is relatively uncharacteristic in the spectral region of interest), it is possible to easily Evaluating the characteristics of the CEF, 1 thus measuring the accuracy of the initial hypothesis about the characteristics of the standard samples. Although any sample with a substantially smooth and uncharacteristic reflection spectrum can be used as a reference sample, a particularly good choice can be broadband. VUV surface 120526.doc -20- 200809180: Broadband VUV mirror with #12〇〇 coating manufactured by Acton Research, USA. A typical reflection spectrum for this type of mirror is shown in Figure 7. As is apparent from the figure, this wide-band mirror combines the 鬲 reflectivity in the entire vuv region with the non-uncharacterized spectrum. It can be noted from Figure 7 that the test sample does not exhibit sharp features in the spectral region such as VUV (where the standard sample can exhibit significant CEF). Samples used for reference samples do not need to provide a consistent reflectance spectrum between different samples. For example, a broadband vuv mirror of the same type with the same coating from the same manufacturer can exhibit a difference in absolute reflectance between two mirrors. However, if any σ疋 mirror is provided with a relatively smooth and uncharacteristic reflection spectrum (at least in the spectral range of interest), the mirror can be used as a reference sample. Furthermore, even if a reference sample (such as the mirror described above) exhibits an absolute reflectance change over time, the sample is still suitable as a reference sample. Therefore, the repeatability of the multi-test sample and the change in characteristics over time are not as important as the uncharacteristic nature of the sample in the desired spectral range. Those skilled in the art will recognize that a relatively uncharacterized type of sample in the region of interest of the wVUV is a ruthenium sample having native oxide on the sample. When compared to a sample having a thick oxide such as 1000 A of SiOVSi, these samples are relatively uncharacteristic. Thus, as described herein, in an alternative embodiment, the standard sample can be an 8 丨〇 2/8 丨 sample of 1 00 human and the reference sample can be a Shi Xi sample with a native oxide layer. Accordingly, a technique is provided that includes the use of a standard sample, even though the standard m is not exhibiting significant reflectance changes at the wavelength of interest due to small variations in the characteristics of the standard sample, the standard sample is still allowed at the 120526 .doc -21 - 200809180 Equal wavelength towel for calibration. Even if the righteousness encounters a traditionally significant calibration error in the area of interest to the user, 7 J will complete the school rate. In this regard, the technique can take advantage of the presence of a certain amount of calibration error, which can be referred to as a calibration error function. Therefore, the &amp; quasi-process can include a technique that uses the first sample and the second sample. The first sample may include a significant reflectance change as a function of the sample: the change in the spectral region of interest, and the second sample is in the same:

光譜區内可具有相對無特點的反射光譜。第-樣本可視作 標準樣本或校準#本,且第二樣本可視作參考樣本。藉由 :先利用標準樣本來校準㈣且接著量測參考樣本,可假 叹自參考樣本觀察到之反射率的任何急劇變化是關於校準 樣本之假σ又的不精確性的函數。掌握此認識後,接著 新校準系統。 另外’校準技術可制—標準樣本,該標準樣本可具有 相對^知的特性’其中例外情況為可假設準樣本在感興趣 之光-曰區中具有顯著的校準誤差函數。因A,若可假設標 準樣本由於樣本特性變化而展示出急劇的反射率變化,: 無需已知標準樣本之確切特性。 、在參考樣本I測可用於評估校準過程之結果之前,需要 以數學方式建構—種根據CEF與參考樣本反射光譜之搞合 而可量化地評估CEF的方法。在本發明之一實施例中,通 常以以下方式完成此。 首先’計算經量測反射光譜之導數。此用以減少CEF與 多考樣本t實際反射光譜之間的耦合且更強調&quot;急劇&quot;的 120526.doc -22- 200809180 期的)率缓;:1(可能是CEF的貢獻)而不是強調(自參考樣本預 所=之特點。接下來,計算導數之絕對值且對 〃1在積分之t得料數 極地獲取?叙—τ J m M便槓 負值且避免抵消由參考樣本反射光 導數的貢獻。在完成積分後,可定量地評估初 始奴準程序之結果。 祕方式’可將積分值反饋給—演算法,該演算法迭代 °正關於;^準樣本特性之初始假設、重新計算CEF且重 積分值,以期最小化其值。當已達成最小值時,已 ^疋標準樣本之&quot;實際&quot;特性且因此已確定其&quot;實際”反射 率。此時,可精確校準反射計且執行對未知樣本的^測。 在審閱圖8至圖U ’所所呈現之資料之後,可實現對此 方法,中所涉及之步驟的進一步理解。圖8介紹在利用ι〇〇ι〇 假設&quot;厚度來校準10000 A的Si〇2/Si標準樣本之後,對 適當參考樣本執行之量測的結果。參考樣本(其經調整以 心校準X經㈣光譜中顯而易見之急劇結構為校準過 ’月門引入之1〇 A誤差的結果。圖8所示之信號8〇2為自參 考樣本獲得之經量測光譜。此信號為參考樣本之反射率與 由不精確校準引起之CEF光譜的乘積。在該過程中,此時 CEF信號與參考樣本反射率信號基本上耗合,且顯而易見 主要存在於νυν中較短波長處。在本實例中,因為CEF信 號主要存在於νυν區中且在此同一區中參考反射率實質上 無特點,所以此會發生。 在圖9中呈現此光譜之導數。不足為奇,參考反射 120526.doc -23- 200809180 率乘積導數信號902之主體仍駐留於光譜之VUV區中。接 著,在積分之前計算跡線之絕對值,其最終產生對校準精 確性之定量量測。接著,將此積分和傳回給一迭代程序, 該迭代程序調整標準樣本之”假設,,厚度且重新計算CEp/參 考反射率乘積積分,直至最小化此值。 對於10000 Α的SiOVSi標準樣本(有或無雜訊添加至系 統),圖10之靈敏度曲線呈現作為”假設”厚度之函數的 CEF/參考反射率乘積積分的值。曲線1002說明包括0.5%的 雜訊成份之存在的CEF/參考反射率乘積積分的值,而曲線 1004展示無雜訊之資料。自對資料之檢查顯而易見,即使 原始反射率資料中存在〇·5%的雜訊成份,積分對Si〇2層之 π假設n厚度的小誤差仍非常靈敏。不用說,當”假設”厚度 值匹配標準樣本之”實際”厚度時,達成Cef/參考反射率乘 積積分的最小值。在迭代過程完成後,標準樣本之&quot;實際,, 特性得以確定且儀器得以精確校準。此時,如圖11中所說 明,CEF函數在所有波長處假設為值一,且對參考樣本之 後續量測產生其真實的反射光譜丨1〇2。 在圖12之流程圖1202中概述此校準程序的例示性詳細描 述’其中呈現在計算未知樣本之絕對反射率時所涉及的數 學關係。如圖12之步驟1204所示,首先利用對預期會在給 定光譜區中展示出顯著校準誤差特點之標準樣本的假設認 硪來計算標準樣本的假設反射率。在步驟12〇6中記錄來自 標準樣本之強度。在步驟12〇8中,利用標準樣本之假設反 射率來計算源強度輪廓。接著,在步驟121〇中記錄來自預 120526.doc -24- 200809180 期會在同一光譜區中展示出實質上平滑之反射特性之參考 樣本的強度。接下來,在步驟1212中計算參考樣本之反射 率。接著,可根據步驟1214之方程式表示參考樣本之反射 率。接著可在步驟1216中計算參考樣本反射光譜之導數的 絕對值。接下來,在步驟⑵8中計算導數絕對值之積分。 接下來,在步驟1220中執行對關於標準樣本特性之假設的 迭代調整且重新計算標準樣本之假設反射率。自步驟咖 傳回控制至步驟1214,直至最小化積分值且因此在自步驟 1220進打至步驟1222過程中獲得標準樣本之實際特性。在 ^驟1222中’利用標準樣本之實際反射率來計算源強度輪 廓。接著,在步驟1224中記錄未知樣本之強度。最後,可 根據步驟1226之方程式計算並表示未知樣本的反射率。 &quot;假設&quot;特性且以相同方式予 限於)複折射率、組合物、 热*此項技術者將認識到,存在許多其他方法用於以此 方式量化CEF信號以使其可用於反饋回給迭代程序,迭代 程序經設計以經由調整標準樣本之&quot;假設,,特性而最小化其 值另外’雖然以上論述已將標準樣本之厚度視作將於校 準過程期間予以精確確定之&quot;假設&quot;特性,但是熟習此項技 術者將進步瞭解’標準樣本之許多其他特性亦可被視作 以確定。此等特性可包括(但不 孔隙率及表面或界面粗糙度。 在权準权序期間’可獨立確定此等特性,或在一些實例 中’可同時確定此等特性以及其他特性。 在某些情況下,可勒&gt; j執仃額外的數學步驟以增強校準程序 之效月b纟自參考樣本所記錄之經量測反射率資料中存在 120526.doc -25- 200809180 顯著雜訊時,有利之舉可為在得到原始資料的導數之前或 之後過濾原始資料。雖然先前技術中存在許多適當的平滑 化濾波器,但是Savitzky-Golay濾波器特別適合此應用, 因為其通常保留原始資料中光譜特點之寬度及位置。另 外,在一些情況下,限制波長範圍(在該波長範圍内執行 積分)從而進一步強調CEF信號之貢獻經證明為有益的。 熟習此項技術者將顯而易見,本發明容易地有助於許多 實施模式。一種特別有利的方法將是,將參考樣本整合於 反射計中以致可不費力地使用參考樣本。在美國申請案第 10/668,644號(在2003年9月23日申請,其揭示真空紫外參 考反射計)及美國申請案第iOAO9」26號(在2〇〇4年7月3〇曰 申請)中詳細描述此方法,該等揭示案以引用方式併入本 文中。在圖12A中說明結合上述先前申請之美國申請案中 所描述的系統利用本文所提供之校準技術的實例。圖12a 提供如參考美國申請案第1〇/9〇9,126(2〇〇4年7月3〇曰申請) 號中的圖34更詳細描述的寬頻反射計系統34〇〇。系統34〇〇 可視需要包括多個源3201、3203及3 302以及對應之多個光 譜儀3214、3216及33 04。内翻式面鏡FM-1至FM-4及對應 視窗W-3至W-6可用於選擇各種源及光譜儀。如圖所示, 面鏡Μ·1至M-5用於引導射束。樣本3206可定位在樣本射 束32 10中。亦提供參考射束32 12。提供射束分離器BS且擋 板S-1及S-2選擇使用哪個射束。在環境密封腔室3202及 32 04中可包括各種光學器件及樣本,以致可獲得在VUV頻 寬中之量測。 120526.doc -26- 200809180 如圖12A中所展示,提供樣本射束(或通道)321〇以自樣 本3206獲得量測。提供參考射束(或通道)3212以參考該系 統。通常’參考射束經組態以提供指示環境或其他系統條 件之機制。參考射束可經組態以提供與樣本射束之射束長 度及環境條件類似的射束路徑,然而,參考射束不會遇到 樣本3 2 0 6 °在用本文所描述之校準技術操作的情況下,可 將標準樣本置放於圖12A之樣本32〇6位置處。然而,單獨 的參考樣本無需被置放在樣本32〇6位置處(雖然可使用對 被置放在樣本3206位置處的單獨參考樣本的此種利用)。 只情為’整個參考射束3212路徑可被視作,,參考樣本”。舉 例而σ ,射束分離器BS、面鏡M_4、視窗w_2及面鏡 (亦即’樣本路徑與參考路徑之間不同的元件)之累積效果 可被視作起形成’’參考樣本’’。若光學元件之組合效應在 感/、趣之光谱範圍中提供相對平滑的無特點之反射光譜, 貝J通$可獲得對參考樣本之整個射束路徑的此種利用。將 認識到,熟習此項技術者將瞭解使用校準技術之許多其他 方法且本文所描述之校準技術不限於本文所參考的機械組 恶。雖然未圖示,但是反射計系統34〇〇可包括處理器、電 細、其他電子器件及/或軟體,其用於根據本文所提供之 权準技術來校準該系統。處理器、電腦、其他電子器件及/ 或軟體可與反射計光學硬體—體式建構或可為單獨的獨立 單元,該單元與反射計光學硬體一起形成經組態以允許校 準之反射計系統。 本發明提供許多優點。一優點為其提供一種技術,藉由 120526.doc -27- 200809180 忒技術,根據與市售薄膜標準樣本相關聯之不確定性可能 太大而不能使利用習知方法精確校準成為可能的事實,可 精確校準VUV反射量測資料。結果,可完全消除反射計工 具使用者購買、維護並重新校準昂貴的標準樣本的需要。 此外,本發明允許在對標準樣本或參考樣本之確切特性 無先前認識的情況下達成非常精確的校準結果。此能力特 別有用,g] 4實㉟上可預期戶斤有樣本均t經歷# &amp;時間之The spectral region can have a relatively uncharacteristic reflection spectrum. The first sample can be regarded as a standard sample or calibration #, and the second sample can be regarded as a reference sample. By first calibrating (4) with a standard sample and then measuring the reference sample, it can be assumed that any sharp change in reflectance observed from the reference sample is a function of the inaccuracy of the false σ of the calibration sample. After mastering this understanding, the new calibration system follows. In addition, the 'calibration technique can produce a standard sample, which can have relatively well-known characteristics' with the exception that the quasi-sample can be assumed to have a significant calibration error function in the region of interest-曰. For A, if a standard sample can be assumed to exhibit a sharp change in reflectance due to changes in sample characteristics, the exact characteristics of the known standard sample are not required. Before the reference sample I can be used to evaluate the results of the calibration process, it needs to be mathematically constructed—a method for quantitatively evaluating CEF based on the combination of CEF and reference sample reflectance spectra. In an embodiment of the invention, this is typically done in the following manner. First, calculate the derivative of the measured reflectance spectrum. This is used to reduce the coupling between the CEF and the actual reflection spectrum of the multi-test sample t and more emphasis on the &quot;sharp&quot; rate of 120526.doc -22-200809180;; 1 (probably the contribution of CEF) instead of Emphasize (from the characteristics of the reference sample pre-measured =. Next, calculate the absolute value of the derivative and obtain the number of the 〃1 in the integral t of the integral value. 叙-τ J m M is the negative value of the bar and avoids the reflection by the reference sample The contribution of the light derivative. After the integration is completed, the result of the initial slave procedure can be quantitatively evaluated. The secret method can feed back the integral value to the algorithm, which is iteratively related to the initial hypothesis of the quasi-sample characteristics. Recalculate the CEF and re-integrate the value in order to minimize its value. When the minimum has been reached, the &quot;actual&quot; characteristic of the standard sample has been determined and thus its &quot;actual&quot; reflectivity has been determined. The reflectometer is calibrated and the measurement of the unknown sample is performed. After reviewing the data presented in Figures 8 to U', a further understanding of the steps involved in this method can be achieved. Figure 8 illustrates the use of ι〇〇 〇〇 assumed &quot;thickness The result of the measurement performed on the appropriate reference sample after the quasi-10000 A Si〇2/Si standard sample. The reference sample (which is adjusted to the core calibration X (4) spectrum is apparently sharp structure for calibration. The result of 1 〇A error. The signal 8 〇 2 shown in Figure 8 is the measured spectrum obtained from the reference sample. This signal is the product of the reflectance of the reference sample and the CEF spectrum caused by the inaccurate calibration. In this case, the CEF signal is substantially concomitant with the reference sample reflectance signal, and is apparently mainly present at the shorter wavelength in νυν. In this example, since the CEF signal is mainly present in the νυν region and reference reflection in this same region The rate is essentially non-characteristic, so this occurs. The derivative of this spectrum is presented in Figure 9. Not surprisingly, the reference reflection 120526.doc -23- 200809180 rate product derivative signal 902 still resides in the VUV region of the spectrum. Next, the absolute value of the trace is calculated prior to integration, which ultimately produces a quantitative measure of the accuracy of the calibration. This integral is then passed back to an iterative procedure, the iterative procedure The “standard sample” hypothesis, thickness, and recalculate the CEp/reference reflectance product integral until the value is minimized. For the 10,000 Α SiOVSi standard sample (with or without noise added to the system), the sensitivity curve of Figure 10 is presented. The value of the CEF/reference reflectance product integral as a function of the "hypothetical" thickness. Curve 1002 illustrates the value of the CEF/reference reflectance product integral including the presence of 0.5% of the noise component, while curve 1004 shows no noise information. Since the inspection of the data is obvious, even if there is 〇·5% of the noise component in the original reflectance data, the integral is very sensitive to the small error of the π hypothesis n thickness of the Si〇2 layer. Needless to say, the minimum value of the Cef/reference reflectance product integral is achieved when the "what if" thickness value matches the "actual" thickness of the standard sample. After the iterative process is completed, the &quot;actual,&quot; characteristics of the standard sample are determined and the instrument is accurately calibrated. At this time, as shown in Fig. 11, the CEF function assumes a value of one at all wavelengths, and subsequent measurement of the reference sample produces its true reflection spectrum 丨1〇2. An exemplary detailed description of this calibration procedure is outlined in flowchart 1202 of Figure 12 which presents the mathematical relationships involved in calculating the absolute reflectivity of an unknown sample. As shown in step 1204 of Figure 12, the assumed reflectance of the standard sample is first calculated using hypothetical identities of standard samples that are expected to exhibit significant calibration error characteristics in a given spectral region. The intensity from the standard sample is recorded in step 12〇6. In step 12〇8, the source intensity profile is calculated using the assumed reflectance of the standard sample. Next, the intensity of the reference sample from the pre-120526.doc -24-200809180 period exhibiting substantially smooth reflection characteristics in the same spectral region is recorded in step 121. Next, the reflectance of the reference sample is calculated in step 1212. Next, the reflectance of the reference sample can be expressed according to the equation of step 1214. The absolute value of the derivative of the reference sample reflectance spectrum can then be calculated in step 1216. Next, the integral of the absolute value of the derivative is calculated in step (2) 8. Next, an iterative adjustment to the hypothesis regarding the characteristics of the standard samples is performed and the assumed reflectance of the standard samples is recalculated in step 1220. Control is passed back from step coffee to step 1214 until the integral value is minimized and thus the actual characteristics of the standard samples are obtained during the process from step 1220 to step 1222. The source intensity profile is calculated using the actual reflectance of the standard sample in step 1222. Next, the intensity of the unknown sample is recorded in step 1224. Finally, the reflectivity of the unknown sample can be calculated and expressed according to the equation of step 1226. &quot;hypothetical &quot;characteristics and limited in the same way) complex refractive index, composition, heat* The skilled artisan will recognize that there are many other ways to quantify the CEF signal in this way to make it available for feedback back Iterative procedure, the iterative procedure is designed to minimize the value of the standard sample by adjusting the &quot;hypothesis, the characteristics of the standard sample. 'Although the above discussion has considered the thickness of the standard sample to be accurately determined during the calibration process &quot;hypothesis&quot; Features, but those skilled in the art will progress to understand that many of the other characteristics of the standard sample can also be considered as deterministic. Such characteristics may include (but not porosity and surface or interface roughness. These characteristics may be determined independently during the weighting order period, or in some instances 'these characteristics and other characteristics may be determined simultaneously. In the case, Cole&gt; j imposes additional mathematical steps to enhance the effectiveness of the calibration procedure. b) The presence of 120526.doc -25-200809180 significant noise in the measured reflectance data recorded from the reference sample is advantageous. This may be to filter the original data before or after the derivative of the original data. Although there are many suitable smoothing filters in the prior art, the Savitzky-Golay filter is particularly suitable for this application because it usually preserves the spectral characteristics of the original data. Width and position. Additionally, in some cases, limiting the wavelength range (integrating the wavelength range) to further emphasize the contribution of the CEF signal has proven to be beneficial. It will be apparent to those skilled in the art that the present invention is readily Contribute to many implementation modes. A particularly advantageous approach would be to integrate the reference sample into the reflectometer so that it is not expensive Use the reference sample in U.S. Application No. 10/668,644 (applied on September 23, 2003, which discloses a vacuum ultraviolet reference reflectometer) and US application No. iOAO9" No. 26 (at 2〇〇4) This method is described in detail in the application Serial No. 3, the disclosure of which is incorporated herein by reference. An example of a technique. Figure 12a provides a broadband reflectometer system 34 as described in more detail in Figure 34 of the U.S. Application Serial No. 1/9,9,126, filed on Jan. 4, 2011. The system 34 includes a plurality of sources 3201, 3203, and 3 302 and corresponding plurality of spectrometers 3214, 3216, and 33 04 as desired. Inverted mirrors FM-1 to FM-4 and corresponding windows W-3 to W -6 can be used to select various sources and spectrometers. As shown, mirrors Μ 1 through M-5 are used to direct the beam. Sample 3206 can be positioned in sample beam 32 10. Reference beam 32 12 is also provided. A beam splitter BS is provided and the baffles S-1 and S-2 select which beam to use. Sealing chambers 3202 and 32 in the environment Various optics and samples may be included in 04 such that measurements in the VUV bandwidth are available. 120526.doc -26- 200809180 As shown in Figure 12A, a sample beam (or channel) 321 is provided to sample 3206 A measurement is provided. A reference beam (or channel) 3212 is provided to reference the system. Typically the 'reference beam is configured to provide a mechanism indicative of environmental or other system conditions. The reference beam can be configured to provide a sample beam with the sample beam The beam path and beam conditions of similar environmental conditions, however, the reference beam does not encounter the sample 3 2 0 6 °. In the case of operation with the calibration techniques described herein, the standard sample can be placed in Figure 12A. The sample is at 32〇6. However, a separate reference sample need not be placed at the location of sample 32〇6 (although such utilization of a separate reference sample placed at the location of sample 3206 can be used). The only thing is 'the entire reference beam 3212 path can be seen as a reference sample." For example, σ, beam splitter BS, mirror M_4, window w_2, and mirror (ie, 'between sample path and reference path The cumulative effect of different components can be considered as forming a ''reference sample''. If the combined effect of the optical elements provides a relatively smooth, uncharacteristic reflection spectrum in the spectral range of the sense/feel, Such utilization of the entire beam path of the reference sample is obtained. It will be appreciated that those skilled in the art will appreciate many other methods of using calibration techniques and the calibration techniques described herein are not limited to the mechanical groupings referenced herein. Not shown, but the reflectometer system 34A can include a processor, a battery, other electronics, and/or software for calibrating the system in accordance with the registration techniques provided herein. Processors, computers, other electronics The device and / or software can be constructed with a reflectometer optical hardware - or can be a separate stand-alone unit that, together with the reflectometer optical hardware, is configured to allow for calibrated reflections The present invention provides a number of advantages. One advantage is that it provides a technique by which the uncertainty associated with a commercially available film standard sample may be too large to be utilized by the 120526.doc -27-200809180 忒 technique. Method Accurate calibration makes it possible to accurately calibrate VUV reflectance measurements. As a result, the need for reflectometer tool users to purchase, maintain, and recalibrate expensive standard samples is completely eliminated. Furthermore, the present invention allows for the use of standard samples or The exact characteristics of the reference sample achieve very accurate calibration results without prior knowledge. This ability is particularly useful, g] 4 real 35 can be expected to have samples of the sample t experienced # &amp; time

函數的微小特性變化(由於自然生長機制或污染物)。 雖然本發明特別適合校準VUV反射量測資料之目的,但 是本發明亦可用於校準來自其他光譜區之反射量測資料。 在此等實例中’使用其他標準樣本(可預期該等其他標準 樣本在感興趣之光譜區中會產生顯著的cef信號)可為有利 的0 本發明之另_優點為其^需㈣用次級參考儀器,藉此 極大降低糸統成本及複雜性。 一旦已自經校準之反射計記錄反射率資料,便通常發送 β亥反射率貝料至處理器單元,隨後在處理器單元處經由分 析演算法縮減該資料。此等演算法通f將樣本之諸如反射 率之光學資料與樣本之其他特性(如膜厚度、複折射率、 β勿孔隙率、表面或界面粗槌度等)相聯繫,接著可 量測及/或監控該等特性。 通常利用某種形式之菲料方程式結合—或多個模型描 ==之材料的光學特性來完成資料縮減。不管在縮 減貝枓集時利料特定模式如何,較大目標—般是利用數 120526.doc -28- 200809180 j·表達式來描述經量測資料以致可經由迭代最佳化過程獲 得與樣本特性(如以上所論述)相關之某些參數。亦即,將 經量測資料集與利用一視與樣本性質相關的—組參數而定 的表達式計算㈣資料㈣比較。藉由迭代地調整參數值 直至在兩個資料集之間達成充分一致時,最小化經量測資 料集與經計算資料集之間的差異。冑常根冑&quot;適合度&quot; (GOF)參數來量化此差異。 先前技術中存在眾多用於計算G0F之數學表達式。大多 數此等技術在某種程度上基於對經量測光谱與經計算光譜 之間的差異的確定。雖然此等方法通常可適用且在參數空 間中合理地定位絕對最小值之―般區,但是其通常在收敛 時在彼最小值處展示出缺點,特別是在經量測資料中的雜 訊位準增加的情況下。 如對於10000 A的Si〇2/Si測試樣本所計算,圖13呈現先 前技術GOF表達式(熟習此項技術者已知其為&quot;卡方&quot;優點函 數)之靈敏度曲線13〇2。顯而易1,此標準優點函數提供 -種定位膜&quot;實際&quot;厚度之一般區的有效方式,因為其展示 出具有經良好定義之最小值的相對平滑的線形狀 '然而, 更K查時’可見在最小值附近函數之靈敏度顯著降 、’及圖14中更好地說明此點’圖&quot;呈現在經量測反射率資 料中存在的雜訊的情況下圖13之靈敏度曲線㈣之展 開圖1402 。 在核一圖14中之貝料時顯而易見,駐留於原始反射率資 料中之1%的雜訊會顯著減小優點函純最小㈣序能夠 120526.doc -29- 200809180 收斂於測試樣本之”實際”厚度上的能力。因此,需要研發 一種在程序已大致定位在答案的附近時便確定,,實際&quot;厚度 之優良方法。 本發明之另—較佳實施例提供此能力。亦即,該實施例 提供高度靈敏的收斂量測,該量測可結合適當的最小化程 序利用’以有效縮減經量測反射率f料,&amp;而產生展示出 較高精確性等級、接著可僅利用習知技術來達到之結果。 雖然本發明經設計成結合傳統優點函數利用,但是本發明 在一些實例中完全代替此等方法之利用。 在圖15之流程圖1502中呈現本文所描述之資料縮減技術 之一實施例的一般綜述,其中呈現在與使用反射計來量測 未知樣本相關聯的迭代資料擬合程序中所涉及的數學關 係。過程中的第一步驟1504是利用經精確校準之反射計來 獲得未知樣本的絕對反射光譜。在步驟丨5〇6中,一旦已記 錄此光谱,便利用關於樣本物理特性之初始假設來計算樣 本之”預期’’反射特性。在掌握此等兩個光譜後,如步驟 1508之方程式所示,確定”預期,,光譜與”經量測&quot;光譜之比 〇 本文中稱作量測誤差函數(mef)之此比率本質上與先前 所淪述之CEF類似。雖然兩個函數係關於”假設”資料集與,, 實際’’資料集之比率,但是MEF稍微更易於評估,因為其 未與參考樣本之反射率耦合。亦即,在最小化期間,經由 檢查參考樣本反射光譜來評估CEF,而經由檢查未知樣本 本身的反射率來評估MEF。 120526.doc • 30 - 200809180 在MEF (或反射光請比率)可用於評估最小化程序的結果 之前,必須再次建構適合的優點函數。在先前CEF所採取 之方法之後,流程圖15 02中下一步驟是如步驟丨5丨〇中所示 計算MEF之導數之絕對值。此用以強調MEF中急劇的光譜 特點’該等光譜特點主要由包含未知樣本之一或多種材料 的吸收邊緣附近的波長引起。此時,如步驟1512中所示, 計算導數之絕對值且接著對所得函數進行積分。如之前一 樣,需要在積分之前得到導數之絕對值,以便積極地獲取 正值及負值。一旦完成積分,便有可能定量地評估縮減過 程之結果。更明確地說,如步驟1514所示,可發生調整關 於未知樣本之特性的假設及重新計算未知樣本之預期反射 光譜的迭代過程。在重新計算預期反射光譜之後,控制再 _人轉至步驟1508且重複步驟1508-1514,直至最小化積分 值此時確又已獲彳于未知樣本之實際特性且控制轉至步驟 1516,在步驟1516中提供未知樣本之實際特性作為輸出。 注意,此技術對”假設,,反射光譜與”經量測&quot;反射光譜之 間的固定偏移不靈敏。亦即,其不能有效用於縮減自包含 極薄的膜(亦即,足夠薄而不會引起顯著的干涉效應)之樣 本收集到之長波長反射量測資料,因為此等資料集不可能 —有由此方去獲付之急劇光譜特點。幸運的是,在νυν區 實(V、上所有薄膜樣本在其反射光譜中展示出某種形式 的急劇結構,該結構由干涉或吸收效應引起。 為了更好地證明此方法之效能相對於習知卡方方法之效 能的優越性,圖16呈現對於圖14之同一 1〇〇〇〇 A的si〇2/si 120526.doc -31- 200809180 測試樣本利用本發明之實施例計算出之展開靈敏度曲線 1602。比較此等兩個圖中之結果,其展示··本發明受存在 於原始反射率資料中1%的雜訊位準的影響比卡方方法所 受的影響小。此證實:本發明為最佳化程序提供對擬合最 小值及因此對膜之”實際”厚度的更有效量測。此改良的效 能證明:至少當”假設”厚度值大體在,,實際,,厚度附近時, 本發明能夠比利用習知方法可能達成的結果更精確且可重 複的結果。 對較大參數空間之研究證明在一些情況下最佳結合先前 技術方法使用本發明的原因。在檢查圖17後,其原因變得 顯而易見,圖17呈現在較寬之”假設”厚度值範圍内繪製之 利用本發明對於10000 A的Si〇2/Si樣本計算出的靈敏度曲 線1702。雖然在”實際,,厚度處之MEF積分值可清楚地與在 所有其他’’假設”厚度處之積分值區分,但是MEF積分之線 形狀的急劇特點使其在計算上難以擬合。因此,更有效之 舉是利用基於卡方之優點函數開始搜尋最小值,然後一旦 達成明顯收斂,便轉變並利用本發明繼續搜尋”實際”最小 值。在此理念上’本發明之利用表示反射計操作之高解析 度模式。 在其他情況下,可認識到本發明提供之益處而無需亦使 用習知之卡方方法。此一情況下之實例為在經量測反射率 資料中存在1%的雜訊的情況下量測100人的Si〇2/Si樣本。 在此情況下,本發明之全域搜尋效能與標準卡方方法之效 能相當。圖1 8中所呈現之靈敏度曲線比較提供其證據。如 120526.doc -32· 200809180 圖18所示,比較標準卡方方法之靈敏度曲線18〇2與使用根 據本♦明之MEF技術的靈敏度曲線1804。雖然兩個函數展 示出相對平滑的線形狀,但是注意到,反射率資料中1% 的雜訊之影響在卡方結果中已顯而易見。 圖19及圖20呈現分別利用本發明之MEF技術(圖19之靈 敏度曲線1902)及卡方方法(圖20之靈敏度曲線2〇〇2)計算出 的覆蓋100人的SiOVSi樣本之,,實際”厚度附近的4 a區之展 開靈敏度曲線。對此等兩個圖的比較證明在此情況下本發 明之有利效能。 因此,藉由使用擬合程序可獲得資料量測,該擬合程序 包括為光譜驅動擬合程序之程序的至少一部分而不是僅依 賴於振幅驅動程序(其通常併入差異計算)。更明確地說, 藉由使用急劇、窄的光譜特點之存在可獲得該等量測。在 使用光譜驅動程序之實施例中,被量測之樣本之預期反射 光%與被i測之樣本之實際反射光譜的比率。本文所提供 之技術使用預期值與實際值的比率而不是基於預期值與實 際值之間的差異。此比率之導數可用於強調急劇光譜特 點。 此等光譜驅動技術在含有急劇光譜特點(例如,薄膜樣 本通常在VUV區中展示出的急劇特點)之光譜區中尤其有 用。因此,提供一種收斂技術,其可有利地使用所揭示材 料之吸收邊緣效應。以此方式,有利地使用急劇光譜特點 (例如’其由干涉或吸收效應引起)以更能確定指示實際量 測值的資料最小值。本揭示案中所呈現的優點函數可因此 120526.doc -33- 200809180 由被里測之材料之吸收特性予以驅動,其中強調由於樣本 特性的小的變化而包含大的吸收(吸收邊緣)變化之區域。 、,資料縮減技術可使用兩步驟方法。在此種實施例中,可 首^㈣如振幅驅動擬合程序之低解析度步驟來提供&quot;粗 略&quot;量測。接著’可㈣諸如光譜驅動擬合程序之有利地 使用急劇光譜特點之存在的高解析度步驟來接著提供&quot;精 細&quot;量測。在用於此技術之一方法中,藉由利用基於差異 之技術(諸如卡方&quot;優點函數中),可使用低解析度方法來 獲付大略1測值,且接著藉由在該低解析度技術最初識別 的重點區中使用基於光譜驅動比率之技術可獲得對實際量 測值的更精確確定。 本文所提供之技術可視作對於存在急劇光譜特點之區動 態加權結果。舉例而言’關於vuv範圍中存在之急劇光譜 邊緣’可將此等技術視作制—加權函數,該加權函數極 力強調VUV而對DUV及較長波長資料(其中對於給定樣 本,可能無法預期急劇光譜特點)蓄意忽視。另外,可加 權該過程以致可僅包括可經合理預期含有有用資訊的經量 測資料。此加權方法可為動態的,因為在每一迭代之後可 重複決策過程(應考慮哪一經量測資料)。 雖然本文所呈現之實例已使用該技術以有助於精確量測 膜厚度,但是熟習此項技術者將顯而易見,在量測其他材 料特性(其包括但不限於複折射率、組合物、孔隙率、表 面或界面粗糙度等)時可同樣使用本發明之其他較佳實施 例。另外,雖然本文所提供之實例已特定地處理對si〇2/si 120526.doc -34 - 200809180 測許多::類:疋顯而易見’可同樣利用所描述方法來量 == 提供之技術。此等堆疊之實例包括基 yUMSKVSiN堆疊或基板上之薄膜㈣ 4:: “述,本發明所提供之高靈敏度等級主要由以 當在包含此等樣本之材料中的-或多者的光 :邊緣料時,本發較时隨樣本特性之小變化的 α叙實質變彳卜雖然此等特點通常位於彻光譜區 ’但是由於被研究之樣本之物理特性的微小變化而在 =中預期有實質上急劇的特點的情況下,在較長波長處 通书可應用該技術。 热習此項技術者將認識到’存在用於以此方式量化MEF 號以便使其可用於反饋給迭代程序的許多其他方法,該 送代程序經設計以經由調整經量測樣本之”假設&quot;特性而最 小化其值。此外’亦將容易明白,在—些情況τ,可執行 額外的數學步驟以增強量測程序之效能。 將認識到,如上所述,提供—種校準技術,該技術可包 括在校準過程中利用兩個校準樣本。另外,即使在校準樣 本中之至少一者的實際特性與假設特性之間存在變化,該 技術仍允許校準。另外,上述技術包括—種校準技術,其 中使用來自第-校準樣本之經反射強度量測與來自第二校 準樣本之經反射強度量測的比率(舉例而言,如圖12中所 不之 Iref/Ieal)。 120526.do, -35. 200809180 ,p使,枝準樣本及系統變化及偏移中可存在變化的條件 下,仍可以各種方式使用多個校準樣本及自該等樣本反射 之強度之比率來達成校準。舉例而言,如上所述,利用兩 個=準樣本,#中第_校準樣本在感興趣波長中具有急劇 光⑺特點且第二樣本與第一樣本相比在感興趣波長區中相 :無特點。在使用兩個校準樣本的另一實例,,可使用自 第:校準樣本反射之強度與自第二校準樣本反射之強度的 比率’、中兩個杈準樣本中的任一者需要為相對無特點。 在此實施例中,如以下更詳細描述,僅需要樣本在所要波 長處之反射特性相對不同。在此技術中,接著可認為每一 樣本之反射率資料已自另—者相對去搞合。以上參考第一 樣本及相對無特點之第二樣本所描述的技術為使用反射特 性相對不同的兩個校準樣本的一實例,然而,如以下所描 述,可使用無一校準樣本需為光譜無特點的技術。 田 更明確地說,即使在無絕對反射率校準的情況下,仍可 經由經量測強度來量測來自兩個樣本之反射率的比率,因為 方程式3 若在彼此短時間内自每一樣本量測強度’則環境或儀器偏 移不會起顯著作用,因此,方程式3由以下事實引起··在 兩次量測期間,入射強度I。不會改變。利用標準薄膜回歸 分析可分析此比率以提取由單一樣本之絕對反射率確定的 相同膜參數(n、k、厚度、界面粗糙度等)。然而,與單一 強度之情況不同,不同量測之間經量測比率的變化係由於 120526.doc •36- 200809180 樣本本身的變化,而A small change in the function (due to natural growth mechanisms or contaminants). While the present invention is particularly well suited for calibrating VUV reflectance measurements, the present invention can also be used to calibrate reflectance measurements from other spectral regions. In these examples, 'using other standard samples (which can be expected to produce significant cef signals in the spectral region of interest) can be advantageous. Another advantage of the present invention is that it requires (four) times. Level reference instruments, which greatly reduce the cost and complexity of the system. Once the reflectance data has been recorded from the calibrated reflectometer, the beta reflectance is typically sent to the processor unit, which is then reduced at the processor unit via an analysis algorithm. These algorithms associate the optical data of the sample, such as reflectivity, with other characteristics of the sample (eg, film thickness, complex refractive index, beta-free porosity, surface or interface roughness, etc.), which can then be measured and / or monitor these features. Data reduction is usually accomplished using some form of phenanthrene equation combined with the optical properties of a plurality of models. Regardless of the specific mode of the material when reducing the Bellow set, the larger goal is to use the number 120526.doc -28-200809180 j· expression to describe the measured data so that it can be obtained through the iterative optimization process and the sample characteristics. Some parameters related to (as discussed above). That is, the measured data set is compared with the expression (4) data (4) determined by the set of parameters related to the nature of the sample. The difference between the measured data set and the calculated data set is minimized by iteratively adjusting the parameter values until a sufficient agreement is achieved between the two data sets.胄 Always use the &quot;fitness&quot; (GOF) parameter to quantify this difference. There are numerous mathematical expressions used in the prior art for calculating G0F. Most of these techniques are based in part on the determination of the difference between the measured and calculated spectra. While these methods are generally applicable and reasonably locate the "abnormal region" of the absolute minimum in the parameter space, they typically exhibit shortcomings at the minimum at convergence, especially in the measured data. In the case of a quasi-increase. As calculated for the 10,000 A Si〇2/Si test sample, Figure 13 presents a prior art GOF expression (known to those skilled in the art as the &quot;chi-square&quot; advantage function) sensitivity curve 13〇2. Obviously, this standard advantage function provides an efficient way to locate the general area of the film &quot;actual&quot; thickness because it exhibits a relatively smooth line shape with a well-defined minimum 'however, more The sensitivity of the function near the minimum value is significantly reduced, and the point is better illustrated in Figure 14 'Figure'. The sensitivity curve of Figure 13 is presented in the case of the presence of noise in the measured reflectance data (4) Expand Figure 1402. It is obvious in the core material of Figure 14 that 1% of the noise remaining in the original reflectance data will significantly reduce the advantage of the pure minimum (four) order can be 120526.doc -29- 200809180 converges on the test sample "actual "The ability in thickness. Therefore, there is a need to develop an excellent method of determining the actual &quot;thickness&quot; when the program has been roughly positioned near the answer. Another preferred embodiment of the invention provides this capability. That is, this embodiment provides a highly sensitive convergence measurement that can be combined with an appropriate minimization procedure to effectively reduce the measured reflectance, & yielding a higher level of accuracy, followed by The results can be achieved using only conventional techniques. Although the present invention is designed to be utilized in conjunction with conventional merit functions, the present invention completely replaces the utilization of such methods in some instances. A general overview of one embodiment of the data reduction technique described herein is presented in flowchart 1502 of Figure 15, in which the mathematical relationships involved in an iterative data fitting procedure associated with the use of a reflectometer to measure unknown samples are presented. . A first step 1504 in the process is to obtain an absolute reflectance spectrum of the unknown sample using a precisely calibrated reflectometer. In step 丨5〇6, once this spectrum has been recorded, it is convenient to calculate the "expected" reflection characteristics of the sample using the initial hypothesis about the physical properties of the sample. After mastering the two spectra, as shown in the equation of step 1508 , determining the "expectation, the spectrum and the "measured" ratio of the spectrum 〇 this ratio referred to herein as the measurement error function (mef) is essentially similar to the previously described CEF. Although the two functions are related" Suppose the ratio of the dataset to the actual ''dataset', but the MEF is slightly easier to evaluate because it is not coupled to the reflectance of the reference sample. That is, during the minimization period, the CEF is evaluated by examining the reference sample reflectance spectra. The MEF is evaluated by examining the reflectance of the unknown sample itself. 120526.doc • 30 - 200809180 Before the MEF (or reflected light ratio) can be used to evaluate the results of the minimization procedure, the appropriate merit function must be constructed again. After the method adopted by the CEF, the next step in the flowchart 152 is to calculate the absolute value of the derivative of the MEF as shown in step 丨5丨〇. This is used to emphasize the MEF. Sharp spectral characteristics 'The spectral characteristics are primarily caused by wavelengths near the absorption edge of one or more materials containing unknown samples. At this point, as shown in step 1512, the absolute value of the derivative is calculated and then the resulting function is integrated. As before, the absolute value of the derivative needs to be obtained before the integration in order to actively obtain positive and negative values. Once the integration is completed, it is possible to quantitatively evaluate the result of the reduction process. More specifically, as shown in step 1514, An iterative process of adjusting the hypothesis about the characteristics of the unknown sample and recalculating the expected reflection spectrum of the unknown sample may occur. After recalculating the expected reflection spectrum, control passes to step 1508 and steps 1508-1514 are repeated until the integral is minimized. The value is now again obtained from the actual characteristics of the unknown sample and control passes to step 1516 where the actual characteristics of the unknown sample are provided as an output. Note that this technique is for "hypothesis, reflection spectrum and" measurement &quot; fixed offset between reflection spectra is not sensitive. That is, it cannot be effectively used to reduce self-contained Long-wavelength reflectance measurements collected from samples of thin films (ie, thin enough without causing significant interference effects) are not possible because of the sharp spectral characteristics that are obtained from this. Fortunately, in the νυν region (V, all film samples show some form of sharp structure in their reflection spectrum, which is caused by interference or absorption effects. To better prove the effectiveness of this method relative to the habit The superiority of the performance of the chi-square method, FIG. 16 presents the development sensitivity calculated by the embodiment of the present invention for the si〇〇〇〇2/si 120526.doc-31-200809180 test sample of the same 1A of FIG. Curve 1602. Comparing the results in these two figures, it is shown that the present invention is less affected by the chi-square method than the influence of the chi-square method in the original reflectance data. This confirms that the present invention provides a more efficient measurement of the fitting minimum and thus the "actual" thickness of the film for the optimization procedure. The improved effect proves that the present invention is capable of more accurate and repeatable results than would be possible with conventional methods, at least when the "hypothetical" thickness values are substantially, practically, near the thickness. Studies of larger parameter spaces have demonstrated the best use of the present invention in some cases in combination with prior art methods. After examining Figure 17, the reason for this becomes apparent. Figure 17 presents a sensitivity curve 1702 calculated for a 10,000 A Si〇2/Si sample using the present invention plotted over a wider "hypothetical" thickness value range. Although in "actually, the MEF integral value at the thickness can be clearly distinguished from the integral value at all other ''hypothetical" thicknesses, the sharp nature of the line shape of the MEF integral makes it computationally difficult to fit. Therefore, it is more efficient to start searching for the minimum using the merits based on the chi-square, and then, once a significant convergence is reached, transition and use the present invention to continue searching for the "actual" minimum. In this concept, the use of the present invention represents a high resolution mode of reflectometer operation. In other instances, the benefits provided by the present invention may be appreciated without the use of conventional chi-square methods. An example of this is to measure a 100 Å Si〇2/Si sample with 1% of the noise present in the measured reflectance data. In this case, the global search performance of the present invention is comparable to that of the standard chi-square method. A comparison of the sensitivity curves presented in Figure 18 provides evidence. For example, as shown in Fig. 18, the sensitivity curve 18〇2 of the standard chi-square method is compared with the sensitivity curve 1804 using the MEF technique according to the present invention. Although the two functions show a relatively smooth line shape, it is noted that the effect of 1% of the noise in the reflectance data is already evident in the chi-square results. 19 and FIG. 20 show the SiOVSi sample covering 100 people calculated by using the MEF technology of the present invention (sensitivity curve 1902 of FIG. 19) and the chi-square method (sensitivity curve 2〇〇2 of FIG. 20), respectively. The expansion sensitivity curve of the 4 a region near the thickness. The comparison of these two graphs demonstrates the advantageous performance of the present invention in this case. Therefore, data measurement can be obtained by using a fitting program, which is included At least a portion of the program of the spectrally driven fit program is not solely dependent on the amplitude driver (which typically incorporates a difference calculation). More specifically, the measurements can be obtained by using the presence of sharp, narrow spectral features. In an embodiment using a spectral driver, the ratio of the expected reflected light of the sample being measured to the actual reflected spectrum of the sample being measured. The techniques provided herein use a ratio of expected to actual values rather than based on expectations. The difference between the value and the actual value. The derivative of this ratio can be used to emphasize sharp spectral characteristics. These spectrally driven techniques are characterized by sharp spectral features (eg, film-like This is especially useful in the spectral region of the sharp features typically exhibited in the VUV region. Thus, a convergence technique is provided which can advantageously use the absorption edge effect of the disclosed materials. In this way, sharp spectral characteristics are advantageously used ( For example, 'which is caused by interference or absorption effects' to more accurately determine the minimum value of the data indicative of the actual measurement. The merit function presented in this disclosure can therefore be absorbed by the material being measured 120526.doc -33- 200809180 The characteristics are driven, where the area containing large absorption (absorption edge) changes due to small changes in sample characteristics is emphasized. The data reduction technique can use a two-step method. In this embodiment, the first (4) amplitude can be used. The low resolution step of the drive fitting program is provided to provide a &quot;rough&quot; measurement. Then (4) a high-resolution step such as a spectrally driven fitting program that advantageously uses the presence of sharp spectral features to then provide &quot;fine&quot; Measurement. In one of the methods used in this technique, by using a difference-based technique (such as the chi-square &quot; advantage function) A low resolution method is used to obtain a roughly 1 measurement, and then a more accurate determination of the actual measurement can be obtained by using a technique based on the spectral drive ratio in the region of focus initially identified by the low resolution technique. The techniques provided can be viewed as dynamic weighted results for regions with sharp spectral features. For example, 'About the sharp spectral edges present in the vuv range' can be considered as a weighting function that emphasizes VUV and DUV and longer wavelength data, where sharp spectral characteristics may not be expected for a given sample, are deliberately ignored. Additionally, the process can be weighted so that only measured data that can reasonably be expected to contain useful information can be included. It is dynamic because the decision process can be repeated after each iteration (which one should be considered). While the examples presented herein have used this technique to aid in accurate measurement of film thickness, it will be apparent to those skilled in the art to measure other material properties including, but not limited to, complex refractive index, composition, porosity. Other preferred embodiments of the invention may be used in the same manner as surface, interface roughness, and the like. In addition, although the examples provided herein have been specifically addressed to si〇2/si 120526.doc -34 - 200809180 many:: Class: 疋 Obviously 'the technology can be equally utilized to quantify the == method provided. Examples of such stacks include a base yUMSKVSiN stack or a film on a substrate (4) 4:: "The high sensitivity level provided by the present invention is primarily due to the light in the - or more of the materials comprising the samples: edge In the case of the material, the α-substantial change of the present time with a small change in the characteristics of the sample, although these characteristics are usually located in the spectral region, but due to minor changes in the physical properties of the sample being studied, it is expected to be substantially In the case of sharp features, this technique can be applied at longer wavelengths. Those skilled in the art will recognize that 'there are many other ways to quantify the MEF number in this way so that it can be used to feed back to the iterative process. In the method, the pass-through program is designed to minimize its value by adjusting the "what if" characteristic of the measured sample. In addition, it will be easy to understand that in some cases τ, additional mathematical steps can be performed to enhance the performance of the measurement procedure. It will be appreciated that as described above, a calibration technique is provided which may include utilizing two calibration samples during the calibration process. In addition, the technique allows calibration even if there is a change between the actual and hypothetical characteristics of at least one of the calibration samples. Additionally, the above techniques include a calibration technique in which the ratio of the reflected intensity measurements from the first calibration sample to the reflected intensity measurements from the second calibration sample is used (for example, Iref as shown in Figure 12). /Ieal). 120526.do, -35. 200809180, under the condition that there may be changes in the sample and system variations and offsets, the ratio of the intensity of the reflections from the multiple samples and the intensity of the reflections from the samples can still be achieved in various ways. calibration. For example, as described above, with two = quasi-samples, the #_ calibration sample in # has a sharp light (7) characteristic in the wavelength of interest and the second sample is in the wavelength region of interest compared to the first sample: No features. In another example where two calibration samples are used, the ratio of the intensity of the reflection from the calibration sample to the intensity of the reflection from the second calibration sample can be used, and either of the two calibration samples need to be relatively absent. Features. In this embodiment, as described in more detail below, only the reflection characteristics of the sample at the desired wavelength are required to be relatively different. In this technique, it is then believed that the reflectance data for each sample has been relatively self-contained. The technique described above with reference to the first sample and the relatively uncharacterized second sample is an example of using two calibration samples having relatively different reflection characteristics, however, as described below, none of the calibration samples may be used for the spectrum. Features the technology. More specifically, even in the absence of absolute reflectance calibration, the ratio of reflectance from two samples can be measured via the measured intensity, since Equation 3 is from each sample in a short time from each other. Measuring the intensity 'the environment or instrument offset will not play a significant role, therefore, Equation 3 is caused by the fact that during the two measurements, the incident intensity I. will not change. This ratio can be analyzed using standard film regression analysis to extract the same film parameters (n, k, thickness, interfacial roughness, etc.) as determined by the absolute reflectance of a single sample. However, unlike the case of a single intensity, the change in the measured ratio between different measurements is due to the variation of the sample itself, 120526.doc • 36- 200809180

^所描述之實例校準樣本僅經提供以 良示一實例。將認識到, 提供以辅助理解所揭示技 術且可使用其他校準樣本及厚度。 因此,為了提供對校準技術之例示性描述,可利用裸&amp; 校準樣本結合1000入的叫⑻校準#本來建構經修改之校 :耘序。藉由量測兩個樣本之強度,可分析強度之比率以 $取兩個樣本之氧化物厚度。可將對於裸Si校準樣本所確 定之厚度反饋至方程式2之校準程序中以㈣更精確的絕 對反射率。 圖21A、圖21B、圖22A及圖22B展示原生Si〇2/Si校準樣 本(樣本1,對應於R!)與標稱的1000 A的SiOVSi校準樣本 (樣本2 ’對應於R2)之間的模擬反射率比率的比較。圖21a 及圖21B展示增加原生Si〇2厚度對比率Ri/Ri的效應。如圖 21A所展示’對於高達1〇〇〇 nm之波長提供反射率比率 Rz/Ri,而圖21B為對於1〇〇 nm與400 nm之間的波長之同一 比率的展開圖。在圖21A及圖21B中,分別在曲線21〇6、 21 04及2 102中對於10、20及30 A的Si〇2展示原生氧化物的 變化對樣本l(R〇之影響的曲線。增加原生Si〇2厚度之主要 效應是增加VUV中的比率,因為反射率減小。 120526.doc -37- 200809180 與之相比,增加l〇〇〇 A的si〇2厚度之效應是改變針對較 長波長之干涉最大值及最小值。更明確地說,圖22A及圖 22B對於但定樣本1(2〇 a的原生氧化物)說明樣本2(1〇〇〇 a 的 Si02/Si、loio A的 Si〇2/Si&amp;1〇2〇 a的 si〇2/Si)之變化的 效應。更明確地說,曲線22〇2、22〇4及22〇6分別展示樣本 2(1000 A的 Si〇2/Si、1〇1〇 A的 si〇2/Si及 1020 A的 Si02/Si) 之變化的影響(圖22A展示自100-400 nm波長之展開圖)。 因此,可認為兩個樣本之厚度(一樣本厚且一樣本薄)已去 麵合’且可自對比率量測之標準分析提取每一者之厚度。 此外,可在不利用絕對反射率標準之情況下自比率資料提 取此專厚度。因為不管系統或燈偏移如何此比率均相同 (假設相當快速、連續地量測強度或樣本丨及樣本2),所以 隨時間流逝在比率中觀察到的差異將對應於實際樣本之變 化。圖21及圖22說明,若所述樣本特性為si〇2厚度,則可 確定每一樣本上之厚度變化量。接著,以此方式在樣本2 上偵測到的原生氧化物層之厚度可用於利用彼樣本改良絕 對校準之品質。 注意,若校準樣本之一者確實保持恆定,則可直接自比 率變化推斷其他樣本之反射率變化 。然而,實務上,用於 校準樣本偏移之機制通常是污染物層在兩個樣本上的累 上的累 積,因此,通常將不是此種情況。The example calibration sample described is provided only to show an example. It will be appreciated that the techniques disclosed are provided to aid in understanding and other calibration samples and thicknesses can be used. Therefore, in order to provide an illustrative description of the calibration technique, a modified &amp; calibration sequence can be utilized in conjunction with a 1000-input (8) calibration #. By measuring the intensity of the two samples, the ratio of the intensities can be analyzed to take the oxide thickness of the two samples. The thickness determined for the bare Si calibration sample can be fed back to the calibration procedure of Equation 2 to (4) more accurate absolute reflectivity. 21A, 21B, 22A, and 22B show a relationship between a native Si〇2/Si calibration sample (sample 1, corresponding to R!) and a nominal 1000 A SiOVSi calibration sample (sample 2' corresponds to R2). A comparison of simulated reflectance ratios. Figures 21a and 21B show the effect of increasing the native Si〇2 thickness contrast ratio Ri/Ri. As shown in Fig. 21A, the reflectance ratio Rz/Ri is provided for wavelengths up to 1 〇〇〇 nm, and Fig. 21B is a developed view for the same ratio of wavelengths between 1 〇〇 nm and 400 nm. In Figs. 21A and 21B, Si〇2 for 10, 20 and 30 A in curves 21〇6, 21 04 and 2102 respectively shows a curve of the influence of the change of the native oxide on the sample 1 (R〇). The main effect of the thickness of the native Si〇2 is to increase the ratio in VUV because the reflectance is reduced. 120526.doc -37- 200809180 Compared with this, the effect of increasing the thickness of si〇2 of l〇〇〇A is to change The maximum and minimum interference of the long wavelength. More specifically, FIG. 22A and FIG. 22B illustrate the sample 2 (the SiO 2 /Si, loio A of 1〇〇〇a) for the sample 1 (the native oxide of 2〇a). The effect of the change of si〇2/Si&amp;1〇2〇a si〇2/Si). More specifically, curves 22〇2, 22〇4, and 22〇6 show sample 2 (1000 A Si, respectively) The effect of the change of 〇2/Si, Si〇2/Si of 1〇1〇A and SiO2/Si of 1020 A (Fig. 22A shows the unfolded view from the wavelength of 100-400 nm). Therefore, two samples can be considered The thickness (the same thickness and the same thickness) has been de-faced and the thickness of each can be extracted from the standard analysis of the contrast ratio measurement. In addition, the absolute reflectance standard can be used without In this case, the specific thickness is extracted from the ratio data. Because this ratio is the same regardless of the system or lamp offset (assuming a fairly fast, continuous measurement of intensity or sample 丨 and sample 2), it is observed in the ratio over time. The difference will correspond to the change of the actual sample. Figure 21 and Figure 22 illustrate that if the sample characteristic is si〇2 thickness, the thickness variation on each sample can be determined. Then, the sample 2 is detected in this way. The thickness of the native oxide layer can be used to improve the quality of the absolute calibration using the sample. Note that if one of the calibration samples does remain constant, the reflectance change of the other samples can be inferred directly from the ratio change. However, in practice, The mechanism used to calibrate the sample offset is usually the accumulation of the contaminant layer on the two samples, so this will usually not be the case.

之污染物),仍可使用此技術。 例如’有機污染物或基於矽 。對於以上所述之Si校準樣 120526.doc -38- 200809180 本,可足以說明生長污染物會減 J、6對反射率的事實,因 此對污染物之精密描述並非確實 進禮荆要。然而,最精確的校 丰杈孓了^括兩個樣本上之不同的污染物層。 相對反射率量測可用於確定對校準樣本上之污染物層累 積的更好光學描述,且將資訊併入校準程序中。在以上實 例中的膜結構可為樣w之污染物層/原生sicvsi及樣本2 之污染物層/1000 A的Si02/Si,在相斟g u t曰This technology can still be used. For example 'organic contaminants or based on 矽. For the above-mentioned Si calibration sample 120526.doc -38- 200809180, it is sufficient to explain the fact that the growth of pollutants will reduce the J and 6 pairs of reflectivity, so the precise description of the pollutants is not a real gift. However, the most accurate calibrations included the different contaminant layers on the two samples. Relative reflectance measurements can be used to determine a better optical description of the accumulation of contaminant layers on a calibration sample and incorporate information into the calibration procedure. The film structure in the above examples may be the contaminant layer of the sample w/the original sicvsi and the contaminant layer of the sample 2/1000 A of SiO 2 /Si, in the phase 斟 g u t曰

長相對反射率量測期間確 定污染物層厚度。此將不僅產生更穩定的絕對反射率校 準,而且首先產生更精確的絕對反射率。 在圖23A及圖23B中提供對污染物層累積對於不同的污 染物量可能如何影響反射率比率的說明。膜結構為樣^ A^Si02/SiA#^2^^t4^/10〇〇The thickness of the contaminant layer is determined during long relative reflectance measurements. This will not only produce a more stable absolute reflectance calibration, but will first produce a more accurate absolute reflectivity. An illustration of how the accumulation of contaminant layers may affect the reflectance ratio for different amounts of contaminants is provided in Figures 23A and 23B. The film structure is sample ^ A^Si02/SiA#^2^^t4^/10〇〇

SiOW。圖23Α分別在曲線23〇2、23()4及23()6中展示對於 口 2〇 Α及30人之二個不同污染物層厚度的比較。 可注Μ因為,亏染物層光學特性實際上不同於Si〇2之光學 特性,所以性質自圖21及圖22所示之性質去耦合。換言 之可同時自單一比率量測確定所有三個參數:原生氧化 物厚度#氧化物厚度及污染物層厚度。如前所述,所確 定之厚度可反饋至方程式2之校準程序中。明顯地,在此 ft况下,若預期會變化的僅是污染物層,則任一或兩個氧 化物厚度可固定至某先前確定值。另夕卜,藉由假設相同量 的污木物層累積在兩個樣本上來約束分析可能是合理的。 通㊉’只要樣本的反射特性充分不同(因此,對於所有 ' 比率不疋正好為1)’此類型量測可用於分析樣本而 120526.doc -39- 200809180 不會影響不確定之校準標準。舉例而t,相對反射率量測 可用於在與所觀察比率更—致之vuv區巾獲得對si〇2之經 修改光學描述。SiOW. Figure 23 shows a comparison of the thicknesses of two different contaminant layers for the mouth 2〇 and 30 people in curves 23〇2, 23() 4 and 23()6, respectively. Note that since the optical properties of the depleted layer are actually different from the optical properties of Si〇2, the properties are decoupled from the properties shown in Figs. 21 and 22. In other words, all three parameters can be determined simultaneously from a single ratio measurement: native oxide thickness #oxide thickness and contaminant layer thickness. As previously stated, the determined thickness can be fed back into the calibration procedure of Equation 2. Obviously, in this case, if only the contaminant layer is expected to change, either or both of the oxide thicknesses may be fixed to a previously determined value. In addition, it may be reasonable to assume that the same amount of soil layer is accumulated on two samples to constrain the analysis. As long as the reflection characteristics of the sample are sufficiently different (hence, for all ' ratios are not exactly 1)' this type of measurement can be used to analyze the sample and 120526.doc -39- 200809180 will not affect the uncertainty of the calibration standard. For example, t, the relative reflectance measurement can be used to obtain a modified optical description of si〇2 at the vuv zone towel as compared to the observed ratio.

在以上所述之實例中,兩個樣本由同-材料形成(石夕上 之原生skd2及石夕上之厚Si〇2)e對於兩個樣本利用同一材料 之優點可為:同-污染物可產生於兩個樣本之表面上。利 用具有不同表面之樣本可引起產生之污染物膜的差異,使 污染物層更難以特徵化。然』,將認識到,可在樣本具有 不同材料的情況下使用本文所描述之技術。 另外’注意’以上所述之實例提供一種技術,其中確定 樣本1(原生氧化物樣本)之特徵且接著利用彼資料作為校準 標準。然而,或者可確定樣本2之特徵且利用彼資料作為 校準標準。在—實施財,對於校準樣本制較厚的Si〇2 樣本可為更有利的,因為任何剩餘誤差更可能在仙2干涉 極值附近以假影形式顯示出來。通常,膜結構可為任何結 構’對於此等結構,已知足夠資訊而能夠建構模型比率, 且樣本之任一者可用於進一步校準。 如此項技術中已知,可以任何數目之多種方式建構校準 樣本:樣本1及樣本2。在一實施例中,兩個樣本各自可形 成於同-基板上。舉例而言,圖24說明反射計系統中校準 程序之可能的機械實施例’纟中不同厚度之兩個氧化物襯 墊(諸如,以上實例中之樣本!及樣本2)作為概塾】及概塾2 形成於半導體晶圓上或安裝於半導體晶圓夾盤上。然而, 本文所描述之技術不限於所提供之概念之任何特定機械實 120526.doc -40· 200809180 施例。 如上所述之技術因此提供兩個 樣本,該等校準樣本 ;自/、有相對不同的反射特性之 φ L 町行性之兩個樣本提供相對反射 率比率R^/R〗。使用此技術,隨本 文仰丨現時間流逝可發生校準標準 的變化,同時仍提供精確校準。 〜 j以夕種方式實施此等技 術。參考圖25及圖26描述例示性校準流程,然而,將認識 到’可使用其他步驟及流程’同時仍利用本文所描述之技 術。 如圖25所示,提供一種例示性技術,其中假設第一校準 樣,之原㉟反射率正似接著形成第—校準樣本之反射率 與第二校準樣本之反射率之間的比率,從而校準反射計。 更明確地說,在步驟2502中,利用對校準樣本丨之假設認 識(預期校準樣本1在給定光譜區中會展示出實質的校準誤 差特點)來計算樣本丨之假設反射率。接著,在步驟乃㈣ 中,記錄標準樣本1之強度。接著,在步驟25〇6中,利用 校準樣本1之假設反射率計算源強度輪廓。在步驟25〇8 中,記錄校準樣本2(預期在同一光譜區内會展示出實質上 不同於校準樣本1之反射特性的樣本)之強度。接著,在步 驟2510處計异校準樣本2之反射率。接著,在步驟2512中 將校準樣本1之反射率與校準樣本2之反射率的比率表示為 一比率。接著,如步驟25 14所示,將用於校準樣本i及校 準樣本2之假没模型建構成、表示成一反射率比率。在步 驟25 16中,可利用回歸演算法及優點函數來迭代地調整關 於校準樣本1及校準樣本2之特性的假設且重新計算假設模 120526.doc •41- 200809180 型反射率’直至計算出的反射率比率與模型比率之反射率 之間的差異最小化且因此獲得樣本i及樣本2之”實際,,特 1*生。接著,在步驟25丨8中,利用校準樣本i之,,實際,,反射 率重新计异源強度輪廓。在步驟252〇中,接著可記錄未知 樣本之強度,且在步驟2522中,如所示地表示未知樣本之 计鼻出的反射率。 圖26中展示另一例示性校準流程圖。如圖%所示,可使 用簡化的過程,其中可利用來自兩個樣本之強度直接形成 反射率比率(與圖25之技術相比,在圖25之技術中,自對 該等樣本之一者的假設認識計算同一樣本的假設反射 率)如圖26中所不,在步驟26〇1中,記錄校準樣本〗之強 度。在步驟2603中,記錄校準樣本2(預期在同一光譜區内 έ展T出實|上不同於校準樣本i之反射特性的樣本)之強 度接著,如步驟2605所示,基於自樣本丨及樣本2記錄之 強度表示校準樣本i及校準樣本2之反射率的比率。接著, ./ 如㈣201钟所示,可將用於校準樣本1及校準樣本2之假 °又拉型建構成、表示成—反射率比率。在步驟2616中,可 利用回歸演异法及優點函數來迭代地調整關於校準樣本^ 及校準樣本2之特性的假設且重新計算假設模型反射率, ^至計算出的反射率比率與模型比率之反射率之間的差異 取小化且因此獲得樣本1及樣本2之”實際&quot;特性。接著,在 【=8中’利用校準樣本1之&quot;實際&quot;反射率重新計算源 廓。在步驟2,,接著可記錄未知樣本之強度, 乂驟2622中’如所示地表示未知樣本計算出的反射 120526.doc -42· 200809180 率。 應指出’在分析或以其他方式論述方程式3中的比率 時,藉由首先計算來自標準薄膜模型(參看,例如H· G Tompkins and W. A. McGahan, Spectroscopic Ellips〇metry and Reflectometry: a Userfs Guide, John Wiley and Sons new York,(1999),用於計算個別反射率之方法)之個別樣 本之心及化來計算比率係便利的。然而,應顯而易見,可 易於重新表述薄膜模型以將其直接應用於為在數學上及概 念上等效的比率1&quot;12。 圖27提供對圖23及圖26中所描述之概念之進一步說明。 圖27展示用於自兩個校準樣本提取氧化物及污染物層厚度 的反射率比率擬纟,一校準樣本具有薄氧化物(樣本1}且一 校準樣本具有較厚〜1〇〇〇 A的氧化物(樣本2)。每一樣本之 表面亦具有在VUV反射計中利用期間累積起來的少量污染 物層。自兩個校準樣本收集經反射強度且經反射強度用於 形成經量測反射率比率。建構模型比率,且允許氧化物及 污^物層厚度在回歸分㈣間變化,_歸分析最小化經 計算比率與經量測比率之間的誤差。對於此分析,認為 Si Si02及污木物層之光學特性是已知且固定的(自對反射 率比率之先前分析確定Si〇2及污染物光學特性,且圖23八 及圖23B中所利用之光學特性稍微不同)。在經計算比率與 經量測比率之間提供最佳擬合之最佳化厚度對於厚氧化物 樣本為6.06 A的污染物及_·〇 A的Si〇2且對於薄氧化物 樣本為9·49 A的污染物及18·62入的⑽。此時,認為兩個 120526.doc -43. 200809180 樣本之絕對反射率已知,且最佳化參數可與每一層之光學 特性及標準薄膜模型一起用來計算任一樣本之反射率。若 藉由計算心及1在最佳化期間計算模型比率,則在擬合過 程結束時可獲得最佳化樣本丨及2之反射率而無需進一步計 算。與具有相同Si〇2厚度但不具有污染物之膜的反射率相 比,在圖28A及圖28B中對於樣本丨展示且在圖28C及圖28〇 中對於樣本2展示由圖27的分析引起之薄Si〇2樣本及厚 si〇2樣本之反射率(曲線2802及28〇6具有污染物,且曲線 2804及2808不具有污染物)。如所示,圖2犯為圖28a之曲 線之一部分的展開版本。類似地,圖28〇為圖之曲線 之-部分的展開版本。自該等圖顯而易見,隨著即使少量 污染物累積,反射率可顯著變化,尤其在Duv波長以下之 區中右氧化物樣本之_者被用於在假設恆定反射率的情 ,下校料,則在DUV以下的區中之誤差將為顯著的。隨 著更夕/可木物產生於樣本上,此效應甚至更大。在圖”所 說明分析結束時’樣本之經量測強度的任一者可與來自圖 28之適备(具有污染物)反射率一起用來確定源強度輪廓。In the example described above, the two samples are formed from the same material (the native skd2 on Shi Xi and the thick Si〇2 on Shi Xi). The advantage of using the same material for two samples can be: same-contaminant Can be produced on the surface of two samples. The use of samples with different surfaces can cause differences in the film of contaminants produced, making the contaminant layer more difficult to characterize. However, it will be appreciated that the techniques described herein can be used where the samples have different materials. Further 'attention' the above examples provide a technique in which the characteristics of Sample 1 (native oxide sample) are determined and then the data is used as a calibration standard. Alternatively, however, the characteristics of sample 2 can be determined and the data used can be used as a calibration standard. In the implementation of the fiscal, it is more advantageous to calibrate the sample to make a thicker Si〇2 sample, because any residual error is more likely to be displayed in the form of an artifact in the vicinity of the interference value of the Xian 2 interference. Generally, the film structure can be any structure. For such structures, sufficient information is known to be able to construct the model ratio, and any of the samples can be used for further calibration. As is known in the art, calibration samples can be constructed in any number of ways: Sample 1 and Sample 2. In one embodiment, each of the two samples can be formed on the same substrate. For example, Figure 24 illustrates a possible mechanical embodiment of a calibration procedure in a reflectometer system, two oxide liners of different thicknesses (such as the sample in the above example! and sample 2) as an overview.塾2 is formed on a semiconductor wafer or mounted on a semiconductor wafer chuck. However, the techniques described herein are not limited to any particular mechanical embodiment of the concepts provided. 120526.doc -40.200809180. The technique described above thus provides two samples, which have a relative reflectance ratio R^/R from two samples of / φ L with relatively different reflection characteristics. Using this technique, changes in calibration standards can occur as the time passes, while still providing accurate calibration. ~ j implements these technologies in the form of evenings. An exemplary calibration procedure is described with reference to Figures 25 and 26, however, it will be appreciated that other steps and procedures may be used while still utilizing the techniques described herein. As shown in FIG. 25, an exemplary technique is provided in which, assuming a first calibration sample, the original 35 reflectance is similar to the ratio between the reflectance of the first calibration sample and the reflectance of the second calibration sample, thereby calibrating Reflectometer. More specifically, in step 2502, the hypothetical reflectance of the sample 丨 is calculated using the hypothetical recognition of the calibration sample 预期 (expected calibration sample 1 will exhibit substantial calibration error characteristics in a given spectral region). Next, in step (4), the intensity of the standard sample 1 is recorded. Next, in step 25〇6, the source intensity profile is calculated using the assumed reflectance of the calibration sample 1. In step 25〇8, the intensity of calibration sample 2 (expected to exhibit a sample substantially different from the reflection characteristics of calibration sample 1 in the same spectral region) is recorded. Next, the reflectance of the calibration sample 2 is counted at step 2510. Next, the ratio of the reflectance of the calibration sample 1 to the reflectance of the calibration sample 2 is expressed as a ratio in step 2512. Next, as shown in step 25 14 , the dummy model for calibrating the sample i and the calibration sample 2 is constructed and expressed as a reflectance ratio. In step 25 16 , the regression algorithm and the merit function can be used to iteratively adjust the assumptions about the characteristics of the calibration sample 1 and the calibration sample 2 and recalculate the hypothesis mode 120526.doc •41-200809180 type reflectance' until the calculated The difference between the reflectance ratio and the reflectance of the model ratio is minimized and thus the "real", sample 1 and sample 2 are obtained. Next, in step 25丨8, using the calibration sample i, the actual , the reflectance recalculates the heterogeneous intensity profile. In step 252, the intensity of the unknown sample can then be recorded, and in step 2522, the reflectance of the unknown sample is shown as shown. Another exemplary calibration flow chart. As shown in Figure %, a simplified process can be used in which the reflectance ratio can be directly formed using the intensities from the two samples (compared to the technique of Figure 25, in the technique of Figure 25, Calculating the assumed reflectance of the same sample from the hypothetical recognition of one of the samples) As shown in Fig. 26, in step 26〇1, the intensity of the calibration sample is recorded. In step 2603, the recording is recorded. The intensity of quasi-sample 2 (expected to be in the same spectral region | a sample different from the reflectance characteristic of calibration sample i), then, as shown in step 2605, the calibration is based on the intensity recorded from sample 样本 and sample 2 The ratio of the reflectance of sample i and calibration sample 2. Next, ./ as shown in (d) 201, the pseudo- and pull-up type used to calibrate sample 1 and calibration sample 2 can be constructed and expressed as a reflectance ratio. In step 2616, the regression and the merit function can be used to iteratively adjust the assumptions about the characteristics of the calibration sample and the calibration sample 2 and recalculate the hypothetical model reflectance, ^ to the calculated reflectance ratio and the ratio of the model. The difference between the rates is minimized and thus the "actual" characteristics of samples 1 and 2 are obtained. Next, the source of the &quot;actual&quot; reflectance of the calibration sample 1 is recalculated in [=8]. In step 2, the intensity of the unknown sample can then be recorded, and in step 2622, the reflectance calculated by the unknown sample is indicated as 120526.doc -42.200809180. It should be noted that 'from analyzing or otherwise discussing the ratio in Equation 3, by first calculating from a standard thin film model (see, for example, H. G Tompkins and WA McGahan, Spectroscopic Ellips〇metry and Reflectometry: a Userfs Guide, John Wiley) And Sons new York, (1999), the method of calculating the individual reflectivity, and the calculation of the ratio is convenient. However, it should be apparent that the thin film model can be easily re-presented to apply directly to the ratio 1 &quot;12 which is mathematically and conceptually equivalent. Figure 27 provides a further illustration of the concepts described in Figures 23 and 26. Figure 27 shows reflectance ratios for extracting oxide and contaminant layer thicknesses from two calibration samples, one calibration sample with thin oxide (sample 1} and one calibration sample with thicker ~1 〇〇〇A Oxide (Sample 2). The surface of each sample also has a small amount of contaminant layer accumulated during use in the VUV reflectometer. The reflected intensity is collected from the two calibration samples and the reflected intensity is used to form the measured reflectance. Ratio. Construct model ratios and allow oxide and stain layer thickness to vary between regression points (4). _ return analysis minimizes the error between the calculated ratio and the measured ratio. For this analysis, Si Si02 and contamination are considered. The optical properties of the wood layer are known and fixed (the optical properties of Si〇2 and contaminants are determined from previous analyses of the reflectance ratio, and the optical properties utilized in Figures 23 and 23B are slightly different). The optimum thickness for the best fit between the calculated ratio and the measured ratio is 6.06 A for thick oxide samples and Si〇2 for _·〇A and 9·49 A for thin oxide samples. Contaminants and 1 8·62 entered (10). At this time, the absolute reflectance of the two 120526.doc -43. 200809180 samples is known, and the optimization parameters can be used together with the optical properties of each layer and the standard film model. The reflectivity of the present. If the model ratio is calculated during the optimization by calculating the heart and 1 , the reflectivity of the optimized sample 丨 and 2 can be obtained at the end of the fitting process without further calculation. The reflectance of the film of 2 thickness but no contaminant is shown for the sample 图 in FIGS. 28A and 28B and the thin 〇 2 caused by the analysis of FIG. 27 is shown for the sample 2 in FIGS. 28C and 28B. The reflectance of the sample and the thick si 〇 2 sample (curves 2802 and 28 〇 6 have contaminants, and curves 2804 and 2808 have no contaminants). As shown, Figure 2 is an expanded version of one of the curves of Figure 28a. Similarly, Figure 28 is an expanded version of the portion of the curve of the graph. It is apparent from these figures that as even a small amount of contaminant builds up, the reflectance can vary significantly, especially in the area of the right oxide sample in the region below the Duv wavelength. _ is used to assume constant The reflectivity, the lower material, the error in the area below the DUV will be significant. This effect is even greater as the Essence/Wood is produced on the sample. At the end of the analysis illustrated in the figure Any of the measured intensities of the samples can be used with the appropriate (with contaminant) reflectance from Figure 28 to determine the source intensity profile.

一小^〜个丹有界面 藉由分析未污染的校準樣本之比 性之有效介質模型組合的中間 界面之Si〇2/Si系統更複雜,且 之比率來預特徵化Si〇2及中間 120526.doc -44- 200809180 層厚度將為可行的。接 α左# * 者权準程序將用於確定污举舲思 (隨著其累積)之特性,Α 疋木物層A small ^~dan interface has a more complex Si,2/Si system by analyzing the intermediate interface of the effective media model combination of uncontaminated calibration samples, and the ratio is pre-characterized Si〇2 and intermediate 120526 .doc -44- 200809180 Layer thickness will be feasible. The α-left #* ruler procedure will be used to determine the characteristics of the stain (as it accumulates), 疋 疋 物 层

〇 ^ T 5心為Sl〇2及界面特性全邱p A 且其厚度及光學特性在比 王4已知 H丄 羊分析期間是固定的。藉由白鉍 樣本烘培掉或清洗掉空八一 ’ 、W 丁士朴 刀子巧染物(AMC),或在極端愔 况下中猎由化學餘刻(i亦 一 匕、亦將移除一些3丨02材料),可庐得 未叉污染的樣本。除了中間 又 / ^ T间層之外,超薄氧化物(其包括 幵》成於石夕上之原生氧化物、古 虱化物)有可能具有不同於較厚埶 氧化物之光學特性。及鼾皇伊 ^〇 ^ T 5 is S1〇2 and the interface characteristic is 邱p A and its thickness and optical properties are fixed during the analysis of Wang 4 known as H丄 sheep. Bake or wash away the empty Bayi's, W Dingshipu knife dyes (AMC) by white peony samples, or chemistry in the extreme conditions (i is also a 匕, will also remove some 3 丨02 material), can get uncontaminated samples. In addition to the intermediate / ^ T interlayer, ultra-thin oxides (which include bismuth) are native oxides and antimony compounds on the stone stalks, which may have optical properties different from those of thicker cerium oxides. And Huang Yiyi ^

反射率拉型中亦可考慮此以在利用This can also be considered in the reflectance pull type.

Sl〇2/Si校準樣本時進-步改Μ交準精確性。 用於分析反射率比率之便利的回歸程序為W. H. Press、 s· A. Teukolsky、W. T. VetterlingAB p F1繼巧所著的 Numerical Recipes in C: The Art of Scientific CompuUn,, 寒二焱(Cambridge University 出版社(CambHdge,ma: 1992))中所描述之熟知演算法,然 而’將認識到此項技術中已知之任何數目種方法可用於最 佳化或以其他方式提取膜參數。在一些情況下,回歸演算 法及膜模型甚至可能為不必要的,因為有時有可能自反射 率比率的變化更直接地推斷校準樣本中之一或多者的反射 率變化。 所描述方法無需限於兩個校準樣本,且可推廣為包括多 個权準樣本。舉例而言’第三樣本(樣本3 )可為厚(例如, 3000A)的氟化鎮MgFVSi樣本’且同時分析比率R2 /r 1及 R3/R1以對樣本1 (樣本1及樣本2可具有與圖27中實例類似 的膜結構)之各種層提供進一步約束。在進行校準以確定1〇 120526.doc -45- 200809180The Sl〇2/Si calibration sample is step-by-step to improve the alignment accuracy. A convenient regression procedure for analyzing the reflectance ratio is WH Press, s. A. Teukolsky, WT Vetterling AB p F1, followed by Numerical Recipes in C: The Art of Scientific CompuUn,, Han Erqi (Cambridge University Press) The well-known algorithms described in (CambHdge, ma: 1992)), however, will recognize that any number of methods known in the art can be used to optimize or otherwise extract membrane parameters. In some cases, regression algorithms and membrane models may even be unnecessary, as it is sometimes possible to more directly infer the change in reflectance of one or more of the calibration samples from changes in the reflectance ratio. The described method need not be limited to two calibration samples and can be generalized to include multiple weight samples. For example, 'the third sample (sample 3) may be a thick (eg, 3000A) fluorinated town MgFVSi sample' and simultaneously analyze the ratios R2 /r 1 and R3/R1 to sample 1 (sample 1 and sample 2 may have The various layers of the film structure similar to the example of Figure 27 provide further constraints. Perform calibration to determine 1〇 120526.doc -45- 200809180

期間’將在時間標度内量測樣本1、2及3之強度,其中1〇大 致恆定’對於經量測資料形成比率R2/r1&amp;r3/r1,且回歸 分析用於同時提取所有三個樣本之膜及污染物層的厚度。 換言之’該回歸藉由最佳化經計算比率中所利用的參數來 同時最小化經量測的R2/R1及R3/R1與經計算的R2/Ri及 R3/R1之間的誤差。在實現此概念之一過程中,分析可對 多個樣本分析使用Levenberg-Marquardt程序之常見推廣, 在該情況下’非線性卡方優點函數可被寫成: N2\Σ /=1 R2 measuredDuring the period 'the intensity of samples 1, 2 and 3 will be measured within the time scale, where 1 〇 is approximately constant' for the measured data to form the ratio R2/r1&amp;r3/r1, and the regression analysis is used to extract all three simultaneously The thickness of the film and contaminant layer of the sample. In other words, the regression minimizes the error between the measured R2/R1 and R3/R1 and the calculated R2/Ri and R3/R1 by optimizing the parameters utilized in the calculated ratio. In implementing one of these concepts, the analysis can use a common generalization of the Levenberg-Marquardt program for multiple sample analyses, in which case the 'non-linear chi-square merit function can be written as: N2\Σ /=1 R2 measured

^ i,calculated J N3iΣ R3Έ J j,measured R3Έ ^ j,calculated 方程式4^ i,calculated J N3iΣ R3Έ J j,measured R3Έ ^ j,calculated Equation 4

其中下私i及j係指入射條件(通常為波長),且N21及為 對於每一比率所包括之資料點的總數目。多個比率通常將 /函I相同的光瑨範圍且由相同數目個經量測資料點組成, 但是不嚴格要求此。通常,每一比率可涵蓋不同的光譜範 圍且比率不必凡全由相同數目個經量測資料點組成。在方 程式4中,〜及①為對經量測反射率比率之經估計的不確定 可取决於人射條件。因為樣本i之特性為兩個比率 所共有,所開時分析通f基本上藉由減小可導致經量測 比率之可此的參數組的數目而在用於確定樣本工特性之擬 合程序中提供額外約束。接著,利 丧考和用樣本1之經最佳化參 數來計算實際絕對反射率Rcal=Ri,接荽g γ + 筏者利用該反射率來 計异.n/IUai。對樣本丨之額外約束可辅助確定可同時存 在於樣本【上之多種類型污染物的厚度,或輔助解決不均 120526.doc -46- 200809180 勾的污染物層。比率R3/R2亦可添加至分析。此概念可延 伸至由標稱材料之任何組合組成的多個樣本。 圖29A至圖29L說明先前實例之樣本1、2及3上之污染物 層累積的效應。圖29A至圖29L中之模擬對於Si02、Si及污 染物層利用與圖27、圖28A及圖28B中相同的光學特性, 4 且自可用文獻獲得MgF2*學特性。圖29A及圖29B分別將 樣本3與樣本1之比率(每一樣本上具有1〇、2〇及3〇 A的污 染物)說明為曲線2902、2904及2906(圖29B為圖29A之一部 f % 分的展開版本)。圖29C及圖29D分別將樣本2與樣本1之比 率(每一樣本上具有10、20及30 A的污染物)說明為曲線 2908、2910及2912(圖29〇為圖29(:之一部分的展開版本)。 圖29E及圖29F分別將樣本2與樣本1之比率(該等樣本僅展 示樣本1上10、20及30 A的污染物累積之效應)說明為曲線 2914、2916及2918(圖29F為圖29E之一部分的展開版本)。 圖29G及圖29H分別將樣本2與樣本1之比率(該等樣本僅展 ^ 示樣本2上10、20及30 A的污染物累積之效應)說明為曲線 2920、2922及2924(圖29H為圖29G之一部分的展開版本)。 圖291及圖29J分別將樣本3與樣本1之比率(該等樣本僅展示 • 樣本1上1〇、20及30 A的污染物累積之效應)說明為曲線 2926、2928及2930(圖29J為圖291之一部分的展開版本)。 圖29K及圖29L分別將樣本3與樣本1之比率(該等樣本僅展 示樣本3上10、20及30 A的污染物累積之效應)說明為曲線 2932、2934及293 6(圖29L為圖29K之一部分的展開版本)。 圖2 9 A至圖2 9 L中之模擬展示’污染物累積影響不同比率 120526.doc -47- 200809180 之不同光譜區。樣本1上之污染物累積之效應傾向於在 DUV以下的區中及DUV區中增加比率,而較厚膜上之累積 的效應傾向於增加干涉振幅。具有不同的較厚膜(8丨〇2及 MgFO有助於進一步約束可導致類似比率之可能的膜結 構。來自對此等比率之分析的組合效應同時是對被確定的 各種參數之去耦合。圖29A至圖29L說明一實例,但是如上 所述,在多個樣本的情況下甚至更微小的去耦合是可能的, 其(例如)允許對多種類型污染物膜的更精確之同時確定。 論述一種方法,藉由該方法導出對於污染物層(諸如, 圖23 A及圖23B中所利用之污染物層)假設之光學特性。可 執行此等步驟以獲得Si〇2及中間層之開始厚度以及污染物 層之光學特性。經確定之光學特性可用於改良校準程序之 品質(實際上藉由利用類似程序來確定對於圖23A及圖23B 以及圖27中之模擬假設之污染物光學特性)。另外,一旦 確定此等特性,校準樣本之比率便可用於在校準期間確定 污染物層之厚度中認為所有其他預定特性(諸如肌 及界面厚度及光學特性以及污染物光學特性)是已知且固 定的。 利用反射率比率來預特徵化污染物光學特性,例示性分 析可為: 1自薄Sl〇2及1k Si〇2樣本移除空浮分子污染物 (AMC)。舉例而| ’利用熱板、vuv預曝光、化學預 清洗、敍刻移除及預生長原生si〇2層或此等技術之某 組合。 120526.doc •48- 200809180 2記錄樣本之強度比率h/h(且因此記錄反射率比率 R2/Ri)。分析反射率比率以預定厚氧化物層及原生氧 化物層之厚度。在對兩個樣本 、 +乏刀析中可包括 吨/Si中間層。在分析期間’任何被視為已知的特 性(諸如,Si及Si〇2光學特性)將是固定的。 3允許AMC或VUV誘發的污染物在樣本上 a /、積。當樣 本儲存於環境中時,AMC將自然產生。當在vuv光Where private i and j are incident conditions (usually wavelengths), and N21 is the total number of data points included for each ratio. Multiple ratios typically consist of the same pupil range of /I and consist of the same number of measured data points, but this is not strictly required. Typically, each ratio can cover a different spectral range and the ratio does not have to consist entirely of the same number of measured data points. In Equation 4, ~ and 1 are estimated uncertainties for the measured reflectance ratio, which may depend on the human incidence condition. Since the characteristics of the sample i are common to the two ratios, the analysis pass f is basically used to determine the fit of the sampler characteristic by reducing the number of parameter sets that can result in the measured ratio. Additional constraints are provided. Next, the actual absolute reflectance Rcal=Ri is calculated using the optimized parameters of Sample 1, and the 反射g γ + 利用 is used to calculate the different .n/IUai. Additional constraints on the sample can assist in determining the thickness of multiple types of contaminants that can be present at the same time, or assist in addressing the contaminant layer of the uneven 120526.doc -46- 200809180. The ratio R3/R2 can also be added to the analysis. This concept can be extended to multiple samples consisting of any combination of nominal materials. 29A to 29L illustrate the effects of accumulation of contaminant layers on samples 1, 2 and 3 of the previous examples. The simulations in Figures 29A through 29L utilize the same optical characteristics as in Figures 27, 28A, and 28B for SiO 2 , Si, and contaminant layers, 4 and obtain MgF 2 * learning characteristics from available literature. 29A and 29B illustrate the ratio of sample 3 to sample 1 (contaminants having 1〇, 2〇, and 3〇A on each sample) as curves 2902, 2904, and 2906, respectively (Fig. 29B is a portion of Fig. 29A). The expanded version of f % points). 29C and 29D illustrate the ratio of sample 2 to sample 1 (contaminants with 10, 20, and 30 A on each sample) as curves 2908, 2910, and 2912, respectively (Fig. 29, Fig. 29 (: part of Expanded version) Figure 29E and Figure 29F illustrate the ratio of Sample 2 to Sample 1 (these samples only show the effect of the accumulation of pollutants at 10, 20 and 30 A on Sample 1) as curves 2914, 2916 and 2918 (Figure 29F is an expanded version of a portion of Figure 29E. Figure 29G and Figure 29H illustrate the ratio of sample 2 to sample 1 respectively (these samples only show the effect of pollutant accumulation on 10, 20, and 30 A on sample 2) Curves 2920, 2922, and 2924 (Fig. 29H is an expanded version of a portion of Fig. 29G). Figures 291 and 29J show the ratio of sample 3 to sample 1 respectively (the samples are only shown • 1 , 20, and 30 on sample 1) The effect of the accumulation of contaminants in A is illustrated as curves 2926, 2928, and 2930 (Fig. 29J is an expanded version of a portion of Fig. 291). Figures 29K and 29L show the ratio of sample 3 to sample 1 respectively (the samples only show samples) 3 The effects of pollutant accumulation on 10, 20 and 30 A are illustrated as curves 2932, 2934 and 2 93 6 (Fig. 29L is an expanded version of a portion of Fig. 29K). Figure 2 9 A to Fig. 2 9 The simulation in L shows 'different pollutants affecting different spectral regions of different ratios 120526.doc -47- 200809180. On sample 1 The effect of the accumulation of contaminants tends to increase the ratio in the region below the DUV and in the DUV region, while the cumulative effect on the thicker film tends to increase the interference amplitude. There are different thicker films (8丨〇2 and MgFO have Helping to further constrain the possible membrane structure that can lead to similar ratios. The combined effect from the analysis of these ratios is at the same time the decoupling of the various parameters that are determined. Figures 29A-29L illustrate an example, but as described above, Even smaller decoupling is possible in the case of multiple samples, which, for example, allows for more precise simultaneous determination of multiple types of contaminant membranes. A method is discussed by which to derive for contaminant layers (such as The optical properties of the contaminant layer utilized in Figures 23A and 23B. These steps can be performed to obtain the initial thickness of Si〇2 and the intermediate layer and the optical properties of the contaminant layer. The optical characteristics can be used to improve the quality of the calibration procedure (actually by using a similar procedure to determine the contaminant optical properties for the simulation hypotheses in Figures 23A and 23B and Figure 27.) Additionally, once these characteristics are determined, the calibration samples are The ratio can be used to determine that all other predetermined characteristics (such as muscle and interface thickness and optical properties and contaminant optical properties) are known and fixed in determining the thickness of the contaminant layer during calibration. Pre-characterized with reflectance ratio The optical properties of the contaminants can be exemplified by: 1 Removal of airborne molecular contaminants (AMC) from thin Sl2 and 1k Si〇2 samples. For example | ‘Using hot plates, vuv pre-exposure, chemical pre-cleaning, sifting removal and pre-growth of native si〇2 layers or some combination of these technologies. 120526.doc •48- 200809180 2 Record the intensity ratio h/h of the sample (and therefore record the reflectance ratio R2/Ri). The reflectance ratio is analyzed to predetermine the thickness of the thick oxide layer and the native oxide layer. The t/Si intermediate layer may be included in the analysis of two samples, +. Any features considered to be known during the analysis (such as Si and Si〇2 optical properties) will be fixed. 3 Allow AMC or VUV-induced contaminants to accumulate on the sample. AMC will naturally occur when the sample is stored in the environment. When in vuv light

學叶量工具中重複量測樣本時,vuv污染物可隨時 間流逝累積。 、 4 在污染物累積之後量測樣本。利用具有可調整光學 特性之分散模型來分析新的反射率比率以確定污I 物層之厚度及光學特性。利用先前確定(且現在固定木) 之厚及薄Si〇2以及中間層特性,可約束分析。另外, 可在污染物生長的各階段收集比率資料以提供多個 比率,每一比率具有不同的污染物厚度(多樣本分 析),但是另外具有共同的污染物光學特性。或者, 若不能利用相同的污染物光學特性來擬合全部多個 樣々本,則可在假設不均勻肖染㈣、粗糖界面或表 面等的情況下模型化額外複雜性。 染物層之厚度及污染物層之光學特 6在Ik後杈準程序期間,分析反射率比率以確定樣本 上一(或多種)類型之污染物的厚度,接著可利用該等 厚度來導ϋ{該等樣本中之至少—者的反射率。在校 120526.doc -49- 200809180 二而Γ期間’通常將使污染物層之光學特性固定, &lt; 減少未知參數的數目。 =、:雖然此係一種在比率量測中用於預特徵化已知 但是其並非唯一的方式。詳言之,替代的計 定界面厚度或獲得對標稱膜之更好的光 :田 ,Sl〇2、MgF2、Si或甚至污染物光學特性)。 ,用時^可自文獻獲得光學參數。在預特徵化期間確定 乡 &amp;準€序期間通常將保持固定,其通常將僅 預期會變化的彼箄夫盔 4參冑。初始樣本之特定膜結構無需限於Vuv contaminants can accumulate over time as the sample is repeatedly measured in the leaf volume tool. , 4 Measure the sample after the accumulation of contaminants. A new dispersion ratio is analyzed using a dispersion model with adjustable optical properties to determine the thickness and optical properties of the soil layer. The analysis can be constrained by the thickness and thin Si〇2 and intermediate layer properties previously determined (and now fixed). In addition, ratio data can be collected at various stages of contaminant growth to provide multiple ratios, each having a different contaminant thickness (multi-sample analysis), but additionally having common contaminant optical properties. Alternatively, if the same contaminant optical properties cannot be used to fit all of the multiple transcripts, additional complexity can be modeled assuming non-uniform shading (d), coarse sugar interface or surface. The thickness of the dye layer and the optical characteristics of the contaminant layer are analyzed during the Ik post-alignment procedure to determine the reflectance ratio of the one (or more) types of contaminants on the sample, which can then be used to guide the { The reflectivity of at least one of the samples. At school 120526.doc -49- 200809180, the period of time will usually fix the optical properties of the contaminant layer, &lt; reduce the number of unknown parameters. =,: Although this is a known method for pre-characterization in ratio measurement, it is not the only way. In particular, alternatives measure the interface thickness or obtain better light for the nominal film: Field, Sl2, MgF2, Si or even contaminant optical properties). When used, the optical parameters can be obtained from the literature. During the pre-characterization period, it is determined that the township &amp; order period will generally remain fixed, and it will generally only be expected to change the Pilgrim helmet. The specific membrane structure of the initial sample need not be limited

Sl〇2/Sl結構。可推廣該程序且在眾多樣本而不是僅兩個樣 本上誘發污染物生長。 亦可指出’關於分析反射率比率,在-些情況下,當分 母反射率接近零時,比率可變得u。實務上,此條件將 為顯而易見的’因為比率將傾向於變得非常^在此等情 況下,發生此情況之光譜區可脫離該分析,収為在彼等 區中分析反比率。 因為通常自比率分析確定所有校準樣本之絕對反射率, 且對樣本之任一者的校準原則上將產生相同“,所以無需 利用僅有的一樣本對於整個量測波長範圍校準1〇。舉例而 言,樣本1可用於對於一光譜區確定1〇,而樣本2用於校準 第二光譜區。 鑒於此描述,熟習此項技術者將明白本發明之另外修改 及替代實施例。因此,此描述將僅被視作說明性的且係為 了教示熟習此項技術者執行本發明之方式。將瞭解,本文 120526.doc •50- 200809180 所展示且描述之本發明的形式將被視作目前較佳實施例。 在^:益於本發明之此描述之後,熟習此項技術者將明白, 等效元件可替換本文所說明並描述之元件且本發明之某些 特點可獨立於其他特點之使用予以使用。 【圖式簡單說明】 圖1說明用於反射計之先前技術校準及量測流程圖。 圖2說明用於反射計之先前技術詳細校準及量測流程 圖。 圖3說明來自超薄Si〇2/Si樣本之反射光譜。 圖4說明對於一系列假設厚度產生之2〇人的8丨〇2/8丨樣本 的校準誤差光譜。 圖5說明根據本發明之一實施例之例示性校準及量測流 程圖。 圖6說明對於一系列假設厚度產生之1〇〇〇〇入的8丨〇2/以樣 本的校準誤差光譜。 圖7說明由Acton Research公司製造之寬頻νυν面鏡 (# 1200)之反射光譜。 圖8說明參考樣本反射光譜與自任意參考樣本之量測獲 得之10000 A的SiOVSi樣本之校準誤差函數的乘積。 圖9說明對於looio A假設厚度產生之10000 A的Si02/Si 樣本的校準誤差函數之導數。 圖10說明利用10000 A的Si〇2/Si標準樣本之校準誤差函 數積分所計算的靈敏度曲線。 圖11說明校準程序中所利用之參考樣本的反射率。 120526.doc -51- 200809180 圖12說明根據本發明之一實施例之例示性詳細校準及量 測流程圖。 圖12A說明可使用本發明之校準概念的例示性反射計系 統。 ' 圖13說明利用10000入的Si〇2/Si樣本之標準先前技術優 點函數所計算的靈敏度曲線。 圖14說明在經量測之反射率資料上存在1%雜訊的情況 下利用1〇〇〇〇人的以〇2/以樣本之標準先前技術優點函數所 '計算的展開靈敏度曲線。 圖1 5說明根據本發明之一實施例之例示性詳細量測流程 圖。 圖16說明在經量測之反射率資料上存在1%雜訊的情況 下利用10000 A的SiOVSi樣本之MEF積分所計算的展開靈 敏度曲線。 圖17说明利用loooo A的Si〇2/Si樣本之MEF積分所計算 , 的靈敏度曲線。 ^ ) 圖18說明利用1〇〇 A的SiC^/Si樣本之MEF積分與標準先 前技術優點函數所計算的靈敏度曲線的比較。 . 圖19說明在經量測之反射率資料上存在1%雜訊的情況 • 下利用10〇 A的SiOVSi樣本之MEF積分所計算的展開靈敏 度曲線。 圖20 §兒明在經量測.之反射率資料上存在】%雜訊的情況 下利用100 A的SK^/Si樣本之標準先前技術優點函數所計 算的展開靈敏度曲線。 120526.doc -52- 200809180 圖21A及圖21B說明兩個校準樣本之相對反射率比率的 曲線,其中較薄氧化物在該等樣本之一者上變化。 圖22A及圖22B說明兩個校準樣本之相對反射率的曲 線,其中較厚氧化物在該等樣本之一者上變化。 圖23A及圖23B說明具有不同厚度的污染物層之兩個校 準樣本之相對反射率的曲線。 圖24說明兩個校準樣本之例示性機械實施例。 圖25說明使用兩個校準樣本之反射率比率來校準反射計 量測的例示性技術之流程圖。 圖2 6說明使用兩個校準樣本之反射率比率來校準反射計 量測的例示性技術之另一流程圖。 圖27說明自兩個校準樣本擬合之反射率比率之結果的曲 線’一校準樣本具有薄氧化物且一校準樣本具有較厚氧化 物。 圖28A至圖28D說明污染物層反射率對薄氧化物樣本及 厚氧化物樣本之反射率的影響的曲線。 圖29A至圖29L說明具有污染物層累積之各種樣本之反 射率比率的曲線。 【主要元件符號說明】 102 流程圖 202 流程圖 302 反射光譜 304 反射光谱 3 06 曲線 120526.doc -53- 200809180 308 曲線 310 曲線 502 流程圖 602 光譜 604 光譜 702 反射光譜 802 信號 902 CEF/參考反射率乘積導數信號 1002 曲線 1004 曲線 1102 反射光譜 1202 流程圖 1302 靈敏度曲線 1402 展開圖 1502 流程圖 1602 靈敏度曲線 1702 靈敏度曲線 1802 靈敏度曲線 1804 靈敏度曲線 1902 靈敏度曲線 2002 靈敏度曲線 2102 曲線 2104 曲線 2106 曲線 120526.doc -54- 200809180 2202 曲線 2204 曲線 2206 曲線 2302 曲線 2304 曲線 2306 曲線 2802 曲線 2804 曲線 2806 曲線 2808 曲線 2902 曲線 2904 曲線 2906 曲線 2908 曲線 2910 曲線 2912 曲線 2914 曲線 2916 曲線 2918 曲線 2920 曲線 2922 曲線 2924 曲線 2926 曲線 2928 曲線 120526.doc - 55 - 200809180 2930 曲線 2932 曲線 2934 曲線 2936 曲線 3201 源 3202 環境密封腔室 ' 3 203 源 3204 環境密封腔室 3206 樣本 3210 樣本射束 3212 參考射束 3214 光譜儀 3216 光譜儀 3302 源 3304 光譜儀 3400 寬頻反射計系統 ^ ./ BS 射束分離器 FM-1 〜FM-4 内翻式面鏡 • M_1 〜M-9 面鏡 S-l〜S2 擋板 W1 〜W6 視窗 120526.doc -56-Sl〇2/Sl structure. This procedure can be generalized and induces contaminant growth on numerous samples rather than just two samples. It can also be noted that with regard to analyzing the reflectance ratio, in some cases, when the denominator reflectance approaches zero, the ratio can become u. In practice, this condition will be obvious 'because the ratio will tend to become very good^ in these cases, the spectral region where this occurs can be deviated from the analysis, and the inverse ratio is analyzed in those regions. Since the absolute reflectivity of all calibration samples is usually determined from the ratio analysis, and the calibration of either of the samples will in principle produce the same ", it is not necessary to calibrate the entire measurement wavelength range by 1 利用 with the only one. For example The sample 1 can be used to determine 1 对于 for a spectral region, while the sample 2 is used to calibrate the second spectral region. Further modifications and alternative embodiments of the invention will be apparent to those skilled in the art from this description. The present invention will be considered as illustrative only and is intended to teach those skilled in the art to practice the invention. It will be appreciated that the form of the invention as shown and described herein in the form of the disclosures of Embodiments of the present invention will become apparent to those skilled in the art, and equivalents may be substituted for the elements described and described herein and certain features of the invention may be used independently of other features. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1 illustrates a prior art calibration and measurement flow chart for a reflectometer. Figure 2 illustrates a prior art detailed study for a reflectometer. And the measurement flow chart. Figure 3 illustrates the reflection spectrum from the ultra-thin Si〇2/Si sample.Figure 4 illustrates the calibration error spectrum of a 2〇8的2/8丨 sample generated for a series of assumed thicknesses. 5 illustrates an exemplary calibration and measurement flow diagram in accordance with an embodiment of the present invention.Figure 6 illustrates a calibration error spectrum of 8丨〇2/samples generated for a series of assumed thicknesses. A reflection spectrum of a wide frequency νυν mirror (# 1200) manufactured by Acton Research, Inc. Fig. 8 illustrates the product of the reference sample reflectance spectrum and the calibration error function of a 10000 A SiVOSi sample obtained from the measurement of an arbitrary reference sample. Describe the derivative of the calibration error function for the SiO 2/Si sample of 10000 A for the assumed thickness of looio A. Figure 10 illustrates the sensitivity curve calculated using the calibration error function integral of the 10,000 A Si〇2/Si standard sample. The reflectance of the reference sample utilized in the calibration procedure. 120526.doc -51- 200809180 Figure 12 illustrates an exemplary detailed calibration and measurement flow diagram in accordance with an embodiment of the present invention. An exemplary reflectometer system of the calibration concept of the present invention. Figure 13 illustrates a sensitivity curve calculated using a standard prior art advantage function of a 10,000-input Si〇2/Si sample. Figure 14 illustrates the measured reflectance data. An expansion sensitivity curve calculated using a 1 〇〇〇〇 person's 〇 2 / with a standard prior art advantage function of the sample in the presence of 1% noise. Figure 15 illustrates an exemplary embodiment in accordance with an embodiment of the present invention Detailed measurement flow chart. Figure 16 illustrates the expansion sensitivity curve calculated using the MEF integral of a 10000 A SiOV Si sample with 1% noise on the measured reflectance data. Figure 17 illustrates the sensitivity curve calculated using the MEF integral of the Si〇2/Si sample of loooo A. ^) Figure 18 illustrates the comparison of the sensitivity curves calculated using the MEF integral of the 1 〇〇 A SiC^/Si sample with the standard prior art merit function. Figure 19 illustrates the presence of 1% noise on the measured reflectance data • The expansion sensitivity curve calculated using the MEF integral of the 10 Å A SiOV sample. Figure 20 § shows the expansion sensitivity curve calculated using the standard prior art merit function of the 100 A SK^/Si sample in the case of the % reflectance data. 120526.doc -52- 200809180 Figures 21A and 21B illustrate plots of relative reflectance ratios for two calibration samples, with thinner oxides varying on one of the samples. Figures 22A and 22B illustrate plots of relative reflectivity of two calibration samples in which a thicker oxide varies over one of the samples. Figures 23A and 23B illustrate the relative reflectance curves of two calibration samples of contaminant layers having different thicknesses. Figure 24 illustrates an exemplary mechanical embodiment of two calibration samples. Figure 25 illustrates a flow chart of an exemplary technique for calibrating reflectometry using the reflectance ratio of two calibration samples. Figure 26 illustrates another flow diagram of an exemplary technique for calibrating reflectance measurements using the reflectance ratios of two calibration samples. Figure 27 illustrates the curve of a result of the reflectance ratio fitted from two calibration samples. A calibration sample has a thin oxide and a calibration sample has a thicker oxide. Figures 28A through 28D illustrate plots of the effect of contaminant layer reflectance on the reflectance of thin oxide samples and thick oxide samples. Figures 29A through 29L illustrate plots of reflectance ratios for various samples with accumulation of contaminant layers. [Main Component Symbol Description] 102 Flowchart 202 Flowchart 302 Reflectance Spectrum 304 Reflectance Spectrum 3 06 Curve 120526.doc -53- 200809180 308 Curve 310 Curve 502 Flowchart 602 Spectrum 604 Spectrum 702 Reflection Spectrum 802 Signal 902 CEF/Reference Reflectance Product derivative signal 1002 curve 1004 curve 1102 reflection spectrum 1202 flow chart 1302 sensitivity curve 1402 expansion chart 1502 flow chart 1602 sensitivity curve 1702 sensitivity curve 1802 sensitivity curve 1804 sensitivity curve 1902 sensitivity curve 2002 sensitivity curve 2102 curve 2104 curve 2106 curve 120526.doc - 54- 200809180 2202 Curve 2204 Curve 2206 Curve 2302 Curve 2304 Curve 2306 Curve 2802 Curve 2804 Curve 2806 Curve 2808 Curve 2902 Curve 2904 Curve 2906 Curve 2908 Curve 2910 Curve 2912 Curve 2914 Curve 2916 Curve 2918 Curve 2920 Curve 2922 Curve 2924 Curve 2926 Curve 2928 Curve 120526.doc - 55 - 200809180 2930 Curve 2932 Curve 2934 Curve 2936 Curve 3201 Source 3202 Environmentally dense Chamber ' 3 203 Source 3204 Environmental Seal Chamber 3206 Sample 3210 Sample Beam 3212 Reference Beam 3214 Spectrometer 3216 Spectrometer 3302 Source 3304 Spectrometer 3400 Broadband Reflectometer System ^ ./ BS Beam Splitter FM-1 ~ FM-4 Flip mirror • M_1 ~ M-9 Mask Sl~S2 Baffle W1 ~ W6 Window 120526.doc -56-

Claims (1)

200809180 1. 2. 3· j 4· 5. 6· 申請專利範圍·· -種板準—獲得反射率資料之系統的方法,其包含: 自一第一校準樣本獲得反射率資料, 自第一权準樣本獲得反射率資料,其中該第一校準 樣本及該第二校準樣本中之至少一者的若干確切特性可 與違等板準樣本之若干假設特性不同,且其中該第一校 準樣本與該第二校準樣本之反射特性不同;及 二:—基於自該第—校準樣本獲得之資料與自該第二 :::本獲得之資料的比率,以便辅助校準該系統。 反射率資料,該第—校準=準樣本收集第一組 r π^樣本在—需要校準之第-波長準誤差函數,且自該第二校準樣本收集 1第/率胃料’該第二校準樣本與標準樣本相比在 ㈣:波長範財具有較少光譜特點。 汝明求項2之方法,其中愈- 氧化物相比,該第-校轉準樣本上之一較薄 如請求項3之方法1Γ有一較厚氧化物。处構且^ 巾㈣'校準樣本包含—SiCVSi:=二校準樣本包含,2/si結構。 月永項4之方法,盆中古女窜一 化:為-原生氧化物膜。校準樣本上之該較薄氧 自法’其中來自該第-校準樣本之該反射 合。 樣本之該反射率資料去耦 如靖求項6之方法’其中舆核第二校準樣本上之 較薄 120526.doc 200809180 f物才目t匕,δ亥第一校準樣本具有一較厚氧化物。 如請求項6之方法’其中該第二校準樣本上之該較薄氧 化物為—原生氧化物。 9.如請求項8之方法,其中該第一校準樣本包含一奪丨 結構且該第二校準樣本包含— si〇2/Si結構。 1〇·,請求項丄之方法,其中與該第二校準樣本上之一較薄 乳化物相比’該第-校準樣本具有—較厚氧化物。 η· 2請求項H)之方法,其中該第—校準樣本包含—sKvsi 結構且該第二校準樣本包含一 si〇2/Si結構。 12.如請求項H)之方法,其中該第二校準樣本為—光譜上無 特點的參考樣本。 S求項10之方法,其中該第一校準樣本及該第二校準 策本之該等反射特性已自彼此去耦合,以致可基於該第 A j準樣本及該第二校準樣本之所獲得的反射強度資料 汁异該第一校準樣本及該第二校準樣本中之至少一者的 若干實際物理特性。 14·如請求項丨之方法,其中該使用步驟進一步包含: 組態一校準程序以使用來自該第一校準樣本之第一組 反射率資料且至少部分地基於該第一組反射率資料而提 供對該系統之一第一校準;及 組態該校準程序以使用來自該第二校準樣本之第二組 反射率資料’該第二組反射率資料具有比㈣一組反射 率資料少的特點。 κ如請求们之方法’其中自該第—校準樣本獲得之該資 120526.doc 200809180 料為強度資料,且自該第二 度資料。 且自該第二校準樣本獲得之該資料為強 一校準樣本之強度資料200809180 1. 2. 3· j 4· 5. 6· The scope of the patent application · · The standard of the plate - the method of obtaining the reflectivity data, comprising: obtaining the reflectance data from a first calibration sample, from the first The weighted sample obtains reflectance data, wherein certain exact characteristics of at least one of the first calibration sample and the second calibration sample may be different from a plurality of hypothetical characteristics of the off-board quasi-sample, and wherein the first calibration sample is The second calibration sample has different reflection characteristics; and two: - based on the ratio of the data obtained from the first calibration sample to the data obtained from the second::: present to assist in calibrating the system. Reflectance data, the first calibration = quasi-sample collects the first set of r π ^ samples in - the first wavelength quasi-error function that needs to be calibrated, and from the second calibration sample collects 1 / rate stomach material 'this second calibration Compared with the standard sample, the sample has less spectral characteristics in the wavelength range. The method of claim 2, wherein one of the first-school alignment samples is thinner than the oxide-oxide, and the method 1 of claim 3 has a thicker oxide. The configuration and the wipes (4) 'calibration samples contain - SiCVSi: = two calibration samples contain, 2 / si structure. The method of Yue Yong Xiang 4, the basin of the ancient female 窜 窜: is - the original oxide film. The thinner oxygen on the calibration sample is self-methoded by the reflection from the first calibration sample. The reflectance data decoupling of the sample is as described in the method of [6], wherein the second calibration sample on the second calibration sample is 120526.doc 200809180, and the first calibration sample has a thicker oxide. . The method of claim 6 wherein the thinner oxide on the second calibration sample is a native oxide. 9. The method of claim 8, wherein the first calibration sample comprises a scavenging structure and the second calibration sample comprises a - si〇2/Si structure. A method of claiming a method wherein the first calibration sample has a thicker oxide than a thinner emulsion on the second calibration sample. The method of claim H), wherein the first calibration sample comprises a -sKvsi structure and the second calibration sample comprises a si〇2/Si structure. 12. The method of claim H), wherein the second calibration sample is a spectrally unspecified reference sample. The method of claim 10, wherein the reflection characteristics of the first calibration sample and the second calibration template have been decoupled from each other so as to be obtainable based on the A j quasi sample and the second calibration sample The reflected intensity data differs from the actual physical characteristics of at least one of the first calibration sample and the second calibration sample. 14. The method of claim 1, wherein the step of using further comprises: configuring a calibration procedure to provide a first set of reflectance data from the first calibration sample and based at least in part on the first set of reflectance data First calibration of one of the systems; and configuring the calibration procedure to use a second set of reflectance data from the second calibration sample. The second set of reflectance data has fewer features than the (four) set of reflectance data. κ, as requested by the method, wherein the resource obtained from the first calibration sample is 120526.doc 200809180 is the intensity data and the second degree data. And the data obtained from the second calibration sample is a strength data of the strong calibration sample 之反射率。 16.如請求項15之方法,其中自該第一右 及該第二校準樣本之強度資料獲得一 一種校準一反射計之方法,其包含: 其中該第一 提供一第一校準樣本及一第二校準樣本, 杈準樣本及該第二校準樣本之反射特性不同; 自該第一校準樣本收集第一組資料; 自该第二校準樣本收集第二組資料;及 使用該第一組資料之至少一部分與該第二組資料之至 少一部分的一比率來確定該第一校準樣本與該第二校準 樣本中之至少一者的一特性,以使得可校準來自一未知 樣本的反射率資料。 19·如請求項18之方法,其中自該第一校準樣本獲得之該第 一組資料包括強度資料且自該第二校準樣本獲得之該第 一組資料包括強度資料。 20·如請求項19之方法,其中自該第一校準樣本之該強度資 料及該第二校準樣本之該強度資料獲得一反射率比率。 21 ·如請求項20之方法,其中經由利用該反射率比率獲得— 源強度輪廓且其中藉由利用該源強度輪廓來校準一未知 樣本之反射率。 120526.doc 200809180 22. 如請求項20之方法, 校準樣本中之至少_ 的若干變化。 其中預㈣第一校準樣本及該第二 者會展示出自其若干假設物理特性 23, 24, Ο 如明求項2 2之方法,盆中可直 垆進样“ 為第一权準樣本及該第二 义準樣本中之至少一者獲得一 貫際反射率,預期該至少 一者曰、展示出自其若干假設物理特性的若干變化。 月长員23之方去’其中經由利用該實際反射率獲得— 源強度輪廓且其中藉由音丨田 Τ糟由利用该源強度輪廓來校準一未知 樣本之反射率。 25. 如請求項1 8之方法, 校準樣本中之至少一 的若干變化。 其中預期該第一校準樣本及該第二 者會展示出自其若干假設物理特性 26. 27. Ο 如請求項25之方法,豆中褚细兮赞 上 八中預J该弟一杈準樣本及該第二 校準樣本兩者之該等假設物理特性會有若干變化。 如請求項25之方法,其中使用㈣—校準樣本及該第二 杈準樣本的該至少一者的一假設反射率來計算一初始源 強度輪廓’預期該至少—者會展示出自其好假設物理 特性的若干變化。 28. t請求項27之方法’其中使用該第-校準樣本及該第二 校準樣本的該至少—者的—經計算實際反射率來計算_ 經重新計算之源強度輪廓,預期該至少_者會展示出自 其若干假設物理特性的若干變化。 29. 如請求項1 8之方法 組資料已自來自該 ,其中來自該第一校準樣本之該第一 第二校準樣本之該第二組資料去耦 120526.doc 200809180 一杈準樣本及該第二校準樣本之已獲得的強度資料來計 算該第一校準樣本及該二校準樣本中之至少一者的若^ 實際物理特性。 35·如請求項33之方法,其中: 5亥比率係基於自該第一校準樣本獲得之強度與自該第 二校準樣本獲得之強度的一比率, 、、二由利用该比率獲得一源強度輪廓, 且藉由利用該源強度輪廓來校準一未知樣本之反射 率 〇 36·如請求項33之方法,其中: /使=4第-校準樣本之_假設反射率及該第—組資料 來計算一初始源強度輪廓, 使用4第一組貧料及該初始源強度輪廓來獲得該第二 才父準樣本之一反射率, 利用,亥第-权準樣本之假設反射率與該第二校準樣本Reflectivity. 16. The method of claim 15, wherein the method of calibrating a reflectometer is obtained from the intensity data of the first right and the second calibration sample, the method comprising: wherein the first provides a first calibration sample and one a second calibration sample, wherein the reflection characteristics of the quasi-sample and the second calibration sample are different; collecting the first set of data from the first calibration sample; collecting the second set of data from the second calibration sample; and using the first set of data A ratio of at least a portion of the second set of data to at least a portion of the second set of data to determine a characteristic of at least one of the first calibration sample and the second calibration sample such that reflectance data from an unknown sample can be calibrated. 19. The method of claim 18, wherein the first set of data obtained from the first calibration sample comprises intensity data and the first set of data obtained from the second calibration sample comprises intensity data. The method of claim 19, wherein the intensity ratio from the intensity data of the first calibration sample and the intensity data of the second calibration sample is obtained. The method of claim 20, wherein the source intensity profile is obtained by utilizing the reflectance ratio and wherein the reflectance of an unknown sample is calibrated by utilizing the source intensity profile. 120526.doc 200809180 22. As in the method of claim 20, calibrate a number of changes in at least _ of the sample. Wherein the first (four) first calibration sample and the second one will exhibit a number of hypothetical physical characteristics 23, 24, Ο such as the method of claim 2 2, the pot can be directly injected into the sample as the first priority sample and the At least one of the second sensed samples obtains a consistent reflectance, which is expected to exhibit a number of changes from a number of hypothetical physical properties. The moonman 23 goes to 'where the actual reflectance is obtained a source intensity profile and wherein the source intensity profile is used to calibrate the reflectance of an unknown sample by means of the sound intensity profile. 25. A method of claim 18, calibrating a number of changes in at least one of the samples. The first calibration sample and the second one will exhibit a number of hypothetical physical characteristics. 27. 27. As in the method of claim 25, the bean is finely praised by the eighth middle pre-J, the younger one, and the first The method of claim 25, wherein the method of claim 25, wherein a hypothetical reflectivity of the at least one of the calibration sample and the second reference sample is used to calculate a The initial source intensity profile 'expects at least one will exhibit several variations from its good assumed physical characteristics. 28. The method of claim 27, wherein the first calibration sample and the at least one of the second calibration sample are used - Calculating the actual reflexed source intensity profile by calculating the actual reflectivity, it is expected that the at least one will exhibit several changes from its several hypothetical physical characteristics. 29. If the method group information of claim 18 has been derived from it, The second set of data from the first second calibration sample of the first calibration sample decouples 120526.doc 200809180 a quasi-sample and the obtained intensity data of the second calibration sample to calculate the first calibration sample And the actual physical property of at least one of the two calibration samples. 35. The method of claim 33, wherein: the ratio of 5 is based on the intensity obtained from the first calibration sample and obtained from the second calibration sample A ratio of the intensities, , and two, is obtained by using the ratio to obtain a source intensity profile, and by using the source intensity profile to calibrate the reflectance of an unknown sample. 36. The method of claim 33, wherein: / = = 4 - calibration sample - assumed reflectivity and the first set of data to calculate an initial source intensity profile, using 4 first group of lean material and the initial source intensity profile Obtaining a reflectance of the second candidate sample, using the hypothetical reflectivity of the Haidi-weighted sample and the second calibration sample 之。亥已獲传之反射率的_比率來確定該第—校準樣本之 一實際特性,且 使用°亥第一校準樣本之一反射率來獲得-經重新計算 37. 38. 39. 之=強度㈣’該反射率係基於該經確定之實際特性。 月求員36之方法,其中該第一校準樣本之該實際特性 為一材料厚度。 如請求:33之方法,其中自該第一校準樣本之該強度資 料亥第一校準樣本之該強度資料獲得一反射率比率。 如明求項38之方法,其中經由利用該反射率比率獲得一 120526.doc 200809180 源強度輪廓且复中 樣本之反射率源強度輪廓來校準—未知 4〇·如請求項38之古、土 # 校準樣本中之至中預期該第一校準樣本及該第二 的若干變化。v會展不出自其若干假設物理特性 礼如請求項4〇之方法 校準樣本巾之至少—準樣本及該第二 一去备^者獲侍一實際反射率,預期該至少 上日V出自其若干假設物理特性的若干變化。 2. 項41之方法,其中經由利用該實際反射率獲得- :、又輪廓且其中藉由利用該源強度輪靡來校準一未知 樣本之反射率。 43. 如請求項33之方法, 校準樣本中之至少一 的若干變化。 其中預期該第一校準樣本及該第二 者會展示出自其若干假設物理特性 44. ”求項33之方法,其中與該第二校準樣本上之—較薄 氧化物相比,該第-校準樣本具有—較厚氧化物。 45. 如請求項44之方法’其中該第一校準樣本包含一 結構且該第二校準樣本包含一 Si02/Si結構。 46·如請求項45之方法,其中該第二校準樣本上之該較薄氧 化物為一原生氧化物。 47· —種分析反射計資料之方法,其包含: 提供一第一反射計樣本及至少一第二反射計樣本,其 中該第一校準樣本之光學回應特性及該第二校準樣本之 光學回應特性不同; 120526.doc 200809180 自該第一反射計樣本收集第一組光學反應資料; 自ό亥第一反射計樣本收集第二組光學反應資料,及 藉由以一獨立於在收集該第一組及該第二組光學回應 資料時所使用的一入射反射計強度之方式使用該第一組 及該第二組光學回應資料來確定該第一反射計樣本及該 第一反射計樣本中之至少一者的至少一特性。 48.如請求項47之方法,其中該特性為該第一反射計樣本及 該第二反射計樣本中之至少一者的一物理特性的一變 化。 49·如请求項48之方法,其中該第一反射計樣本及該第二反 射計樣本中之至少一者為一校準樣本。 5〇·如凊求項49之方法,其中該第一反射計樣本及該第二反 射計樣本皆為校準樣本。 51·如請求項47之方法,其中該確定步驟進一步包含: 使用忒第一組光學回應資料之至少一部分與該第二組 光學回應資料之至少一部分的一比率。 52·女:求項5 1之方法,其中該比率係基於自該第一樣本及 该第二樣本量測到之光學強度。 53. 如請求項51之方法,其中對該比率的使用允許確定該至 少一特性的一變化。 54. —種校準一反射計之方法,其包含: 提供兩個或兩個以上的校準樣本,其中該等校準樣本 之反射特性彼此不同; 自该等校準樣本之每一者收隹— 可叹果一組經置測貧料;及 120526.doc 200809180 :用獨立於源強度工。之該經量測資料的一組合來確定 」枚準樣本中之至少__者的_特性以使得可校準來自 一未知樣本之反射率資料。 55· ^求項54之方法,其中該等校準樣本中之—或多者具 組人ΤΙ個污染物層,其中經由分析該經量測資料之該 、-•口而確定該等污染物層之—或多個特性。 % 項54之方法,其中自該等校準樣本收集之該資料 包括強度資料。 57·如請求項56之方法, 嬅亥4杈準樣本之該強度資料 U仔或多個反射率比率。 58. ΠίΓ57之方法,其中該等校準樣本中之-或多者具 一’多個污染物層,其中經由分析該等反射率比率中 之一或多者而確定該等污染物層之一或多個特性。 59. 如請求項57之方法,其中經由利用該等反射率比率獲得 源強度輪廓且其十藉由利用該源強度輪廓來校準 知樣本之反射率。 60. 二”項59之方法,其中藉由首先利用薄膜模型及1 析來分析該等反射率比率以調整該等校準樣本中之 -或多者的-或多個特性而獲得該源強 該分析之一鋒果用於道^ Τ 、° ;導出該等校準樣本中之一或多者的 一絕對反射率,其中該絕對反射率用於經由一 ί 得該源強度輪廓,J:由# 〇 -由RT 由利用該經確定之源強度輪廓 ^r=VIg來校準_未知樣本之—反射率。 6如1求項56之方法’其中預期該等校準樣本中之至少— 120526.doc 200809180 者會展不出自其若干假設物理特性的若干變化。 62.:請=61之方法,其中可為該等校準樣本中之至少一 者獲彳于一實際反射率,預期該至少一合 干假設物理特性的若干變化。 &quot;不出自其若 63·如請求項62之方法,其中經由利用該實際反射轉得 =度輪廓且其t藉由利該源強度輪廓來校準Γ未知 樣本之反射率。 64·=項54之方法,其中預期該等校準樣本中之至少-者會展示出自其若干假設物理特性的若干變化。 65. 如請求項64之方法,其中預期所有該 假設物理特性會有若干變化。 I本之㈣ 66. :請求項64之方法’其中使用若干校準樣本的該至少一 者的^設反射率來計算一初始源強度輪廊,預㈣至 乂-者會展示出自其若干假設物 一求項66之方法’其中使用該至少一二 。十异之實際反射率來計算一 ’、二 預期該至少-校準樣本會展強度㈣, 的若干變化。 出自其右干假設物理特性 68.=項54之方法’其中《,合待確定之該等參數 Ά方式組合來自該等校準樣本之該 69·如請求項54之方法’其中提供 、’ 本。 個或二個以上的校準樣 70·如凊求項69之方法,豆一 本包含一具有一較薄膜之第一校準樣本 本包含y 一 或三個以上的校準樣 具有一第 120526.doc 200809180 η 、之第一 &amp;準樣本及一具有一第二較厚膜之第三校 準樣本,忒第一較厚膜及該第二較厚膜為不同的膜。 求項70之方法’其中該第一校準樣本包含一薄si。〗 膜’㈣:校準樣本包含一較厚叫膜,該第三校準樣 本則包含一較厚MgF2膜。 …月求項71之方法’其中該第_校準樣本上之該薄训2 膜為一原生氧化物。 如明求項72之方法,其中將_或多個污染物層明確地模 型化,該等校準樣本中之—或多者的部分,其中經由利 用、、二里洌貧料之該組合而確定該等污染物層之一或多個 士口月求項73之方法,其中將一Si〇2/Si介面層明確地模型 化成該等校準樣本中之一或多者的部分。 、 长員74之方法,其中該Sl〇2/Si介面層厚度經預特徵 化且在該校準期間保持固定。 76. 77.It. The ratio of the reflectance of the transmitted reflectance is determined to determine the actual characteristic of the first calibration sample, and is obtained by using the reflectance of one of the first calibration samples of the temperature - recalculated 37. 38. 39. = intensity (4) 'The reflectivity is based on the determined actual characteristics. The method of claim 36, wherein the actual characteristic of the first calibration sample is a material thickness. The method of claim 33, wherein a ratio of reflectance is obtained from the intensity data of the first calibration sample of the first calibration sample. The method of claim 38, wherein a 120526.doc 200809180 source intensity profile is obtained by using the reflectance ratio and the reflectance source intensity profile of the complex sample is calibrated - unknown 4 〇 · as requested in claim 38, Gu, Tu # The first calibration sample and the second variation are expected to be in the calibration sample. v exhibits from a number of hypothetical physical characteristics, such as the method of claim 4, to calibrate at least the quasi-sample and the second one to serve an actual reflectivity, it is expected that at least the previous day V is derived from Assume several changes in physical properties. 2. The method of item 41, wherein the reflectance of an unknown sample is calibrated by using the actual reflectance to obtain -:, contour and wherein the source intensity rim is utilized. 43. As in the method of claim 33, calibrating a number of changes in at least one of the samples. Wherein the first calibration sample and the second one are expected to exhibit a plurality of hypothetical physical properties 44. The method of claim 33, wherein the first calibration is compared to the thinner oxide on the second calibration sample The sample has a thicker oxide. The method of claim 44, wherein the first calibration sample comprises a structure and the second calibration sample comprises a SiO 2 /Si structure. 46. The method of claim 45, wherein The thin oxide on the second calibration sample is a native oxide. 47. A method for analyzing reflectometer data, comprising: providing a first reflectometer sample and at least a second reflectometer sample, wherein the first The optical response characteristics of a calibration sample and the optical response characteristics of the second calibration sample are different; 120526.doc 200809180 The first set of optical reaction data is collected from the first reflectometer sample; the second set is collected from the first reflectometer sample Optical reaction data, and using the first group in a manner independent of the intensity of an incident reflectometer used in collecting the first set and the second set of optical response data The second set of optical response data determines at least one characteristic of at least one of the first reflectometer sample and the first reflectometer sample. 48. The method of claim 47, wherein the characteristic is the first reflectometer A change in a physical property of at least one of the sample and the second reflectometer sample. The method of claim 48, wherein at least one of the first reflectometer sample and the second reflectometer sample is The method of claim 47, wherein the first reflectance meter sample and the second reflectance meter sample are all calibration samples. The method of claim 47, wherein the determining step further comprises: Using a ratio of at least a portion of the first set of optical response data to at least a portion of the second set of optical response data. 52. The method of claim 5, wherein the ratio is based on the first sample and the The second sample measures the optical intensity. 53. The method of claim 51, wherein the use of the ratio allows for determining a change in the at least one characteristic. 54. A method of calibrating a reflectometer, comprising: Providing two or more calibration samples, wherein the reflection characteristics of the calibration samples are different from each other; each of the calibration samples is harvested - a set of measured poor materials; and 120526.doc 200809180 : determining, by a combination of the measured data independent of the source intensity, the _ characteristic of at least __ of the registered samples such that the reflectance data from an unknown sample can be calibrated. 55. The method of claim 54, wherein - or a plurality of the calibration samples have a layer of contaminants, wherein the contaminant layers are determined by analyzing the measured data. - or multiple features. The method of item 54, wherein the data collected from the calibration samples includes intensity data. 57. According to the method of claim 56, the intensity data of the quasi-sample of the 嬅海 4杈 sample or a plurality of reflectance ratios. 58. The method of claim 57, wherein - or more of the calibration samples have a plurality of contaminant layers, wherein one or more of the contaminant layers are determined by analyzing one or more of the reflectance ratios or Multiple features. 59. The method of claim 57, wherein the source intensity profile is obtained by utilizing the reflectance ratios and wherein the reflectance of the sample is calibrated by utilizing the source intensity profile. 60. The method of item 59, wherein the source strength is obtained by first analyzing the reflectance ratios using a thin film model and analyzing to adjust - or more of the - or more of the calibration samples. One of the analysis results is used for the channel Τ, °; to derive an absolute reflectance of one or more of the calibration samples, wherein the absolute reflectance is used to obtain the source intensity profile via a λ, J: by # 〇 - by RT using the determined source intensity profile ^r = VIg to calibrate - the unknown sample - reflectivity. 6 as in the method of claim 56 - where at least the calibration samples are expected - 120526.doc 200809180 The exhibition does not exhibit a number of changes in its assumed physical properties. 62. The method of =61, wherein at least one of the calibration samples is subjected to an actual reflectance, and the at least one combined hypothetical physics is expected A number of variations of the characteristics. The method of claim 62, wherein the reflectance of the unknown sample is calibrated by using the actual reflection to convert the degree profile and the t by the source intensity profile. · = the method of item 54, which It is expected that at least one of the calibration samples will exhibit several variations from its several hypothetical physical characteristics. 65. The method of claim 64, wherein all of the hypothetical physical properties are expected to vary. I. (4) 66. The method of claim 64, wherein an initial source intensity gallery is calculated using the at least one of the plurality of calibration samples, and the pre-(four) to 乂-person exhibits a plurality of hypotheses from the method 66. 'The use of the at least one or two. The actual reflectance of ten different to calculate a ', two expected at least - the calibration sample spread intensity (four), a number of changes from the right dry hypothesis physical characteristics 68. = item 54 ' The method for determining the parameters to be determined is the combination of the calibration samples from the 69. The method of claim 54 provides, 'the present or more than two calibration samples 70. Method, the first sample of the first calibration sample having a first calibration sample having a first film and having a first or a plurality of calibration samples having a first film A third calibration sample having a second thicker film, the first thicker film and the second thicker film being different films. The method of claim 70 wherein the first calibration sample comprises a thin si. '(4): The calibration sample contains a thicker film, and the third calibration sample contains a thicker MgF2 film. The method of the monthly solution 71, wherein the thin film 2 on the first calibration sample is a primary oxidation The method of claim 72, wherein the _ or the plurality of contaminant layers are explicitly modeled, and the portions of the calibration samples are - or more, wherein the combination is utilized, And a method of determining one or more of the contaminant layers 73, wherein a Si〇2/Si interface layer is explicitly modeled as part of one or more of the calibration samples. The method of the member 74, wherein the thickness of the Sl2/Si interface layer is pre-characterized and remains fixed during the calibration. 76. 77. 78. 79· 如明求項73之方法,其中將一MgF2/Si介面層明確地模型 化成該等校準樣本之部分。 、、、76之方法,其中該MgF2/Si介面層厚度經預特徵 化且在該校準期間保持固定。 如明求項69之方法’其中該等校準樣本中之—或多者具 有-或多個污染物層,其中經由分析該經量測資料之該 組合而確定該等污染物層之一或多個特性。 如清求項69之方法,其中自該等校準樣本收集之該資 包括強度資料 、 120526.doc -11 - 200809180 ‘月求項79之方法,其中自該等校準樣本之該強度資料 獲得一或多個反射率比率。 81·如:求項80之方法,其中該等校準樣本中之一或多者具 有或多個污染物層,其中經由分析該等反射率比率中 之一或多者而確定該等污染物層之一或多個特性。 82·如凊求項8〇之方法,其中經由利用該等反射率比率獲得 -源強度輪廓且其中藉由利用該源強度輪廓來校準一未 知樣本之反射率。 ,月求貝82之方法,其中藉由首先利用薄膜模型及—回 歸分析來分析該等反射率比率以調整該等校準樣本中之 -或多者的-或多個特性而獲得該源強度輪靡,且盆中 該分析之-結果用於導出該等校準樣本中之—或多者 I絕對反射率’其中該絕對反射率用於經由Ig=WRj 得該源強度輪廓,其中藉由 Ca ,丄 利用该經確定之源強度輪廓 經由R=Ir/I〇來校準一未知樣本之一反射率。 &quot;如請求項80之方法,其中預期該等校準樣本中之至少一 者會展不出自其若干假設物理特性的若干變化。 Μ.如請求項84之方法’其中可為該等校準樣本中之至少 干假設物理特性的若干變化。 者…出自其若 86. 如請求項85之方法,中姐 源強度輪廊且其中心利^原用該實際反射率獲得一 樣本之反射率。 用该源強度輪廊來校準-未知 87. 如清求項69之方法,其中預期該等校準樣本中之至少一 120526.doc -12- 200809180 者會展不出自其若干假設物理特性的若干變化。 88·如=求項87之方法’其中預期所有該等校準樣本之該等 假。又物理特性會有若干變化。 89.如請求項87之方法,其中使用若干校準樣本之該至少一 =的:假設反射率來計算—初始源強度輪扉,預期該至 夕者會展不出自其若干假設物理特性的若干變化。 9〇·如請求項89之方法,其中使用該至少—校準樣本的一經 计异之實際反射率來計算—經重新計算之源強度輪廊, 予請該至少-校準樣本會展示出自其若干假設物理特性 的若干變化。 91 92. 如請求項69之方法,其中以—去麵合待衫之該等參數 之效應的方式組合來自該等校準樣本之該等資料。 -種校準-反射計之方法,其中該反射計在包括在深紫 外(duv)波長以下之至少—些波長的波長處操作,該方 法包含: 提供複數個校準樣本,其中至少一些該等校準樣本之 反射特性為不同的; 自該等校準樣本收集資料組,其包括對於在爾波長 以下之波長收集的至少一些強度資料丨及 使用該等資料組的-獨立於一源強度1〇之組合來確定 該等校準樣本中之至少—者的—反射率以輔助在包括在 DUV波長以下之至少一些波長處校準該反射計。 93.如請求項92之方法’其中該等校準樣本中之一或多者具 有一或多個污染物層,i φ統AP &amp; 八f、、i由分析右干資料組之該組 120526.doc -13- 200809180 合而確定該等污染物層之一或多個特性。 94.如請求項92之方法,其中該等校準樣本之若干反射特性 已自彼此㈣合以致可基於該等校準樣本之該等已獲得 之強度資料來計算該等校準樣|中之至少—I的若干實 際物理特性。 95 如請求項92之方法,其中: 該等資料組之該組合包含自言亥等校準樣本獲得之若干 強度的若干比率, 經由利用該等比率獲得一源強度輪廓,及 96, 藉由利用該源強度輪廓來校準一未知樣本之反射率。 如請求項92之方法,其中: 使用該等校準樣本之-第一校準樣本的—假設反射率 及對應之資料組來計算一初始源強度輪廓, 稭由使用對應之資料組及該初始源強度輪廊來獲得 他校準樣本中之一或多者的一反射率, 八 利用該第-校準樣本之假設反射率與該等其他校準樣 =中=或多者的該已獲得之反料之—比率來確定該 弟权準樣本之一實際特性,及 使用该第-校準樣本之一反射率來獲得一經重新叶曾 之源強度輪廓,該反射率係基於該經確定之實際特性。- 97·如凊求項96之方法,豆中兮铉一妒唯 氣一从 其中6亥第枝準樣本之該實際特性 為一材料厚度。 98·如請求項92之方法,豆 料好— 〃中自該專校丰樣本之該等強度資 枓獲侍右干反射率比率。 、 120526.doc -14· 200809180 99.如請求項98之方法,其中嗲笙p 住说丄 亥4杈準樣本中之一或多 有一或多個污染物層,其中叙士八&amp; # ^、 ^ ^ ^ 、、、二由刀析该反射率比率而確 疋,亥專巧染物層之一或多個特性。 隹 如請求項98之方法,其中經㈣用㈣反射率比率 源強度輪廓且其中藉由利用該源強度輪廓來校準2 知樣本之反射率。 仅未 如請求項98之方法,其中預期該等校準樣本中之 者會展示出自其若干假設物理特性的若干變化。 夕 102.如請求項1〇1之方法, 一 中了為該或㈣校準樣本獲 ^反㈣’預期該或該等校準樣本會展示出自 干假設物理特性的若干變化。 /、右 二明求項1G2之方法’其中經由利用該實際反射率獲得 原強度輪靡且其中藉由利用該源強度輪廓來校準一 知樣本之反射率。 禾 1〇4.如請求項92之方法,其中_該等校準樣本中之-或多 者會展不出自其若干假設物理特性的若干變化。 1〇5.:請求項92之方法’其中提供三個或三個以上的校準樣 肢如請求们〇5之方法,其巾料三㈣三 樣本包含一具有-較薄膜之第一校準樣本、一具 之第二校準樣本及—具有—第二較厚膜之第三 C 7本,該第-較厚膜及該第二較厚膜為不同的膜。 107.如請求項106之太土甘A — 方法,其中該第一校準樣本包含一薄Si〇2 、’該第二校準樣本包含—較厚SK)2膜,且該第三校準 120526.doc -15- 200809180 樣本包含一較厚MgF2膜。 才父準樣本上之該薄Si〇2 108·如請求項107之方法,其中該第一 膜為一原生氧化物。 109.如請求項1〇8之方法,苴 /、干將一或多個污染物層明確地 模型化成料校準樣本之三者或三者以上的部分,且中 經由利用料龍組之該組合而確定料污染物層:-或多個特性。 110.如請求項109之方法,其中將一 將 Sl〇2/Si介面層明確地模 型化成料校準樣材之—❹者的部分。 1 1 1 ·如請求項1 1 〇之方法,盆 八r 4 Si〇2/Si介面層厚度經預特 徵化且在該校準期間保持固定。 112·如請求項1〇9之方法,苴一 ,、甲將一 MgFVSi介面層明確地模 型化成該等校準樣本之部分。 113·如請求項112之方法,苴申 /、T 4 MgF〗/Si介面層厚度經預特 徵化且在該校準期間保持固定。 114·如請求項92之方法,1 φ呤楚ρ 亥荨杈準樣本中之一或多者具 有一或多個污染物層,复φ姐士八4 ,、τ、、、工由刀析右干資料組之該組 合而確定該等污染物層之一或多個特性。 U貝92之方法,其中該等校準樣本之反射特性已自 彼此去麴合以致可基於料校準樣本之料已獲得的強 度資料來計算該等校準揭太Λ 寺仅半樣本中之至少一者的若干實際物 理特性。 1 1 6·如請求項92之方法,其中: 該等資料組之該組合包含自該等校準樣本獲得之若干 120526.doc -16 - 200809180 強度比率, 經由利用該等比率獲得一源強度輪廓,及 糟由利用該源強度輪廓來校準一未知樣本之反射率。 1 1 7·如凊求項92之方法,其中: 使用該等校準樣本之-第-校準樣本的一假設反射率 及°亥對應之資料組來計算一初始源強度輪廓, 藉由使用該對應之資料組及該初始源強度輪 該等其他校準樣本巾之—或多者的_反射率, ^ 利用4第-板準樣本之假設反射率與該等其他校準樣 j中之-或多者的該已獲得之反射率之—比率來確定該 第一杈準樣本之一實際特性,及 便用該第一校準樣本 反射率獲得一經重新計瞀之 源強度輪摩’該反射㈣基於該經確定之實 开 118.:Γ:Γ之方法,其中該第一校準樣本之該實際特 性為一材料厚度。 1 1 9 ·如請求項9 2 $古、、土 ,, 、 / ,八中自該等校準樣本之該等強产資 料獲得若干反射率比率。 寻強度貝 1 2 0 ·如睛求項1 1 9 $古、、i , 具有m,該等校準樣本中之—或多者 5夕々杂物層,其中經由分析該反射率比率而 確定該等污染物層之—或多㈣性。 早匕羊而 12 1 ·如請求項1丨9 $ t、、土 ^ , Γ、择 方去’其中經由利用該等反射率比率獲 付一源強度輪廓且1 又 ,, 9利用該源強度輪廓來校準一 未知樣本之反射率。 仪千 122.如請求項u 9之 方去,其中預期該等校準樣本中之一或 120526.doc •17· 200809180 123 124. 125. 126. 127. 128. 129. 130. 多f其若干假設物理特性 •如凊求項m之方法,其中可為該 :-化。 -實際反射率,預期該或該等校準樣本會獲得 干假設物理特性的若干變化。 不出自其若 如請求項!23之方法,其中經由 -源強度輪廓且其中_由利” μ實際反射率獲得 知樣本之反射率。利用该源強度輪廊來校準-未 如請求項92之方法’其中_料校準樣本中之—或多 者會展示出自其^干假設物理特性的若干變化。— 一種分析反射計資料之方法,其包含: :供三個或三個以上的反射計樣本,其中該等 樣本之若干光學回應特性彼此不同; ㈣等反射計樣本之每—者收集光學回應資料;及 藉由使用該等光學回應資料組以一獨立於在收集該等 光學回應資料組時所使用的—人射反射計強度的方切 定該等反射計樣本中之至少一者的至少一特性。 如請求項丨26之方法,其中該特性為該等反射計樣本中 之至少一者的一物理特性的一變化。 如請求項127之方法,其中該等反射計樣本中之至少一 者為一校準樣本。 如請求項128之方法,其中該等反射計樣本全部為校準 樣本。 如請求項126之方法,其中該確定步驟進一步包含: 使用該多個光學回應資料組的複數個組合之比率。 120526.doc •18- 200809180 131. 132. 如請求項1 3 0之方法,其中該等比率係基於自該等反射 計樣本量測之該光學強度。 如請求項13〇之方法,其中該等比率之使用允許確定該 至少—特性的一變化。 120526.doc -19-78. 79. The method of claim 73, wherein a MgF2/Si interface layer is explicitly modeled as part of the calibration sample. The method of,,, wherein the thickness of the MgF2/Si interface layer is pre-characterized and remains fixed during the calibration. The method of claim 69, wherein - or more of the calibration samples have - or a plurality of contaminant layers, wherein one or more of the contaminant layers are determined by analyzing the combination of the measured data Features. The method of claim 69, wherein the resource collected from the calibration samples includes intensity data, 120526.doc -11 - 200809180 'monthly method 79, wherein the intensity data from the calibration samples is obtained by one or Multiple reflectance ratios. The method of claim 80, wherein one or more of the calibration samples have one or more contaminant layers, wherein the contaminant layers are determined by analyzing one or more of the reflectance ratios One or more characteristics. 82. The method of claim 8, wherein the source intensity profile is obtained by using the reflectance ratios and wherein the reflectance of an unknown sample is calibrated by utilizing the source intensity profile. The method of claim 82, wherein the source intensity wheel is obtained by first analyzing the reflectance ratios using a thin film model and regression analysis to adjust - or more characteristics of the calibration samples.靡, and the results of the analysis in the basin are used to derive - or a plurality of I absolute reflectances in the calibration samples, where the absolute reflectance is used to derive the source intensity profile via Ig = WRj, where by Ca, Using one of the determined source intensity profiles, one of the unknown samples is calibrated for reflectivity via R=Ir/I〇. &quot;. The method of claim 80, wherein at least one of the calibration samples is expected to exhibit a number of variations from a number of hypothetical physical characteristics thereof.方法. The method of claim 84 wherein a plurality of changes in physical properties are assumed for at least one of the calibration samples. From the method of claim 85, the method of claim 85, the center of the source of the wheel and its center is used to obtain the reflectance of a sample with the actual reflectivity. Calibrating with the source intensity rim - unknown 87. The method of claim 69, wherein at least one of the calibration samples is expected to exhibit a number of variations from a number of hypothetical physical properties. 88. If = method of claim 87, wherein all such calibration samples are expected to be false. There are also several changes in physical properties. 89. The method of claim 87, wherein the at least one of the plurality of calibration samples is used: assuming a reflectance to calculate an initial source intensity rim, the eve is expected to exhibit a number of variations from a number of hypothetical physical properties thereof. 9. The method of claim 89, wherein the at least one of the calibrated samples is calculated using a different actual reflectance - the recalculated source intensity porch, the at least - calibrated sample is presented from a number of hypotheses Several changes in physical characteristics. 91. The method of claim 69, wherein the data from the calibration samples are combined in a manner that effects of the parameters of the to-be-faced shirt. - A method of calibrating a reflectometer, wherein the reflectometer is operated at a wavelength comprising at least some wavelengths below a deep ultraviolet (duv) wavelength, the method comprising: providing a plurality of calibration samples, at least some of which are The reflection characteristics are different; the data set is collected from the calibration samples, including at least some of the intensity data collected for wavelengths below the wavelength of the wavelengths and a combination of the ones of the sources using the data sets - The reflectivity of at least one of the calibration samples is determined to assist in calibrating the reflectometer at at least some of the wavelengths included below the DUV wavelength. 93. The method of claim 92, wherein one or more of the calibration samples have one or more contaminant layers, i φ AP &amp; eight f, i is analyzed by the right stem data set of the group 120526 .doc -13- 200809180 Combined to determine one or more characteristics of these contaminant layers. The method of claim 92, wherein the plurality of reflection characteristics of the calibration samples have been combined with each other (four) such that at least - I of the calibration samples can be calculated based on the obtained intensity data of the calibration samples. Several actual physical characteristics. 95. The method of claim 92, wherein: the combination of the data sets comprises a plurality of ratios of a plurality of intensities obtained from a calibration sample such as Yanhai, obtaining a source intensity profile by using the ratios, and 96, by utilizing the The source intensity profile is used to calibrate the reflectance of an unknown sample. The method of claim 92, wherein: calculating the initial source intensity profile using the assumed reflectivity and the corresponding data set of the first calibration sample of the calibration samples, using the corresponding data set and the initial source intensity a vertex to obtain a reflectivity of one or more of his calibration samples, eight using the assumed reflectance of the first-calibrated sample and the other calibration samples = the middle or the more of the obtained ones - The ratio is used to determine an actual characteristic of the divisor quasi-sample, and a reflectance of one of the first calibration samples is used to obtain a re-leaf source intensity profile based on the determined actual characteristic. - 97. If the method of claim 96 is used, the actual property of the quasi-sample of the 6 hai dynasty is one material thickness. 98. If the method of claim 92 is used, the bean material is good—the strength of the strength of the sample from the special school is obtained from the right dry reflectance ratio. 120526.doc -14· 200809180 99. The method of claim 98, wherein 嗲笙p 住 丄 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 杈 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙^ ^ ^ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 。 The method of claim 98, wherein the reflectivity of the sample is calibrated by (iv) a (b) reflectance ratio source intensity profile and wherein the source intensity profile is utilized. Only the method of claim 98 is not contemplated, wherein one of the calibration samples is expected to exhibit several variations from its several hypothetical physical characteristics. 102. As in the method of claim 1 , 1, one of the calibration samples for the or (d) calibration is expected to be reversed (four) to expect that or the calibration samples will exhibit several changes in the physical properties of the null hypothesis. /, the method of claim 2G2, wherein the original intensity rim is obtained by using the actual reflectance and wherein the reflectance of the known sample is calibrated by using the source intensity profile. The method of claim 92, wherein - or - of the plurality of calibration samples exhibits a number of variations from a number of hypothetical physical properties thereof. 1〇5. The method of claim 92, wherein three or more calibration samples are provided, such as the method of requesting 〇5, the three (four) three samples of the towel comprise a first calibration sample having a film. A second calibration sample and a third C7 having a second thicker film, the first thicker film and the second thicker film being different films. 107. The method according to claim 106, wherein the first calibration sample comprises a thin Si〇2, the second calibration sample comprises a thicker SK)2 film, and the third calibration is 120526.doc -15- 200809180 The sample contains a thicker MgF2 film. The method of claim 107, wherein the first film is a native oxide. 109. The method of claim 1, wherein the one or more contaminant layers are explicitly modeled into three or more portions of the calibration sample, and wherein the combination is utilized by the material dragon group. Determine the contaminant layer: - or multiple characteristics. 110. The method of claim 109, wherein the Sl〇2/Si interface layer is unambiguously modeled as part of the calibration sample. 1 1 1 • The method of claim 1 1 ,, the thickness of the basin 8 r 4 Si〇 2/Si interface layer is pre-characterized and remains fixed during this calibration. 112. According to the method of claim 1-9, a MgFVSi interface layer is explicitly modeled as part of the calibration sample. 113. The method of claim 112, wherein the thickness of the /, T 4 MgF / Si interface layer is pre-characterized and remains fixed during the calibration. 114. According to the method of claim 92, one or more of the 1 φ 呤 ρ ρ 荨杈 荨杈 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八The combination of the right dry data sets determines one or more characteristics of the contaminant layers. The method of U-92, wherein the reflection characteristics of the calibration samples have been combined from each other such that at least one of the calibration samples can be calculated based on the intensity data obtained from the material of the calibration sample. Several actual physical characteristics. The method of claim 92, wherein: the combination of the data sets comprises a plurality of intensity ratios 120526.doc -16 - 200809180 obtained from the calibration samples, by using the ratios to obtain a source intensity profile, The reflectance of an unknown sample is calibrated by using the source intensity profile. The method of claim 92, wherein: using a hypothetical reflectivity of the -to-calibration sample of the calibration sample and a data set corresponding to °H to calculate an initial source intensity profile, by using the correspondence The data set and the initial source intensity wheel of the other calibration sample towel - or more _ reflectivity, ^ using the 4th - plate quasi-sample hypothetical reflectivity and - or more of the other calibration samples j The ratio of the obtained reflectance is determined to determine an actual characteristic of the first reference sample, and the first calibration sample reflectance is used to obtain a re-counted source intensity rotation 'the reflection (4) based on the The method of determining the opening 118.: Γ: Γ, wherein the actual characteristic of the first calibration sample is a material thickness. 1 1 9 • A number of reflectivity ratios are obtained for such strong materials from the calibration samples of the requirements of 9 2 $古,土, , , / , 八中. Find the intensity of the shell 1 2 0 · If the item 1 1 9 $ ancient, i, with m, the calibration sample - or more of the 5 々 々 layer, which is determined by analyzing the reflectance ratio Such as the contaminant layer - or more (four). As early as the sheep and 12 1 · If the request item 1丨9 $ t,, soil ^, Γ, choose to go 'where the source intensity profile is obtained by using the reflectance ratio and 1 again, 9 use the source intensity The contour is used to calibrate the reflectivity of an unknown sample. Yiqian 122. If the request is made, the one of the calibration samples is expected to be one of 1205-1. Physical characteristics • The method of requesting item m, which can be: -. - Actual reflectivity, which is expected to result in several changes in the physical properties of the hypothesis. The method of claim 2, wherein the reflectance of the known sample is obtained via the -source intensity profile and wherein the _"profit" μ actual reflectance is utilized. The source intensity rim is used to calibrate - not as in the method of claim 92 'Where the _ material calibration sample—or more will exhibit several changes in the physical properties of the hypothesis. — A method of analyzing reflectometer data, comprising: for three or more reflectometer samples, The optical response characteristics of the samples are different from each other; (4) each of the isoreflectometer samples collects optical response data; and by using the optical response data sets to be independent of the collection of the optical response data sets The method of using the intensity of the human reflectance meter to determine at least one characteristic of at least one of the reflectometer samples, such as the method of claim 26, wherein the characteristic is at least one of the reflectometer samples A method of claim 127, wherein the method of claim 127, wherein at least one of the reflectometer samples is a calibration sample, such as the method of claim 128, wherein The radio sample is all a calibration sample. The method of claim 126, wherein the determining step further comprises: using a ratio of a plurality of combinations of the plurality of optical response data sets. 120526.doc • 18- 200809180 131. 132. The method of item 130, wherein the ratios are based on the optical intensity measured from the reflectance samples. The method of claim 13 wherein the use of the ratios allows for determining a change in the at least one characteristic. 120526.doc -19-
TW096115902A 2006-05-05 2007-05-04 A method of calibrating a system that obtains reflectance data and a method of calibrating a reflectometer TWI452283B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/418,846 US7511265B2 (en) 2004-08-11 2006-05-05 Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
US11/418,827 US7282703B2 (en) 2004-08-11 2006-05-05 Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
US11/789,686 US7663097B2 (en) 2004-08-11 2007-04-25 Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement

Publications (2)

Publication Number Publication Date
TW200809180A true TW200809180A (en) 2008-02-16
TWI452283B TWI452283B (en) 2014-09-11

Family

ID=44767079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096115902A TWI452283B (en) 2006-05-05 2007-05-04 A method of calibrating a system that obtains reflectance data and a method of calibrating a reflectometer

Country Status (1)

Country Link
TW (1) TWI452283B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392756B1 (en) * 1999-06-18 2002-05-21 N&K Technology, Inc. Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
JP3782629B2 (en) * 1999-12-13 2006-06-07 株式会社荏原製作所 Film thickness measuring method and film thickness measuring apparatus
JP4624758B2 (en) * 2003-10-20 2011-02-02 ジョーダン ヴァリー セミコンダクターズ リミテッド Sample inspection method and apparatus

Also Published As

Publication number Publication date
TWI452283B (en) 2014-09-11

Similar Documents

Publication Publication Date Title
US7663097B2 (en) Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
US8119991B2 (en) Method and apparatus for accurate calibration of VUV reflectometer
US7511265B2 (en) Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
US7282703B2 (en) Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
JP2009536354A (en) A method and apparatus for precisely calibrating a reflectometer using a specific reflectivity measurement method
JP2007506976A5 (en)
US6381009B1 (en) Elemental concentration measuring methods and instruments
JP4988756B2 (en) Apparatus and method for spectrophotometric analysis
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
WO2003074993A1 (en) Concentration measurement device
JP2002512441A (en) Non-destructive analysis of semiconductors using reflectance spectrum measurements
US7399975B2 (en) Method and apparatus for performing highly accurate thin film measurements
JP2009536354A5 (en)
TW200905184A (en) Method and apparatus for gas concentration quantitative analysis
JP3754581B2 (en) Analysis method for multi-component organic solutions
JP3706437B2 (en) Analysis method of multi-component aqueous solution
JP4792267B2 (en) Surface state measuring method and apparatus
TW200809180A (en) Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
US7751061B2 (en) Non-contact apparatus and method for measuring a property of a dielectric layer on a wafer
US10481084B2 (en) Advanced reference detector for infrared spectroscopy
JP2003240514A (en) Method for deciding layer thickness
JP6023485B2 (en) Optical characteristic measuring system and optical characteristic measuring method
Perez-Guaita et al. Improving the performance of hollow waveguide-based infrared gas sensors via tailored chemometrics
Dunko et al. Moisture assay of an antifungal by near-infrared diffuse reflectance spectroscopy
JP2012052957A (en) Method for measuring infrared absorption spectrum