JP2012052957A - Method for measuring infrared absorption spectrum - Google Patents

Method for measuring infrared absorption spectrum Download PDF

Info

Publication number
JP2012052957A
JP2012052957A JP2010196880A JP2010196880A JP2012052957A JP 2012052957 A JP2012052957 A JP 2012052957A JP 2010196880 A JP2010196880 A JP 2010196880A JP 2010196880 A JP2010196880 A JP 2010196880A JP 2012052957 A JP2012052957 A JP 2012052957A
Authority
JP
Japan
Prior art keywords
infrared absorption
contact portion
skin
skin surface
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010196880A
Other languages
Japanese (ja)
Inventor
Sho Kikuchi
祥 菊池
Satoshi Naito
智 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2010196880A priority Critical patent/JP2012052957A/en
Publication of JP2012052957A publication Critical patent/JP2012052957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring an infrared absorption spectrum of skin accurately, regardless of a degree of adhesion between the skin and a sample contact part of a device for measuring an infrared absorption spectrum.SOLUTION: A method for measuring an infrared absorption spectrum includes the steps of: applying an infrared ray to a skin surface of a human from an infrared ray irradiation unit via a sample contact part; detecting an infrared ray which is reflected from the skin surface of the human and is transmitted through the sample contact part; and performing correction at operation means which corrects, regarding the infrared ray detected, an amount of contribution to infrared absorption by skin at a contact portion where the skin surface comes into contact with the sample contact part, and an amount of contribution to infrared absorption by skin at a noncontact portion where the skin surface is out of contact with the sample contact part.

Description

本発明は、赤外吸収スペクトルの測定方法に関する。   The present invention relates to a method for measuring an infrared absorption spectrum.

化粧品類、皮膚洗浄料等の販売において、顧客に最も適した化粧品を推奨するために、顧客の皮膚の水分・油分・形態等を店頭で測定するサービスが広く行われている。また、こういった化粧品類や皮膚洗浄料の研究開発の過程においても、肌の状態を機器計測により指標化することは、より効果の高い化粧品、皮膚洗浄料等の開発の上で必要不可欠のものとなっている。さらには、皮膚の水分量等は、個々人の皮膚の状態や環境により大きく変動する。そのため、皮膚の水分量・油分量・形態等の評価や、個人差や部位差を特性化する上で、皮膚の状態を適切に把握することが重要である。   In order to recommend cosmetics most suitable for customers in sales of cosmetics, skin cleansing products, etc., services for measuring moisture, oil content, form, etc. of customers' skin at stores are widely performed. Also, in the process of research and development of cosmetics and skin cleansers, it is indispensable to develop more effective cosmetics, skin cleansers, etc., by indexing the skin condition by instrument measurement. It has become a thing. Furthermore, the amount of moisture in the skin greatly varies depending on the skin condition and environment of the individual. Therefore, it is important to properly grasp the skin state in evaluating the moisture content, oil content, form, etc. of the skin and characterizing individual differences and site differences.

皮膚の状態を非侵襲的に測定する方法として、IR−ATR(赤外減衰全反射)法により試料表面の赤外吸収スペクトルを測定することが知られている。例えば、特許文献1には、赤外分光法を用いた皮膚角層中の天然保湿因子量を測定する方法が記載されている。
また、IR−ATR法では、ATR結晶を介して試料に赤外光を照射し、該ATR結晶を透過した反射赤外光を検出することで赤外吸収スペクトルを測定する。そのため、IR−ATR法では、試料とATR結晶との密着度が重要であると考えられている。そこで、試料表面を吸引して赤外吸収スペクトル測定装置の試料接触部に確実に接触させ、赤外吸収スペクトルを測定する方法が知られている(例えば、特許文献2参照)。しかし、ATR結晶に対する皮膚の密着度の違いによって赤外吸収スペクトルの形状が異なるため、試料表面を吸引して赤外吸収スペクトルを測定した場合、皮膚の成分組成を正確に測定することができない。
さらに、皮膚と赤外吸収スペクトル測定装置の赤外光プローブとの接触面積の変化に伴う吸光度の変動を補正して、赤外吸収スペクトルを測定する方法が知られている(例えば、特許文献3参照)。一般に、IR−ATR法において、分析可能な深さ(エバネッセント波のしみ込み深さ)は、測定対象の表面から数μm以下である。したがって、特許文献3に記載の方法は、測定対象の表面に大きな凹凸があって、エバネッセント波のしみ込み深さに比べて、皮膚の表面と赤外光プローブとが接触しない非接触部の空気層が非常に厚く非接触部からは測定対象由来の赤外光吸収が全く起こらない場合は有効である。しかし、皮膚の表面には数μm以下の多数の微細な凹凸が存在するので、皮膚試料の赤外吸収スペクトルの測定において、照射した赤外光が、皮膚が赤外光プローブと完全に接触しない非接触部においても皮膚に吸収される。そのため、検出された反射赤外光の減衰分が、皮膚表面と赤外光プローブとが接触する接触部のみに由来するものとする特許文献3記載の方法では、正確に皮膚の成分組成を測定することができない。
As a method for non-invasively measuring the skin state, it is known to measure an infrared absorption spectrum of a sample surface by IR-ATR (infrared attenuated total reflection) method. For example, Patent Document 1 describes a method for measuring the amount of a natural moisturizing factor in a skin stratum corneum using infrared spectroscopy.
In the IR-ATR method, an infrared absorption spectrum is measured by irradiating a sample with infrared light through an ATR crystal and detecting reflected infrared light transmitted through the ATR crystal. Therefore, in the IR-ATR method, the degree of adhesion between the sample and the ATR crystal is considered to be important. Therefore, a method is known in which the sample surface is sucked and brought into contact with the sample contact portion of the infrared absorption spectrum measuring apparatus to measure the infrared absorption spectrum (see, for example, Patent Document 2). However, since the shape of the infrared absorption spectrum differs depending on the degree of skin adhesion to the ATR crystal, when the infrared absorption spectrum is measured by sucking the sample surface, the component composition of the skin cannot be measured accurately.
Furthermore, a method for measuring an infrared absorption spectrum by correcting a change in absorbance associated with a change in contact area between the skin and an infrared probe of an infrared absorption spectrum measuring apparatus is known (for example, Patent Document 3). reference). In general, in the IR-ATR method, the depth that can be analyzed (the penetration depth of the evanescent wave) is several μm or less from the surface of the measurement object. Therefore, the method described in Patent Document 3 has a large unevenness on the surface of the measurement object, and the air in the non-contact portion where the skin surface and the infrared probe do not contact compared to the penetration depth of the evanescent wave. This is effective when the layer is very thick and no infrared light absorption from the measurement object occurs from the non-contact portion. However, since there are many fine irregularities of several μm or less on the surface of the skin, in the measurement of the infrared absorption spectrum of the skin sample, the irradiated infrared light is not completely in contact with the infrared probe. Even non-contact parts are absorbed by the skin. Therefore, in the method described in Patent Document 3 in which the attenuation of the detected reflected infrared light is derived only from the contact portion where the skin surface and the infrared light probe are in contact, the component composition of the skin is accurately measured. Can not do it.

特開2009−210567号公報JP 2009-210567 A 特開2009−183636号公報JP 2009-183636 A 特開2007−68857号公報JP 2007-68857 A

本発明は、皮膚と赤外吸収スペクトル測定装置の試料接触部との密着度によらず、皮膚の赤外吸収スペクトルを正確に測定する方法の提供を課題とする。   An object of the present invention is to provide a method for accurately measuring the infrared absorption spectrum of the skin regardless of the degree of adhesion between the skin and the sample contact portion of the infrared absorption spectrum measuring apparatus.

本発明者等は上記課題に鑑み鋭意検討を行った結果、測定した皮膚の赤外吸収スペクトルについて、皮膚表面と赤外吸収スペクトル装置の試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と該試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する処理を行うことにより、正確な皮膚の赤外吸収スペクトルが得られることを見い出した。本発明はこの知見に基づいて完成させたものである。   As a result of intensive studies in view of the above problems, the present inventors have determined that the infrared absorption spectrum of the measured skin is infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion of the infrared absorption spectrum device are in contact. Correct infrared absorption spectrum of the skin can be obtained by correcting the contribution of the skin and the contribution of infrared absorption by the skin of the non-contact part where the skin surface and the sample contact part do not contact I found out. The present invention has been completed based on this finding.

本発明は、
ヒトの皮膚表面に赤外光照射部から試料接触部を介して赤外光を照射する工程、
ヒトの皮膚表面を反射し、前記試料接触部を透過した赤外光を検出する工程、及び
検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段により補正処理をする工程、
を含む、赤外吸収スペクトルの測定方法に関する。
The present invention
Irradiating the human skin surface with infrared light from the infrared light irradiation part through the sample contact part,
A step of detecting infrared light reflected from the human skin surface and transmitted through the sample contact portion; and infrared absorption by the skin of the contact portion where the skin surface and the sample contact portion contact in the detected infrared light. A step of performing correction processing by a calculation means for correcting the contribution and the contribution of infrared absorption by the skin of the non-contact portion where the skin surface and the sample contact portion do not contact,
And a method for measuring an infrared absorption spectrum.

さらに、本発明は、ヒトの皮膚表面に赤外光照射部から試料接触部を介して赤外光を照射し、ヒトの皮膚表面を反射し試料接触部を透過した赤外光を検出して測定した赤外吸収スペクトルの補正方法であって、検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段により補正処理をする、赤外吸収スペクトルの補正方法に関する。   Further, the present invention irradiates the human skin surface with infrared light from the infrared light irradiation part through the sample contact part, and detects infrared light reflected from the human skin surface and transmitted through the sample contact part. A method for correcting the measured infrared absorption spectrum, in the detected infrared light, the contribution of infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion contact, and the skin surface and the sample contact portion The present invention relates to a method for correcting an infrared absorption spectrum, in which correction processing is performed by a calculation unit that corrects the contribution of infrared absorption by the skin of a non-contact portion that does not touch.

さらに、本発明は、
ヒトの皮膚表面に赤外光照射部から試料接触部を介して赤外光を照射する工程、
ヒトの皮膚表面を反射し、前記試料接触部を透過した赤外光を検出する工程、
検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段により補正処理をする工程、及び
補正処理により得た赤外吸収スペクトルに基づき、皮膚の組成を解析する工程、
を含む、皮膚組成の解析方法に関する。
Furthermore, the present invention provides
Irradiating the human skin surface with infrared light from the infrared light irradiation part through the sample contact part,
Detecting infrared light reflected from the human skin surface and transmitted through the sample contact portion;
In the detected infrared light, the contribution of infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion contact, and the infrared absorption by the skin at the non-contact portion where the skin surface and the sample contact portion do not contact each other A step of performing correction processing by a calculation means for correcting the contribution, and a step of analyzing the skin composition based on the infrared absorption spectrum obtained by the correction processing;
The present invention relates to a method for analyzing skin composition.

さらに、本発明は、
ヒトの皮膚表面に接触する試料接触部と、
試料接触部を介してヒトの皮膚表面に赤外光を照射する赤外光照射部と、
ヒトの皮膚表面から反射し、試料接触部を透過した赤外光を検出する赤外光検出手段と、
検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段、
を備えた赤外吸収スペクトル測定装置に関する。
Furthermore, the present invention provides
A sample contact portion that contacts the human skin surface;
An infrared irradiation unit that irradiates the human skin surface with infrared light through the sample contact unit;
Infrared light detection means for detecting infrared light reflected from the human skin surface and transmitted through the sample contact portion;
In the detected infrared light, the contribution of infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion contact, and the infrared absorption by the skin at the non-contact portion where the skin surface and the sample contact portion do not contact each other Arithmetic means for correcting the contribution,
It is related with the infrared absorption-spectrum measuring apparatus provided with.

皮膚と赤外吸収スペクトル測定装置の試料接触部との密着度に左右されることなく、皮膚の赤外吸収スペクトルを正確に測定することができる。   The infrared absorption spectrum of the skin can be accurately measured without being influenced by the degree of adhesion between the skin and the sample contact portion of the infrared absorption spectrum measuring apparatus.

本発明の赤外吸収スペクトル測定装置を模式的に示す図である。It is a figure which shows typically the infrared absorption spectrum measuring apparatus of this invention. 実施例1において、本発明の方法により算出したヒトの皮膚の赤外吸収スペクトルを示す図である。In Example 1, it is a figure which shows the infrared absorption spectrum of the human skin computed by the method of this invention. 実施例1において、油浸オイルを塗布した赤外吸収スペクトル測定装置の試料接触部にヒトの皮膚を押し当てて測定して取得した赤外吸収スペクトルを示す図である。In Example 1, it is a figure which shows the infrared absorption spectrum acquired by pressing and measuring a human skin against the sample contact part of the infrared absorption spectrum measuring apparatus which apply | coated the oil immersion oil. 実施例1において、赤外吸収スペクトル測定装置の試料接触部に直接皮膚を押し当てて測定して取得した赤外吸収スペクトルを示す図である。In Example 1, it is a figure which shows the infrared absorption spectrum acquired by pressing skin directly on the sample contact part of an infrared absorption spectrum measuring device, and measuring. 油浸オイルの赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of oil immersion oil. 比較例で算出したヒトの皮膚の赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the human skin computed in the comparative example. 実施例2において測定した赤外吸収スペクトルを示す図である。6 is a diagram showing an infrared absorption spectrum measured in Example 2. FIG. 実施例2において、本発明の方法により、図7に示す赤外吸収スペクトルを補正した赤外吸収スペクトルを示す図である。In Example 2, it is a figure which shows the infrared absorption spectrum which correct | amended the infrared absorption spectrum shown in FIG. 7 by the method of this invention.

以下、本発明を図面に基づいて詳細に説明する。しかし、本発明はこれに制限するものではない。
図1に示す赤外吸収スペクトル測定装置10は、試料(ヒトの皮膚)5の表面に接触する、試料台4に備えた試料接触部3と、試料接触部3を介して試料5に赤外光9を照射する赤外光照射部2と、試料5から反射し試料接触部3を透過した赤外光9を検出する検出部6を有する、赤外吸収スペクトル測定部1を備える。さらに、CPU(中央演算処理装置)やメモリ、ハードディスク等の記録媒体が内蔵されたコンピューター等の赤外吸収スペクトル算出部7を備える。前記赤外吸収スペクトル算出部7は、演算手段8を備える。
Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to this.
Infrared absorption spectrum measuring apparatus 10 shown in FIG. 1 is in contact with the surface of sample (human skin) 5, sample contact portion 3 provided on sample stage 4, and sample 5 via sample contact portion 3. An infrared absorption spectrum measurement unit 1 having an infrared light irradiation unit 2 that irradiates light 9 and a detection unit 6 that detects infrared light 9 reflected from the sample 5 and transmitted through the sample contact unit 3 is provided. Furthermore, an infrared absorption spectrum calculation unit 7 such as a computer having a built-in recording medium such as a CPU (Central Processing Unit), a memory, and a hard disk is provided. The infrared absorption spectrum calculation unit 7 includes calculation means 8.

赤外吸収スペクトル測定部1は、フーリエ変換型赤外分光光度計(Fourier Transform infrared spectrophotometer:FT−IR)を用いて赤外吸収スペクトルを測定するように構成されていることが好ましい。FT−IRは、赤外光照射部2から照射された赤外光9を干渉光に変換し、試料5に照射する方式である。試料5を反射した光の強度を可動鏡の移動距離の関数として測定し、検出部6で得られた干渉波形をフーリエ変換することにより赤外吸収スペクトルの測定を行う。   The infrared absorption spectrum measuring unit 1 is preferably configured to measure an infrared absorption spectrum using a Fourier Transform infrared spectrophotometer (FT-IR). FT-IR is a method of converting the infrared light 9 irradiated from the infrared light irradiation unit 2 into interference light and irradiating the sample 5. The intensity of the light reflected from the sample 5 is measured as a function of the moving distance of the movable mirror, and the infrared absorption spectrum is measured by Fourier transforming the interference waveform obtained by the detection unit 6.

赤外光照射部2としては、通常の赤外分光器の赤外光照射部と同様な構造が挙げられる。例えば、赤外光源と干渉計を組み合わせたものや、赤外光源と分光器を組み合わせたものが挙げられる。   As the infrared light irradiation part 2, the same structure as the infrared light irradiation part of a normal infrared spectrometer is mentioned. For example, a combination of an infrared light source and an interferometer or a combination of an infrared light source and a spectroscope can be used.

赤外吸収スペクトルの測定は、板型プリズム、光ファイバープローブ、ダイヤモンドプリズム等の試料接触部3を用いた減衰全反射法(Attenuated Total Reflection spectroscopy:ATR法)によって行うことができる。試料接触部3の材質としては特に制限はないが、屈折率が2.4以上のものが好ましく、ゲルマニウム、ダイヤモンドなどを用いることができる。
反射回数は特に限定されず、1回であっても、2回以上であってもよい。
The infrared absorption spectrum can be measured by an attenuated total reflection spectroscopy (ATR method) using a sample contact portion 3 such as a plate prism, an optical fiber probe, or a diamond prism. Although there is no restriction | limiting in particular as a material of the sample contact part 3, A thing with a refractive index of 2.4 or more is preferable, and germanium, a diamond, etc. can be used.
The number of reflections is not particularly limited, and may be once or twice or more.

検出部6としては特に制限はなく、通常の赤外分光器の検出部と同様な構造が挙げられる。例えば、MCT(Mercury Cadmium Tellurium)検出器、DLATGS(Deuterated L-Alanine Triglycine Sulphate)検出器、DTGS(Deuterated TriGlycine Sulfate)検出器、TGS(Triglycine Sulfate)検出器が挙げられる。   There is no restriction | limiting in particular as the detection part 6, The structure similar to the detection part of a normal infrared spectrometer is mentioned. Examples include a MCT (Mercury Cadmium Tellurium) detector, a DLATGS (Deuterated L-Alanine Triglycine Sulphate) detector, a DTGS (Deuterated TriGlycine Sulfate) detector, and a TGS (Triglycine Sulfate) detector.

本発明において、図1に示すように、赤外光照射部2と検出器6が一体化したものであることが好ましい。また、赤外吸収スペクトル測定部1としてポータブル型装置を使用する場合は、耐振動性に優れていることや、バッテリーで駆動することが好ましい。   In this invention, as shown in FIG. 1, it is preferable that the infrared light irradiation part 2 and the detector 6 are integrated. Moreover, when using a portable apparatus as the infrared absorption spectrum measuring unit 1, it is preferable that the apparatus has excellent vibration resistance and is driven by a battery.

IR−ATR法において、試料接触部3と試料5の密着性は赤外光の吸収強度に影響を与えるため、赤外吸収スペクトルの測定に際して、密着性を一定に保つために、試料接触部3と試料5を一定の圧力下で密着させることが好ましい。そこで、本発明において、赤外吸収スペクトル測定部1が、試料5の上方から試料5に圧力を印加する圧力維持手段を備えることが好ましい。圧力維持手段は、試料接触部3と試料5の密着性が一定となるように圧力を加えることができるものであればよい。例えば、ゴムバンドを用いて試料5を試料台4上に固定してもよいし、試料5の上方から加圧ユニットで一定圧まで自動的に圧力を加えるようにしてもよい。但し、本発明においては、試料5の赤外吸収スペクトル測定部位の全体を試料接触部3に完全に接触させる必要はなく、赤外吸収スペクトルを測定できる程度に圧力維持手段により通常の方法と同程度の圧力を印加すればよい。   In the IR-ATR method, the adhesion between the sample contact portion 3 and the sample 5 affects the absorption intensity of infrared light. Therefore, in order to keep the adhesion constant when measuring the infrared absorption spectrum, the sample contact portion 3 And sample 5 are preferably brought into close contact under a certain pressure. Therefore, in the present invention, it is preferable that the infrared absorption spectrum measurement unit 1 includes pressure maintaining means for applying pressure to the sample 5 from above the sample 5. Any pressure maintaining means may be used as long as the pressure can be applied so that the adhesion between the sample contact portion 3 and the sample 5 is constant. For example, the sample 5 may be fixed on the sample table 4 using a rubber band, or the pressure may be automatically applied from above the sample 5 to a constant pressure by the pressurizing unit. However, in the present invention, it is not necessary to bring the entire infrared absorption spectrum measurement site of the sample 5 into complete contact with the sample contact portion 3, and the pressure maintaining means is the same as that of a normal method so that the infrared absorption spectrum can be measured. What is necessary is just to apply the pressure of a grade.

検出部6で検出した赤外吸収スペクトルについて、演算手段8を備えた赤外吸収スペクトル算出部7において、試料5の表面と試料接触部3とが接触する接触部の試料5による赤外吸収の寄与分と、試料5の表面と試料接触部3とが接触しない非接触部の試料5による赤外吸収の寄与分とを補正する補正処理を行う。
下記に、前記補正処理について詳細に説明する。しかし、本発明はこれに制限するものではない。
For the infrared absorption spectrum detected by the detection unit 6, in the infrared absorption spectrum calculation unit 7 provided with the calculation means 8, the infrared absorption by the sample 5 at the contact portion where the surface of the sample 5 and the sample contact portion 3 are in contact with each other. Correction processing for correcting the contribution and the contribution of infrared absorption by the sample 5 in the non-contact portion where the surface of the sample 5 and the sample contact portion 3 are not in contact is performed.
The correction process will be described in detail below. However, the present invention is not limited to this.

本発明において、予め、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分について補正処理を行ったヒトの皮膚の標準スペクトルを用いて、演算手段8により補正処理を行うことが好ましい。   In the present invention, the contribution of infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion contact in advance, and the contribution of infrared absorption by the skin at the non-contact portion where the skin surface and the sample contact portion do not contact each other It is preferable to perform the correction process by the calculation means 8 using the standard spectrum of human skin that has been corrected for the minute.

ヒトの皮膚表面は、主にタンパク質及び水から構成されており、その屈折率は1.5程度と考えられる。したがって、屈折率が1.5程度(好ましくは1.3〜1.6)であり、皮膚に塗布しても皮膚表面の組成に影響を与えない液体を試料5と試料台4又は試料接触部3との間に配した状態で赤外吸収スペクトルを測定し、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部に存在する前記液体による赤外吸収の寄与分について補正処理を行うことで、ヒトの皮膚の標準スペクトルを得ることができる。
本発明で好ましく用いることができる前記液体としては、その屈折率がヒトの皮膚表面の屈折率と近いものが好ましい。例えば、光学顕微鏡測定において、光学レンズ等のガラス製素子間の屈折率差をなくすために通常用いられる油浸オイル(immersion oil)等が挙げられる。
The human skin surface is mainly composed of protein and water, and its refractive index is considered to be about 1.5. Therefore, the liquid having a refractive index of about 1.5 (preferably 1.3 to 1.6) and not affecting the composition of the skin surface even when applied to the skin is the sample 5 and the sample stage 4 or the sample contact portion. Infrared absorption spectrum is measured in a state of being arranged between 3 and 3, and the contribution of infrared absorption by the skin at the contact part where the skin surface and the sample contact part are in contact with each other, and the skin surface and the sample contact part are not in contact with each other A standard spectrum of human skin can be obtained by performing a correction process on the contribution of infrared absorption by the liquid present in the non-contact portion.
The liquid that can be preferably used in the present invention preferably has a refractive index close to that of the human skin surface. For example, in an optical microscope measurement, an oil usually used for eliminating a difference in refractive index between glass elements such as an optical lens is used.

ヒトの皮膚の標準スペクトルの作成方法について具体的に説明する。
生体試料の赤外吸収スペクトルの測定方法において通常用いられる油浸オイルの赤外吸収スペクトル(吸光度)Aoilは、下記式(1)で表される。
A method for preparing a standard spectrum of human skin will be specifically described.
The infrared absorption spectrum (absorbance) A oil of oil- immersed oil usually used in the method for measuring the infrared absorption spectrum of a biological sample is represented by the following formula (1).

式(1)において、Roilは赤外光の油浸オイルにおける反射率を示す。
赤外吸収スペクトル測定部1において、試料5と試料台4との間に油浸オイルを配して測定を行った場合、試料5と試料接触部3とが接触しない非接触部に油浸オイルが入り込む。このとき、観測される赤外吸収スペクトル(吸光度)Aobsは、下記式(2)で表される。
In the formula (1), R oil represents the reflectance of oil-immersed oil of infrared light.
In the infrared absorption spectrum measurement unit 1, when measurement is performed with oil immersion oil disposed between the sample 5 and the sample stage 4, the oil immersion oil is placed in a non-contact portion where the sample 5 and the sample contact portion 3 do not contact each other. Enters. At this time, the observed infrared absorption spectrum (absorbance) A obs is expressed by the following formula (2).

式(2)において、Robsは赤外光の試料5における反射率を示す。
なお、Robsは下記式(3)〜(5)より導くことができる。
In the formula (2), R obs represents the reflectance of the sample 5 of infrared light.
R obs can be derived from the following formulas (3) to (5).

ここで、
skinは、赤外光の接触部における反射率を示し、
xは、測定部位における接触部面積の比率(接触度)を示し、
dは、非接触部の空気層の厚さを示し、
pは、エバネッセント波のしみ込み深さを示し、
1は、試料接触部3の屈折率を示し、
2は、試料5の屈折率を示し、
θは、照射赤外光9の試料5に対する入射角を示し、
λ、照射赤外光9の波長(nm)を示す。
なお、エバネッセント波のしみ込み深さdpは、全反射面への入射角に依存することが知られている。試料接触部3等より全反射面への入射角は容易に決定され、エバネッセント波のしみ込み深さを算出することができる。
here,
R skin indicates the reflectance at the contact portion of infrared light,
x represents the ratio (contact degree) of the contact area at the measurement site,
d indicates the thickness of the air layer of the non-contact portion,
d p represents the penetration depth of the evanescent wave,
n 1 represents the refractive index of the sample contact portion 3,
n 2 represents the refractive index of the sample 5;
θ represents the incident angle of the irradiated infrared light 9 with respect to the sample 5,
λ represents the wavelength (nm) of the irradiated infrared light 9.
It is known that the penetration depth d p of the evanescent wave depends on the incident angle to the total reflection surface. The incident angle on the total reflection surface from the sample contact portion 3 or the like can be easily determined, and the penetration depth of the evanescent wave can be calculated.

したがって、試料5の赤外吸収スペクトルAskinは、下記式(6)〜(7)より導くことができる。 Therefore, the infrared absorption spectrum A skin of the sample 5 can be derived from the following formulas (6) to (7).

前記赤外吸収スペクトル算出部7の演算手段8において、前記式(4)のd及び前記式(6)のxについて適当な値を決定する補正処理を行う。前記補正処理方法に特に制限はないが、前記式(7)より算出される補正処理後の皮膚の赤外吸収スペクトル(Askin)において、油浸オイルの吸収スペクトル(Aoil)由来のピークが最小になるように、d及びxの値を決定する。 The calculation means 8 of the infrared absorption spectrum calculation unit 7 performs a correction process for determining appropriate values for d in the equation (4) and x in the equation (6). Although there is no particular limitation on the correction processing method, in the infrared absorption spectrum (A skin ) of the skin after correction processing calculated from the equation (7), a peak derived from the absorption spectrum (A oil ) of the oil immersion oil is present. The values of d and x are determined so as to be minimized.

前記ヒトの皮膚の標準スペクトルの作成に用いることができる前記液体に特に制限はないが、その屈折率がヒトの皮膚の屈折率(1.5程度)と同程度であることが好ましく、1.3〜1.6がより好ましい。さらに、皮膚に塗布しても皮膚表面の組成に影響を与えないものが好ましい。具体的には、グリセリン、シリコンオイル、ポリエチレングリコール、流動パラフィン、ワセリン等が挙げられる。本発明においては、光学顕微鏡測定用に一般的に市販されている光学オイル(屈折率nd=1.51〜1.52)が特に好ましい。
また、本発明において、屈折率1.3〜1.6の液体を塗布した試料台又は試料接触部に皮膚を載せてスペクトルを測定してもよいし、測定部位に屈折率1.3〜1.6の液体を塗布し、測定部位と試料接触部とを接触させてスペクトルを測定してもよい。
The liquid that can be used to prepare the standard spectrum of the human skin is not particularly limited, but the refractive index is preferably about the same as the refractive index of human skin (about 1.5). 3-1.6 is more preferable. Furthermore, those that do not affect the composition of the skin surface even when applied to the skin are preferred. Specific examples include glycerin, silicone oil, polyethylene glycol, liquid paraffin, and petrolatum. In the present invention, an optical oil (refractive index n d = 1.51 to 1.52) generally commercially available for optical microscope measurement is particularly preferable.
In the present invention, the spectrum may be measured by placing the skin on a sample table or sample contact portion coated with a liquid having a refractive index of 1.3 to 1.6, and the refractive index of 1.3 to 1 at the measurement site. .6 liquid may be applied, and the spectrum may be measured by bringing the measurement site into contact with the sample contact portion.

演算手段による補正処理方法は、補正処理後のスペクトルパターンが、典型的な皮膚のスペクトルパターンと一致するように行う。例えば、水の伸縮振動に由来する650〜1000cm-1の波数領域のスペクトルパターン、及びタンパク質に由来する1480〜1580cm-1の波数領域のアミドII吸収帯のスペクトルパターンは、比較的個人差、部位差が小さいことが知られている。したがって、補正処理後のスペクトルのこれらの領域の形状が、典型的な皮膚のスペクトルのものと一致するように、補正を行う。 The correction processing method by the calculation means is performed so that the spectrum pattern after the correction processing matches a typical skin spectrum pattern. For example, the spectral pattern of the wave number region of 650 to 1000 cm −1 derived from the stretching vibration of water, and the spectral pattern of the amide II absorption band of the wave number region of 1480 to 1580 cm −1 derived from protein are relatively individual differences, sites It is known that the difference is small. Therefore, correction is performed so that the shape of these regions of the spectrum after correction processing matches that of a typical skin spectrum.

以下、演算手段による補正処理方法について具体的に説明するが、本発明はこれに制限するものではない。
空気の屈折率が1であるため、空気層(非接触部)へのエバネッセント波のしみこみ深さdp airは下記のように表される。
Hereinafter, although the correction processing method by a calculating means is demonstrated concretely, this invention is not restrict | limited to this.
Since the refractive index of air is 1, the penetration depth d p air of the evanescent wave into the air layer (non-contact portion) is expressed as follows.

また、非接触部において皮膚に吸収されるエネルギーΔIは、下記式で表される。   Further, energy ΔI absorbed by the skin in the non-contact portion is represented by the following formula.

前記式において、E0は試料接触部と皮膚界面におけるエバネッセント波の振幅を表す。
さらに、非接触部での反射率R非接触は、下記式で表される。
In the above equation, E 0 represents the amplitude of the evanescent wave at the sample contact portion and the skin interface.
Further, the reflectance R non-contact at the non-contact portion is expressed by the following formula.

ここで、Dは下記式で表される。   Here, D is represented by the following formula.

上記式より、赤外光の試料5における反射率Robsは下記式のように表される。 From the above formula, the reflectance R obs of the sample 5 of infrared light is expressed by the following formula.

従って、皮膚の反射率Rskinは、 Therefore, the reflectance R skin of the skin is

で表され、観測される赤外吸収スペクトルAskinは、前記式(2)より、 The infrared absorption spectrum A skin expressed and observed by the above formula (2):

となる。
ここで、例えば、650〜1000cm-1と1480〜1580cm-1の波数領域において、上記の式で得られるAskinと、皮膚の標準スペクトルが一致するようにx及びdの値を決定する。
It becomes.
Here, for example, in the wave number regions of 650 to 1000 cm −1 and 1480 to 1580 cm −1 , the values of x and d are determined so that A skin obtained by the above formula matches the standard spectrum of the skin.

本発明において、前記演算手段8により行われる補正処理は、赤外吸収スペクトル測定部1と一体化されたデータ処理装置によって行ってもよいし、赤外吸収スペクトル測定部1から独立した(繋がっていない)データ処理装置によって行ってもよい。すなわち、例えば、前記演算手段8を備えていない赤外吸収スペクトル装置を用いて赤外吸収スペクトルを得た後、この赤外吸収スペクトルデータを、フレキシブルディスク等の記録媒体、或いは通信回線を介して、該赤外吸収スペクトル測定装置とは独立し、前記補正処理を実行させるための補正プログラムを備えたデータ処理装置(例えばパーソナルコンピュータ)に入力して、補正処理させることもできる。   In the present invention, the correction processing performed by the calculation means 8 may be performed by a data processing device integrated with the infrared absorption spectrum measurement unit 1 or independent of (connected to) the infrared absorption spectrum measurement unit 1. Not) may be performed by a data processing device. That is, for example, after obtaining an infrared absorption spectrum by using an infrared absorption spectrum apparatus not provided with the calculation means 8, the infrared absorption spectrum data is transferred via a recording medium such as a flexible disk or a communication line. Independent of the infrared absorption spectrum measuring apparatus, the correction processing can be performed by inputting the data into a data processing apparatus (for example, a personal computer) having a correction program for executing the correction processing.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.

実施例1
(1)赤外吸収スペクトルの測定
皮膚とATRプリズム間での接触の仕方について、皮膚の一部はATRプリズムと完全に接触し(接触部)、残りの部分はATRプリズム間に空気層が存在している(非接触部)と仮定した。非接触部の空気層の厚さは部位により異なると考えられるが、ここでは均一な厚さとして存在していると仮定した。さらに、非接触部でも皮膚により赤外光が吸収されるものと仮定した。この場合、非接触部での皮膚による赤外光の吸収は、接触部での吸収に比べると少なくなる。
ATRプリズム上に油浸オイル(ニコン製、TYPE NF、屈折率:1.515(23℃))を滴下し、その上から20歳代男性の皮膚(手首)を押し当て、赤外吸収スペクトルを測定した。(以下、前記非接触部は、前記油浸オイルで完全に充填されているものと仮定する。)測定は、SpectrumOne(商品名、パーキンエルマー製)の赤外分光装置にユニバーサルATRアクセサリーを装着し、下記の測定条件で行った。
<測定条件>
分解能:4cm-1
積算回数:32回
光源:赤外光源(パーキンエルマー製)
検出器:MCT(Mercury Cadmium Tellurium)検出器(パーキンエルマー製)
測定範囲:515〜4000cm-1
ATR条件:1回反射
赤外光入射角:45度
ATRプリズム:ダイヤモンド
印加圧力:33000Pa程度
Example 1
(1) Measurement of infrared absorption spectrum Regarding the way of contact between the skin and the ATR prism, part of the skin is completely in contact with the ATR prism (contact part), and the remaining part has an air layer between the ATR prisms. (Non-contact part). Although it is considered that the thickness of the air layer in the non-contact portion varies depending on the part, it is assumed here that the air layer exists as a uniform thickness. Furthermore, it was assumed that infrared light was absorbed by the skin even in the non-contact portion. In this case, the absorption of infrared light by the skin at the non-contact portion is less than the absorption at the contact portion.
Oil immersion oil (Nikon, TYPE NF, refractive index: 1.515 (23 ° C)) was dropped on the ATR prism, and the skin (wrist) of a man in his 20s was pressed onto it to measure the infrared absorption spectrum. . (Hereinafter, it is assumed that the non-contact portion is completely filled with the oil-immersed oil.) Measurement is performed by attaching a universal ATR accessory to the infrared spectrometer of SpectrumOne (trade name, manufactured by PerkinElmer). The following measurement conditions were used.
<Measurement conditions>
Resolution: 4cm -1
Integration count: 32 times Light source: Infrared light source (manufactured by PerkinElmer)
Detector: MCT (Mercury Cadmium Tellurium) detector (Perkin Elmer)
Measurement range: 515-4000cm -1
ATR condition: Reflected infrared light incident angle: 45 degrees
ATR prism: Diamond applied pressure: about 33000Pa

(2)赤外吸収スペクトルの補正
非接触部での皮膚による赤外光の吸収は、非接触部での空気層の厚さd(mm)の大小によって、油浸オイルによる赤外光の吸収と皮膚による赤外光の吸収の存在比(寄与分)が異なる。そこで、測定部位における接触部面積の比率(接触度)をxとする(0<x≦1)と、接触部と非接触部では、エバネッセント波の滲み込み深さdp(mm)を同等とすることができる。
前記(1)で測定した赤外吸収スペクトルA1は、下記式(8)で表わすことができる。
(2) Correction of infrared absorption spectrum The absorption of infrared light by the skin at the non-contact part is the absorption of infrared light by oil-impregnated oil depending on the thickness d (mm) of the air layer at the non-contact part. The abundance ratio (contribution) of infrared light absorption by the skin is different. Therefore, if the ratio (contact degree) of the contact area at the measurement site is x (0 <x ≦ 1), the penetration depth d p (mm) of the evanescent wave is equal in the contact area and the non-contact area. can do.
The infrared absorption spectrum A 1 measured in the above (1) can be expressed by the following formula (8).

式(8)中、
A1は油浸オイルを滴下したATRプリズムに皮膚を押し当てて測定して取得した赤外吸収スペクトル(前記(1)で測定した赤外吸収スペクトル)、
A2はATRプリズムに直接皮膚を押し当てて測定することで得られる皮膚の赤外吸収スペクトル、
A3は油浸オイルの赤外吸収スペクトル
をそれぞれ表す。
また、式(8)中B及びdpは、それぞれ前記式(4)及び(5)で表される。
In formula (8),
A 1 is an infrared absorption spectrum (infrared absorption spectrum measured in the above (1)) obtained by measuring by pressing the skin against the ATR prism to which oil-immersed oil was dropped,
A 2 is the infrared absorption spectrum of the skin obtained by measuring the skin directly against the ATR prism.
A 3 represents the infrared absorption spectrum of the oil-immersed oil, respectively.
In the formula (8), B and d p are represented by the formulas (4) and (5), respectively.

上式の関係式を用いて得られる皮膚の合成赤外吸収スペクトルのパターンが、ATRプリズムに直接皮膚を押し当てて測定することで得られる皮膚の赤外吸収スペクトルA2のパターンと一致するよう、測定部位における接触度x及び非接触部での空気層の厚さd(mm)を決定した。具体的には、赤外吸収スペクトルA1の内、油浸オイル由来のピーク(1487cm-1、1237cm-1、748cm-1、690cm-1など)が最小になり、赤外吸収スペクトルA2のパターンと一致するよう、x及びdの値を決定した。その結果、x=0.29、d=2.2(mm)であった。
これらの値に基づいて作成した皮膚の合成赤外吸収スペクトルを図2に示す。なお、前記(1)で測定した赤外吸収スペクトル(A1)、皮膚自体の赤外吸収スペクトル(A2)、及び前記油浸オイルのみの赤外吸収スペクトル(A3)を、それぞれ図3〜5に示す。
As the pattern of the above equation the synthesis infrared absorption spectrum of skin obtained using a relational expression is consistent with the infrared absorption spectrum A 2 of the pattern of the skin obtained by measuring by pressing the skin directly ATR prism The degree of contact x at the measurement site and the thickness d (mm) of the air layer at the non-contact part were determined. Specifically, in the infrared absorption spectrum A 1 , peaks derived from oil immersion oil (1487 cm −1 , 1237 cm −1 , 748 cm −1 , 690 cm −1, etc.) are minimized, and the infrared absorption spectrum A 2 The values of x and d were determined to match the pattern. As a result, x = 0.29 and d = 2.2 (mm).
The synthetic infrared absorption spectrum of the skin prepared based on these values is shown in FIG. Incidentally, the (1) Infrared absorption spectrum as measured in (A 1), infrared absorption spectra of the skin itself (A 2), and infrared absorption spectrum of only the oil immersion oil (A 3), respectively Figure 3 Shown in ~ 5.

図3に示すスペクトルを用いて本発明の方法により得た合成赤外吸収スペクトルを示す図2と、皮膚自体の赤外吸収スペクトルA2を示す図4とを比較すると、スペクトルパターンが非常によく一致していた。具体的には、図2に示すスペクトルにおいて、500〜1750cm-1、2800〜3000cm-1及び3000〜3700cm-1の波数領域にかけてのピーク形状及びピーク強度(ピーク面積)が、図4に示すスペクトルと非常によく似ている。
これらの結果から、本発明の方法により、赤外吸収スペクトル測定装置における試料接触部における皮膚の密着度に左右されることなく、皮膚の赤外吸収スペクトルを正確に測定することができることが明らかとなった。
And Figure 2 shows the synthesis infrared absorption spectrum obtained by the method of the present invention using the spectrum shown in FIG. 3, comparing FIG. 4 shows an infrared absorption spectrum A 2 of the skin itself, very spectrum pattern It was consistent. Specifically, in the spectrum shown in FIG. 2, the peak shape and peak intensity (peak area) in the wavenumber regions of 500 to 1750 cm −1 , 2800 to 3000 cm −1 and 3000 to 3700 cm −1 are shown in FIG. And very similar.
From these results, it is clear that the infrared absorption spectrum of the skin can be accurately measured by the method of the present invention without being influenced by the degree of skin adhesion at the sample contact portion in the infrared absorption spectrum measuring apparatus. became.

比較例
非接触部(油浸オイル部)において空気層が非常に厚く、皮膚による赤外光の吸収はなく、油浸オイルのみにより赤外光が吸収されると仮定し、赤外吸収スペクトルの補正を行った。
実施例1の(1)で測定した赤外吸収スペクトルについて、測定部位における接触部面積の比率(接触度)をx’とすると(0<x’≦1)、実施例1の(1)で測定した赤外吸収スペクトルA1は、下記式(9)で表わすことができる。
Comparative example Assuming that the air layer is very thick in the non-contact part (oil-immersed oil part), there is no absorption of infrared light by the skin, and infrared light is absorbed only by oil-immersed oil. Correction was performed.
For the infrared absorption spectrum measured in (1) of Example 1, when the contact area ratio (contact degree) at the measurement site is x ′ (0 <x ′ ≦ 1), (1) of Example 1 The measured infrared absorption spectrum A 1 can be expressed by the following formula (9).

式(9)中、A1、A2及びA3は、式(8)におけるA1、A2及びA3と同義である。 Wherein (9), A 1, A 2 and A 3 have the same meaning as A 1, A 2 and A 3 in the formula (8).

上式の関係式を用いて得られる皮膚の合成赤外吸収スペクトルのパターンが、ATRプリズムに直接皮膚を押し当てて測定することで得られる皮膚の赤外吸収スペクトルA2のパターンと一致するよう、測定部位における接触度x’を決定した。その結果、x’=0.3であった。この値から算出した皮膚の合成赤外吸収スペクトルを図6に示す。
図3に示すスペクトルを用いて前記式(9)を用いて得た合成赤外吸収スペクトルを示す図6と、皮膚自体の赤外吸収スペクトル図4とを比較すると、ピーク形状及びピーク面積のいずれも大きく異なっていることがわかる。
As the pattern of the above equation the synthesis infrared absorption spectrum of skin obtained using a relational expression is consistent with the infrared absorption spectrum A 2 of the pattern of the skin obtained by measuring by pressing the skin directly ATR prism The degree of contact x ′ at the measurement site was determined. As a result, x ′ = 0.3. The synthetic infrared absorption spectrum of the skin calculated from this value is shown in FIG.
Comparing FIG. 6 showing the synthetic infrared absorption spectrum obtained by using the above formula (9) with the spectrum shown in FIG. 3 and the infrared absorption spectrum of the skin itself, FIG. 4 shows either the peak shape or the peak area. It can be seen that they are also very different.

実施例2
20歳代男性の皮膚(手首)をATRプリズムに直接押し付けて測定を行った以外は、実施例1と同様にして赤外吸収スペクトルを測定した。
図2に示す赤外吸収スペクトルを皮膚の標準スペクトルとし、650〜1000cm-1及び1480〜1580cm-1の波数領域において、標準スペクトルとスペクトルパターンが一致するように、前記式(4)及び(8)におけるx及びdを決定し、合成スペクトルを作成した。
Example 2
An infrared absorption spectrum was measured in the same manner as in Example 1 except that the measurement was performed by directly pressing the skin (wrist) of a 20-year-old man against the ATR prism.
The infrared absorption spectrum shown in FIG. 2 is defined as the standard spectrum of the skin, and in the wave number regions of 650 to 1000 cm −1 and 1480 to 1580 cm −1 , the above formulas (4) and (8) X) and d) were determined, and a synthetic spectrum was prepared.

実施例3
40歳代男性の皮膚(前腕内側部)をATRプリズムに押し付けたままの状態で、連続的に6回赤外吸収スペクトルを測定した(測定開始直後、並びに測定開始から2分後、4分後、6分後、8分後及び10分後、所要時間約10分)。測定は、赤外分光計測装置Exoscan(商品名、A2 TECHNOLOGIES製)を用いて、下記の測定条件で行った。
<測定条件>
分解能:4cm-1
積算回数:32回
光源:赤外光源(A2 TECHNOLOGIES社製)
検出器:温度安定型DTGS(Deuterated TriGlycine Sulfate)検出器(A2 TECHNOLOGIES社製)
測定範囲:650〜4000cm-1
ATR条件:1回反射
赤外光入射角:45度
ATRプリズム:ゲルマニウム
印加圧力:130000Pa程度
このようにして得られた赤外吸収スペクトルをアミドII(1550cm-1)のピーク強度で規格化したものを図7に示す。
Example 3
Infrared absorption spectra were measured 6 times continuously with the skin (inner forearm) of a 40-year-old man pressed against the ATR prism (immediately after the start of measurement, as well as 2 minutes and 4 minutes after the start of measurement). 6 minutes, 8 minutes and 10 minutes, the required time is about 10 minutes). The measurement was performed under the following measurement conditions using an infrared spectroscopic measurement apparatus Exoscan (trade name, manufactured by A2 Technologies).
<Measurement conditions>
Resolution: 4cm -1
Integration count: 32 times Light source: Infrared light source (A2 TECHNOLOGIES)
Detector: Temperature stable DTGS (Deuterated TriGlycine Sulfate) detector (A2 TECHNOLOGIES)
Measurement range: 650-4000cm -1
ATR condition: Reflected infrared light incident angle: 45 degrees
ATR prism: germanium applied pressure: about 130,000 Pa FIG. 7 shows the infrared absorption spectrum obtained in this manner normalized by the peak intensity of amide II (1550 cm −1 ).

図7に示す赤外吸収スペクトルについて、下記に示すとおりに補正を行った。
実施例1で得られた、図2に示すスペクトルをヒトの皮膚の標準スペクトルとし、650〜1000cm-1と1480〜1580cm-1の波数領域において、観測された赤外吸収スペクトルAskinと、該標準スペクトルとが一致するよう、測定部位における接触度x及び非接触部での空気層の厚さd(mm)を決定し、補正処理後の赤外吸収スペクトルを作成した。その結果を図8に示す。
The infrared absorption spectrum shown in FIG. 7 was corrected as shown below.
The spectrum shown in FIG. 2 obtained in Example 1 is a standard spectrum of human skin, and the infrared absorption spectrum A skin observed in the wave number regions of 650 to 1000 cm −1 and 1480 to 1580 cm −1 , The degree of contact x at the measurement site and the thickness d (mm) of the air layer at the non-contact portion were determined so as to match the standard spectrum, and an infrared absorption spectrum after correction processing was created. The result is shown in FIG.

赤外吸収スペクトルにおいて、水由来のピークは、主に3300cm-1付近の波数領域に現れる。図7において、経時的に3300cm-1付近において吸光度の増大が見られた。これは、時間経過と共に皮膚の内部から水分が蒸散するためである。しかし、1000〜1500cm-1の波数領域において、経時的に吸光度が相対的に低下した。この現象は、水分量の上昇などによる、皮膚とATRプリズムとの接触度(接触部面積)の増大によるものと考えられる。1000〜1500cm-1の波数領域のピークは主にタンパク質に由来するものであり、皮膚の水分と異なりタンパク質は経時的にタンパク質量が減少することはない。従って、図7に示す結果は、皮膚の経時的変化を正確に示すものではない。 In the infrared absorption spectrum, water-derived peaks appear mainly in the wave number region near 3300 cm −1 . In FIG. 7, an increase in absorbance was observed in the vicinity of 3300 cm −1 over time. This is because moisture evaporates from the inside of the skin over time. However, in the wave number region of 1000-1500 cm −1 , the absorbance decreased with time. This phenomenon is thought to be due to an increase in the degree of contact (contact area) between the skin and the ATR prism due to an increase in the amount of water. The peak in the wave number region of 1000 to 1500 cm −1 is mainly derived from protein, and unlike skin moisture, protein does not decrease in protein amount over time. Accordingly, the results shown in FIG. 7 do not accurately indicate changes with time of the skin.

これに対して、図8においては、経時的な水分量の上昇に由来すると考えられる3300cm-1付近の吸光度の増加が見られた。さらには、図7に示すスペクトルで見られた、1000〜1500cm-1の波数領域における吸光度の相対的な低下が、図8に示すスペクトルではほとんど確認されなかった。 On the other hand, in FIG. 8, an increase in absorbance near 3300 cm −1, which is considered to be caused by an increase in water content with time, was observed. Furthermore, the relative decrease in absorbance in the wave number region of 1000-1500 cm −1 seen in the spectrum shown in FIG. 7 was hardly confirmed in the spectrum shown in FIG. 8.

これらの結果から、本発明の測定方法によれば、皮膚と赤外吸収スペクトル測定装置の試料接触部における密着度の変化に左右されにくい、赤外吸収スペクトルを測定することができることがわかる。   From these results, it can be seen that according to the measurement method of the present invention, it is possible to measure an infrared absorption spectrum that is hardly influenced by a change in the degree of adhesion between the skin and the sample contact portion of the infrared absorption spectrum measuring apparatus.

1 赤外吸収スペクトル測定部
2 赤外光照射部
3 試料接触部
4 試料台
5 試料
6 検出部
7 赤外吸収スペクトル算出部
8 演算手段
9 赤外光
10 赤外吸収スペクトル測定装置
DESCRIPTION OF SYMBOLS 1 Infrared absorption spectrum measuring part 2 Infrared light irradiation part 3 Sample contact part 4 Sample stand 5 Sample 6 Detection part 7 Infrared absorption spectrum calculation part 8 Calculation means 9 Infrared light 10 Infrared absorption spectrum measuring apparatus

Claims (8)

ヒトの皮膚表面に赤外光照射部から試料接触部を介して赤外光を照射する工程、
ヒトの皮膚表面を反射し、前記試料接触部を透過した赤外光を検出する工程、及び
検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段により補正処理をする工程、
を含む、赤外吸収スペクトルの測定方法。
Irradiating the human skin surface with infrared light from the infrared light irradiation part through the sample contact part,
A step of detecting infrared light reflected from the human skin surface and transmitted through the sample contact portion; and infrared absorption by the skin of the contact portion where the skin surface and the sample contact portion contact in the detected infrared light. A step of performing correction processing by a calculation means for correcting the contribution and the contribution of infrared absorption by the skin of the non-contact portion where the skin surface and the sample contact portion do not contact,
A method for measuring an infrared absorption spectrum, comprising:
ヒトの皮膚表面と試料接触部との間に屈折率1.3〜1.6の液体を配した状態で赤外吸収スペクトルを測定し、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部に存在する前記液体による赤外吸収の寄与分について補正処理を行ってヒトの皮膚の標準スペクトルを作成し、該標準スペクトルに基づいて前記演算手段において補正処理を行う、請求項1記載の赤外吸収スペクトルの測定方法。   Infrared absorption spectrum is measured in a state where a liquid having a refractive index of 1.3 to 1.6 is arranged between the human skin surface and the sample contact portion, and the skin of the contact portion where the skin surface and the sample contact portion are in contact with each other A standard spectrum of human skin is created by performing a correction process on the contribution of infrared absorption by and the contribution of infrared absorption by the liquid present in the non-contact part where the skin surface and the sample contact part do not contact, The infrared absorption spectrum measurement method according to claim 1, wherein correction processing is performed in the calculation means based on the standard spectrum. ヒトの皮膚表面に赤外光照射部から試料接触部を介して赤外光を照射し、ヒトの皮膚表面を反射し試料接触部を透過した赤外光を検出して測定した赤外吸収スペクトルの補正方法であって、検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段により補正処理をする、赤外吸収スペクトルの補正方法。   Infrared absorption spectrum measured by irradiating the human skin surface with infrared light from the infrared light irradiation part through the sample contact part and detecting the infrared light reflected from the human skin surface and transmitted through the sample contact part. In the detected infrared light, the contribution of infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion contact, and the non-contact portion where the skin surface and the sample contact portion do not contact A method for correcting an infrared absorption spectrum, in which correction processing is performed by a calculation means that corrects the contribution of infrared absorption by the skin. ヒトの皮膚表面と試料接触部との間に屈折率1.3〜1.6の液体を配した状態で赤外吸収スペクトルを測定し、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部に存在する前記液体による赤外吸収の寄与分について補正処理を行ってヒトの皮膚の標準スペクトルを作成し、該標準スペクトルに基づいて前記演算手段において補正処理を行う、請求項3記載の赤外吸収スペクトルの補正方法。   Infrared absorption spectrum is measured in a state where a liquid having a refractive index of 1.3 to 1.6 is arranged between the human skin surface and the sample contact portion, and the skin of the contact portion where the skin surface and the sample contact portion are in contact with each other A standard spectrum of human skin is created by performing a correction process on the contribution of infrared absorption by and the contribution of infrared absorption by the liquid present in the non-contact part where the skin surface and the sample contact part do not contact, The infrared absorption spectrum correction method according to claim 3, wherein the calculation means performs correction processing based on the standard spectrum. ヒトの皮膚表面に赤外光照射部から試料接触部を介して赤外光を照射する工程、
ヒトの皮膚表面を反射し、前記試料接触部を透過した赤外光を検出する工程、
検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段により補正処理をする工程、及び
補正処理により得た赤外吸収スペクトルに基づき、皮膚の組成を解析する工程、
を含む、皮膚組成の解析方法。
Irradiating the human skin surface with infrared light from the infrared light irradiation part through the sample contact part,
Detecting infrared light reflected from the human skin surface and transmitted through the sample contact portion;
In the detected infrared light, the contribution of infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion contact, and the infrared absorption by the skin at the non-contact portion where the skin surface and the sample contact portion do not contact each other A step of performing correction processing by a calculation means for correcting the contribution, and a step of analyzing the skin composition based on the infrared absorption spectrum obtained by the correction processing;
A method for analyzing skin composition, comprising:
ヒトの皮膚表面と試料接触部との間に屈折率1.3〜1.6の液体を配した状態で赤外吸収スペクトルを測定し、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部に存在する前記液体による赤外吸収の寄与分について補正処理を行ってヒトの皮膚の標準スペクトルを作成し、該標準スペクトルに基づいて前記演算手段において補正処理を行う、請求項5記載の皮膚組成の解析方法。   Infrared absorption spectrum is measured in a state where a liquid having a refractive index of 1.3 to 1.6 is arranged between the human skin surface and the sample contact portion, and the skin of the contact portion where the skin surface and the sample contact portion are in contact with each other A standard spectrum of human skin is created by performing a correction process on the contribution of infrared absorption by and the contribution of infrared absorption by the liquid present in the non-contact part where the skin surface and the sample contact part do not contact, The skin composition analysis method according to claim 5, wherein correction processing is performed in the calculation means based on the standard spectrum. ヒトの皮膚表面に接触する試料接触部と、
試料接触部を介してヒトの皮膚表面に赤外光を照射する赤外光照射部と、
ヒトの皮膚表面から反射し、試料接触部を透過した赤外光を検出する赤外光検出手段と、
検出した赤外光における、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部の皮膚による赤外吸収の寄与分とを補正する演算手段、
を備えた赤外吸収スペクトル測定装置。
A sample contact portion that contacts the human skin surface;
An infrared irradiation unit that irradiates the human skin surface with infrared light through the sample contact unit;
Infrared light detection means for detecting infrared light reflected from the human skin surface and transmitted through the sample contact portion;
In the detected infrared light, the contribution of infrared absorption by the skin at the contact portion where the skin surface and the sample contact portion contact, and the infrared absorption by the skin at the non-contact portion where the skin surface and the sample contact portion do not contact each other Arithmetic means for correcting the contribution,
An infrared absorption spectrum measuring apparatus.
ヒトの皮膚表面と試料接触部との間に屈折率1.3〜1.6の液体を配した状態で赤外吸収スペクトルを測定し、皮膚表面と試料接触部とが接触する接触部の皮膚による赤外吸収の寄与分と、皮膚表面と試料接触部とが接触しない非接触部に存在する前記液体による赤外吸収の寄与分について補正処理を行ってヒトの皮膚の標準スペクトルを作成し、該標準スペクトルに基づいて前記演算手段において補正処理を行う、請求項7記載の赤外吸収スペクトル測定装置。




Infrared absorption spectrum is measured in a state where a liquid having a refractive index of 1.3 to 1.6 is arranged between the human skin surface and the sample contact portion, and the skin of the contact portion where the skin surface and the sample contact portion are in contact with each other A standard spectrum of human skin is created by performing a correction process on the contribution of infrared absorption by and the contribution of infrared absorption by the liquid present in the non-contact part where the skin surface and the sample contact part do not contact, The infrared absorption spectrum measuring apparatus according to claim 7, wherein correction processing is performed in the calculation means based on the standard spectrum.




JP2010196880A 2010-09-02 2010-09-02 Method for measuring infrared absorption spectrum Pending JP2012052957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196880A JP2012052957A (en) 2010-09-02 2010-09-02 Method for measuring infrared absorption spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196880A JP2012052957A (en) 2010-09-02 2010-09-02 Method for measuring infrared absorption spectrum

Publications (1)

Publication Number Publication Date
JP2012052957A true JP2012052957A (en) 2012-03-15

Family

ID=45906425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196880A Pending JP2012052957A (en) 2010-09-02 2010-09-02 Method for measuring infrared absorption spectrum

Country Status (1)

Country Link
JP (1) JP2012052957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193948A (en) * 2019-05-30 2020-12-03 花王株式会社 Horny layer analysis method
JP7435167B2 (en) 2020-03-31 2024-02-21 横河電機株式会社 Arithmetic device, analysis method, and analysis program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193948A (en) * 2019-05-30 2020-12-03 花王株式会社 Horny layer analysis method
JP7264724B2 (en) 2019-05-30 2023-04-25 花王株式会社 Stratum corneum analysis method
JP7435167B2 (en) 2020-03-31 2024-02-21 横河電機株式会社 Arithmetic device, analysis method, and analysis program

Similar Documents

Publication Publication Date Title
JP7079306B2 (en) Percutaneous in vivo measurement method and equipment by Raman spectroscopy
Wang et al. THz in vivo measurements: the effects of pressure on skin reflectivity
Sun et al. In vivo THz imaging of human skin: Accounting for occlusion effects
Enejder et al. Raman spectroscopy for noninvasive glucose measurements
Gulmine et al. Polyethylene characterization by FTIR
Saager et al. Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy
US7403804B2 (en) Noninvasive determination of alcohol in tissue
TW483745B (en) Classification system for sex determination and tissue characterization
RU2549992C2 (en) APPARATUS FOR in vivo NON-INVASIVE ANALYSIS BY RAMAN SCATTERING SPECTROSCOPY
Cugmas et al. Impact of contact pressure–induced spectral changes on soft-tissue classification in diffuse reflectance spectroscopy: problems and solutions
Xu et al. Non-invasive glucose sensing with near-infrared spectroscopy enhanced by optical measurement conditions reproduction technique
JP2008531133A (en) Non-invasive targeting system method and apparatus
JP2014209094A (en) Information acquisition device and information acquisition method for acquiring information on sample using terahertz wave
Sung et al. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra
JP4836526B2 (en) Infrared absorption spectrum measuring device
Kino et al. Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe
Cugmas et al. Pressure-induced near infrared spectra response as a valuable source of information for soft tissue classification
Kim et al. Prediction of glucose in whole blood by near-infrared spectroscopy: influence of wavelength region, preprocessing, and hemoglobin concentration
JP2012052957A (en) Method for measuring infrared absorption spectrum
Han et al. Floating reference position-based correction method for near-infrared spectroscopy in long-term glucose concentration monitoring
Hernandez-Serrano et al. Terahertz probe for real time in vivo skin hydration evaluation
Bleasel et al. In vitro evaluation of sun protection factors of sunscreen agents using a novel UV spectrophotometric technique
Mohamad et al. Conceptual design of near infrared spectroscopy instrumentation for skin moisture measurement
Defernez et al. Infrared spectroscopy: instrumental factors affecting the long-term validity of chemometric models
Greve et al. Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity