200808641 (1) 九、發明說明 【發明所屬之技術領域】 本發明是關於起重機,尤其是關於使用在澆桶搬運用 的澆桶起重機及其控制方法。 【先前技術】 以往在製鐵設施或製鋼設施中,將鋼鐵放入澆桶(熔 鍋)中,以澆桶起重機搬運整個澆桶。例如,熔鋼是從電 # 爐等放入澆桶內,藉著澆桶起重機搬運到轉爐等之後,澆 注至轉爐等。 澆桶起重機是在以主捲繞裝置將澆桶吊起的狀態下搬 運,以輔助捲繞裝置提起澆桶下部使澆桶傾斜,將熔鋼從 澆桶注入轉爐等(例如,參閱日本專利文獻1 )。 〔日本專利文獻1〕特開平1 1 -268 8 8 1號公報 【發明內容】 0 〔發明所欲解決之課題〕 以往的澆桶起重機中,主捲繞裝置爲2組的馬達及馬 達控制部所構成,藉著2組的馬達及馬達控制部進行澆桶 的吊起及吊下。 但是,僅1組的馬達及馬達控制部,即使可進行澆桶 的吊下但是不能吊起,因此例如1個馬達控制部故障時, 即有不能持續運轉澆桶起重機運轉的問題。 並且,輔助捲繞裝置爲1組的馬達及馬達控制部所構 -4- 200808641 (2) 成,藉著1組的馬達及馬達控制部進行澆桶的傾斜等。 因此’例如輔助捲繞裝置的馬達控制部一旦故障時, 即有澆桶起重機不能持續運轉的問題。 將輔助捲繞裝置搭載在輔助台車上,藉著設置在輔助 台車上的橫移用的1組的馬達及馬達控制部橫移。 因此,例如,橫移用馬達控制部一旦故障時即不能進 行輔助捲繞裝置的橫移,而會有澆桶起重機的運轉不能持 續的問題。 ® 本發明是爲了解決上述課題所硏創而成,提供即使一 部份的馬達控制部故障,仍可以持續進行起重機運轉的起 重機及起重機之控制方法爲目的。 〔解決課題的手段〕 爲了達成上述目的,本發明提供以下的手段。 本發明的起重機,其特徵爲,具備:複數個第1馬達 0 ;分別控制供應該複數個馬達的電力,藉此分別控制上述 第1馬達輸出的複數個第1馬達控制部;第2馬達;及控 制供應該第2馬達的電力,藉此控制上述第2馬達輸出的 第2馬達控制部,對於上述第2馬達可控制來自一個第1 馬達控制部的供電及停電。 根據本發明,例如’即使第2馬達控制部故障,仍可 以從一個第1馬達控制部供應電力到第2馬達,因此可以 持續進行起重機的運轉。亦即,第2馬達由於是從一個第 1馬達控制部供電,即使停止來自第2馬達控制部的供電 -5- 200808641 (3) 仍然可以運轉,可以持續進行起重機的運轉。 並且,藉著一個第1馬達控制部供電到第2馬達,即 使來自一個第1馬達控制部供電的第1馬達停止或者能力 降低時,由於具備複數個第1馬達,仍可藉著其他的第1 馬達持續進行起重機的運轉。 第2馬達控制部在未故障時,停止從一個第1馬達控 制部對第2馬達的供電,而對第1馬達進行供電。因此, 僅對於第2馬達供電的場合,和使用預備的馬達控制部的 ® 場合比較,由於經常使用一個第1馬達控制部,因此在第 2馬達控制部故障時可確實地對第2馬達供電。上述發明 中,上述一個第1馬達控制部以較上述第2馬達控制部更 能控制的大電容量爲佳。 根據本發明,一個第1馬達控制部由於電容量較第2 馬達控制部大,因此在第2馬達控制部故障時,持續進行 起重機運轉時可確實地供應第2馬達所需的電力。 上述發明中,具備:吊下吊貨用的主吊鉤,及控制上 •、、 述吊貨姿勢的輔助吊鉤,上述主吊鉤是以上述複數個第1 馬達捲揚或捲下,上述輔助吊鉤是以上述第2馬達捲揚或 捲下爲佳。 根據本發明,例如,即使第2馬達控制部故障時仍然 可以持續進行第2馬達的運轉,可以持續進行輔助吊鉤的 捲揚及捲下。亦即,可以持續進行起重機的運轉。 又’第2馬達控制部在未故障時,由於從一個第1馬 達控制部供電到第2馬達,因此,僅對於第2馬達供電的 -6- 200808641 (4) 場合,和使用預備的馬達控制部的場合比較,在第2馬達 控制部故障時可確實持續進行輔助吊鉤的運轉。 上述發明中,從上述一個第1馬達控制部供電到上述 第2馬達時,以藉著其他第i馬達控制部供電到其他的第 1馬達,使上述吊貨及上述主吊鉤捲揚或捲下爲佳。 根據本發明,例如,即使第2馬達控制部故障,仍可 藉其他第1馬達進行吊貨及主吊鉤的捲揚或捲下,可持續 進行起重機的運轉。 • 具體而言,在第2馬達控制部故障時,從一個第1馬 達控制部供電到第2馬達,會使得從一個第1馬達控制部 供電的第1馬達的輸出降低或者使該第1馬達停止。以上 的場合,可藉著其他第1馬達進行吊貨及主吊鉤的捲揚及 捲下的同時,可藉著第2馬達進行輔助吊鉤的捲揚及捲下 ,因此可持續進行起重機的運轉。 上述發明中,具備上述第1馬達的同時,配置有可朝 著預定方向移動的主台車,及具備上述第2馬達的同時, ^ 配置有可朝著上述預定方向移動的輔助台車,上述主台車 以藉著上述複數個第1馬達移動,上述輔助台車以藉著上 述第2馬達移動爲佳。 根據本發明,例如第2馬達控制部即使故障仍可持續 進行第2馬達的運轉,因此可持續進行輔助台車的移動。 亦即,可以持續進行起重機的運轉。 並且,第2馬達控制部未故障的場合,從一個第1馬 達控制部對第1馬達進行供電,因此僅對於第2馬達進行 200808641 (5) 供電的場合和使用預備的馬達控制部的場合比較,第2馬 達控制部故障時可確實地持續進行輔助台車的運轉。 上述發明中’從上述一個第1馬達控制部供電到上述 第2馬達時,以藉著其他第1馬達控制部供電到其他的第 1馬達,移動上述主台車爲佳。 根據本發明,例如,第2馬達控制部即使故障,可藉 著其他的第1馬達進行主台車的移動,可持續進行起重機 的運轉。 Φ 具體而言,第2馬達控制部故障時,從一個第丨馬達 控制部供電到第2馬達,會使得從一個第1馬達控制部供 電的第1馬達的輸出降低或者使該第1馬達停止。以上的 場合,可藉著其他第1馬達進行主吊鉤的移動的同時,可 藉著第2馬達進行輔助台車的移動,因此可持續進行起重 機的運轉。 上述發明中,上述第1馬達控制部及上述第2馬達控 制部爲變頻裝置,以藉著該變頻裝置驅動上述第1馬達及 •第2馬達的變頻馬達爲佳。 根據本發明,以第1及第2馬達控制部作爲變頻裝置 ,以第1及第2馬達作爲變頻馬達,可以容易控制第1及 第2馬達的輸出。 本發明起重機的控制方法,其特徵爲:分別控制來自 複數個第1馬達控制部的供電,藉此控制複數個第1馬達 的輸出,控制來自第2馬達控制部的供電,藉此控制第2 馬達的輸出,上述第2馬達控制部故障時,從一個第〗馬 -8- 200808641 (6). 達控制部供電到上述第2馬達。 根據本發明,第2馬達控制部即使故障,可從一個第 1馬達控制部供電到第2馬達,因此可以持續進行起重機 的運轉。亦即,由於第2馬達是從一個第1馬達控制部供 電’因此即使第2馬達控制部停止供電仍可運轉,可持續 進行起重機的運轉。 又’藉著一個第1馬達控制部對於第2馬達供電,即 使從一個第1馬達控制部所供電的第1馬達的能力降低時 • ,由於具備複數個第1馬達,因此可藉著殘餘的第1馬達 持續進行起重機的運轉。 〔發明效果〕 根據本發明的起重機及起重機之控制方法,即使可從 一個第1馬達控制部供電至第2馬達用的一部份馬達控制 部故障時,獲得可持續進行起重機運轉的效果。 •【實施方式】 參閱本發明的一實施形態涉及的澆桶起重機,參閱第 1圖至第8圖說明如下。 弟1圖是說明本實施形態所涉及澆桶起重機的構成的 上面視圖。 澆桶起重機(起重機)1,如第1圖表示,具備:端 模3、主防護部5、輔助防護部7、主台車9及輔助台車 -9- 200808641 (7) 第2圖是說明第1圖的主防護部及主台車的構成的側 面視圖。 端模3是如第2圖表示,沿著設置在傳動衍架1 5的 傳動軌道1 7延伸的一對構件,設有在傳動軌道1 7上傳動 的傳動裝置19。又,端模3如第1圖表示,設有主防護部 5和輔助防護部7。 第3圖是說明第1圖的澆桶起重機的構成的槪略圖。 傳動裝置1 9是如第2圖表示,配置在傳動軌道17和 ^ 端模3之間,使澆桶起重機1沿著傳動軌道17傳動之用 。本實施形態是說明運用在端模3的兩端部具備4個傳動 裝置1 9的實施形態。 各傳動裝置19是如第3圖表不,分別具備:澆桶起 重機1沿著傳動軌道1 7傳動的傳動馬達2 1 A、2 1 B ;傳動 馬達2 1 C、2 1 D ;傳動馬達2 1 E、2 1 F ;及傳動馬達2 1 G、 21H 〇 此外,可以使用變頻控制的習用馬達作爲傳動馬達 21A、21B、21C、21D、21E、21F、21G、21H,尤其不加 以限定。 第4圖爲說明第3圖傳動馬達的電路構成的方塊圖。 對於傳動馬達2 1 A、2 1 B,如第4圖表示從傳動用變 頻裝置23A進行供電。同樣地,對於傳動馬達21 C、21 D ’從傳動用變頻裝置23C進行供電,對於傳動馬達21E、 21F,從傳動用變頻裝置23E進行供電,對於傳動馬達 21G、21H,從傳動用變頻裝置23G進行供電。該等傳動 -10- 200808641 (8) 用變頻裝置23A、23C、23E、23G是從外部供應交流電。 再者,傳動用變頻裝置23A、23C、23E、23G也可以 藉著變壓可變頻率控制進行供電來控制傳動馬達2 i A、 21B、21C、21D、21E、21F、21G、21H,也可以進行穩 電壓固定頻率控制、變壓固定頻率控制或者穩電壓可變頻 率控制,尤其不加以限定。 主保護部5是如第1圖表示,連結一對端模3所配置 的一對樑狀的構件,可將主台車9可移動地載置於上方。 ® 主保護部5是相對於端模3呈大致正交配置的同時,配置 在後述的輔助保護部7的外側。 主保護部5的上面(相對於第1圖的紙面跟前側的面 )配置有沿著主保護部5延伸的主橫移軌道27,主保護部 5的側面(第1圖的下側的面)設有收納後述主捲繞變頻 裝置59A等的電機室29。 在主橫移軌道2 7上載置主台車9,沿著相對於傳動軌 道1 7呈大致正交的方向(以後,標記爲橫移方向)引導 〇 第5圖是說明第1圖的主台車、輔助台車及電機室的 構成的剖面圖。 電機室29是如第5圖表示,配置在和主保護部5側 面(第5圖左側的面)相對的位置的箱型構件。電機室29 的上面(第5圖左側的面)設有固定在從主保護部5延伸 出支撐部31的固定部33,同時如第2圖表示,設有和起 重機的吊鉤(未圖示)卡合的卡合部35。電機室29的下 -11 - 200808641 (9) 面(第5圖下側的面)具備有覆蓋下面的隔熱部37。並1 ,同樣在主保護部5的下面也具備隔熱部37。電機室29 藉著支撐部31和固定部33的結合與脫離,可安裝或卸下 於支撐部3 1。 電機室29的內部配置有主捲繞變頻裝置59A、59B、 5 9C、5 9D ;輔助捲繞變頻裝置87 (參閱第7圖);主横 移變頻裝置67A、67B ;輔助橫移變頻裝置(參閱第7 );及傳動用變頻裝置23八、23€:、23£、23〇(參閱第4 _ 圖)。主捲繞變頻裝置59A、59B、59C、59D等,在電機 室29安裝於支撐部3 1的期間,和後述的捲繞馬達47A等 導電連接。 輔助保護部7是如第1圖表示,和主保護部5同樣配 置在連接一對端模3的一對樑狀構件,可移動地將輔助台 車1 1載置在其上。輔助保護部7是相對於端模3大致呈 正交配置的同時,配置在主保護部5的內側。 輔助保護部7設有輔助橫移軌道3 9。輔助橫移軌道 ^ 3 9將輔助台車1 1載置其上,沿著橫移方向引導。 主台車9是如第3圖表示,設有捲揚捲下澆桶(吊貨 )41 (參閱第5圖)的主捲繞裝置43,及使主台車9橫移 的主橫移馬達(第1馬達)45 A、45 B。 主捲繞裝置43,設有:主捲繞馬達(第1馬達)47A 、4 7B、47C、47D ;主捲繞減速部 49A、49B、49C;主捲 繞筒5 1A、5 1B ;如第5圖表示,懸吊主滑輪5 3 ;起重橫 樑55 ;及主吊鉤57。 -12- 200808641 (10) 主捲繞馬達47A、47B及主捲繞馬達47C、47D是如 第3圖表示,被分開配置在主台車9 一方的端部及另一方 的端部。主捲繞馬達47A、47B、47C、47D的轉動驅動力 是經由主捲繞減速部49A、49B、49C傳達至主捲繞筒51A 、5 1 B 〇 主捲繞馬達47A、47B、47C、47D是選定藉著3個主 捲繞馬達其中之一可捲揚或捲下置有熔鋼的澆桶4 1及主 吊鉤5 7而輸出的馬達。 Φ 再者,主捲繞馬達47A、47B、47C、47D可以使用變 頻控制的習用馬達,尤其不加以限定。 第6圖爲說明第1圖的主捲繞裝置及輔助捲繞裝置的 電路構成的方塊圖。 又,對於主捲繞馬達47人、478、47(:、470,如第6 圖表示分別從捲繞變頻裝置(第1馬達控制部)5 9 A、5 9 B 、5 9 C及主捲繞變頻裝置(一個第1馬達控制部)5 9D供 應交流電。從外部對於該等主捲繞變頻裝置59A、59B、 • 59C、59D供應交流電。 主捲繞變頻裝置5 9 D和主捲繞馬達470之間,連接 有從主捲繞變頻裝置59D供應及切斷交流電至輔助捲繞馬 達75的輔助捲繞用開關61。 主捲繞變頻裝置59A、59B、59C、59D的容量設定大 於後述的輔助捲繞變頻裝置87。主捲繞變頻裝置59A、 5 9B、5 9C、5 9D及輔助捲繞變頻裝置87的容量分別可例 示如500kW和200kW的場合,但是不僅限於此例。 •13- 200808641 (11) 此外,主捲繞變頻裝置59A、59B、59C、59D相對於 供電進行變壓可變頻率控制以進行主捲繞馬達47A、47B 、4 7C、47D的控制,也可以進行穩電壓固定頻率控制、 變壓固定頻率控制或者穩電壓可變頻率控制等,尤其不加 以限定。 主捲繞減速部49A被配置在主捲繞馬達47A、47B之 間,如第1圖表示將主捲繞馬達47A的轉動驅動匯集成一 個轉動驅動力配置可傳達至主捲繞減速部49C。主捲繞減 Φ 速部49B被配置在主捲繞馬達47A、47D之間,將主捲繞 馬達47C、47D的轉動驅動匯集成一個轉動驅動力配置可 傳達至主捲繞減速部49C。 配置主捲繞減速部49C將主捲繞減速部49A及主捲繞 減速部49B所輸入的轉動驅動力傳達至主捲繞筒51A、 51B 〇 並且,主捲繞減速部49A、49B、49C可以使用傳達 習知轉動驅動力的減速機,尤其不加以限定。例如,本實 ^ 施形態表示,也可以組合3個減速部,也可以丨個減速部 將主捲繞馬達47A、47B、47C、47D的轉動驅動力傳達至 主捲繞筒5 1 A、5 1 B,尤其不加以限定。 主捲繞筒51A、51B爲圓筒或圓柱型的構件,可轉動 地配置在中心軸線周圍的同時,可相對於橫移方向呈大致 平行地排列。 主捲繞筒5 1 A、5 1 B如第5圖表示,捲繞有捲揚及捲 下主吊鉤57用的主鋼纜63。主捲繞筒51A、51B是藉著 -14- 200808641 (12) 方 輪 主 柱 於 柱 於 1 a 57 以 橫 習 的 一個轉動方向的轉動驅動放出主鋼纜63,朝著其他轉動 向的轉動驅動捲繞主鋼纜63。並且,對於主捲繞筒5 1 A 5 1B的主鋼纜63的捲繞及放出可同時進行。 主鋼纜63是從主捲繞筒5 1 A、5 1 B朝著吊鉤側主滑 54延伸,捲繞在吊鉤側主滑輪54和懸吊主滑輪53上, 鋼纜63的端部被固定在起重橫樑55上。 懸吊主滑輪53爲配置在主台車9下面的圓筒或圓 形的構件,可轉動地配置在中心軸線周圍的同時,相對 • 橫移方向大致呈平行排列配置該中心軸線。 吊鉤側主滑輪54爲配置在起重橫樑55的圓筒或圓 形的構件,可轉動地配置在中心軸線周圍的同時,相對 橫移方向大致呈平行排列配置該中心軸線。 主吊鉤57是如第5圖表示,卡合在澆桶41的軸4 的吊鉤,起重橫樑55的兩端分別各具備一個。主吊鉤 是如第2圖表示,利用銷65安裝在起重橫樑5 5上,可 銷65的中心軸作爲旋轉中心迴轉。 ^ 主橫移馬達45A是如第3圖表示,配置在主台車9 方的端部,主橫移馬達45B被配置在另一側的端部。主 移馬達45 A、45B所產生的轉動驅動力是如第2圖表示 傳達至主台車9的主橫移部9A。 此外,主橫移馬達45A、45B可以使用變頻控制的 知的馬達,尤其不加以限定。 第7圖是說明第1圖的主橫移馬達及輔助橫移馬達 電路構成的方塊圖。 -15- 200808641 (13) 又,主橫移馬達45 A、45B是如第7圖表示,分別從 主橫移變頻裝置(第1馬達控制部)67A、主橫移變頻裝 置(一個第1馬達控制部)67B供電。對於該等主橫移變 頻裝置67A、67B從外部供應交流電。 主橫移變頻裝置67B和主橫移馬達45B之間,連接有 從主橫移變頻裝置67B對於輔助橫移馬達73進行交流電 的供應及切斷用的輔助橫移用開關69。 設定主橫移變頻裝置67A、67B的容量大於後述的輔 • 助橫移變頻裝置95。主橫移變頻裝置67A、67B及輔助橫 移變頻裝置95的容量可分別例示如45kW和15kW的場合 ,不僅限定於該例。 再者,主橫移變頻裝置67 A、67B也可以進行變壓可 變頻率控制作爲供電的控制來控制主橫移馬達45 A、45B ’也可以進行穩電壓固定頻率控制、變壓固定頻率控制或 者穩電壓可變頻率控制等,尤其不加以限定。 第8圖爲說明第1圖的輔助台車構成的部分側視圖。 ® 輔助台車11如第3圖表示,設有:控制澆桶41(參 閱第5圖)傾斜的輔助捲繞裝置71,及使輔助台車1 1橫 移的輔助橫移馬達(第2馬達)73。 輔助捲繞裝置71,設有:輔助捲繞馬達(第2馬達) 7 5 ;輔助捲繞筒9 ;如第8圖表示,台車側輔助滑輪8 1 ; 吊夠側輔助滑輪8 3 ;及輔助吊飽8 5。 輔助捲繞馬達7 5是如第3圖表示,設置在輔助台車 1 1 一方的端部。輔助捲繞馬達75的轉動驅動力是經由輔 -16- 200808641 (14) 助捲繞減速部77傳達到捲繞筒79。並且,可以使 控制的習用馬達作爲捲繞馬達75,尤其不加以限定 又,輔助捲繞馬達75如第6圖表示,從輔助 頻裝置(第2馬達控制部)8 7進行供電,對於輔助 頻裝置87從外部供應交流電。 此外,輔助捲繞變頻裝置87也可以相對於供 變壓可變頻率控制來控制輔助捲繞馬達75,也可以 電壓固定頻率控制、變壓固定頻率控制或者穩電壓 • 率控制等,尤其不加以限定。 輔助減速部77是配置將輔助捲繞馬達75的轉 力傳達至輔助捲繞筒79。 此外,輔助捲繞減速部77可以使用傳達習知 驅動力的減速機,尤其不加以限定。 輔助捲繞筒79爲圓筒或圓柱形的構件,配置 心軸線周圍轉動的同時,相對於橫移方向配置成大 〇 ^ 輔助捲繞筒79捲繞有輔助吊鉤85捲揚或捲下 助鋼纜8 9。藉著輔助捲繞筒7 9之一轉動方向的轉 放出輔助鋼纜89,並藉著其他轉動方向的轉動驅動 助鋼纜89。 輔助鋼纜89從輔助捲繞筒79朝著吊鉤側輔助 延伸,捲繞在吊鉤側輔助滑輪83和台車側輔助滑_ ,輔助鋼纜89的端部被固定在輔助台車11上。 台車側輔助滑輪81爲配置在輔助台車11的輔 用變頻 〇 捲繞變 捲繞變 電進行 進行穩 可變頻 動驅動 的轉動 可在中 致垂直 用的輔 動驅動 捲繞輔 滑輪8 3 I 81上 助捲繞 -17- 200808641 (15) 馬達7 5和輔助捲繞筒7 9之間的圓筒或圓柱形的構件,可 轉動地配置在中心軸線周圍的同時,該中心軸線被配置在 相對於橫移方向大致呈垂直。 吊鉤側輔助滑輪8 3爲配置在輔助吊鉤8 5的輔助吊鉤 區塊9 1的圓筒或圓柱形的構件,可轉動地配置在中心軸 線周圍的同時,該中心軸線被配置在相對於橫移方向大致 呈垂直。 輔助吊鉤85是如第5圖表示,設置在輔助吊鉤區塊 ® 91的吊鉤,懸吊在設置於澆桶4 1側壁的傾轉金屬件4 1 b 〇 輔助橫移馬達73是如第3圖表示,配置在輔助台車 1 1的另一側端部。輔助橫移馬達7 3所產生的轉動驅動力 是如第8圖表示,傳達至輔助台車11的輔助橫移部93。 並且,輔助橫移馬達73可以使用變頻控制的習知用馬達 ’尤其不加以限定。 又,對於輔助橫移馬達73,如第7圖表示從輔助橫移 ^ 變頻裝置(第2馬達控制部)95供電。相對於輔助橫移變 頻裝置9 5從外部供應交流電。 此外,輔助橫移變頻裝置95也可以進行變壓可變頻 率控制作爲供電的控制以控制輔助橫移馬達73,也可以進 行穩電壓固定頻率控制、變壓固定頻率控制或者穩電壓可 變頻率控制等,尤其不加以限定。 接著,上述構成的澆桶起重機1中針對搬運澆桶41 的方法說明如下。 -18- 200808641 (16) 首先在搬運澆桶41時,如第2圖表示,澆桶起重機1 沿著傳動軌道1 7移動的同時’主台車9橫移使主吊鉤5 7 在澆桶41的上方移動。 主台車9一旦移動到澆桶41的上方爲止,如第5圖 表示,主吊鉤57被捲下而將主吊鉤57懸吊在澆桶41的 軸41a上,藉著主捲繞裝置43將澆桶41向上方捲揚。 捲揚主吊鉤57時,如第6圖表示,從主捲繞變頻裝 置59A、59B、5 9C、59D供應交流電到主捲繞裝置的主捲 Φ 繞馬達47A、47B、47C、47D,從主捲繞馬達47A、47B 、47C、47D產生轉動驅動力。轉動驅動力是如第3圖表 示,經由主捲繞減速部49A、49B及主捲繞減速部49C傳 達至主捲繞筒51A、51B。藉著主捲繞筒51A、51B所傳達 的種動驅動力轉動驅動。 藉著主捲繞筒5 1 A、5 1 B的轉動,將主鋼纜63捲繞在 主捲繞筒5 1 A、5 1 B上,懸吊澆桶4 1的主吊鉤5 7被朝著 上方捲揚。 此時,切斷輔助捲繞用開關61,將主捲繞變頻裝置 5 9D所供應的交流電力全部供應到主捲繞馬達47D。 並且,主捲繞馬達47A、47B、47C、47D是以同樣的 輸出動作,主捲繞變頻裝置5 9A、59B、59C、59D及主捲 繞馬達47A、47B、47C、47D是以殘留的餘力的狀態運轉 〇 一旦吊下澆桶41時,澆桶起重機1沿著傳動軌道1 7傳動的同時,藉著主台車9的橫移,例如可搬運到轉爐 -19- 200808641 (17) 等的附近。 澆桶起重機1傳動時。如第4圖表示,從傳動用變頻 裝置2 3 A、2 3 C、2 3 E供應交流電到傳動馬達2 1 A、2 1 B、 21C、21D、21E、21F、21G、21H,從傳動馬達 21A、21B 、21C、21D、21E、21F、21G、21H 產生轉動驅動力。轉 動驅動力傳達到傳動裝置1 9,使澆桶起重機1沿著傳動軌 道1 7傳動至澆桶4 1接近轉爐等爲止。 此時,傳動用變頻裝置23A、23C、23E控制供應的 交流電,藉此從傳動馬達2 1 A、2 1 B、2 1 C、2 1 D、2 1 E、 2 1 F、2 1 G、2 1 Η產生相同的轉動驅動力。 此外,傳動馬達 21Α、21Β、21C、21D、21Ε、21F、 21G、21Η的其中之一故障時,也可以藉著對應故障的傳 動馬達的傳動用開關切斷對於故障後馬達的交流電的供應 ,此時,澆桶起重機藉著其餘的傳動馬達沿著傳動軌道1 7 傳動。 又,對於主台車9的主橫移馬達4 5 A、4 5 Β,如第7 圖表示從主橫移變頻裝置67A、67B供應交流電,從主橫 移馬達45A、45B產生轉動驅動力。轉動驅動力傳達至主 橫移部9A,主台車9使澆桶1沿著主保護部5橫移至接 近轉爐等爲止。 此時,切斷輔助橫移用開關69,將從主橫移變頻裝置 67所供應的交流電全部供應到主橫移馬達45B。 隨後’藉著輔助捲繞裝置71使澆桶41傾斜,將澆桶 4 1內的熔鋼澆注到轉爐等。 -20- 200808641 (18) 以輔助捲繞裝置7 1使湊桶4 1傾斜時,首先,捲下輔 助吊鉤8 5的同時,輔助吊鉤8 5在懸吊澆桶41的傾轉金 屬件的位置使輔助台車11橫移。輔助台車11橫移時,如 第7圖表不’從輔助橫移變頻裝置95供應交流電至輔助 台車1 1的輔助橫移馬達3,從輔助橫移馬達73產生轉動 驅動力。將轉動驅動力傳達至輔助橫移部9 3,使輔助台車 1 1沿著主保護部5橫移至輔助吊鉤8 5懸吊於澆桶4 1的傾 轉金屬件的位置爲止。 ® 此時,切斷輔助橫移用開關6 9,將從主橫移變頻裝置 95所供應的交流電全部供應到主橫移馬達73。 輔助吊鉤8 5 —旦懸吊在澆桶4 1的傾轉金屬件時,藉 著輔助捲繞裝置7 1捲揚輔助吊鉤使澆桶傾斜。 輔助吊鉤捲揚時,如第6圖表示從輔助捲繞變頻裝置 87供應交流電至輔助捲繞裝置71的輔助捲繞馬達75,從 輔助捲繞馬達7 5產生轉動驅動力。將轉動驅動力經由輔 助捲繞減速部77傳達至輔助捲繞筒79。藉著所傳達的轉 ® 動驅動力轉動驅動輔助捲繞筒79。 轉動輔助捲繞筒79,藉此將輔助鋼纜89捲繞在輔助 捲繞筒79上,懸吊傾轉金屬件的輔助吊鉤85被朝著上方 捲揚。澆桶41是以懸吊在主吊鉤5 7的軸41 a爲中心,從 傾斜的繞桶41將熔鋼等澆注在轉爐等。 €此’說明本實施形態特徵的輔助捲繞變頻裝置87 或輔助橫移變頻裝置95故障時的澆桶起重機1的運轉方 法。 -21 - 200808641 (19) 首先,針對輔助捲繞裝置8 7故障時說明。輔助捲繞 變頻裝置87故障時,如第6圖表示,連接著輔助捲繞開 關6 1,從主捲繞變頻裝置59D供應交流電到輔助捲繞馬 達75。使供應交流電的輔助捲繞馬達75產生轉動驅動力 ,可進行輔助吊鉤85的捲揚及捲下,持續進行澆桶起重 機1的運轉。 另一方面,不對主捲繞馬達47D供應交流電,主捲繞 馬達47D的輸出即形成爲零。控制主捲繞變頻裝置59A、 Φ 59B、59C供應的交流電,使主捲繞馬達47A、47B、47C 的輸出形成最大。主捲繞裝置43藉著3台主捲繞馬達 47A、47B、47C,可持續進行主吊鉤57及澆桶41的捲揚 及捲下的作業。 又,4台主捲繞馬達47A、47B、47C、47D中,2台 馬達不能作動的狀態下,例如主捲繞馬達47C、4 7D不能 作動時,藉著剩餘的2台主捲繞馬達47A、47B,進行主 吊鉤5 7及澆桶41的捲下作業,中斷澆桶起重機丨的作業 •。 捲下主吊鉤57及澆桶41時,2台主捲繞馬達47A、 47B的輸出爲最大,可安全地降下主吊鉤57及澆桶41。 再者,2台主捲繞馬達47A、47B中,由於輸出的不足而 不能持續進行主吊鉤57及澆桶41的捲揚作業。 接著’針對輔助橫移變頻裝置9 5故障時說明如下。 輔助橫移變頻裝置9 5故障時,如第7圖表示,連接著橫 移用開關69,從主橫移變頻裝置67B供應交流電到輔助 -22- 200808641 (20) 橫移馬達73。使供應交流電的輔助橫移馬達73產生轉動 驅動力,可以使輔助台車1 1橫移,持續進行澆桶起重機j 的運轉。 另一方面,不對主橫移馬達45B供應交流電,主橫移 馬達45 B的輸出即形成爲零。主台車9由於是藉著1台主 橫移馬達45A的輸出而橫移,因此雖會降低橫移速度,但 仍可持續進行主台車9的橫移。 此外,輔助捲繞變頻裝置87或輔助橫移變頻裝置 ® 的故障可以設置在輔助捲繞裝置7 1的自我診斷裝置發現 ’或者作業員定期的檢查發現,尤其不加以限定。又,_ 助捲繞用開關6 1或橫移用開關69的操作以作業員來進行 爲佳。作業員可辨識輔助捲繞變頻裝置87或輔助橫移變 頻裝置95的故障,可確實地採取故障後的輔助捲繞變頰 裝置8 7或輔助橫移變頻裝置9 5的修理或更換等的措施。 根據上述構成,輔助變頻裝置87即使故障時仍然可 以持續進行輔助捲繞馬達的運轉,因此可持續進行輔助吊· ^ 鉤85的捲揚及捲下。亦即可持續進行澆桶起重機1的運 轉。 輔助捲繞變頻裝置87未故障的場合,停止從主捲繞 變頻裝置59D對於輔助捲繞馬達75的交流電的供應,對 主捲繞馬達47D供應交流電。因此,與僅對於輔助捲繞馬 達75供電的場合使用馬達控制部的場合比較,由於經常 使用主捲繞變頻裝置59D,因此在輔助捲繞變頻裝置87 故障時可確實對於輔助捲繞馬達75進行供電。 -23- 200808641 (21) 根據本實施形態的澆桶起重機1,輔助捲繞變頻 87即使故障,仍可藉著其他主捲繞馬達47A、47B、 進行澆桶4 1及主吊鉤5 7的捲揚及捲下,可持續進行 起重機1的運轉。 具體而言,輔助捲繞變頻裝置87故障時,從主 變頻裝置59D供電到輔助捲繞馬達75,停止從輔助 變頻裝置85供電到主捲繞馬達47D。以上的場合, 著其他的主捲繞馬達47A、47B、47C進行澆桶41及 ® 鉤57的捲揚及捲下的同時,可以輔助捲繞馬達75進 助吊鉤85的捲揚及捲下,因此可持續進行澆桶起重 的運轉。 主捲繞變頻裝置59D由於電容量大於輔助捲繞變 置87,因此在輔助捲繞變頻裝置87故障,持續進行 機的運轉時可確實對於輔助捲繞馬達供應所需的電力 根據本實施形態的澆桶起重機1,輔助橫移變頻 9 5即使故障時仍可持續進行輔助橫移馬達7 3的運轉 ^ 此可持續進行輔助台車1 1的橫移。亦即,可以持續 澆桶起重機1的運轉。 又,輔助橫移變頻裝置95在未故障時,從主橫 頻裝置67B供應交流電至主橫移馬達4 5B,因此僅對 助橫移馬達73供電的場合和使用預備的馬達控制部 合比較,輔助橫移變頻裝置9 5故障時可確實持續進 助台車1 1的運轉。 根據本實施形態的澆桶起重機1,輔助橫移變頻 裝置 47C 澆桶 捲繞 捲繞 可藉 主吊 行輔 機1 頻裝 起重 〇 裝置 ,因 進行 移變 於輔 的場 行輔 裝置 -24 - 200808641 (22) 95即使故障時,仍可藉著其他主橫移馬達45A使主台車9 橫移,可持續進行澆桶起重機1的運轉。 具體而言,輔助橫移變頻裝置95故障時,從主橫移 變頻裝置67B供應交流電至輔助橫移馬達73,停止從主 橫移變頻裝置67B供應交流電的主橫移馬達45B。以上的 場合,可藉著其他主橫移馬達45A進行主台車9移動的同 時,並可以輔助橫移馬達7 3進行輔助台車1 1的橫移,因 此可持續進行澆桶起重機1的運轉。 ® 主橫移變頻裝置67B由於電容量大於輔助橫移變頻裝 置95,因此在輔助橫移變頻裝置95故障,持續進行澆桶 起重機1的運轉時可確實對於輔助橫移馬達73供應所需 的電力。 【圖式簡單說明】 第1圖爲說明本發明一實施形態涉及的澆桶起重機構 成的上面視圖。 第2圖爲說明第1圖的主保護部及主台車構成的側視 圖。 第3圖爲說明第1圖的澆桶起重機構成的槪略圖。 第4圖爲說明第3圖的傳動馬達的電路構成的方塊圖 〇 第5圖爲說明第1圖的主台車、輔助台車及電機室的 構成的剖視圖。 第6圖爲說明第1圖的主捲繞裝置及輔助捲繞裝置的 -25- 200808641 (23) 電路構成的方塊圖。 第7圖爲說明第丨圖的主橫移馬達及輔助橫移馬達的 電路構成的方塊圖。 第8圖爲說明第1圖的輔助台車構成的部份側視圖。 【主要元件符號說明】 1 :澆桶起重機(起重機) 9 :主台車 ® 1 1 :輔助台車 41 :澆桶(吊貨) 45A、45B :主橫移馬達(第1馬達) 47A、47B、47C、47D :主捲繞馬達(第1馬達) 59A、59B、59C :主捲繞變頻裝置(第i馬達控制部) 5 9D :主捲繞變頻裝置(一個第1馬達控制部) 67A :主橫移變頻裝置(第〗馬達控制部) 6:7B :主橫移變頻裝置(一個第1馬達控制部) 7 3 :輔助橫移馬達(第2馬達) 7 5 :輔助捲繞馬達(第2馬達) 87 :輔助捲繞變頻裝置(第2馬達控制部) 95 :輔助橫移變頻裝置(第2馬達控制部) -26 -200808641 (1) Description of the Invention [Technical Field] The present invention relates to a crane, and more particularly to a bucket crane for use in a bucket conveyance and a control method therefor. [Prior Art] In the past, in a steel making facility or a steel making facility, steel was placed in a ladle (melting pot), and the entire ladle was transported by a bucket crane. For example, the molten steel is placed in a ladle from an electric furnace or the like, and is transferred to a converter or the like after being transported to a converter or the like by a bucket crane. The bucket crane is conveyed in a state in which the main drum is used to lift the ladle to assist the winding device to lift the lower portion of the ladle to tilt the ladle, and to inject the molten steel from the ladle into the converter (for example, refer to Japanese Patent Literature 1 ). [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei No. Hei No. Hei No. 1 - 268 8 8 1 [Disclosed] In the conventional bucket crane, the main winding device is a motor and a motor control unit of two groups. In this configuration, the bucket and the motor control unit are used to lift and hang the bucket. However, only one set of the motor and the motor control unit can be lifted even if the ladle can be suspended. Therefore, for example, when one motor control unit fails, there is a problem that the operation of the bucket crane cannot be continued. Further, the auxiliary winding device is constituted by a group of motors and a motor control unit -4- 200808641 (2), and the tilting of the ladle is performed by a group of motors and a motor control unit. Therefore, for example, when the motor control unit of the auxiliary winding device fails, there is a problem that the bucket crane cannot be continuously operated. The auxiliary winding device is mounted on the auxiliary carriage, and is traversed by a group of motors and motor control units for traverse provided on the auxiliary carriage. Therefore, for example, when the traverse motor control unit fails, the traverse of the auxiliary winding device cannot be performed, and the operation of the bucket crane cannot be continued. In order to solve the above problems, the present invention has been made in an effort to provide a control method for a crane and a crane that can continuously perform crane operation even if a part of the motor control unit fails. [Means for Solving the Problems] In order to achieve the above object, the present invention provides the following means. A crane according to the present invention includes: a plurality of first motors 0; and a plurality of first motor control units that respectively control the supply of the plurality of motors, thereby controlling the first motor output; the second motor; And controlling the second motor control unit that controls the second motor output by controlling the electric power supplied to the second motor, and controlling the power supply and the power failure from the first motor control unit to the second motor. According to the present invention, for example, even if the second motor control unit fails, electric power can be supplied from one first motor control unit to the second motor, so that the operation of the crane can be continued. In other words, since the second motor is supplied with power from the first motor control unit, even if the power supply from the second motor control unit is stopped -5 - 200808641 (3), the operation can be continued, and the operation of the crane can be continued. Further, when the first motor is supplied to the second motor by one first motor control unit, even if the first motor from the first motor control unit is stopped or the capacity is lowered, since the plurality of first motors are provided, other units can be used. 1 The motor continues to operate the crane. When there is no failure, the second motor control unit stops the supply of power to the second motor from the first motor control unit, and supplies power to the first motor. Therefore, when the second motor is supplied with power, the first motor control unit is often used as compared with the case where the motor control unit is used. Therefore, when the second motor control unit fails, the second motor can be surely supplied with power. . In the above invention, it is preferable that the one first motor control unit has a larger electric capacity that is more controllable than the second motor control unit. According to the present invention, since the first motor control unit has a larger capacity than the second motor control unit, when the second motor control unit fails, the electric power required for the second motor can be surely supplied when the crane operation is continued. In the above invention, the main hook for lifting the cargo and the auxiliary hook for controlling the loading and unloading posture are provided, and the main hook is hoisted or rolled up by the plurality of first motors, The auxiliary hook is preferably hoisted or rolled up by the second motor. According to the present invention, for example, even when the second motor control unit fails, the operation of the second motor can be continued, and the auxiliary hook can be continuously hoisted and rolled down. That is, the operation of the crane can be continued. In addition, when the second motor control unit supplies power to the second motor from the first motor control unit, the second motor control unit is only used for the second motor power supply, -6-200808641 (4), and the use of the preparatory motor control. In the case of the part, the operation of the auxiliary hook can be surely continued when the second motor control unit fails. In the above invention, when the first motor control unit supplies power to the second motor, the other first motor is supplied to the other first motor, and the cargo and the main hook are hoisted or rolled. The next is better. According to the present invention, for example, even if the second motor control unit fails, the other first motor can be used to lift and unwind the cargo and the main hook, and the operation of the crane can be continued. Specifically, when the second motor control unit fails, power is supplied from one first motor control unit to the second motor, and the output of the first motor supplied from one first motor control unit is lowered or the first motor is turned off. stop. In the above case, the lifting and winding of the main hook can be carried out by the other first motor, and the auxiliary hook can be hoisted and rolled by the second motor, so that the crane can be continuously carried out. Running. In the above aspect of the invention, the first motor is disposed, and the main vehicle that is movable in a predetermined direction is disposed, and the second motor is provided, and an auxiliary vehicle that is movable in the predetermined direction is disposed, and the main vehicle is disposed. Preferably, the auxiliary carriage is moved by the second motor by the plurality of first motors. According to the present invention, for example, the second motor control unit can continue the operation of the second motor even if it fails, so that the movement of the auxiliary vehicle can be continued. That is, the operation of the crane can be continued. In the case where the second motor control unit is not in failure, the first motor control unit supplies power to the first motor. Therefore, when only the second motor is powered by the 200808641 (5) and the motor control unit is used, the comparison is made. When the second motor control unit fails, the operation of the auxiliary vehicle can be surely continued. In the above invention, when the first motor control unit supplies power to the second motor, the other first motor control unit supplies power to the other first motor, and the main vehicle is preferably moved. According to the present invention, for example, even if the second motor control unit fails, the main vehicle can be moved by the other first motor, and the operation of the crane can be continued. Φ Specifically, when the second motor control unit fails, power is supplied from one of the second motor control units to the second motor, and the output of the first motor supplied from the first motor control unit is lowered or the first motor is stopped. . In the above case, the movement of the main hook can be performed by the other first motor, and the movement of the auxiliary carriage can be performed by the second motor, so that the operation of the crane can be continued. In the above invention, the first motor control unit and the second motor control unit are inverter devices, and it is preferable to drive the inverter motor of the first motor and the second motor by the inverter device. According to the invention, the first and second motor control units are used as the inverter devices, and the first and second motors are used as the inverter motors, so that the outputs of the first and second motors can be easily controlled. In the control method of the crane according to the present invention, the power supply from the plurality of first motor control units is controlled to control the output of the plurality of first motors, and the power supply from the second motor control unit is controlled, thereby controlling the second The output of the motor, when the second motor control unit fails, from a first horse -8- 200808641 (6). The control unit supplies power to the second motor. According to the present invention, the second motor control unit can supply power from the first motor control unit to the second motor even if it fails, so that the operation of the crane can be continued. In other words, since the second motor is supplied from the first motor control unit, the second motor control unit can be operated even if the power supply is stopped, and the operation of the crane can be continued. Further, when the first motor control unit supplies power to the second motor, even if the capacity of the first motor supplied from the first motor control unit is lowered, the plurality of first motors are provided, so that the remaining The first motor continues to operate the crane. [Effect of the Invention] According to the control method of the crane and the crane of the present invention, even if a part of the motor control unit for supplying power from the first motor control unit to the second motor fails, the effect of continuously performing the crane operation can be obtained. [Embodiment] Referring to the first to eighth drawings, a bucket crane according to an embodiment of the present invention will be described below. Fig. 1 is a top view for explaining the configuration of the bucket crane according to the embodiment. As shown in Fig. 1, the bucket crane (crane) 1 includes: an end die 3, a main guard 5, an auxiliary guard 7, a main trolley 9, and an auxiliary trolley-9-200808641 (7) Fig. 2 is a description of the first Side view of the main guard of the figure and the configuration of the main trolley. The end mold 3 is as shown in Fig. 2, and a pair of members extending along the transmission rail 17 provided on the transmission truss 15 are provided with a transmission 19 that is driven on the transmission rail 17. Further, as shown in Fig. 1, the end mold 3 is provided with a main guard portion 5 and an auxiliary guard portion 7. Fig. 3 is a schematic view showing the configuration of the bucket crane of Fig. 1. The transmission unit 19 is shown as Fig. 2 and is disposed between the transmission rail 17 and the end mold 3 to drive the bucket crane 1 along the transmission rail 17. In the present embodiment, an embodiment in which four transmission devices 19 are provided at both end portions of the end mold 3 will be described. Each of the transmission devices 19 is not shown in the third diagram, respectively: a transmission motor 2 1 A, 2 1 B driven by the bucket crane 1 along the transmission rail 17; a transmission motor 2 1 C, 2 1 D; a transmission motor 2 1 E, 2 1 F ; and the transmission motor 2 1 G, 21H 〇 In addition, a conventional motor with variable frequency control can be used as the transmission motors 21A, 21B, 21C, 21D, 21E, 21F, 21G, 21H, and is not particularly limited. Fig. 4 is a block diagram showing the circuit configuration of the drive motor of Fig. 3. For the drive motors 2 1 A, 2 1 B, as shown in Fig. 4, power is supplied from the transmission inverter unit 23A. Similarly, power is supplied from the transmission inverter unit 23C to the transmission motors 21 C and 21 D ', and power is supplied from the transmission inverter unit 23E to the transmission motors 21E and 21F, and from the transmission inverter unit 23G to the transmission motors 21G and 21H. Power is supplied. These transmissions -10- 200808641 (8) The inverter devices 23A, 23C, 23E, and 23G supply AC power from the outside. Furthermore, the transmission frequency conversion devices 23A, 23C, 23E, 23G can also control the transmission motors 2 i A, 21B, 21C, 21D, 21E, 21F, 21G, 21H by supplying power to the variable voltage variable frequency control, or The steady voltage fixed frequency control, the variable voltage fixed frequency control, or the stable voltage variable frequency control are performed, and are not particularly limited. The main protection portion 5 is a pair of beam-shaped members that are disposed to connect the pair of end molds 3 as shown in Fig. 1, and the main carriage 9 can be movably placed above. The main protection portion 5 is disposed substantially orthogonally with respect to the end mold 3, and is disposed outside the auxiliary protection portion 7 to be described later. The main traverse rail 27 extending along the main protection portion 5 and the side surface of the main protection portion 5 (the lower surface of the first figure) are disposed on the upper surface of the main protection portion 5 (the surface on the front side with respect to the paper surface of Fig. 1). The motor room 29 in which the main winding inverter 59A or the like described later is housed is provided. The main carriage 9 is placed on the main traverse rail 27, and is guided in a direction substantially orthogonal to the transmission rail 17 (hereinafter, referred to as a traverse direction). FIG. 5 is a view showing the main carriage of FIG. A cross-sectional view of the structure of the auxiliary trolley and the motor compartment. The motor chamber 29 is a box-shaped member that is disposed at a position facing the side surface of the main protection portion 5 (the surface on the left side in Fig. 5) as shown in Fig. 5. The upper surface of the motor chamber 29 (the surface on the left side of FIG. 5) is provided with a fixing portion 33 fixed to the support portion 31 from the main protection portion 5, and as shown in Fig. 2, a hook for the crane is provided (not shown). ) the engaged portion 35 of the engagement. The lower surface -11 - 200808641 (9) of the motor chamber 29 (the surface on the lower side of Fig. 5) is provided with a heat insulating portion 37 covering the lower surface. Further, in the same manner, the heat insulating portion 37 is also provided under the main protection portion 5. The motor chamber 29 can be attached or detached to the support portion 31 by the combination and disengagement of the support portion 31 and the fixing portion 33. Main winding frequency conversion devices 59A, 59B, 5 9C, and 5 9D are arranged inside the motor chamber 29; auxiliary winding frequency conversion device 87 (refer to Fig. 7); main traverse frequency conversion devices 67A, 67B; auxiliary traverse frequency conversion device ( See section 7); and drive inverters 23, 23 €:, 23 £, 23 〇 (see section 4 _ figure). The main winding inverters 59A, 59B, 59C, 59D and the like are electrically connected to the winding motor 47A and the like which will be described later while the motor chamber 29 is attached to the support portion 31. As shown in Fig. 1, the auxiliary protection portion 7 is disposed in the same manner as the main protection portion 5 in a pair of beam-like members that connect the pair of end molds 3, and movably mounts the auxiliary carriage 1 thereon. The auxiliary protection portion 7 is disposed substantially orthogonally with respect to the end mold 3, and is disposed inside the main protection portion 5. The auxiliary protection portion 7 is provided with an auxiliary traverse rail 39. The auxiliary traverse track ^ 3 9 mounts the auxiliary trolley 1 1 and guides it in the traverse direction. The main carriage 9 is a main winding device 43 provided with a hoisting down pour bucket (lifting cargo) 41 (see Fig. 5) and a main traverse motor for traversing the main carriage 9 (shown in Fig. 3). 1 motor) 45 A, 45 B. The main winding device 43 is provided with: main winding motors (first motors) 47A, 4 7B, 47C, 47D; main winding reduction units 49A, 49B, 49C; main winding units 5 1A, 5 1B; Figure 5 shows the suspension main pulley 5 3; the lifting beam 55; and the main hook 57. -12- 200808641 (10) The main winding motors 47A and 47B and the main winding motors 47C and 47D are arranged at the end of the main carriage 9 and the other end portion as shown in Fig. 3 . The rotational driving force of the main winding motors 47A, 47B, 47C, 47D is transmitted to the main winding drums 51A, 5 1 B 〇 main winding motors 47A, 47B, 47C, 47D via the main winding reduction units 49A, 49B, 49C. A motor that is output by one of three main winding motors that can be hoisted or rolled down with a molten steel ladle 4 1 and a main hook 57. Φ Further, the main winding motors 47A, 47B, 47C, and 47D can use a conventional motor of variable frequency control, and are not particularly limited. Fig. 6 is a block diagram showing the circuit configuration of the main winding device and the auxiliary winding device of Fig. 1; Further, the main winding motor 47, 478, 47 (:, 470, as shown in Fig. 6 shows the winding frequency conversion device (first motor control unit) 5 9 A, 5 9 B , 5 9 C and the main volume, respectively. The alternating current is supplied to the frequency conversion device (one first motor control unit) 5 9D. The alternating current is supplied from the outside to the main winding frequency conversion devices 59A, 59B, 59C, 59D. The main winding frequency conversion device 5 9 D and the main winding motor Between the 470, the auxiliary winding switch 61 that supplies and cuts the alternating current from the main winding inverter 59D to the auxiliary winding motor 75 is connected. The capacity setting of the main winding inverters 59A, 59B, 59C, and 59D is larger than that described later. The auxiliary winding variable frequency device 87. The capacities of the main winding variable frequency devices 59A, 5 9B, 5 9C, 5 9D and the auxiliary winding variable frequency device 87 can be exemplified by, for example, 500 kW and 200 kW, but are not limited to this example. 200808641 (11) In addition, the main winding variable frequency devices 59A, 59B, 59C, 59D perform variable voltage variable frequency control with respect to the power supply to control the main winding motors 47A, 47B, 4 7C, 47D, and can also perform stable voltage Fixed frequency control, variable voltage fixed frequency control or stable The variable-speed frequency control or the like is not particularly limited. The main winding reduction portion 49A is disposed between the main winding motors 47A, 47B, and as shown in Fig. 1, the rotational driving of the main winding motor 47A is combined into one rotational drive. The force arrangement can be transmitted to the main winding reduction unit 49C. The main winding reduction speed portion 49B is disposed between the main winding motors 47A, 47D, and the rotational driving of the main winding motors 47C, 47D is combined into one rotational driving force. The arrangement is transmitted to the main winding reduction unit 49C. The main winding reduction unit 49C transmits the rotational driving force input from the main winding reduction unit 49A and the main winding reduction unit 49B to the main winding units 51A and 51B, and The main winding reduction units 49A, 49B, and 49C can use a speed reducer that transmits a conventional rotational driving force, and are not particularly limited. For example, in the present embodiment, three speed reduction units may be combined, or one speed reduction unit may be used. The rotational driving force of the main winding motors 47A, 47B, 47C, 47D is transmitted to the main winding drums 5 1 A, 5 1 B, and is not particularly limited. The main winding drums 51A, 51B are cylindrical or cylindrical members. , rotatably disposed around the central axis At the same time, they can be arranged substantially in parallel with respect to the traverse direction. The main winding drums 5 1 A, 5 1 B are shown in Fig. 5, and the main steel cable 63 for winding and unwinding the main hooks 57 is wound. The main winding drums 51A, 51B are driven to rotate the main steel cable 63 by a rotation of the main shaft of the square wheel of the -14-200808641 (12) wheel at 1 a 57 in a direction of rotation, and rotate toward the other rotating directions. The main cable 63 is driven to be wound. Further, the winding and discharging of the main wire rope 63 of the main winding drum 5 1 A 5 1B can be simultaneously performed. The main steel cable 63 extends from the main winding drums 5 1 A, 5 1 B toward the hook side main slide 54 and is wound around the hook side main pulley 54 and the suspended main pulley 53, the end of the steel cable 63 It is fixed to the lifting beam 55. The suspension main pulley 53 is a cylindrical or circular member disposed under the main carriage 9, and is rotatably disposed around the central axis while arranging the central axis substantially in parallel with respect to the traverse direction. The hook side main pulley 54 is a cylindrical or circular member disposed on the lifting beam 55, and is rotatably disposed around the central axis, and the central axis is arranged substantially in parallel with respect to the traverse direction. The main hook 57 is a hook that is engaged with the shaft 4 of the ladle 41 as shown in Fig. 5, and each of the two ends of the lifting beam 55 is provided. The main hook is attached to the lifting beam 5 5 by a pin 65 as shown in Fig. 2, and the central axis of the pin 65 is rotated as a center of rotation. The main traverse motor 45A is disposed at the end of the main carriage 9 as shown in Fig. 3, and the main traverse motor 45B is disposed at the other end. The rotational driving force generated by the main moving motors 45 A, 45B is the main traverse portion 9A which is transmitted to the main carriage 9 as shown in Fig. 2 . Further, the main traverse motors 45A, 45B can use a known motor of variable frequency control, and are not particularly limited. Figure 7 is a block diagram showing the configuration of the main traverse motor and the auxiliary traverse motor of Fig. 1. -15- 200808641 (13) Further, the main traverse motors 45 A and 45B are shown in Fig. 7, and are respectively driven from the main traverse frequency conversion device (first motor control unit) 67A and the main traverse frequency conversion device (one first motor). The control unit 67B supplies power. The main yaw shifting devices 67A, 67B supply alternating current from the outside. Between the main traverse frequency conversion device 67B and the main traverse motor 45B, an auxiliary traverse switch 69 for supplying and cutting an alternating current to the auxiliary traverse motor 73 from the main traverse frequency conversion device 67B is connected. The capacity of the main traverse frequency conversion devices 67A, 67B is set to be larger than the auxiliary traverse conversion device 95 to be described later. The capacities of the main traverse frequency conversion devices 67A, 67B and the auxiliary traverse frequency conversion device 95 can be exemplified as 45 kW and 15 kW, respectively, and are not limited to this example. Furthermore, the main traverse frequency conversion devices 67 A, 67B can also perform variable voltage variable frequency control as power supply control to control the main traverse motor 45 A, 45B ' can also perform steady voltage fixed frequency control, variable voltage fixed frequency control Or stable voltage variable frequency control, etc., in particular, not limited. Fig. 8 is a partial side elevational view showing the configuration of the auxiliary carriage of Fig. 1. As shown in Fig. 3, the auxiliary cart 11 is provided with an auxiliary winding device 71 for controlling the tilting of the ladle 41 (see Fig. 5), and an auxiliary traverse motor (second motor) 73 for traversing the auxiliary carriage 11. . The auxiliary winding device 71 is provided with: an auxiliary winding motor (second motor) 7 5; an auxiliary winding drum 9; as shown in Fig. 8, a trolley side auxiliary pulley 8 1 ; a hanging side auxiliary pulley 8 3 ; Hanging 8 5 . The auxiliary winding motor 275 is provided at the end of one side of the auxiliary carriage 1 as shown in Fig. 3 . The rotational driving force of the auxiliary winding motor 75 is transmitted to the winding drum 79 via the auxiliary-16-200808641 (14) assist winding reduction unit 77. Further, the conventional motor to be controlled can be used as the winding motor 75, and the auxiliary winding motor 75 is shown in Fig. 6, and power is supplied from the auxiliary frequency device (second motor control unit) 87 for the auxiliary frequency. The device 87 supplies alternating current from the outside. In addition, the auxiliary winding variable frequency device 87 can also control the auxiliary winding motor 75 with respect to the variable voltage variable frequency control, or can be fixed voltage control, variable frequency fixed frequency control, or stable voltage rate control, etc., especially not limited. The auxiliary reduction unit 77 is configured to transmit the rotational force of the auxiliary winding motor 75 to the auxiliary winding drum 79. Further, the auxiliary winding speed reducing portion 77 can use a speed reducer that transmits a conventional driving force, and is not particularly limited. The auxiliary winding drum 79 is a cylindrical or cylindrical member, and is arranged to be rotated with respect to the traverse direction while being arranged to rotate around the core axis. The auxiliary winding drum 79 is wound with the auxiliary hook 85 hoisting or winding down. Steel cable 8 9. The auxiliary cable 89 is turned by the rotation direction of one of the auxiliary winding drums 7, and the auxiliary wire 89 is driven by the rotation in other directions of rotation. The auxiliary wire rope 89 is extended from the auxiliary winding drum 79 toward the hook side, and is wound around the hook side auxiliary pulley 83 and the carriage side auxiliary slide_, and the end portion of the auxiliary wire rope 89 is fixed to the auxiliary carriage 11. The auxiliary side pulley 81 for the auxiliary side of the auxiliary vehicle 11 is used for the auxiliary variable frequency winding, the winding and the variable power is turned on, and the rotation of the auxiliary variable drive is stabilized. Upper assist winding -17- 200808641 (15) A cylindrical or cylindrical member between the motor 7 5 and the auxiliary winding drum 7 9 is rotatably disposed around the central axis, the central axis being disposed in a relative It is roughly vertical in the traverse direction. The hook side auxiliary pulley 83 is a cylindrical or cylindrical member disposed in the auxiliary hook block 91 of the auxiliary hook 85, and is rotatably disposed around the central axis, the central axis being disposed in a relative It is roughly vertical in the traverse direction. The auxiliary hook 85 is a hook provided in the auxiliary hook block® 91 as shown in Fig. 5, and is suspended from the tilting metal member 4 1 b provided on the side wall of the ladle 41. The auxiliary traverse motor 73 is as Fig. 3 shows the other end of the auxiliary carriage 1 1 . The rotational driving force generated by the auxiliary traverse motor 713 is transmitted to the auxiliary traverse portion 93 of the auxiliary carriage 11 as shown in Fig. 8. Further, the auxiliary traverse motor 73 can be a conventional motor that uses variable frequency control, which is not particularly limited. Further, as shown in Fig. 7, the auxiliary traverse motor 73 supplies power from the auxiliary traverse frequency conversion device (second motor control unit) 95. The alternating current is supplied from the outside with respect to the auxiliary traverse frequency shifting device 95. In addition, the auxiliary traverse frequency conversion device 95 can also perform variable voltage variable frequency control as power supply control to control the auxiliary traverse motor 73, and can also perform stable voltage fixed frequency control, variable voltage fixed frequency control, or stable voltage variable frequency control. Etc., especially without limitation. Next, a method of transporting the spout 41 in the bucket crane 1 configured as described above will be described below. -18- 200808641 (16) First, when carrying the ladle 41, as shown in Fig. 2, the bucket crane 1 moves along the transmission rail 17 while the main bobbin 9 is traversed so that the main hook 5 7 is in the ladle 41 Move above. Once the main carriage 9 has moved above the ladle 41, as shown in Fig. 5, the main hook 57 is rolled down to suspend the main hook 57 on the shaft 41a of the ladle 41 by the main winding device 43. The pouring bucket 41 is hoisted upward. When the main hook 57 is hoisted, as shown in Fig. 6, the main winding Φ is supplied from the main winding inverters 59A, 59B, 5 9C, 59D to the main winding of the main winding device around the motors 47A, 47B, 47C, 47D. The main winding motors 47A, 47B, 47C, 47D generate a rotational driving force. The rotational driving force is transmitted to the main winding drums 51A and 51B via the main winding reduction units 49A and 49B and the main winding reduction unit 49C as shown in the third diagram. The drive is rotationally driven by the seed driving force transmitted by the main winding drums 51A, 51B. By the rotation of the main winding drums 5 1 A, 5 1 B, the main steel cable 63 is wound around the main winding drums 5 1 A, 5 1 B, and the main hooks 57 of the suspended pouring buckets 4 1 are Roll up towards the top. At this time, the auxiliary winding switch 61 is turned off, and all of the AC power supplied from the main winding inverter device 9 9D is supplied to the main winding motor 47D. Further, the main winding motors 47A, 47B, 47C, and 47D operate in the same manner, and the main winding inverters 59A, 59B, 59C, and 59D and the main winding motors 47A, 47B, 47C, and 47D are residual forces. In the state of operation, once the ladle 41 is hoisted, the bucket crane 1 is transported along the transmission rail 17 while being traversed by the main bogie 9, for example, can be transported to the converter -19-200808641 (17), etc. nearby. When the bucket crane 1 is driven. As shown in Fig. 4, AC power is supplied from the transmission inverters 2 3 A, 2 3 C, 2 3 E to the transmission motors 2 1 A, 2 1 B, 21C, 21D, 21E, 21F, 21G, 21H, from the transmission motor 21A, 21B, 21C, 21D, 21E, 21F, 21G, 21H generate rotational driving force. The rotational driving force is transmitted to the transmission device 19, and the bucket crane 1 is driven along the transmission rail 17 to the pouring tank 4 1 close to the converter or the like. At this time, the transmission inverter devices 23A, 23C, and 23E control the supplied AC power, thereby from the transmission motors 2 1 A, 2 1 B, 2 1 C, 2 1 D, 2 1 E, 2 1 F, 2 1 G, 2 1 Η produces the same rotational driving force. In addition, when one of the transmission motors 21Α, 21Β, 21C, 21D, 21Ε, 21F, 21G, 21Η fails, the supply of the alternating current to the motor after the failure can also be cut off by the transmission switch of the corresponding faulty drive motor. At this point, the bucket crane is driven along the drive track 17 by the remaining drive motors. Further, with respect to the main traverse motors 4 5 A, 4 5 主 of the main carriage 9, as shown in Fig. 7, the alternating current is supplied from the main traverse inverters 67A, 67B, and the rotational driving force is generated from the main traverse motors 45A, 45B. The rotational driving force is transmitted to the main traverse portion 9A, and the main carriage 9 traverses the ladle 1 along the main protection portion 5 to the vicinity of the converter or the like. At this time, the auxiliary traverse switch 69 is turned off, and all of the AC power supplied from the main traverse frequency conversion device 67 is supplied to the main traverse motor 45B. Subsequently, the ladle 41 is tilted by the auxiliary winding device 71, and the molten steel in the ladle 4 1 is poured into a converter or the like. -20- 200808641 (18) When the auxiliary winding device 7 1 tilts the mixing drum 4 1 , firstly, while the auxiliary hook 8 5 is rolled down, the auxiliary lifting hook 8 5 tilts the metal piece of the hanging ladle 41 The position causes the auxiliary trolley 11 to traverse. When the auxiliary carriage 11 is traversed, the seventh embodiment is not supplied with the alternating current from the auxiliary traverse inverter 95 to the auxiliary traverse motor 3 of the auxiliary carriage 11, and the rotational traverse force is generated from the auxiliary traverse motor 73. The rotational driving force is transmitted to the auxiliary traverse portion 93, and the auxiliary carriage 11 is traversed along the main protection portion 5 until the auxiliary hook 85 is suspended from the position of the tilting metal member of the ladle 4 1. ® At this time, the auxiliary traverse switch 6 9 is cut off, and all of the AC power supplied from the main traverse inverter device 95 is supplied to the main traverse motor 73. The auxiliary hook 8 5 is hoisted by the auxiliary winding device 7 1 by tilting the auxiliary hook when the tilting metal piece of the pouring pot 4 1 is suspended. When the auxiliary hook is hoisted, as shown in Fig. 6, the auxiliary winding motor 75 that supplies the alternating current from the auxiliary winding inverter 87 to the auxiliary winding device 71 is shown, and the rotational driving force is generated from the auxiliary winding motor 75. The rotational driving force is transmitted to the auxiliary winding drum 79 via the auxiliary winding reduction unit 77. The auxiliary winding drum 79 is rotationally driven by the transmitted rotational driving force. The auxiliary winding drum 79 is rotated, whereby the auxiliary wire rope 89 is wound around the auxiliary winding drum 79, and the auxiliary hook 85 for hanging the tilting metal member is wound upward. The ladle 41 is cast around a shaft 41a of the main hook 57, and casts molten steel or the like from the inclined wrap 41 in a converter or the like. The operation of the bucket crane 1 when the auxiliary winding inverter device 87 or the auxiliary traverse inverter device 95 of the present embodiment is malfunctioning will be described. -21 - 200808641 (19) First, the description will be given for the failure of the auxiliary winding device 87. Auxiliary winding When the inverter unit 87 fails, as shown in Fig. 6, the auxiliary winding switch 61 is connected, and the alternating current is supplied from the main winding inverter 59D to the auxiliary winding motor 75. The auxiliary winding motor 75 that supplies the alternating current generates a rotational driving force, and the auxiliary hook 85 can be wound up and wound up, and the operation of the bucket crane 1 is continued. On the other hand, the main winding motor 47D is not supplied with alternating current, and the output of the main winding motor 47D is formed to be zero. The alternating current supplied from the main winding inverters 59A, Φ 59B, 59C is controlled to maximize the output of the main winding motors 47A, 47B, 47C. The main winding device 43 can continuously perform the winding and unwinding operations of the main hook 57 and the ladle 41 by the three main winding motors 47A, 47B, and 47C. Further, in the four main winding motors 47A, 47B, 47C, and 47D, when the two motors are inoperable, for example, when the main winding motors 47C and 47D cannot be operated, the remaining two main winding motors 47A are used. 47B, the main hook 57 and the pouring drum 41 are rolled down, and the operation of the bucket crane is interrupted. When the main hook 57 and the ladle 41 are rolled down, the output of the two main winding motors 47A, 47B is maximized, and the main hook 57 and the ladle 41 can be lowered safely. Further, in the two main winding motors 47A and 47B, the winding operation of the main hook 57 and the ladle 41 cannot be continued due to insufficient output. Next, the following description will be made for the failure of the auxiliary traverse inverter device 9.5. When the auxiliary traverse frequency conversion device 9.5 is malfunctioning, as shown in Fig. 7, the traverse switch 69 is connected, and the alternating current is supplied from the main traverse frequency conversion device 67B to the auxiliary -22-200808641 (20) traverse motor 73. The auxiliary traverse motor 73 that supplies the alternating current generates a rotational driving force, and the auxiliary carriage 11 can be traversed to continue the operation of the bucket crane j. On the other hand, the main traverse motor 45B is not supplied with alternating current, and the output of the main traverse motor 45B is formed to be zero. Since the main carriage 9 is traversed by the output of one main traverse motor 45A, the traverse speed is reduced, but the traverse of the main carriage 9 can be continued. Further, the failure of the auxiliary winding variable frequency device 87 or the auxiliary traverse frequency conversion device ® can be set in the self-diagnostic device of the auxiliary winding device 7 1 or the inspection by the operator periodically, and is not particularly limited. Further, it is preferable that the operation of the assist winding controller 6 1 or the traverse switch 69 is performed by an operator. The operator can recognize the failure of the auxiliary winding variable frequency device 87 or the auxiliary traverse frequency conversion device 95, and can take measures such as repair or replacement of the auxiliary winding and turning device 87 or the auxiliary traverse conversion device 9.5 after the failure. . According to the above configuration, the auxiliary inverter device 87 can continue the operation of the auxiliary winding motor even in the event of a failure, so that the auxiliary hoisting hook 85 can be wound up and wound down. That is, the operation of the bucket crane 1 can be continued. When the auxiliary winding variable frequency device 87 is not defective, the supply of the alternating current from the main winding inverter 59D to the auxiliary winding motor 75 is stopped, and the main winding motor 47D is supplied with alternating current. Therefore, compared with the case where the motor control unit is used only when the auxiliary winding motor 75 is supplied with power, since the main winding variable frequency device 59D is often used, it is possible to surely perform the auxiliary winding motor 75 when the auxiliary winding variable frequency device 87 fails. powered by. -23- 200808641 (21) According to the bucket crane 1 of the present embodiment, even if the auxiliary winding frequency conversion 87 is broken, the other main winding motors 47A and 47B can be used to carry out the pouring tank 4 1 and the main hook 57. Hoisting and rolling down, the crane 1 can be operated continuously. Specifically, when the auxiliary winding variable frequency device 87 fails, power is supplied from the main converting device 59D to the auxiliary winding motor 75, and the supply of power from the auxiliary converting device 85 to the main winding motor 47D is stopped. In the above case, the other main winding motors 47A, 47B, and 47C can assist the winding and unwinding of the winding motor 75 into the hook 85 while the drum 41 and the hook 57 are hoisted and rolled down. Therefore, the operation of the bucket lifting can be continued. Since the main winding variable frequency device 59D has a larger electric capacity than the auxiliary winding change 87, when the auxiliary winding variable frequency device 87 is malfunctioning and the operation of the machine is continued, the electric power required for supplying the auxiliary winding motor can be surely supplied according to the present embodiment. The bucket crane 1 and the auxiliary traverse inverter 9 5 can continue the operation of the auxiliary traverse motor 7 3 even if the fault occurs. This traverses the auxiliary carriage 1 1 continuously. That is, the operation of the bucket crane 1 can be continued. Further, when the auxiliary traverse inverter device 95 supplies AC power from the main transverse frequency device 67B to the main traverse motor 45B when there is no failure, the power supply to the traverse motor 73 is compared with the use of the motor control unit. When the auxiliary traverse frequency conversion device 9.5 is faulty, the operation of the assisting trolley 11 can be surely continued. According to the bucket crane 1 of the present embodiment, the auxiliary traverse variable frequency device 47C can be wound up and wound by the main hoisting auxiliary machine 1 and the hoisting and hoisting device can be used for the shifting of the secondary auxiliary device - 24 - 200808641 (22) 95 Even if the fault occurs, the main carriage 9 can be traversed by the other main traverse motor 45A, and the operation of the bucket crane 1 can be continued. Specifically, when the auxiliary traverse inverter device 95 fails, the AC power is supplied from the main traverse frequency conversion device 67B to the auxiliary traverse motor 73, and the main traverse motor 45B that supplies the AC power from the main traverse frequency conversion device 67B is stopped. In the above case, the main carriage 9 can be moved by the other main traverse motor 45A, and the traverse motor 7 3 can be assisted to traverse the auxiliary carriage 1 1 , so that the operation of the bucket crane 1 can be continued. Since the main traverse frequency conversion device 67B has a larger capacity than the auxiliary traverse frequency conversion device 95, it is possible to supply the required electric power to the auxiliary traverse motor 73 when the auxiliary traverse frequency conversion device 95 fails and the operation of the bucket crane 1 is continued. . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a top plan view showing the construction of a bucket crane according to an embodiment of the present invention. Fig. 2 is a side elevational view showing the configuration of the main protection portion and the main carriage of Fig. 1. Fig. 3 is a schematic view showing the structure of the bucket crane of Fig. 1. Fig. 4 is a block diagram showing the circuit configuration of the drive motor of Fig. 3. Fig. 5 is a cross-sectional view showing the configuration of the main bogie, the auxiliary bogie, and the motor room of Fig. 1. Fig. 6 is a block diagram showing the circuit configuration of -25-200808641 (23) of the main winding device and the auxiliary winding device of Fig. 1. Fig. 7 is a block diagram showing the circuit configuration of the main traverse motor and the auxiliary traverse motor of the second drawing. Fig. 8 is a partial side elevational view showing the configuration of the auxiliary carriage of Fig. 1. [Main component symbol description] 1 : Sink crane (crane) 9 : Main trolley ® 1 1 : Auxiliary trolley 41 : Pour bucket (lifting cargo) 45A, 45B : Main traverse motor (1st motor) 47A, 47B, 47C 47D : Main winding motor (first motor) 59A, 59B, 59C : Main winding inverter (i-motor control unit) 5 9D : Main winding inverter (one first motor control unit) 67A : Main cross Shift frequency conversion device (first motor control unit) 6:7B : Main traverse frequency conversion device (one first motor control unit) 7 3 : Auxiliary traverse motor (second motor) 7 5 : Auxiliary winding motor (second motor) 87 : Auxiliary winding inverter (2nd motor control unit) 95 : Auxiliary traverse inverter (2nd motor control unit) -26 -