TW200805679A - Memory devices - Google Patents

Memory devices Download PDF

Info

Publication number
TW200805679A
TW200805679A TW95124276A TW95124276A TW200805679A TW 200805679 A TW200805679 A TW 200805679A TW 95124276 A TW95124276 A TW 95124276A TW 95124276 A TW95124276 A TW 95124276A TW 200805679 A TW200805679 A TW 200805679A
Authority
TW
Taiwan
Prior art keywords
memory
layer
bits
substrate
bit
Prior art date
Application number
TW95124276A
Other languages
Chinese (zh)
Other versions
TWI366275B (en
Inventor
Chao-I Wu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW095124276A priority Critical patent/TWI366275B/en
Publication of TW200805679A publication Critical patent/TW200805679A/en
Application granted granted Critical
Publication of TWI366275B publication Critical patent/TWI366275B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

Methods and structures are described for increasing a memory operation window in a charge trapping memory having a plurality of memory cells in which each memory cell is capable of storing multiple bits per memory cell. In a first aspect of the invention, a first method to increase a memory operation window in a two-bit-per-cell memory is described by applying a positive gate voltage, +Vg, to erase a memory cell to a negative voltage level. Alternatively, a negative gate voltage, -Vg, is applied to the two-bit-per-cell memory for erasing the memory cell to a negative voltage level. A second method to increase a memory operation window is to erase a memory cell to a voltage level that is lower than an initial voltage threshold level. These two erasing methods can be implemented either before a programming step (i.e., a pre-program erase operation) or after a programming step (i.e., a post-program erase operation).

Description

200805679 P940260 19580twf.doc/e 九、發明說明: 本申請案與同時申請且同時在審查階段的美國專利 第940222 (11/425482)號申請案相關,其發明名稱 、 為”Methods and Structures for Expanding a Memory , Operation Window and Reducing a Second Bit Effect”,由吳 昭誼所創作,由本申請案的申請人所擁有。 本申請案與同時申請且同時在審查階段的美國專利 ⑩ 第940233 (11/425523)號申請案相關,其發明名稱 為’’Memory Structure for Expanding a Second Bit Operation200805679 P940260 19580twf.doc/e IX. INSTRUCTIONS: This application is related to the application of US Patent No. 940222 (11/425482), which is filed concurrently and at the same time, and whose name is "Methods and Structures for Expanding a". Memory, Operation Window and Reducing a Second Bit Effect", created by Wu Zhaoyi, is owned by the applicant of this application. This application is related to the application of the US Patent No. 940,233 (11/425,523), which is hereby incorporated by reference in its entirety in

Window’’,由吳昭誼所創作,由本申請案的申請人所擁有。 本申請案與同時申請且同時在審查階段的美國專利第 940259 (11/425541)號申請案相關,其發明名稱為,,丁〇p Dielectric Structures in Memory Devices and Methods forWindow’’, created by Wu Zhaoyi, is owned by the applicant of this application. This application is related to the application of U.S. Patent No. 940,259 (11/425,541), which is filed concurrently and at the same time, the name of the invention is: Ding, p Dielectric Structures in Memory Devices and Methods for

Expanding a Second Bit Operation Window,,,由吳昭誼所創 作,由本申請案的申請人所擁有。 【發明所屬之技術領域】 籲 本發明大體上涉及電可程式化且可抹除記憶體,且更 '明確地說涉及用於在單一記憶胞二位元的操作中增大記憶 ' 體操作裕度並滅小第二位元效應(second bit effect)的方 法和元件。 【先前技術】: 基於已知為電可抹除可程式化唯讀記憶體(eepr〇m) 和快閃記憶體的電荷儲存結構的電可程式化且可抹除非揮 發性記憶體技術用於多種現代應用中。快閃記憶體經設計 19580tw£doc/e 200805679 而具有可獨立地被程式化並讀取的記憶胞陣列。快閃記憶 體中的感測放大器(SenseampHfier)可用來確定儲存在非 揮發性記憶體中的數據值(一個或多個)。在典型的感測方 案中’電流感測放大器將流經正感測的記憶胞的電流與參 考電流比較。 許多記憶胞結構用於EEPROM和快閃記億體。隨著集 成電路的尺寸縮減,由於製造過程的可量測性和簡易性, 所以對基於電荷陷入介電層的記憶胞結構正產生較大關 注。基於電荷陷入介電層的記憶胞結構包含以產業名稱, 例如氮化物唯瀆記憶體(Nitride Read-Only Memory)、半 導體-氧化物-氮化物-氧化物-半導體(s〇N〇s)和透過熱電 洞注入氮化物進行程式化的電子記憶體(pHINES)而為人 所知的結構。這些記憶胞結構透過將電荷陷入在電荷陷入 介電層(例如,氮化矽)中來儲存數據。當陷入負電荷二, 記憶胞的臨界電壓增大。透過從電荷陷入層去除負帝 減小記憶胞的臨界電壓。 “、I何來 氮化物唯讀記憶體元件使用相對較厚(例如, 奈米’且通常約為5到9奈米)的底部氧化物 = 、點和 損失。替代於直:接穿隧,可使用,,帶間的穿續^ 電洞注入(㈣卿)來抹除記憶胞。然而,_、= V熟 使氧化物損壞,從而導致高臨界電壓記憶胞中二^入促 低臨界電愿記憶胞中電荷增益。此外,由=知失和 中電荷的難以抹除的.積聚,程式化和二,入結攝 間一定會逐漸增加。此電荷積聚是因為带、、同、=功間抹除時 6 200805679 F^40Z6U 195S0twidoc/e 注入點彼此不-致且在抹除脈衝之後— 的。另外’在氮化物唯讀記師,_々:蝴^而心生 貝口已U版陕閃圮憶體元件的區段抹 除期間:每-記憶胞的抹除速度由於過程變化(例如,通 道長度變化)而不同。此抹除读碎至恩、曾 ,Vf ,,,匕徠除遑度差異導致抹除狀態的較 AVt刀佈’其中—些記憶胞變得難以抹除而-些記憶胞被 =抹除。Θ此,多次程絲和抹_環之後,目 電屢Vt裕度關,且觀_較差耐久性。此縣當所述技Expanding a Second Bit Operation Window,,, was created by Wu Zhaoyi and owned by the applicant of this application. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to electrically programmable and erasable memory, and more particularly to the use of memory for operation in the operation of a single memory cell. The method and components of the second bit effect. [Prior Art]: Electro-programmable and erasable volatile memory-based technology based on charge storage structures known as electrically erasable programmable read-only memory (eepr〇m) and flash memory A variety of modern applications. The flash memory is designed to have a memory cell array that can be independently programmed and read, 19580 TW/doc/200805679. A sense amplifier (SenseampHfier) in the flash memory can be used to determine the value (one or more) of the data stored in the non-volatile memory. In a typical sensing scheme, the current sense amplifier compares the current flowing through the positively sensed memory cell with the reference current. Many memory cell structures are used in EEPROM and flash memory. As the size of the integrated circuit is reduced, due to the scalability and simplicity of the manufacturing process, the memory cell structure based on the charge trapping dielectric layer is being more concerned. The memory cell structure based on the charge trapping dielectric layer contains industrial names such as Nitride Read-Only Memory, semiconductor-oxide-nitride-oxide-semiconductor (s〇N〇s), and A structure known as a patterned electronic memory (pHINES) by injecting a nitride through a thermoelectric hole. These memory cell structures store data by trapping charges in a charge trapped dielectric layer (e.g., tantalum nitride). When trapped in a negative charge, the threshold voltage of the memory cell increases. By removing the negative from the charge trapping layer, the threshold voltage of the memory cell is reduced. "When I use a nitride-only read-memory device, the bottom oxide =, point, and loss are relatively thick (for example, nano' and usually about 5 to 9 nm). Instead of straight: tunneling, Can be used, between the belts ^ hole injection ((4) Qing) to erase the memory cells. However, _, = V cooked to damage the oxide, resulting in high threshold voltage memory cells in the low-voltage I hope that the charge gain in the cell will be remembered. In addition, it is difficult to erase the accumulated and accumulated, the stylized and the second, the incoming junction will gradually increase. This charge accumulation is due to the band, the same, the = work When erasing 6 200805679 F^40Z6U 195S0twidoc/e The injection points are not related to each other and after the erasing pulse. - In addition, in the nitride reading only, _々: Butterfly ^ and Xinsheng Beikou has U version of Shaanxi During the erasing period of the flash memory component: the erasing speed of each memory cell differs due to process variations (for example, channel length variations). This erases the read to the original, the previous, Vf, ,, and eliminates The difference in twist results in the erased state of the AVt knife cloth. Among them, some memory cells become difficult to erase - some memory cells are = Wipe this. After this, after several passes and wipe _ ring, the eye is repeatedly Vt margin off, and the view _ poor durability.

術保持按比例縮減時將變得更為嚴重。 傳統的浮動閉極元件在導電浮動閘極中儲存一位元電 荷。出現了氮化物唯讀記憶體記憶胞,其中每—氮化物唯 讀記憶體記憶胞提供將電荷儲存在氧錄氮化物·氧化物 /ΟΝΟ)電介質中的二位元的快閃記憶胞。在氣化物唯讀 記憶體記憶義典型結構巾,氮化物仙作定位元在頂部 氧化物層與底部氧化物層之_陷人材料。具有氮化物層 的0Ν0電介冑巾的電射被陷人在氮化 憶胞的左側(即,左位元)或右帅卩,右位元)。^位己 兀應用的,作影響右位元,或反之亦然,此已知為第二位 =效,。第二位元效應影響氮化物唯讀記憶體記憶胞的操 一種程式化氮化物唯讀記憶體陣列中的氮化物唯讀記 憶體記憶胞的常用技術為熱電子注人方法。在抹除操作期 間種用來抹除記憶胞的常見技術稱作能帶-導帶間的穿 ,熱電洞庄入。第二值元效應的固有問題影響操作裕度。 第二位元效應是由氮化物唯讀記憶體記憶胞中左位元與右 7 200805679 P940260 19580twf.doc/e 位TO的相互作用而導致的。希望具 ^記憶體操作裕度從而顯著減小第二位元效應 【發明内容】 ,明“逑用於在具有多個記 中增大記憶體操作裕度的方法,辦、+、夕如^曰入°己〖思版 憶胞能夠每—記_ u 月包中每一記 裕度的第-方法的記刪增大記憶體操作 除為負電壓準位來進S ::正閑極電塵+Vg將記憶胞抹 的記憶體以便將所述電荷陷入纪情 ,為負電壓準位。增大咖操作裕度 二;斤=荷陷入記憶體抹除為低於初始臨界電壓準: :電壓準位來實現。將電荷陷入記億體抹除= ^方ί或抹除為傭初舰界輕準㈣f壓準值的ϋ兩 *^,^«,aurn.onmode)(TOMf^-- 未除方法可麵式化步驟之前(即,預程式化抹 或在程式化步驟之後(即,後程式化抹除操作)實施'。、 操作=施本發明的三個實施例中說明兩個示範性抹除 間的祕包含㈣注人雜操作和_-導帶 過以正抹除知作。在第一實施例中,使用電洞注入透 在Μ :壓進行的電洞穿隧抹除來抹除電荷陷入記憶體。 穿::If例中,使用電洞注入透過以負電壓進行的電洞 妹除來抹除電荷陷人記憶體。在第三實施例中, 8 200805679 P940260 39580twf.doc/e 能帶-導帶間的熱電洞操作來^ 電荷陷入記憶體的這此抹除押陷入記憶體。適合與 包含通電子(咖)讀結合的操作的程式化技術 初4=的:ί適祕具有電荷陷入結構的廣泛種類的 二社構Λ :二化物結構、氮化物-氧化物-氮化物-氧化 J1L各 物-虱化物-氧化物結構的記 ::如在讀〇s記憶體元件中,電荷陷入層在 p&I s J子在配置在電荷陷人層上方的介電層。實 不上夕日日矽層形成於電荷陷入層上方。不且右入+ 氧化物結構使得能夠容易地從多晶 入層對電洞進行注入。 丰導Ϊ本發明的第二觀點,描述一種金屬氮化物-氧化物- ==在=❹抑之(_s_s⑹結構的記憶體元 ^減小弟一位兀效應的同時增大記憶體操作裕度。 施加閘極偏壓Vg的情況下,在源極區與沒極區 3,iHMNC)s.記憶體包括在通道上的電荷陷 、=冓’其中電荷陷入結構包含配置在介電層上方的氮化 者’所述記憶體元件實施在包括具有氧化物-氮化物 ^匕物堆疊的電荷陷入結構的金屬_氧化物_氮化物-氧化 =+導體'絕緣體上有石夕之(MONOS.)記憶體中。夢 以通逼的合適的材料包含羞晶石夕(响叫灿 : 石夕〇命、、ρη办 , . / 一人7日日 甩洞牙隧抹除或能帶_導帶間的熱電洞抹除的抹 可舁通道熱電子技術結合而應用。 、木 9 200805679 F940260 19580twf.doc/e 在本發明的第三觀點,描述一種金屬_氮化物_氧化物_ 氮化物-氧化物-半導體(MN0N0S)結構的記憶體元件,其 應用接通模式方法在減小第二位元效應的同時增大操作裕 度。MNONOS記憶體結構包括具有在介電層上的氮化矽層 的頂部^氧化物結構。或者,所述記憶體元件實施在具有氧 化物-氮化物-氧化物堆疊的頂部氧化物結構的金屬-氧化 物-氮化物-氧化物-氮化物_氧化物__半導體(m〇n〇n〇s)结 構中。也可透過將記憶體元件製造在多晶絲.底上而不是 衣;^在矽基底上,將具有頂部氧化物結構的記憶體元件實 施在薄膜電晶體(TFT)結構上,此,記憶體元件的盆 它貫施例&含MNQNQS TFT記Μ結構和mqn〇n〇s TFT記憶體結構。電洞穿隧絲或能帶導帶_埶電 除的抹除操作可與通道熱電子技術結合而應用。接通模 操作可利用高電壓記憶體操作和低電壓記憶體操作兩者二 在低電壓記憶«作巾,可辦餘約加或 電壓來實施抹除操作。 仇4寸的 在本發明的第四觀點,描述—種金屬_氧化物-氮化 乳化物-亂化物-半導體(M〇N〇NS)結構的電荷陷入 體’其應祕频^方法來增大齡裕度錢二= $iil°MQNC)NS記憶體結構包括具有在氮彳 層的底部氧化物結構。或者,所述記憶體^在= 具有氧化物·氮化物-氧化物堆疊的底部氧化貝=括 MOMCWOS結構中。也可透過將記憶體元件造:曰的 基底上而不是製造切絲上,祕有底部氧制^= 200805679 F940260 19580twf.doc/e 記憶體元件實施在薄膜電晶體(TFT)結構上。因此 ^意體元件的其它實闕包含M咖NS TFT記憶 和 =圖S =記憶體結構。在進一步的實施例中,所述 電何1¾入義、體包括在石夕基底上的電荷陷上 =料m⑽)_結構)或在多晶石夕基底上的電^二 ^的冋介電材料(M(HK)NQSTFT結構 > 電洞穿降 導帶間的熱電洞抹除的抹除操作可與通道哉 可選=約加或減術特的電壓來實施 憶體供用於在電荷陷入記憶體中增大記 鈿作?σ度亚減小弟二位元效應的方 也適用於低電壓記憶體應用。 x m 為讓本發明之上述和苴他目的、 i 易懂,下文祕h二 和優點能更明顯 明如下。牛紹土貫關,並配合所附圖式,作詳細說 【實施方式】 的^看,i到圖34’提供對本發明的結構實施例和方法 例解’並不意賴本發明限於蚊揭示的實施 ::而=本r可使用其它特徵、元件、方法心 號表示。炎。各種實施例中相似元件—般用相似參考標 結構觀點’請參看圖U’緣示說明刚〇s 、’、軌性電荷陷入記憶胞100的簡化結構圖。電荷陷 200805679 P940260 19580twf.d〇c/e =己=1〇〇具有帶有n+掺雜區112和114的p型基底 ,介電結構12〇(底部氧化物)覆蓋p型基底⑽, 12(Γ,:入結構130 (例如,氮化矽層)覆蓋底部介電結構 雷厮v ^型多晶石夕層刚覆蓋電荷陷入結構13〇。將閘極 152^ Γ Γ施加到Ρ型多㈣層副,且將基底電壓Vsub 雜區^到P型基底110。將沒極電麗Vd 156施加到n+摻 “善,且將源極電壓Vs 158施加到n+推雜區ιΐ2。 施太Γί f電荷陷入記憶胞10 0中的MN 〇s結構作為對實 氧化_11=1==構具有_部氧化物的 ,嶋二電物二= 二::的情況下’可實施電荷陷入結構的其它組合,‘ 1化物-氧化物_0)堆 勿 的廣泛種類的材料來實施P型多晶石夕=40曰夕或金屬 圖1B說明透過右位元162 電荷陷入記憶胞100的^ =二U、I子來程式化 熱電子施加到右位元162_Γ、°;^Μ 16()指示將通道 子緣示。施加8:伏特閘極電壓^'Ρ=ϋ〇中的電 憶體1。。中的右位元的通=入記 切換汲極和源極區112子广^正臣品界電壓伙。 入記憶體100中的另—位飞的偏驗悲以實施電荷陷 位兀的程式化。圖1C是說明透過 200805679 P940260 19580twf.doc/e 左位兀_這_子來程式化電荷記 圖。方向箭頭Π〇指示將通道熱電子施加=00的結構 電荷陷入結構.130中的電子172 二”位凡,如以 壓vg 150,施知〇你壯 知加8伏特閘極電 :Λ : 特沒極電壓Vd 156,施加5伏特二 M Vs 158 ’且施加㈣特基底麵v 2源極 rf㈣導致電荷陷入記憶胞刚的左位元=施加 黾子^:為鬲正臨界電壓+Vt。 、^-這熱 注入==:=入記憶胞1〇°的通道區處的電洞 、、^㈣,,Ϊ 圖。術語“電洞注入,,也稱作、 :二入抹除通常不是常規的抹除方二: 口施力乂==== =,入記憶胞 如本文中—般所使用,程式化涉 及降低記憶胞的臨界電壓。然== :以==臨界電壓且抹除涉咖^ 胞的献1自杜 方以及程式化涉及降低記憶 方法。"%土丨抹除涉及升高記憶胞的臨界電壓的產品和 表性的頂部電介f包含厚度約為5到10奈米的 4㈣Miuu夕’或包括(例如)A12〇3的其它類似 13 200805679 P940260 19580twf.doc/e 尚介電常數材料。具有代表性的底部電介質包含厚 氧切和氧氮切,或其它_“電常 有代表性的電荷陷人結構包含厚度約為3到9 示未的亂化石夕,《包括例如A1203、Hf02、Ce02和其^ 的金屬氧化物的其它類似高介電常數材料 2二 I為團狀或粒狀電荷陷人材料的不連續的集合,或如^ 中麟示的連續層。電翻人結構m具有例如由電子^ 示的被陷入的電荷。 綠 請參看圖2,緣示說明抹除方法的第一實施例的 圖’所述抹除方法透過從s〇N〇s記憶體2〇〇的閉極料 施加正閘極電壓使用S咖s記憶體·的電洞穿隨抹 而將其抹除為負臨界電壓。s〇N〇s記憶體2〇〇包括覆、 -介電層210的電荷陷入結構212,和覆蓋電荷陷入結 212的第二介電層214〜型多晶矽層22〇在第二介電層=14 上。施加於閘極端子處的高偏壓導致能帶畸變,從而第二 介電層214在某些區可能較薄以允許電洞穿透第二介電^ =4。當向n型多晶矽層22〇中的閘極端子施加高偏壓時曰, 從閘極端子(由箭頭240a、240b指示)經過第二介電層 214且向電荷陷入結構212對電洞進行注入。第二介電^ 214可選擇為定夠薄的,以便經過第二介電層214進行^ 洞穿隧。施加16伏特正電壓的閘極電壓Vg 23〇,施加^ 伏4寸汲極電壓列234,施加〇伏特源極電壓Vs 236,且施 加〇伏特基底電壓Vsub 232。這些施加的電壓的組合導至= 對SONOS記憶體200進行電洞穿隧抹除使其變為負臨界 14 200805679It will become more serious when the scale is reduced proportionally. Conventional floating closed-loop components store a single-element charge in a conductive floating gate. A nitride read-only memory cell has emerged in which each-nitride-read memory cell provides a two-bit flash memory cell that stores charge in an oxygen-nitride/oxide/germanium dielectric. In the vapor-only read memory memory typical structure towel, the nitride element is positioned at the top of the oxide layer and the bottom oxide layer. The electric radiation of the 0Ν0 dielectric wipe with the nitride layer is trapped on the left side of the nitrided cell (i.e., the left bit) or the right side, the right bit). ^ The bit is applied, affecting the right bit, or vice versa, this is known as the second bit = effect. The second bit effect affects the operation of nitride-reading memory cells. A commonly used technique for memory-like memory in a stylized nitride-reading memory array is the hot electron injection method. A common technique used to erase memory cells during the erase operation is called band-to-guide band wear and thermoelectric hole entry. The inherent problem of the second valued effect affects the operational margin. The second bit effect is caused by the interaction of the left bit in the memory cell of the nitride read-only memory with the TO of the right 7 200805679 P940260 19580twf.doc/e. It is desirable to have a memory operation margin to significantly reduce the second bit effect. [Inventive content], "How to increase the memory operation margin in a plurality of records, do, +, 夕如^曰 ° 〖 〖 版 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆 忆Dust + Vg will memory the memory of the cell to get the charge into the disciplinary, negative voltage level. Increase the coffee operation margin 2; kg = charge into memory erased below the initial threshold voltage: : Voltage level is achieved. The charge is trapped in the body of the body = ^ square ί or erased as the servant of the first ship boundary light (four) f pressure value of the two *^, ^«, aurn.onmode) (TOMf^-- The undivided method can be performed before the facetization step (ie, pre-stylized wipe or after the stylization step (ie, post-programmatic erase operation).], operation = two embodiments of the invention are illustrated The secrets of the exemplary erasing room include (4) the injection operation and the _- conduction belt to positively erase the knowledge. In the first embodiment, the hole is injected into the Μ: pressure The hole tunneling of the row is used to erase the charge and get into the memory. In the case of If:, the hole is injected to remove the charge trapped memory by the hole in the negative voltage. In the third embodiment中, 8 200805679 P940260 39580twf.doc/e The hot-hole operation between the band and the conduction band ^ The charge is trapped in the memory and is erased into memory. A program suitable for operations involving the integration of electronic (coffee) reading. Chemical Technology Initial 4 =: 适 秘 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ As in the read 〇s memory element, the charge trapping layer is in the dielectric layer disposed above the charge trapping layer in the p&I s J. The 矽 layer is formed above the charge trapping layer on the day and night. The addition of an + oxide structure enables easy implantation of a hole from a polycrystalline in-layer. The second aspect of the present invention describes a metal nitride-oxide- =======(_s_s(6) structure Memory element ^ reduces the effect of a sputum while increasing the memory Operating margin. In the case where the gate bias voltage Vg is applied, in the source region and the non-polar region 3, iHMNC) s. the memory includes a charge trap on the channel, where 电荷' where the charge trapping structure is included in the dielectric The memory element above the layer is implemented on a metal_oxide-nitride-oxidation=+conductor' insulator including a charge trapping structure having an oxide-nitride stack. MONOS.) In memory, the suitable material for dreams consists of shame stone eve (sounding can be: Shi Xi 〇 life, ρη,, / one person 7th day 甩 甩 牙 抹 或 or can bring _ The combination of the thermoelectric holes in the conduction band and the wiper channel thermal electron technology is applied. Wood 9 200805679 F940260 19580twf.doc/e In a third aspect of the invention, a memory element of a metal-nitride-oxide-nitride-oxide-semiconductor (MN0N0S) structure is described, which uses an on-mode method The operating margin is increased while reducing the second bit effect. The MNONOS memory structure includes a top oxide structure having a tantalum nitride layer on the dielectric layer. Alternatively, the memory element is implemented in a metal-oxide-nitride-oxide-nitride_oxide__semiconductor having a top oxide structure of an oxide-nitride-oxide stack (m〇n〇n 〇s) in the structure. The memory element having the top oxide structure can also be implemented on the thin film transistor (TFT) structure by fabricating the memory element on the polysilicon substrate instead of the clothing; The components of the component are & MNQNQS TFT recording structure and mqn〇n〇s TFT memory structure. The hole tunneling wire or the bandable tape can be applied in combination with channel thermal electronics. The turn-on mode operation can utilize both high-voltage memory operation and low-voltage memory operation. In the low-voltage memory, the erase operation can be performed by adding or applying voltage. In the fourth aspect of the present invention, a charge-trapping body of a metal-oxide-nitriding emulsion-magnification-semiconductor (M〇N〇NS) structure is described. The older margin money II = $iil°MQNC) NS memory structure consists of a bottom oxide structure with a layer of nitrogen. Alternatively, the memory is in the bottom oxide shell with an oxide/nitride-oxide stack = in the MOMCWOS structure. It is also possible to make a memory element on a thin film transistor (TFT) structure by making a memory element on a substrate instead of a shredded wire, and having a bottom oxide system. Therefore, other implementations of the body element include M-ca NS TFT memory and = graph S = memory structure. In a further embodiment, the electrical inclusion includes a charge on the stone substrate, a m(10)) structure, or a dielectric on the polycrystalline substrate. Material (M(HK)NQSTFT structure> The erase hole erase operation between the hole penetration guide can be performed with the channel 哉 optional = about plus or minus the voltage to implement the memory for the charge trapping memory The method of increasing the 钿 钿 亚 亚 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小 减小It can be more clearly as follows. The cattle are well-connected, and in conjunction with the drawings, a detailed description of the [embodiment], i to Figure 34' provides a structural example and method for the present invention. Restricted to the implementation of mosquitoes:: and = can be expressed using other features, components, methods. Inflammation. Similar elements in various embodiments - generally similar reference structure view 'Please refer to Figure U' A simplified structural diagram of s, ', orbital charge trapped in memory cell 100. The trap 200805679 P940260 19580twf.d〇c/e=hex=1〇〇 has a p-type substrate with n+ doped regions 112 and 114, and the dielectric structure 12〇 (bottom oxide) covers the p-type substrate (10), 12( Γ,: the structure 130 (for example, a tantalum nitride layer) covers the bottom dielectric structure, the Thunder v ^ type polycrystalline layer, just covering the charge trapping structure 13 〇. Applying the gate 152 ^ Γ Γ to the Ρ type (4) The layer is paired, and the substrate voltage Vsub is mixed to the P-type substrate 110. The immersion voltaic Vd 156 is applied to the n+ doping "good, and the source voltage Vs 158 is applied to the n+ tweeting region ι ΐ 2. The MN 〇s structure in which the charge is trapped in the memory cell 100 is the other one that can implement the charge trapping structure in the case where the real oxidation _11=1== has a _ partial oxide, and the bismuth bismuth two = two:: Combination, '1 compound-oxide_0' stacking a wide variety of materials to implement P-type polycrystalline stone = 40 曰 或 or metal Figure 1B illustrates the charge into the memory cell 100 through the right bit 162 ^ = two U I, to programmatic hot electrons are applied to the right bit 162_Γ, °; ^ Μ 16 () indicates the channel sub-edge. Apply 8: volt gate voltage ^ ' Ρ = 电 in the memory. The pass of the right bit in the middle of the switch is switched between the drain and the source region 112. The input of the memory in the memory 100 is a staggered implementation of the charge trap. Figure 1C is a diagram illustrating the stylization of charge maps through the 203805679 P940260 19580 twf.doc/e left 兀 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The second position, such as the pressure vg 150, Shi Zhi 〇 you know the addition of 8 volt gate electric: Λ: special finite voltage Vd 156, apply 5 volts two M Vs 158 'and apply (four) special basal plane v 2 source The pole rf (four) causes the charge to fall into the left bit of the memory cell = the application of the dice ^: is the positive threshold voltage + Vt. , ^- This hot injection ==:= into the hole in the channel area of the memory cell 1 〇 °, ^ (four), Ϊ map. The term "hole injection, also known as: two-input erase is usually not a conventional eraser 2: mouth force 乂 ==== =, used in memory cells as used herein, stylization involves reduction The critical voltage of the memory cell. == : ============================================================================================= The voltage product and the apparent top dielectric f comprise 4 (four) Miuu's with a thickness of about 5 to 10 nm or other similar 13 200805679 P940260 19580twf.doc/e dielectric constant materials including, for example, A12〇3. Representative bottom dielectrics include thick oxygen and oxygen oxynitride, or other _"electrically representative charge trapping structures containing a thickness of about 3 to 9 showing the unresolved fossils, including, for example, A1203, Hf02, Ce02 Other similar high dielectric constant materials 2 and II of the metal oxides thereof are discontinuous collections of agglomerated or granular charge trapping materials, or continuous layers as shown in the middle. The electric turnover structure m has a charge that is trapped, for example, by an electron. Green, please refer to FIG. 2, which illustrates the first embodiment of the erasing method. The wiping method applies a positive gate voltage by using a closed gate voltage from the 〇N〇s memory 2〇〇. The memory hole of the memory is erased as a negative threshold voltage. The memory layer 2 includes a charge trapping structure 212 of the dielectric layer 210, and a second dielectric layer 214-type polysilicon layer 22 covering the charge trapping junction 212 in the second dielectric layer. 14 on. The high bias applied to the gate terminals results in band distortion such that the second dielectric layer 214 may be thinner in certain regions to allow the holes to penetrate the second dielectric ^=4. When a high bias is applied to the gate terminal in the n-type polysilicon layer 22A, the gate terminal (indicated by arrows 240a, 240b) passes through the second dielectric layer 214 and injects the hole into the charge trapping structure 212. . The second dielectric 214 can be selected to be thin enough to tunnel through the second dielectric layer 214. A gate voltage Vg 23 施加 of a positive voltage of 16 volts is applied, a 4-inch drain voltage column 234 is applied, a volt-volt source voltage Vs 236 is applied, and a volt-volts substrate voltage Vsub 232 is applied. The combination of these applied voltages is led to = hole tunneling erase of the SONOS memory 200 to become a negative threshold 14 200805679

Py4U260 〗9580twf.doc/e 伹兀效應 電屡-Vt ’藉此增大§己憶體操作裕度並減小第 圖3中,繪不說明抹除方法的第二實施例的結構圖, 所述抹除方法透過從SONOS記憶胞300的基底施加負閘 極電壓對SONOS記憶胞3〇0應用電洞穿隧抹除使記憶胞 變為負臨界電壓。SONOS記憶胞300包括覆蓋第一介電層 310的電荷陷入結構312,和覆蓋電荷陷入結構312的第: 介電層3141型多晶石夕層32〇在第二介電層314上。施加 於基底302處的高負偏壓導致能帶崎變,從 31〇在某些區可能較薄以允許電洞穿透第―介電層3iM 向=30施加高負偏_,從基底3〇2 (由箭頭3他、 ♦ n 經過ί 一介電層310且向電荷陷入結構312對 = 介電層31G可選擇為足夠薄的,以便 我弟,丨电層310進行電洞穿隨 的間極 Vg 330,施加〇 合導致對S0N0S記憶請進行電 =:=;界電壓,,藉此增大記憶體操; 圖,====!;_施例的結構 導帶間的熱電崎除而將其二使二, 說明SONOS記憶胞_ :貝^電屋。圖4A中Py4U260 〗 〖9580twf.doc / e 伹兀 电 屡 -Vt ' thereby increase the § memory memory margin and reduce the structure of the second embodiment of the erase method is not illustrated in Figure 3, The erase method causes the memory cell to become a negative threshold voltage by applying a negative gate voltage from the substrate of the SONOS memory cell 300 to the SONOS memory cell. The SONOS memory cell 300 includes a charge trapping structure 312 covering the first dielectric layer 310, and a dielectric layer 3141 type polysilicon layer 32 covering the charge trapping structure 312 on the second dielectric layer 314. The high negative bias applied to the substrate 302 results in a band-stable change from 31 可能 in some regions that may be thin to allow the hole to penetrate the first dielectric layer 3iM to apply a high negative offset _ 30 from the substrate 3 〇2 (by arrow 3, ♦ n through ί a dielectric layer 310 and to the charge trapping structure 312 pair = dielectric layer 31G can be selected to be sufficiently thin, so that my brother, the electric layer 310 performs the hole penetration Extreme Vg 330, the application of the twist causes the memory of the S0N0S to be electrically ===; the boundary voltage, thereby increasing the memory gymnastics; Fig., ====!; _ the structure of the embodiment of the thermal conduction between the conduction bands Put the second two, explain the SONOS memory cell _ : 贝 ^ 电屋. Figure 4A

中說明S_S記憶胞_ =的抹除操作,且圖4B 用能帶-軸_電_來^ 200805679 P940260 I958〇twf.doc/e 沒極電屢Vd 434且施加G伏特源極電 洞朝著電荷陷人結構41〇的右_ 436以便使電 在抹除左位it時,偏魏態相反 3 4&所指不。 =:來抹除左位元時,施-伏特源:二 元二所指示。在右位 且施加。伏特=L=8伏特_〜30 或者,貝施弟一、第二和第三實施例中 ,記憶體抹除為低於初始臨界電二 位’而不是抹除為負臨界 Vt。儘管上文來 土松 ;賴也剌於本發明,所料它_的電荷陷I °己丨思體包含SONOS型或TFT-SONOS記憶體。The erasing operation of S_S memory cell _ = is illustrated, and Figure 4B uses energy band-axis_electric_ to ^200805679 P940260 I958〇twf.doc/e 极极电Vd 434 and applies G volt source hole toward The charge traps the right _ 436 of the structure 41〇 so that when the power is erased from the left position it, the opposite state is opposite to the 3 4& =: When erasing the left bit, the Shi-Volt source is indicated by the second element. In the right position and applied. Volts = L = 8 volts _ ~ 30 or, in the first, second and third embodiments, the memory erase is below the initial critical power two' instead of being erased to the negative critical Vt. Although the above-mentioned borax; Lai is also in the present invention, it is expected that the charge of the 包含 丨 包含 包含 contains the SONOS type or TFT-SONOS memory.

如圖5中所繪示,其為說明透過以正間極電壓帝 ,_抹除方法的第-實施例中流程5GQ的流程圖二 1 5U) 4 ’透過使用通道熱電子技術來程式化s〇職 1胞300。在步驟520處’透過從閘極端子施加引起希 =穿隨抹除的正閘極電壓,將S〇N〇S記憶胞抹除= ^臨界電壓。將S〇NOS記憶胞300抹除為負臨界電壓辦 兒憶體操作裕度並減小第二位元效應。或者,透過從^ 極端子施加正閉極電壓’而將S0N0S記憶胞抹除: 低於初始臨界電壓的電壓準位。 …、、 圖6中,繪示說明透過以負閘極電壓進 抹除方法的第二實施例中流程_的流程二 16 200805679 P940260 19580twf.doc/e 處,透過使用通道熱電子技術來程式化s〇N〇s記憶胞 300。在步驟620處,透過施加促使從基底處進行電洞^ ^ 抹除的負閘極電壓,將SONOS記憶胞300抹除為負臨界 電壓。將SONOS記憶胞300抹除為負臨界電壓在減小第 二位元效應的同時增大記憶體操作裕度。或者,透過從 SONOS §己憶胞300的基底處施加負閘極電壓,將 §己憶胞300抹除為低於初始臨界電壓的電壓準位。As shown in FIG. 5, it is a flow chart of the process 5GQ in the first embodiment of the first embodiment, which is transmitted through the use of channel thermal electron technology. Dereliction of duty 1 cell 300. At step 520, the S〇N〇S memory cell is erased = ^ threshold voltage by applying a positive gate voltage from the gate terminal. The S〇NOS memory cell 300 is erased to a negative threshold voltage to restore the memory margin and reduce the second bit effect. Alternatively, the S0N0S memory cell is erased by applying a positive closed-pole voltage ' from the terminal: a voltage level lower than the initial threshold voltage. ..., and in FIG. 6, the flow is illustrated in the second embodiment of the second embodiment of the method for erasing the negative gate voltage by using the channel thermal electron technology. s〇N〇s memory cell 300. At step 620, the SONOS memory cell 300 is erased to a negative threshold voltage by applying a negative gate voltage that causes the hole to be erased from the substrate. Erasing the SONOS memory cell 300 to a negative threshold voltage increases the memory operation margin while reducing the second bit effect. Alternatively, § MSC 300 is erased to a voltage level lower than the initial threshold voltage by applying a negative gate voltage from the substrate of SONOS § MSC 300.

圖7是說明透過能帶-導帶間的熱電洞抹除的抹除方 法的第三實施例中流程700的流程圖。在步驟71〇處,、 過使用通道熱電子論絲式化S〇N()s記憶胞3⑻。在+ 驟720處,透過使用能帶-導帶間的熱電洞抹除將 記憶胞300抹除為負臨界電壓。將s〇N〇s記憶胞 除為負臨界電壓的抹除操作增A記憶雜作裕度並減小第 二位元效應。或者,透過使用能帶_導帶間的熱電洞抹除拮 術將SONOS記憶⑯抹除為低於初始臨界電壓的電壓 圖8A是說明匪0S結構中的左位元的程式化的 圖二且圖8B是說明第二位元效應(此實例中指代右值元 的單一 §己憶胞二位元的操作裕度的相應圖表。第二位元? 應發生在使用單-記憶胞二位元的操作(即,左位元和: 位元)的電荷陷人記憶體中。當程式化兩個位元中的一; 位元時,即使尽有一個位元正被程式化,另一位元、 電壓也可能增大。圖8A中說明左位元的程式化,沪 荷8H)在左位元812。儘管只有左位元812被程式^ 17 200805679 P940260 19580twf.doc/e 左位元812的程式化也促使右位元814的臨界電壓增大, 如圖8B中所繪示。曲線820說明隨著左位元被程 式化,右位元814的臨界電壓升高。此現象稱作第二位元 效應。沒有第二位元效應的理想曲線將綠示左位元的^ 程式化會促使左位元的臨界電壓增大,但不會影塑右:, 的臨界電壓,從而右位元的臨界電壓將保持怪—兀 一圖9^到圖9B是說明具有約零伏特臨界電壓的 5己,胞的乐二位兀裕度的圖表’所述臨界電壓在圖从中 用符5虎Vt表示,且在圖9B中用符號%偏移表示 位兀裕度定㈣右位元_界電壓%⑴ 一 :的:界電壓Vt⑴的偏移之間的差值9:二 緣,左位元的臨界電壓已偏移為約3.5伏特且右:= 臨界電壓已偏移_ U伏特。 位兀的 裕度計算為Vt⑴的偏移與 ^例中弟二位元 其計算如下:3.5勝U簡^^移之間的差值, 圖10A和圖10B是說明呈右备& 、 記憶胞的第二位元裕度的圖表,所 嫩中用符㈣表示,且在圖_中昼準位在圖 如圖應中所猶,左位元的 ==表示。 實例㈣二位元裕度計算為vt此 移之間的差值,其計算如下: ,偏私與vt (0的偏 在如圖9A中啦示的抹除為約爱伏特=4.5伏特。 所繞示的抹除為負臨界電壓 ;^位與如圖10A中 之間違行比較,抹除為負 200805679 F940260 19580twf.doc/e =::轴立的抹除操作時的第二位元裕度顯著大於抹除 為、力令伏特的抹除操作時的第二位元裕度。 ^ 在本發_第二觀點’圖u是說明實施在福 (*〇讀insulator)記憶體11〇〇中的第一實施例的示音 =!^S01記髓包括在梦基底iiig上的氧化物ί V 0二/絕緣㈣。在⑽結構中,在不施加閑極偏壓 g、月况下,通迢1130形成於n+源極區1132與n+汲極 區⑴4之間。n+源極區⑽、通道113〇和的及極區1134 在乳化物層1120上。通道113〇在氧化物測上沉積為單 日日。通運1130可用蟲晶石夕或多晶石夕來實施。通道的 合適的厚度U190的實例在約5〇〇 A到約·〇 A的範圍 内^電荷陷入層1150在氧化物層114〇上,此也稱作氮化 物-氧化物(NO)堆疊。多晶矽閘極116〇在電荷陷入層 上。用來貫施多晶矽閘極116〇的一些合適的材料包含η 型多晶矽、ρ型多晶矽或金屬閘極。在不存在電荷陷入層 1150上的頂部氧化物的情況下,使用電洞穿隧注入的抹除 操作趾<夠更加谷易地使電洞移動經過多晶石夕閑極並進入電 荷陷入層115Q中。閘極偏壓1170連接到多晶矽閘極 1160源極笔塵1172連接到n+源極區1132,;及極電壓U74 連接到n+汲極區1134,且基底電壓1176連接到矽基底 1110 〇 一 圖12是說明實施在MONOS-SOI記憶體1200中的第 —貫施例的示意圖。MONOS-SOI記憶體包括在矽基底 1210上的氧化物層122〇以充當絕緣材料。在s〇i結構中, 19 200805679 P940260 19580twf.doc/e 在不施加閘極偏壓Vg的情況下,通道1230形成於n+源 極區1232與n+汲極區1234之間。n+源極區1232、通道 1230和n+;及極區1234在氧化物層122Ό上。通道1230在 氧化物層1220上沉積為單晶。通道123〇可用磊晶矽或多 晶矽來貫施。通道1230的合適的厚度t 129〇的實例在約 500 A到約1〇〇〇 A的範圍内。電荷陷入層125〇在底部氧 化物層1240上且頂部氧化物層126〇在電荷陷入層125〇 上’此也稱作氧化物-氮化物-氧化物堆疊。多晶矽閘極Η% 在頂部氧化物層126G上。用來實施多晶石夕閘極127〇的一 些合躺材料包含n型多㈣、P型多晶碎或金屬閘極。 在一個貫施例中,頂部氧化物層126〇選擇為足夠薄的,從 而透過電洞穿隧注入,電洞能夠移動經過多晶梦閘極咖 和頂部氧化物層1260而到達電荷陷入層125〇。閑極偏壓 1280連接到多晶石夕閘極127〇,源極電壓1282連接到奸 源極區1232,汲極電壓1284連接到n+沒極區1234,且 底電壓1286連接到矽基底121〇。 土 、圖13A到圖l3C是說明透過在_〇8_8〇1記憶體咖 或MONOS-SOI記憶體!200中進行電洞穿隧抹除的抹除押 作的第-實施例的結構圖。圖13A中,通道熱電子Z MN〇S柳記憶體_的右位元上,如箭頭ΐ3ι〇所^ 朝右的方向场動,且電子咖注人在電荷陷人層^ 的右侧。施加10伏特間極電壓Vg,施加〇伏特基Figure 7 is a flow diagram illustrating a flow 700 in a third embodiment of an erase method that is performed by a thermal hole erase between an energy band and a conduction band. At step 71, the S〇N()s memory cell 3(8) is fibrillated using channel thermal electrons. At + 720, the memory cell 300 is erased to a negative threshold voltage by using a thermal hole erase between the band and the conduction band. The erase operation of dividing the s〇N〇s memory cell into a negative threshold voltage increases the A memory miscellaneous margin and reduces the second bit effect. Alternatively, the SONOS memory 16 is erased to a voltage lower than the initial threshold voltage by using the thermal hole erasing between the band and the conduction band. FIG. 8A is a stylized diagram of the left bit in the 匪0S structure. Figure 8B is a corresponding diagram illustrating the second bit effect (in this example, the operation margin of a single § recall cell two-bit representing the right-valued element. The second bit? should occur using a single-memory cell two-bit The operation of the operation (ie, the left bit and the : bit) is trapped in the memory. When one of the two bits is programmed; the bit is even if one bit is being programmed, the other The voltage and voltage may also increase. The stylization of the left bit is illustrated in Figure 8A, which is in the left bit 812. Although only the left bit 812 is programmed by the program, the left bit 812 is also programmed to cause the threshold voltage of the right bit 814 to increase, as depicted in Figure 8B. Curve 820 illustrates that as the left bit is programmed, the threshold voltage of the right bit 814 rises. This phenomenon is called the second bit effect. An ideal curve without a second bit effect will stylize the left bit of the green bit to cause the threshold voltage of the left bit to increase, but will not affect the threshold voltage of the right:, so that the threshold voltage of the right bit will保持 兀 兀 图 图 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 ' ' ' ' ' ' ' ' ' ' In Fig. 9B, the symbol % offset is used to indicate the bit margin (4) right bit_boundary voltage %(1). One: the difference between the offsets of the boundary voltage Vt(1) is 9: the two edges, the threshold voltage of the left bit has been The offset is about 3.5 volts and the right: = the threshold voltage has been shifted by _ U volts. The margin of the bit is calculated as the offset of Vt(1) and the second bit of the case is calculated as follows: the difference between 3.5 wins and U moves, and FIGS. 10A and 10B are diagrams showing the right-handed & The chart of the second bit margin of the cell is represented by the symbol (4) in the tender, and the position in the figure _ is in the figure as shown in the figure, and the == in the left bit. Example (4) The two-bit margin is calculated as the difference between vt and the shift, which is calculated as follows: , partial bias and vt (0 is offset as shown in Figure 9A is about Avot = 4.5 volts. The erase is a negative threshold voltage; the ^ bit is compared with the violation between Figure 10A, and the erase is negative 200805679 F940260 19580twf.doc/e =:: The second bit margin of the axial erase operation is significant The second bit margin is greater than the erase operation of the eraser and force volts. ^ In the present invention, the second view's figure u is used to describe the implementation in the memory of the memory (11). The sound of the first embodiment = !^S01 includes the oxide ί V 0 2 / insulation (4) on the dream substrate iiig. In the structure (10), without applying the idle bias g, the month, overnight 1130 is formed between the n+ source region 1132 and the n+ drain region (1) 4. The n+ source region (10), the channel 113〇, and the polar region 1134 are on the emulsion layer 1120. The channel 113〇 is deposited as a single oxide on the oxide layer. The day 1100 can be implemented with wormite or polycrystalline stone. The example of a suitable thickness U190 of the channel is in the range of about 5 〇〇A to about 〇A. 1150 is on the oxide layer 114, which is also referred to as a nitride-oxide (NO) stack. The polysilicon gate 116 is on the charge trapping layer. Some suitable materials for the application of the polysilicon gate 116〇 include η. Type polycrystalline germanium, p-type polycrystalline germanium or metal gate. In the absence of the top oxide on the charge trapping layer 1150, the erase operation toe using the tunneling injection is more than enough to make the hole move more The spar is idle and enters the charge trapping layer 115Q. The gate bias 1170 is connected to the polysilicon gate 1160, the source dust 1172 is connected to the n+ source region 1132, and the pole voltage U74 is connected to the n+ drain region 1134. And the substrate voltage 1176 is connected to the germanium substrate 1110. FIG. 12 is a schematic diagram illustrating a first embodiment implemented in the MONOS-SOI memory 1200. The MONOS-SOI memory includes an oxide layer 122 on the germanium substrate 1210. To act as an insulating material. In the s〇i structure, 19 200805679 P940260 19580twf.doc/e In the case where the gate bias voltage Vg is not applied, the channel 1230 is formed between the n+ source region 1232 and the n+ drain region 1234. n+ source region 1232, channel 1230 and n+; 1234 is on oxide layer 122. Channel 1230 is deposited as a single crystal on oxide layer 1220. Channel 123 can be applied by epitaxial or polycrystalline germanium. An example of a suitable thickness of channel 1230 is 129 Å at about 500 Å. Within a range of about 1 A. The charge trapping layer 125 is on the bottom oxide layer 1240 and the top oxide layer 126 is on the charge trapping layer 125'. This is also referred to as an oxide-nitride-oxide stack. . The polysilicon gate Η% is on the top oxide layer 126G. Some of the reclining materials used to implement the polycrystalline stone gate 127 包含 include n-type multi (four), P-type polycrystalline or metal gates. In one embodiment, the top oxide layer 126 is selected to be sufficiently thin to be implanted through the via tunnel, and the hole can move through the polycrystalline montage and top oxide layer 1260 to the charge trapping layer 125. . The idle pole bias 1280 is connected to the polycrystalline gate 127 〇, the source voltage 1282 is connected to the stalk source region 1232, the drain voltage 1284 is connected to the n+ immersion region 1234, and the bottom voltage 1286 is connected to the 矽 substrate 121 〇 . Soil, Figure 13A to Figure l3C illustrate the memory in the _〇8_8〇1 memory or MONOS-SOI memory! A block diagram of the first embodiment of the wiping operation in which the hole tunneling is performed in 200. In Fig. 13A, on the right bit of the channel hot electron Z MN 〇 S memory _, as the arrow ΐ 3 〇 ^ is moved to the right, and the electronic coffee is placed on the right side of the charge trap layer ^. Applying a voltage of 10 volts Vg, applying volts

Vsub ’施加零伏特源極電壓VS,且施加5伏特、、及搞^Vsub ' applies a zero volt source voltage VS, and applies 5 volts, and engages ^

Vd。使源極電壓Vs 117? #、士 〆極見壓· 义”卫电I Vs 1172和没極電壓Vd 1174中的電壓偏 20 200805679 P940260 19580twf.d〇c/e 1置3=斤以道熱電子引導於左位元上,如圖13B中箭頭 的卢相丨1^月左移動,且電子1340注入在電荷陷入層1150 二二1加5伏特源極電壓Vs,且施加。伏特祕電壓。 期間’如圖13C中所繪示,施加+16伏特正電 力H你二屢Vg 117G,施加G伏特基底電壓Vsub 1176, 1]74。極電壓Vs 1172,且施加0伏特没極電屢Vd 秀:=穿隨抹除操作促使電洞⑽如箭頭I% 牙透多晶石夕閘極_並進入電荷陷入層115〇中。 囝4A到圖14D是說明透過在mn〇S-SOI記情雕 1100或MONOS-SOI記憶體1·中進行 除操作的第二實施例;熱 在娜0_記憶體咖的右位元位元 特基底電壓一 ==汲極電壓Vd。使源極電壓vs n [vcnm中的電壓偏置反向謂通 ^ 元上,如請中箭頭丨所示朝左移動-子:= 立 且施加0伏特汲極電壓。在圖〗4C中 ,、土 S, 圖_中戶猶示的左位元上使用二上和 ⑽,施加_基底糕Vsub^=閘f電覆々 電屡VS Π72,且施加5伏特汲極電屢Vd ==特源極 U /4。右彳立元上 21 200805679 P940260 19580twf.doc/e 的能帶-導帶間的熱電洞抹除促使電洞l45〇從n+汲極區 1134移動進入通道1130,經過氧化物層114〇並進入電荷 陷入層1150中,如箭頭1460所示。施加_1〇伏特負;壓 。的閘極電壓Vg 1Π0,施加5伏特基底電壓Vsub 1176,^ ··加〇伏特源極電壓Vs 1172,且施加0伏特汲極電壓Vd 1174。左位元上的能帶_導帶間的熱電洞抹除促使電洞Μ% 從n+源極區1132移動進入通道1130,經過氧化物層 ❿ 亚進入電荷陷入層1150中,如箭頭148〇所示。 圖15A是說明MNOS-SOI記憶體11〇〇或M〇N〇S-S〇I :己憶,1200中的左位元的程式化的結構圖,㈣ΐ5β是 說明第二位元效應(此實例中指代右位元)的單一記憶胞 二位元的操作裕度的相應圖表。第二位元效應發生在使用 兩個位兀操作(即,左位元和右位元)的記憶胞中。當程 式化兩個位元中的一個位元時,即使只有一個位元被程式 化,另一位元的臨界電壓也可能增大。圖15A中說明左位 兀的程式化,指示電荷151〇在左位元1512上。儘管只有 左位兀1512被程式化,但左位元1512的程式化也促使右 • ί元fl4的臨界電壓增大,如圖15B中所繪示。曲線1520 ^ "兒明卩返著左位元1512被程式化,右位元1514的臨界電壓 增大。此現象稱作第二位元效應。沒有第二位元效應的理 J曲線將反映出左位元的持續程式化會促使左位元的臨界 甩壓增大,但不會影響右位元的臨界電壓,從而右位元的 臨界電壓保持大體上恆定。 在本电月的弟二觀點’圖說明包括接通模式操作的 22 200805679 P940260 19580twf.doc/e 具有實施在MNONOS記憶體1600中的多層介電結構的了貝 部氧化物的第一實施例。MNONOS記憶體1600製造在p 型矽基底1610上。汲極n+摻雜區1620和源極n+摻雜區 1622形成在ρ型碎基底1610的右上侧和左上側。底部介 電結構1630 (例如,氧化物)覆蓋p型矽基底161〇,且包 括氮化矽層的電荷陷入層1640覆蓋底部介電結構163〇。Vd. Let the source voltage Vs 117? #, the 〆 〆 · · 义 ” 卫 卫 I I 172 172 172 172 172 172 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 The electrons are guided on the left bit, as shown by the arrow in Fig. 13B, and the electrons 1340 are injected into the charge trapping layer 1150, the second and the fifth, and the 5 volt source voltage Vs, and the voltage is applied. During the period 'as shown in Fig. 13C, apply +16 volts of positive power H to your second Vg 117G, apply G volt base voltage Vsub 1176, 1] 74. The pole voltage Vs 1172, and apply 0 volts without the poles repeatedly Vd show :=wearing with the erase operation causes the hole (10) such as the arrow I% to penetrate the polycrystalline slab gate _ and enter the charge trapping layer 115〇. 囝4A to Fig. 14D illustrates the etch through the mn〇S-SOI The second embodiment of the dividing operation is performed in 1100 or MONOS-SOI memory 1; the heat is in the right bit of the memory cell, and the base voltage is one == drain voltage Vd. The source voltage vs n is made. [The voltage offset in vcnm is reversed. On the element, as shown by the arrow 丨, move to the left - sub: = and apply a voltage of 0 volts to the drain. In Figure 4C, S, Figure _ Chinese households still use the two upper sum (10) on the left bit, apply _ base cake Vsub ^ = gate f electric cover 屡 VS Π 72, and apply 5 volts 汲 电 屡 V V V = = = U / 4. Right 彳立上21 200805679 P940260 19580twf.doc/e The band-to-conductor hot hole erasing causes the hole l45 移动 to move from the n+ drain region 1134 into the channel 1130, through the oxide layer 114 〇 and enter the charge trapping layer 1150, as indicated by arrow 1460. Apply 〇 volt volts negative; voltage gate voltage Vg 1 Π 0, apply 5 volts substrate voltage Vsub 1176, ^ · · 〇 volt source voltage Vs 1172 And applying a 0 volt bungee voltage Vd 1174. The hot hole erase between the band-bands on the left bit causes the hole Μ% to move from the n+ source region 1132 into the channel 1130, through the oxide layer The charge trapping layer 1150 is shown as arrow 148. Figure 15A is a diagram showing the stylized structure of the left bit in the MNOS-SOI memory 11〇〇 or M〇N〇SS〇I: 忆, 1200, (d) ΐ5β is a corresponding graph illustrating the operational margin of a single memory cell octet of the second bit effect (referring to the right bit in this example). The two-bit effect occurs in a memory cell that uses two bit operations (ie, left and right bits). When stylizing one of the two bits, even if only one bit is stylized The threshold voltage of another bit may also increase. The stylization of the left bit 说明 is illustrated in Figure 15A, indicating that the charge 151 is on the left bit 1512. Although only the left bit 1512 is stylized, the stylization of the left bit 1512 also causes the threshold voltage of the right cell fl4 to increase, as depicted in Figure 15B. The curve 1520 ^ " 儿明卩 returns to the left bit 1512 is stylized, the threshold voltage of the right bit 1514 increases. This phenomenon is called the second bit effect. The rational J curve without the second bit effect will reflect that the continuous stylization of the left bit will cause the critical voltage of the left bit to increase, but will not affect the threshold voltage of the right bit, thus the threshold voltage of the right bit. Keep it substantially constant. The second embodiment of the present electric power diagram illustrates a first embodiment of a shell oxide having a multilayer dielectric structure implemented in the MNONOS memory 1600, which includes an on-mode operation 22 200805679 P940260 19580 twf.doc/e. The MNONOS memory 1600 is fabricated on a p-type germanium substrate 1610. A drain n+ doping region 1620 and a source n+ doping region 1622 are formed on the upper right side and the upper left side of the p-type broken substrate 1610. A bottom dielectric structure 1630 (e.g., oxide) covers the p-type germanium substrate 161, and a charge trapping layer 1640 including a tantalum nitride layer covers the bottom dielectric structure 163.

頂部介電結構1650覆蓋電荷陷入層1640。視部m構 1650具有多個層,包括覆蓋氧化物層1652的氮化矽層 1654 ’此也稱作N-0堆疊。ρ型多晶矽層166〇覆蓋頂部介 電結構1650。其它合適的材料可代替p型多晶矽層166〇 而實施,例如η型多晶矽或金屬閘極。向p型多晶矽層166〇 施加閘極電壓Vg 167G,且向p _基底161Q施加^底電 壓Vsub 1672。向没極n+摻雜區162〇施加汲極電壓別 1674,且向源極n+摻雜區1622施加源極電壓% 1676。 圖Π說明在接通模式操作中的具有實施在 $憶體17QG中的多層堆疊結構的頂部氧化物 ^二貫_。M〇N()N()s記憶體17⑻製造在p型石夕美 ί 上^而不是f規_基底上。没極n+掺雜區172土0 ㈣1722形成在㈣梦基底mG的右 介電結構1730 (例如’氧化物)覆蓋基底1710, 且虱化矽層174〇覆蓋底部介 丄 175〇 ^ « 丨电、、、口構1730。頂部介電結構 復皿II切層1740。頂部介f結構mG具有多個層, 匕括氧化物層1750覆蓋氮化矽芦1754 曰 覆蓋氧化物層1752,此#浐你/ 虱化矽層1754 初層1752此耗作〇彻堆疊。p型多晶石夕層 23 200805679 P940260 19580twf.doc/e 1760覆蓋頂部介電結構175〇。其它合適的材料可代替p 型多晶矽層1760而實施,例如n型多晶矽或金屬閘極。向 P型多晶矽層1760施加閘極電壓Vg 177〇,且向p型多晶 矽基底1710施加基底電壓1772 Vsub。向汲極11+摻雜區 1720細加;及極電壓yd 1774,且向源極n+摻雜區1722施 加源極電壓Vs 1776。圖18A到圖18C是說明用於增大在 接通,式操作中使用的頂部多層介電結構中的第二位元裕 度的第一方法的結構圖,其適用於MN〇N〇s記情體 和MONONOS記憶體17〇〇的第一和第二實施例兩者。圖 18A是說明透過右姐元位元置處的通道熱電子來程式化 MNONOS $憶體1600的結構圖。方向箭頭181〇指示將通 運熱電子施加到右位元,如以電荷陷人層164()中的電子 刪緣示。施加8伏特閘極電堡Vg 167〇,施加$伏特汲 ’施加G伏特源極電壓VS 1676,且施加0 m VSUb 1672。職絲㈣壓的組合導致 OSsfe體麵中的右位元變為正臨界電壓+vt。 圖18B是說明透過左位元位元 式化贿ONOS記憶體觸的結处匕運熱-子來私 示將通道熱電子施加到左位么請指 帝;mm认-, 戈从书何陷入層1640中的 电子1840繪不。綱伏特閘極 二 特汲極電壓Vd:1674,施加5伏特如二咖知加〇伏 加〇伏特基底電壓Vsub 16^H=Vs 1676 ’且施 致咖N0S記憶體16〇〇中的左^ ^的電_組合導 臨界電壓+Vt。: 〇左位凡的通這熱電子變為正 24 200805679 P940260 19580twf.doc/e 、_圖18C是說明透過電洞穿隨對丽⑽^記憶體麵 進仃電洞注入抹除的結構圖。在抹除操作期間,透過使電 洞電荷1860a移動經過p型多晶石夕層166〇、氮化石夕層1654 和氧化物丨652並進人電荷陷入層難,在箭頭185〇所示 的方向上在左位元上實施電洞穿隨抹除。也透過使電洞電 ,刪b移動經過p型多晶梦層獅、氮切層1654和 乳1 匕物1652並進入電荷陷入層,在右位元上實施電 c。施加16伏特間極電壓Vg 167〇,施 =74 ’編伏特源極㈣% 1676,且施加 t t Μ 1672。這魏加的的組合導致透 ==牙喊電洞電荷移動經過?型多晶销166〇、氮化 夕运1654和氧化物1652並進入雷料p々人κι 洞注入抹除。 仏謂&人層1640而進行電 到圖麟^使得其適於低電壓操作。圖似 層介電;二用於增大在接通模式操作中使用的頂部多 第一和第…L觸和M〇N〇N〇S記憶體1700的 太办-/ =只例兩者。圖19A到圖19B分別是說明透過 MNONOS記卿_祕雄回V通迢熱琶子來程式化 中他、十、* 〇的結構圖,其類似於圖18Α到圖18Β =述:方向箭頭191。指示將通道熱電子二】The top dielectric structure 1650 covers the charge trapping layer 1640. The view m structure 1650 has a plurality of layers including a tantalum nitride layer 1654' covering the oxide layer 1652. This is also referred to as an N-0 stack. A p-type polysilicon layer 166 〇 covers the top dielectric structure 1650. Other suitable materials may be implemented in place of the p-type polysilicon layer 166, such as an n-type polysilicon or a metal gate. A gate voltage Vg 167G is applied to the p-type polysilicon layer 166, and a bottom voltage Vsub 1672 is applied to the p_ substrate 161Q. A drain voltage 1674 is applied to the gateless n+ doped region 162, and a source voltage % 1676 is applied to the source n+ doped region 1622. Figure Π illustrates the top oxide ^ __ with a multi-layer stack structure implemented in Remembrance 17QG in an on mode operation. M〇N()N()s memory 17(8) is fabricated on p-type Shi Ximei ί on the substrate instead of the f gauge. The immersed n+ doped region 172 soil 0 (four) 1722 is formed in the (iv) dream base mG right dielectric structure 1730 (eg 'oxide') covering the substrate 1710, and the bismuth telluride layer 174 〇 covers the bottom layer 丄 丄 « « « « And mouth structure 1730. Top Dielectric Structure Recipe II Cut 1740. The top dielectric structure mG has a plurality of layers, and the oxide layer 1750 covers the nitrided cucurbit 1754 覆盖 overlying oxide layer 1752, which is a stacking of the first layer 1752. P-type polycrystalline litho layer 23 200805679 P940260 19580twf.doc/e 1760 covers the top dielectric structure 175〇. Other suitable materials may be implemented in place of the p-type polysilicon layer 1760, such as an n-type polysilicon or a metal gate. A gate voltage Vg 177 施加 is applied to the p-type polysilicon layer 1760, and a substrate voltage of 1772 Vsub is applied to the p-type polysilicon substrate 1710. The gate 11+ doping region 1720 is finely added; and the terminal voltage yd 1774 is applied, and a source voltage Vs 1776 is applied to the source n+ doping region 1722. 18A through 18C are block diagrams illustrating a first method for increasing a second bit margin in a top multilayer dielectric structure used in an on-type operation, which is applicable to MN〇N〇s Both the first and second embodiments of the modality and the MONOOS memory 17〇〇. Figure 18A is a block diagram showing the programming of the MNONOS $ memory 1600 through the channel hot electrons placed by the right sister element. Directional arrow 181 indicates that the applied hot electrons are applied to the right bit, such as by the electrons in the charge trapping layer 164(). An 8 volt gate electric voltaic Vg 167 施加 was applied, a $ volt applied volts applied to the volts volt source voltage VS 1676, and 0 m VSUb 1672 was applied. The combination of the four (4) pressure causes the right bit in the OSsfe face to become a positive threshold voltage + vt. FIG. 18B is a diagram illustrating that the hot electrons of the ONOS memory are touched by the left bit element to privately apply the channel hot electrons to the left position. Please refer to the emperor; mm recognition-, Ge from the book The electrons 1840 in layer 1640 are not painted. The volts of the volts of the second poles of the volts Vd: 1674, the application of 5 volts such as two coffee, plus 〇 〇 〇 volts base voltage Vsub 16 ^ H = Vs 1676 ' and Shi Zhi coffee N0S memory 16 左 left ^ The electric_combination guides the threshold voltage +Vt. : 〇 位 凡 凡 凡 凡 凡 凡 凡 凡 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 During the erase operation, it is difficult to move the hole charge 1860a through the p-type polycrystalline layer 166 〇, the nitride layer 1654, and the oxide 丨 652 into the charge trapping layer, in the direction indicated by the arrow 185 上. Perform hole punching and erasing on the left bit. Also, by making the hole electric, delete b and move through p-type polycrystalline dream layer lion, nitrogen cut layer 1654 and milk 1 material 1652 and enter the charge trapping layer, and implement electricity c on the right bit. A 16 volt inter-electrode voltage Vg 167 施加 was applied, a =74 ” volt source (4)% 1676 was applied, and t t Μ 1672 was applied. This combination of Weijia leads to penetration == teeth shouting hole charge moving through? The type of polycrystalline pin 166 〇, nitriding eve 1654 and oxide 1652 and into the mine p々 κι hole injection erase. It is said that the & human layer 1640 is electrically connected to the figure to make it suitable for low voltage operation. The picture is layer dielectric; the second is used to increase the top of the first and the first ... L touch and M 〇 N 〇 N 〇 S memory 1700 used in the on mode operation. 19A to 19B are respectively structural diagrams for stylizing the middle, ten, and * 透过 through the MNONOS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . Indicates that the channel will be hot electrons II]

位置’如以電荷陷入層i6 U 8伏特閘極_ Vg _,編施加 施加0俠胪浪此A 沉粉及極電壓Vd 1674, ~原極電壓Vsl676,且施加0伏特基底電壓ν_ 25 200805679 P940260 J 9580twf.doc/e ^壓的㈣導致__s記憶體圆 中的右位70的通道熱電子變為正臨界電遷+vt。 目19以制透過左位元位^置處 式化MNONOS記憶體_的:、、、电于木枉 =通運熱Μ施加到左位元,如以電荷陷人層難中的 電子1940繪示。施加8供炉pw 特汲極電壓则74 =:=1= ’施加0伏 她加 > 伏特源極電壓Vs 1676,且施 加〇伏縣底電壓Vsub 1672。這麵 致画刪記__中的左位元的通道熱電子變= 臨界電壓+Vt。 包卞义馬正 $ 19C是制透過電洞穿隧對_〇刪記憶體麵 K丁电洞注入抹除的結構圖。在抹除操作期間,透過使電 洞電何196加移動經過P型多晶石夕層1660、氮化梦層1654 t乳i匕物1652並進入電荷陷入層1640,在左位元上實施 屯洞牙隨抹除。透過使電洞電荷19_移動經過p型 石夕層1660、氮化梦層1654和氧化物腿並進入電荷陷Z 層1640,在前碩1950所示的方向上對右位元應用電洞 ;==8伏特間極電壓Vgl㈣,施加。伏特沒極 电£ Vd 1674,施加〇伏特源極電壓% 1676,且施_ 伏特基底電M Vsub 1672。這些施加的的組合導 過電洞穿隧使電洞電荷移動經過p型多晶石夕層166〇 石夕層1654和氧化物1652並進入電荷陷入層獅而進行電 洞注入抹除。第二操作方法透過將閘極偏壓從+16 小為+8伏特,並透過“㈣基底161()施加_8伏特而適 26 200805679 P940260 19580twf.doc/e 於低電壓操作。 圖2〇A疋說明Mn〇NOS記憶體1600或mononos jfef 17GG中的左位元的程式化的結構圖,且圖2〇B是 況明第一位兀效應(此實例中指代右位元)㈤單一記憶胞 二位元的操作裕度的相應圖表。第二位元效應發生在使用 兩個位元#作(即’左位元和右位元)的記憶胞中。當程 式化兩個位兀中的一個位元時,即使只有一個位元被程式 化,另一位元的臨界電壓也可能增大。圖2〇A中說明左位 元的程式化,其指示電荷2〇1〇在左位元2〇12上。儘管只 有左位元2012被程式化,但左位元2〇12的程式化也促使 右位元2014的6¾界電壓增大,如圖2〇b中所繪示。曲線 2020說明隨著左位元2〇12被程式化,右位元2〇14的臨界 電壓增大。此現象稱作第二位元效應。沒有第二位元效應 的理想曲線將涉及會促使左位元的臨界電壓增大的左位元 的持續程式化,但不會影響右位元的臨界電壓,從而右位 元的臨界電壓將保持大體上恆定。 具有p型矽基底的MNONOS記憶體1600和具有p盤 石夕基底的MONONOS記憶體1700希望作為對參看圖16 到圖20實施本發明的第三觀點的接通模式操作的說明。在 本發明的精神内也可實踐其它記憶體結構,包 TFT記憶體和MONONOS TFT記憶體。 在本發明的第四觀點,圖21說明在接通模式操作中使 用的具有實施在MONONS記憶體2100中的多層介電結構 的底部氧化物的第一實施例。MONONS記憶體21〇〇製造 27 200805679 P940260 19580twf.doc/e 在P型矽基底2110上,p型矽基底2110具有分別形成在p 型矽基底2110的右上侧和左上侧的汲極n+摻雜區2i2〇和 — 源極n+摻雜區2122。底部介電結構2130覆蓋p型矽基底 2110。底部介電結構2130具有多個層,包括氧化物層2134 心 覆蓋氮化矽層2132,此也稱作0-N層。氮化矽層214〇覆 蓋底部介電結構2130,氧化物層2150覆蓋氮化矽層214f 且P型多晶矽層2160覆蓋氧化物層215〇。其它合9適的材 • 料可代替P型多晶矽層2160而實施,例如n型多^矽或金 屬閘極。向ρ型多晶矽層2160施加閘極電壓Vg217〇,且 向P型矽基底2110施加基底電壓Vsub 2176。向汲極时 推雜區2120施加波極電壓Vd 2m,且向源極奸推雜區 2122施加源極電壓Vs 2174。 請參看圖22,其繪示在接通模式操作申使用的具有實 鈿在MONONOS記憶體2200中的多層介電結構的底部氧 化物的第二實施例。MONONOS記憶體2200製造在ρ型 • 矽基底2210上,P型矽基底2210具有形成在P型矽基ί 的右上側和左上側的汲極η+摻雜區222〇和源極 • 摻雜區2222。底部介電結構2230覆蓋ρ型石夕美底221〇。 ,底部介電結構測具有多個層,包括氧化物層%236覆蓋 乳化石夕層2234且氮化梦層2234覆蓋氧化物層迎,此也 稱作0-Ν-0層。氮化石夕層2240覆蓋底部介電結構223〇, ^物層2250覆蓋氮切層屬,且ρ型多晶砍層屬 後蓋氧化物層2250。其它合適的材料可代替ρ型多晶石夕層 2260而實施’例如η型多晶砍或金屬閑極。向ρ型多晶石夕 28 200805679 P940260 19580twf.doc/e 層2260施加閘極電壓2270 Vg ;且向p型矽基底221〇施 加基底電壓2276 Vsub。向汲極n+摻雜區222〇施加汲極電 .壓Vd 2272,且向源極n+摻雜區2222施加源極電壓v 〜 2274 。 ^ 圖23中,繪示在接通模式操作中使用的具有實施在 MONONS TF丁記憶體2300中在多晶矽基底上的多層介電 …構的底部氧化物的第三實施例。m〇n〇ns tft記情體 • 2300製造在P型多晶矽基底2310上,P型多晶矽基底2310 具有分卿成在p型乡晶石夕基底231〇的纟上侧和左上侧的 汲極n+摻雜區2320和源極n+摻雜區2322。底部介電結構 2330復盍p型多晶矽基底231〇。底部介電結構μ兕具有 多個層,其包括氧化物層2334覆蓋氮化石夕層2332也 稱作0-Ν層。氮化石夕層234〇覆蓋底部介電結構233〇,氧 ^物層2350覆蓋氮切層測,且ρ型多晶砍層236〇覆 盍氧化^層2350。其它合適的材料可代替ρ型多晶石夕層 • 236G而貝Μ ’例如11型多日日日碎或金屬閘極。向ρ型多晶石夕 層2360施加閘極電壓237〇Vg,且向ρ型多晶石夕基底細 基底屯壓2376 Vsub。向汲極η+摻雜區232〇施加汲極 *電壓Vd 2372,且向源極η+掺雜區2322施加 2Ρ4。 . 咕 土 圖24說明在接通模式操作中使用的具有實施在 M_N0S TFT記憶體24〇〇中在多晶碎基底上的多層介 電結構的底部氧化物㈣。MqNq 體2400製造在?型多曰石々其麻l P I夕日日矽基底2410上,p型多晶矽基底 29 200805679 P940260 19580twf.doc/e ㈣具有分卿成在p财㈣基底鳩的右上側和左 上侧較極Μ摻雜區242〇和源極n+摻雜區MM。底部介 电、、、口構2430极盍p型多晶矽基底241〇。底部介電結構 具有多個層’包括氧化物層2436覆蓋氮化石夕層2434且氮 化石夕層2434覆蓋氧化物層MM,此也稱作⑽層。氮 化石夕層2440覆蓋底部介電結構243〇,氧化物層勘覆ς 氮化石夕層2440,且ρ型多晶發層漏覆蓋氧化物層245[ 其它合適的材料可代替ρ型多晶梦層246G而實施,例如打 型多晶石夕或金屬閘極。向ρ型多晶石夕層246〇施加間極電壓 2470 Vg,且向Ρ型多晶矽基底2410施加基底電壓2476 Vsub。向汲極η+摻雜區242〇施加汲極電壓Μ?〕,且 向源極n+摻雜區2422施加源極電壓vs 2474。 叫翏看圖25,其繪示在接通模式操作中使用的μ (HK) NOS §己憶體2500的第一.實施例,所述Μ (Ηκ) N〇S記憶體2500每一記憶胞具有兩個位元且高介電 (mgh-κ)—材料堆疊在矽基底上。M (HK) N〇s記憶體2 5⑽ 製造在ρ型矽基底2510上,p型矽基底251〇具有分別形 成在P型矽基底2510的右上侧和左上侧的汲極n+摻雜區 2520和源極n+掺雜區2522。包括氧化物層的底部介電層 2530在ρ型矽基底2510上,且包括氮化矽層的電荷陷入 層2540在底部介電層253〇上。高介電材料堆疊層255() 配置在電荷陷入層2540上方,且p型多晶矽層256〇配置 在高介電材料堆疊層2550上方。向ρ型多晶矽層256〇施 加閘極電壓2570 Vg,且向P型矽基底251〇施加基底電壓 30 200805679 P940260 i958〇twfd〇c/e ΓΓΓΛ向没極奸換雜區2520施加汲極電壓Vd 2572 且向雜n+_區您施加源極電厂堅Vs2r7r 广加人個貫施例中,高介電材料堆疊層255G是選自擁右 =可電用= i ^ Si02 + 丨μ 日电谷,或在M〇s閘極和閘極電介質 中區域^保持不而其足夠厚以防止過大的^ 另—貫施例中’高介電材料堆疊層2550是選自 二2二“層254G更高的介電常數的介電材料。合適 的^丨心丨電材料2550的一些實例包括氧化紹A1203和 乳化給Hf〇2。高介電材料堆疊層的描述也適用於參 26所描述的實施例。 立圖26說明在接通模式操作中使用的M (HK) N〇s記 體結構26GG的第二實施例+在所述以阁觸㈠己憶 版260〇中冋介電材料堆疊層在多晶矽基底上。Μ (Ήκ) =〇S圮憶體2600製造在p型多晶矽基底261〇上,p型多 晶矽基底2610具有形成在p型矽基底261〇的右上侧和左 上侧的汲極n+摻雜區2620和源極n+摻雜區2622。底部介 電層2630在p型多晶矽基底261〇上,且氮化矽層264〇 在底部介電層2630上。高介電材料堆疊層265〇配置在氮 化石夕層2640上方,且p型多晶矽層266〇配置在高介電材 料堆§層2650上方。向p型多晶矽層2660施加閘極電壓 2670 Vg,且向p型多晶矽基底261〇施加基底電壓2676 Vsub。向汲極n+摻雜區262〇施加汲極電壓vd 2672,且 31 200805679 P940260 19580twf.doc/e 向源極n+推雜區2622施加源極電壓Vs 2674。The position 'If the charge is trapped in the layer i6 U 8 volt gate _ Vg _, the application applies 0 胪 胪 此 this A powder and the pole voltage Vd 1674, ~ the original voltage Vsl676, and the application of 0 volt base voltage ν 25 200805679 J 9580twf.doc/e ^ The pressure (4) causes the channel hot electrons in the right bit 70 in the __s memory circle to become a positive critical electromigration + vt. In order to make the MNONOS memory through the left bit position, the electric memory is applied to the left bit element, such as the electrons 1940 in the hard trapped layer. . Apply 8 to the furnace pw Tungsaw voltage then 74 =: = 1 = 'apply 0 volts. She adds > volt source voltage Vs 1676, and applies the stagnation voltage Vsub 1672. This picture deletes the channel hot electrons of the left bit in __ = threshold voltage + Vt. Bao Yiyi Ma Zheng $ 19C is a structural diagram of the hole through the hole tunneling to the _ 〇 memory surface K Ding hole. During the erasing operation, by moving the hole 196 through the P-type polycrystalline layer 1660, nitriding the layer 1654 t, and entering the charge trapping layer 1640, the left bit is implemented. The hole is erased. Applying a hole to the right bit in the direction indicated by the former 1950 by moving the hole charge 19_ through the p-type layer 1660, the nitride layer 1654, and the oxide leg into the charge trapping layer 1640; ==8 volts between the pole voltage Vgl (four), applied. Volt immersed electricity £ Vd 1674, applying volts volts source voltage % 1676, and applying volts of substrate power M Vsub 1672. These applied combinations lead to tunneling to cause the hole charge to move through the p-type polycrystalline layer 166, the layer 1654 and the oxide 1652, and enter the charge trapping layer to perform hole injection erasure. The second method of operation operates at a low voltage by applying a gate bias voltage from +16 to +8 volts and applying _8 volts through the "(iv) substrate 161(). 26 200805679 P940260 19580 twf.doc/e operates at a low voltage. Figure 2A疋Describe the stylized structural diagram of the left bit in Mn〇NOS memory 1600 or mononos jfef 17GG, and Figure 2〇B is the first 兀 effect (in this example, the right bit) (5) Single memory cell A corresponding graph of the operating margin of the two bits. The second bit effect occurs in a memory cell that uses two bits # (ie, 'left and right bits'). When stylized in two bits In one bit, even if only one bit is programmed, the threshold voltage of the other bit may increase. Figure 2A shows the stylization of the left bit, which indicates that the charge 2〇1〇 is in the left bit. 2〇12. Although only the left bit 2012 is stylized, the stylization of the left bit 2〇12 also causes the 63⁄4 boundary voltage of the right bit 2014 to increase, as shown in Figure 2〇b. Curve 2020 It is shown that as the left bit 2〇12 is programmed, the threshold voltage of the right bit 2〇14 increases. This phenomenon is called the second bit effect. An ideal curve with a second bit effect will involve a continuous stylization of the left bit that will cause the threshold voltage of the left bit to increase, but will not affect the threshold voltage of the right bit, so that the threshold voltage of the right bit will remain The MNONOS memory 1600 having a p-type germanium substrate and the MONONOS memory 1700 having a p-disk substrate are intended as an illustration of the on-mode operation of the third aspect of the present invention with reference to FIGS. 16 through 20. Other memory structures, including TFT memory and MONONOS TFT memory, can also be practiced within the spirit of the present invention. In a fourth aspect of the present invention, Figure 21 illustrates the implementation of the use in MONONS memory 2100 in an on mode operation. A first embodiment of a bottom oxide of a multilayer dielectric structure. MONONS memory 21 〇〇 fabrication 27 200805679 P940260 19580twf.doc/e On a P-type germanium substrate 2110, a p-type germanium substrate 2110 has a p-type germanium formed thereon, respectively. The upper right side and the upper left side of the substrate 2110 have a drain n+ doped region 2i2 and a source n+ doped region 2122. The bottom dielectric structure 2130 covers the p-type germanium substrate 2110. The bottom dielectric structure 2130 has a plurality of The oxide layer 2134 includes a hafnium nitride layer 2132, which is also referred to as a 0-N layer. The tantalum nitride layer 214 〇 covers the bottom dielectric structure 2130, and the oxide layer 2150 covers the tantalum nitride layer 214f and the P-type polysilicon The layer 2160 covers the oxide layer 215. Other materials can be implemented instead of the P-type polysilicon layer 2160, such as an n-type polysilicon or a metal gate. A gate voltage Vg217 is applied to the p-type polysilicon layer 2160. And a substrate voltage Vsub 2176 is applied to the P-type germanium substrate 2110. A wave voltage Vd 2m is applied to the drain time doping region 2120, and a source voltage Vs 2174 is applied to the source dummy pad 2122. Referring to Figure 22, a second embodiment of a bottom oxide having a multilayer dielectric structure in the MONONOS memory 2200 for use in an on mode operation is illustrated. The MONONOS memory 2200 is fabricated on a p-type 矽 substrate 2210 having a drain η+ doped region 222 〇 and a source doped region formed on the upper right and upper left sides of the P-type ί ί 2222. The bottom dielectric structure 2230 covers the p-type Shi Ximei 221 〇. The bottom dielectric structure has a plurality of layers including an oxide layer % 236 covering the emulsified layer 2234 and a nitride layer 2234 covering the oxide layer, which is also referred to as a 0-Ν-0 layer. The nitride layer 2240 covers the bottom dielectric structure 223, the material layer 2250 covers the nitrogen-cut layer, and the p-type polycrystalline layer is the back cover oxide layer 2250. Other suitable materials may be employed instead of the p-type polycrystalline layer 2260, such as η-type polycrystalline chopping or metal idler. A gate voltage of 2270 Vg is applied to the p-type polycrystalline stone 28 200805679 P940260 19580twf.doc/e layer 2260; and a substrate voltage of 2276 Vsub is applied to the p-type germanium substrate 221. A gate voltage is applied to the drain n+ doping region 222, a voltage Vd 2272 is applied, and a source voltage v~2274 is applied to the source n+ doping region 2222. In Fig. 23, a third embodiment of a bottom oxide having a multilayer dielectric implemented on a polycrystalline germanium substrate in MONONS TF butyl memory 2300 for use in an on mode operation is illustrated. M〇n〇ns tft 记 体 • 2300 is fabricated on a P-type polycrystalline germanium substrate 2310, and the P-type polycrystalline germanium substrate 2310 has a bungee n+ on the upper side and the upper left side of the p-type home crystal ill base 231〇. Doped region 2320 and source n+ doped region 2322. The bottom dielectric structure 2330 retries the p-type polysilicon substrate 231. The bottom dielectric structure μ兕 has a plurality of layers including an oxide layer 2334 covering the nitride layer 2332, also referred to as a 0-turn layer. The nitride layer 234 〇 covers the bottom dielectric structure 233 〇, the oxygen layer 2350 covers the nitrogen cut layer, and the p-type polycrystalline chop layer 236 covers the 盍 盍 layer 2350. Other suitable materials may be substituted for the p-type polycrystalline layer • 236G and Μ Μ ' for example, type 11 multi-day sun-break or metal gate. A gate voltage of 237 〇 Vg is applied to the p-type polycrystalline layer 2360, and 2376 Vsub is pressed to the p-type polycrystalline base substrate. A drain *voltage Vd 2372 is applied to the drain η+ doping region 232, and 2Ρ4 is applied to the source η+ doping region 2322. Fig. 24 illustrates a bottom oxide (four) having a multilayer dielectric structure implemented on a polycrystalline substrate in an M_NOS system memory 24, used in an on mode operation. MqNq body 2400 is manufactured in? Type 曰 々 々 PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI PI 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 Region 242 〇 and source n+ doped region MM. The bottom dielectric, and 2430-pole p-type polycrystalline germanium substrate 241〇. The bottom dielectric structure has a plurality of layers ' including an oxide layer 2436 covering the nitride layer 2434 and a nitrogen oxide layer 2434 covering the oxide layer MM, which is also referred to as a (10) layer. The nitride layer 2440 covers the bottom dielectric structure 243〇, the oxide layer is deposited on the tantalum nitride layer 2440, and the p-type polycrystalline layer leaks over the oxide layer 245 [other suitable materials can replace the p-type polycrystalline dream Layer 246G is implemented, such as a doped polysilicon or a metal gate. An inter-electrode voltage of 2470 Vg was applied to the p-type polycrystalline silicon layer 246, and a substrate voltage of 2476 Vsub was applied to the palladium-type polycrystalline germanium substrate 2410. A drain voltage Μ is applied to the drain η+ doping region 242, and a source voltage vs 2474 is applied to the source n+ doping region 2422. Referring to Figure 25, a first embodiment of a μ (HK) NOS § Remembrance 2500 for use in an on mode operation, each memory cell of the Μ (Ηκ) N〇S memory 2500 is illustrated. A two-dimensional and high dielectric (mgh-k)-material is stacked on a germanium substrate. M (HK) N 〇 s memory 2 5 (10) is fabricated on a p-type germanium substrate 2510 having drain d+ doped regions 2520 formed on the upper right and upper left sides of the p-type germanium substrate 2510, respectively. Source n+ doped region 2522. A bottom dielectric layer 2530 including an oxide layer is on the p-type germanium substrate 2510, and a charge trapping layer 2540 including a tantalum nitride layer is on the bottom dielectric layer 253. The high dielectric material stack layer 255() is disposed over the charge trap layer 2540, and the p-type polysilicon layer 256 is disposed over the high dielectric material stack layer 2550. A gate voltage of 2570 Vg is applied to the p-type polysilicon layer 256 ,, and a substrate voltage is applied to the P-type germanium substrate 251 2008. 200805679 P940260 i958〇twfd〇c/e 汲 A bungee voltage Vd 2572 is applied to the non-polarization replacement region 2520 And to the hetero-n+_ zone, you apply the source power plant to the Vs2r7r. In the case of a wide application, the high dielectric material stacking layer 255G is selected from the right = electricity = i ^ Si02 + 丨μ Or in the M〇s gate and gate dielectrics, the area ^ is not thick enough to prevent over-largeness. In the other example, the 'high dielectric material stack layer 2550 is selected from the 2nd 2nd layer 254G. High dielectric constant dielectric materials. Some examples of suitable dielectric materials 2550 include oxidized A1203 and emulsified to Hf 〇 2. The description of the high dielectric material stack layer also applies to the implementation described in Ref. Figure 26 illustrates a second embodiment of the M (HK) N 〇 s character structure 26 GG used in the on mode operation + the 冋 dielectric material stack layer in the 触 一 (1) 忆 版 260 〇 On the polycrystalline germanium substrate, Μ(Ήκ)=〇S memory 2600 is fabricated on p-type polycrystalline substrate 261, p-type polycrystalline substrate 261 0 has a drain n+ doped region 2620 and a source n+ doped region 2622 formed on the upper right side and the upper left side of the p-type germanium substrate 261A. The bottom dielectric layer 2630 is on the p-type polysilicon substrate 261 and nitrided. The germanium layer 264 is on the bottom dielectric layer 2630. The high dielectric material stack layer 265 is disposed over the nitride layer 2640, and the p-type poly germanium layer 266 is disposed over the high dielectric material stack layer 2650. The polysilicon layer 2660 applies a gate voltage of 2670 Vg and applies a substrate voltage of 2676 Vsub to the p-type polysilicon substrate 261. A gate voltage vd 2672 is applied to the drain n+ doped region 262, and 31 200805679 P940260 19580twf.doc/e A source voltage Vs 2674 is applied to the source n+ dummy pad 2622.

圖27A到圖27C是說明用於增大在接通模式操作中使 用的Μ (HK) NOS s己憶體2500或2600的第二位元裕度 的第一方法的結構圖,在所述]V! (HK) N〇s記憶體25〇〇 或2600中高介電材料堆疊層在矽基底或多晶矽基底上。圖 27A疋5兒明透過右位元位元置處的通道熱電子來程式化μ fffiONOS記憶體2500或2600的結構圖。方向箭頭271〇 指示將通道熱電子施加到右位元,如以電荷陷入層254〇 中的電子2720繪示。施加8伏特閘極電壓Vg257〇,施加 5伏特汲極電壓Vd2574,施加〇伏特源極電壓Vs 2576, 且施加0伏特基底電壓Vsub 2572。這些施加的電壓的组 合導致Μ () N0S記憶體25〇〇或2_中的右位元的 通道熱電子變為正臨界電壓+Vt。 、圖27B是說明透過左位元位元置處的通道熱電子來程 =化Μ (HK)侧記憶體25〇〇或26〇〇的結構圖。方向 前頭2730指示將通道熱電子施加到左位元,如以電荷陷入 層2540 t的Ί子2740纟會示。施加8伏特閘極電壓 2570 ’施加〇伏餘極電壓Vd加,施加$伏特源極電 壓Vs 2576 ’且施加〇伏特基底電壓2572。這些施加 的電壓的組合導致M (HK)則記憶體%⑻或厕中 的左位70的通道熱電子變為正臨界電壓。圖是古兒 明透過電洞穿隧對M (HK) N0S記憶體测或厕進 人抹除的結制。在抹除操作期間,透過使電洞 电何2760a移動經過p型基底251() (p型梦基底或p型多 32 200805679 P940260 19580twf.doc/e 晶矽基底),並經過底部介電層253〇 2540,在左位元上實施電洞穿隧抹除。也透過 :義經過p型基底251G(P_基底^多= 基底)、底部介電層253G並進人電荷陷 P二= 2750所示的方向上在右位元上實施電洞穿隨抹除^刖^ =負電壓的間峨Vg 257〇,編伏二 ,施加〇伏特源極電壓Vs 2576 電壓V- 2572。這些施加的 =基f 隧使電洞電荷移動經過p型基底H透過電洞穿 並進入電荷™〇而進;介咖 圖28A到圖28C是說明用於增大在模 = ΗΚ)職記憶體2,或26〇。的第 勺弟一方法的結構圖,在所述% (Ηκ)助 二 娜疊層切基底或多晶=上圖 -次2600的結構圖。方向箭頭2810 中:==1到右位元,如以電荷陷入層2540 5伏。施加8伏特閉極電壓Vg 2570,施加 且扩二:二^^2574 ’施加0伏特源㈣壓Vs 2576, ίΪ I 電壓—2572。這些施加的電壓的組 通道熱電子變為正臨4;體νΓ或 圖28Β是說明透過左位元位元置處的通道執電子來程 式化M (MO NOS記憶體25⑽或2_的結構圖。方向 33 200805679 P940260 19580twf.doc/e 箭頭283 0指示將通道熱電子施加到左位元,如以 層2540中的電子284〇緣示。施加8伏特問極電壓曰 ·: 2別,施加〇伏特及極電壓vd洲,施加5伏特源極带 壓Vs 2576,且施加0伏特基底電壓Vsub 2572。這 = '·的電壓的組合導致Μ (HK) NOS記憶體2·或。2;^中口 的左位元的通道熱電子變為正臨界電壓+ vt。 圖28C是說明透過電洞穿隧對M (HK) N〇s記憶體 Φ ⑻或2帽進行電洞注入抹除的結構圖。在抹除操作期 ,,透過使電洞電荷2860a移動經過ρ型多晶矽層256〇、 高介電材料2550並進入電荷陷入層254〇,在箭頭S285〇所 方向上在左位元上實施電洞穿隧抹除。也透過使電洞 電荷286〇b移動經過P型多晶矽層2560、高介電材料255〇 亚進入電荷陷入層2540,在右位元上實施電洞穿隧抹除。 =心8伏特負電壓的閘極電壓Vg 2570,施加8伏特汲極 ^壓Vd 2574,施加8伏特源極電壓Vs 2576,且施加8伏 鲁 Ϊ基Ϊ電壓VSUb 2572。這些施加的電壓的組合導致透過 電洞穿隧使電洞電荷移動經過1)型基底251〇、底部介電層 2530並進入電荷陷入層2540而進行電洞注入抹除。27A through 27C are block diagrams illustrating a first method for increasing a second bit margin of Μ (HK) NOS s memory 2500 or 2600 used in an on mode operation, in which V! (HK) N〇s memory 25〇〇 or 2600 high dielectric material stack layer on the germanium or polycrystalline substrate. Figure 27A疋5 shows the structure of the μffiONOS memory 2500 or 2600 programmed by the channel hot electrons placed by the right bit. The directional arrow 271 指示 indicates that the channel hot electrons are applied to the right bit, as depicted by the electrons 2720 in the charge trapping layer 254. An 8 volt gate voltage Vg 257 施加 was applied, a 5 volt gate voltage Vd 2574 was applied, a volt volt source voltage Vs 2576 was applied, and a 0 volt substrate voltage Vsub 2572 was applied. The combination of these applied voltages causes the channel hot electrons of the right cell in Μ() NOS memory 25〇〇 or 2_ to become a positive threshold voltage +Vt. FIG. 27B is a structural diagram illustrating a channel thermoelectron coming through the left bit cell = Μ (HK) side memory 25 〇〇 or 26 。. Direction The front head 2730 indicates that the channel hot electrons are applied to the left bit, such as the dice 2740, which is trapped in the charge trapping layer 2540 t. An 8 volt gate voltage 2570' was applied to apply the sag residual voltage Vd plus, a $ volt source voltage Vs 2576' was applied and a volt volt base voltage 2572 was applied. The combination of these applied voltages causes the channel hot electrons of the M (HK) memory % (8) or the left 70 in the toilet to become a positive threshold voltage. The picture shows the formation of the M (HK) N0S memory measurement or the toilet erase through the tunnel. During the erase operation, by moving the hole 2760a through the p-type substrate 251() (p-type dream substrate or p-type poly 32 200805679 P940260 19580twf.doc/e wafer substrate), and passing through the bottom dielectric layer 253 〇2540, hole tunneling is performed on the left bit. Also through the p-type substrate 251G (P_ substrate ^ more = substrate), the bottom dielectric layer 253G and into the direction of the human charge P 2 = 2750 in the direction of the hole on the right bit through the erasing ^ 刖^ = Negative voltage 峨Vg 257〇, modulo two, apply volts volts source voltage Vs 2576 voltage V-2572. These applied = base f tunnels cause the hole charge to move through the p-type substrate H through the hole and into the charge TM; the figure 28A to FIG. 28C is used to increase the memory in the mode = ΗΚ) , or 26 baht. The structure of the first scoop method is shown in the structure diagram of the %(Ηκ)-assisted two-layer laminate or polycrystalline=upper-secondary 2600. In the direction arrow 2810: ==1 to the right bit, such as the charge trapping layer 2540 5 volts. Applying a 8 volt closed-pole voltage Vg 2570, applying and expanding two: two ^ 2574 ' applied 0 volt source (four) voltage Vs 2576, ί Ϊ I voltage - 2572. The group channel hot electrons of these applied voltages become positive 4; the body ν Γ or FIG. 28 Β is a block diagram illustrating that the M (MO NOS memory 25 (10) or 2 _ structure diagram is programmed by the channel holding electrons placed by the left bit bit. Direction 33 200805679 P940260 19580twf.doc/e Arrow 283 0 indicates that the channel hot electrons are applied to the left bit, as indicated by the electron 284 in layer 2540. Applying 8 volts to the voltage 曰·: 2, applying 〇 Volt and pole voltage vd, apply 5 volt source with voltage Vs 2576, and apply 0 volt substrate voltage Vsub 2572. This = '· voltage combination results in Μ (HK) NOS memory 2 · or . 2; ^ The channel hot electrons of the left bit of the port become a positive threshold voltage + vt. Fig. 28C is a structural view illustrating the hole injection erasing of the M (HK) N 〇 s memory Φ (8) or 2 cap by tunneling. During the erase operation period, by causing the hole charge 2860a to move through the p-type polysilicon layer 256, the high dielectric material 2550, and into the charge trapping layer 254, the hole penetration is performed on the left bit in the direction of the arrow S285. Tunneling is also removed by moving the hole charge 286〇b through the P-type polysilicon layer 2560. The dielectric material 255 进入 enters the charge trapping layer 2540, and the hole tunneling erase is performed on the right bit. = the gate voltage Vg 2570 of the negative voltage of 8 volts is applied, and 8 volts is applied to the voltage Vd 2574, and 8 volts is applied. The source voltage Vs 2576 and the application of 8 volts of the ruthenium voltage VSUb 2572. The combination of these applied voltages causes the tunneling of the hole to move the charge through the 1) type substrate 251, the bottom dielectric layer 2530 and enter the charge. The layer 2540 is trapped and the hole is implanted and erased.

、 圖29A是說明M( HK )NOS記憶體2500或m(HK)NOS 體2600中的左位元的程式化的結構圖,且圖 疋说明第一位元效應(此實例中關於右位元)的單一記憶 胞二位元的操作裕度的相應圖表。第二位元效應發生在使 ^兩個位元操作(即,左位元和右位元)的記憶胞中。當 私式化兩個位元中的一個位元時,即使只有一個位元被程 34 200805679 P940260 19580twf.doc/e 式化,另一位元的g品界電壓也可能增大。圖29a中說明左 位元的程式化,其指示電荷291〇在左位元2912上。儘管 只有左位元2912被程式化,但左位元2912的程式化也促 使右位元2914的界電壓增大,如圖29B中所繪示。曲 八 線2920說明隨著左位元2912被程式化,右位元2914的臨 界電壓增大。此現象稱作第二位元效應。沒有第二位元效 應的理想曲線將包括會促使左位元的臨界電壓增大的左位 φ 兀的持續程式化,但不會影響右位元的臨界電壓,從而右 位元的臨界電壓將保持大體上恆定。 除了上文參照各種實施例而描述的抹除操作,本發明 還可應用為如以下流程圖中所描述的預程式化抹除步驟。 圖30是說明預程式化抹除s〇N〇s型或TFT_s〇N〇s記憶 體的流程3000的流程圖。在步驟3〇10處,從s〇N〇s型 或TFT-SONOS記憶體使用電洞穿隧抹除,透過閑極端^ 施加正閘極電壓+Vg而將包括每一記憶胞具有兩個位元的 SONOS型或TFT-SONOS記憶體的記憶體結構預程式化抹 除為負臨界電壓-Vt。在步驟3020處,透過到電荷陷入記 , 憶體的左位元和右位元的通道熱電子來程式化s〇N〇s型 、 '或TFT-S〇NOS記憶體。在步驟3030處,透過電洞注入二 術或能帶-導帶間的熱電洞技術來抹除s〇N〇s型或 TFT-SONOS記憶體。或者,在步驟3〇1〇處,在一此實施 例中,使用能帶_導帶間的熱電洞抹除而不使用電洞穿隧技 術來實施預程式化抹除。在其它實施例中,在步驟f3〇i〇 處,預程式化抹除操作中的電洞穿隧技術將s〇N〇s型或 35 200805679 P940260 19580twf.doc/e TFT-SONOS記憶體抹除為低於初始臨界電壓% (i)的電 壓準位。 圖31是說明預程式化抹除SONOS型或TFT_s〇N〇s 記憶體的流程3100的流程圖。在步驟311〇處,彳〃 s〇n〇s 型或TFT-SQNOS記憶體·底使職洞_抹^,透過 施加負閘極電壓-Vg而將包括每―記憶胞具有兩個位元的 SONOS型或TFT-S〇刪記憶崩記紐結構肺式化抹 除為負臣品界電壓-vt。在步驟3120處,透過到記憶胞的左 位兀和右位兀的通道熱電子來程式化S0N0S剂 TFT-S0腳記憶體。在步驟⑽處,透過電洞注入^ 或能帶1帶間的熱電洞技術來抹除咖⑽型或 TFT-SONOS記憶體。或者,在步驟311〇處,在一些實施 例t,使用能帶·導帶_熱電聰除而顿用電洞ί隧技 ^來貫施預程式化抹除。麵它實施财,在步驟· 處’預程式化抹除巾的電洞穿隨術將獅 =立〇刪罐體抹__劇界· vt⑴的電29A is a block diagram showing the stylization of the left bit in the M(HK)NOS memory 2500 or the m(HK)NOS body 2600, and illustrates the first bit effect (in this example, the right bit) A corresponding graph of the operational margin of a single memory cell. The second bit effect occurs in the memory cell that makes ^ two bit operations (ie, left and right bits). When one of the two bits is privately categorized, even if only one bit is normalized, the g-term voltage of the other bit may increase. The stylization of the left bit is illustrated in Figure 29a, which indicates that the charge 291 is on the left bit 2912. Although only the left bit 2912 is stylized, the stylization of the left bit 2912 also causes the boundary voltage of the right bit 2914 to increase, as depicted in Figure 29B. The curved line 2920 illustrates that as the left bit 2912 is programmed, the critical voltage of the right bit 2914 increases. This phenomenon is called the second bit effect. An ideal curve without a second bit effect would include a continuous stylization of the left bit φ 会 that would cause the threshold voltage of the left bit to increase, but would not affect the threshold voltage of the right bit, so that the threshold voltage of the right bit would Keep it substantially constant. In addition to the erase operations described above with reference to various embodiments, the present invention is also applicable to the pre-programmed erase step as described in the following flow chart. Figure 30 is a flow diagram illustrating a process 3000 for pre-programming erase s〇N〇s type or TFT_s〇N〇s memory. At step 3〇10, using hole tunneling erase from s〇N〇s type or TFT-SONOS memory, applying positive gate voltage +Vg through idle terminal ^ will include two bits per memory cell The pre-programmed erase of the memory structure of the SONOS-type or TFT-SONOS memory is a negative threshold voltage -Vt. At step 3020, the s〇N〇s type, 'or TFT-S〇 NOS memory is programmed by the channel hot electrons of the left and right bits of the charge trap. At step 3030, the s〇N〇s type or TFT-SONOS memory is erased by a hole injection or a band-to-band thermal hole technique. Alternatively, at step 3〇1〇, in this embodiment, a pre-programmed erase is performed using a thermal hole erase between the band-guide tapes without using a tunneling technique. In other embodiments, at step f3〇i, the hole tunneling technique in the pre-programming erase operation erases the s〇N〇s type or 35 200805679 P940260 19580twf.doc/e TFT-SONOS memory into Below the initial threshold voltage % (i) voltage level. 31 is a flow chart illustrating a flow 3100 of pre-programming erase SONOS-type or TFT_s〇N〇s memory. At step 311, the 彳〃s〇n〇s type or the TFT-SQNOS memory/bottom hole _ ^ ^, by applying a negative gate voltage -Vg, will include two bits per memory cell. SONOS type or TFT-S 〇 记忆 记忆 记忆 纽 纽 纽 纽 纽 结构 结构 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺 肺At step 3120, the S0N0S TFT-S0 pin memory is programmed by channel hot electrons to the left and right cells of the memory cell. At step (10), the coffee (10) or TFT-SONOS memory is erased by a hole injection or a hot hole technique between the bands. Alternatively, in step 311, in some embodiments t, a pre-programmed erase is performed using the energy band, the conduction band, the thermal power, and the hole. It implements the money, in the step · at the pre-synthesis of the wipes of the electric hole to wear the lions = 〇 〇 〇 〇 _ _ _ drama · vt (1)

圖32是說明預程式化抹除s〇N〇s 記憶體的流程32⑽的流程圖,S0N0S型或TFT_S0N0S ^己憶體包括具有多層堆疊的頂部閘極氧化物,其中每一記 憶胞母一記憶胞具有兩個位开。Figure 32 is a flow chart showing the flow 32 (10) of the pre-programmed erase s〇N〇s memory, the S0N0S type or the TFT_S0N0S ^ memory includes a top gate oxide having a multi-layer stack, wherein each memory cell is a memory The cell has two positions.

型或TFT-S0N0S記憶體的閉極;處= S〇N〇S 透過施加正閘極電壓+Vg而^ 、㈣㈣除’ 或TFT-S0N0S:記憶體結構: 〜m而心具有多層堆疊的S0N0S型 負臨界電壓-Vt。在步驟 200805679 P940260 19580twf.doc/e 3220處,透過到記憶胞的左位元和右位元的通道熱電子來 程式化SONOS型或TFT-SONOS記憶體。在步驟處, _ 透過電洞注入技術或能帶-導帶間的熱電洞技術來抹<除 S0N0S型或TFT-SONOS記憶體。或者,在步驟321〇處^ : 在一些實施例中,使用能帶-導帶間的熱電洞抹除而不^用 電洞穿隧技術來實施預程式化抹除。在其它實施例中,在 步驟3210處,預程式化抹除中的電洞穿隧技術將s〇n〇s Φ 型或TFT-S0N0S記憶體抹除為低於初始臨界電壓Vt (〇 的電壓準位。在進一步實施例中,在步驟321〇處,透過施 加負閘極電壓-Vg,從SONOS型或TFT-SONOS記憶體的 基底處使用電洞穿隧抹除,將具有多層堆疊的s〇N〇s型 或TFT-SONOS記憶體結構抹除為負臨界電壓^^。 圖33是說明預程式化抹除s〇NOS型或tft_s〇n〇sType or TFT-S0N0S memory of the closed pole; where = S〇N〇S by applying a positive gate voltage +Vg ^, (4) (four) except ' or TFT-S0N0S: memory structure: ~ m and have a multi-layer stacked S0N0S Type negative threshold voltage -Vt. At step 200805679 P940260 19580twf.doc/e 3220, SONOS-type or TFT-SONOS memory is programmed by channel hot electrons to the left and right bits of the memory cell. At the step, _ is erased by a hole injection technique or a band-to-band thermal hole technique to remove the S0N0S type or TFT-SONOS memory. Alternatively, at step 321A: In some embodiments, the pre-programmed erase is performed using a hole-to-band thermal hole erase instead of a hole tunneling technique. In other embodiments, at step 3210, the hole tunneling technique in the pre-programmed erase erases the s〇n〇s Φ-type or TFT-S0N0S memory to a voltage lower than the initial threshold voltage Vt (〇 In a further embodiment, at step 321A, by applying a negative gate voltage -Vg, a hole tunneling erase is used from the substrate of the SONOS-type or TFT-SONOS memory, and s〇N having a multi-layer stack The 〇s-type or TFT-SONOS memory structure is erased to a negative threshold voltage ^^. Figure 33 is a diagram illustrating the pre-programmed erase s〇NOS type or tft_s〇n〇s

圯fe體的流程3300的流程圖,s〇N〇S型或TFT-SONOS 吕己憶體包括具有多層堆疊的底部閘極氧化物,其中每一記 _ 憶胞每一記憶胞具有兩個位元。在步驟3310處,從SON〇s 型或TFT-SONOS記憶體的閘極端子使用電洞冑随抹除, • 透過施加正閘極電壓+Vg而將具有多層堆疊的S0N0S型 %或TFT_S0N0S記憶體結構抹除為負臨界電壓在步驟 3320處,透過到記憶胞的左值元和右位元的通道埶電子Z 程式化S0N0S型或1哪0咖記憶體。在步驟3S3〇處, 透過電洞注人技術或能帶-導帶間的熱電洞技術來 SONOS型或mONGS記憶體。或者,在步驟删處: 在-些貫施财’使用能帶_導帶間的熱電洞抹除而不使用 200805679 P940260 19580twf.doc/eThe flow chart of the process 3300, s〇N〇S type or TFT-SONOS, includes a bottom gate oxide having a multi-layer stack, wherein each memory cell has two bits per memory cell yuan. At step 3310, the gate terminal of the SON〇s-type or TFT-SONOS memory is erased using a hole, • The S0N0S type % or TFT_S0N0S memory having a multi-layer stack is applied by applying a positive gate voltage +Vg. The structure is erased to a negative threshold voltage. At step 3320, the channel is transmitted to the left and right cells of the memory cell, and the electronic Z is programmed to the S0N0S type or the 1st 0 memory. At step 3S3, the SONOS type or mONGS memory is accessed by a hole injection technique or a hot hole technique between the band and the conduction band. Or, at the step of deleting: in the "something", use the hot hole between the band and the conduction band without using 200805679 P940260 19580twf.doc/e

♦it 3二/T,/,預程式化抹除。在其它實施例中,在 ?: 处,員程式化抹除中的電洞穿隧技術將SONOS 线胃TFT S⑽OS魏體抹除為低於♦始臨界電壓%⑴ 的电反準位曰在進一步貫施例中,在步驟3310處,透過施 加負閘HVg ’從s⑽Gs型或抓記憶體的 基底處使用制牙_抹除,將具有多層堆疊的s〇n〇s型 或TFT-SONOS記憶體結構抹除為負臨界電壓-^。♦it 3 2/T, /, pre-programmed erase. In other embodiments, at the ?:, the hole tunneling technique in the stylized erasing erases the SONOS line stomach TFT S(10)OS WE body to an electric reverse level lower than the initial threshold voltage %(1). In the embodiment, at step 3310, the s〇n〇s type or the TFT-SONOS memory structure having the multilayer stack is used by applying the negative gate HVg ' from the s(10) Gs type or the base of the memory. Erased to a negative threshold voltage -^.

圖34疋虎明預程式化抹除s〇N〇s型或丁卩丁_8〇^〇8Figure 34 疋虎明Preprogramming erase s〇N〇s type or Ding Ding _8〇^〇8

口己L、體的級私3400的流程圖,sonos型或丁FT-SONOSFlow chart of mouth and mouth L3, body level private 3400, sonos type or Ding FT-SONOS

記憶體包括高介電材料,其中每—記憶胞每—記憶胞具有 兩個位元。在步驟3410處’從SONOS型或TFT-SONOS 記憶體的閘極端子使用t洞穿隧抹除,透過施加正間極電 壓+Vg而將具有高介電材料的SONOS型或丁FT-SONOS 吕己fe體結構抹除為負臨界電壓_Vt。在步驟3420處,透過 到記憶胞的左位元和右位元的通道熱電子來程式化 SONOS型或TFT-SONOS記憶體。在步驟343〇處,透過 電洞注入技術或能帶-導帶間的熱電洞技術來抹除s〇N〇s 型或TFT-SONOS記憶體。或者,在一些實施例中的步驟 3410處,使用能帶-導帶間的熱電洞抹除而不使用電洞穿 隧技術來實施預程式化抹除。在其它實施例中,在步驟 3410處,預程式化抹除中的電洞穿隧技術將s〇N〇s型或 TFT-S0N0S記憶體抹除為低於初始臨界電壓vt (i)的電 壓準位。在另外的實施例中,在步驟3410處,透過施加負 閘極電壓-Vg,:從S0N0S型或TFT-SONOS記憶體的基底 38 200805679 P940260 19580twf.doc/e 處使用電洞穿隧抹除,將具有多層堆疊的s〇N〇s型或 TFT-SONOS §己憶體結構抹除為負臨界電壓^尤。 已參照特定示範性實施例描述了本發明。例如,本發 明的方法適用於任何類型或變化形式的包括N通道和p通 逞SONOS類型的元件的氮化物陷入記憶體和浮動閑極記 憶體。在不脫離本發明的精神和範圍的情況下可進行各種 修改、改變和變化。因此,說明書和附圖將被視作對本發 明明而不是限定,本發明之保當視_ 之申请專利範圍所界定者為準。 【圖式簡單說明】 圖1A說明根據本發明議〇8結構的示 記憶胞的簡化結構圖。 视汪电何fe入 切,二是說明根據本發明透過右位元的通道熱電子程 式化來私式化電荷陷入記憶胞的結構圖。 圖ic是說明根據本發明透過左位元的 式化來程式化電荷陷人記憶_結顧。 ^子程 圖1D是說明根據本發明電荷陷入記 的電洞注入抹除的結構圖。 體的通運區處 圖2是說明根據本發明抹除方法的 每 圖’所述抹除方法透過以來自s〇N〇s記憶^例的結構 ,的正間極電壓使用電洞穿隨抹除而將的間極端 壓。 /、 *為負臨界電 圖3是說明根據本發明抹除 圖,所述抹除方法透過以來自s〇N〇St^二例的結構 6U胃中的基底的 39 200805679 P940260 19580twf.doc/e 負閘極電壓使用電洞穿曝除而將广The memory includes a high dielectric material in which each memory cell has two bits per memory cell. At step 3410, 'T hole tunneling is used from the gate terminal of the SONOS-type or TFT-SONOS memory, and the SONOS-type or D-FT-SONOS with high dielectric material is applied by applying a positive-interpole voltage +Vg. The fe body structure is erased to a negative threshold voltage _Vt. At step 3420, the SONOS type or TFT-SONOS memory is programmed by channel hot electrons to the left and right bits of the memory cell. At step 343, the s〇N〇s type or TFT-SONOS memory is erased by a hole injection technique or a band-to-band thermal hole technique. Alternatively, at step 3410 in some embodiments, the pre-programmed erase is performed using a band-to-band hot hole erase without using hole tunneling techniques. In other embodiments, at step 3410, the hole tunneling technique in the pre-programmed erase erases the s〇N〇s type or the TFT-S0N0S memory to a voltage level lower than the initial threshold voltage vt (i). Bit. In a further embodiment, at step 3410, by applying a negative gate voltage -Vg, using a hole tunneling erase from the substrate 38 200805679 P940260 19580twf.doc/e of the SONOS type or TFT-SONOS memory, The s〇N〇s type or the TFT-SONOS § memory structure with multi-layer stacking is erased to a negative threshold voltage. The invention has been described with reference to specific exemplary embodiments. For example, the method of the present invention is applicable to any type or variation of nitride trap memory and floating stub memory including N-channel and p-channel SONOS type elements. Various modifications, changes and variations can be made without departing from the spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded as the BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a diagram showing a simplified structure of a memory cell according to the structure of the present invention. According to the present invention, the structure of the charge trapped in the memory cell is privately converted by the channel of the right bit. Figure ic is a diagram illustrating the stylization of charge trapping memory through the left bit characterization according to the present invention. ^Sub-Process Figure 1D is a block diagram showing the hole injection erase of the charge trap in accordance with the present invention. FIG. 2 is a diagram illustrating the wiping method according to the present invention. The erase method is performed by using a hole from the s〇N〇s memory. Extreme pressure between the two. /, * is a negative criticality diagram 3 is a diagram illustrating the erasing pattern according to the present invention, which is transmitted through a substrate from the s〇N〇St^ two structures of the 6U stomach. 200805679 P940260 19580twf.doc/e The negative gate voltage is widely used by the hole penetration

圖4A到圖犯是說明根據本發明抹臨ΐ電壓。 例的結構圖’所述抹除方法透過使 ’ 實施 能帶-導帶間的熱電職除而將其抹 ^t,'體的 圖5是說明根據本發明透過以正閉極&f電墨。 陡的抹除方法的第—實施_過程的流程^仃電洞穿 圖6是制根據本發明透顧負_替 岐的抹除方法的第二實施例的過程的流程圖。仃氣祠穿 圖7是說明根據本發明透過能帶-導帶 除的抹除方法的第三實施例的過程的流;;間的熱電洞抹 圖8A是說明根據本發明μ刪結構巾社 式化的結構圖。 凡的私 圖8Β是說明根據本發明第二位元效應(此實例中指 代右位元)的相應圖表。 狀圖9Α到圖9Β是說明根據本發明具有約零伏特臨界電 '^的MNOS g己’憶胞的第二位元裕度的圖表,所述臨界電壓 在圖9Α中用符號Vt表示,且在圖9Β中用符號vt偏移表 不〇 圖10A和圖10B是說明根據本發明具有負臨界電壓準 位的臨界電壓的MNOS記憶胞的第二位元裕度的圖表,所 述臨界電壓在圖10A中用符號vt表示,且在圖10B中用 符號Vt偏移表示。 圖11是說明根據本發明實施在MNOS-SOI記憶體中 的第一實施例的示意圖。 40 200805679 P940260 19580twf.d〇c/e 圖n是說明根據本發明實施在M 的第二實施例的示意圖。 ^ Ji3A到圖13(:心兒明根據本發明透過在丽08·^01 =脰中進行電洞請抹除的抹除操作的第-實施例的結 構圖。 圖14A到圖14D是說明根據本發明 記憶體中進行能帶-導帶間㈣堂、门4士 ^、社⑽⑽ 二實施例的結構圖。的熱制抹除的抹除操作的第 元 圖ISA是說明根據本發明應⑽ 的程式化的結構圖。 傅r日7互位 應圖是說明根據本發明右位元的第二位元效應的相 圖I6說雜據本發賴接式操作—峽用的具 有貫施在MNONOS薄膜電晶體記憶體 電么士構 的頂部氧化物的第一實施例。 夕層“、、、口構 —圖17說明根據本發明在接通模式操作中使用的具 貫施在MONONOS記情沾夕思从田 物的第二實_。中的夕層堆料構的頂部氧化 』二:,18C是亀據本發明用於增大在接通模 私作中使用的頂部多層介電結構中㈣二位祕度的第 —方法的結構圖,其適用於MNONOS記憶體和 MNONONOSI己憶體的第—和第二實施例兩者。,且 到圖19C是制根據本發明用於增大在接通模 式㈣中❹_部多層介電結構中㈣二位祕度的第 200805679 P940260 I9580twf.doc/e 二方法的結構圖,其適用於MN〇N〇s記憶體和 MNONONOS記憶體的第一和第二實施例兩者。 • 圖20八是說明根據本發明MNONOS記憶體戋 MNONONOS記憶體中的左位元的程式化的結構圖。 八 ffl通是說明根據本發明右位元的第二位元效應的相 應圖表。 圖21說明根據本發明在接通模式操作中使用的具有 書 T施在MONONS記憶體中的多層介電結構的底部氧化物 的第一實施例。 圖22說明根據本發明在接通模式操作中使用的具有 實施在MONONOS記憶體中的多層介電結構的底部氧化 物的第二實施例。 圖23說明根據本發明在接通模式操作中使用的呈有 實施在MONONS TFT記憶體中在多晶石夕基底上的多層介 電結構的底部氧化物的第三實施例。 _ —圖24說明根據本發明在接通模式操作中使用的具有 a實施在M〇N〇N〇S TFT記憶體中在多晶石夕基底上的多層 介電結構的底部氧化物的第四實施例。 圖25说明根據本發明在接通模式操作中使用的% (hk)nos乂己fe體結構的第一實施例,所述m(hk)n〇s 記憶體結構每-記憶胞具有兩個位元且高介電材料堆疊層 在梦基底上。 圖26說明根據本發明在接通模式操作中使用的Μ (HK) NOS記憶體結構的第二實施例,在所述% (皿) 42 200805679 P940260 19580twf.doc/e NOS記憶體結構巾高介電材料堆疊層在多晶⑭基底上。 圖27A到圖Z7C是說明根據本發明用於增大在接通模 .式操作中使用的M (HK)娜記憶體結構的第二位元裕 *度的第一方法的結構圖,在所述Μ (HK) N0S記憶體結 構中高介電材料堆疊層在矽基底或多晶矽基底上。 〇 圖28A到圖28C是說明根據本發明用於增大在接通模 式操作中使用的Μ (HK) N0S記憶體結構的第二位元裕 • 度的第二方法的結構圖,在所述Μ (HK) NOS記情體灶 構中高介電材料堆疊層在矽基底或多晶矽基底上。〜、σ 圖29Α是說明根據本發明M (HK) N〇s記憶體或% (HK) NQS TFT記憶财的左位元的料化的結構圖。 圖29B是說明根據本發明右位元的第二位元效應的相 應圖表。 圖30是說明根據本發明透過施加正閘極電壓預程式 化抹除SONOS型或TFT_S0N0S記憶體的過程的'^程圖。 圖31是說明根據本發明透過施加負閘極電壓預程式 化抹除SONOS型或TFT_S0N0S記憶體的過程的流程圖。 ^ 圖32是說明根據本發明預程式化抹除具有頂部氧化 * 物結構的S〇N〇S型或TFT-SONOS記憶體的過程的流程 圖。 圖33是說明根據本發明預程式化抹除具有底部氧化 物結構的SONOS型或TFT_S0N0S記憶體的過程的流程 圖。 圖34是說明根據本發明預程式化抹除包括高介電材 43 200805679 P940260 19580twf.doc/e 料的SONOS型或TFT-SONOS記憶體的過程的流程圖。 【主要元件符號說明】 100 :電荷陷入記憶胞 110 : P型基底 112、114、1620、1622、1720、1722、2120、2122、 2220、2222、2320、2322、2420、2422、2520、2522、2620、 2622 : n+摻雜區 120、1630、1730、2130、2230、2330、2430、2530、 2630 :底部介電結構 130、212、312、410 :電荷陷入結構 140、1660、1760、2160、2260、2360、2460、2560、 2660 : p型多晶石夕層 150、230、330、430、1670、1770、2170、2270、2370、 2470、2570、2670 :閘極電壓 Vg 152、232、332、432、1672、1772、2176、2276、2376、 2476、2576、2676 :基底電壓 Vsub 156、234、334、434、1674、1774、2172、2272、2372、 2472、2572、2672 :汲極電壓 Vd 158、236 '336、436、1676、1776、2174、2274、2374、 2474、2574、2674 :源極電壓 Vs 160、170、240a、240b、340a、340b、420、422、1310、 1330、1360、1410、,1430、1460、1480、1810、1830、1850、 1910、1930、1950、2710、2730、2750、2810、2830、2850 : 箭頭 44 200805679 P940260 19580twf.doc/e 162、814、1514、2014、2914 :右位元 172、1320、1340、1420、1440、1820、1840、1920、 1940、2720、2740、2820、2840 :電子 180、1350、1450、1470 :電洞 200、300 : SONOS 記憶體 210、310 :第一介電層 214、314 :第二介電層 220、320 : η型多晶矽層 500、600、700、3000、3100、3200、3300、3400 :流 程 510、520、610、620、710、720、3Ό10、3020、3030、 3110、3120、3130、3210、3220、3230、3310、3320、3330、 3410、3420、3430 :步驟標號 810、1510、2010、2910 :電荷 812、1512、2012、2912 :左位元 820、1520、2020、2920 :曲線 1100 : MNOS-SOI 記憶體 1110、1210 :矽基底 1120、1140、1220、1652、1752、1756、2134、2150、 2232、2236、2250、2334、2350、2432、2436、2450 :氧 化物層 1130、1230 :通道 1132、1232 : n+源極區 1134、1234 : n+汲極區 45 200805679 P940260 19580twf.doc/e 1640、2540 :電荷陷入層 多晶矽閘極 曰 閘極偏壓 源極電壓 没極電壓 基底電壓 厚度t4A-FIG. 4A illustrates the tampering voltage according to the present invention. The structure of the example 'the erase method is smeared by the implementation of the thermal band division between the band and the conduction band, FIG. 5 is a diagram illustrating the transmission through the positive closed pole & f according to the present invention. ink. The flow of the first embodiment of the steep erase method is a flow chart of the second embodiment of the erase method for the negative 替 根据 according to the present invention.仃 祠 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Structured diagram. The private figure 8 is a corresponding diagram illustrating the second bit effect (referring to the right bit in this example) in accordance with the present invention. Figure 9A to Figure 9A are diagrams illustrating a second bit margin of a MNOS g's memory having a critical electrical power of about zero volts, which is represented by the symbol Vt in Figure 9A, and FIG. 10A is a graph illustrating a second bit margin of a MNOS memory cell having a threshold voltage of a negative threshold voltage level according to the present invention, FIG. 10A and FIG. 10B are diagrams illustrating a threshold voltage of a MNOS memory cell having a threshold voltage of a negative threshold voltage level according to the present invention. This is indicated by the symbol vt in Fig. 10A and by the symbol Vt offset in Fig. 10B. Figure 11 is a diagram illustrating a first embodiment implemented in MNOS-SOI memory in accordance with the present invention. 40 200805679 P940260 19580twf.d〇c/e Figure n is a schematic diagram illustrating a second embodiment implemented in accordance with the present invention. ^ Ji3A to Fig. 13 (A diagram of the structure of the first embodiment of the erasing operation by which the hole is erased in 丽08·^01 = 根据 according to the present invention. Figs. 14A to 14D are diagrams according to Fig. 14A to Fig. 14D In the memory of the present invention, the structure diagram of the energy band-guide band (four) church, the door 4, and the social (10) (10) embodiment is carried out. The finite element diagram ISA of the erase erasing operation of the thermal erasing is to explain (10) according to the present invention. Stylized structure diagram. The Fu r 7 inter-complement diagram is a phase diagram illustrating the second bit effect of the right bit according to the present invention. I6 is said to be a hybrid operation. The first embodiment of the top oxide of the MNONOS thin film transistor memory device. The layer ",", and the mouth structure - Figure 17 illustrates the use of the ONONOS in the on mode operation according to the present invention. The first oxidization of the top layer of the material in the middle layer of the shovel is the second layer of the dielectric structure used in the open mode. (4) The structural diagram of the first method of the two secrets, which applies to the MNONOS memory and the MNONONOSI memory. The second embodiment is both, and to FIG. 19C is a method for increasing the thickness of the (4) two-part secret in the 多层-part multilayer dielectric structure in the turn-on mode (4) according to the present invention. A structural diagram of the method, which is applicable to both the first and second embodiments of the MN〇N〇s memory and the MNONONOS memory. • Figure 20 is a diagram illustrating the left position in the MNONOS memory of the MNONOS memory according to the present invention. A stylized structural diagram of a meta-element is a corresponding diagram illustrating the second bit effect of the right bit according to the present invention. Figure 21 illustrates a book T applied to the MONONS memory used in the on mode operation in accordance with the present invention. A first embodiment of a bottom oxide of a multilayer dielectric structure in a body. Figure 22 illustrates a second embodiment of a bottom oxide having a multilayer dielectric structure implemented in a MONOOS memory for use in an on mode operation in accordance with the present invention. Embodiment 23. Figure 23 illustrates a third embodiment of a bottom oxide having a multilayer dielectric structure implemented on a polycrystalline substrate in a MONONS TFT memory for use in an on mode operation in accordance with the present invention. Figure 24 says A fourth embodiment of a bottom oxide having a multilayer dielectric structure implemented on a polycrystalline substrate in a M〇N〇N〇S TFT memory for use in an on mode operation in accordance with the present invention. A first embodiment of a %(hk)nos FF structure used in an on-mode operation in accordance with the present invention, the m(hk)n〇s memory structure having two bits per-memory cell and A high dielectric material stack layer is on the dream substrate. Figure 26 illustrates a second embodiment of a Μ (HK) NOS memory structure used in an on mode operation in accordance with the present invention, in the % (dish) 42 200805679 P940260 19580twf .doc/e NOS Memory Structure The high dielectric material stack is layered on a polycrystalline 14 substrate. 27A to FIG. 7C are structural diagrams illustrating a first method for increasing the second bit margin of the M (HK) memory structure used in the turn-on mode operation according to the present invention. The (HK) N0S memory structure has a high dielectric material stack layer on the germanium or polysilicon substrate. 28A to 28C are structural diagrams illustrating a second method for increasing a second bit margin of a Μ (HK) NOS memory structure used in an on mode operation in accordance with the present invention, Μ (HK) NOS is a high-dielectric material stack layer on a germanium or polycrystalline substrate. 〜 σ Figure 29A is a structural diagram illustrating the materialization of the left bit of M (HK) N 〇 s memory or % (HK) NQS TFT memory according to the present invention. Figure 29B is a corresponding diagram illustrating the second bit effect of the right bit in accordance with the present invention. Figure 30 is a diagram showing the process of erasing a SONOS-type or TFT_S0N0S memory by applying a positive gate voltage in accordance with the present invention. Figure 31 is a flow chart showing the process of erasing SONOS-type or TFT_S0N0S memory by pre-programming a negative gate voltage in accordance with the present invention. Figure 32 is a flow chart showing the process of pre-programming the S〇N〇S type or TFT-SONOS memory having a top oxide structure in accordance with the present invention. Figure 33 is a flow chart showing the process of pre-programming the SONOS-type or TFT_SONOS memory having a bottom oxide structure in accordance with the present invention. Figure 34 is a flow chart illustrating the process of pre-programming the SONOS-type or TFT-SONOS memory including the high dielectric material 43 200805679 P940260 19580 twf.doc/e material in accordance with the present invention. [Description of main component symbols] 100: Charge trapped in memory cell 110: P-type substrate 112, 114, 1620, 1622, 1720, 1722, 2120, 2122, 2220, 2222, 2320, 2322, 2420, 2422, 2520, 2522, 2620 2622: n+ doped regions 120, 1630, 1730, 2130, 2230, 2330, 2430, 2530, 2630: bottom dielectric structures 130, 212, 312, 410: charge trapping structures 140, 1660, 1760, 2160, 2260, 2360, 2460, 2560, 2660: p-type polycrystalline layer 150, 230, 330, 430, 1670, 1770, 2170, 2270, 2370, 2470, 2570, 2670: gate voltage Vg 152, 232, 332, 432 , 1672, 1772, 2176, 2276, 2376, 2476, 2576, 2676: substrate voltage Vsub 156, 234, 334, 434, 1674, 1774, 2172, 2272, 2372, 2472, 2572, 2672: drain voltage Vd 158, 236 '336, 436, 1676, 1776, 2174, 2274, 2374, 2474, 2574, 2674: source voltage Vs 160, 170, 240a, 240b, 340a, 340b, 420, 422, 1310, 1330, 1360, 1410, , 1430, 1460, 1480, 1810, 1830, 1850, 1910, 1930, 1950, 2710, 2730, 2750, 2810, 2830, 2850: arrow 4 4 200805679 P940260 19580twf.doc/e 162, 814, 1514, 2014, 2914: right bits 172, 1320, 1340, 1420, 1440, 1820, 1840, 1920, 1940, 2720, 2740, 2820, 2840: electrons 180, 1350, 1450, 1470: holes 200, 300: SONOS memory 210, 310: first dielectric layer 214, 314: second dielectric layer 220, 320: n-type polysilicon layer 500, 600, 700, 3000, 3100 3200, 3300, 3400: processes 510, 520, 610, 620, 710, 720, 3Ό10, 3020, 3030, 3110, 3120, 3130, 3210, 3220, 3230, 3310, 3320, 3330, 3410, 3420, 3430: Step numbers 810, 1510, 2010, 2910: Charges 812, 1512, 2012, 2912: Left bits 820, 1520, 2020, 2920: Curve 1100: MNOS-SOI memory 1110, 1210: 矽 substrate 1120, 1140, 1220, 1652, 1752, 1756, 2134, 2150, 2232, 2236, 2250, 2334, 2350, 2432, 2436, 2450: oxide layer 1130, 1230: channel 1132, 1232: n + source region 1134, 1234: n + bungee region 45 200805679 P940260 19580twf.doc/e 1640, 2540: Charge trapping layer polysilicon gate gate 曰 gate bias source voltage is not The thickness t of the substrate voltage of the voltage

1200 : MONOS-SOI 記憶體 1240 :底部氧化物層 1260 :頂部氧化物層 1600 : MNONOS 記憶體 1610、1710、2110、2210、2310、2410、2510、2610 : P型矽基底 1650、1750 :頂部介電結構 1654、1740、1754、2132、2140、2234、2240、2332、1200 : MONOS-SOI memory 1240 : bottom oxide layer 1260 : top oxide layer 1600 : MNONOS memory 1610 , 1710 , 2110 , 2210 , 2310 , 2410 , 2510 , 2610 : P type germanium substrate 1650 , 1750 : top Electrical structures 1654, 1740, 1754, 2132, 2140, 2234, 2240, 2332

1150 1160 1170 1172 1174 1176 1190 1250 1270 1280 1282 1284 1286 1290 2340、2434、2440、2640 :氮化石夕層 1700、2200 : MONONOS 記憶體 1860a、1860b、1960a、1960b、2760a、2760b、2860a、 2860b :電洞電荷 2100 : MONONS 記憶體, 2300 : MONONS TFT 記憶體 2400 : MONONOS TFT 記憶體 2500、2600 : Μ (HK) NOS 記憶體 2550、2650 :高介電材料堆疊層 461150 1160 1170 1172 1174 1176 1190 1250 1270 1280 1282 1284 1286 1290 2340, 2434, 2440, 2640: nitride layer 1700, 2200: MONONOS memory 1860a, 1860b, 1960a, 1960b, 2760a, 2760b, 2860a, 2860b: electricity Hole Charge 2100 : MONONS Memory, 2300 : MONONS TFT Memory 2400 : MONONOS TFT Memory 2500, 2600 : Μ (HK) NOS Memory 2550, 2650 : High Dielectric Material Stack Layer 46

Claims (1)

200805679 F940260 19580twf.doc/e 十、申請專利範圍: 1. -種具有多個位元的記憶體元件 具有左位元及右位元,包括: ^魂冗憶體元件 基底; 〈 I置於前述基底上的底部介電 構具有一個或一個以上的介電層; 引吨底部介電結 覆蓋前述底部介電結構電荷陷 配置於前述第—電荷陷入層上的頂部介^ 覆蓋前述頂部介電結構的導電層,兒層;以及 其中前述記憶體元件透 界電壓準位。: ?皮抹除到負的臨 2. 如申請翻範_丨項所述之且有 t件’其中前述底部介電結構包括覆蓋氮化二; 體元位元的記憶 •㈤第-介電層及,第!^結構包括覆盍第二電荷陷入層 &gt; 4.如申請專利“第-f電層的前述第二電荷陷入層。 體元件,其中前述導!述之具有多個位元的記憶 , 靴青專;第Τη型多晶秦 體元件,其中前述導* =所速,具有多個位元的記憶 &amp;如申請專二;第型多晶简。 體元;牛如二中前述導電層包多個位元的記憶 7·如肀%專利範圍笛】 . 項所述之具有多個位元的記憶 47 200805679 P940260 19580twf.doc/e 體元件,其中前述基底包括矽基底。 8.如申請專利範圍第1項所述之具有多個位元的記憶 體元件’其中前述基底包括多晶矽基底。 9·如申請專利範圍第1項所述之具有多個位元的記憶 體元件’其中前述右位元透過通道高程式化操作而被程式 化。 10.如申請專利範圍第9項所述之具有多個位元的記 憶體元件,其中前述左位元透過前述通道高稃式化操作而 被程式化。 11·如申請專利範圍第1〇項所述之具有多個位元的記 憶體元件’其中前述記憶體元件透過電洞穿隧抹除操作而 被抹除’前述電洞穿隧抹除操作是透過使電洞從前述導電 層移動到前述第一電荷陷入結構而將前述記憶體元件抹除 到前述負電壓準位。 12·如申請專利範圍第10項所述之具有多個位元的記 憶體元件,其中前述記憶體元件透過電洞穿隧抹除操作而 被抹除,前述電洞穿隧抹除操作是透過使電洞從前述基底 移動到前述第一電荷陷入結構而將前述記憶體元二= 前述負電壓準位。 ^ J 13·—種具有多個位元的具有多個位元的記憶體元 件’ 述θ己丨,¾聽元件具有左位元及右位元,包括· _ 基底; 配置於前述基底上的底部介電結構,前述底部介電結 構具有一個或一個以上的層; 48 200805679 P940260 ]9580twi:doc/e 復蓋前述底部介電梦 配置於前逑第一攀=0、—電荷陷入層; 覆蓋前述頂部介電:二㈡頂部介電層;以及 其中前述記憶體元;, 始臨界電壓準位的電壓準=二钚陈操作而被抹除到低於初 14.如申請專利範圍1 - ;:元件,其中前述底部介電結構= 位元的記 電層。 I括復盍鼠化石夕層的介 15·如申睛專利範圍第η 憶體元件,其中前述底部介電結構個位元的記 :的第-介電層及覆蓋第二介電層 情體=中:^利祀圍第13項所述之具有多個仅_ ^申Λ述導電層包括11型多晶石夕間極 如申印專利範圍第13項所述之具有多個 憶體兀件,其中前述導電層包括p型 立70的記 队如申請專利範圍第13項所述之呈有多: 憶體元件,其中前述導電層包括金相極。 70的記 19. 如申請專利範圍第ls項所述之具有多個 憶體元件,其中前述基底包括石夕基底。 k的記 20. 如申請專利範圍第13項所述之具有多個 憶體元件,其中前述基底包括多晶石夕基底。立凡的記 21. 如申请專利範圍第η項所述之具有多個-“ 憶體元件,其中前述右位元透過通道高程式化操作=== 49 200805679 P940260 19580twf.doc/e ZZ•戈口甲絹寻利和阳厣Z1 、 憶體元件,其中前述左位元透多個位元的記 式化。 別迷通道南程式化操作= 被程式化 23·如申請專利範圍第22項 憶體元件,其中前述記憶體 处之一夕個位元的 被抹除,前述電祠穿《抹除抹除操作:: 層移動到前述電荷陷入結構第過使氣洞從前迷導電 :體元件抹除到低於前述初始臨;=:¾ 24.如申請專利蘇圖裳 憶體元件丄其中前述記憶體元件多個位元的記 被抹除,前述電祠穿隨抹除操=电/5牙隨抹除操作而 移動到前述第—電荷陷人結構=過使電洞從前述基底 低於前述初始臨界電题:則述圯憶體元件抹除到 -種具有多個tit:準位。 件,前述記憶體元件具有 百夕個位兀的記憶體元 基底; 〜工7^右位元,包括: ^ 蓋於前述基底上的底 復盍爾部介電層的電荷陷二. 配置於前述電荷陷入層上的古八二’ ,,高介電材材料層;以及 電屢tl现述記憶體元件透過抹^作而被抹除到負臨界 26.如申請專利制第25項所述之具有多個位元的記 50 200805679 ry4UZ〇u 19580twf.doc/e 憶體元件,其中前述導電層包括n型多晶矽閘極。 27·如申請專利範圍第25項所述之具有多個位元的記 憶體元件,其中前述導電層包括p型多晶矽閘極。 28·如申請專利範圍第25項所述之具有多個位元的記 憶體元件,其中前述導電層包括金屬閘極。 29·如申請專利範圍第25項所述之具有多個位元的記 憶體元件,其中前述基底包括矽基底。 30·如申請專利範圍第25項所述之具有多個位元的記 憶體元件,其中前述基底包括多晶矽基底。 31·如申請專利範圍第25項所述之具有多個位元的記 憶體元件,其中前述右位元透過通道高程式化操作而被程 式化。 32. 如申請專利範圍第31項所述之具有多個位元的記 憶體元件,其中前述左位元透過前述通道高程式化操作而 被程式化。 33. 如申請專利範圍第32項所述之具有多個位元的記 憶體元件,其中前述記憶體元件透過電洞穿隧抹除操作而 被抹除,前述電洞穿隧抹除操作是透過使電洞從前述導電 層移動到前述電荷陷入結構而將前述記憶體元件抹除到前 述負臨界電壓準位。 34. 如申請專利範圍第32項所述之具有多個位元的記 憶體元件,其中前述記憶體元件透過電洞穿隧抹除操作而 被抹除,前述電洞穿隧抹除操作是透過使電洞從前述基底 移動到前述電荷陷入結構而將前述記憶體元件抹除到前述 51 200805679 P940260 19580twf.doc/e 負臨界電壓準位。 35. —種具有多個位元的具有多個位元的記憶體元 件,前述記憶體元件具有左位元及右位元,包括: 〜 基底; 配置於前述基底上的底部介電層; 覆蓋前述底部介電結構的電荷陷入層; 配置於前述電荷陷入層上的高介電材料層;以及 覆蓋前述高介電材料層的導電層; 其中前述記憶體元件透過抹除操作而被抹除到低於初 始臨界電壓準位的電壓準位。 36·如申請專利範圍第35項所述之具有多個位元的記 憶體元件,其中前述導電層包括η型多晶矽閘極。 37. 如申請專利範圍第35項所述之具有多個位元的記 憶體元件,其中前述導電層包括ρ型多晶矽閘極。 38. 如申請專利範圍第35項所述之具有多個位元的記 憶體元件,其中前述導電層包括金屬閘極。 # 39.如申請專利範圍第35項所述之具有多個位元的記 , 憶體元件,其中前述基底包括矽基底。 40. 如申請專利範圍第35項所述之具有多個位元的記 憶體元件,其中前述基底包括多晶^夕基底。 41. 如申請專利範圍第35項所述之具有多個位元的記 憶體元件,其中前述右位元透過通道高程式化操作而被程 式化。 42. 如申請專利範圍第41項所述之具有多個位元的記 52 200805679 P940260 19580twf.doc/e m體兀仵 被程式化/、^位元透過前述通道高程式化操作而 43·如申请專利範圍第a蹈 憶體元件,其巾前述記師件、=之具衫個位元的記 被抹除,前述電洞穿隨二,=穿随抹_作而 層移動到前述電荷陷人而讀電峨前述導電 於前述初始gg界電I準一 n己憶體元件抹除到低 ❿ *如申請專利/圍準位。 憶體元件,其中前述記=紅具有多個位元的記 被抹除’前述電洞穿隨洞穿隨抹除操作而 移動到前述電荷陷入結構而二電洞從W述基底 前述:始臨界電壓準位的前述ΪΪΪΓ兀件抹除到低於 45. 如申請專利範 旱位 憶體元件,1中箭項所述之具有多個位元的兰 46. 如申請專料包括獅Μ20” ^ 憶體元件,直+义、‘ %項所述之具有多個位元的 /'1^4高介_料包祕化給励2。^ 53200805679 F940260 19580twf.doc/e X. Patent application scope: 1. A memory element having a plurality of bits has a left bit and a right bit, including: ^ Soul memory element substrate; < I is placed in the foregoing The bottom dielectric on the substrate has one or more dielectric layers; the bottom dielectric junction covering the bottom dielectric structure is disposed on the top surface of the first charge trapping layer to cover the top dielectric structure a conductive layer, a layer; and wherein the aforementioned memory element has a transmissive voltage level. : ? The skin is erased to the negative 2. As described in the application, there are t pieces of 'the aforementioned bottom dielectric structure including the cover nitride; the memory of the voxel bit · (5) the first dielectric layer and The first structure includes a second charge trapping layer. 4. The aforementioned second charge trapping layer of the first-f electrical layer of the patent application. The body element, wherein the aforementioned memory has a plurality of bits. , 靴 型 专 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The conductive layer comprises a plurality of bits of memory. The memory substrate having a plurality of bits is described in the item. The device has a plurality of cells. The memory element having a plurality of bits as described in claim 1 wherein the foregoing substrate comprises a polycrystalline germanium substrate. 9. The memory device having a plurality of bits as described in claim 1 The aforementioned right bit is stylized through a highly stylized operation of the channel. A memory element having a plurality of bits as described in claim 9 wherein said left bit is programmed by said channel high-tune operation. 11) as claimed in claim 1 a memory device having a plurality of bits in which the memory device is erased by a tunneling erase operation. The tunneling erase operation is performed by moving a hole from the conductive layer to the first The memory element is erased to the aforementioned negative voltage level. The memory element having a plurality of bits as described in claim 10, wherein the memory element passes through the hole tunneling Except for the erase operation, the hole tunneling erase operation is performed by moving the hole from the substrate to the first charge trapping structure to the memory cell 2 = the aforementioned negative voltage level. ^ J 13· a memory element having a plurality of bits having a plurality of bits, said θ 丨 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The bottom dielectric structure has one or more layers; 48 200805679 P940260 ] 9580twi: doc / e cover the aforementioned bottom dielectric dream configuration in front of the first climbing 0, - charge trapping layer; covering the aforementioned top dielectric: two (b) the top dielectric layer; and the memory element therein; the voltage threshold of the initial critical voltage level = the second 钚 操作 operation is erased to be lower than the initial 14. As claimed in the patent range 1 - ;: component, wherein the aforementioned bottom Dielectric structure = the dielectric layer of the bit. I includes the 盍 化 化 化 · · · · · · · · · · · · · · · · · · · · · · · , , , , , , , , , , , , , , , The electric layer and the second dielectric layer cover the body = medium: ^ Li Weiwei said that there are more than one of the only ones mentioned in Item 13 of the 祀 Λ Λ 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 极 极 极 极A plurality of memory elements having a plurality of memory elements, wherein the conductive layer comprises a p-type 70, as described in claim 13 of the patent application, wherein the conductive layer comprises a metallographic phase. pole. A note of 70. A plurality of memory elements as described in claim ls, wherein the aforementioned substrate comprises a stone substrate. A note of k. A plurality of memory elements as recited in claim 13 wherein said substrate comprises a polycrystalline substrate. The record of Lifan 21. As described in the scope of claim patent item n, there are multiple-"memory elements, in which the above-mentioned right-bit transmission channel is highly stylized operation === 49 200805679 P940260 19580twf.doc/e ZZ•Ge Mouth 绢 绢 和 和 和 厣 和 和 和 和 和 和 和 和 和 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 绢 厣 厣 厣 厣 厣 厣 厣 厣 厣 厣 厣 厣 厣The component, wherein one of the aforementioned memory locations is erased, and the foregoing electrical 祠 wears the erase erase operation:: the layer moves to the foregoing charge trapping structure, so that the gas hole is electrically conductive from the front: the bulk component is erased To the lower than the initial initial; =: 3⁄4 24. If the application of the Su Sui Shouyi element, the memory of the above memory element is erased, the above-mentioned electric 祠 wear and erase operation = electric / 5 teeth Moving to the aforementioned first-charge trapping structure with the erasing operation = causing the hole from the aforementioned substrate to be lower than the aforementioned initial criticality problem: the eraser element is erased to have a plurality of tit: level. The memory element has a memory cell substrate; ~工7^right bit, including: ^ The charge of the bottom dielectric layer of the ruthenium layer on the substrate. The ancient octa-', a layer of high dielectric material disposed on the aforementioned charge trapping layer And the memory component is erased to the negative threshold by wiping. 26. As described in claim 25, there are multiple bits of the record 50 200805679 ry4UZ〇u 19580twf.doc/e The memory element includes an n-type polysilicon gate. The memory element having a plurality of bits as recited in claim 25, wherein the conductive layer comprises a p-type polysilicon gate. A memory element having a plurality of bits as described in claim 25, wherein the conductive layer comprises a metal gate. 29. A memory element having a plurality of bits as recited in claim 25 The foregoing substrate includes a germanium substrate. 30. The memory device having a plurality of bits according to claim 25, wherein the substrate comprises a polycrystalline germanium substrate. 31. Multiple bit records And a memory element having a plurality of bits as described in claim 31, wherein the left bit passes through the channel is high. 33. A memory element having a plurality of bits as described in claim 32, wherein the memory element is erased by a tunneling erase operation, the through hole The tunnel erase operation erases the memory device to the aforementioned negative threshold voltage level by moving the hole from the conductive layer to the charge trapping structure. 34. The memory device having a plurality of bits according to claim 32, wherein the memory device is erased by a tunneling erase operation, and the tunneling erase operation is performed by using a hole. The hole is moved from the aforementioned substrate to the aforementioned charge trapping structure to erase the aforementioned memory device to the aforementioned negative threshold voltage level of 51 200805679 P940260 19580 twf.doc/e. 35. A memory element having a plurality of bits having a plurality of bits, the memory element having a left bit and a right bit, comprising: a substrate; a bottom dielectric layer disposed on the substrate; a charge trapping layer of the bottom dielectric structure; a high dielectric material layer disposed on the charge trapping layer; and a conductive layer covering the high dielectric material layer; wherein the memory device is erased by an erase operation A voltage level below the initial threshold voltage level. 36. A memory element having a plurality of bits as recited in claim 35, wherein said conductive layer comprises an n-type polysilicon gate. 37. A memory element having a plurality of bits as recited in claim 35, wherein said conductive layer comprises a p-type polysilicon gate. 38. A memory element having a plurality of bits as recited in claim 35, wherein said conductive layer comprises a metal gate. #39. A memory element having a plurality of bits as recited in claim 35, wherein the substrate comprises a germanium substrate. 40. A memory element having a plurality of bits as recited in claim 35, wherein the substrate comprises a polycrystalline substrate. 41. A memory element having a plurality of bits as recited in claim 35, wherein said right bit is programmed by a channel high program operation. 42. As described in claim 41, there are multiple bits of the record 52 200805679 P940260 19580twf.doc / em body is programmed /, ^ bit through the aforementioned channel high stylization operation 43 · apply The scope of the patent is the a-thmemory element, and the note of the above-mentioned reporter and the one-piece of the shirt is erased, and the hole is worn by the second hole, and the layer is moved to the aforementioned charge. Reading the above-mentioned electrical conductivity in the aforementioned initial gg boundary, the first component is erased to a low level * as applied for a patent/level. a memory element in which the aforementioned mark = red has a plurality of bits erased. The aforementioned hole piercing with the hole is moved to the aforementioned charge trapping structure with the hole erasing operation and the second hole is from the base of the substrate. The aforementioned element is erased to less than 45. For example, if the patent application is for a dry component, the blue element has a plurality of bits as described in the arrow item of Fig. 46. If the application material includes the Griffin 20" ^ Component, straight + meaning, '% item has a number of bits / '1 ^ 4 high media _ material package secretization to the incentive 2. ^ 53
TW095124276A 2006-07-04 2006-07-04 Memory devices TWI366275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095124276A TWI366275B (en) 2006-07-04 2006-07-04 Memory devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095124276A TWI366275B (en) 2006-07-04 2006-07-04 Memory devices

Publications (2)

Publication Number Publication Date
TW200805679A true TW200805679A (en) 2008-01-16
TWI366275B TWI366275B (en) 2012-06-11

Family

ID=44766142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095124276A TWI366275B (en) 2006-07-04 2006-07-04 Memory devices

Country Status (1)

Country Link
TW (1) TWI366275B (en)

Also Published As

Publication number Publication date
TWI366275B (en) 2012-06-11

Similar Documents

Publication Publication Date Title
TWI358834B (en)
TWI304266B (en) Memory cell and memory cell array
TWI451562B (en) Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure
TWI244166B (en) A non-volatile memory cell and fabricating method thereof
US8068370B2 (en) Floating gate memory device with interpoly charge trapping structure
TWI415269B (en) High-κ capped blocking dieletric bandgap engineered sonos and monos
CN100334734C (en) Semiconductor storage unit and semiconductor memory
JP2004186452A (en) Nonvolatile semiconductor memory device and its manufacturing method
TW200537504A (en) Flash memory programming using gate induced junction leakage current
JP2007258612A (en) Nonvolatile semiconductor memory device
TW200933637A (en) Programmable CSONOS logic element
TW201135919A (en) Nonvolatile memory array with continuous charge storage dielectric stack
KR100665186B1 (en) Non-volatile memory device and method for fabricating the same
TW200805632A (en) Memory device and manufacturing method and operating method thereof
TWI320968B (en) Double-side-bias methods of programming and erasing a virtual ground array memory
JP2004221448A (en) Non-volatile semiconductor memory device and its manufacturing method
Zhao et al. A low voltage SANOS nonvolatile semiconductor memory (NVSM) device
JP2004022575A (en) Semiconductor device
TW200805679A (en) Memory devices
KR101262299B1 (en) Nonvolatile memory device and manufacturing method of the same
JP2009049409A (en) Nonvolatile memory device and method of fabricating the same
JP2005285935A (en) Semiconductor memory device
Huang et al. Ga 2 O 3 (Gd 2 O 3) as a charge-trapping layer for nonvolatile memory applications
Lin et al. Two-bit/four-level Pr2O3 trapping layer for silicon-oxide-nitride-oxide-silicon-type flash memory
TW201250938A (en) Non-volatile semiconductor device and method for operating the same