TW200540139A - Cement-based plasters using water retention agents prepared from raw cotton linters - Google Patents

Cement-based plasters using water retention agents prepared from raw cotton linters Download PDF

Info

Publication number
TW200540139A
TW200540139A TW94113528A TW94113528A TW200540139A TW 200540139 A TW200540139 A TW 200540139A TW 94113528 A TW94113528 A TW 94113528A TW 94113528 A TW94113528 A TW 94113528A TW 200540139 A TW200540139 A TW 200540139A
Authority
TW
Taiwan
Prior art keywords
cellulose
group
bottom ash
composition according
dry bottom
Prior art date
Application number
TW94113528A
Other languages
Chinese (zh)
Inventor
Wilfried Hohn
Dieter Schweizer
Original Assignee
Hercules Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hercules Inc filed Critical Hercules Inc
Publication of TW200540139A publication Critical patent/TW200540139A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/008Propeller-blade pitch changing characterised by self-adjusting pitch, e.g. by means of springs, centrifugal forces, hydrodynamic forces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • C04B24/383Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0608Dry ready-made mixtures, e.g. mortars at which only water or a water solution has to be added before use
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0057Polymers chosen for their physico-chemical characteristics added as redispersable powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0099Aspecific ingredients, i.e. high number of alternative specific compounds mentioned for the same function or property
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00094Sag-resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • C04B2111/00646Masonry mortars
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00672Pointing or jointing materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/56Compositions suited for fabrication of pipes, e.g. by centrifugal casting, or for coating concrete pipes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/10Mortars, concrete or artificial stone characterised by specific physical values for the viscosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

A mixture composition of a cellulose ether made from raw cotton linters and at least one additive is used in a dry cement based plaster (or render) composition wherein the amount of the cellulose ether in the render composition is significantly reduced. When this render composition is mixed with water and applied to a substrate, the water retention and thickening and/or sag resistance of the wet plaster are comparable or improved as compared to when using conventional similar cellulose ethers.

Description

200540139 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可用於以乾水泥為主之灰漿(或底灰) 組合物供砂漿牆之混合物組合物。明確而言,本發明係關 於使用由原棉短絨製得之經改良保水劑之以乾水泥為主之 灰漿(或底灰)。 【先前技術】 傳統以水泥為主之灰漿通常為水泥與砂之混合物。乾混 合物係與水混合以形成砂漿。此等傳統砂漿本身具有不良 流動性或塗抹能力。因此,此等砂漿之塗覆為勞力密集, 尤八疋在夏天月伤在熱氣候條件下,由於水自砂聚之迅速 蒸發或移除,其導致較差或不良作業性以及水泥之不足水 合作用。 硬化傳統砂漿之物理 符性父到其水合過程 _ p /yu α 操作期間水自其移除之速率而影響很大。任何在沉降反應 碣始時藉由;I曰加水移除速率或消除砂漿中之水濃度影響此 等參數之影響可造成砂漿物性之劣化。許多物質如石灰砂 1、煤渣塊、木塊或磚石具有多孔性並可自砂漿移除顯注 Ϊ之水,導致上述困難性。 為了克服或降低上述耗水問題,先行技藝揭示物使用纖 維素喊作為保水劑以減緩此問題^此先行技藝之例為美國 專利4’5Gl’6m其揭*使用㈣丙基經基乙基纖維素200540139 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a mixture composition which can be used in mortar (or bottom ash) composition mainly for dry cement for mortar walls. Specifically, the present invention relates to a dry cement-based mortar (or base ash) using an improved water-retaining agent made from raw cotton linters. [Previous technology] Traditional cement-based mortars are usually a mixture of cement and sand. The dry mix is mixed with water to form a mortar. These traditional mortars themselves have poor fluidity or spreadability. Therefore, the coating of these mortars is labor-intensive, especially in the summer when the moon is injured in hot weather conditions, due to the rapid evaporation or removal of water from the sand, it leads to poor or poor workability and insufficient cement hydration. use. The physical consistency of the hardened traditional mortar to its hydration process _ p / yu α greatly affects the rate at which water is removed from it during operation. Any influence of these parameters at the beginning of the sedimentation reaction by means of adding water removal rate or eliminating the water concentration in the mortar can cause the deterioration of the mortar's physical properties. Many substances such as lime sand 1, cinder blocks, wood blocks or masonry are porous and can remove significant amounts of radon from the mortar, causing the above difficulties. In order to overcome or reduce the above water consumption problem, the prior art reveals that cellulose is used as a water-retaining agent to alleviate this problem. An example of this prior art is U.S. Patent 4'5Gl'6m. * Using propylpropyl ethyl ether fiber Vegetarian

(HPHEC)作為保水助劑供改良砂t之塗抹能力或流動性。 纖維素趟於乾砂衆塗覆中之使用揭示於DE 3046585、EP 101431.doc(HPHEC) as a water retention aid to improve the application ability or fluidity of sand t. The use of cellulose in dry sand coating is disclosed in DE 3046585, EP 101431.doc

V 200540139V 200540139

54175、DE 3909070、DE 3913518、CA 2456793 及 EP 773198 。 德國專利公告案4,034,709 A1揭示使用原棉短絨以製備 纖維素醚作為添加劑至以水泥為主水硬砂漿或混凝土組合 物。 纖維素醚(CEs)代表一種重要商業水溶性聚合物之類 型。此等CEs可增加水性介質之黏度。此CE之黏化能力主 要由其分子量、接附之化學取代物及聚合物鏈之構型特性 所控制。CEs可用於許多應用,例如,建築、塗料、食物、 個人保養、醫藥品、黏著劑、清潔劑/或清潔產物、油田、 紙業、陶瓷、聚合加工、皮業及紡織品。 單獨或結合之甲基纖維素(MC)、甲基羥基乙基纖維素 (MHEC)、乙基羥基乙基纖維素(EHEC)、甲基羥基丙基纖維 素(MHPC)及羥基乙基纖維素(HEC)、疏水方式改質的羥基 乙基纖維素(HMHEC)廣泛用於建築業之乾砂漿調配物。乾 砂漿調配物意指一種石膏、水泥及/或石灰之摻合物作為無 機摻合物,單獨使用或與集合體(如矽石及/或碳酸鹽砂/粉) 及添加劑之結合使用。 關於用途’此等乾砂漿與水混合並作為濕材料塗覆。關 於所欲應用,需要在溶解於水時提供高黏度之水溶性聚合 物。藉使用 MC、MHEC、MHPC、EHEC、HEC 及 HMHEC 或其結合,達成所欲灰漿特性如高保水率(因此界定的水含 量之控制)。此外’可看到所得材料之經改良作業性及滿意 黏著性。因為CE溶液黏度之增加導致經改良保水能力及黏 101431.doc 200540139 著性,所以希望高分子量CEs以更有效地作業及有效成本。 為了達成尚溶液黏度,必須小心選擇起始纖維素鱗。目前, 藉使用純粹棉短絨或高黏度木漿,可對烷基羥基烷基纖維 " 素達成之最高2重量%水溶液黏度為約7〇,〇〇〇_8〇,〇〇〇 mPas(如使用布魯克菲爾德(Brookfield) RVT黏度計在2〇。〇 及20 rpm下使用軸數7測定)。 在水泥灰漿工業仍需要具有保水劑,其可以成本有效方 式使用以改良以水泥為主灰漿之塗覆及性能特性。為了有 ® 助於達成此結果,較佳提供一種保水劑,其提供一種布魯 克菲爾德水溶液黏度,其具有大於約8〇,〇〇〇 mpas且仍為成 本上用作稠化劑及/或保水劑。 【發明内容】 本發明係關於一種混合物組合物,用於底灰組合物,具 有纖維素醚,其量為20至99.9重量%烷基羥基烷基纖維素及 羥基烷基纖維素及其混合物自原棉短絨製備及至少一種添 • 加劑,其量為0·1至80重量。選自有機或無機稠化劑、抗 下垂劑、空氣夾帶劑、濕潤劑、除沫劑、超塑化劑、分散 劑、鈣複合劑、阻滞劑、加速劑、排水劑、可再分散粉末、 生物聚合物及纖維;混合物組合物,當用於以乾水泥為主 灰漿(或底灰)組合物並與充分量水混合時,以水泥為主灰漿 (或底灰)組合物產生一種灰漿砂漿,其可塗覆在基材上,其 中混合物於灰漿砂漿内之量會顯著減少,且與使用傳統類 似纖維素醚時相較,濕砂漿之保水率及稠化性及/或抗下垂 性係可比較的或係改良的。 101431.doc 200540139 本發明亦關於-種以乾砂聚為主之灰毁(或底灰)組合物 ^有水硬水、細集合材料及至少—種自原棉短絨製備之 、纖維素醚之保水劑。以水泥為主之灰漿(或底灰)組合物,當 . 與充分篁水混合時,產生一種灰漿砂漿,其可塗覆在基材 如壁上,當與使用傳統類似纖維素醚時相較,其中濕砂漿 之保水率及稠化性及/或抗下垂性係可比較的或係改良的。 頃發現由原棉短絨(RCL)製得之特定纖維素醚,特別是烷 基羥基烷基纖維素及羥基烷基纖維素,相對於由純化棉短 絨或高黏度木漿製得之傳統商用纖維素醚之黏度,其具有 不尋常高溶液黏度。此等纖維素醚之使用於以水泥為主灰 漿(底灰)組合物可提供若干優點(即,較低成本使用及較佳 塗覆性質)及目前使用傳統纖維素醚無法達成之經改良性 能。 根據本發明,本發明之纖維素醚如烷基羥基烷基纖維素 及經基烷基纖維素係由切割或未切割原棉短絨製得。烧基 φ 經基院基纖維素之烷基具有1至24個碳原子而羥基烷基具 有2至4個碳原子。此外,羥基烷基纖維素之羥基烷基具有2 至4個奴原子。此等纖維素_提供以水泥為主灰激(底灰)意 外的益處。由於以RCL為主CEs之極高黏度,可看到以水泥 為主灰漿(底灰)之有效塗覆性能。即使較目前使用之高黏度 商用CEs更低以RCL為主CEs之使用準位,亦可達到對保水 率之類似或經改良塗覆性。 亦可證實由RCL製得之烷基羥基烷基纖維素及羥基烷基 纖維素,如甲基羥基乙基纖維素、甲基羥基丙基纖維素、 101431.doc 200540139 羥基乙基纖維素及疏水方式改質的羥基乙基纖維素對灰漿 砂漿提供顯著本體及經改良抗下垂性。 根據本發明,混合物組合物具有以11(:1^為主纖維素醚之 t 1,以混合物之全部重量計,為2〇至99 9重量%,較佳為Μ 至99·0重量%。 本發明之以RCL為主水溶性非離子CEs包括(作為第一 CEs),特別是由(RCL)製得之烷基羥基烷基纖維素及羥基烷 基纖維素。該衍生物之例包括甲基羥基乙基纖維素 (MHEC)、甲基羥基丙基纖維素(MHpc)、曱基乙基羥基乙 基纖維素(MEHEC)、乙基羥基乙基纖維素(EHEC)、疏水方 式改質的乙基羥基乙基纖維素(HMEHEC)、羥基乙基纖維素 (HEC)及疏水方式改質的羥基乙基纖維素(hmhec)及其混 合物。疏水性取代基可具有1至25個碳原子。端視其商用組 合物而定,其可具有甲基或乙基取代度(DS)為〇5至25,羥 基烷基莫耳取代度(HA-MS)為約0.01至6,及疏水性取代基 φ 莫耳取代度(HS_MS)為約每脫水葡萄糖單元0.01至0.5。明 確而言,本發明係關於此等水溶性非離子cEs用作有效稠化 劑及保水劑於乾砂漿為主灰漿,例如,底塗底灰、單層底 灰、輕量底灰、裝飾底灰、撇渣面層及/或完工灰漿,及外 部完工絕緣系統(EFIS)。 在實施本發明中,由純化棉短絨及木漿製得之傳統 CEs(第二CEs)可與以rcl為主CEs結合使用。各種自純化纖 維素之CEs製備為此技藝已知。此等第二ces可與以第一 RCL為主CEs結合使用供實施本發明。此等第二CEs在本案 101431.doc 10 200540139 中稱為傳統CEs,因為其中大部分為商用產品或市場及/或 文件中已知。 第二CEs之例為甲基纖維素(1^(:)、甲基羥基乙基纖維素 (MHEC)、曱基羥基丙基纖維素(MHpc)、羥基乙基纖維素 (HEC)、乙基羥基乙基纖維素(EHEC)、甲基乙基羥基乙基 纖維素(MEHEC)、疏水方式改質的乙基經基乙基纖維素 (HMEHEC)、疏水方式改質的羥基乙基纖維素(HMHEC)、 石尹、乙基甲基羥基乙基纖維素(SEMHEC)、石黃乙基甲基羥基丙 ® 基纖維素(SEMHPC)及磺乙基羥基乙基纖維素(SEHEC)。 根據本發明,一種較佳具體例使用具有2%水溶液布魯克 菲爾德黏度為大於8〇,〇〇〇 mpas較佳為大於9〇,〇〇〇 mPaS2 MHEC或MHPC,如使用布魯克菲爾德RVT黏度計在2(rc及 20 rpm下使用轴數7測定。 根據本發明,混合物組合物具有至少一種添加劑之量為 〇·1與80重量%之間,較佳為〇.5與3〇重量%之間。添加劑之 ^ 例為有機或無機稠化劑及/或保水劑、抗下垂劑、空氣炎帶 劑、濕潤劑、除沫劑、超塑化劑、分散劑、阻滯劑、加速 劑、排水劑、可再分散粉末、生物聚合物及纖維。有機稠 化劑之例為多糖類。添加劑之其他例為鈣嵌合劑、果酸及 表面活性劑。 添加劑之更明確例為丙烯醯胺之均或共聚物。該聚合物 例為丙稀醯胺-共-丙烯酸納)、聚(丙稀醢胺-共-丙烯 酸)、聚(丙烯醯胺-共-丙烯醯胺基甲基丙烷磺酸鈉)、聚(丙 稀^胺-共-丙烯醯胺基曱基丙烷磺酸)、聚(丙烯醯胺-共-氣 101431.doc -11 - 200540139 化二烯丙二曱銨)、聚(丙烯醯胺-共-(丙烯醯基胺基)氯化丙 基三甲銨)、聚(丙烯醯胺-共_(丙烯醯基)氣化乙基三甲銨) 及其混合物。 多糖添加劑之例為澱粉醚、澱粉、瓜爾膠、瓜爾膠衍生 物、糊精、殼多糖、殼聚糠、聚木糠、黃原膠、汶萊膠(welan gum)、膠凝膠、甘露聚糖、半乳聚糖、葡聚糖、阿拉伯木 聚糖及海藻酸鹽。 添加劑之其他特定例為明膠、聚乙二醇、酪素、磺酸木 質素、磺酸萘、磺化蜜胺·甲醛縮合物、磺化萘·甲醛縮合物、 聚丙烯酸酯、聚羧酸化醚、聚苯乙烯磺酸酯、果酸、磷酸 酯、膦酸酯、具有丨至4個碳原子之有機酸之鈣鹽、鏈烷酸 鹽、硫酸銘、金屬、息土、蒙脫石、海泡石、聚酿胺纖 維、聚丙烯纖維、聚乙烯醇、及以醋酸乙烯酯為主之均、 共或三聚物、順丁烯二酸酯、乙烯、苯乙烯、丁二烯、柯 赫酸乙烯酯及丙稀酸單體。 本發明之混合物可藉先形技藝已知之技術製備。其例包 括簡單乾燥摻合、溶液或熔融物之喷入乾材料内、共同擠 壓或共同研磨。 根據本發日月,混合物組合物m以乾水泥為主灰漿 (或底灰)調配物並與充分水量混合以產生灰漿砂漿時,混合 物以及纖維素醚之量顯著減少。混合物或纖維素醚之降低 為至少5%,較佳為至少10%。即使該CE之降低,與使用傳 統類似纖維素醚時相較,保水率及稠化性及/或抗下垂性係 可比較的或係改良的。 101431.doc -12- 200540139 本發明之混合物組合物可直接或間接地銷售至可使用該 混合物直接成為其製造設備之以水泥為主灰漿的廠商。此 混合物組合物亦可慣用摻合至不同廠商之較佳需求。 本發明之以水泥為主灰漿(或底灰)組合物具有以RCL為 主CE之量為約〇.〇1至1〇重量%。至少一種添加劑之量為約 0.0001至10重I %。此等重量百分比乃以所有以乾水泥為主 灰漿(或底灰)之全部乾重計。 根據本發明,以乾水泥為主灰漿(或底灰)組合物具有細 集&材料,呈現之量為40-90重量%,較佳為60_85重量0/〇。 細集合材料之例為矽砂、白雲母、石灰石、輕量集合體(例 如,珍珠石、發泡聚苯乙烯、中空玻璃球、軟木塞、膨脹 蛭石)、橡膠碎硝(自汽車輪胎再循環)及煤灰。,,細,,意指集 合材料具有顆粒大小最多2.0毫米,較佳為1〇毫米。 根據本發明,水硬水泥成分呈現之量為5_6〇重量%,較佳 為1〇_50重量%。水硬水泥之例為波特蘭水泥、礦渣矽酸鹽 水泥、波特蘭·微矽粉水泥(P〇rtland-siHca fume cement)、 火山灰矽酸鹽水泥、波特籣-燒頁岩水泥、波特蘭-石灰石水 泥、波特蘭-複合水泥、礦渣水泥、火山灰水泥、複合水泥 及銘酸I弓水泥。 根據本發明,以乾水泥灰衆為主(或底灰)組合物具有量 為至少一種黏合劑為約5與60重量%,較佳為1〇與5〇重量%54175, DE 3909070, DE 3913518, CA 2456793 and EP 773198. German Patent Publication No. 4,034,709 A1 discloses the use of raw cotton linters to prepare cellulose ethers as additives to cement-based hydraulic mortar or concrete compositions. Cellulose ethers (CEs) represent a type of important commercial water-soluble polymer. These CEs can increase the viscosity of aqueous media. The viscosity of this CE is mainly controlled by its molecular weight, the chemical substitutions attached, and the structural properties of the polymer chain. CEs can be used in many applications such as construction, coatings, food, personal care, pharmaceuticals, adhesives, cleaners / or cleaning products, oil fields, paper, ceramics, polymer processing, leather and textiles. Methyl cellulose (MC), methyl hydroxyethyl cellulose (MHEC), ethyl hydroxyethyl cellulose (EHEC), methyl hydroxypropyl cellulose (MHPC), and hydroxyethyl cellulose alone or in combination (HEC), hydrophobically modified hydroxyethyl cellulose (HMHEC) is widely used in dry mortar formulations for the construction industry. Dry mortar formulation means a blend of gypsum, cement and / or lime as an inorganic blend, used alone or in combination with aggregates (such as silica and / or carbonate sand / powder) and additives. Regarding the use 'These dry mortars are mixed with water and applied as a wet material. For the desired application, a water-soluble polymer that provides high viscosity when dissolved in water is required. By using MC, MHEC, MHPC, EHEC, HEC and HMHEC or a combination thereof, the desired mortar characteristics such as high water retention (thus the control of the defined water content) are achieved. In addition, it can be seen that the obtained material has improved workability and satisfactory adhesion. Since the increase in viscosity of the CE solution leads to improved water retention and viscosity 101431.doc 200540139, high molecular weight CEs are expected to operate more efficiently and cost effectively. In order to achieve the solution viscosity, care must be taken to select the starting cellulose scale. At present, by using pure cotton linter or high viscosity wood pulp, the highest 2% by weight aqueous solution viscosity of alkyl hydroxyalkyl fibers " is about 70,000-800,000 mPas ( (For example, a Brookfield RVT viscometer is used at 20.0 and 20 rpm to measure with a shaft number of 7). Water retention agents are still required in the cement mortar industry, which can be used in a cost-effective way to improve the coating and performance characteristics of cement-based mortars. In order to help ® achieve this result, it is preferred to provide a water-retaining agent that provides a Brookfield aqueous solution viscosity that is greater than about 80,000 mpas and is still cost effective as a thickener and / or water-retaining agent . [Summary of the Invention] The present invention relates to a mixture composition for a bottom ash composition having cellulose ether in an amount of 20 to 99.9% by weight of alkylhydroxyalkyl cellulose and hydroxyalkyl cellulose and mixtures thereof. Preparation of raw cotton linters and at least one additive in an amount of 0.1 to 80 weight. Selected from organic or inorganic thickeners, anti-sagging agents, air entraining agents, wetting agents, defoamers, superplasticizers, dispersants, calcium complexing agents, retarders, accelerators, drainage agents, redispersible powders , Biopolymer and fiber; mixture composition, when used in dry cement-based mortar (or bottom ash) composition and mixed with a sufficient amount of water, the cement-based mortar (or bottom ash) composition produces a mortar Mortar, which can be coated on a substrate, wherein the amount of the mixture in the mortar mortar will be significantly reduced, and the water retention and thickening and / or sag resistance of the wet mortar are compared to when using traditional similar cellulose ethers Comparable or improved. 101431.doc 200540139 The present invention also relates to a kind of ash destruction (or bottom ash) composition mainly composed of dry sand, including hydraulic water, fine aggregate materials and at least one kind of water-retaining cellulose ether prepared from raw cotton linters. Agent. A cement-based mortar (or bottom ash) composition, when mixed with sufficient water, produces a mortar mortar that can be applied to substrates such as walls, when compared to the use of traditional similar cellulose ethers Among them, the water retention and thickening and / or sag resistance of the wet mortar are comparable or improved. It was found that specific cellulose ethers made from raw cotton linters (RCL), especially alkyl hydroxyalkyl celluloses and hydroxyalkyl celluloses, were compared to traditional commercial products made from purified cotton linters or high viscosity wood pulp. Cellulose ether has an unusually high solution viscosity. The use of these cellulose ethers in cement-based mortar (bottom ash) compositions can provide several advantages (i.e., lower cost use and better coating properties) and improved properties that are currently unattainable with traditional cellulose ethers. . According to the present invention, the cellulose ethers of the present invention such as alkyl hydroxyalkyl cellulose and warp alkyl cellulose are prepared from cut or uncut raw cotton linters. The alkyl group of the alkyl group has 1 to 24 carbon atoms and the hydroxyalkyl group has 2 to 4 carbon atoms. In addition, the hydroxyalkyl group of the hydroxyalkyl cellulose has 2 to 4 slave atoms. These celluloses_ provide unexpected benefits to cement-based ash (bottom ash). Due to the extremely high viscosity of RCL-based CEs, the effective coating performance of cement-based mortar (bottom ash) can be seen. Even if the commercial level of high-viscosity commercial CEs is lower than the current level of RCL-based CEs, similar or improved coating properties to water retention can be achieved. It can also be confirmed that alkyl hydroxyalkyl cellulose and hydroxyalkyl cellulose produced by RCL, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, 101431.doc 200540139 hydroxyethyl cellulose and hydrophobic Modified hydroxyethyl cellulose provides significant bulk to mortar mortars and improved sag resistance. According to the present invention, the mixture composition has t 1 with 11 (: 1 ^) as the main cellulose ether, and is 20 to 99% by weight, preferably M to 99.0% by weight, based on the total weight of the mixture. The RCL-based water-soluble nonionic CEs of the present invention include (as the first CEs), especially alkylhydroxyalkylcellulose and hydroxyalkylcellulose prepared from (RCL). Examples of the derivatives include formazan Hydroxyethyl cellulose (MHEC), methyl hydroxypropyl cellulose (MHpc), methyl ethyl hydroxyethyl cellulose (MEHEC), ethyl hydroxyethyl cellulose (EHEC), hydrophobically modified Ethylhydroxyethylcellulose (HMEHEC), hydroxyethylcellulose (HEC), and hydrophobically modified hydroxyethylcellulose (hmhec) and mixtures thereof. The hydrophobic substituent may have 1 to 25 carbon atoms. Depending on its commercial composition, it may have a methyl or ethyl substitution degree (DS) of 0.05 to 25, a hydroxyalkyl moire substitution degree (HA-MS) of about 0.01 to 6, and a hydrophobic substitution The base φ Morse degree of substitution (HS_MS) is about 0.01 to 0.5 per anhydroglucose unit. Specifically, the present invention relates to these Water-soluble non-ionic cEs is used as an effective thickener and water-retaining agent in dry mortar-based mortars, for example, primer primer, single-layer primer, lightweight primer, decorative primer, skimming finish and / or finish Mortar, and External Finished Insulation System (EFIS). In the practice of the present invention, traditional CEs (second CEs) made from purified cotton linters and wood pulp can be used in combination with rcl-based CEs. Various self-purifying celluloses The preparation of CEs is known for this technology. These second ces can be used in combination with the first RCL-based CEs for implementing the present invention. These second CEs are referred to as conventional CEs in this case 101431.doc 10 200540139, because Most of them are known in commercial products or markets and / or documents. Examples of the second CEs are methyl cellulose (1 ^ (:), methyl hydroxyethyl cellulose (MHEC), fluorenyl hydroxypropyl cellulose (MHpc), Hydroxyethylcellulose (HEC), Ethylhydroxyethylcellulose (EHEC), Methylethylhydroxyethylcellulose (MEHEC), Hydrophobic Ethylethylethylcellulose (HMEHEC), hydrophobically modified hydroxyethyl cellulose (HMHEC), Shi Yin, ethyl methyl hydroxyethyl Cellulose (SEMHEC), ruthenium ethyl methylhydroxypropyl® cellulose (SEMHPC) and sulfoethylhydroxyethyl cellulose (SEHEC). According to the present invention, a preferred embodiment uses a Brookfield viscosity having a 2% aqueous solution as More than 80,000 mpas is preferably more than 90,000 mPaS2 MHEC or MHPC, as determined using a Brookfield RVT viscometer at 2 (rc and 20 rpm using the number of shafts 7. According to the invention, the mixture combination The amount of the at least one additive is between 0.1 and 80% by weight, preferably between 0.5 and 30% by weight. Examples of additives are organic or inorganic thickeners and / or water-retaining agents, anti-sagging agents, aerobic tape agents, wetting agents, defoamers, superplasticizers, dispersants, retarders, accelerators, drainage agents Redispersible powders, biopolymers and fibers. Examples of organic thickeners are polysaccharides. Other examples of the additives are calcium chimeric agents, fruit acids, and surfactants. A more specific example of the additive is a homo- or copolymer of acrylamide. Examples of this polymer are acrylic (co-acrylic acid), poly (acrylamide-co-acrylic acid), poly (acrylamide-co-acrylamide methyl sodium propanesulfonate), poly ( Acrylamine-co-acrylamidoamidopropanesulfonic acid), poly (acrylamido-co-gas 101431.doc -11-200540139 diallylammonium ammonium), poly (acrylamido-co-amine -(Propenylamino) propyltrimethylammonium chloride), poly (propenylamido-co- (propenyl) gasified ethyltrimethylammonium) and mixtures thereof. Examples of polysaccharide additives are starch ether, starch, guar gum, guar derivatives, dextrin, chitin, chitosan, polywood bran, xanthan gum, welan gum, gum gel, Mannan, galactan, dextran, arabinoxylan and alginate. Other specific examples of additives are gelatin, polyethylene glycol, casein, sulfonic lignin, naphthalene sulfonate, sulfonated melamine · formaldehyde condensate, sulfonated naphthalene · formaldehyde condensate, polyacrylate, polycarboxylic acid ether , Polystyrene sulfonates, fruit acids, phosphates, phosphonates, calcium salts of organic acids with 4 to 4 carbon atoms, alkanoates, sulfates, metals, polymorphs, montmorillonites, sea Sepiolite, Polyurethane Fiber, Polypropylene Fiber, Polyvinyl Alcohol, and Homo-, Co- or Terpolymer Based on Vinyl Acetate, Maleic Acid, Ethylene, Styrene, Butadiene, Koch Acid vinyl ester and acrylic acid monomer. The mixtures of the present invention can be prepared by techniques known in the shape art. Examples include simple dry blending, spraying of solutions or melts into dry materials, co-extrusion or co-milling. According to the current date, when the mixture composition m is a dry cement-based mortar (or bottom ash) formulation and mixed with a sufficient amount of water to produce a mortar mortar, the amount of the mixture and the cellulose ether is significantly reduced. The reduction of the mixture or cellulose ether is at least 5%, preferably at least 10%. Even with this decrease in CE, the water retention and thickening and / or sag resistance are comparable or improved compared to when conventional cellulose ethers are used. 101431.doc -12- 200540139 The mixture composition of the present invention can be directly or indirectly sold to a cement-based mortar manufacturer who can use the mixture directly as its manufacturing equipment. This mixture composition can also be conventionally blended to better requirements of different manufacturers. The cement-based mortar (or bottom ash) composition of the present invention has an amount of about 0.01 to 10% by weight with RCL as the main CE. The amount of the at least one additive is about 0.0001 to 10% by weight. These weight percentages are based on the total dry weight of all dry cement-based mortars (or bottom ash). According to the present invention, a dry cement-based mortar (or bottom ash) composition has fines & materials and is present in an amount of 40-90% by weight, preferably 60-85% by weight. Examples of fine aggregate materials are silica sand, muscovite, limestone, lightweight aggregates (e.g., perlite, expanded polystyrene, hollow glass spheres, corks, expanded vermiculite), rubber crushing (from automobile tires and then Cycle) and soot. ,, fine, means that the aggregate material has a particle size of at most 2.0 mm, preferably 10 mm. According to the invention, the hydraulic cement component is present in an amount of 5-60% by weight, preferably 10-50% by weight. Examples of hydraulic cement are Portland cement, slag portland cement, Portland-siHca fume cement, pozzolanic portland cement, Portland-fired shale cement, Transland-limestone cement, Portland-composite cement, slag cement, pozzolan cement, composite cement, and acid I bow cement. According to the present invention, the composition consisting mainly of dry cement ash (or bottom ash) has an amount of about 5 and 60% by weight, preferably 10 and 50% by weight of at least one binder.

之間。至少一種無機黏合劑之例為水泥、火山灰、高爐礦 渣、水合石灰、石膏及水硬石灰。 K 根據本發明之一較佳具體例,纖維素醚係根據以彡丨例方 101431.doc -13 - 200540139between. Examples of at least one inorganic binder are cement, pozzolan, blast furnace slag, hydrated lime, gypsum and hydraulic lime. K According to a preferred embodiment of the present invention, cellulose ether is based on the following examples: 101431.doc -13-200540139

式併入本文之美國專利申請案序號l〇/822,926,2〇〇4年4月 13曰製備。此本發明之具體例之原料為具有體密度為每 毫升至少8克之未純化原棉短絨纖維之質塊。此質塊之至少 5〇重量%纖維具有平均長度,其通過美國篩網尺寸1〇(2毫米 開口)。此未純化原棉短絨之質塊係由獲得鬆弛質塊為第一 切割、第二切割、第三切割及/或磨機運行未純化、天然原 棉紐絨或其混合物,其包含至少6〇%纖維素,如 AOCS(American Oil Chemists&gt;Society)〇fficial Method Bb 3-47所測定並換算鬆弛質塊至長度,其中纖維之至少⑼重 量%通過美國標準篩尺寸數丨〇。纖維素醚衍生物係使用上 述原棉短絨纖維之換算質塊作為原料製備。原棉短絨之切 «J枭塊首先用驗於於漿或高固體過程内在纖維素濃度為大 於9重量%下處理以形成活性纖維素齡漿。然後,將活性纖 維素於聚在充分時間並在充分溫度下用驗化劑㈣化劑之 混合物反應以形成纖維素醚衍生物,然後回收。改良上述 過程以製備各種本發明之CEs為此技藝已知。 RCL包内獲得之未 本發明之CEs亦可自第 切割原棉短絨及/或自廠商或得之磨機運行製備 原棉短絨,包括由&quot;原來,,原棉短絨之機械清潔獲得之組 合物’其實質上沒有非纖維素外來物質,如夾雜物、碎硝、 種子外殼等,亦可用以製備本發明之纖維㈣。原棉短織 之機械清潔技術’包括該等涉及打毁、_選及空氣分離技 術者’為熟悉此技藝者已知。使用機械打聚技術及空氣分 離技術之結合,纖維係由利用纖維與碎硝間之密度差異而 10143l.doc -14- 200540139 自碎硝分離。機械清潔的原棉短絨之混合物及,,原來,,原棉 短絨亦可用以製造本發明之纖維素醚。 當比較傳統纖維素醚製備之以水泥為主灰漿(或底灰) 時,本發明之灰漿砂漿提供保水率、稠化及抗下垂性,其 為廣泛用於此技藝之重要參數以特徵化以水泥為主灰漿。 根據歐洲Norm EN 1015-8,保水率及/或保水率為”新鮮 水硬砂漿暴露至基材吸力時保持其混合水之能力”。其可根 據歐洲Norm ΕΝ 1 8555測定。 抗下垂性為垂直塗覆新鮮砂漿以保持其在壁上之位置之 能力,即,良好抗下垂性可防止新鮮濕砂漿向下流動。關 於以水/尼為主灰毁’通常由負責技術者主觀評估。其係關 於經研究以水泥為主灰漿之稠化。稠化及/或流動可根據 DIN ΕΝ 18 5 5 5使用稠度試驗台測定。 典型乾水泥灰漿/底灰可包含若干或所有下列成分: 表A:典型先行技藝乾水泥灰漿(底灰)之組合物 成分 典型量 實例 水泥 5-60% CEM I(波特蘭水泥)、ceM II、CEM ΠΙ(礦渣水泥)、CEM IV(火山灰水 泥)、CEM V(複合水泥)、CAC(鋁酸 妈水泥) 其他礦物 黏合劑 0.5-30% 水合石灰、石膏、石灰、火山灰、 高爐礦渣及水硬石灰 集合體/輕 量集合體 5-90% 石夕砂、白雲母、石灰石、珍珠石、 EPS(發泡聚苯乙烯)、中空玻璃球、 膨脹蛭石 101431.doc 200540139 噴乾樹脂 0-4% 以均、共或三聚物無主醋酸乙烯 酯、順丁烯二酸酯、乙烯、苯乙烯、 丁二稀、柯赫酸乙稀醋及/或丙稀單 體 促進劑/阻 滯劑 0-2% 曱酸鈣、碳酸鈉、碳酸鋁、酒石酸、 檸檬酸或其他果酸 纖維素醚 0.01-1% 曱基纖維素(MC)、甲基羥基乙基纖 維素(MHEC)、甲基羥基丙基纖維素 (MHPC)、乙基羥基乙基纖維素 (EHEC)、羥基乙基纖維素(HEC)、 疏水方式改質的羥基乙基纖維素 (HMHEC) 其他添加 劑 0-1% 空氣夾帶劑、除沫劑、疏 潤劑、超塑化劑、抗下垂劑、辦複 合劑 纖維 0-5% 纖維素纖維、聚醯胺纖維 纖維 【實施方式】 本發明進一步由以下實例例示。除非另予指出,份及百 分比皆依重量計。 實例1 實例1及2顯示本發明聚合物比較類似商用聚合物之若 化學及物理性質。 右干 在15(TCT用鹽酸裂解經改良蔡澤爾(〜⑻。所 發性反應產物係用氣體色層分離法定量測定。 仵揮 水性纖維素鱗溶液之黏度係在具有濃度為1 量。之溶液上敎。當確㈣維素趟溶液之黏度時重 101431.doc -16 - 200540139 燥計,使用對應甲基經基燒基纖維素,即,水分%係由較 高重量内數量補償。純化棉短絨或高黏度木漿為主之市售 •甲基羥基烷基纖維素之黏庐且古县夕。^ $瓦〈黏度具有最多2重量%水溶液黏度 ‘ 為約70,000至80 〇〇〇 mpas(推用右#古 U更用f魯克菲爾德RVT黏度計在 2 0 C及2 0 rpm下使用軸數7測定)。 為了測定黏度,使用布魯克菲爾德RVT旋轉式黏度計。 所有在2重量%水溶液下之測量係在啊及⑼—下使用轴 數7完成。 鲁 氯化鈉含量係由莫爾(Mohr)法測定。〇 5克產物在分析天 平上秤重並溶解於150毫升蒸餾水内。然後,在3〇分鐘攪拌 後,加入1毫升15%HN〇3。其後,溶液係用規格化硝酸銀 (AgN03)溶液使用市售裝置滴定。 樣品之水含量係在1〇5t下使用市售含水量天平測定。水 含量為自失重及起始重量之商數,並以百分比表示。 纖維素喊水溶液之表面張力係使用Kruss數位張力計K10 φ 在2〇°C及濃度為01重量%下測定。關於表面張力之測定, 使用所謂”威廉米懸片法’,,其中薄片降低至液體表面及測 定指向片之向下力量。 表1:分析數據 ---~~-— 樣品 甲氧基/羥 基乙氧基 或經基丙 氧 以乾燥計黏度 水分 表面 張力 [%] 在2重量 %[mPas] 在1重量 %[mPas] [%] [mN/m] RCL-MHPC ^ 26.6/2.9 95400 17450 2.33 35 101431.doc 17 200540139 MHPC 65000 (對照) 27.1/3.9 59800 7300 4.68 --—-1 48 RCL-MHEC 23.3/8.4 97000 21300 2.01 43 MHEC 75000 (對照) 22.6/8.2 67600 9050 2.49 5 *在20°C下0.1重量%水溶液 表1顯示自RCL衍生之曱基羥基乙基纖維素及甲基羥基 丙基纖維素之分析數據。其結果清楚顯示此等產物較市售 高黏度類型具有更高黏度。在濃度為2重量%,發現黏度為 約100,000 mPas。由於其極高值,其更可靠並更易於測定1 重量%水溶液之黏度。在此濃度下,市售曱基羥基乙基纖 維素及甲基羥基丙基纖維素顯示黏度範圍為73〇〇至約9〇〇〇 mPas(參照表1)。以原棉短絨為主之產物之測量值明顯高於 商用材料。此外,表1之數據明顯顯示以原棉短絨為主之纖 維素_具有較對照樣品更低表面張力。 實例2 纖維素醚係在15 0 °C下用鹽酸實施經改良蔡澤爾醚裂 解。所得揮發性反應產物係用氣體色層分離法定量測定。 纖維素St溶液係在具有濃度為1重量。/()之溶液上測定。當 確定纖維素醚溶液之黏度時,以乾燥計,使用對應曱基羥 基烧基纖維素,即,水分%係由較高重量内數量補償。 為了測定黏度,使用布魯克菲爾德RVT旋轉式黏度計。 所有測量係在25它及3〇rpm下使用軸數4完成。 由純粹原棉短絨製得之羥基乙基纖維素係在Hercules試驗 性反應器内製造。如表2所示,二樣品具有約相同羥基乙氧 101431.doc -18- 200540139 基含量。然而,以RCL為主之所得HEC之黏度為約23%以上。 表2.HEC樣品之分析數據 羥基乙氧基 [%1 在1重量% 〜 [mPasl 純粹短絨HEC 58.7 3670 — RCL-HEC 57.1 4530 — —----- 實例3 所有試驗於14·0重量%波特蘭水泥ceM I 42.5R、4.0重量 • %水合石灰、39.0重量%具有顆粒大小為〇·1-〇·4毫米之矽砂 及43.0重量%具有顆粒大小為〇·5-1·0毫米之矽砂之底灰底_ 塗料基本混合物内進行。 保水率係根據DIN ΕΝ 18555或内部Hercules/Aqualon作 業程序測定。 在5秒内,300克乾砂漿加入對應量之水内(在2〇。〇。在 使用廚房手動混合器混合樣品25秒後,讓所得樣品熟化5 分鐘。然後,砂漿填充入塑膠環内,其定位在一片濾紙上。 鲁在濾紙與塑膠環之間,在濾紙放在塑膠板上時,定位薄纖 維網。在砂漿填充前後測定排列之重量。因此,計算濕砂 漿之重量。此外,亦可知濾紙之重量。在浸泡濾紙3分鐘後, 再測量濾紙之重量。現在使用下式計算保水率[%]: WRr%]=1〇n. 10°xWUx(l + WF)US Patent Application Serial No. 10 / 822,926, incorporated herein, was prepared on April 13, 2004. The raw material for this specific example of the present invention is a mass of unpurified raw cotton fluff fibers having a bulk density of at least 8 grams per milliliter. At least 50% by weight of this mass of fibers has an average length that passes through a U.S. screen size of 10 (2 mm opening). The mass of the unpurified raw cotton linters is obtained by obtaining a loose mass for the first cut, the second cut, the third cut, and / or the operation of the unpurified, natural raw cotton velvet or a mixture thereof, which contains at least 60% Cellulose, as measured by AOCS (American Oil Chemists &gt; Society), Official Method Bb 3-47, and converted to loose mass to length, where at least ⑼% by weight of the fiber passed through a U.S. standard sieve size number. Cellulose ether derivatives are prepared using the above-mentioned converted mass of raw cotton fluff fibers as raw materials. Cutting of raw cotton linters «J 枭 block is first treated with cellulose in a pulp or high solids process at a cellulose concentration greater than 9% by weight to form an active cellulose age pulp. Then, the active cellulose is polymerized at a sufficient time and at a sufficient temperature to react with a mixture of a test agent and a chelating agent to form a cellulose ether derivative, and then recovered. It is known in the art to modify the above process to prepare various CEs of the present invention. CEs not included in the invention obtained in the RCL bag can also be cut from raw cotton linters and / or prepared from mills or manufacturers to obtain raw cotton linters, including the combination obtained by &quot; original, mechanical cleaning of raw cotton linters The substance 'is substantially free of non-cellulosic foreign substances, such as inclusions, crushed nitrate, seed shell, etc., and can also be used to prepare the fibrous tincture of the present invention. The mechanical cleaning techniques of raw cotton short weaves, including those involving destruction, selection and air separation techniques, are known to those skilled in the art. Using a combination of mechanical beating technology and air separation technology, the fiber is separated from the crushed nitrate by using the density difference between the fiber and crushed nitrate 10143l.doc -14- 200540139. Mixtures of mechanically cleaned raw cotton linters and, originally, raw cotton linters can also be used to make the cellulose ethers of the present invention. When comparing the cement-based mortar (or bottom ash) prepared by traditional cellulose ethers, the mortar mortar of the present invention provides water retention, thickening and sag resistance, which are important parameters widely used in this technology to characterize Cement-based mortar. According to European Norm EN 1015-8, the water retention rate and / or the water retention rate is "the ability of a fresh hydraulic mortar to maintain its ability to mix water when exposed to substrate suction". It can be determined according to European Norm EN 1 8555. Sag resistance is the ability to apply fresh mortar vertically to maintain its position on the wall, i.e. good sag resistance prevents fresh wet mortar from flowing downwards. Regarding ash destruction based on water / Nissan, it is usually subjectively evaluated by the responsible technician. It is concerned with the thickening of cement-based mortars after research. Thickening and / or flow can be determined according to DIN EN 18 5 5 5 using a consistency test bench. A typical dry cement mortar / bottom ash may contain some or all of the following ingredients: Table A: Composition of typical advanced technology dry cement mortar (bottom ash) Typical composition Example amount Cement 5-60% CEM I (Portland cement), ceM II, CEM ΠΙ (slag cement), CEM IV (volcanic ash cement), CEM V (composite cement), CAC (aluminate cement) Other mineral binders 0.5-30% hydrated lime, gypsum, lime, pozzolan, blast furnace slag and Hydraulic lime aggregate / lightweight aggregate 5-90% Shixi sand, muscovite, limestone, perlite, EPS (expanded polystyrene), hollow glass ball, expanded vermiculite 101431.doc 200540139 spray-drying resin 0 -4% with homo-, co- or trimer-free primary vinyl acetate, maleate, ethylene, styrene, succinic acid, vinyl acetate, and / or acrylic monomer accelerators / blockers Agents 0-2% calcium citrate, sodium carbonate, aluminum carbonate, tartaric acid, citric acid or other cellulose ethers 0.01-1% methylcellulose (MC), methyl hydroxyethyl cellulose (MHEC), formazan Hydroxypropyl cellulose (MHPC), ethyl hydroxyethyl cellulose (EHEC), Ethyl cellulose (HEC), hydrophobically modified hydroxyethyl cellulose (HMHEC), other additives 0-1% air entraining agent, defoaming agent, wetting agent, superplasticizer, anti-sagging agent, office Composite fiber 0-5% cellulose fiber, polyamide fiber fiber [Embodiment] The present invention is further illustrated by the following examples. Unless otherwise indicated, parts and percentages are by weight. Example 1 Examples 1 and 2 show the chemical and physical properties of the polymers of this invention compared to commercial polymers. Right dry at 15 (TCT is cleaved with hydrochloric acid and modified with Zeiss (~ ⑻). The reaction product is quantitatively determined by gas chromatography. 度 The viscosity of the aqueous cellulose scale solution is at a concentration of 1 amount. When the viscosity of the vitamin solution is determined, the weight is 101431.doc -16-200540139, and the corresponding methyl trimethyl cellulose is used, that is, the moisture content is compensated by the higher weight. Purified cotton linters or high-viscosity wood pulp are commercially available. • Methyl hydroxyalkyl cellulose is sticky and ancient. ^ $ Watts <viscosity has a viscosity of up to 2% by weight of aqueous solution 'is about 70,000 to 80 〇〇 〇mpas (push the right # 古 U and use a Brookfield RVT viscometer at 20 C and 20 rpm to measure with a shaft number of 7). To determine the viscosity, use a Brookfield RVT rotary viscometer. All in 2 The measurement in a wt% aqueous solution was performed using ah and ⑼—the number of shafts was 7. The sodium chloride content was determined by the Mohr method. 0.05 g of the product was weighed on an analytical balance and dissolved in 150 ml of distilled water. Then, after stirring for 30 minutes, add 1 mmol 15% HNO3. Thereafter, the solution was titrated with a standardized silver nitrate (AgN03) solution using a commercially available device. The water content of the sample was determined using a commercially available moisture balance at 105t. The quotient of the initial weight is expressed as a percentage. The surface tension of the aqueous cellulose solution is measured using a Kruss digital tensiometer K10 φ at 20 ° C and a concentration of 01% by weight. For the measurement of surface tension, the so-called "William Rice hanging sheet method ', in which the sheet is lowered to the liquid surface and the downward force of the pointing sheet is measured. Table 1: Analytical data --- ~~ --- Sample methoxy / hydroxyethoxy or propylpropoxy to dry Viscosity Moisture Surface tension [%] at 2% by weight [mPas] at 1% by weight [mPas] [%] [mN / m] RCL-MHPC ^ 26.6 / 2.9 95400 17450 2.33 35 101431.doc 17 200540139 MHPC 65000 (control ) 27.1 / 3.9 59800 7300 4.68 ---- 1 48 RCL-MHEC 23.3 / 8.4 97000 21300 2.01 43 MHEC 75000 (control) 22.6 / 8.2 67600 9050 2.49 5 * 0.1% by weight aqueous solution at 20 ° C Table 1 shows from RCL Derived hydroxyethyl cellulose and methyl hydroxypropyl cellulose Analysis of the data element. The results clearly show that the product of such high viscosity than commercially available type having a higher viscosity at a concentration of 2 wt%, the viscosity was found about 100,000 mPas. Due to its extremely high value, it is more reliable and easier to determine the viscosity of a 1% by weight aqueous solution. At this concentration, commercially available fluorenyl hydroxyethyl cellulose and methyl hydroxypropyl cellulose exhibit viscosities ranging from 73,000 to about 9,000 mPas (see Table 1). The measured value of products based on raw cotton linters is significantly higher than that of commercial materials. In addition, the data in Table 1 clearly show that cellulose-based staple fibers have lower surface tension than the control samples. Example 2 Cellulose ether was subjected to modified Zeizel ether cracking with hydrochloric acid at 150 ° C. The obtained volatile reaction products were quantitatively determined by gas chromatography. The cellulose St solution has a concentration of 1 weight. / () 'S solution. When the viscosity of the cellulose ether solution is determined, the corresponding fluorenyl hydroxyalkyl cellulose is used on a dry basis, i.e., the% moisture is compensated by the amount within the higher weight. To determine viscosity, a Brookfield RVT rotary viscometer was used. All measurements were performed at 25 ° and 30 rpm using 4 shafts. Hydroxyethyl cellulose made from pure raw cotton linters was manufactured in a Hercules experimental reactor. As shown in Table 2, the two samples had about the same hydroxyethoxy 101431.doc -18- 200540139 group content. However, the viscosity of the obtained HEC based on RCL is about 23% or more. Table 2. Analysis data of HEC samples. Hydroxyethoxy [% 1 in 1% by weight ~ [mPasl pure short pile HEC 58.7 3670 — RCL-HEC 57.1 4530 — —----- Example 3 All tests at 14.0 weight % Portland cement ceM I 42.5R, 4.0% by weight •% hydrated lime, 39.0% by weight silica sand with a particle size of 0.1-0.4 mm and 43.0% by weight with a particle size of 0.5-5.0 Silica sand millimeter gray base _ paint base mixture. Water retention is measured in accordance with DIN EN 18555 or internal Hercules / Aqualon operating procedures. Within 5 seconds, 300 g of dry mortar was added to the corresponding amount of water (at 20.0. After mixing the sample with a kitchen manual mixer for 25 seconds, the resulting sample was allowed to mature for 5 minutes. Then, the mortar was filled into the plastic ring, It is positioned on a piece of filter paper. Lu is between the filter paper and the plastic ring, and when the filter paper is placed on the plastic plate, the thin fiber web is positioned. The weight of the arrangement is measured before and after the mortar is filled. Therefore, the weight of the wet mortar is calculated. In addition, The weight of the filter paper can be known. After soaking the filter paper for 3 minutes, the weight of the filter paper is measured. Now use the following formula to calculate the water retention rate [%]: WRr%] = 1〇n. 10 ° xWUx (l + WF)

WPxWF wu=濾紙之水攝取[克] WF =水因數* 灰漿之重量[克] 101431.doc -19· 200540139 *水因數··所用水量除以所用乾砂漿。例如,20克水在100克 乾砂聚上導致水因數為0.2。 所得砂漿之流動、密度及空氣含量係根據DIN EN 18555 程序測定。 自RCL製得之曱基羥基乙基纖維素(MHEC)係於底塗底 灰(以水泥為主灰漿)基本混合物内比較市售高黏度 MHEC(獲自Hercules)作為對照物試驗。其結果顯示於表3。 表3:不同纖維素喊於底塗底灰内之試驗 (23°C /50%相對空氣溼度) 基本材料 基本混合物底塗底灰 添加劑(在基 本混合物上 之量) 0.1%MHEC 75000 + 0.01% AEA(空氣夾 雜劑;烷基硫 酸鈉 C12-C18 0.08%MHEC 75000+ 0.01%AEA 0.08%RCL- MHEC+ 0.01%AEA 水因數 0.2 0.2 0.2 保水率 (%,DIN)水因 數 98.15 96.22 98.10 流動度(毫米) 183 182 177 新鮮砂漿密 度(克/升) 1734 1766 1730 空氣含量(%) 18.5-19 7-17.5 18.5-19 首先,對照物(MHEC 75000)係在典型加入準位為〇·1%(在 基本混合物上)試驗。當使用準位降至〇·08%時,對所得底 塗底灰測量保水率之顯著下降。此外,空氣含量亦略為減 少’其亦可在所得底灰之略南新鮮砂漿密度看出。在另一 试驗中’以RCL為主MHEC係在加入準位為0.08%下試驗。 101431.doc -20- 200540139 雖然劑量準位較對照樣品下降20%,保水率、空氣含量及 新鮮砂漿密度仍相同。此外,亦可看到較佳稠化功效,其 係由較低流動值顯示。 在另一試驗系列中,底塗底灰之保水率係根據CE·加入準 位決定。此外,以RCL為主MHEC亦與對照物(MHEC 75000) 比較。此研究結果可在圖1看出。 可證貫以RCL為主MHEC對保水能力較目前所用極高黏 度MHEC具有更優塗覆性質。尤其是,在較低CE-劑量下, •可看到以RCL為主材料之明顯優點。此處,在相同加入準 位下’可達到較高保水率,即,在顯著降低的劑量下,可 達到相同保水率。 因此’表3及圖1清楚顯示以rcL為主MHEC在降低的加入 準位下顯示類似塗覆性質。 實例4 所有試驗於14·0重量。/。波特蘭水泥cem I 42.5R、4.0重量 φ %水合石灰、39·0重量%具有顆粒大小為0·1-0.4毫米之矽砂 及43.0重量%具有顆粒大小為〇·5-1〇毫米之矽砂之底灰底_ 塗料基本混合物内進行。 濕砂漿之保水率、流動度、密度及空氣含量係如實例3 所述般測定。 自RCL製得之曱基羥基丙基纖維素(MHpc)係於底塗底 灰(以水泥為主灰漿)基本混合物内比較市售高黏度 MHEC(獲自Hercules)作為對照物試驗。為了具有較佳作業 性,在所有情況下,加入空氣夾帶劑(AEA)(烷基硫酸鈉 101431.doc -21 - 200540139 C12-C18)。其結果顯示於表4。 表4··不同RCL-MHPCs於底塗底灰内之試驗 (23°C/50%相對空氣溼度) 基本材料 基本混合物底塗底灰 添加劑(在基 本混合物上之 量) 0.1%MHPC 65000+ 0.01%AEA 0.08%MHPC 65000+ 0.01%AEA 0.08%RCL- MHPC+ 0.01%AEA 水因數 0.2 0.2 0.2 保水率 (%,DIN)水因 數 97.95 97.22 97.92 流動度(毫米) 190 195 190 新鮮砂漿密度 (克/升) 1770 1791 1781 空氣含量(%) 17 16.5 16.5 當對照樣品(MHPC 65000)之加入準位降低20%時,可看 到略為降低的保水率。對應值降低約0.7%時,其超過實驗 誤差(±0.5%)。RCL-MHPC亦可在20%降低的劑量準位下試 驗。雖然如此,所得底塗底灰之保水率以及其他研究的濕 砂漿性質可比較對照樣品,其係在較高加入準位下試驗。 在另一試驗系列中,底塗底灰之保水率係根據CE-加入準 位決定。此外,以RCL為主MHPC亦與對照MHPC 65000比 較。此研究結果可在圖2看出。 可證實以RCL為主MHPC對保水能力較目前所用極高黏 度MHPC作為對照物具有更優塗覆性質。尤其是,在較低CE-劑量(在0.08%以下)下,可看到以RCL為主材料之明顯優點。 實例5 101431.doc -22- 200540139 所有試驗於14·0重量。/〇波特蘭水泥CEM I 42.5R、4.0重量 %水合石灰、39.0重量%具有顆粒大小為〇·ι-〇·4毫米之矽砂 及43.0重量%具有顆粒大小為0.5-1.0毫米之矽砂之底灰底-塗料基本混合物内進行。 濕砂漿之保水率、流動度、密度及空氣含量係如實例3 所述般測定。 自RCL製得之甲基羥基丙基纖維素(MHPC)係分別與聚 丙烯醯胺(ΡΑΑ;在0·5重量%之水性黏度:850 mPas;分子 量:8-15百萬克/莫耳;密度:825±50 g/dm3;陰離子電荷:15-50 重量%)澱粉醚(STE;羥基丙氧基含量:10-35重量%;體密 度:3 50-5 50 g/dm3;包裝之水含量:最多8%;顆粒大小(Alpine 空氣篩分機)··最多20°/。殘餘物在〇·4毫米篩上;溶液黏 度:1500-3000 mPas(在10重量。/〇,布魯克菲爾德RVT,20 rpm,20°C)摻合,並於底塗底灰(以水泥為主灰漿)基本混合 物内比較市售高黏度改良之MHPC作為對照物試驗。為了具 有較佳作業性,在所有情況下,加入空氣夾帶劑(AEA)。其 結果顯示於表5及6。 表5:不同改良的MHPCs於底塗底灰内之試驗 (23°C/50%相對空氣溼度) 基本材料 基本混合物底塗底灰+0.01 %AEA 添加劑 98%MHPC 65000+ 2%PAA 98%MHPC 65000+ 2%PAA 98%RCL-MHPC + 2%PAA 劑量(在基本 混合物上) (重量%) 0.1 0.08 0.08 101431.doc -23- 200540139 水因數 0.2 0.2 0.2 保水率 (%,DIN) 97.9 97.2 98.1 流動度(毫米) 175 172 176 新鮮砂漿密 (克/升) 1718 1757 1763 空氣含量(%) 19.5 17.5 18 表5顯示雖然經改良RCL-MHPC係在20%降低的加入準位 下比較於對照物試驗,惟所得底灰對保水率及流動作用具 有可比較濕砂漿性質。 表6:不同改良的MHPCs於底塗底灰内之試驗 (23°C/50%相對空氣溼度) 基本材料 基本混合物底塗底灰+0.01 %AEA 添加劑 95%MHPC 65000+ 5%STE 95%MHPC 65000+ 5%STE 95%RCL-MHPC + 5%STE 劑量(在基本 混合物上) (重量%) 0.1 0.08 0.08 水因數 0.2 0.2 0.2 保水率 (%,DIN) 97.8 96.6 97.0 流動度(毫米) 172 181 172 新鮮砂漿密 (克/升) 1746 1786 1751 空氣含量(%) 18.5 17 19 表6例示STE改良的RCL-MHPC較以相同方式改良之商用 MHPC 65 000(對照物)更具效率。當二樣品在相同劑量準位 (0.08重量%基本混合物上)比較時,可達成經改良 101431.doc -24- 200540139 RCL-MHPC對保水率及稠化功效之較佳性能。 實例6 所有試驗於14.0重量%波特蘭水泥CEM I 42.5R、4.0重量 %水合石灰、39.0重量%具有顆粒大小為0.1-0.4毫米之矽砂 及43.0重量%具有顆粒大小為0.5-1.0毫米之矽砂之底灰底-塗料基本混合物内進行。 濕砂漿之保水率、流動度、密度及空氣含量係如實例3 所述般測定。 自RCL製得之甲基羥基乙基纖維素(MHEC)係分別與聚 丙烯醯胺(PAA;分子量:8-15百萬克/莫耳;密度:825 ±100 g/dm3;陰離子電荷=15-50重量%)澱粉醚(STE)(關於使用的 PAA及STE之說明,參照實例5)摻合,並於底塗底灰(以水 泥為主灰漿)基本混合物内比較市售高黏度改良之 MHEC(對照物)試驗。為了具有較佳作業性,在所有情況 下,加入烷基硫酸鈉C12-C18之空氣夾帶劑(AEA)。其結果 顯示於表7及8。 表7:不同改良的MHECs於底塗底灰内之試驗 (23°C/50%相對空氣溼度) 基本材料 基本混合物底塗底灰+0.01 %AEA 添加劑 98%MHEC 75000+ 2%PAA 98%MEC 75000+ 2%PAA 98%RCL-MHEC + 2%PAA 劑量(在基本 混合物上) (重量%) 0.1 0.08 0.08 水因數 0.2 0.2 0.2 101431.doc -25- 200540139 保水率 (%,DIN) 97.7 95.0 98.0 流動度(毫米) 172 176 175 新鮮砂漿密 (克/升) 1711 1742 1736 空氣含量(%) 19.5 18 18 與PAA摻合的RCL-MHEC顯示類似於對照樣品之保水 率,但劑量為20%以下。新鮮砂漿密度及空氣含量略為不 同。當經改良的MHEC 75000(對照物)在降低的加入準位下 試驗時,所得砂漿比較含有經改良的RCL-MHEC具有3%降 低的保水率。 表8:不同改良的MHECs於底塗底灰内之試驗 (23°C/50%相對空氣溼度) 基本材料 基本混合物底塗底灰+0.01 %AEA 添加劑 95%MHEC 75000+ 5%STE 95%MHEC 75000+ 5%STE 95%RCL- MHEC+ 5%STE 劑量(在基本 混合物上) (重量%) 0.1 0.08 0.08 水因數 0.2 0.2 0.2 保水率 (%,DIN) 96.8 95.5 95.9 流動度(毫米) 173 177 175 新鮮砂漿密 (克/升) 1730 1778 1741 空氣含量(%) 18 17 18 由表8可知,當二經改良的MHEC 75000以及經改良的 RCL-MHEC在降低的劑量準位下試驗時,可測量含有砂漿 101431.doc • 26 - 200540139 之RCL-MHEC之略高保水率。 實例7 所有試驗於14.0重量%波特蘭水泥CEM j 42 5R、4 〇重量 %水合石灰、39.0重量%具有顆粒大小為〇1〇4毫米之石夕砂 及41.0重量%具有顆粒大小為〇 5_1()毫米之石夕砂之底灰底_ 塗料基本混合物内進行。 濕砂漿之保水率、流動《、密度及空氣含量係如實例3 所述般測定。 自Hercules實驗工廠内之RCL製得之羥基乙基纖維素於 底塗底灰(以水泥為主灰漿)基本混合物内比較於在相同加 工條件下由純粹短絨製得之實驗工廠hec作為對照物試 驗。在所有實驗中,加入空氣夾帶劑(AEA;烷基硫酸鈉 C12-C18)。其結果顯示於表9。 表9:不同RCL-HECs於底塗底灰内之試驗 (23°C/50%相對空氣溼度) 基本材料 基本混合物底塗底灰 添加劑(在基 本混合物上之 量) 0_1°/〇純粹短 絨 HEC+ 0.01%AEA 0 0 8 %純粹短 絨 HEC + 0·01%ΑΕΑ 0.08%RCL-HEC + 0.01%AEA 水因數 0.2 0.2 0.2 保水率 (0/〇,DIN) 96.67 93.17 96.79 流動度(毫米) 179 182 178 新鮮砂漿密度 (克/升) 1783 1815 1765 空氣含量(0/〇) 16 15 17 ^ 表9清楚顯示由RCL製得之HEC較以純粹短絨為主之對 101431.doc -27- 200540139 =樣4率上兩得多。雖然RCL_HEC之劑量較對照物低 2〇%’惟所有研究的濕砂漿性質大約相同,而當純粹短絨 HEC(對照物)降低2()%時,塗覆性質會顯著降低; 降WPxWF wu = Water intake of filter paper [g] WF = Water factor * Mortar weight [gram] 101431.doc -19 · 200540139 * Water factor ·· The amount of water used divided by the dry mortar used. For example, 20 grams of water on 100 grams of dry sand aggregate results in a water factor of 0.2. The flow, density and air content of the obtained mortar were determined according to the DIN EN 18555 procedure. Rhenylhydroxyethylcellulose (MHEC) prepared from RCL was tested in a base coat (primary cement-based mortar) base mixture with a commercially available high viscosity MHEC (obtained from Hercules) as a control test. The results are shown in Table 3. Table 3: Tests of different celluloses in primer and primer ash (23 ° C / 50% relative air humidity) Basic material Basic mixture Primer primer ash additive (amount on the basic mixture) 0.1% MHEC 75000 + 0.01% AEA (air inclusion; sodium alkyl sulfate C12-C18 0.08% MHEC 75000+ 0.01% AEA 0.08% RCL- MHEC + 0.01% AEA water factor 0.2 0.2 0.2 water retention rate (%, DIN) water factor 98.15 96.22 98.10 fluidity (mm ) 183 182 177 Density of fresh mortar (g / l) 1734 1766 1730 Air content (%) 18.5-19 7-17.5 18.5-19 First, the control (MHEC 75000) is at a typical addition level of 0.1% (in On the basic mixture) test. When the use level is reduced to 0.08%, the water retention rate of the bottom ash obtained from the coating is significantly reduced. In addition, the air content is also slightly reduced. Mortar density can be seen. In another test, 'mainly RCL MHEC series was tested at the addition level of 0.08%. 101431.doc -20- 200540139 Although the dose level was 20% lower than the control sample, water retention, air Content and fresh mortar density remain the same. In addition, A better thickening effect can be seen, which is shown by a lower flow value. In another test series, the water retention rate of the base coat and bottom ash is determined according to the CE · joining level. In addition, MHEC, which is based on RCL, is also associated with Control (MHEC 75000) comparison. The results of this study can be seen in Figure 1. It can be shown that RCL-based MHEC has better coating properties than the currently used very high viscosity MHEC. Especially, at lower CE -At the dose, • You can see the obvious advantages of using RCL as the main material. Here, at the same addition level, a higher water retention rate can be achieved, that is, the same water retention rate can be achieved at a significantly reduced dosage. Therefore 'Table 3 and Figure 1 clearly show that rcL-based MHEC shows similar coating properties at a reduced addition level. Example 4 All tests were performed at 14.0 weight. / Portland cement cem I 42.5R, 4.0 weight φ % Hydrated lime, 39.0% by weight of silica sand with a particle size of 0.1-0.4 mm and 43.0% by weight of silica sand with a particle size of 0.5--10 mm . Water retention, fluidity, density and air content of wet mortar The determination is as described in Example 3. The hydroxypropyl cellulose (MHpc) prepared from RCL is compared with a commercially available high-viscosity MHEC (obtained from Hercules) in a basic mixture of a primer and a base ash (cement-based mortar). Control substance test. For better workability, in all cases, add air entrainer (AEA) (sodium alkyl sulfate 101431.doc -21-200540139 C12-C18). The results are shown in Table 4. Table 4 · Test of different RCL-MHPCs in the primer and primer ash (23 ° C / 50% relative air humidity) Basic material Basic mixture Primer primer ash additive (amount on the basic mixture) 0.1% MHPC 65000+ 0.01 % AEA 0.08% MHPC 65000+ 0.01% AEA 0.08% RCL- MHPC + 0.01% AEA Water factor 0.2 0.2 0.2 Water retention (%, DIN) Water factor 97.95 97.22 97.92 Fluidity (mm) 190 195 190 Fresh mortar density (g / l 1770 1791 1781 Air content (%) 17 16.5 16.5 When the addition level of the control sample (MHPC 65000) is reduced by 20%, a slightly reduced water retention rate can be seen. When the corresponding value decreases by about 0.7%, it exceeds the experimental error (± 0.5%). RCL-MHPC can also be tested at a reduced dose level of 20%. Nonetheless, the water retention of the resulting primer ash and the properties of the wet mortar from other studies can be compared with the control sample, which was tested at a higher level of addition. In another test series, the water retention of the base coat and bottom ash was determined based on the CE-joint level. In addition, MHPC based on RCL was also compared with control MHPC 65000. The results of this study can be seen in Figure 2. It can be confirmed that the RCL-based MHPC has better coating properties than the extremely high viscosity MHPC currently used as a control. In particular, at lower CE-dose (below 0.08%), the obvious advantages of using RCL as the main material can be seen. Example 5 101431.doc -22- 200540139 All tests were performed at 14.0 weight. / 〇Portland Cement I 42.5R, 4.0% by weight hydrated lime, 39.0% by weight silica sand with a particle size of 〇-ι-0.4 mm and 43.0% by weight silica sand with a particle size of 0.5-1.0 mm The bottom ash-coating is performed within the base mixture. The water retention, fluidity, density and air content of the wet mortar were determined as described in Example 3. Methylhydroxypropylcellulose (MHPC) prepared from RCL and Polyacrylamide (PAA; water viscosity at 0.5% by weight: 850 mPas; molecular weight: 8-15 million grams / mole; Density: 825 ± 50 g / dm3; anionic charge: 15-50% by weight) starch ether (STE; hydroxypropoxy content: 10-35% by weight; body density: 3 50-5 50 g / dm3; water for packaging Content: up to 8%; particle size (Alpine air sieving machine) ... up to 20 ° /. Residue on 0.4 mm sieve; solution viscosity: 1500-3000 mPas (at 10 wt./Brookfield RVT, 20 rpm, 20 ° C) blended, and compared with the commercially available high viscosity modified MHPC as a control test in the basic mixture of the primer and primer ash (cement-based mortar). In order to have better workability, in all cases The air entrainer (AEA) was added. The results are shown in Tables 5 and 6. Table 5: Tests of different modified MHPCs in the primer and primer ash (23 ° C / 50% relative air humidity) Base ash + 0.01% AEA additive 98% MHPC 65000+ 2% PAA 98% MHPC 65000+ 2% PAA 98% RCL-MHPC + 2% PAA dosage (in basic mix Top) (% by weight) 0.1 0.08 0.08 101431.doc -23- 200540139 Water factor 0.2 0.2 0.2 Water retention (%, DIN) 97.9 97.2 98.1 Mobility (mm) 175 172 176 Fresh mortar density (g / l) 1718 1757 1763 Air content (%) 19.5 17.5 18 Table 5 shows that although the modified RCL-MHPC is compared with the control test at a 20% reduced addition level, the bottom ash obtained has comparable wet mortar properties to water retention and flow. Table 6: Tests of different modified MHPCs in the base coat and base ash (23 ° C / 50% relative air humidity) Basic material base mixture base coat base ash + 0.01% AEA additive 95% MHPC 65000 + 5% STE 95% MHPC 65000+ 5% STE 95% RCL-MHPC + 5% STE Dosage (on base mixture) (% by weight) 0.1 0.08 0.08 Water factor 0.2 0.2 0.2 Water retention (%, DIN) 97.8 96.6 97.0 Fluidity (mm) 172 181 172 Fresh mortar density (g / l) 1746 1786 1751 Air content (%) 18.5 17 19 Table 6 illustrates that STE modified RCL-MHPC is more efficient than commercial MHPC 65 000 (control) modified in the same way. When the two samples are compared at the same dosage level (0.08% by weight of the basic mixture), the improved performance of 101431.doc -24- 200540139 RCL-MHPC for water retention and thickening effect can be achieved. Example 6 All tests were performed on 14.0% by weight Portland cement CEM I 42.5R, 4.0% by weight hydrated lime, 39.0% by weight silica sand with a particle size of 0.1-0.4 mm and 43.0% by weight with a particle size of 0.5-1.0 mm Silica Sand Bottom Grey-coating is performed in the base mixture. The water retention, fluidity, density and air content of the wet mortar were determined as described in Example 3. Methylhydroxyethylcellulose (MHEC) prepared from RCL and polypropylene amidamine (PAA; molecular weight: 8-15 million g / mole; density: 825 ± 100 g / dm3; anionic charge = 15 -50% by weight) Starch ether (STE) (for instructions on the use of PAA and STE, see Example 5). Blend and compare the commercially available high-viscosity modified one in the basic mixture of the primer and base ash (cement-based mortar). MHEC (control) test. For better workability, in all cases, sodium alkyl sulfate C12-C18 air entrainer (AEA) was added. The results are shown in Tables 7 and 8. Table 7: Tests of different modified MHECs in the base coat and base ash (23 ° C / 50% relative air humidity) Basic material base mixture base coat base ash + 0.01% AEA additive 98% MHEC 75000 + 2% PAA 98% MEC 75000+ 2% PAA 98% RCL-MHEC + 2% PAA dosage (on basic mixture) (% by weight) 0.1 0.08 0.08 Water factor 0.2 0.2 0.2 101431.doc -25- 200540139 Water retention (%, DIN) 97.7 95.0 98.0 Fluidity (mm) 172 176 175 Fresh mortar density (g / l) 1711 1742 1736 Air content (%) 19.5 18 18 RCL-MHEC blended with PAA shows similar water retention rate as the control sample, but the dosage is below 20% . Fresh mortar density and air content are slightly different. When the modified MHEC 75000 (control) was tested at a reduced addition level, the resulting mortar had a reduced water retention of 3% compared to the modified RCL-MHEC. Table 8: Tests of different modified MHECs in the base coat and base ash (23 ° C / 50% relative air humidity) Base material base mixture base coat base ash + 0.01% AEA additive 95% MHEC 75000 + 5% STE 95% MHEC 75000+ 5% STE 95% RCL- MHEC + 5% STE Dose (based on basic mixture) (wt%) 0.1 0.08 0.08 Water factor 0.2 0.2 0.2 Water retention (%, DIN) 96.8 95.5 95.9 Flowability (mm) 173 177 175 Fresh mortar density (g / l) 1730 1778 1741 Air content (%) 18 17 18 As can be seen from Table 8, when two modified MHEC 75000 and modified RCL-MHEC are tested at a reduced dose level, it can be measured Slightly higher water retention of RCL-MHEC with mortar 101431.doc • 26-200540139. Example 7 All tests were performed on 14.0% by weight Portland cement CEM j 42 5R, 40% by weight hydrated lime, 39.0% by weight of stone evening sand with a particle size of 0104 mm and 41.0% by weight with a particle size of 0_1_1 () Millimeter of stone eve sand bottom gray bottom _ paint base mixture. The water retention, flow, density, and air content of the wet mortar were determined as described in Example 3. The hydroxyethyl cellulose prepared from RCL in the Hercules experimental plant was used as a control in the basic mixture of the primer and primer ash (cement-based mortar) compared to the experimental plant hec made from pure fluff under the same processing conditions. test. In all experiments, an air entrainer (AEA; sodium alkyl sulfate C12-C18) was added. The results are shown in Table 9. Table 9: Test of different RCL-HECs in the primer and primer ash (23 ° C / 50% relative air humidity) Basic material Basic mixture Primer primer ash additive (amount on the basic mixture) 0_1 ° / 〇 pure fluff HEC + 0.01% AEA 0 0 8% pure short pile HEC + 0.01% ΑΕΑ 0.08% RCL-HEC + 0.01% AEA Water factor 0.2 0.2 0.2 Water retention (0 / 〇, DIN) 96.67 93.17 96.79 Fluidity (mm) 179 182 178 Density of fresh mortar (g / l) 1783 1815 1765 Air content (0 / 〇) 16 15 17 ^ Table 9 clearly shows that HEC made by RCL is more than pure short staple. 101431.doc -27- 200540139 = Sample 4 is much more than two. Although the dose of RCL_HEC is 20% lower than that of the control, the wet mortar properties of all the studies are about the same, and when the pure fluff HEC (control) is reduced by 2 ()%, the coating properties will be significantly reduced;

低 3.5%。 T 圖3顯示CE加人準位對二Μ(:型之保水率之影響,其中以 RCL為主HEC較純粹短絨HEC矩有改良的保水能力。在低於 0.12%之劑量準位下,保水率在相同準位下經常較高,即,3.5% lower. T Figure 3 shows the effect of CE plus human level on the water retention of the two M (:) type. Among them, RCL-based HEC has improved water retention capacity than pure fluff HEC moment. At dose levels below 0.12%, Water retention is often higher at the same level, that is,

當使用RCL-HEC時,類似保水率在明顯較低#j量準位下達 成0 實例8 所有試驗於20.0重量。/〇波特蘭水泥CEMM2 5R白色、2 〇 重量%水合石灰、30.0重量%矽砂F34、23.0重量%具有顆粒 大小為0·5-1·〇毫米之石灰石及25〇重量%具有顆粒大小為 0.7-1.2毫米之石灰石之裝飾性底灰基本混合物内進行。 濕砂漿之保水率、流動度、密度及空氣含量係如實例3 所述般測定。 自RCL製得之甲基羥基乙基纖維素(MHEC)於裝飾性底 灰(以水泥為主灰漿)基本混合物内比較於作為對照物的市 售高黏度MHECs(自Hercules)試驗。其結果顯示於表丨〇及圖 4 〇 101431.doc -28- 200540139 表1 〇:不同纖維素醚於裝飾性底灰内之試驗 (23 °C/50%相對空氣溼度) 基本材料 基本混合物裝飾性底灰 添加劑(在基 本混合物上之 量) 0.08% MHEC 80000+0.01 AEA (烷基硫酸 鈉 C12-C18) 0.08% MHEC 75000+ 0.01%AEA 0.08% RCL MHEC + 0.01% AEA 0.08% RCL-MHEC + 0.01% AEA 水因數 0.2 0.2 0.2 0.21 保水率 (%,DIN) 96.6 97.3 97.6 97.2 流動度(毫米) 160 164 157 160 新鮮砂漿密度 (克/升) 1729 1764 1733 1741 空氣含量(%) 19 17.5-18 19 18.5 如表10顯示,RCL-MHEC顯示較對照樣品更強稠化功 效。此功效由包含RCL-MHEC之底灰之較低流動/散佈值顯 示。當水因數自0.2增至0.21時,可測定類似流動度。然而, 即使在增加的水因數下,亦可測定類似保水率。所有其他 特性亦可比較。 此等試驗清楚證實以RCL為主MHEC對於保水能力比較 目前所用高黏度MHEC作為對照樣品具有較優塗覆性能。尤 其是,在較低CE劑量準位下,可看到以RCL為主材料之明 顯優點。此處,在相同加入準位下,可達成較高保水率; 即,相同保水率在明顯降低的劑量準位下達到。 表10及圖4之數據清楚顯示以RCL為主MHEC為一種有效 纖維素醚,其在降低的加入準位下顯示類似塗覆性能。 101431.doc -29- 200540139 脫離本發 改變及改 範圍内。 雖然本發明參照較佳具體例說明,惟須知在不 明之精神及範圍以外,可對其作形式及其細節之 良。該改變及改良被視為在所附請求項之權限及 : 【圖式之簡單說明】 圖1為以下實例3顯示之實驗數據之座標圖; 圖2為以下實例4顯示之實驗數據之座標圖; 圖3為以下實例7顯示之實驗數據之座標圖; 圖4為以下實例8顯示之實驗數據之座標圖; 101431.doc 30-When using RCL-HEC, similar water retention reached 0 at a significantly lower #j level. Example 8 All tests were performed at 20.0 weight. / 〇Portland cement CEMM2 5R white, 20% by weight hydrated lime, 30.0% by weight silica sand F34, 23.0% by weight limestone with a particle size of 0.5-1.0mm, and 25% by weight with a particle size of 0.7-1.2mm limestone in a decorative base ash base mixture. The water retention, fluidity, density and air content of the wet mortar were determined as described in Example 3. Methyl hydroxyethyl cellulose (MHEC) prepared from RCL was compared in a decorative base ash (cement-based mortar) base mixture with a commercially available high viscosity MHECs (from Hercules) test as a control. The results are shown in Table 丨 〇 and Figure 4 〇101431.doc -28- 200540139 Table 1 〇: Test of different cellulose ethers in decorative base ash (23 ° C / 50% relative air humidity) Basic material Basic mixture decoration Base ash additive (amount on basic mixture) 0.08% MHEC 80000 + 0.01 AEA (sodium alkyl sulfate C12-C18) 0.08% MHEC 75000+ 0.01% AEA 0.08% RCL MHEC + 0.01% AEA 0.08% RCL-MHEC + 0.01% AEA Water factor 0.2 0.2 0.2 0.21 Water retention (%, DIN) 96.6 97.3 97.6 97.2 Mobility (mm) 160 164 157 160 Fresh mortar density (g / l) 1729 1764 1733 1741 Air content (%) 19 17.5-18 19 18.5 As shown in Table 10, RCL-MHEC showed a stronger thickening effect than the control sample. This effect is shown by the lower flow / dispersion value of the bottom ash containing RCL-MHEC. When the water factor is increased from 0.2 to 0.21, similar mobility can be determined. However, similar water retention can be measured even at increased water factors. All other characteristics can also be compared. These tests clearly confirm that the RCL-based MHEC has a better coating performance compared to the water retention capacity of the currently used high-viscosity MHEC as a control sample. In particular, at the lower CE dose level, the obvious advantages of using RCL as the main material can be seen. Here, at the same addition level, a higher water retention rate can be achieved; that is, the same water retention rate is achieved at a significantly reduced dose level. The data in Table 10 and Figure 4 clearly show that RCL-based MHEC is an effective cellulose ether, which shows similar coating performance at a reduced addition level. 101431.doc -29- 200540139 Depart from the scope of the change and modification of this issue. Although the present invention has been described with reference to preferred specific examples, it is to be understood that the form and details can be made well beyond the spirit and scope of the unknown. The change and improvement are regarded as the authority of the attached request and: [Simplified description of the figure] Figure 1 is the coordinate diagram of the experimental data shown in Example 3 below; Figure 2 is the coordinate diagram of the experimental data shown in Example 4 below ; Figure 3 is a graph of experimental data shown in Example 7 below; Figure 4 is a graph of experimental data shown in Example 8 below; 101431.doc 30-

Claims (1)

200540139 十、申請專利範圍: 1· -種用於底灰(reuder)組合物之混合物組合物,其包含 (a) —種自原棉短絨製備之纖維素醚,其量為“至的.$ 重i /〇 k自燒基羥基院基纖維素、羥基烧基纖維素及其 混合物所組成之群,及 (b) 至少一種添加劑,其量為0.1至80重量%,選自有機 或無機稠化劑、抗下垂劑、空氣夾帶劑、濕潤劑、除沫 劑、超塑化劑、&gt;散劑、舞錯合劑、阻滞劑、加速劑、 排水劑、可再分散粉末、生物聚合物及纖維所組成之群, 其中當混合物用於乾底灰調配物並與充分量之水混合 時,調配物會產生可塗覆至基材之灰漿砂漿,其中混合 物於灰漿砂漿内之量會顯著減少,且使用傳統類似纖維 素醚濕灰漿砂漿之保水率及稠化性及/或抗下垂性係可比 較的或係改良的。 2·如請求項1之混合物組合物,其中烷基羥基烷基纖維素之 烷基具有1至24個碳原子,而羥基烷基則具有2至4個碳原 子。 3 ·如請求項1之混合物組合物,其中纖維素醚係選自甲基羥 基乙基纖維素(MHEC)、甲基羥基丙基纖維素(MHPC)、經 基乙基纖維素(HEC)、乙基羥基乙基纖維素(eheC)、甲基 乙基羥基乙基纖維素(MEHEC)、疏水方式改質的乙基羥 基乙基纖維素(HMEHEC)、疏水方式改質的羥基乙基纖維 素(HMHEC)及其混合物所組成之群。 4·如請求項1之混合物組合物,其中混合物亦包含一或多種 101431.doc 200540139 傳統纖維素選自甲基纖維素(MC)、甲基經基乙基纖 維素(MHEC)、曱基經基丙基纖維素(MHPC)、經基乙基纖 維素(HEC)、乙基羥基乙基纖維素(EHEC)、疏水方式改質 的經基乙基纖維素(HMHE)、疏水方式改質的乙基輕基乙 基纖維素(HMEHEC)、甲基乙基羥基乙基纖維素 (MEHEC)、磺乙基甲基羥基乙基纖維素(SEMHEC)、石黃乙 基甲基羥基丙基纖維素(SEMHPC)及磺乙基羥基乙基纖 維素(SEHEC)所組成之群。 5 ·如請求項1之混合物組合物,其中纖維素醚之量為7〇至99 重量%。 6.如請求項1之混合物組合物,其中添加劑之量為0.5至30 重量%。 7·如請求項1之混合物組合物,其中至少一種添加劑為選自 多糖所組成之群之有機稠化劑。 8 ·如請求項7之混合物組合物,其中多糖係選自澱粉醚、澱 粉、瓜爾膠、瓜爾膠衍生物、糊精、殼多糖、殼聚糖、 聚木糖、黃原膠、汶萊(welan gum)膠、膠凝膠、甘露聚 糖、半乳聚糖、葡聚糖、阿拉伯木聚糖、海藻酸鹽及纖 維素纖維所組成之群。 9 ·如請求項1之混合物組合物,其中至少一種添加劑係選自 丙烯醯胺之均或共聚物、明膠、聚乙二醇、酪素、磺酸 木質素、石黃酸萘、石黃化蜜胺-甲酸縮合物、石黃化萘-甲駿縮 合物、聚丙稀酸酯、聚繞酸化醚、聚苯乙烯石黃酸酯、構 酸酯、膦酸酯具有1至4個碳原子之有機酸之妈鹽、鏈烧 101431.doc 200540139 酸鹽、硫酸铭、金屬紹、息土、蒙脫石、海泡石、聚醯 胺纖維、聚丙烯纖維、聚乙烯醇、及以醋酸乙烯醋為主 之均、共或三聚物、順丁烯二酸酯、乙烯、苯乙烯、丁 一烯、柯赫酸乙烯酯及丙烯酸單體所組成之群。 10.如請求項丨之混合物組合物,其中至少一種添加劑係選自 妈嵌合劑、果酸及表面活性劑所組成之群。 11 ·如凊求項1之混合物組合物,其中用於灰漿砂漿之顯著降 低的混合物量為至少5%降低。 12·如a月求項i之混合物組合物,其中用於灰漿砂漿之顯著降 低的混合物量為至少10%降低。 13.如請求項7之混合物組合物,其中混合物組合物為mhec 及種選自丙烯醯胺之均或共聚物、澱粉醚及其混合物 所組成之群之添加劑。 14·如請求項13之混合物組合物,其中丙烯醯胺之共聚物係 選自聚(丙烯醯胺_共_丙烯酸鈉)、聚(丙烯醯胺-共·丙烯 酸)、聚(丙烯醯胺-共_丙烯醯胺基甲基丙烷磺酸鈉)、聚(丙 稀酿胺-共-丙烯醯胺基甲基丙烷磺酸)、聚(丙烯醯胺-共-氣化二婦丙二甲銨)、聚(丙烯醯胺-共-(丙烯醯基胺基)氣 化丙基三甲銨)、聚(丙烯醯胺-共-(丙烯醯基)氣化乙基三 甲叙)及其混合物所組成之群。 15·如請求項13之混合物組合物,其中澱粉醚係選自羥基烷 基;殿粉(其中烷基具有1至4個碳原子)、羧甲基化澱粉醚及 其混合物所組成之群。 16·如請求項7之混合物組合物,其中混合物為MHPC及一種 101431.doc 200540139 選自丙烯醯胺之均或共聚物、澱粉醚及其混合物所組成 之群之添加劑。 17·如请求項16之混合物組合物,其中丙烯醯胺之共聚物係 選自聚(丙烯醯胺-共-丙烯酸鈉)、聚(丙烯醯胺-共-丙烯 酸)、聚(丙烯醯胺-共-丙烯醯胺基甲基丙烷磺酸鈉)、聚(丙 烯醯胺-共-丙烯醯胺基甲基丙烷磺酸)、聚(丙烯醯胺-共_ 氯化二稀丙二甲銨)、聚(丙烯醯胺-共-(丙烯醯基胺基)氯 化丙基三甲銨)、聚(丙烯醯胺-共-(丙烯醯基)氣化乙基三 曱銨)及其混合物所組成之群。 1 8·如请求項17之混合物組合物,其中澱粉醚係選自羥基烷 基澱粉(其中烷基具有1至4個碳原子)、羧甲基化澱粉醚及 其混合物所組成之群。 19· 一種乾底灰組合物,其包含至少水硬水泥、細集合材料 及至少一種由原棉短絨製備之纖維素醚之保水劑, 其中乾底灰組合物,當與充分量水混合時,產生可塗 覆在基材上之灰漿砂漿,其中灰漿砂漿内之保水劑之量 顯著減少,且與使用傳統類似纖維素醚濕灰漿砂漿之保 水率及稠化性及/或抗下垂性係可比較的或當使改良的。 20·如#求項19之乾底灰組合物,其中一種自原棉短絨製備 之纖維素醚係選自烷基羥基烷基纖維素、羥基烷基纖維 素及其混合物所組成之群。 21.如請求項20之乾底灰組合物,其中烷基羥基烷基纖維素 之烷基具有1至24個碳原子,而羥基烷基則具有2至4個碳 原子。 101431.doc 200540139 22.如請求項19之乾底灰組合物,其中至少一種纖維素喊係 選自甲基羥基乙基纖維素(MHEC)、甲基羥基丙基纖維素 (MHPC)、羥基乙基纖維素(HEC)、曱基乙基羥基乙基纖 維素(MEHEC)、乙基羥基乙基纖維素(EHEC)、疏水方式 改質的乙基羥基乙基纖維素(HMEHEC)、疏水方式改質的 羥基乙基纖維素(HMHEC)及其混合物所組成之群。 23·如請求項22之乾底灰組合物,其中纖維素醚塗覆時每無 水葡萄糖單元具有甲基或乙基取代度為0.5至2·5,經基乙 基或羥基丙基莫耳取代度(MS)為0.01至6,及疏水取代基 之莫耳取代度(MS)為0·01-0.5。 24.如請求項19之乾底灰組合物,其中乾底灰組合物亦包含 一或多種傳統纖維素醚,選自甲基纖維素(MC)、甲基經 基乙基纖維素(MHEC)、甲基羥基丙基纖維素(MHPC)、經 基乙基纖維素(HEC)、乙基羥基乙基纖維素(EHEC)、疏水 方式改質的羥基乙基纖維素(HMHEC)、疏水方式改質的 乙基羥基乙基纖維素(HMEHEC)、甲基乙基羥基乙基纖維 素(MEHEC)、石黃乙基曱基經基乙基纖維素(semhEC)、石黃 乙基曱基羥基丙基纖維素(SEMHPC)及磺乙基經基乙基 纖維素(SEHEC)所組成之群。 2 5 ·如明求項1 9之乾底灰組合物,其中纖維素喊之量為〇 〇 1 至2.0重量%。 26·如請求項19之乾底灰組合物與一或多種添加劑之結合, 添加劑選自有機或無機稠化劑、抗下垂劑、空氣夾帶劑、 濕潤劑、除沫劑、超塑化劑、分散劑、鈣複合劑、阻滯 101431.doc 200540139 可再分散粉末、生物聚合物及纖 劑、加速劑、排水劑 維所組成之群。 27. 如請求項26之乾底灰組合物’其中一或多種添加劑為選 自多糖所組成之群之有機稠化劑。 28. 如請求項27之乾底灰組合物,其中多糖係選自殿粉喊、 澱粉、瓜爾膠、瓜爾膠衍生物、糊精、殼多糖、殼聚糖、 聚木糖、黃原膠、汶萊膠、膠凝膠、甘露聚糖、半乳聚 糖葡聚糖、阿拉伯木聚糖、海藻酸鹽及纖維素纖維所 組成之群。 29·如明求項26之乾底灰組合物,其中一或多種添加劑係選 自丙稀醯胺之均或共聚物、澱粉醚A明膠、聚乙二醇、赂 素、項酸木質素、磺酸萘、磺化蜜胺-曱醛縮合物、績化 秦-曱·、々s合物、聚丙烯酸酯、聚羧酸化鱗、聚苯乙稀績 酸酯、果酸、磷酸酯、膦酸酯、具有1至4個碳原子之有 機酸之鈣鹽、鏈烷酸鹽、硫酸鋁、金屬鋁、皂土、蒙脫 石、海泡石、聚醯胺纖維、聚丙烯纖維、聚乙稀醇、及 以醋酸乙烯酯為主之均、共或三聚物、順丁烯二酸醋、 乙烯、苯乙烯、丁二烯、柯赫酸乙烯酯及丙烯酸單體所 組成之群。 30.如請求項26之乾底灰組合物,其中一或多種添加劑之量 為0 · 0 0 01與1 〇重量。/。之間。 31·如請求項19之乾底灰組合物,其中細集合材料係選自矽 砂、白雲母、石灰石、輕量集合體、橡膠碎硝及煤灰所 組成之群。 101431.doc 200540139 32.如請求項3 1之乾底灰組合物’其中輕量集合體係選自珍 珠石、發泡聚苯乙烯、中空破璃球、軟木塞及膨脹蛭石 ^ 所組成之群。 、33·如請求項19之乾底灰組合物,其中細集合材料呈現之量 為40-90重量%。 3 4 ·如睛求項19之乾底灰組合物,其中細集合材料呈現之量 為60-85重量%。 35. 如請求項19之乾底灰組合物,其中水硬水泥係選自波特 _ 蘭水泥、礦產矽酸鹽水泥、波特蘭-微石夕粉水泥 (Portland-silica fume cement)、火山灰矽酸鹽水泥、波特 蘭-燒頁岩水泥、波特蘭-石灰石水泥、波特蘭-複合水泥、 礦渣水泥、火山灰水泥、複合水泥及鋁酸鈣水泥所組成 之群。 36. 如請求項19之乾底灰組合物,其中水硬水泥呈現之量為 5-60重量%。 _ 37·如請求項19之乾底灰組合物,其中水硬水泥呈現之量為 10-50重量 %。 3 8·如請求項19之乾底灰組合物,其係與至少一種無機黏合 劑結合,無機黏合劑選自水合石灰、石膏、火山灰、高 爐礦渣、及水硬石灰所組成之群。 _ 3 9.如請求項38之乾底灰組合物,其中至少一種無機黏合劑 呈現之Έ為0.1-30重量%。 A 40·如請求項22之乾底灰組合物,其中MHEC或MHPC具有布 魯克菲爾德水溶液黏度為大於80,000 mPas,如在布魯克 101431.doc 200540139 非爾德RVT黏度计上在2重5%,20C及20 rpm下使用車由 數7所測定。 41·如請求項22之乾底灰組合物,其中MHEC或MHPC具有布 魯克菲爾德水溶液黏度為大於90,000 mPas,如在布魯克 菲爾德RV T黏度什上在2重量%,20°C及20 rpm下使用轴 數7所測定。 42·如請求項19之乾底灰組合物,其中用於乾底灰組合物之 纖維素醚之顯著降低量為至少5%降低。 43 ·如請求項1 9之乾底灰組合物,其中用於乾底灰組合物之 纖維素醚之顯著降低量為至少1 〇%降低。200540139 10. Scope of patent application: 1. A mixture composition for a bottomer (reuder) composition, comprising (a) a cellulose ether prepared from raw cotton linters, the amount of which is "to. $. A group consisting of self-fired hydroxy-based cellulose, hydroxy fire-based cellulose and mixtures thereof, and (b) at least one additive in an amount of 0.1 to 80% by weight, selected from organic or inorganic thickeners Chemical agents, anti-sagging agents, air entraining agents, wetting agents, defoaming agents, superplasticizers, powders, blending agents, retarders, accelerators, drainage agents, redispersible powders, biopolymers and A group of fibers, wherein when the mixture is used in a dry bottom ash formulation and mixed with a sufficient amount of water, the formulation will produce a mortar mortar that can be applied to the substrate, where the amount of the mixture in the mortar mortar will be significantly reduced And the water retention and thickening and / or sag resistance of traditional cellulose ether wet mortar mortars are comparable or improved. 2. The mixture composition according to claim 1, wherein the alkylhydroxyalkyl group Cellulose alkyl groups have 1 to 24 Atom, while hydroxyalkyl has 2 to 4 carbon atoms. 3 · The mixture composition as claimed in claim 1, wherein the cellulose ether is selected from methyl hydroxyethyl cellulose (MHEC), methyl hydroxypropyl fiber (MHPC), hydroxyethyl cellulose (HEC), ethyl hydroxyethyl cellulose (eheC), methyl ethyl hydroxyethyl cellulose (MEHEC), hydrophobically modified ethyl hydroxyethyl fibers (HMEHEC), hydrophobically modified hydroxyethyl cellulose (HMHEC), and mixtures thereof. 4. The mixture composition of claim 1, wherein the mixture also contains one or more of 101431.doc 200540139 traditional fibers Element is selected from the group consisting of methyl cellulose (MC), methyl ethyl cellulose (MHEC), methyl ethyl cellulose (MHPC), ethyl ethyl cellulose (HEC), ethyl hydroxyethyl Cellulose (EHEC), Hydrophobic Modified Ethyl Cellulose (HMHE), Hydrophobic Modified Ethyl Light Ethyl Cellulose (HMEHEC), Methyl Ethyl Hydroxyethyl Cellulose (MEHEC) , Sulfoethylmethylhydroxyethylcellulose (SEMHEC), ruthenium ethylmethylhydroxypropyl A group consisting of cellulose (SEMHPC) and sulfoethylhydroxyethyl cellulose (SEHEC). 5 · The mixture composition according to claim 1, wherein the amount of the cellulose ether is 70 to 99% by weight. The mixture composition of claim 1, wherein the amount of the additive is 0.5 to 30% by weight. 7. The mixture composition of claim 1, wherein at least one of the additives is an organic thickener selected from the group consisting of polysaccharides. 8 · The mixture composition according to claim 7, wherein the polysaccharide is selected from the group consisting of starch ether, starch, guar gum, guar derivatives, dextrin, chitin, chitosan, polyxylose, xanthan gum, and Brunei ( welan gum), gelatin gel, mannan, galactan, dextran, arabinoxylan, alginate and cellulose fiber. 9. The mixture composition according to claim 1, wherein at least one additive is selected from the group consisting of homo- or copolymers of acrylamide, gelatin, polyethylene glycol, casein, sulfonic lignin, naphthyl naphthalene, and petrified Condensate of melamine-formic acid, naphthalene-methyl naphthalene, polycondensate, polyacrylic acid ether, polystyrene luteolate, structurate, phosphonate with 1 to 4 carbon atoms Organic acid mother salt, chain burned 101431.doc 200540139 acid salt, sulfuric acid salt, metal shaw, poly clay, montmorillonite, sepiolite, polyamide fiber, polypropylene fiber, polyvinyl alcohol, and vinyl acetate vinegar It is mainly composed of homogeneous, co- or terpolymer, maleic acid ester, ethylene, styrene, butadiene, vinyl kochate, and acrylic monomer. 10. The mixture composition according to claim 1, wherein at least one additive is selected from the group consisting of a chimera, an acid, and a surfactant. 11-The mixture composition of claim 1, wherein the significantly reduced amount of the mixture for the mortar is reduced by at least 5%. 12. The mixture composition according to item a of month a, wherein the significantly reduced amount of the mixture for the mortar mortar is reduced by at least 10%. 13. The mixture composition according to claim 7, wherein the mixture composition is mhec and an additive selected from the group consisting of homo- or copolymers of acrylamide, starch ethers, and mixtures thereof. 14. The mixture composition according to claim 13, wherein the copolymer of acrylamide is selected from the group consisting of poly (acrylamide_co_sodium acrylate), poly (acrylamide-co-acrylic acid), and poly (acrylamide- Co-acrylamido-sodium methylpropane sulfonate), poly (acrylamido-co-acrylamido-methyl propane sulfonic acid), poly (acrylamido-co-gasified dimethylglycine ), Poly (acrylamide-co- (acrylfluorenylamino) vaporized propyltrimethylammonium), poly (acrylamide-co- (acrylfluorenyl) vaporized ethyltrimethylsuccinate), and mixtures thereof Group. 15. The mixture composition according to claim 13, wherein the starch ether is selected from the group consisting of a hydroxyalkyl group; a powder (wherein the alkyl group has 1 to 4 carbon atoms), a carboxymethylated starch ether, and a mixture thereof. 16. The mixture composition according to claim 7, wherein the mixture is MHPC and an additive selected from the group consisting of homopolymers of acrylamide, starch ethers, and mixtures thereof. 17. The mixture composition according to claim 16, wherein the copolymer of acrylamide is selected from the group consisting of poly (acrylamide-co-acrylic acid), poly (acrylamide-co-acrylic acid), and poly (acrylamide- Co-acrylamidosodium methylpropane sulfonate), poly (acrylamido-co-acrylamidomethylpropanesulfonic acid), poly (acrylamido-co-di-dimethymethylene chloride) , Poly (acrylamide-co- (acrylfluorenylamino) propyltrimethylammonium chloride), poly (acrylamide-co- (acrylfluorenyl) gasified ethyltriammonium) and mixtures thereof Group. 18. The mixture composition according to claim 17, wherein the starch ether is selected from the group consisting of hydroxyalkyl starch (wherein the alkyl group has 1 to 4 carbon atoms), carboxymethylated starch ether, and mixtures thereof. 19. A dry bottom ash composition comprising at least a hydraulic cement, a fine aggregate material and at least one cellulose ether water retaining agent prepared from raw cotton linters, wherein the dry bottom ash composition, when mixed with a sufficient amount of water, Produces a mortar mortar that can be coated on a substrate, where the amount of water-retaining agent in the mortar mortar is significantly reduced, and its water retention and thickening and / or sag resistance are comparable to traditional cellulose ether wet mortar mortars. Comparative or improved. 20. The dry bottom ash composition according to # 17, wherein a cellulose ether prepared from raw cotton linters is selected from the group consisting of alkyl hydroxyalkyl cellulose, hydroxyalkyl cellulose and mixtures thereof. 21. The dry bottom ash composition according to claim 20, wherein the alkyl group of the alkylhydroxyalkylcellulose has 1 to 24 carbon atoms, and the hydroxyalkyl group has 2 to 4 carbon atoms. 101431.doc 200540139 22. The dry bottom ash composition according to claim 19, wherein at least one cellulose is selected from methyl hydroxyethyl cellulose (MHEC), methyl hydroxypropyl cellulose (MHPC), hydroxyethyl Cellulose (HEC), methyl ethyl hydroxyethyl cellulose (MEHEC), ethyl hydroxyethyl cellulose (EHEC), hydrophobically modified ethyl hydroxyethyl cellulose (HMEHEC), hydrophobically modified Group of high-quality hydroxyethyl cellulose (HMHEC) and mixtures thereof. 23. The dry bottom ash composition as claimed in claim 22, wherein the cellulose ether has a methyl or ethyl substitution degree of 0.5 to 2.5 when each anhydrous glucose unit is coated with a methyl ethyl or hydroxypropyl moire substitution The degree (MS) is 0.01 to 6, and the molar substitution degree (MS) of the hydrophobic substituent is 0.01 to 0.5. 24. The dry bottom ash composition of claim 19, wherein the dry bottom ash composition also comprises one or more traditional cellulose ethers selected from the group consisting of methyl cellulose (MC), methyl ethyl cellulose (MHEC) , Methyl hydroxypropyl cellulose (MHPC), hydroxyethyl cellulose (HEC), ethyl hydroxyethyl cellulose (EHEC), hydrophobically modified hydroxyethyl cellulose (HMHEC), hydrophobically modified High-quality ethyl hydroxyethyl cellulose (HMEHEC), methyl ethyl hydroxyethyl cellulose (MEHEC), ruthenium ethyl ethyl cellulose (semhEC), rutheno ethyl hydroxypropyl cellulose ( SEMHPC) and sulfoethyl via ethyl ethyl cellulose (SEHEC). 25. The dry bottom ash composition as specified in item 19, wherein the amount of cellulose is 0.001 to 2.0% by weight. 26. The combination of the dry bottom ash composition of claim 19 and one or more additives selected from organic or inorganic thickeners, anti-sagging agents, air entrainers, wetting agents, defoaming agents, superplasticizers, Dispersant, calcium compound, block 101431.doc 200540139 Redispersible powder, biopolymer and fiber agent, accelerator, drainage agent group. 27. The dry bottom ash composition 'of claim 26, wherein one or more of the additives are organic thickeners selected from the group consisting of polysaccharides. 28. The dry bottom ash composition according to claim 27, wherein the polysaccharide is selected from the group consisting of Dianfanhao, starch, guar, guar derivatives, dextrin, chitin, chitosan, polyxylose, xanthan Gum, Brunei gum, gum gel, mannan, galactodextran, arabinoxylan, alginate and cellulose fiber. 29. The dry bottom ash composition according to item 26, wherein one or more additives are selected from the group consisting of homo-or copolymers of propylamine, starch ether A gelatin, polyethylene glycol, brienin, naphthoic lignin, Sulfonated naphthalene, sulfonated melamine-fluorenal condensate, hydrazine-sulfonate, hydrazone compound, polyacrylate, polycarboxylic acid scale, polyphenylene phthalate, fruit acid, phosphate, phosphine Acid esters, calcium salts of organic acids with 1 to 4 carbon atoms, alkanoates, aluminum sulfate, aluminum metal, bentonite, montmorillonite, sepiolite, polyamide fibers, polypropylene fibers, polyethylene A group of dilute alcohols, homopolymers, co- or terpolymers mainly composed of vinyl acetate, maleic acid vinegar, ethylene, styrene, butadiene, vinyl kochate, and acrylic monomers. 30. The dry bottom ash composition of claim 26, wherein the amount of the one or more additives is 0. 0 01 and 10 weight. /. between. 31. The dry bottom ash composition according to claim 19, wherein the fine aggregate material is selected from the group consisting of silica sand, muscovite, limestone, lightweight aggregate, rubber crushed nitrate, and coal ash. 101431.doc 200540139 32. The dry bottom ash composition according to claim 31, wherein the lightweight aggregate system is selected from the group consisting of perlite, expanded polystyrene, hollow glass balls, corks and expanded vermiculite ^ . 33. The dry bottom ash composition according to claim 19, wherein the fine aggregate material is present in an amount of 40 to 90% by weight. 34. The dry bottom ash composition as described in item 19, wherein the fine aggregate material is present in an amount of 60 to 85% by weight. 35. The dry bottom ash composition according to claim 19, wherein the hydraulic cement is selected from Portland cement, mineral Portland cement, Portland-silica fume cement, pozzolan Portland cement, Portland-burned shale cement, Portland-limestone cement, Portland-composite cement, slag cement, pozzolan cement, composite cement and calcium aluminate cement. 36. The dry bottom ash composition of claim 19, wherein the hydraulic cement is present in an amount of 5-60% by weight. 37. The dry bottom ash composition according to claim 19, wherein the hydraulic cement is present in an amount of 10-50% by weight. 38. The dry bottom ash composition according to claim 19, which is combined with at least one inorganic binder selected from the group consisting of hydrated lime, gypsum, pozzolan, blast furnace slag, and hydraulic lime. 3. The dry bottom ash composition according to claim 38, wherein at least one of the inorganic binders exhibits a rhenium content of 0.1 to 30% by weight. A 40. The dry bottom ash composition according to claim 22, in which MHEC or MHPC has a Brookfield aqueous solution viscosity of greater than 80,000 mPas, such as at 25% by weight on a Bruker 101431.doc 200540139 Feld RVT viscometer, 20C and Measured at number 7 using a car at 20 rpm. 41. The dry bottom ash composition according to claim 22, wherein MHEC or MHPC has a Brookfield aqueous solution viscosity of greater than 90,000 mPas, such as using a shaft at Brookfield RV T viscosity at 2% by weight, 20 ° C and 20 rpm Measured by number 7. 42. The dry bottom ash composition according to claim 19, wherein the cellulose ether used in the dry bottom ash composition has a significant reduction of at least 5%. 43. The dry bottom ash composition according to claim 19, wherein the cellulose ether used in the dry bottom ash composition has a significant reduction of at least 10%. 101431.doc101431.doc
TW94113528A 2004-04-27 2005-04-27 Cement-based plasters using water retention agents prepared from raw cotton linters TW200540139A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US56564304P 2004-04-27 2004-04-27

Publications (1)

Publication Number Publication Date
TW200540139A true TW200540139A (en) 2005-12-16

Family

ID=37480462

Family Applications (6)

Application Number Title Priority Date Filing Date
TW094113524A TW200600484A (en) 2004-04-27 2005-04-27 Tile cement mortars using water retention agents
TW94113528A TW200540139A (en) 2004-04-27 2005-04-27 Cement-based plasters using water retention agents prepared from raw cotton linters
TW094120341A TW200700345A (en) 2004-04-27 2005-06-17 Cement-based systems using water retention agents prepared from raw cotton linters
TW094120340A TW200700347A (en) 2004-04-27 2005-06-17 Joint compounds using thickeners prepared from raw cotton linters
TW094120339A TW200700344A (en) 2004-04-27 2005-06-17 Gypsum-based mortars using water retention agents prepared from raw cotton linters
TW094120338A TW200700346A (en) 2004-04-27 2005-06-17 Cement-based systems using plastification/extrusion auxiliaries prepared from raw cotton linters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW094113524A TW200600484A (en) 2004-04-27 2005-04-27 Tile cement mortars using water retention agents

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW094120341A TW200700345A (en) 2004-04-27 2005-06-17 Cement-based systems using water retention agents prepared from raw cotton linters
TW094120340A TW200700347A (en) 2004-04-27 2005-06-17 Joint compounds using thickeners prepared from raw cotton linters
TW094120339A TW200700344A (en) 2004-04-27 2005-06-17 Gypsum-based mortars using water retention agents prepared from raw cotton linters
TW094120338A TW200700346A (en) 2004-04-27 2005-06-17 Cement-based systems using plastification/extrusion auxiliaries prepared from raw cotton linters

Country Status (2)

Country Link
RU (3) RU2006141688A (en)
TW (6) TW200600484A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400211B (en) * 2008-12-29 2013-07-01 Wu Tian Wang Environmentally friendly multi - effect powder composition and its manufacturing method
CN102002273B (en) * 2010-12-10 2012-10-17 现代精密化工(郑州)有限公司 Alcohol-substituting glue
RU2460710C1 (en) * 2011-01-20 2012-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) Plaster dry construction mixture to finish building facades
RU2527436C2 (en) * 2011-04-07 2014-08-27 Открытое акционерное общество "Полипласт" (ОАО "Полипласт") Complex additive for cement systems (versions)
RU2470902C1 (en) * 2011-04-14 2012-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) Plaster mineral mixture for finishing building faces
BR112014007230A2 (en) * 2011-09-29 2017-04-04 Dow Global Technologies Llc aqueous cementation composition and method for cementing a well drilling pipe
RU2486150C1 (en) * 2012-01-18 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Fibre-reinforced cement mixture
RU2520122C1 (en) * 2012-12-05 2014-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный строительный университет" (МГСУ) Dry building mixture
RU2543233C2 (en) * 2013-04-30 2015-02-27 Открытое акционерное общество "Полипласт" (ОАО "Полипласт") Method to produce complex additive for air placed concrete (versions)
RU2537739C1 (en) * 2013-12-12 2015-01-10 Юлия Алексеевна Щепочкина Crude mixture for making wall blocks
RU2620666C2 (en) * 2015-07-20 2017-05-29 Василий Иванович Белан Mortar

Also Published As

Publication number Publication date
TW200600484A (en) 2006-01-01
TW200700345A (en) 2007-01-01
RU2006141688A (en) 2008-06-10
TW200700344A (en) 2007-01-01
RU2006141699A (en) 2008-06-10
TW200700346A (en) 2007-01-01
RU2006141694A (en) 2008-06-10
TW200700347A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
US20050241540A1 (en) Cement-based plasters using water retention agents prepared from raw cotton linters
TW200540139A (en) Cement-based plasters using water retention agents prepared from raw cotton linters
US20050241539A1 (en) Tile cement mortars using water retention agents
US20050241542A1 (en) Cement-based systems using water retention agents prepared from raw cotton linters
US20050241543A1 (en) Cement-based systems using plastification/extrusion auxiliaries prepared from raw cotton linters
JP2007534606A (en) Gypsum-based mortar with moisture retention agent made from raw cotton linter
JP2007534606A5 (en)
JP2007534608A5 (en)
US9505658B2 (en) Method for providing modified cement compositions, dry mortars and cement-free mixtures
JP2007534605A5 (en)
JP2007534607A5 (en)
AU2805001A (en) Building material compositions
JP2015536902A (en) Additives for water curable mixtures
CN103635441A (en) Hydraulic setting adhesive with improved open time