TW200536159A - Group III nitride semiconductor light-emitting device and producing method thereof - Google Patents
Group III nitride semiconductor light-emitting device and producing method thereof Download PDFInfo
- Publication number
- TW200536159A TW200536159A TW94108128A TW94108128A TW200536159A TW 200536159 A TW200536159 A TW 200536159A TW 94108128 A TW94108128 A TW 94108128A TW 94108128 A TW94108128 A TW 94108128A TW 200536159 A TW200536159 A TW 200536159A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- nitride semiconductor
- stacked structure
- layer
- emitting device
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
200536159 、 九、發明說明: 【發明所屬之技術領域】 本發明係有關具堆疊結構的m族氮化物半導體發光裝 置及其製法,其中該堆疊結構包含具不同導電類型的二個]π 族氮化物半導體層及堆疊於該二個m族氮化物半導體層間 並含有in族氮化物半導體的發光層。 【先前技術】 諸如發出短波藍或綠光之發光二極體(LED )及雷射二 ® 極體(LD )的m族氮化物半導體發光裝置係使用諸如氮化鎵 銦(GaYInzN : OS Y,ZS ;l,Υ + Ζ=1 )作爲發光層(諸如 JP-B SHO 5 5 -3 8 3 4 )。發光部位包含發光層及二個覆層,該覆層 由具不同導電性並沈積於發光層二側的Π族氮化物半導體 所形成。用於形成該雙異質(D Η )結構之發光部位的覆層 係由諸如氮化鋁鎵(AlxGaYN : 0 S X,Y S 1,X + Y=1 )製 成。 . 在用於形成pn接面型DH結構之ΙΠ族氮化物半導體發 ^ 光裝置的堆疊結構中(其具有發光層位於η型覆層與p型覆 層間之DH結構的發光部位),基板主要由藍寶石(α-Α1203 單晶)或碳化矽(SiC )單晶所形成。此因該材料具有得使 來自透光層的光穿透的透光性,並具有可耐m族氮化物半導 體層高溫晶體成長的耐熱性。在習用m族氮化物半導體發光 裝置的狀況中,所形成之用於形成發光裝置堆疊結構的基板 係使得其縱使在裝置形成步驟後仍爲用於機械支撐堆疊結 構的板材本體。 200536159 *ι 、 雖然得使藍寶石晶體或碳化矽晶體基板保持原狀的m 族氮化物半導體發% _置適用於維持堆疊結構的機彳戒支撐 力,但是其具有短波長紫外射線之光吸收感應所造成之發光 效率降低的缺點。 本發明已鑑於前揭狀況而完成,且本發明的目的在於提 供一種瓜族氮化物半導體發光裝置’其具有機械支撐類似基 板之物件的功能、可降低短波長紫外光射線吸收並可提高發 光效率。本發明的目的亦爲提供m族氮化物半導體發光裝置 • 的製法並提供led燈。 【發明內容】 發明之揭示 爲達成前揭目的,本發明提供一種m族氮化物半導體發 光裝置,其包含有:至少一個堆疊結構,其具有不同導電型 的二個m族氮化物半導體層,與堆疊於二個in族氮化物半導 體層間並含有m族氮化物半導體的發光層;結晶基板,用於 設置堆疊結構於其上,並由堆疊結構移除;以及板材本體, ® 其由來自發光層的光可穿透的透明材料所形成,並形成於結 晶基板移除後所暴露出的堆疊結構表面上,其中來自發光層 的光係由板材本體透出。 在m族氮化物半導體發光裝置中,板材本體由玻璃形 成。 在第一或第二個前揭m族氮化物半導體發光裝置中,結 晶基板係藉由照射於堆疊結構與結晶基板間之接面的雷射 束而進行移除。 200536159 、 第一至第三個前揭I[族氮化物半導體發光裝置中的任 一個更包含設於板材本體正對側之堆疊結構表面上的歐姆 電極。 在第四個前揭m族氮化物半導體發光裝置中,歐姆電極 的正面設有金屬反射膜。 在第五個前揭m族氮化物半導體發光裝置中,金屬反射 膜的正面設有金膜。 本發明亦提供一種m族氮化物半導體發光裝置的製 ® 法,包含的步驟有:提供堆疊結構於結晶基板上,該堆疊結 構具有不同導電型的二個瓜族氮化物半導體層,與堆疊於二 個m族氮化物半導體層間並含有m族氮化物半導體的發光 層;由堆疊結構移除結晶基板’以暴露出堆疊結構表面;形 成板材本體於堆疊結構的暴露表面上,該板材本體由來自發 光層的光可穿透的透明材料所形成;以及將來自發光層的光 由板材本體透出。 本發明亦提供設有第一至第六個前揭m族氮化物半導 ® 體發光裝置中之任一個的LED燈。 該燈具有主要由砂形成的次載具,m族氮化物半導體發 光裝置係以覆晶方式安裝於其上。 根據本發明,在用於提供堆®結構的結晶基板移除後, 於暴露的堆疊結構表面上形成由可爲射自發光層之光所穿 透的材料製成的板材本體。因此,板材本體可機械支撐堆疊 結構,降低短波長紫外射線的光吸收並提高發光效率。 因爲得以選擇膨脹係數同堆疊結構的材料作爲板材本: 200536159 、 體’所以縱使長時間流通電流,堆疊結構中也不會有由熱應 力造成的裂痕’因而提高裝置可靠度。 僅藉由安裝發光裝置於次載具上便可獲得LED燈,因 而可輕易製造LED燈。 【實施方式】 執行本發明的最佳模式 現將δ羊細δ兌明本發明的實施例。 本發明的m族氮化物半導體發光裝置包含有用於發光 # 裝置中之位於結晶基板上的堆疊結構,該堆疊結構具有:(a ) 第一導電型的第一 EI族氮化物半導體層,(b)第二導電型 的第二ΙΠ族氮化物半導體層,以及(c )由瓜族氮化物半導 體形成並夾合於第一與第二m族氮化物半導體間的發光 層。第一與第二m族氮化物半導體層具有作爲覆層或接觸層 的功能。 用於形成堆疊結構於其上之結晶基板的材料實例爲諸 如藍寶石與氧化鋰鎵(Li Ga02)之單晶氧化物,及諸如3C晶200536159 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a m-group nitride semiconductor light-emitting device having a stacked structure and a method for manufacturing the same, wherein the stacked structure includes two] π group nitrides having different conductivity types. A semiconductor layer and a light emitting layer stacked between the two m-group nitride semiconductor layers and containing an in-group nitride semiconductor. [Prior art] Group m nitride semiconductor light-emitting devices, such as light emitting diodes (LEDs) and laser diodes (LDs), which emit short-wave blue or green light, use indium gallium nitride (GaYInzN: OS Y, ZS; l, Υ + Z = 1) as the light emitting layer (such as JP-B SHO 5 5 -3 8 3 4). The light emitting portion includes a light emitting layer and two cladding layers, and the cladding layer is formed of a group III nitride semiconductor having different conductivity and deposited on two sides of the light emitting layer. The cladding layer for forming the light emitting portion of the double hetero (DΗ) structure is made of, for example, aluminum gallium nitride (AlxGaYN: 0 S X, Y S 1, X + Y = 1). In a stacked structure of a group III nitride semiconductor light emitting device for forming a pn junction type DH structure (which has a light emitting portion of a DH structure with a light emitting layer located between an n-type cladding layer and a p-type cladding layer), the substrate is mainly It is formed of sapphire (α-Α1203 single crystal) or silicon carbide (SiC) single crystal. This is because the material has a light-transmitting property that allows light from the light-transmitting layer to pass through, and a heat resistance that can withstand high-temperature crystal growth of the m-type nitride semiconductor layer. In the case of the conventional m-type nitride semiconductor light-emitting device, the substrate system formed to form the light-emitting device stack structure is such that it is a plate body for mechanically supporting the stacked structure even after the device forming step. 200536159 * ι. Although it is necessary to keep the sapphire crystal or silicon carbide crystal substrate intact, the m-group nitride semiconductors are suitable for maintaining the structure and supporting force of the stacked structure, but it has a short-wavelength ultraviolet ray light absorption sensor. The disadvantage that the luminous efficiency is reduced. The present invention has been completed in view of the previous disclosure, and the object of the present invention is to provide a melon nitride semiconductor light-emitting device 'which has the function of mechanically supporting an object similar to a substrate, can reduce the absorption of short-wavelength ultraviolet light rays, and can improve light-emitting efficiency . The object of the present invention is also to provide a method for manufacturing a group m nitride semiconductor light-emitting device and to provide a LED lamp. [Disclosure of the Invention] In order to achieve the purpose of the previous disclosure, the present invention provides an m-group nitride semiconductor light-emitting device, which includes: at least one stacked structure having two m-group nitride semiconductor layers of different conductivity types, and A light-emitting layer stacked between two in-group nitride semiconductor layers and containing an m-group nitride semiconductor; a crystalline substrate for setting a stack structure thereon and removed from the stack structure; and a plate body, which is made of a light-emitting layer The light-transmissive transparent material is formed on the surface of the stacked structure exposed after the crystalline substrate is removed. The light from the light-emitting layer is transmitted through the plate body. In the m-nitride semiconductor light-emitting device, the plate body is formed of glass. In the first or second front-exposed m-type nitride semiconductor light-emitting device, the crystalline substrate is removed by a laser beam irradiating an interface between the stacked structure and the crystalline substrate. 200536159, any one of the first to third pre-existing I [group nitride semiconductor light-emitting devices further includes an ohmic electrode provided on the surface of the stacked structure on the opposite side of the plate body. In the fourth front-exposed m-type nitride semiconductor light-emitting device, a metal reflective film is provided on the front surface of the ohmic electrode. In the fifth front-exposed m-type nitride semiconductor light-emitting device, a gold film is provided on the front surface of the metal reflection film. The present invention also provides a method for manufacturing a m-type nitride semiconductor light-emitting device. The method includes the steps of: providing a stacked structure on a crystalline substrate, the stacked structure having two cucurbit nitride semiconductor layers of different conductivity types, and A light emitting layer containing two m-group nitride semiconductor layers between the m-group nitride semiconductor layers; removing the crystalline substrate 'from the stacked structure to expose the surface of the stacked structure; forming a plate body on the exposed surface of the stacked structure, the plate body consisting of The light-emitting layer is formed of a transparent material that can transmit light; and the light from the light-emitting layer is transmitted out of the plate body. The present invention also provides an LED lamp provided with any one of the first to sixth front-exposed m-type nitride semiconductor semiconductor light-emitting devices. This lamp has a sub-carrier mainly composed of sand, and an m-group nitride semiconductor light-emitting device is mounted thereon in a flip-chip manner. According to the present invention, after the crystalline substrate for providing the stack® structure is removed, a plate body made of a material that can be penetrated by light emitted from the light emitting layer is formed on the exposed surface of the stacked structure. Therefore, the plate body can mechanically support the stacked structure, reduce the light absorption of short-wavelength ultraviolet rays and improve the luminous efficiency. Because the material with the same expansion coefficient as the stack structure can be selected as the sheet material: 200536159, the body ', even if a current flows for a long time, there will be no cracks caused by thermal stress in the stack structure, thereby improving the reliability of the device. The LED light can be obtained simply by mounting the light emitting device on the sub-vehicle, so that the LED light can be easily manufactured. [Embodiment] The best mode for carrying out the present invention The δ sheep fine δ will be explained in the embodiment of the present invention. The m-group nitride semiconductor light-emitting device of the present invention includes a stacked structure for emitting light on a crystalline substrate in the device, the stacked structure having: (a) a first EI-nitride semiconductor layer of a first conductivity type, (b ) A second group III nitride semiconductor layer of the second conductivity type, and (c) a light emitting layer formed of a melon nitride semiconductor and sandwiched between the first and second m nitride semiconductors. The first and second m-group nitride semiconductor layers have a function as a cladding layer or a contact layer. Examples of the material used to form the crystalline substrate on which the stacked structure is formed are single crystal oxides such as sapphire and lithium gallium oxide (Li Ga02), and crystals such as 3C
# 型立方單晶碳化矽(3C-SiC ) 、4H或6H晶型六方單晶SiC (4H-SiC,6H-SiC )、矽單晶、磷化鎵(GaP)、砷化鎵(GaAs) 之m族氮化物半導體單晶。# Cubic cubic single crystal silicon carbide (3C-SiC), 4H or 6H crystalline hexagonal single crystal SiC (4H-SiC, 6H-SiC), silicon single crystal, gallium phosphide (GaP), gallium arsenide (GaAs) A m-group nitride semiconductor single crystal.
當形成堆疊結構的第一 m族氮化物半導體層設於晶格 匹配不佳的結晶基板上時,可設置用於降低晶格失配的緩衝 層。當諸如GaN系第一 m族氮化物半導體層得以成長在藍寶 石基板上時,例如第一 m族氮化物半導體層係經由藉播種製 程(SP )技術所設的GaN緩衝層而堆疊於基板表面上(JP-A 200536159 " 2 0 0 3 - 2 4 3 3 0 2 )。縱使低溫緩衝層由a 1N而非G a N製 對於降低與基板的晶格失配亦爲有效的。當緩衝層 時,低溫緩衝層的厚度爲1 η m或以上且1 〇 〇 n m或以-或以上且50nm或以下爲較佳,且2nm或以上且5nm 爲更佳。 低溫緩衝層表面最好爲平坦而非不均勻。例如 做評估,表面粗糙度在0 · 1微米或以下爲適當的,〇. 或以下爲較佳。藉由在諸如3 5 0 - 4 5 0 °C低溫成長時, • 基板界面提供單晶層,便可獲得具微小表面粗糙度的 衝層。使用諸如原子力顯微鏡(A F Μ )之量測裝置便 表面粗糙度。具微小粗糙度平面的低溫緩衝層係有助 具極佳表面平坦度的上層。例如,具光滑與平坦表面 均部位的基層可成長於具微小粗糙度之GaN低溫緩 面上。 具平坦表面的基層(諸如設於緩衝層上的GaN層 於提供具平坦表面之第一或第二種導電型的m族氮 ® 導體層。倘若第一瓜族氮化物半導體層爲η型層,則 族氮化物半導體層爲相反導電型的ρ型層。在GaN層 中,有助於提供具平坦表面之第一或第二種導電型的 化物半導體層之基層的厚度爲0.5微米或以上且5微 下,最好爲1微米或以上且3微米或以下。具平坦表 一或第二m族氮化物半導體層可作爲η型或ρ型覆層 用於堆疊由極平且極薄井層所形成的量子井結構。此 可爲適用於形成具極佳黏著性之輸入與輸出電極的rWhen the first m-type nitride semiconductor layer forming the stacked structure is provided on a crystalline substrate with poor lattice matching, a buffer layer for reducing lattice mismatch may be provided. When a GaN-based first group m nitride semiconductor layer is grown on a sapphire substrate, for example, the first group m nitride semiconductor layer is stacked on the surface of the substrate through a GaN buffer layer provided by a seeding process (SP) technology. (JP-A 200536159 " 2 0 0 3-2 4 3 3 0 2). Even if the low-temperature buffer layer is made of a 1N instead of G a N, it is also effective to reduce the lattice mismatch with the substrate. When the buffer layer is used, the thickness of the low-temperature buffer layer is preferably 1 ηm or more and 100 nm or more-or more and 50 nm or less is more preferable, and 2 nm or more and 5 nm is more preferable. The surface of the low-temperature buffer layer is preferably flat rather than uneven. For example, for evaluation, a surface roughness of 0.1 μm or less is appropriate, and 0.1 or less is more preferable. By growing at a low temperature such as 350-450 ° C, a single crystal layer is provided at the substrate interface to obtain a stamped layer with minute surface roughness. The surface roughness is measured using a measuring device such as an atomic force microscope (AFM). A low-temperature buffer layer with a micro-roughness plane is an upper layer that contributes to excellent surface flatness. For example, a base layer having both smooth and flat surfaces can be grown on a GaN low-temperature retardation surface with minute roughness. A base layer with a flat surface, such as a GaN layer provided on a buffer layer, to provide a m-type nitrogen® conductor layer of the first or second conductivity type with a flat surface. Provided that the first melon nitride semiconductor layer is an n-type layer , The group nitride semiconductor layer is a p-type layer of the opposite conductivity type. In the GaN layer, the thickness of the base layer of the first or second conductivity type compound semiconductor layer having a flat surface is 0.5 μm or more And 5 micrometers, preferably 1 micrometer or more and 3 micrometers or less. A flat nitride semiconductor layer of the first or second m group can be used as an n-type or p-type cladding layer for stacking from extremely flat and extremely thin well layers. The formed quantum well structure. This can be used for the formation of r and r electrodes with excellent adhesion.
:成時, 爲 A1N F ’ 2nm 或以下 ,以 Ra 〇5微米 於結晶 低溫緩 可獲得 於堆疊 且無不 衝層表 ί )有助 化物半 第二皿 的狀況 m族氮 米或以 面之第 『,並適 ,外,其 i型或P 200536159 . . 型覆層。 未刻意添加雜質的未摻雜層可作爲第一或第二種瓜族 氮化物半導體層。亦可使用刻意添加雜質的η型或P型m族 氮化物半導體層,以控制導電度、載體濃度與電阻値。摻有 η型或p型雜質而使薄層內原子濃度變爲ixioUcnr3或以上 且5xl 019cnT3或以下的第一與第二瓜族氮化物半導體層係 適於形成用於獲得具低正向電壓且高可靠度之發光裝置的 覆層。雖作爲覆層的第一與第二m族氮化物半導體層由能隙 • 大於發光層材料的材料製成係必要的,惟ΙΠ族氮化物半導體 層由相同材料製成則爲非必要的。例如,η型覆層可由n型 GaYInzN (OSY,ZS1,Y+Z=l)形成,而 ρ 型覆層可由 ρ 型AlxGaYN(〇SX,YS1,χ+γ=1)形成。倘若使用由不 同ΠΙ族氮化物半導體層所形成的第一或第二導電型覆層,則 可形成對稱發光部位(根據能帶結構)。 具前揭原子濃度範圍之高濃度雜質並具低電阻率的第 一與第二m族氮化物半導體層係有效作爲接觸層。載體濃度 ® lxl〇18cn^3或以上的低電阻率m族氮化物半導體層特別有助 於形成低接觸電阻率歐姆電極。可用於獲得低電阻率η型m 族氮化物半導體層之η型雜質的實例爲諸如Si,Ge的IV族元 素及諸如S e的VI族元素。p型雜質的實例爲諸如M g,b e的 Π族元素。較佳方式爲接觸層厚度等於或大於允許組成歐姆 電極的材料散佈或進入其的該深度。當歐姆電極藉由合金化 熱處理形成時,該厚度等於或大於合金正面的深度。適當厚 度爲1 0 n m或以上。 -10- 200536159 , - 設於第一與第二m族氮化物半導體層間的發光層爲氮 化鎵銦(GaYInzN: 〇SY,ZS1,Υ+Ζ = 1)、磷化鎵氮 (GaNi.aPa: 〇^a< 1) ^ AlxGaYInzN! _aMa ( 0^X? Y, Z^l ^ X + Y + Z= 1,M代表除了氮以外的V族元素,0 $ a < 1 )。 發光層可由單量子井層(SQW)或多量子井(MQW)結構所 形成。當量子井結構的井層爲GaYInzN時,銦組成物比例 (=Z )係根據希冀的發光波長做調整,並於光波長變大時設 定爲較大。具GaYInzN井層之多量子井結構的發光層厚度最 • 好爲l〇〇nm或以上且5 00nm或以下。 藉由形成裝附於第一或第二ΙΠ族氮化物半導體層的薄 層作爲阻障層或井層,便可形成發光層的量子井結構。量子 井結構的初始端面層(最下層)可爲阻障層或井層。相似地, 量子井結構的終端層(最上層)可爲阻障層或井層。縱使初 始端面層與終端層的組成物不同,仍不會有問題。包含因未 摻雜而具極佳結晶度之井層及摻有雜質之阻障層的量子井 結構可避免壓電效果造成的負面影響,並可形成具極佳強度 # 與穩定發光波長的m族氮化物半導體發光裝置。井層或阻障 層可爲諸如 GaNhPj 〇Sa< 1)或 AlxGaYlnzNhaMj 0SX, Y, ZS1,X+Y+Z = l,Μ代表除了氮以外的V族元素’ 〇Sa < 1 )及 GaYInzN(0€Y,ZS1,Y+Z=l)之薄膜。 組成堆疊結構的m族氮化物半導體層可藉由諸如金屬 有機化學氣相沈積(M0CVD )、氣相磊晶(VPE )及分子束 嘉晶(Μ B E )等氣相成長法進行成長。爲獲得大範圍膜厚的 薄層(由數nm之量子井結構發光層的井層厚至適用於第一 200536159 • 或第二瓜族氮化物半導體層的微米厚度),MOCVD或MBE 法爲適合的。其中,MOVPE法適用於含高揮發性As與P(氮 除外)之Π族氮化物半導體層的氣相沈積。可使用常壓(基 本上爲大氣壓)或減壓MOCVD法。 在本發明中,因爲用於形成發光裝置堆疊結構的結晶基 板被移除,所以無須使用透光晶體作爲基板。因爲必須移除 原有的基板(用於形成堆疊結構的結晶基板),所以基板最 好由可使用諸如濕式蝕刻或乾式蝕刻(含高頻電漿蝕刻或雷 Φ 射照射法)之蝕刻方法輕易移除的晶體製成。結晶基板的熱 膨脹係數明顯異於堆疊結構的結構層時,有助於使用雷射照 射法進行剝除。 在本發明中,在原有的結晶基板移除後,具機械強度的 板材本體係裝附於堆疊結構最上層,以強化堆疊結構的機械 支撐力。對射自發光層的光爲透明的玻璃板材本體可作爲所 裝附的板材本體。 堆疊層表面或裝附於堆疊層上之板材本體表面的預清 ® 洗係有助於其接面。例如,爲將板材本體緊密裝附於m族氮 化物半導體層(堆疊層),其係於1 kg/cm2至5 kg/cm2的 外壓下加壓,或加熱至5 0 0 °C - 1 0 0 0 °C的高溫。或者,可採用 溫度、壓力、電壓的施加及陽極接合法。在本狀況中,藉由 在板材本體與發光層間形成可強化二者接面的GaN,A 1N, G a A1N或類似物薄層,便得以在未負面影響其特性下裝附其 上。 亦得以在諸如矽樹脂之黏著層形成於堆疊結構表面上 -12- 200536159 . 之後,再裝附板材本體。 爲移除形成堆疊結構的基板,可使用拋光或剝除法。例 如’可使用主要由氧化矽、氧化鋁或鑽石粉組成的拋光粉拋 光藍寶石基板。 雷射照射法適用於剝除形成堆疊結構的結晶基板。脈衝 雷射束、二氧化碳氣體雷射束、準分子雷射束及類似物可作 爲適用於剝離照射的雷射束。其中,使用氟化氬(ArF),氟 化氪(KrF)或類似物作爲激發氣體的準分子雷射束爲較佳。 # 雷射束波長最好爲193 nm或248 nm。當使用雷射束剝除的結 晶基板很厚時,因爲雷射束容易被吸收,所以無法有效加熱 剝除區域。因此,爲藉由照射雷射束而由堆疊結構有效剝除 結晶基板,結晶基板厚度最好爲1 00-3 00微米。當結晶基板 表面不平整或有裂縫時,雷射束吸收會有變化,而不均勻地 剝除結晶基板。 如前所述,在本發明實施例中,將形成堆疊結構的結晶 基板移除以暴露出堆疊結構表面,再將由可穿透來自發光層 • 之光的材料所製成的板材本體形成於暴露表面上。因此,板 材本體可機械支撐位於其上的堆疊結構,以減少對短波紫外 光的光吸收,而提局發光效率。 得以選用熱膨脹係數同堆疊結構的材料作爲板材本 體。因此,縱使長時間流通電流,堆疊結構中也不會有由熱 應力造成的裂痕。因此,可提高可靠度。 雖然在前揭說明中係完全移除用於形成堆疊結構的結 晶基板並設置板材本體,惟完全移除結晶基板並非必要,且 -13- 200536159 . 可薄化而非移除堆疊結構。 倘若將用於形成堆疊結構的結晶基板進行薄化’則得以 獲得具下列性質的m族氮化物半導體發光裝置:可降低穿經 結晶基板之光的吸收,將來自發光層之光透至外部的效率極 佳,以及極佳的靜電阻隔電壓。因此,最好使用透光的11型 或p型導電單晶作爲基板。站立的結晶基板具有機械支撐堆 疊結構於其上及使來自發光層的光穿透其的功能。倘若將站 立的結晶基板薄化,則可增加透光率,而可獲得透光效率極 • 佳的m族氮化物半導體發光裝置。然而,倘若將結晶基板薄 化,則結晶基板用於支撐堆疊結構於其上的功能會降低。因 此,站立結晶基板的厚度最好爲1 00-3 00微米,以保持二個 功能。 實例: 本發明將根據玻璃基板裝附於堆疊結構最上層以作爲 板材本體,而形成m族氮化物半導體發光裝置的狀況作說 明。 ® 第1圖爲形成於藍寶石基板上之堆疊結構的示意剖面 圖。第2圖爲安裝第1圖所示堆疊結構而獲得之根據本發明 LED結構的示意剖面圖。第3圖爲LED的平面圖。第4圖 爲藉由安裝LED而形成之LED燈的剖面圖。 首先,如第1圖所示,在90(TC藉由普通的減壓MOCVD 法而以種子製程(SP )方式形成約3 5 0微米厚的氮化鋁(A1N ) 層101於電絕緣藍寶石基板100的(000 1 )晶面上。A1N層 1〇1厚度爲5nm。在1 05 0°C將厚度18nm的GaN緩衝層102 -14- 200536159 - 形成於A1N層1 01上。 具 0.0 1鋁組成物比例之 η型氮化鋁鎵混合晶體 (Alo.cnGao.9 9N )的η型接觸層103係形成於GaN緩衝層102 上,以使該層中的矽原子濃度變爲1 X 1018cnT3。接觸層103 得以藉由一般的減壓MOCVD法而在1 05 0°C進行成長。η型 接觸層1 0 3的厚度設在約2.5微米。 η型 Al〇.i〇Gac).9()N的 η型覆層 104堆疊於 η型 Alo.cnGao.^N的η型接觸層103上。η型覆層1〇4藉由摻雜 Φ 而形成,以使該層中的矽原子濃度變爲1x10 18cm·3。藉由一 般減壓MOCVD法所形成之η型覆層1〇4的厚度設在約0.5 微米。 含有η型AlxGaYN阻障層與η型GaYInzN井層的η型 發光層105堆疊於η型AlG.1GGa(K9()N的η型覆層104上。井 層中的銦組成物比例係經調整,以使波長3 60-3 7 Onm的紫外 光可由量子井結構射出。所形成的量子井結構係將井層厚度 設爲約5nm且阻障層厚度設爲約l5nm。: When it is finished, it is A1N F '2nm or below, and it can be obtained on the stack with Ra 0.05 micron at a low temperature of crystallization, and it can be obtained on the stack without any flush layer surface. Article ", and suitable, outside, its i-type or P 200536159... Type coating. An undoped layer with no intentionally added impurities can be used as the first or second cucurbit nitride semiconductor layer. It is also possible to use n-type or P-type m-group nitride semiconductor layers with intentional addition of impurities to control the conductivity, carrier concentration, and resistance 値. Doped with n-type or p-type impurities so that the atomic concentration in the thin layer becomes ixioUcnr3 or more and 5xl 019cnT3 or less. The first and second melon nitride semiconductor layers are suitable for forming a low forward voltage and Coating of high reliability light emitting device. Although it is necessary that the first and second m-nitride semiconductor layers as the cladding layer be made of a material having a larger energy gap than the material of the light-emitting layer, it is not necessary that the III-nitride semiconductor layer be made of the same material. For example, the n-type cladding layer may be formed of n-type GaYInzN (OSY, ZS1, Y + Z = 1), and the p-type cladding layer may be formed of ρ-type AlxGaYN (0SX, YS1, χ + γ = 1). If a first or second conductivity type cladding layer formed of a different group III nitride semiconductor layer is used, a symmetrical light emitting portion (depending on the band structure) can be formed. The first and second m-group nitride semiconductor layers having high-concentration impurities in a range of atomic concentrations previously exposed and having low resistivity are effective as contact layers. A low-resistivity m-type nitride semiconductor layer with a carrier concentration ® lx1018cn ^ 3 or more is particularly useful for forming a low-contact resistivity ohmic electrode. Examples of n-type impurities that can be used to obtain a low-resistivity n-type m group nitride semiconductor layer are group IV elements such as Si, Ge and group VI elements such as Se. Examples of p-type impurities are group Π elements such as M g, be e. It is preferable that the thickness of the contact layer is equal to or greater than the depth that allows the material constituting the ohmic electrode to be diffused into or into it. When the ohmic electrode is formed by an alloying heat treatment, the thickness is equal to or greater than the depth of the front surface of the alloy. A suitable thickness is 10 nm or more. -10- 200536159,-The light-emitting layer provided between the first and second m group nitride semiconductor layers is indium gallium nitride (GaYInzN: 〇SY, ZS1, Υ + Z = 1), gallium phosphide (GaNi.aPa : 〇 ^ a < 1) ^ AlxGaYInzN! _AMa (0 ^ X? Y, Z ^ l ^ X + Y + Z = 1, M represents a group V element other than nitrogen, 0 $ a < 1). The light emitting layer may be formed of a single quantum well layer (SQW) or a multiple quantum well (MQW) structure. When the well layer of the quantum well structure is GaYInzN, the indium composition ratio (= Z) is adjusted according to the desired emission wavelength, and is set to be larger when the light wavelength becomes larger. The thickness of the light emitting layer of a multiple quantum well structure with a GaYInzN well layer is preferably 100 nm or more and 500 nm or less. By forming a thin layer attached to the first or second III nitride semiconductor layer as a barrier layer or a well layer, a quantum well structure of a light emitting layer can be formed. The initial end layer (lowermost layer) of a quantum well structure can be a barrier layer or a well layer. Similarly, the terminal layer (topmost layer) of the quantum well structure may be a barrier layer or a well layer. Even if the composition of the initial end layer and the terminal layer are different, there is no problem. The quantum well structure including a well layer with excellent crystallinity due to undoping and a barrier layer doped with impurities can avoid the negative effect caused by the piezoelectric effect, and can form m with excellent intensity # and stable emission wavelength m Group nitride semiconductor light emitting device. The well layer or the barrier layer may be, for example, GaNhPj 〇Sa < 1) or AlxGaYlnzNhaMj 0SX, Y, ZS1, X + Y + Z = 1, where M represents a group V element other than nitrogen ′ 〇Sa < 1) and GaYInzN ( 0 € Y, ZS1, Y + Z = l). The m-group nitride semiconductor layer constituting the stacked structure can be grown by a vapor phase growth method such as metal organic chemical vapor deposition (MOCVD), vapor phase epitaxy (VPE), and molecular beam crystalline (MBE). In order to obtain a thin layer with a wide range of film thickness (from the thickness of the well layer of the quantum well structure light emitting layer of several nm to the micron thickness suitable for the first 200536159 • or the second melon nitride semiconductor layer), MOCVD or MBE method is suitable of. Among them, the MOVPE method is suitable for vapor deposition of a group Π nitride semiconductor layer containing highly volatile As and P (except nitrogen). Atmospheric pressure (basically atmospheric pressure) or reduced pressure MOCVD can be used. In the present invention, since the crystalline substrate used to form the stacked structure of the light-emitting device is removed, it is not necessary to use a light-transmitting crystal as the substrate. Since the original substrate (the crystalline substrate used to form the stacked structure) must be removed, the substrate is preferably made by an etching method such as wet etching or dry etching (including high-frequency plasma etching or laser irradiation) Made of easily removed crystals. When the thermal expansion coefficient of a crystalline substrate is significantly different from that of a structural layer of a stacked structure, it is helpful to use a laser irradiation method for stripping. In the present invention, after the original crystalline substrate is removed, the plate with mechanical strength is attached to the uppermost layer of the stacked structure to strengthen the mechanical support of the stacked structure. A glass plate body which is transparent to the light emitted from the light emitting layer can be used as the attached plate body. The pre-cleaning ® wash system on the surface of the stacked layer or the surface of the board body attached to the stacked layer helps the interface. For example, in order to tightly attach the plate body to a group m nitride semiconductor layer (stacked layer), it is pressurized under an external pressure of 1 kg / cm2 to 5 kg / cm2, or heated to 50 ° C-1 0 0 0 ° C high temperature. Alternatively, application of temperature, pressure, voltage, and anodic bonding may be used. In this case, by forming a thin layer of GaN, A 1N, G a A1N or the like between the plate body and the light emitting layer, which can strengthen the interface between them, it can be attached to it without negatively affecting its characteristics. It is also possible to form an adhesive layer such as silicone resin on the surface of the stacked structure -12- 200536159. After that, attach the plate body. To remove the substrates forming the stacked structure, a polishing or peeling method may be used. For example, a sapphire substrate may be polished using a polishing powder composed mainly of silicon oxide, aluminum oxide or diamond powder. The laser irradiation method is suitable for stripping a crystalline substrate forming a stacked structure. Pulsed laser beams, carbon dioxide gas laser beams, excimer laser beams, and the like can be used as laser beams suitable for stripping irradiation. Among them, excimer laser beams using argon fluoride (ArF), krypton fluoride (KrF) or the like as the excitation gas are preferred. # The laser beam wavelength is preferably 193 nm or 248 nm. When the crystal substrate to be removed using a laser beam is very thick, the laser beam cannot be effectively heated because the laser beam is easily absorbed. Therefore, in order to effectively strip the crystalline substrate from the stacked structure by irradiating the laser beam, the thickness of the crystalline substrate is preferably 100 to 300 μm. When the surface of the crystalline substrate is uneven or cracked, the laser beam absorption changes, and the crystalline substrate is not uniformly peeled off. As mentioned above, in the embodiment of the present invention, the crystalline substrate forming the stacked structure is removed to expose the surface of the stacked structure, and then a plate body made of a material that can penetrate light from the light-emitting layer is formed on the exposure. On the surface. Therefore, the board body can mechanically support the stacked structure on it to reduce the light absorption of short-wave ultraviolet light and improve the luminous efficiency. The material with the same thermal expansion coefficient as the stack structure was selected as the board body. Therefore, even if a current flows for a long time, there is no crack caused by thermal stress in the stacked structure. Therefore, reliability can be improved. Although the crystal substrate used to form the stacked structure is completely removed and the plate body is provided in the previous description, it is not necessary to completely remove the crystal substrate, and -13- 200536159. The stacked structure can be thinned instead of removed. If the crystalline substrate used to form the stacked structure is thinned, an m-group nitride semiconductor light-emitting device having the following properties can be obtained: the absorption of light passing through the crystalline substrate can be reduced, and the light from the light emitting layer can be transmitted to the outside Excellent efficiency and excellent static resistance voltage. Therefore, it is preferable to use a light-transmitting 11-type or p-type conductive single crystal as the substrate. The standing crystalline substrate has a function of mechanically supporting the stacked structure thereon and passing light from the light emitting layer therethrough. If the standing crystalline substrate is thinned, the light transmittance can be increased, and an m group nitride semiconductor light-emitting device with excellent light transmittance can be obtained. However, if the crystalline substrate is thinned, the function of the crystalline substrate for supporting the stacked structure thereon is reduced. Therefore, the thickness of the standing crystalline substrate is preferably 100 to 300 micrometers to maintain both functions. Example: The present invention will be described based on a state in which a glass substrate is attached to the uppermost layer of a stacked structure as a plate body to form a group m nitride semiconductor light emitting device. ® Figure 1 is a schematic cross-sectional view of a stacked structure formed on a sapphire substrate. Fig. 2 is a schematic cross-sectional view of the LED structure according to the present invention obtained by installing the stacked structure shown in Fig. 1. Figure 3 is a plan view of the LED. Fig. 4 is a sectional view of an LED lamp formed by mounting LEDs. First, as shown in FIG. 1, an aluminum nitride (A1N) layer 101 having a thickness of about 350 micrometers is formed on an electrically insulating sapphire substrate by a seed process (SP) method at 90 ° C by a general reduced pressure MOCVD method. 100 (000 1) crystal plane. The thickness of the A1N layer 101 is 5 nm. A GaN buffer layer with a thickness of 18 nm 102 -14- 200536159 is formed on the A1N layer 101 at 105 ° C. With 0.0 1 aluminum The n-type contact layer 103 of the n-type aluminum gallium nitride mixed crystal (Alo.cnGao.9 9N) with a composition ratio is formed on the GaN buffer layer 102 so that the silicon atom concentration in the layer becomes 1 × 1018cnT3. The contact layer 103 can be grown by a general reduced pressure MOCVD method at 1050 ° C. The thickness of the n-type contact layer 103 is set to about 2.5 microns. The n-type AlO.ioGac) .9 () The n-type cladding layer 104 is stacked on the n-type contact layer 103 of the n-type Alo.cnGao. ^ N. The n-type cladding layer 104 is formed by doping Φ so that the silicon atom concentration in the layer becomes 1 × 10 18 cm · 3. The thickness of the n-type cladding layer 104 formed by a general reduced pressure MOCVD method is set at about 0.5 m. An n-type light-emitting layer 105 containing an n-type AlxGaYN barrier layer and an n-type GaYInzN well layer is stacked on the n-type cladding layer 104 of the n-type AlG.1GGa (K9 () N. The indium composition ratio in the well layer is adjusted. So that the ultraviolet light with a wavelength of 3 60-3 7 Onm can be emitted by the quantum well structure. The formed quantum well structure has a well layer thickness of about 5 nm and a barrier layer thickness of about 15 nm.
刻意摻入P型鎂雜質並具2.5nm厚度的p型AlxlGaY1N 覆層106係形成於量子井結構發光層ι〇5上。薄層1〇6中的 鋁組成物比例(=X 1 )設爲約0.1 〇 ( 1 〇 % )。摻入鎂,以使 薄層1 0 6中的原子濃度變爲5 X 1 0 1 8 c m -3。摻有鎂並具較小鋁 組成物比例的P型AlX2GaY2N ( X 1 > X2 g 0 )接觸層1 07係 形成於P型覆層106上。接觸層1〇7中的鎂原子濃度設爲約 2x 1 019cnT3。 藉由一般高頻濺鍍法將鉑薄膜形成於p型接觸層1 07表 -15- 200536159 - 面上,以作爲P型歐姆電極膜1 〇 8。p型歐姆電極膜上設有 金屬反射膜1 0 9,用於將光由多量子井結構發光層1 0 5反射 至結晶基板1 0 0。金屬反射膜1 0 9由铑(Rh )塗佈膜形成。 η型接觸層1 03覆有遮罩並以乾式蝕刻進行蝕刻,且由 Cr-Ti-Au形成的η型歐姆電極113係形成於薄層1〇3的蝕刻 表面上(第3圖)。17型歐姆電極113的最外層爲金(Au)。 接面金膜110形成於金屬反射膜109上,且由藍寶石基 板1 〇〇至金屬反射膜1 09的堆疊結構1 1係爲前置步驟所形 •成。 其次,硏磨機械支撐堆疊結構1 1於其上之藍寶石基板 1 00的背面。使用膠質氧化矽(含平均粒徑〇 . 5微米的微細 氧化矽微粒)拋光藍寶石基板100的背面130-150微米。藉 由拋光可將藍寶石基板100的厚度薄化至21 0士 10微米。 在硏磨藍寶石基板1 0 0背面後,使用水溶性黏膠將玻璃 板裝附於正對的金屬反射膜1 09上,以暫時強化堆疊結構1 1 的機械支撐力。 ® 波長248nm的準分子雷射束係由經薄化拋光之藍寶石 基板1〇〇的表面而照射於藍寶石基板100與GaN緩衝層102 間的接面。藉此得利用藍寶石基板1 00與堆疊結構1 1間的 熱膨脹係數差,而由A1N層1 01與GaN緩衝層1 02的部位 剝除經拋光與薄化的藍寶石基板1 〇〇。 可利用約3 7 0nm紫外光發出RGB三色的螢光玻璃板係 使用陽極接合法接合於表面上,以作爲板材本體1 1 1。使用 3 40V電壓與約3 00 °C溫度(相當低溫)的陽極接合法得有效 200536159 - 接合二者。使用旋塗法作爲塗佈螢光材料的方法,以施加該 材料於玻璃板表面上。用於塗佈微粒(1 〇nm或更小的微粒) 於玻璃板上的另一個方法爲利用溶膠凝膠法。藉此得以避免 微粒凝結,而製造具極佳特性的表面。 其次,移除暫設於堆疊結構1 1之金屬反射膜1 09表面 上的玻璃板,並清洗電極表面,而完成LED晶圓。 其次,利用一般的雷射切割法在半導體周邊形成切割溝 槽或切割裝置。使用一般的擊壓機施加機械壓力於溝槽,以 ® 將裝置分割成平面圖爲正方形並具約3 5 0微米邊長的瓜族氮 化物半導體發光裝置(晶片)12 (以下稱爲“LED 12”)。藉 此完成pn接面型DH結構的EI族氮化物半導體白光LED 12 (第2與3圖);其中該pn接面型DH結構已將藍寶石基 板1 00移除,並將堆疊結構1 1機械支撐於裝附在堆疊結構 1 1之板材本體U 1的螢光玻璃板上。 因爲LED 12的整個表面形成有使用所裝附板材本體 U 1的裝置,所以可形成具極佳色彩表現的高亮度白光LED 馨裝置。 其次,使用LED 12形成LED燈10。設於LED 12正面 的p型歐姆電極108(金屬反射膜109,金膜110)及n型歐 姆電極1 1 3 (堆疊結構1 1 )係安裝於形成在矽次載具23上 的金球凸塊21上方,如第4圖所示。形成可在ρ型歐姆電 極108 (金屬反射膜109,金膜110)及η型歐姆電極113 間流動裝置驅動電流的電路。 Ρ型歐姆電極108(金屬反射膜109,金膜110)及η型 -17- 200536159 , 歐姆電極1 1 3表面具有金膜。因此,其可輕易地接合。其次, 使用含抑制劑的環氧樹脂2 2密封裝置,以避免紫外光造成 劣化,而完成發光二極體(LED)燈10。 當裝置驅動電流得在正向上於η型歐姆電極1 1 3及p型 歐姆電極1 0 8 (金屬反射膜1 0 9,金膜1 1 0 )間流動時,其可 均勻散佈於發光層105的大範圍區域上。當流通20mA的裝 置驅動電流而由LED 12發出光時,具約3 70nm波長之紫光 外的發光輸出達約20流明/瓦特(lm/W)。當20mA的正向電 • 流流通時,正向電壓Vf低達約3.4 V。 移除用於提供堆疊結構U的藍寶石基板1 0 0,以暴露出 由可透出發光層105之光的材料製成之板材本體111形成於 其上的堆疊結構表面。因此,得以降低短波長紫外光的光吸 收而提供發光效率,且堆疊結構機械支撐於板材本體1 1 1上。 驅動電流可均勻散佈於發光層1 0 5的大範圍區域上而加 寬發光區,以提供具強發光輸出的LED。 可選擇熱膨脹係數同堆疊結構1 1的材料作爲板材本體 • 1 1 1。因此,縱使長時間流通電流,堆疊結構1 1中也不會有 由熱應力造成的裂痕,因而提高裝置可靠度。 在LED 12中,因爲板材本體1 1 1由折射係數1.5的玻 璃形成,所以可提高透光效率。因此,可形成具極佳發光特 性的裝置。亦即,板材本體1 1 1的折射係數1 .5位於GaN與 環氧樹脂(堆疊結構1 1主材料)的折射係數之間。因爲板 材本體1 1 1與GaN (堆疊結構1 1 )間之界面及板材本體1 1 1 與環氧樹脂22間之界面的反射減少,因而可提高透光效率。 -18- 200536159 - 倘若使用具本發明結構的LED 1 2,則得以根據諸如透 光效率、多色發光特性及靜電對策等不同特性選用適當材 料,以完成發光裝置。在LED燈10中,因爲其表面覆有極 耐紫外光的螢光玻璃,所以可獲得較少樹脂劣化的可靠燈 具。 【圖式簡單說明】 第1圖爲形成於藍寶石基板上之堆疊結構的示意剖面 圖。 U 第2圖爲安裝第1圖所示堆疊結構而獲得之根據本發明 LED結構的示意剖面圖。 第3圖爲LED的平面圖。 第4圖爲藉由安裝LED而形成之LED燈的剖面圖。 【元件符號說明】 10 LED燈 11 堆疊結構 12 LED 2 1 金球凸塊 22 環氧樹脂 23 矽次載具 100 基板 10 1 A1N層 102 GaN緩衝層 103 η型接觸層 104 η型覆層A p-type AlxlGaY1N cladding layer 106 deliberately doped with a P-type magnesium impurity and having a thickness of 2.5 nm is formed on the quantum well structure light-emitting layer ι05. The ratio of the aluminum composition (= X 1) in the thin layer 106 was set to about 0.1 (10%). Magnesium is doped so that the atomic concentration in the thin layer 10 6 becomes 5 X 1 0 1 8 c m -3. A P-type AlX2GaY2N (X 1 > X2 g 0) contact layer 1 07 system doped with magnesium and having a small aluminum composition ratio is formed on the P-type cladding layer 106. The magnesium atom concentration in the contact layer 107 was set to about 2 × 1 019cnT3. A platinum thin film was formed on the surface of the p-type contact layer 107 by a high-frequency sputtering method as a P-type ohmic electrode film 108. A metal reflective film 1 10 is provided on the p-type ohmic electrode film to reflect light from the multi-quantum well structure light-emitting layer 105 to the crystal substrate 100. The metal reflective film 10 is formed of a rhodium (Rh) coating film. The n-type contact layer 103 is covered with a mask and etched by dry etching, and an n-type ohmic electrode 113 made of Cr-Ti-Au is formed on the etched surface of the thin layer 103 (Fig. 3). The outermost layer of the 17-type ohmic electrode 113 is gold (Au). The junction gold film 110 is formed on the metal reflection film 109, and the stacked structure 11 from the sapphire substrate 100 to the metal reflection film 10 09 is formed by the pre-step. Secondly, the honing machine supports the back surface of the sapphire substrate 100 on which the stacked structure 11 is mounted. Colloidal silica (containing fine silica particles with an average particle size of 0.5 microns) is used to polish the back surface of the sapphire substrate 100 from 130 to 150 microns. By polishing, the thickness of the sapphire substrate 100 can be reduced to 210 ± 10 microns. After honing the back surface of the sapphire substrate 100, a glass plate was attached to the facing metal reflective film 1 09 with a water-soluble adhesive to temporarily strengthen the mechanical support of the stacked structure 1 1. The excimer laser beam with a wavelength of 248nm is irradiated on the interface between the sapphire substrate 100 and the GaN buffer layer 102 from the surface of the thinned and polished sapphire substrate 100. In this way, the difference in thermal expansion coefficient between the sapphire substrate 100 and the stacked structure 11 can be used, and the polished and thinned sapphire substrate 100 can be stripped from the A1N layer 101 and the GaN buffer layer 102. Fluorescent glass plates of three colors, RGB, which can be emitted by ultraviolet light of about 370 nm, are bonded to the surface by anodic bonding to form the plate body 1 1 1. The anodic bonding method using a voltage of 3 40V and a temperature of about 300 ° C (very low temperature) is effective 200536159-bonding both. A spin coating method is used as a method of coating a fluorescent material to apply the material to the surface of a glass plate. Another method for coating particles (particles of 10 nm or smaller) on a glass plate is to use a sol-gel method. This prevents particles from condensing and produces surfaces with excellent properties. Secondly, the glass plate temporarily disposed on the surface of the metal reflective film 1 09 of the stacked structure 11 is removed, and the electrode surface is cleaned to complete the LED wafer. Next, a general laser dicing method is used to form a dicing trench or dicing device around the semiconductor. Using a general press to apply mechanical pressure to the grooves, the device was divided into a gua-nitride semiconductor light-emitting device (wafer) 12 (hereinafter referred to as "LED 12" "). This completes the EI-nitride semiconductor white LED 12 of the pn junction type DH structure (Figures 2 and 3); the pn junction type DH structure has removed the sapphire substrate 100 and the stacked structure 1 1 mechanical It is supported on a fluorescent glass plate attached to the plate body U 1 of the stacked structure 11. Because the entire surface of the LED 12 is formed with a device using the attached plate body U 1, a high-brightness white LED device with excellent color performance can be formed. Next, the LED lamp 10 is formed using the LED 12. The p-type ohmic electrode 108 (metal reflective film 109, gold film 110) and the n-type ohmic electrode 1 1 3 (stacked structure 1 1) provided on the front surface of the LED 12 are mounted on a gold ball formed on a silicon sub-carrier 23 Above block 21, as shown in FIG. A circuit capable of driving a device current is formed between the p-type ohmic electrode 108 (metal reflective film 109, gold film 110) and n-type ohmic electrode 113. The P-type ohmic electrode 108 (metal reflective film 109, gold film 110) and n-type -17-200536159. The surface of the ohmic electrode 1 1 3 has a gold film. Therefore, it can be easily joined. Secondly, an epoxy resin 22 sealing device containing an inhibitor is used to avoid deterioration caused by ultraviolet light, and a light emitting diode (LED) lamp 10 is completed. When the device driving current flows between the n-type ohmic electrode 1 13 and the p-type ohmic electrode 1 0 (metal reflective film 1 10, gold film 1 1 0) in the forward direction, it can be evenly dispersed in the light-emitting layer 105. Over a large area. When a device driving current of 20 mA flows and light is emitted from the LED 12, the light emitting output outside the violet light having a wavelength of about 3 70 nm reaches about 20 lumens / watt (lm / W). When 20mA of forward current flows, the forward voltage Vf drops to about 3.4 V. The sapphire substrate 100 for providing the stacked structure U is removed to expose the surface of the stacked structure on which the plate body 111 made of a material that can transmit the light of the light emitting layer 105 is formed. Therefore, the light absorption of short-wavelength ultraviolet light can be reduced to provide luminous efficiency, and the stacked structure is mechanically supported on the plate body 1 1 1. The driving current can be evenly distributed over a large area of the light emitting layer 105 to widen the light emitting area to provide an LED with a strong light output. The material with the same thermal expansion coefficient as the stack structure 1 1 can be selected as the plate body • 1 1 1. Therefore, even if a current flows for a long time, there is no crack caused by thermal stress in the stacked structure 11 and the reliability of the device is improved. In the LED 12, since the plate body 1 1 1 is formed of glass having a refractive index of 1.5, the light transmission efficiency can be improved. Therefore, a device having excellent light emission characteristics can be formed. That is, the refractive index 1.5 of the plate body 1 1 1 is located between the refractive index of GaN and the epoxy resin (the main material of the stacked structure 1 1). Since the reflection between the interface between the plate body 1 1 1 and GaN (stacked structure 1 1) and the interface between the plate body 1 1 1 and the epoxy resin 22 is reduced, light transmission efficiency can be improved. -18- 200536159-If the LEDs 12 having the structure of the present invention are used, appropriate materials can be selected according to different characteristics such as light transmission efficiency, multi-color light emitting characteristics, and static electricity countermeasures to complete a light emitting device. In the LED lamp 10, since the surface is coated with a fluorescent glass that is extremely resistant to ultraviolet light, a reliable lamp with less deterioration of the resin can be obtained. [Brief description of the drawings] FIG. 1 is a schematic cross-sectional view of a stacked structure formed on a sapphire substrate. U Figure 2 is a schematic cross-sectional view of the LED structure according to the present invention obtained by installing the stacked structure shown in Figure 1. Figure 3 is a plan view of the LED. Fig. 4 is a cross-sectional view of an LED lamp formed by mounting LEDs. [Description of element symbols] 10 LED lights 11 Stacked structure 12 LED 2 1 Gold ball bump 22 Epoxy resin 23 Silicon sub-carrier 100 Substrate 10 1 A1N layer 102 GaN buffer layer 103 η-type contact layer 104 η-type cladding
200536159200536159
. 1 05 1 06 1 07 108 1 09 110 111 113 U 量子井結構發光層 P 型 A1X1 GaY1N 覆層 P型接觸層 P型歐姆電極膜 金屬反射膜 金膜 板材本體 η型歐姆電極膜1 05 1 06 1 07 108 1 09 110 111 113 U quantum well structure light-emitting layer P type A1X1 GaY1N coating P type contact layer P type ohmic electrode film metal reflection film gold film sheet body η type ohmic electrode film
-20-20
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004078153 | 2004-03-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200536159A true TW200536159A (en) | 2005-11-01 |
TWI281757B TWI281757B (en) | 2007-05-21 |
Family
ID=38751645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94108128A TWI281757B (en) | 2004-03-18 | 2005-03-17 | Group III nitride semiconductor light-emitting device and producing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI281757B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8946728B2 (en) | 2010-11-01 | 2015-02-03 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
TWI483431B (en) * | 2011-04-01 | 2015-05-01 | Huga Optotech Inc | Semiconductor light-emitting structure |
TWI677999B (en) * | 2017-12-28 | 2019-11-21 | 日商日機裝股份有限公司 | Nitride semiconductor element and method for manufacturing nitride semiconductor element |
-
2005
- 2005-03-17 TW TW94108128A patent/TWI281757B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8946728B2 (en) | 2010-11-01 | 2015-02-03 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
TWI483431B (en) * | 2011-04-01 | 2015-05-01 | Huga Optotech Inc | Semiconductor light-emitting structure |
TWI677999B (en) * | 2017-12-28 | 2019-11-21 | 日商日機裝股份有限公司 | Nitride semiconductor element and method for manufacturing nitride semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
TWI281757B (en) | 2007-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2826892B1 (en) | Method for preparing composite substrate for gan growth | |
JP4177097B2 (en) | Method of manufacturing a semiconductor chip emitting radiation based on III-V nitride semiconductor and semiconductor chip emitting radiation | |
TWI287880B (en) | Group III nitride semiconductor light-emitting device and method of producing the same | |
KR101370257B1 (en) | Optoelectronic semiconductor component | |
TW541732B (en) | Manufacturing method of LED having transparent substrate | |
JP2006521984A (en) | Method for fabricating a group III nitride device and the device so fabricated | |
JP5191866B2 (en) | Semiconductor light emitting device manufacturing method and semiconductor light emitting device | |
JP4843235B2 (en) | Group III nitride semiconductor light emitting device manufacturing method | |
TWI631736B (en) | Method for forming a light emitting device and structure for light emitting device | |
JP2005150675A (en) | Semiconductor light-emitting diode and its manufacturing method | |
JP2008527731A (en) | Method for producing optoelectronic substrate | |
JP2013106020A (en) | Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method | |
KR100774198B1 (en) | LED having vertical structure | |
EP2826893A1 (en) | Composite substrate used for gan growth | |
KR101428066B1 (en) | vertical structured group 3 nitride-based light emitting diode and its fabrication methods | |
KR20070046174A (en) | Gan based luminescent device on a metal substrate | |
EP2824719A1 (en) | Composite substrate with protective layer for preventing metal from diffusing | |
TW200536159A (en) | Group III nitride semiconductor light-emitting device and producing method thereof | |
TW200539481A (en) | Group Ⅲ nitride semiconductor light-emitting device, forming method thereof, lamp and light source using same | |
CN105047769B (en) | A kind of light-emitting diodes tube preparation method that substrate desquamation is carried out using wet etching | |
JP2008053372A (en) | Manufacturing method of semiconductor device | |
JP4313478B2 (en) | AlGaInP light emitting diode | |
TWI242890B (en) | Method for manufacturing light emitting device | |
JP2004327729A (en) | Nitride semiconductor device and manufacturing method therefor | |
CN111564545A (en) | Sapphire composite substrate and manufacturing method thereof |