TW200534751A - Rf plasma source with conductive top section - Google Patents

Rf plasma source with conductive top section Download PDF

Info

Publication number
TW200534751A
TW200534751A TW094107684A TW94107684A TW200534751A TW 200534751 A TW200534751 A TW 200534751A TW 094107684 A TW094107684 A TW 094107684A TW 94107684 A TW94107684 A TW 94107684A TW 200534751 A TW200534751 A TW 200534751A
Authority
TW
Taiwan
Prior art keywords
chamber
plasma
area
radio frequency
item
Prior art date
Application number
TW094107684A
Other languages
Chinese (zh)
Other versions
TWI423735B (en
Inventor
Vikram Singh
Harold Persing
Timothy Miller
Original Assignee
Varian Semiconductor Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Semiconductor Equipment filed Critical Varian Semiconductor Equipment
Publication of TW200534751A publication Critical patent/TW200534751A/en
Application granted granted Critical
Publication of TWI423735B publication Critical patent/TWI423735B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

A plasma source includes a chamber that contains a process gas. The chamber has a chamber top comprising a first section formed of a dielectric material that extends in a horizontal direction. A second section of the chamber top is formed of a dielectric material that extends a height from the first section in a vertical direction. A top section of the chamber top is formed of a conductive material that extends a length across the second section in the horizontal direction. A radio frequency antenna is positioned proximate to at least one of the first section and the second section. The radio frequency antenna induces radio frequency currents into the chamber that excite and ionize the process gas so as to generate a plasma in the chamber.

Description

200534751 九、發明說明: 【相關申請案】 此申請案係於西元2004年3月22日所提出 “ 山< 題為200534751 IX. Description of the invention: [Related applications] This application was filed on March 22, 2004, "Mountains <

“電漿浸入(immersion)離子植入裝置及方法,,的M 吳國專利 申請案序號10/805,966號之一件部分接續案,其整體内容 係以參照方式而納入於本文。 L發明所屬之技術領域】 本發明係關於一種電漿源 【先前技術】 本文所運用之段落標題係僅為針對整體化目的,而非 構成以任何方式描述的標的之限制。 電,常用於半導體產業與其他產業以實施姓刻及 :理滎浸入系統係浸入-基板或標革巴於一電漿,以供 子而供處理。 -水-位而偏壓’猎以吸引離 近來,备胳、 兔水浸入系統係已經運用麻 離子植人。+導體晶圓之 朝向晶圓 …白用的離子植入系統而加速 離子4、„疋日日圓係浸人於其含有接雜離子之-電漿。 雖卞牙透深度 "" 極淺的離子枯 G’電漿浸人系統係可實施 件。 Α ’ μ w用以製造現代電子及光學構 種型式 电水/又入源係運用一種脈衝式直流電源供 、200534751 應為,以產生電漿。直流電源供應器係產生一命 於-至中的處理氣體之一電聚放電。直::’其從 於室表面與目標所產生的二次電::::其為碰撞 式的電漿浸入源传運 、、男μ电水。其他型 、广〆女 係運用一射頻(RF)源,以產生雷將 ;京π、纟射頻電壓。射頻電塵將射頻 跨於電漿被覆(sh,電容性叙入…’極的射頻能量 產生及維持電將^ _合至電衆之中的電子,以 电水。其他型式的電漿浸入 施加器以產生及維持電漿。 …、用锨波功率 用於離子植入之電漿源係相較於 應用(諸如··命將μ w 八他的%漿處理 格的要求。舉=而1刻及電浆沉積)之電裝源而具有更為嚴 牛例而吕’用於離子植入 產生在徑向與方m 又入源係必須 將,你尸的a 八有呵度均勻的電漿離子通量之電 水 〗:勻的離子通量為撞擊於晶圓表面。 此外’電漿浸入系統係必須耗散 自晶圓的二次雷孚妨6+ ^ ^ 戰且將由於來 而> A子放射所&成之充電效應為最小化。血型 ❿ 由:等ΐ:電子係以植入電麼加速而遠離基板之表面,且 由此寺電子所載有的電力係 浸入源係谨田甘* /至頂5而。習用的電漿 …、為由絕緣材料所形成之室頂端。-次 係傾向以加熱及充電該室頂端,其將為不利影塑:::: 均句度與處理反覆性。 a #丁此置 【實施方式】 且亦 本發 本發明之-種電漿源係提供一均句的離子通量 為耗散二次電子之效應。針對於說明本發明之目的 8 ^ 200534751 明之電漿源的一些層面伤關、击〜 々 /丁、關連於電漿摻雜(doping)而描 述。然而,瞭解的是··本發明 + / 月之电漿源係具有諸多應用且 為不受限於用於電襞推雜之電聚芦入源 第1圖係說明根據本菸日貝々 ^ 尽毛月之一種射頻電漿源100,其 具有垂直與水平的射頻線圈及導承 u及令包性的頂端區域。射頻電 漿源100包括一室102,i令古 .^ ^ ” S有一處理氣體。一氣體源104"Plasma immersion ion implantation device and method," M Wu Guo patent application serial number 10 / 805,966 is a partial continuation case, the entire content of which is incorporated herein by reference. L Invention belongs to [Technical Field] The present invention relates to a plasma source. [Prior art] The paragraph headings used herein are for integration purposes only, and do not constitute restrictions on the subject matter described in any way. Electricity, often used in the semiconductor industry and other industries Carrying out surnames and engraving: immersion in the immersion system-substrate or standard leather in a plasma for the child to be treated.-Water-position and bias' hunting to attract the nearest, prepare, rabbit water immersion The system has been implanted with hemp ions. + Conductor wafers are oriented towards the wafer ... White ion implantation system to accelerate ions. 4, "The Japanese yen is immersed in the plasma containing doped ions. Although the tooth penetration depth " " extremely shallow ion dry G 'plasma immersion system can be implemented. Α ′ μw is used to manufacture modern electronic and optical structures. Electro-hydraulic / re-injection system uses a pulsed DC power supply. 200534751 should be used to generate plasma. The DC power supply generates an electro-discharge of one of the process gases that is a life-threatening process. Straight :: ′ It is a secondary electricity generated from the surface of the chamber and the target ::: It is a collision-type plasma immersion source transporter, male μ electric water. Other types, the Cantonese women's department use a radio frequency (RF) source to generate thunderbolt; Beijing π, 纟 radio frequency voltage. RF electric dust covers RF across the plasma coating (sh, capacitively described ... the RF energy of the pole generates and maintains the electrons ^ _ combined with the electrons in the electric mass to electro-water. Other types of plasma immersion application The generator is used to generate and maintain plasma.…. Plasma source using chirped wave power for ion implantation is compared to the application (such as the requirement of μ μ% of the% plasma treatment grid. Lift = and 1 Engraving and plasma deposition) have more stringent examples and Lu 'used for ion implantation to produce radial and square m and into the source system must be, your body has a uniform electrical power Electric water of plasma ion flux: The uniform ion flux is impinging on the wafer surface. In addition, the plasma plasma immersion system must dissipate from the wafer. > A sub-radiation station & Cheng's charging effect is minimized. Blood type: From: etc .: The electronics are accelerated away from the surface of the substrate by implanted electricity, and the electric system carried by the temple is immersed in the source. Department of Jintian Gan * / to the top 5. The conventional plasma ..., is the top of the room formed by insulating materials.-This system tends to increase Heat and charge the top of the chamber, which will be unfavorable. ::: Sentence degree and process reproducibility. A # 丁 此 置 [Embodiment] And this invention also provides a uniform plasma source system. The ion flux of the sentence is the effect of dissipating secondary electrons. In order to explain the purpose of the present invention 8 ^ 200534751 Some aspects of the plasma source are damaged, hitting 击 / 丁, and related to plasma doping. Description. However, it is understood that the plasma source of the present invention + / month has many applications and is not limited to the use of the electric polysilicon as the source of electricity. Figure 1 illustrates the present invention. 々 ^ A kind of RF plasma source 100, which has vertical and horizontal RF coils and guides and a top-end area. The RF plasma source 100 includes a chamber 102, i Ling ancient. ^ ^ ” S has a processing gas. A gas source 104

係透過一比例閥1 〇 6而叙技s 6 Ί A 肉耦接至至102,氣體源104係供應 该處理氣體至室1 〇 2。一塵力4 什108係測量於室102之内 的壓力。於室1 02之的一個姐#垃 ^個排乳埠1 10係耦接至一真空泵 1 1 2,其抽真空该室1 〇2。一個iit Θ 1 1 /1少 1口排乳閥1 1 4係控制其透過排 氣埠n〇之排氣傳導率(c〇nductance)。 一氣體壓力控制器i! 6 # + 0係电乳連接至比例閥i 〇6、壓 力計108、與排氣閥U4。 乳體壓力控制器116係維持於 室102之期望的壓力,笋 、 —# 糟者排乳閥1 14以控制排氣傳導率 且赭者於其為響應於壓力 刀。T 1 08的一個回授迴路之比 1 06以控制處理氣體流量率。 〃於一些實施例,示跡氣體(trace㈣物種之一比 係由一質流計(ma fl 制 w meter)(未顯示)所提供,質 係線上式輕接於其提乂“叶 體。此外,於一施糾 要礼體物種之處理氣 ”伤、軍田 二““列,一種分離式氣體注入機構(未磲 不)係運用以供袜丨^ 七^ 尤地(ln_SltU)調整物種。舉例而言,摻雜1 ,、夕係可運用以提供一個均勻的覆;I ^ h 1 02,其降低今汰仏 」w復嘈於至 1 物。再者,於一些實施例,一種多^ 氣體注入機構(去骷_^夕旱的 (未4不)係運用以提供氣體,致使其造成跨 •200534751 於晶圓變化之中性的化學效應。 至1 02係具有一室頂端 水平方向的一介電材料所 ―、包括由延伸於-概括 118之-第二區域m係'由其自之;第—區域120。室頂端 直方向而延伸_古择今 ,、自弟—區域12〇於一概括垂 第一盥第_ ^又一介電材料所形成。室頂端Π8之 ,、弟―£域12〇、122的尺寸 所產生的電漿之均勻度。 ' &擇,以改善於室102 於第一與第二區域 體,以供轉移# ϋ ^、 、 Μ之介電材料係提供一媒 1、锝私射頻功率自該鼾 漿。於-個者^ $ 射頻天線至室102之内的一電 之介電材料:: 用以形成第-與第二區域120、122 甩材料係鬲純度的陶瓷 學穩定且呈有fw 其對於該處理氣體為化 的熱性質。舉例而言,於-些實施例, 〜’丨兒材料係99,6%的Ai 〇 , 電材料係Ylttria與YAG。2 N。於其他實施例,介 於水ΓΓΓ18之—頂端區域124係、由其跨越第:區域122 夕A。而乙伸I度之-種導電性材料所形成。於諸 足夠1知例’運用以形成頂端區4 124之材料的導電性係 在^以耗散熱負載且使得由於二次電子放射所造成之充 :⑽為最小化。典型而言,用以形成頂端區*或m之導 電性材料係對於該處理氣體為化學穩定。於 j 該導電性材料係紹。 一' ^頂端區域m係可為麵接至第二區域122,藉著由碳 ^。物所作成之一種抗鹵素(hal〇gen resistant)的〇形 裱,諸如:由Chemrz及/或Ka]rex材料所形成之〇形環。 10 * 200534751 頂端區域124係典型為安裝至第二 使得於第二區域m之㈣為最】二 女裝方式係 穷…" 但為取小化而提供足夠的壓縮以 山封頂碥區域124至第二區域。於一此 物係射頻及直流接地,如於第丨圖了:。拉式,頂端區 些實施例’頂端區域124係包含-冷卻系統,其 ^ g # ^ ^ _ 耗放农處理期間所產生的 二負載。该冷❹統係可為其包括冷卻通道ΐ2δ於頂 ^ 124之一種流體冷卻系統’其循環來自一冷卻-一 液體冷卻劑。一些處理(諸如: ’、 ^ ^ 甩水摻雜處理)係因為二次 了射而產生可觀量之非均勾分布的熱量於電浆室之内 …句分布的熱量係產生溫度梯度,其為足夠高以 巳於至102之内的熱應力點,而可造成室⑽之失效。 &於一個實施例,室頂端118之第二區物於垂直方 :=:°與其跨越室頂㈣之第二區物於水平 方向的長度132之-比值係約為於15肖$ 十 圖所示之實施例,第_ E„ B 衣弟1 而於士 弟一 ^ 122係形成於圓柱的形狀。狹 ,方;本舍日月之其他的實施例,室丁頁端ιΐ8之第— 係未必為延伸於一水平方向。此外, > °° 5 $山 ;他员施例,室頂 ^8之第二區物係未必為延伸於—垂直方向。 域二:广係定位於室⑻而在室頂端Π8的頂端區 一 下方的一高度136且在室頂端118的楚一^々 之下方的一高度138。△板134仡 品域120 凌牲日 口板134係可為一基板支持物,並 ir二圓:4°以供處理。舉例而言’若電浆源】。。係構 成為-編入離子植入源,台板134係支持一個目標, 200534751 諸如:欲作植入之—個半導體晶圓。於一個實施例,^ 1 34 iT、尺寸為使得其為定位於室頂# n s > 主貝為118的内徑142之内。 灰-些實施例’一偏麼電麼電源供應器〗 接至台板134。偏屋電編供應器U4係偏屋該::二 :二電壓’其吸引於電黎之離子至晶圓·偏麼電” 器。 了4 4…供應器或-射頻電源供應 -射頻天線係定位為鄰近於竹 與第二區域m之至少H第 〇弟&域120 孫-甘4 、弟1圖所不之電漿源100 二:;=Γ二個分離的射頻天線。具有複數個The meat is coupled to 102 through a proportional valve 106 and the gas source 104 is supplied from the gas source 104 to the chamber 102. A dust force of 108 is a pressure measured in the chamber 102. A sister # 1 ^ breast pump port 1 10 in the chamber 102 is coupled to a vacuum pump 1 12 which evacuates the chamber 102. An iit Θ 1 1/1 less 1-port milk drain valve 1 1 4 controls its exhaust conductance through exhaust port no. A gas pressure controller i! 6 # + 0 series electric milk is connected to the proportional valve i 06, the pressure gauge 108, and the exhaust valve U4. The breast pressure controller 116 is maintained at the desired pressure in the chamber 102. The breast milk discharge valve 1 14 is used to control the exhaust gas conductance and it is in response to the pressure knife. The ratio of a feedback loop of T 10 08 is 06 to control the process gas flow rate. In some embodiments, a trace gas species ratio is provided by a mass flow meter (w fl meter) (not shown), and the mass line is lightly connected to its lifting "lobes. In addition, In Yu Shi, the treatment of ceremonial species, the wounded, military field two "" column, a separate gas injection mechanism (not incomplete) is used for socks ^ ^ ^ ^ ^ (SltU) species adjustment. For example, doping can be used to provide a uniform coverage; I ^ h 1 02, which reduces the amount of metal ions, "w" is noisy to one thing. Furthermore, in some embodiments, one kind is more ^ The gas injection mechanism (Go to Skeleton_ ^ Xihan's (not 4 not)) is used to provide gas, causing it to cause cross-200534751 chemical changes neutral to the wafer change. To the 02 02 series has a chamber top horizontal direction Of a dielectric material, including extending from-general 118-the second region m system 'from it; the first-region 120. the top of the room extends in a straight direction 〇 In a summary of the first bathroom _ ^ is formed by another dielectric material. The top of the chamber Π8, the brother ― £ domain 12〇 The uniformity of the plasma generated by the sizes of 122 and 122. '& selected to improve the chamber 102 in the first and second area body for transfer # ^ ^, Μ dielectric material system provides a medium 1 The private RF power comes from the slurry. One person ^ $ The RF antenna is a dielectric material within the chamber 102: used to form the first and second regions 120 and 122. The material is of pure purity. Ceramics is stable and exhibits fw, which is a thermal property of the process gas. For example, in some embodiments, the material is 99.6% of Ai, and the electrical material is Ylttria and YAG. 2 N. In other embodiments, it is between the top region 124 of water ΓΓΓ18, and it spans the first: region 122 and A. And it is formed by a conductive material of 1 degree. It can be used in many cases. The conductivity of the material forming the top region 4 124 is to reduce the heat dissipation load and minimize the charge due to secondary electron emission: ⑽ is minimized. Typically, the conductivity used to form the top region * or m is The material is chemically stable to the processing gas. The conductive material is described in the following. A '^ top region m It can be connected to the second area 122 by a halogen-resistant O-shaped frame made of carbon material, such as a O-shape formed by Chermz and / or Ka] rex materials. 10 * 200534751 The top area 124 is typically installed to the second area so that the second area m is the most.] The second women's style is poor ... " But to provide sufficient compression to reduce the size of the area 124 to the second area. The RF and DC grounding of this system is as shown in the figure below. Pull-type, tip region In some embodiments, the tip region 124 includes a cooling system which consumes two loads generated during agricultural processing. The cold heading system may be a fluid cooling system 'including a cooling channel ΐ2δ to 124 124, whose circulation comes from a cooling-a liquid coolant. Some treatments (such as: ', ^ ^ throwing water doping treatment) generate a considerable amount of non-uniformly distributed heat within the plasma chamber due to the second shot ... The distributed heat system generates a temperature gradient, which is It is high enough to reach the thermal stress point within 102, which can cause the failure of the chamber. & In an embodiment, the second region of the top 118 of the chamber is vertical: =: ° and the horizontal length 132 of the second region of the second region that crosses the top of the chamber is-about 15 Shaw The embodiment shown, the first _ E „B Yidi 1 and Yu Shidi ^ 122 are formed in the shape of a cylinder. Narrow, square; other embodiments of the sun and the moon, the end of the room page 8th — The system does not necessarily extend in a horizontal direction. In addition, > °° 5 $ 山; other examples, the second zone of the room roof ^ 8 may not necessarily extend in the vertical direction. Domain 2: The wide system is positioned in the room ⑻ A height 136 below the top area of the chamber top Π8 and a height 138 below the Chu top ^ 々 of the chamber top 118. △ plate 134 域 品 域 120 Lingshoukou plate 134 can be a base plate Supports and ir two circles: 4 ° for processing. For example, 'if the plasma source] is composed of-programmed into the ion implantation source, the platen 134 supports a target, 200534751 such as: for implantation One semiconductor wafer. In one embodiment, ^ 1 34 iT, the size is such that it is positioned on the top of the chamber # ns > The main shell is within 118 Within 142. Gray-some examples 'a bias power supply power supply' is connected to the platen 134. U4 series power supply U4 series biased house: 2: two: two voltages, which attracts the ions of Li Li To wafer · biasing device. The 4 4… Supply or-RF power supply-RF antenna is located at least H of the 0th & domain 120 adjacent to the bamboo and the second area m. Two:; = Γ two separate RF antennas. Have plural

^ 十面線圈天線146俜宕仿盔种A 係疋位為鄰近於室頂端118的第 —區域U0,且具有具有複數 弟 係環繞室頂端118的第二區物。累疑線圈天線⑷ 平面線圈夭供應裔之一射頻源、WO係電氣連接至 千面線圈天線146與螺旋線圈天、線148之至 源1 5 0係藉由一阻抗匹配 ' y、 14δ 1配,罔路152而耦接至射頻天線146、 广阻抗匹配㈣152係使得由射頻源、 移 頻:線—之功率為最大化。由阻抗匹配= 之%岀至平面線圈天線1 4 $汴總Α ,0與螺'疋線圈天、線…的虛線係 才曰出.電氣連接為可由阻抗匹配網路152之輸 :線圈天、線146與螺旋線圈天、線148之任一者或二者 成。 卜 射頻源150係共振射頻電流於射頻天、線146、148。於 射y員天線146、148之射頻電流係感應射頻電流至室I。〕。 12 -200534751 方、至1 0 2之射頻電流係激發及離子化該處理氣體以產生 電漿於室102。 1 本發明之電漿源係可具有諸多不同的天線架構。平面 線圈天線1 46與螺旋線圈天線1 48之至少_者係一種主動 ⑽ve)天線。術語“主動天線”係定義於本文為其由一電 源供應器所直接驅動之一種天線。換言之,由電源供應: 所產生的一電壓係直接施加於一主動天線。^ The decahedral coil antenna 146 is a helmet-like type A system located at the first region U0 adjacent to the top 118 of the chamber, and has a second region surrounding the top 118 of the chamber. Suspicious coil antenna 平面 Plane coil 之一 One of the suppliers of radio frequency source, WO series is electrically connected to the thousand-face coil antenna 146 and spiral coil antenna, line 148 to the source 1 50 0 is matched by an impedance matching 'y, 14δ 1 The circuit 152 is coupled to the radio frequency antenna 146, and the wide impedance matching circuit 152 maximizes the power from the radio frequency source, frequency shift: line. From the impedance matching =% 岀 to the planar coil antenna 1 4 $ 汴 Total Α, 0 and the spiral line of the '、 coil antenna, wire, etc. are shown. The electrical connection is the input of the impedance matching network 152: coil antenna, The line 146 is formed with one or both of the spiral coil antenna and the line 148. The RF source 150 is a resonant RF current on the RF antenna, line 146, and 148. The radio frequency currents of the radio antennas 146 and 148 induce radio frequency currents to the chamber I. 〕. The RF current from 12 -200534751 to 10 2 excites and ionizes the processing gas to generate a plasma in the chamber 102. 1 The plasma source system of the present invention may have many different antenna architectures. At least one of the planar coil antenna 1 46 and the spiral coil antenna 1 48 is an active antenna. The term "active antenna" is defined herein as an antenna for which it is directly driven by a power supply. In other words, from the power supply: a voltage is directly applied to an active antenna.

於一些實施例,平面線圈天線146與螺旋線圈天線148 之至少一者係形成,俾使其可為液體冷卻。舉例而言,平 面線圈天線146與螺旋線圈天線148係可為管狀構件,其 為連接至一個加壓的流體源。冷卻該平面線圈天線146與 螺旋線圈天線148之至少—者係將降低由其傳播於射頻天 線146、148的射頻功率所引起之溫度梯度。 於一些實施例,平面線圈天線146與螺旋線圈天線 之至少一者係一種寄生(parasitic)天線。術語“寄生天線,, 係定義於本文為意指其為電磁相通於—主動天線而非為直 接連接至一電源供應器之一種天線。換言之,一寄生天線 係非為直接由一電源供應器所激發而是為由一主動天線所 激發。 、舉例而言,於一個實施例,平面線圈天線146係其為 連接至$源供應$ 1 5〇的輪出之—主動天線,而螺旋線圈 天線148係其定位為電磁相通於平面線圈天線1 之一寄 生天線。於另一個實施例,螺旋線圈天線148係其為連接 至電源供應器150的輪出之-主動天線,而平面線圈天線 13 •200534751 1 46係其定位為電磁相通於螺旋線圈天線1 48之一寄生天 線。 方、本心明之一些實施例,寄生天線之一端係電氣連接 至接地黾位藉以提供天線調譜(tuning)能力。於此實施例, 寄生天線係包括一線圈調整器,其為運用以改變於寄生天 、-泉的線圈之有效匝數。諸多不同型式的線圈調整器係可運 用。舉例而δ ’第丨圖所示之線圈調整器丨54係一金屬短 路(short),其為定位於寄生天線的一浮接端與螺旋線圈天 線148的期望匝數之間。於其他的實施例,寄生天線係 電氣洋接於二端。於此等其他的實施_,一帛關(未顯示) 係運用以選擇於寄生天線的線圈之期望匝數。 於一些實施例,電漿源100係包括一電漿點火器156。 諸多型式的電漿點火器係可運用於本發明之電漿源。於一 個實施例’電漿點火器156傳、包括:撞擊(stnke)氣體之— 貯藏器158,撞擊氣體為諸如氣(Ar)之一高度可離子化的 氣體,其為助於點火該電漿。貯藏器158係可為已知的容 積與已知的壓力之一個相當小的貯藏器。貯藏器I”係藉 著一高傳導率的氣體接線160而耦接至電漿室]〇2。一^ ^(burst)閥162係隔離該貯藏器158與室ι〇2。於另—: 貝施例,-撞擊氣體源係運用—低傳導率的氣體接線而直 接鋪設至猝發閥162。 於操作時,冑102係抽真空至高度真空。處理氣體係 接著為由比例闊1〇6而引入至室102且為由真空泵ιΐ2所 排出自該$ 1〇2。氣體壓力控制器116係運用以針對於一 14 200534751 期望的處理氣體流量率與排 力。 導率而維持期望的氣體壓 射頻源150係產生其為施 射箱%哚 勹她加至射頻天線146、148之一 的咕一 射頻源150係產生一相當低頻 、射v員汛5虎。運用一相當低 為入或η ^ -負的射頻訊號係將使得電容性 耦合為琅小化,且因此將 污染。舉例而言,於此等壁部之㈣及所造成的 低於27百兹ρ 例,射頻源150係產生其為 -、 百萬赫茲(MHz)的射頻訊辨, · 4MHz ^ ^ 13.56MHz 〇 …如· 400kHz、2MHz、 施加至射頻天線146、148 流於射頻天線146、148。由射訊號係產生-射頻電 、、古辦成广 由射頻天線146、148之射頻電 級所感應的電磁場係耦 、 120盥介電柑迻、,丨包材料所形成的第一區域 ”彡丨兒材枓所形成的第二區 至室1〇2。於一些操作模"、:之-者且耗接 接至射頻源150之—主動^流係猎著其為電氣搞 _ £ ^ ] ? 、、而感應透過室頂端1 1 8之第 h域120,且藉著一茸 心乐 區域⑵。於其他的摔作模ΓΓ過室頂端118之第二 I馬接至射頻源15〇之動=射頻電流係藉著其為電氣 第二區域⑵,且藉著二天線而感應透過室頂端1】8之 一區域120。 ^ "線而透過室頂端i18之第 感應於室H)2之電磁場係激發及 子。電漿點火係發生在杳 匕忒處理氣體分 子化-些處理0八數的自由電子為移動使得其離 多的自由電子I::。離子化的處理氣體分子係釋放更 其係離子化更多的氣體分子。該離子化過 15 200534751 程係持續而直到離子化的氣體與自由電子 卞之一穩定狀態為 存在於電漿。於-些實施例,電漿之特性係藉著線圈調整 器154以改變於寄生天線的線圈之有效匝數而調整。 電襞點火係對於一些處理氣體而言為困難,諸如· 硼烷(dlborane)於氦(He)(15% 的 於 85% 的 士)。針= 於此等氣體,合意為運用一撞擊氣體以起始電漿。於一個 實施例,-撞擊氣體係於-預定時間而可控制式引入至電 漿室102’藉著打開且接著閉合猝發閥162。猝發閥= 係通過一短的高流量率猝發之撞擊氣體至電漿室藉 以助於點火該電漿。 曰 #發氣體輪廓(pr〇file)係由振幅、形狀與摔發持續期 間而描述特徵。猝發氣體輪廓係由數個因素而定義,諸如’: 猝發閥162為打開之時間長度、於貯藏器158之撞擊氣體 的麼力與體積、氣體線4 16G之傳導率、真空泵之抽氣速 :、與排氣閥m之位置。於一些實施例,貯藏器158之 -部:係由-限制傳導率的孔164或計量闕所分離,孔164 或计量閥係在該初始的宾、、点旦、玄 、士曰 的阿微里率猝發之後而提供一穩定的 Λ丨L量率之撞擊氣體。 a孔"丘壓刀硿制器116係感測於室壓力之一增大與於處 “里之-對應的減小’其為由摔發之撞擊氣體而造 成:塵力控制器' 116係接著調整排氣傳導率且改變於一個 心迴路之處理氣體流量率,其為響應於壓力言"08,使 ㈣期望的響應時間内而恢復至期望的處理條 件0 16 •200534751 舉例而& ,包含氬(Ar)之一撞擊氣體係可運用以點火 乙硼烷於氦(He)(l5%的:^比於85%的He)。於此實施例, 一電漿係可為撞擊以一猝發之氬,其為於一 〇.5至5 〇秒 的時間區間而引人自其具有壓力為約· & (TGrr)之一限 制傳導率的氣體供應器。猝發之氬係增大於該室之麼力為 約20毫托(mTorr),其提供電漿之可靠的點火。In some embodiments, at least one of the planar coil antenna 146 and the spiral coil antenna 148 is formed so that it can be liquid cooled. For example, the planar coil antenna 146 and the spiral coil antenna 148 may be tubular members that are connected to a source of pressurized fluid. Cooling at least one of the planar coil antenna 146 and the spiral coil antenna 148 will reduce the temperature gradient caused by the radio frequency power transmitted to the radio frequency antennas 146, 148. In some embodiments, at least one of the planar coil antenna 146 and the helical coil antenna is a parasitic antenna. The term "parasitic antenna" is defined herein as meaning that it is an electromagnetically communicating-active antenna rather than an antenna directly connected to a power supply. In other words, a parasitic antenna is not directly connected to a power supply. The excitation is excited by an active antenna. For example, in one embodiment, the planar coil antenna 146 is an active antenna connected to a source of $ 150, and the spiral coil antenna 148 It is positioned as a parasitic antenna that is electromagnetically connected to the planar coil antenna 1. In another embodiment, the spiral coil antenna 148 is a wheel-out active antenna connected to the power supply 150, and the planar coil antenna 13 is 200534751. The 1 46 series is positioned as a parasitic antenna that is electromagnetically connected to the spiral coil antenna 1 48. In some embodiments of Fang and Benxin, one end of the parasitic antenna is electrically connected to the ground position to provide antenna tuning capability. In this embodiment, the parasitic antenna system includes a coil adjuster, which is used to change the effective number of turns of the coil on the parasitic antenna. Many different types of The coil adjuster can be used. For example, the coil adjuster 54 shown in the figure δ 'in the figure is a metal short, which is a floating terminal positioned on the parasitic antenna and the desired number of turns of the spiral coil antenna 148. In other embodiments, the parasitic antenna is connected to the second terminal. In these other implementations, Yiguan (not shown) is used to select the desired number of turns of the coil of the parasitic antenna. In the embodiment, the plasma source 100 includes a plasma igniter 156. Many types of plasma igniters are applicable to the plasma source of the present invention. In one embodiment, the plasma igniter 156 includes: stnke) of gas — the reservoir 158, the impinging gas is a highly ionizable gas such as gas (Ar), which helps to ignite the plasma. The reservoir 158 can be a known volume and a known pressure A relatively small reservoir. The reservoir I "is coupled to the plasma chamber by a high-conductivity gas connection 160]. A (burst) valve 162 isolates the reservoir 158 from the chamber OM2. In another —: Example,-the impinging gas source is used-a low-conductivity gas wiring is directly routed to the burst valve 162. During operation, the 胄 102 is evacuated to a high vacuum. The process gas system is then introduced into the chamber 102 by a ratio of 1.06 and is discharged from the $ 102 by a vacuum pump. The gas pressure controller 116 is used in response to a desired process gas flow rate and displacement. Conductivity to maintain the desired gas pressure. The radio frequency source 150 generates a radio frequency source 150 which is one of the radio frequency antennas 146 and 148. The radio frequency source 150 series generates a relatively low frequency radio frequency. Using a relatively low RF or η ^ -negative RF signal system will allow capacitive coupling to be minimized, and therefore will pollute. For example, in the case of these walls and the cases below 27 Hz, the RF source 150 generates a radio frequency identification of-, million hertz (MHz), · 4MHz ^ ^ 13.56MHz. ... Such as 400kHz, 2MHz, applied to the RF antennas 146, 148 flowing through the RF antennas 146, 148. Generated by the radio signal system-the first area formed by the radio frequency electricity, the electromagnetic field coupling induced by the radio frequency of the radio frequency antennas 146 and 148, 120 dielectric dielectric shift, and the material "丨 The second zone formed by the children's material is from room 102 to room 102. In some operating modes ",:-, and it is connected to the RF source 150-the active ^ current system is hunting it for electrical _ £ ^ ], And the induction passes through the h-th region 120 of the room top 1 1 8 and through a heart-warming area ⑵. The other I horse passing through the top 118 of the room is connected to the RF source 15. Motion = RF current is induced through the second area of the room ⑵ through the two antennas, and is transmitted through one of the top 1 of the room 120. ^ " Line through the top of the room i18 is induced in the room H) The electromagnetic field system of 2 excites and plasmons. Plasma ignition occurs when the gas molecules are treated with daggers-some free electrons are processed so that they are many free electrons. I ::. Ionized gas molecules Releases more gas molecules that are ionized by the system. The ionization process continues until the ionization. One of the stable states of gas and free electrons is the existence of plasma. In some embodiments, the characteristics of the plasma are adjusted by the coil adjuster 154 to change the effective number of turns of the coil of the parasitic antenna. Electron ignition It is difficult for some processing gases, such as dlborane to helium (He) (15% to 85% taxis). Needle = For these gases, it is desirable to use an impinging gas to start electricity In one embodiment, the -impinging gas system is controllably introduced into the plasma chamber 102 'at a predetermined time by opening and then closing the burst valve 162. The burst valve = is an impulse that passes through a short high flow rate burst The gas to the plasma chamber helps to ignite the plasma. # 发 Gas Profile (pr0file) is characterized by the amplitude, shape, and duration of the fall. The burst gas profile is defined by several factors, such as' : Burst valve 162 is the length of time that the burst valve 162 is opened, the force and volume of the gas impinging on the reservoir 158, the conductivity of the gas line 4 16G, the suction speed of the vacuum pump :, and the position of the exhaust valve m. In some embodiments , The reservoir 158-part: It is separated by the hole 164 or metering 阙 that limits the conductivity. The hole 164 or the metering valve provides a stable Δ 丨 L amount after the initial Bin, Burden, Xuan, and Shijiazhuang burst. A hole " Qiu pressure knife controller 116 is to sense that one of the pressure in the chamber increases and the "reduction in the inside-corresponding decrease" is caused by the impact gas falling: dust The force controller '116 series then adjusts the exhaust gas conductivity and changes the processing gas flow rate of a heart circuit. It responds to the pressure word "08, and restores the desired processing time to the desired processing conditions. 0 16 • 200534751 As an example, & an impinging gas system containing argon (Ar) can be used to ignite diborane to helium (He) (15%: ^ compared to 85% He). In this embodiment, a plasma system may be impinged with a burst of argon, which is in a time interval of 0.5 to 50 seconds and is attractive since it has a pressure of approximately one & (TGrr). Gas supply with conductivity. The burst of argon is about 20 millitorr (mTorr), which provides reliable ignition of the plasma.

第2圖係說明根據本發明之一種射頻電漿源,其 :有於-第-方向的一第一射頻線圈、於一第二方向的一 第射頻線圈、及一導電性的頂端區域。射頻電浆源· 係類似於其為關連於第1圖所述之射頻電黎源100。電浆 源係包括其含有—處理氣體之—室1G2。透過一比例 二106而純至該室之—氣體源W係供應該處理氣體至 至 1 02 〇 〜門而魘刀。一氣體壓 力心制為1 1 6係運用以維持 语^ 幵於至102之期望的壓力,藉著 建立一排氣傳導率且葬菩祚料士\ 半且糟者改交於其為響應於麼力計108的 —個回授迴路之處理氣體流 至一直4 η?… 里丰i M2係包括其為耦接 工泵112之一個排氣埠1 1〇, 該室1〇2。 ,、工汞1 12係抽真空 支102係具有一室頂 彎曲方h & 入 、而 ,/、a括由延伸於一概括 弓曲方向的一介電材料所形 202之-第二區域2〇6係由A延伸2G4°室頂端 介電材料所形成。第一與第一概括垂直方向之- 第_盥裳 ” 一區域204、2〇6係非為正交。 乐與弟二區域2〇4 n ^ 之形狀與尺寸係可選擇,以改 17 200534751 善於室102所產生的電毁之均勾度。室頂端202之—項端 t域Γ係由一導電性材料所形成,且延伸-長度m而 5亏越弟一區域206。於一此每竑彳| 二戶'靶例,室頂端202之頂端區 f 124係包括冷卻通道128,用於通過冷卻流體以控制頂 端區域124之溫度。 、 124—台板1則定位於室102而在該室⑽的頂端區域 之下方白勺㈤度136。台板134係可為-基板支持物, 其支持一晶圓140以供處理,如於本文所述。於一”施 例偏壓電壓電源供應器144係電氣連接至台板134、。 —射頻天線係定位為鄰近於[區域⑽肖第二區域 播06之至少—者。該射頻天線係、可具有諸多不同的天線架 二如於本文所述。於第2圖所示之電⑽2〇〇係顯示1 笔氣隔離之二個分離的射頻天線。具有複數難之一線 圈天線208係環繞該室頂端202的第一區域2〇4之彎曲部 t具有具有複數㈣之—螺I㈣天線21G係環繞該室 了、2〇2的第二區域206。線圈天線208與螺旋線圈天線 ㈣之至少—者係—主動天線,如於本文所述。於一些實 ^ 鈀例’線圈天線208與螺旋線圈天線21〇之至少一者係形 成’俾使其可為液體冷卻。 ^ 諸如一射頻電源供應器之一射頻源i5〇係電氣連接至 :圈天線_與螺旋線圈天線2】〇之至少一者。射頻源Μ π猎由-阻抗匹配網路】52而轉接至射頻天線咖、^ , 阻抗匹配網% 152係使得由射頻源15〇所轉移至 、⑽之功率為最大化。於-些實施例,電㈣2〇〇^ 18 200534751 包括一電漿點火器156,复 之操作係類似於甘法 '、馬力於點火該電漿。射頻源200 喊似於其為關連於第 作。 * 1圖所述的電漿源1〇〇之操 弟3圖係說明根據本發明 具有垂直與水平& & # & 種射頻電漿源300,其 人十的射頻線圈、_ ★ 陽極。射頻電將、、原7ηη ^ 、电性的頂端區域、及一 々电水源300係類似 射頻電漿源、_。電漿源遍、/、為關連於弟1圖所述之 一室1Q2 、# 、 係包括其含有一處理氣體之 2。透過一比例閥106而叙 係供應該處理氣體至室1G2。 4之-氣肢源104 一塵力計1 08係測量於 彳里万、i 102之内的壓力。一氣體壓 / 係運用以維持於室1〇2之期靖力,藉著 一 氣傳導率且藉著改變於其為響應於壓力計108的 :^又迎路之處理氣體流量率。室1〇2係包括其為麵接 - HU2之一個排氣埠11〇,真空泵u 該室102 。 工FIG. 2 illustrates a radio frequency plasma source according to the present invention, which includes a first radio frequency coil in the -first-direction, a first radio frequency coil in a second direction, and a conductive tip region. The RF plasma source is similar to the RF plasma source 100 shown in FIG. 1. The plasma source system includes a chamber 1G2 containing a processing gas. The gas source W, which is pure to the chamber through a ratio of two 106, supplies the processing gas to the door and then the knife. A gas pressure system of 1 1 6 is used to maintain the desired pressure of ^ 幵 to 102, by establishing an exhaust gas conductivity and burying the burial master \ half and worse turn it in response to it The processing gas of a feedback circuit of the Malometer 108 flows to 4 η? ... The Lifeng i M2 series includes an exhaust port 1 10, which is a coupling to the pump 112, and a chamber 102. 1, 12 series of vacuum pumps 102 series have a curved roof h & into, and /, a includes a second area 202-shaped by a dielectric material extending in a general bow direction 206 is formed by A extending 2G4 ° dielectric material at the top of the chamber. The first and the first generalized vertical directions-the first _ _ _ _ shou "The area 204, 206 is non-orthogonal. The shape and size of the area 208 n ^ of the music and brother two can be selected to change 17 200534751 Good at the average degree of electrical destruction generated by the chamber 102. The top of the chamber 202-the term t-field Γ is formed of a conductive material, and extends-length m and 5 loss of a region 206.竑 彳 | Two households' target example, the top area f 124 of the room top 202 includes a cooling channel 128 for controlling the temperature of the top area 124 through a cooling fluid. 124-The platen 1 is positioned in the room 102 and is located there. Below the top area of the chamber, the degree 136. The platen 134 may be a substrate support, which supports a wafer 140 for processing, as described herein. In a "embodiment, the bias voltage power supply The device 144 is electrically connected to the platen 134 ,. —The radio frequency antenna is positioned at least adjacent to the [Area Xiao Xiao second area broadcast 06]. The RF antenna system can have many different antenna frames, as described herein. The electric cable 200 shown in Figure 2 shows two separated RF antennas with 1 gas isolation. The coil antenna 208 having a plurality of difficult coils 208 surrounds a curved portion 204 of the first region 202 of the chamber top 202, and has a second region 206 having a plurality of helical I-helix antennas 21G surrounding the chamber. At least one of the coil antenna 208 and the spiral coil antenna is an active antenna, as described herein. In some practical examples, at least one of the palladium coil antenna 208 and the helical coil antenna 210 is formed to make it liquid-coolable. ^ An RF source i50, such as an RF power supply, is electrically connected to at least one of: a loop antenna_ and a spiral coil antenna 2] 〇. The RF source M π hunts by-impedance matching network] 52 and transfers to the RF antenna antenna ^. The impedance matching network% 152 maximizes the power transferred to RF by RF source 150. In some embodiments, the electric pump 200 ^ 18 200534751 includes a plasma igniter 156, and the operation is similar to Gaffa's, and the horsepower is used to ignite the plasma. The RF source 200 shouts as if it is related to the first operation. * Figure 3 of the plasma source 100 shown in Figure 1 is a diagram illustrating a vertical and horizontal & &# & RF plasma source 300 according to the present invention. . The radio frequency power source, the original 7ηη ^, the electrical top area, and the electric water source 300 are similar to the RF plasma source, _. Plasma sources are all connected to a chamber 1Q2, #, as shown in Figure 1, including the 2 which contains a processing gas. The process gas is supplied to the chamber 1G2 through a proportional valve 106. No. 4-Pneumatic Limb Source 104 A Dust Meter 1 08 series measures the pressure in Baliwan, i 102. A gas pressure / force is used to maintain the period of time in the chamber 102, by a gas conductivity and by changing it to be in response to the pressure gauge 108: ^ and approaching the process gas flow rate. The chamber 102 includes an exhaust port 1110 which is a face-to-face HU2, a vacuum pump u the chamber 102. work

至1 〇2係具冑至頂端1 18,其包括由延伸於一水平 方向介電材料所形成之一第一區4 12〇。室頂端US ::第二區域122係由其自第-區域於-垂直方向而延伸 :高度之-介電材料所形成。室頂端"8之一頂端區域124 係由其跨越第二區域122於水平方向而延伸一長度之一導 電性材料所形成。於_些實施例,室頂端丨丨8之頂端區域 1 24係包含一冷卻系統,如本文所述。第一與第二區域1 、 1 2 2的尺寸係可遠擇,以改善於室1 〇 2所產生的電漿之均 勻度,如本文所述。 19 200534751 一陽極302係'定位於室102且為鄰近於室頂端11S之 頂端區域 1 2 4。於一此杏a 方、些貫施例,陽極的面積與室頂端 118之頂端區域124的面積之比值係小於1。於一此實施 例’陽極302係具有如於第3圖所示之平面的幾何:質。 然而,於本發明之餘一 、 質。舉例而言,於—此1= 多其他的陽極幾何性 、二η靶例,陽極3〇2係形成_ 一,其分散於室102之處理氣體。此外,二= 例,陽極如係形成其分配該處理氣體至$ 1〇2之:= 頭(Sh〇Werhead)。再者,於一些實施例,相對於室# 118 的頂端_ 124…102的陽極302之位置俜 舉例而言,相對於頂端區域124之於室1〇2的陽 =二 位置係可選取以達成一特定的電漿均勻度。 之 於一個實施例,如第3圖所示, 電氣連接至陽極302。電源供應器304係可為^ 3〇4係 流電源供應器、-射頻電源供應器、或一脈會氏衝式直 供應器與-射頻電源供應器之一組: 式直流電源 偏壓該_搬以放射電子。於其他的應器304係 係電氣連接至接地電位或為電氣浮接狀的態^例’陽極撕 一台板134係定位於室而在陽極302 南度306且在該室頂端118的第,120之下、 度⑽。台板134係可為一基板支持物, 万的一面 以供處理,如於本文所述。於一 ;、支知-晶圓140 源供應器144係電氣連接至台板134"歹1 ’ —偏壓電壓電 一射頻天線係定位為鄰近於第—區域120與第二區域 20 •200534751 Γ二?—者。於第3圖所示之電漿源300係顯示其為 二個分離的射頻天線。如為關連於第i圖所述, t有複數個阻之一平面線圈天線146係定位為鄰近於室頂 二的第—區域120,且具有具有複數個阻之-螺旋線 1=二係環繞該室…18的第二區域122。平面線 =天線146與螺旋線圈天、線148之至少一者係一主動天 線。於一些實施例,平面線圈天線⑷與螺旋線圈天線148 之至少一者係形成,俾使其可為液體冷卻。 、,遠如一射頻電源供應器之一射頻源15〇係電氣連接至 平面線圈天線146與螺旋線圈天線148之至少一者。射頻 源丨50係藉由—阻抗匹配網路152爾至射頻天物:、 148 ’阻抗匹配網路152係使得由射頻源、所轉移至射 頻天線146、148之功率為最大化。於一些實施例,電漿 源300係包括一電浆點火器156,其為助於點火該電裝。 射頻源300之操作係類似於射頻源i 〇〇之操作。然而 陽極302係偏麼以放射電子。射頻源15〇係共振射㈣流 於射頻天線⑷、148。於射頻天線146、148之射頻電流 係感應射頻電流至室102。電源供應器3〇4係於—電壓而 犯加一脈衝式直流及/或一射頻場(field)至陽極3〇2, %極302以放射電子。由陽極所放射的電子以及電子感應 的射頻電流係激發且離子化該處理氣體,以點火一電漿於 至102。一電漿點火器(igniter) 156係可運用以助於點火該 電漿。電漿係藉由陽極302所放射的電子與感應的射頻電 流之一者或二者而持績。 、 21 200534751 根據電㈣係可運用以實施諸多型式的電裂 ^ -些電㈣里係在等峰。ban彻溫(_ 的條件之下而貫施’以使得對於處理系統之衝擊為最小 二::二對於系統之衝擊係將降低於室與於晶圓之特定 例而言,根據本發明之電聚源係可運用於電聚 :ΓΓ:。!漿浸入離子植入係要求高度均勻的電漿 哭144;:乂’漿浸入離子植入係要求的是:電源供應 口口 144係偏壓台板j 34於一 g恭厭品杜… 圓或目標14。。 ““使得離子為吸引至晶 根據本發明之-種產生用於離子植入的均勾電喂之方 二係包括:引入—處理氣體至…〇2。-射頻電流俜成 應透過室頂端m的第一與第二區域m、i22: = 材料。射頻電流係激發及離子化該處理氣體;;產 生-_該室1〇2。室頂端118的第一與第二區域12〇、 何性:及射頻天線之架構係選取’使得均勻的電 φ 。此外,電磁耦合係可藉著線圈調整器154而調 ’ ’以改善電漿的均勻度。定位於台4反134之 :V;。係、偏壓,使得於電槳之離子係吸引至晶:丄 二次電子係當於電漿之離子為衝擊晶圓或目標14〇而 二生。:等二次電子係由於其形成室頂端118的頂端區域 —之導電性材料而耗散。耗散二次電子係降低或消除由 :次f子所引起的充電效應,且因此改善電漿的均勻度。 至頂立而118的頂端區肖124係可能需要流體冷卻,藉以耗 22 200534751 放田炫一一人%子為衝擊於 千兒性材科時所產生的熱量。 關連於第1至3圖所述To 1002 has a top to 118, which includes a first region 4120 formed by a dielectric material extending in a horizontal direction. The chamber top US :: second region 122 is formed by a -dielectric material that extends from the -th region in the vertical direction: the height. One of the apical regions 124 of the chamber apex 8 is formed of a conductive material extending a length in a horizontal direction across the second region 122. In some embodiments, the top region 1 24 of the chamber top 8 includes a cooling system, as described herein. The sizes of the first and second regions 1 and 12 can be selected remotely to improve the uniformity of the plasma generated in the chamber 102, as described herein. 19 200534751 An anode 302 is' located at the chamber 102 and is a top region 1 2 4 adjacent to the top of the chamber 11S. In some embodiments, the ratio of the area of the anode to the area of the top region 124 of the chamber top 118 is less than one. In this embodiment, the anode 302 has the geometry of a plane as shown in FIG. 3: quality. However, the quality of the present invention is better. For example, in this-1 = many other anode geometries, two η targets, the anode 302 is formed as one, which is dispersed in the processing gas of the chamber 102. In addition, two = for example, if the anode is formed, it distributes the processing gas to $ 102: = head (ShOWerhead). Furthermore, in some embodiments, the position of the anode 302 relative to the top of the chamber # 118 _ 124 ... 102 俜 for example, the position of the anode = two of the chamber 102 relative to the top region 124 may be selected to achieve A specific plasma uniformity. In one embodiment, as shown in FIG. 3, the anode 302 is electrically connected. The power supply 304 series may be a ^ 304 series current power supply, an RF power supply, or a group of a pulse-type direct power supply and an RF power supply: a DC power supply bias. Carrying emitted electrons. The other reactors 304 are electrically connected to the ground potential or are electrically floating. Example: The anode tears a plate 134 is positioned in the chamber and 306 south of the anode 302 and 118th on the top 118 of the chamber. Below 120 degrees. The platen 134 can be a substrate support, one side for processing, as described herein. Yuyi, Zhizhi-Wafer 140 source supplier 144 is electrically connected to the platen 134 " 歹 1 '-bias voltage electric-radio frequency antenna system is positioned adjacent to the first area 120 and the second area 20 • 200534751 Γ 二? -By. The plasma source 300 shown in Figure 3 shows that it is two separate RF antennas. As shown in FIG. I, the planar coil antenna 146 having one of a plurality of resistances t is located adjacent to the first area 120 of the roof top two, and has a helix of a plurality of resistances-helix 1 = two-system surrounding The chamber ... 18 of the second area 122. Plane line = At least one of the antenna 146 and the spiral coil antenna 148 is an active antenna. In some embodiments, at least one of the planar coil antenna ⑷ and the spiral coil antenna 148 is formed so that it can be liquid cooled. As far as one of the RF power supplies, the RF source 15 is electrically connected to at least one of the planar coil antenna 146 and the spiral coil antenna 148. The RF source 50 is connected to the RF antenna through the impedance matching network 152. The impedance matching network 152 maximizes the power transferred from the RF source to the RF antennas 146 and 148. In some embodiments, the plasma source 300 includes a plasma igniter 156 to assist in igniting the device. The operation of the radio frequency source 300 is similar to that of the radio frequency source 100. However, the anode 302 does not emit electrons. The RF source 150 is a resonance radio stream flowing through the RF antennas 148 and 148. The RF currents at the RF antennas 146, 148 induce RF currents to the chamber 102. The power supply 300 is connected to a voltage and a pulsed DC and / or a radio frequency field is applied to the anode 30, and the% electrode 302 emits electrons. The process gas is excited and ionized by the electrons radiated from the anode and the electronically induced RF current to ignite a plasma at to 102 °. A plasma igniter 156 can be used to help ignite the plasma. Plasma is maintained by one or both of the electrons and induced RF currents emitted by the anode 302. , 21 200534751 According to the electrical system can be used to implement many types of electrical cracking ^ Some electrical systems are at iso-peak. Under the condition of ban chervin (_, the implementation of 'to minimize the impact on the processing system 2: 2: The impact on the system will be reduced in the specific example of the chamber and the wafer, according to the electricity of the present invention The poly-source system can be used for electro-polymerization: ΓΓ: The plasma immersion ion implantation system requires a highly uniform plasma cryo 144 ;: 乂 'plasma immersion ion implantation system requires: power supply port 144 series bias station The plate j 34 admires Pindu ... circle or target 14. "" Making the ions to attract to the crystal according to the present invention-a method of generating uniform electric feeding for ion implantation includes: introduction- Process gas to ... 〇2.-RF current formation should pass through the first and second areas m, i22 of the top m of the chamber: = material. The radio frequency current excites and ionizes the process gas; produces-_ the chamber 1〇 2. The first and second regions 120 of the chamber top 118, and the nature: and the architecture of the RF antenna is selected so that the uniform electric φ. In addition, the electromagnetic coupling system can be adjusted by the coil adjuster 154 to improve Plasma uniformity. Positioned on the stage 4 inverse 134: V; system, bias voltage, so that The ion system is attracted to the crystal: 丄 secondary electrons are generated when the plasma ions impact the wafer or the target 14. The secondary electrons are conductive materials due to the formation of the top region 118 of the chamber top 118. Dissipation. The dissipative secondary electron system reduces or eliminates the charging effect caused by the secondary electrons, and thus improves the uniformity of the plasma. To the top of the 118, the Xiao 124 system may need fluid cooling, thereby Consumption 22 200534751 The heat generated by Hiroshi Hiroshi, one person, when he hits the Thousands of Sexual Materials Department, is related to the description in Figures 1 to 3.

Tgp 之甩水源100、200、300的室 頂知〗1 8之尺寸係可為選 a '去α、μ丄 使传電漿源100、200、300 如達成非#高之徑向與方位 κ 是均勻度。徑向與方位 角的电桌均勻度係可調整, 10Λ ^ 猎者改、交室頂端1 18的第一區 或120之向度13〇與室頂端u ◊弟一區域122之長度132 的比值。改變第一區域12〇 且由 之回度丨3〇與第二區域122之 長度1 32的比值係將影響至將 _ , ^ 甩水之射頻耦合,且因此影響 於口板1 34之離子通量的均勻度。 關連於弟1至3圖所述之雷將 <电濃源100、200、300的室 頂端1 1 8之尺寸亦可為選取 ^ 便传电漿源100、200、300 係取小化該二次電子於電漿 ^ ^ 度電漿均勻度、與電漿化 子性之影響。再者,關逵於楚 、弟至3圖所述之電漿源100、 200、300的室頂端118之尺 了係了為遥取,使得室容積以 及因此之氣體停留時間係改善 、 ϋ忒取大化電漿均勻度與反覆 '° 可瞭解的是:電裝源100、200、300的室頂端 "8之尺寸的最佳比值係亦為數個非幾何性質的因素之一 函數」:如:室材料、處理氣體、與射頻功率階層。 。。於本發明之一些實施例,帛i至3圖所示之線圈調整 為154係運用以調整寄生天線的線圈隨,藉以改變 生於室1〇2之電漿的性質。第从至4C圖係說明針對:二 個不同線圈調整器154位置之徑向電聚密度輪廊的圖形。 第4A ®係說明其作為針對於一種一阻垂直寄生線圈 的半徑之—函數的離子飽和電流之圖形400,其中,室厚 23 200534751 :為2毛托(mT〇rr)且射頻功率階層為75〇瓦(w)。此外, 弟4A圖係說明其作為針對於一種四阻垂直寄生線圈的半 經之-函數的離子飽和電流之圖%術,其中,室壓力為 2宅托且射頻功率階層為75〇瓦。第4A圖之圖形4〇〇、402 係說明的是:調整該線圈調整器154至其造成四個垂直阻 的-位置係將造成相當均句的電聚於約為Μ公分的半徑。 、第4B圖係說明其作為針對於一種一阻垂直寄生線圈 的半瓜^ —函數的離子飽和電流之圖$ 4G6,其中,室壓 力為4毫托且射頻功率 _ 羊6層為750瓦。此外,第4B圖係 =其作為針對於—種㈣垂直寄生線圈的半徑之-函數 的離子飽和電流之圖形 頻功率階4Βρι、中,室壓力為4毫托且射 是:調整該線圈調整哭H i之圖形4〇6、彻係說明的 係將造成相當均勾的;…Λ、造成四個垂直㈣-位置 ^ 电水於約為1 2公分的半徑。 的半4 一 ^ :况月其作為針對於一種一®垂直寄生線圈 力為:數的離子飽和電流之圖其中,室壓 = 射頻功率階…5。瓦。此外,…係 口兄明其作為針對於一 的離子飽和電流之圖形41^寄生線圈的半徑之一函數 頻功率階層為、約75〇瓦:,丹中,室壓力為8毫托且射 的是:調整該線圈調整二4:圖 '圖形41°、412係說明 置係將造成柏當均句沾· 1其造成四個垂直ϋ的-位 4Α至4C g所:二、電聚於約為8公分的半徑。比較第 王化圖所指出的e · 均影響該電漿之 · ++直可生線圈的匝數與室壓力係 二二度,且室壓力係影響該離子飽和電 24 •200534751 流。 第5A與5B圖係說明針對於 、 固定射頻功率階層之作 為室壓力的一個函數之電漿均、 ,^ )勻度與平均離子電流的圖 形。弟5A圖係說明其針對於一 、 、 種一匝垂直寄生線圈且作 為室壓力之一個函數於一 1 5公八 刀距離的離子飽和電流變 化百分比之圖开”00。射頻功率為75〇瓦。圖形5〇〇係指 ㈣是:離子飽和電流變化百分比係於魔力範圍為、約4至 8宅托而為於'最小值。 第5A圖亦說明其針對於— 广A + & 、 1乃、種四匝垂直寄生線圈且作 為室壓力之一函數於一 15 /\八《 刀距離的離子飽和電流變化 百分比之圖形5〇2。射頻功率為75〇瓦。圖形5〇2係指出 的是:離子飽和電流變化百分比係於室壓力為Θ 4毫托而 為於一最小值moo、502係指出的是:增加該寄生 線圈之匝數係將改善該電漿之均勻度。 —第5B圖係說明其針對於一種一阻垂直寄生線圈且作 為至[力之一函數的平均離子飽和電流之圖形,盆中, 射頻功率編750瓦。第5B圖亦說明其針對於二種四 &垂直可生線_且作為室壓力之—個函數的平均離子飽和 私々κ圖π夕506 ’其中,射頻功率階層為75〇瓦。圖形、 506心4日出的是:增加該寄生線圈之區數係將減小該電漿 密度。 7 等效者 I &本揭不内容係關聯於種種的實施例與實例而描 述,本揭不内容係無意為受限於該等實施例。反之,如將 200534751 本揭示内容係涵蓋種種的替代 為熟悉此技藝人士所理解 者、修改、與等效者。 【圖式簡單說明】 本發明之諸個層面係藉由參考其關連於伴隨的圖式之 以下說明而可獲得較佳瞭解,其中1 示於不同圖式中的相同結構元 :^曰Tgp knows the roof of the water source 100, 200, and 300. The size of 8 can be selected as a 'go to α, μ, so that the plasma source 100, 200, 300 can reach a non- # high radial and orientation κ Is uniformity. The uniformity of the electric table in the radial and azimuth angles can be adjusted. The ratio of 10Λ ^ Hunter, the first zone of the top of the room 1 18, or the orientation of 120 to the ratio of 132 to the length 132 of the top area of the room. . Changing the ratio of 120 in the first region and the ratio of 30 to the length of 32 in the second region 122 will affect the radio frequency coupling of _, ^ and water, and therefore affect the ionization of the mouth plate 1 34 The uniformity of the amount. The size of the lightning will be related to the brothers 1 to 3 shown in Figures 1 to 3, and the size of the top 1 1 8 of the chamber 100, 200, and 300 can also be selected. ^ The plasma source 100, 200, and 300 can be miniaturized. The effect of secondary electrons on the plasma uniformity and plasma protonity. In addition, the top 118 of the chambers of the plasma sources 100, 200, and 300 shown in Figures 3 and 3 are shown for remote access, so that the chamber volume and therefore the gas residence time are improved. Taking Dahua Plasma plasma uniformity and repeated '° can be understood that: the optimal ratio of the size of the top of the chamber of the electric source 100, 200, 300 " 8 is also a function of several non-geometric factors ": Such as: chamber materials, processing gases, and RF power levels. . . In some embodiments of the present invention, the coils shown in Figs. I to 3 are adjusted to 154 to adjust the coil of the parasitic antenna to change the properties of the plasma generated in the chamber 102. Figures 4 to 4C are diagrams illustrating the radial electric-density contours for the positions of two different coil regulators 154. Section 4A ® illustrates its graph 400 of ion saturation current as a function of the radius of a resistive vertical parasitic coil, where the chamber thickness is 23 200534751: 2 torr (mT0rr) and the RF power level is 75 Watt (w). In addition, Figure 4A illustrates its graph of ion saturation current as a function of the half-length of a four-resistance vertical parasitic coil, in which the room pressure is 2 Torr and the RF power level is 75 watts. The graphs 400 and 402 in FIG. 4A illustrate that adjusting the coil adjuster 154 to a position where it causes four vertical resistances will cause a relatively homogeneous charge to converge to a radius of about M cm. Figure 4B is a diagram illustrating the ion saturation current as a function of a half-parallel ^ for a one-sided vertical parasitic coil. Figure 4G6, where the chamber pressure is 4 mTorr and the RF power _ sheep 6 layer is 750 watts. In addition, Fig. 4B is a graph showing the frequency of the ion saturation current as a function of the radius of a kind of vertical parasitic coil. The frequency power level is 4B, where the chamber pressure is 4 mTorr and the radiation is: adjust the coil to adjust The figure of Hi, 406, the system explained completely will cause a fairly uniform hook; ... Λ, resulting in four vertical ㈣-positions ^ electro-water at a radius of about 12 cm. The half of a 4 ^: Kuan Yueqi is a graph of a saturating current of a 一 vertical parasitic coil with a force of: where the chamber pressure = RF power order ... 5. watt. In addition, ... I know that it is a function of the ion saturation current pattern for one. 41 ^ The parasitic coil radius is a function of a power level of about 750,000 watts: In Danzhong, the chamber pressure is 8 mTorr and the Yes: Adjust the coil adjustment 2: 4: Figures 41 ° and 412 indicate that the placement system will cause Pang Dangjun sentence · 1 It will cause four vertical ϋ-bits 4A to 4C g. A radius of 8 cm. Compare the e indicated in the Wanghua diagram. All of them affect the plasma. ++ The number of turns of the direct viable coil and the chamber pressure are 22 degrees, and the chamber pressure system affects the ion saturation current. Figures 5A and 5B are graphs illustrating plasma uniformity, average ion current, and average ion current for a fixed RF power stage as a function of chamber pressure. Figure 5A illustrates the percentage of ion saturation current change for a single, one-turn vertical parasitic coil and a function of chamber pressure at a distance of 15 cm and 8 knives. 00. RF power is 75 watts. The figure 500 means that “㈣” is: the percentage change of the ion saturation current is in the range of magic power, about 4 to 8 homes, and is the minimum value. Figure 5A also illustrates that it is targeted at-A + &, 1 A four-turn vertical parasitic coil, as a function of chamber pressure, a graph of 50% of the ion saturation current change percentage of the blade distance 502. The RF power is 7500 watts. The graph 502 is indicated Yes: The percentage change of the ion saturation current is based on the chamber pressure being Θ 4 millitorr and a minimum value of moo, 502. It is pointed out that increasing the number of turns of the parasitic coil will improve the uniformity of the plasma.-Section 5B The figure illustrates a graph of the average ionic saturation current as a function of a force to a parasitic parasitic coil. In the basin, the RF power is 750 watts. Figure 5B also illustrates that it is directed to two types of four & Vertical viable line_and as a chamber The force is a function of the average ion saturation of the κ diagram π xi 506 ', where the RF power level is 7500 watts. The graph, 506, and 4 are: increasing the number of zones of the parasitic coil will reduce the electrical Pulp density. 7 Equivalent I & This disclosure is described in connection with various embodiments and examples, this disclosure is not intended to be limited to these embodiments. On the contrary, if the 200534751 disclosure is based on Various alternatives are covered by those skilled in the art, modifications, and equivalents. [Simplified illustration of the drawings] The various aspects of the present invention can be compared by referring to the following descriptions related to the accompanying drawings. A good understanding, where 1 shows the same structural element in different schemes:

依比例繪製。議技藝人士將瞭解的是係無須 圖式係僅為針對於說明之目的。 、下文之 本揭示内容之範疇。 、固式係並無意圖限制 第1圖係說明根據本發明之一 頻線圈及導電性頂端區域之射頻電漿源。11直與水平的射 第2圖係說明根據本發明之一呈 -射頻線圈、於第二方向_ -有於第-方向的第 區域之射頻電漿源。 射頻線圈、及導電性頂端 第3圖係說明根據本發明之一 頻線圈、導電性的頂端區域 #有垂直與水平的射 第4…C圖係說明針對:極,射頻電浆源。 之徑向電漿密度輪廓的圖形。 固不间線圈調整器位置 於一固定射頻功率階層之作 勻度與平均離子電流的圖 第5A與5B圖係說明針對 為室壓力的_ _ τ私> + # 個函數之電漿均 形。 【主要元件符號說明】 26 •200534751 100 射頻電漿源 102 室 104 氣體源 106 比例閥 108 壓力計 110 排氣埠 112 真空泵 114 排氣閥 116 氣體壓力控制器 118 室頂端 120 室頂端1 18之第一區域 122 室頂端1 18之第二區域 124 室頂端1 18之頂端區域 128 冷卻通道 130 高度 132 長度 134 台板 136、138 高度 140 晶圓 142 室頂端Π 8的内徑 144 偏壓電壓電源供應器 146、148 射頻天線 150 射頻源 152 阻抗匹配網路 27 200534751 154 線圈調整器 156 電漿點火器 158 貯藏器 160 氣體接線 162 猝發閥 164 孔 200 射頻電漿源 202 室頂端 | 204 室頂端202之第一區域 206 室頂端202之第二區域 208、210 射頻天線 300 射頻電漿源 302 陽極 304 電源供應器 306 高度 400、402、404、406、410、412 第 4A 至 4C 圖的 • 圖形 500 、 502 、 504 、 506 % 5A 與 5B 圖白勺圖形 28Draw to scale. Those skilled in the art of art will understand that the system is not required for illustration purposes only. The scope of this disclosure below. The solid type is not intended to be limited. Figure 1 illustrates an RF plasma source according to one of the present invention, a frequency coil and a conductive tip region. 11 Straight and Horizontal Radiation FIG. 2 illustrates a radio frequency plasma source according to one aspect of the present invention, which is a radio frequency coil in the second direction and a third region in the first direction. Radio frequency coil and conductive tip Figure 3 illustrates one of the frequency coil and conductive tip regions according to the present invention. # There are vertical and horizontal shots. Figures 4 ... C are for poles and RF plasma sources. Graphic of the radial plasma density profile. Figures 5A and 5B of the uniformity and average ion current of the solid coil regulator at a fixed RF power level. Figures 5A and 5B illustrate the plasma uniformity of the _ _ τ privacy > + # functions for the chamber pressure. . [Description of main component symbols] 26 • 200534751 100 RF plasma source 102 Room 104 Gas source 106 Proportional valve 108 Pressure gauge 110 Exhaust port 112 Vacuum pump 114 Exhaust valve 116 Gas pressure controller 118 Room top 120 Room top 1 18th One area 122 Room top 1 18 Second area 124 Room top 1 18 Top area 128 Cooling channel 130 Height 132 Length 134 Platen 136, 138 Height 140 Wafer 142 Room top Π 8 Inner diameter 144 Bias voltage power supply 146, 148 RF antenna 150 RF source 152 Impedance matching network 27 200534751 154 Coil regulator 156 Plasma igniter 158 Reservoir 160 Gas wiring 162 Burst valve 164 Hole 200 RF plasma source 202 Room top | 204 Room top 202 The first area 206, the second area 208, 210 at the top of room 202, the RF antenna 300, the RF plasma source 302, the anode 304, the power supply 306, the height 400, 402, 404, 406, 410, and 412. Figures 4A to 4C • Figure 500, 502, 504, 506% 5A and 5B Figure 28

Claims (1)

.200534751 十、申請專利範圍: 1 · 一種電漿源,包含: 八·一室’其含有一處理氣體’該室係具有-室頂端,包 δ •由其延伸於一水平方向夕 八+ 「+ 十方向之一介電材料所形成的一第一 由其自弟―區域於―垂直方向而延伸之一入 :材料所形成的一第二區域;與由跨越第二區域:水平: 延伸一長度之一導電性材料所形成的-頂端區域;及 ^一射頻天線,其定位為鄰近於該第-區域與第二區域 之主少一者,該射頻天線係感應射頻 二 流係激發及離子化該處理氣& 及至’射頻電 ^把以產生一電漿於該室。 域如申請專㈣圍帛1項之電聚源,其中,自第一區 5 ;垂直方向之鬲度與跨越第- Π〇 比值係約為於L5與5.5之方向之長度的 線係3包: = W電漿源,其中,該射頻天 “疋位為鄰近於第一區域之—平面線圈。 4·如申請專利範圍第丨項之+將 線係包含J: f婊笼 、 水/原,,、中,該射頻天 匕3其%繞弟二區域之一線圈。 5·如申請專利範圍第i項之 線係包含其定位為鄰峨一…,原,、中,該射頻天 繞第二區域之一線圈:…域之-平面線圈、及其環 0.如申請專利範圍第5項 近於第一區域之, /、十,定位為鄰 電氣連接。亥千面線圈及其環繞第二區域之該線圈係 7·如申請專利範圍第5項之電浆源,其中,定位為鄰 29 • 200534751 、方;弟一區域之該平面線圈及其環结 定位為電磁相通。 、心罘—區域之該線圖係 8·如申請專利範圍第!項之電將 線係包含Α A # 水/原,其中,該射頻夭 已s具為電虱耦接至一射頻 和娟天 綠、;5 #盔+ 原供應器之一主翻工 9·如申請專利範圍第8項二寄生天線。 綉. 乾圍弟8項之電漿源,i中,” a 、、复之一端係電氣耦接至接地電位。 /、 该可生天.200534751 X. Scope of patent application: 1 · A plasma source, including: ·· One chamber 'which contains a processing gas' This chamber has a-chamber top, including δ • It extends in a horizontal direction Xiba + " + A first formed by a dielectric material in one of the ten directions extends from one of its self-regions to a vertical direction: a second region formed by the material; and a second region formed by crossing the second region: horizontally: -A top-end region formed by a conductive material of one length; and a radio frequency antenna positioned adjacent to one of the first and second regions, the radio-frequency antenna inducting radio-frequency second-stream excitation and ionization The processing gas & to the radio frequency electricity to generate a plasma in the room. For example, if you apply for a special electricity gathering source of encirclement 1 item, from the first zone 5; -The ratio of Π〇 is about 3 packs of wire with a length in the direction of L5 and 5.5: = W plasma source, where the radio frequency antenna is adjacent to the first area—a planar coil. 4. If the + line of the application scope of the patent application includes J: f 婊 cage, water / raw ,,, and medium, the RF antenna 3 is wound around one of the coils in the second area. 5 · If the line of item i in the patent application scope includes its position adjacent to Eyi ..., the original, the middle, the RF antenna coils around one of the second region: ... of the-plane coil, and its ring 0. Such as The fifth item in the patent application scope is close to the first area, /, ten, and is positioned adjacent to the electrical connection. The Haiqian coil and the coil system surrounding the second area 7. If the plasma source of item 5 of the patent application scope, which is located adjacent to 29 • 200534751, Fang; the plane coil and its knot in the first area Positioned as electromagnetic communication. , Heart palpitations-the line map of the area 8 · If the scope of patent application is the first! Xiang Diandian's line includes Α A # 水 / 原, where the radio frequency device is coupled to an RF and Juan Tianlu, an electric lice; 5 # helmet + one of the original suppliers Such as the scope of patent application No. 8 two parasitic antennas. Embroidery. Plasma source of item 8 of the siege, i, "a" and "a" are electrically coupled to the ground potential. 10.如申請專利範圍帛】項之 蜮係包含—流體人 原其中,該頂端區 ;體竭統’其調節該頂端區域 u·如申請專利範圍第i項之 皿度。 係電氣耦接至接地電位。 原/、中,該室頂部 :2.如申請專利範圍第i項之電漿源,: 用於支持其為^位相鄰於該頂端區域之—目標。D板’ 如申請專利範圍第12項 : 之电壓電源供應器,其 偏 ^ ^ ^ 乳運接至該台板之一耠山 咳偏壓電壓電源供應器係產知出’ 電漿之離子至該目標。 以及Μ於 14· 一種電漿源,包含: 一室’其含有一處理裔辦. 八· 札肢,该室係具有一室頂端5 — 各.由其以第一方向延伸 匕 ;丨毛材料所形成的第一區域、 : 區域於第二方向而延伸-高度之介電材料二 卞的-弟一區域、與由跨越第二區域而延伸一長度之」 電性材料所形成的一頂端區域;及 X 導 一射頻天線’其定位為鄰近於該第一區域與第二區。、 域 30 200534751 之至少-者,該射頻天線係感應 十 流係激發及Μ工儿#上 4电流至該室,鉍ofe X夂離子化該處理氣體以產斗 射頻電 15.如申i·主皇毛丨― 芝〜電漿於該室。 3肀口月專利範圍第14項之恭 ^ 區域係彎曲的。 繞邊源,其中,該第— 1 6 ·如申睛專利範圍第1 4項之* 與第二方向係非為正交。 、―电激源,其中,該第— 17.—種產生均勻電漿之方 以入老 5亥種方法包含·· 引入—處理氣體至一室; 匕s 感應一射頻電流,透過該 垂直的介電窗部之至少—者,‘水平的介電窗部與- 處理氣體以產生_ +將^ 士頻電流係激發及離子化該 座生電漿於該室;及 偏壓—目標,使得於該 其中,當離子為擊中該目離子為吸引至該目標, 導雷W分4丨 & %而產生的二次電子俜由1 A H 生材料所形成之該室-于知由其為 充電效應且改盖^將 、“域而耗散,藉以降低 σ β電漿之均勻度。 1 8 ·如申清專利範 t之頂端& $ J、之方法,更包含··冷卻該 貝立而£域,以耗散 的熱量。 田^ 一 — 人电子為擊中該目標而產生 i >. 一種產生均旬帝蔣> 一」电水心刀法s該種方法包含·· 力入一處理氣體至一室; 透過該室之一 L亚 j # m _ a 尸"介電窗部與一垂直介電窗部其中之 感' 一射頻雷、ά, 體 极,射頻電流係激發及離子化該處理氣 、產生一電漿於該室; 自該水平介電窗部 ^丨只垂直介電窗部其中之一者電磁耦 31 200534751 合該感應的射頻電流至該水 另—者;及 十"电®』與垂直介電窗部之 偏壓一目標,使得於哕恭 ^ ^ 於°亥电漿之離子係吸引至該目庐 其中,當離子為墼中兮 曰, 于為#中.玄目標時而產生的二次 導電性材料所形成之該室 由其為 頂而£域而耗散,藉以降低 充電效應且改善該電漿之均勻度。 牛低 20.如申請專利範圍第a項之方、本亩七人 貞之方法,更包含:調整該 电磁耦合以改善該電漿之均勻度。 2 1. —種電漿源,包含·· 入一室,其含有一處理氣體’該室係具有一室頂端,包 :·’以一水平方向延伸之介電材料所形成的第一區域,·自 弟一區域以一垂直方向延伸一古 一 <伸回度之介電材料所形成的第 一區域;與以水平方向跨越第二區域而延伸—長度之導電 性材料所形成的頂端區域; -陽極’其為定位於該室且相鄰於該頂端區域;及 一射頻天線,其定位為鄰近於該第-區域與第二區域 之至少-者’該射頻天線係感應射頻電流至該室,射頻電 流係激發及離子化該處理氣體以產生一電聚於該室。 22·如申請專利範圍第Μ 項之包水源,其中,該室的 丨%極關於该頂端區域之位置係可調整。 23·如申請專利範圍第21 雷 乐21項之包漿源,其中,該室陽 極對於頂端區域之位置俜撰棄 係、取以達成一預定的電漿均句 度。 24·如申請專利範圍第2 乐21項之私漿源,其中,該陽極 32 200534751 面積與該頂端區域面積的比值係小於】。 25.如申請專利範圍第21項之電漿源,其中,該陽極 係包含一調節板,其分散該處理氣體。 26·如申請專利範圍第21項之電漿源,其中,該陽極 係包含一喷射頭,其分配該處理氣體。 27.如申請專利範圍第21項之電漿源,其中,該陽極 係電氣連接至接地電位。10. If the scope of the patent application (i) item includes-fluid human, the top area; the body exhaustion system ', which adjusts the top area u. Such as the degree of item i of the patent scope. Is electrically coupled to ground potential. The original / middle, the top of the room: 2. If the plasma source of item i of the patent application scope, is used to support it as a target adjacent to the top area. D plate ', as in the scope of application for the patent No. 12: voltage power supply, its bias ^ ^ ^ milk is connected to one of the platen Bishan cough bias voltage power supply is produced' plasma ion to The goal. And M14. A plasma source, comprising: a chamber 'which contains a treatment office. Eight limbs, the chamber has a chamber top 5 — each. It extends in the first direction; The first region formed, the region extending in the second direction, the height of the dielectric material, the second region, and the top region formed by the "electric material" extending a length across the second region. And X-guide a radio frequency antenna 'which is positioned adjacent to the first area and the second area. At least one of the domain 30 200534751, the radio frequency antenna senses ten current system excitation and 4 currents on the Mgonger # to the chamber, bismuth ofe X 夂 ionizes the processing gas to produce bucket radio frequency electricity 15. Rushen i · Master Huang Mao 丨 ―Shiba ~ Plasma in this room. The congratulations of Item 14 of the 3-month-month patent ^ The area is curved. The source around the edge, where the -16th item * in the patent scope of item 14 is not orthogonal to the second direction. ―Electric excitation source, in which the — 17. — method of generating a uniform plasma to enter the old method, including: • introducing — processing gas to a chamber; ds induction of a radio frequency current, through the vertical At least one of the dielectric window portion, the 'horizontal dielectric window portion, and-the processing gas to generate _ + excite and ionize the ^ Shi frequency current system in the chamber; and the bias-target, so that Among them, when the ions hit the target ions to attract to the target, the secondary electrons generated by the lightning conduction of 4% &% are the chamber formed by 1 AH raw material-Yu Zhiwei is The charging effect is changed and the energy is dissipated in order to reduce the uniformity of the σ β plasma. 1 8 · If the method of applying for the top of the patent scope & $ J, the method further includes cooling the shell Immediately in order to dissipate the heat. Tian ^ I — Human electronics generate i > for hitting the target. A method of producing all-time emperor Jiang > a "electric water core knife method" This method includes ... Force a process gas into a chamber; pass through one of the chambers L #j_m_a corpse " dielectric window section and a vertical The sense of the dielectric window part is a radio frequency mine, body, and RF current which excites and ionizes the processing gas to generate a plasma in the chamber. From the horizontal dielectric window part, only the vertical dielectric window One of them is electromagnetic coupling 31 200534751 combining the induced RF current to the other one; and the target of “Electric®” and the bias of the vertical dielectric window portion, so that Yu Yugong ^ ^ °° The ion system of the plasma attracts the eyes. When the ion is 墼 中西, Yu is # 中 .The secondary conductive material generated when the target is formed, the chamber is consumed by the top and the area. To reduce the charging effect and improve the uniformity of the plasma. Niu Low 20. If the method of applying for item a of the patent scope, the method of seven people in this acre, further includes: adjusting the electromagnetic coupling to improve the uniformity of the plasma. 2 1. —A plasma source comprising: · a chamber containing a processing gas; the chamber has a chamber top, and includes: a first region formed by a dielectric material extending in a horizontal direction, The first area formed by a dielectric material extending from a younger area to a vertical direction < retractable degree; and the top area formed from a length of conductive material extending across the second area in a horizontal direction -An anode 'which is positioned in the chamber and adjacent to the top region; and a radio frequency antenna which is positioned adjacent to at least one of the first region and the second region', the radio frequency antenna induces radio frequency current to the In the chamber, the RF current excites and ionizes the processing gas to generate an electron concentration in the chamber. 22. If the water supply source of item M of the patent application scope, wherein the position of the pole of the chamber with respect to the top region is adjustable. 23. If the scope of the patent application scope 21 Leile 21 of the slurry source, the room anode to the location of the top area is fabricated to obtain a predetermined plasma average sentence. 24. If the private pulp source of the 2nd Le 21 of the scope of patent application, the ratio of the area of the anode 32 200534751 to the area of the top area is less than]. 25. The plasma source of claim 21, wherein the anode system includes a regulating plate that disperses the processing gas. 26. The plasma source of claim 21, wherein the anode system includes a spray head that distributes the processing gas. 27. The plasma source of claim 21, wherein the anode is electrically connected to a ground potential. 28.—種產生電漿之方法,該種方法包含: 引入一處理氣體至一室; 偏壓其為定位於該室之一陽極,以自該陽極放射電子; 透過該室之一水平介電窗部感應一射頻電流;及 上透過该室之一垂直介電窗部感應一射頻電流,其中, :。亥陽極所放射的電子與感應的射頻電流之至少一者係激 考X且離子化該處理氣體,以點火該室内之電漿。 •如申明專利llL圍帛28㉟之方法,其中,偏壓該 °之步驟包含:施加一脈衝式直流電流至該陽極。 極之專利範圍第28項之方法,其中,偏壓該陽 3 ·施加一射頻場至該陽極。 托如申請專利範圍第28項之方法,其中,偏’I 極之步驟勿入·# 、宁偏壓該陽 合。… 加脈衝式直流電流與射頻訊號之一組 更包含:藉著感 更包含··藉著自 應32.如申請專利範圍第28項之方法 〜t射頻電流而持續該電漿。 33.如申請專利範圍第28項之方法 33 200534751 該陽極所產生的電子而持續該電漿。 十一、圖式: 如次頁28. A method for generating plasma, the method comprising: introducing a processing gas into a chamber; biasing it to an anode positioned in the chamber to emit electrons from the anode; and passing a horizontal dielectric through the chamber. A window portion induces a radio frequency current; and a vertical dielectric window portion through the chamber induces a radio frequency current, wherein:. At least one of the electrons and the induced RF current radiated by the helium anode is to stimulate X and ionize the processing gas to ignite the plasma in the room. • As stated in the method of patenting 28L, the step of biasing the ° includes: applying a pulsed DC current to the anode. The method of item 28 of the patent, wherein the anode is biased. An RF field is applied to the anode. The method of item 28 of the patent application is entrusted, in which the steps of the 'I pole' are not entered, and the bias is preferred. … Adding a group of pulsed DC current and radio frequency signal further includes: by sense more includes ... by adapting 32. The method such as the 28th item of the patent application ~ t RF current to continue the plasma. 33. The method according to item 28 of the scope of patent application 33 200534751 The electrons generated by the anode continue the plasma. Eleven, schema: as the next page 3434
TW094107684A 2004-03-22 2005-03-14 Rf plasma source with conductive top section TWI423735B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/805,966 US20050205211A1 (en) 2004-03-22 2004-03-22 Plasma immersion ion implantion apparatus and method
US10/905,172 US20050205212A1 (en) 2004-03-22 2004-12-20 RF Plasma Source With Conductive Top Section

Publications (2)

Publication Number Publication Date
TW200534751A true TW200534751A (en) 2005-10-16
TWI423735B TWI423735B (en) 2014-01-11

Family

ID=34962830

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094107684A TWI423735B (en) 2004-03-22 2005-03-14 Rf plasma source with conductive top section

Country Status (3)

Country Link
US (2) US20050205211A1 (en)
TW (1) TWI423735B (en)
WO (1) WO2005093780A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424796B (en) * 2010-02-12 2014-01-21 Advanced Micro Fab Equip Inc Plasma processing device with diffusion dissociation region

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040149219A1 (en) * 2002-10-02 2004-08-05 Tomohiro Okumura Plasma doping method and plasma doping apparatus
US7294574B2 (en) * 2004-08-09 2007-11-13 Applied Materials, Inc. Sputter deposition and etching of metallization seed layer for overhang and sidewall improvement
US20060236931A1 (en) * 2005-04-25 2006-10-26 Varian Semiconductor Equipment Associates, Inc. Tilted Plasma Doping
US20070084564A1 (en) * 2005-10-13 2007-04-19 Varian Semiconductor Equipment Associates, Inc. Conformal doping apparatus and method
US7524743B2 (en) * 2005-10-13 2009-04-28 Varian Semiconductor Equipment Associates, Inc. Conformal doping apparatus and method
KR20070065684A (en) * 2005-12-20 2007-06-25 주식회사 케이씨텍 Antenna for generating plasma and manufacturing method of the same, plasma processing apparatus of the same
US20070170867A1 (en) * 2006-01-24 2007-07-26 Varian Semiconductor Equipment Associates, Inc. Plasma Immersion Ion Source With Low Effective Antenna Voltage
US20070224840A1 (en) * 2006-03-21 2007-09-27 Varian Semiconductor Equipment Associates, Inc. Method of Plasma Processing with In-Situ Monitoring and Process Parameter Tuning
US20080075880A1 (en) * 2006-09-26 2008-03-27 Anthony Renau Non-doping implantation process utilizing a plasma ion implantation system
US20080132046A1 (en) * 2006-12-04 2008-06-05 Varian Semiconductor Equipment Associates, Inc. Plasma Doping With Electronically Controllable Implant Angle
US20080169183A1 (en) * 2007-01-16 2008-07-17 Varian Semiconductor Equipment Associates, Inc. Plasma Source with Liner for Reducing Metal Contamination
US7820533B2 (en) * 2007-02-16 2010-10-26 Varian Semiconductor Equipment Associates, Inc. Multi-step plasma doping with improved dose control
US20080204795A1 (en) * 2007-02-23 2008-08-28 Samsung Electronics Co., Ltd. Data transmission apparatus and method of controlling the same and method of processing data to be printed onto a printable medium
US20090004873A1 (en) * 2007-06-26 2009-01-01 Intevac, Inc. Hybrid etch chamber with decoupled plasma controls
US20090004836A1 (en) * 2007-06-29 2009-01-01 Varian Semiconductor Equipment Associates, Inc. Plasma doping with enhanced charge neutralization
US9123509B2 (en) 2007-06-29 2015-09-01 Varian Semiconductor Equipment Associates, Inc. Techniques for plasma processing a substrate
US20090008577A1 (en) * 2007-07-07 2009-01-08 Varian Semiconductor Equipment Associates, Inc. Conformal Doping Using High Neutral Density Plasma Implant
US20090017229A1 (en) * 2007-07-10 2009-01-15 Varian Semiconductor Equipment Associates, Inc. Processing System Platen having a Variable Thermal Conductivity Profile
US20090104761A1 (en) * 2007-10-19 2009-04-23 Varian Semiconductor Equipment Associates, Inc. Plasma Doping System With Charge Control
US20090104719A1 (en) * 2007-10-23 2009-04-23 Varian Semiconductor Equipment Associates, Inc. Plasma Doping System with In-Situ Chamber Condition Monitoring
US7586100B2 (en) * 2008-02-12 2009-09-08 Varian Semiconductor Equipment Associates, Inc. Closed loop control and process optimization in plasma doping processes using a time of flight ion detector
US20090227096A1 (en) * 2008-03-07 2009-09-10 Varian Semiconductor Equipment Associates, Inc. Method Of Forming A Retrograde Material Profile Using Ion Implantation
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
WO2011123124A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
JP5649153B2 (en) * 2008-07-11 2015-01-07 住友重機械工業株式会社 Plasma processing apparatus and plasma processing method
US7927986B2 (en) * 2008-07-22 2011-04-19 Varian Semiconductor Equipment Associates, Inc. Ion implantation with heavy halogenide compounds
US20100048018A1 (en) * 2008-08-25 2010-02-25 Varian Semiconductor Equipment Associates, Inc. Doped Layers for Reducing Electromigration
US8749053B2 (en) 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
US7993937B2 (en) * 2009-09-23 2011-08-09 Tokyo Electron Limited DC and RF hybrid processing system
KR101757922B1 (en) * 2009-10-27 2017-07-14 도쿄엘렉트론가부시키가이샤 Plamsa processing apparatus
CN102054649B (en) * 2009-10-27 2014-03-19 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
CN102056395B (en) 2009-10-27 2014-05-07 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
JP5694721B2 (en) * 2009-10-27 2015-04-01 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5592098B2 (en) * 2009-10-27 2014-09-17 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
US8642974B2 (en) * 2009-12-30 2014-02-04 Fei Company Encapsulation of electrodes in solid media for use in conjunction with fluid high voltage isolation
EP2552340A4 (en) 2010-03-31 2015-10-14 Univ Colorado State Res Found Liquid-gas interface plasma device
JP5781349B2 (en) * 2011-03-30 2015-09-24 東京エレクトロン株式会社 Plasma processing equipment
RU2479668C1 (en) * 2011-10-03 2013-04-20 Валерий Николаевич Пименов Ion-plasma alloying method of product surface
JP6068491B2 (en) 2011-11-08 2017-01-25 インテヴァック インコーポレイテッド Substrate processing system and substrate processing method
WO2014100506A1 (en) * 2012-12-19 2014-06-26 Intevac, Inc. Grid for plasma ion implant
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US8669538B1 (en) * 2013-03-12 2014-03-11 Varian Semiconductor Equipment Associates, Inc. Method of improving ion beam quality in an implant system
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US9736920B2 (en) * 2015-02-06 2017-08-15 Mks Instruments, Inc. Apparatus and method for plasma ignition with a self-resonating device
CN106711007B (en) * 2015-11-17 2018-08-14 中微半导体设备(上海)有限公司 A kind of inductively type plasma processing apparatus
US20190198301A1 (en) * 2017-12-27 2019-06-27 Mattson Technology, Inc. Plasma Processing Apparatus and Methods
US11120973B2 (en) * 2019-05-10 2021-09-14 Applied Materials, Inc. Plasma processing apparatus and techniques
US20210020405A1 (en) * 2019-07-18 2021-01-21 Tokyo Electron Limited Equipment and methods for plasma processing
CN111192812B (en) * 2020-01-07 2022-11-25 北京北方华创微电子装备有限公司 Inductive coupling device and semiconductor processing equipment
CN115066736A (en) * 2020-05-01 2022-09-16 玛特森技术公司 Method and apparatus for pulsed inductively coupled plasma for surface treatment processing
CN112376029B (en) * 2020-11-11 2022-10-21 北京北方华创微电子装备有限公司 Plasma immersion ion implantation apparatus

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US85246A (en) * 1868-12-22 Improvement in bolts for safe-doors
US107906A (en) * 1870-10-04 Improvement in stump-extractors
US149218A (en) * 1874-03-31 Improvement in molds for forming articles of rubber and other material
US107909A (en) * 1870-10-04 Improvement in projectiles
US112542A (en) * 1871-03-14 Improvement in powder-flasks
US107908A (en) * 1870-10-04 Improvement in corn-planters
US38486A (en) * 1863-05-12 Improvement in clutches
JPS6372877A (en) * 1986-09-12 1988-04-02 Tokuda Seisakusho Ltd Vacuum treatment device
US4948458A (en) * 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
US5556501A (en) * 1989-10-03 1996-09-17 Applied Materials, Inc. Silicon scavenger in an inductively coupled RF plasma reactor
US5707486A (en) * 1990-07-31 1998-01-13 Applied Materials, Inc. Plasma reactor using UHF/VHF and RF triode source, and process
US5241245A (en) * 1992-05-06 1993-08-31 International Business Machines Corporation Optimized helical resonator for plasma processing
US5346578A (en) * 1992-11-04 1994-09-13 Novellus Systems, Inc. Induction plasma source
KR100238627B1 (en) * 1993-01-12 2000-01-15 히가시 데쓰로 Plasma processing apparatus
US5354381A (en) * 1993-05-07 1994-10-11 Varian Associates, Inc. Plasma immersion ion implantation (PI3) apparatus
JP3279038B2 (en) * 1994-01-31 2002-04-30 ソニー株式会社 Plasma apparatus and plasma processing method using the same
JP3365067B2 (en) * 1994-02-10 2003-01-08 ソニー株式会社 Plasma apparatus and plasma processing method using the same
DE69531880T2 (en) * 1994-04-28 2004-09-09 Applied Materials, Inc., Santa Clara Method for operating a CVD reactor with a high plasma density with combined inductive and capacitive coupling
US5540800A (en) * 1994-06-23 1996-07-30 Applied Materials, Inc. Inductively coupled high density plasma reactor for plasma assisted materials processing
US5540824A (en) * 1994-07-18 1996-07-30 Applied Materials Plasma reactor with multi-section RF coil and isolated conducting lid
US5919382A (en) * 1994-10-31 1999-07-06 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
JP3424867B2 (en) * 1994-12-06 2003-07-07 富士通株式会社 Plasma processing apparatus and plasma processing method
US5888413A (en) * 1995-06-06 1999-03-30 Matsushita Electric Industrial Co., Ltd. Plasma processing method and apparatus
TW279240B (en) * 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head
JPH0982495A (en) * 1995-09-18 1997-03-28 Toshiba Corp Plasma producing device and method
US6264812B1 (en) * 1995-11-15 2001-07-24 Applied Materials, Inc. Method and apparatus for generating a plasma
US6036878A (en) * 1996-02-02 2000-03-14 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US5838111A (en) * 1996-02-27 1998-11-17 Matsushita Electric Industrial Co., Ltd. Plasma generator with antennas attached to top electrodes
JPH09251935A (en) * 1996-03-18 1997-09-22 Applied Materials Inc Plasma igniter, semiconductor producing apparatus using plasma and plasma igniting method for semiconductor device
US6353206B1 (en) * 1996-05-30 2002-03-05 Applied Materials, Inc. Plasma system with a balanced source
JP3739137B2 (en) * 1996-06-18 2006-01-25 日本電気株式会社 Plasma generator and surface treatment apparatus using the plasma generator
US6170428B1 (en) * 1996-07-15 2001-01-09 Applied Materials, Inc. Symmetric tunable inductively coupled HDP-CVD reactor
US6534922B2 (en) * 1996-09-27 2003-03-18 Surface Technology Systems, Plc Plasma processing apparatus
US5911832A (en) * 1996-10-10 1999-06-15 Eaton Corporation Plasma immersion implantation with pulsed anode
TW403959B (en) * 1996-11-27 2000-09-01 Hitachi Ltd Plasma treatment device
DE19702294A1 (en) * 1997-01-23 1998-07-30 Rossendorf Forschzent Modulator for plasma immersion ion implantation
US5824607A (en) * 1997-02-06 1998-10-20 Applied Materials, Inc. Plasma confinement for an inductively coupled plasma reactor
TW376547B (en) * 1997-03-27 1999-12-11 Matsushita Electric Ind Co Ltd Method and apparatus for plasma processing
US6083363A (en) * 1997-07-02 2000-07-04 Tokyo Electron Limited Apparatus and method for uniform, low-damage anisotropic plasma processing
US6028285A (en) * 1997-11-19 2000-02-22 Board Of Regents, The University Of Texas System High density plasma source for semiconductor processing
US6186091B1 (en) * 1998-02-11 2001-02-13 Silicon Genesis Corporation Shielded platen design for plasma immersion ion implantation
US6055928A (en) * 1998-03-02 2000-05-02 Ball Semiconductor, Inc. Plasma immersion ion processor for fabricating semiconductor integrated circuits
US6164241A (en) * 1998-06-30 2000-12-26 Lam Research Corporation Multiple coil antenna for inductively-coupled plasma generation systems
US6300227B1 (en) * 1998-12-01 2001-10-09 Silicon Genesis Corporation Enhanced plasma mode and system for plasma immersion ion implantation
US6213050B1 (en) * 1998-12-01 2001-04-10 Silicon Genesis Corporation Enhanced plasma mode and computer system for plasma immersion ion implantation
DE19933841A1 (en) * 1999-07-20 2001-02-01 Bosch Gmbh Robert Device and method for etching a substrate by means of an inductively coupled plasma
US6744213B2 (en) * 1999-11-15 2004-06-01 Lam Research Corporation Antenna for producing uniform process rates
US6518190B1 (en) * 1999-12-23 2003-02-11 Applied Materials Inc. Plasma reactor with dry clean apparatus and method
KR100545034B1 (en) * 2000-02-21 2006-01-24 가부시끼가이샤 히다치 세이사꾸쇼 Plasma processing apparatus and method for processing substrate
TW449806B (en) * 2000-06-15 2001-08-11 Nat Science Council Plasma manufacturing method with plasma density feedback control
US6890861B1 (en) * 2000-06-30 2005-05-10 Lam Research Corporation Semiconductor processing equipment having improved particle performance
US6939434B2 (en) * 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7037813B2 (en) * 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US7320734B2 (en) * 2000-08-11 2008-01-22 Applied Materials, Inc. Plasma immersion ion implantation system including a plasma source having low dissociation and low minimum plasma voltage
US7137354B2 (en) * 2000-08-11 2006-11-21 Applied Materials, Inc. Plasma immersion ion implantation apparatus including a plasma source having low dissociation and low minimum plasma voltage
US6527912B2 (en) * 2001-03-30 2003-03-04 Lam Research Corporation Stacked RF excitation coil for inductive plasma processor
TW533752B (en) * 2001-04-06 2003-05-21 Axcelis Tech Inc Plasma source having supplemental energizer for ion enhancement
US6626188B2 (en) * 2001-06-28 2003-09-30 International Business Machines Corporation Method for cleaning and preconditioning a chemical vapor deposition chamber dome
US6876154B2 (en) * 2002-04-24 2005-04-05 Trikon Holdings Limited Plasma processing apparatus
EP1512165A2 (en) * 2002-06-12 2005-03-09 Applied Materials, Inc. Plasma apparatus and method for processing a substrate
US6842147B2 (en) * 2002-07-22 2005-01-11 Lam Research Corporation Method and apparatus for producing uniform processing rates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424796B (en) * 2010-02-12 2014-01-21 Advanced Micro Fab Equip Inc Plasma processing device with diffusion dissociation region

Also Published As

Publication number Publication date
US20050205211A1 (en) 2005-09-22
US20050205212A1 (en) 2005-09-22
WO2005093780A2 (en) 2005-10-06
TWI423735B (en) 2014-01-11
WO2005093780A3 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
TW200534751A (en) Rf plasma source with conductive top section
US4691662A (en) Dual plasma microwave apparatus and method for treating a surface
JP3598717B2 (en) Plasma processing equipment
US5767628A (en) Helicon plasma processing tool utilizing a ferromagnetic induction coil with an internal cooling channel
KR101737635B1 (en) Plasma processing apparatus
TWI443715B (en) An apparatus for plasma processing a substrate and a method thereof
US8773020B2 (en) Apparatus for forming a magnetic field and methods of use thereof
TWI261856B (en) Ion source providing ribbon beam with controllable density profile
JP2009524915A (en) Plasma immersion ion source with low effective antenna voltage
CN101641764B (en) Method for multi-step plasma doping for substrate
TW200845828A (en) Plasma source with liner for reducing metal contamination
US8317970B2 (en) Ceiling electrode with process gas dispersers housing plural inductive RF power applicators extending into the plasma
TW201143552A (en) Plasma source design
TW201142894A (en) Inductively coupled plasma source for extracting ribbob ion beam
JPWO2005094140A1 (en) Plasma generator
CN109935511B (en) Plasma processing apparatus
JP6937644B2 (en) Plasma processing equipment and plasma processing method
TW200810611A (en) Plasma generating method, plasma generating apparatus, and plasma processing apparatus
TW201833976A (en) Dual-frequency surface wave plasma source
TWI428965B (en) Plasma doping apparatus and method of conformal plasma doping
TW202044403A (en) System and methods for vhf plasma processing
US10312054B2 (en) Radical generator and molecular beam epitaxy apparatus
KR102013333B1 (en) Plasma generation apparatus
KR20170019321A (en) Magnetized edge ring for extreme edge control
WO2009048294A2 (en) Magnetized inductively coupled plasma processing apparatus and generating method