TW200533926A - Microprobe tips and methods for making - Google Patents

Microprobe tips and methods for making Download PDF

Info

Publication number
TW200533926A
TW200533926A TW93141484A TW93141484A TW200533926A TW 200533926 A TW200533926 A TW 200533926A TW 93141484 A TW93141484 A TW 93141484A TW 93141484 A TW93141484 A TW 93141484A TW 200533926 A TW200533926 A TW 200533926A
Authority
TW
Taiwan
Prior art keywords
contact
probe
substrate
sacrificial
layer
Prior art date
Application number
TW93141484A
Other languages
Chinese (zh)
Inventor
Kieun Kim
Adam L Cohen
Willa M Larsen
Richard T Chen
Ananda H Kumar
Ezekiel J J Kruglick
Vacit Arat
Gang Zhang
Michael S Lockard
Original Assignee
Microfabrica Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/772,943 external-priority patent/US20050104609A1/en
Priority claimed from US10/949,738 external-priority patent/US20060006888A1/en
Application filed by Microfabrica Inc filed Critical Microfabrica Inc
Publication of TW200533926A publication Critical patent/TW200533926A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Micromachines (AREA)

Abstract

Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in over exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of a the tip material around carefully sized placed etching shields, via hot pressing, and the like.

Description

200533926 九、發明說明: 【考务明戶斤屬^_才支冬好々員】 相關申請案 本申請案係請求分別於2003年12月31日、2004年1月29 5日、2003年12月31日、2004年1月15日以及2004年1月29日 提出申請的美國臨時專利申請案第6〇/533,975、 60/540,510、60/533,933、60/536,865及 60/540,511 號之權 益。本申請案係分別為於2004年2月4日及2004年9月24曰提 出申請的美國正式申請案第10/772,943及10/949,738號之部 10 分延續申請案。所有上述申請案於此併入本案以為參考資 料。 發明領域 本發明一般係有關於微探針及其之EFABTMS式電化 學製程,更特定言之,係有關於微探針接點設計及其之製 15 程。200533926 IX. Description of the invention: [Examination of the household members of the family ^ _ 才 支 冬 好 々 员] Related applications This application was requested on December 31, 2003, January 29, 2004, and December 12, 2003. US Provisional Patent Application Nos. 60 / 533,975, 60 / 540,510, 60 / 533,933, 60 / 536,865, and 60 / 540,511 filed on January 31, January 15, 2004, and January 29, 2004. This application is a partial 10-point continuation application filed with U.S. Formal Application Nos. 10 / 772,943 and 10 / 949,738, filed on February 4, 2004 and September 24, 2004, respectively. All the above applications are hereby incorporated into this case for reference. FIELD OF THE INVENTION The present invention relates generally to microprobes and their EFABTMS-type electrochemical processes, and more specifically, to the design of microprobe contacts and their manufacturing processes.

L 支冬好 U 發明背景 由Adam L. Cohen所發明之由複數之黏合層構成三維 結構(例如,部件、元件、裝置及相似物)的一技術,並係為 20 所熟知的電化學製造。並由以EFABTM為名之加州、Burbank 之Microfabrica Inc·(即為從前的MEMGen®公司)作商業推 廣。此技術係於2000年2月22日核發之美國專利第6,027,630 號中加以說明。此電化學沉積技術容許利用包含使用光罩 的一獨特的遮光技術,選擇性地沉積材料’包括在一與進 200533926 行電鍍之基板無關的輔助結構上的圖案化調和材料。當需 要利用光罩執行電沉積時,該光罩之調和部分係與一基板 接觸’同時存在電鍍溶液致使光罩之調和部分與基板接 觸’抑制在選定位置處沉積。就方便起見,該等光罩一般 5 稱為调和式接觸光罩(conformable contact mask);該遮光技 術一般稱為調和式接觸光罩電鍍製程。更特定言之,就加 州、Burbank之Microfabrica Inc.(即為從前的 MEMGen® 公司) 之專門術語而言,該等光罩係為所熟知的mSTANT MASK™及所熟知製程INSTANT MASKINGTM或INSTANT 10 MASKTM電鍍。利用調和式接觸光罩電鍍的選擇性沉積, 可用以構成單一材料層,或可用以構成多層結構。,630專 利之技術於此以全文引用的方式併入本案以為參考資料。 由於提交完成上述著名專利的專利申請案,所以相關於調 和式接觸光罩電鍍(亦即,INSTANT MASKING)及電化學製 15 造的不同文件已公開之: (l.)A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis及P· Will,“EFAB :具微尺度特徵之功能性、完全致 密金屬部件的批量生產(EFAB : Batch production of functional,fully-dense metal parts with micro-scale 20 features)” ,Proc.9th Solid Freeform Fabrication,The University of Texas at Austin,pl61,1998年8月。 (2.)A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis及P. Will, “EFAB :高深寬比真實3維微機電系統之快 速、低成本桌上微加工作業(EFAB : Rapid,Low-Cost Desktop 200533926L Zhidonghao U Background of the Invention A technology invented by Adam L. Cohen to construct three-dimensional structures (eg, parts, components, devices, and the like) from a plurality of adhesive layers, and is a well-known electrochemical manufacturing method. Commercially promoted by Microfabrica Inc. (named formerly MEMGen®) of Burbank, California and Burbank in the name of EFABTM. This technology is described in US Patent No. 6,027,630 issued on February 22, 2000. This electrochemical deposition technique allows for the selective deposition of materials ' using a unique light-shielding technique including the use of a photomask, including patterned blending materials on an auxiliary structure that is independent of substrates plated in 200533926. When it is necessary to perform photo-deposition using a photomask, the harmonized part of the photomask is in contact with a substrate 'while the presence of a plating solution causes the photomask's harmonized part to contact the substrate' to suppress deposition at a selected position. For convenience, these photomasks are generally referred to as conformable contact masks; this shading technique is generally referred to as the conformal contact mask plating process. More specifically, in terms of Microfabrica Inc. (formerly MEMGen®) of Burbank, California, these masks are the well-known mSTANT MASK ™ and the well-known process INSTANT MASKINGTM or INSTANT 10 MASKTM plating. The selective deposition using the harmonic contact mask plating can be used to form a single material layer, or can be used to form a multilayer structure. The technology of 630 patents is hereby incorporated by reference in its entirety as reference material. Since the patent application for the above-mentioned famous patent was filed, different documents related to the harmonized contact mask electroplating (that is, INSTANT MASKING) and electrochemical manufacturing have been published: (l.) A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis and P. Will, "EFAB: Batch Production of Functional, Full-Dense Metal Parts with Microscale Features (EFAB: Batch Production of Functional, Full-Dense Metal Parts with micro-scale 20 features) ", Proc. 9th Solid Freeform Fabrication, The University of Texas at Austin, pl61, August 1998. (2.) A. Cohen, G. Zhang, F. Tseng, F. Mansfeld, U. Frodis, and P. Will, "EFAB: Fast, Low-cost Desktop Micromachining with Real 3D MEMS with High Aspect Ratio (EFAB: Rapid, Low-Cost Desktop 200533926

Micromachining of High Aspect Ratio True 3-D MEMS)”, Proc. 12th IEEE Micro Electro Mechanical Systems Workshop, IEEE,p244, 1999年1 月。 (3·)Α· Cohen,“藉由電化學製造之3維微加工作業(3-D 5 Micromachining by Electrochemical Fabrication)’’,Micromachining of High Aspect Ratio True 3-D MEMS) ", Proc. 12th IEEE Micro Electro Mechanical Systems Workshop, IEEE, p244, January 1999. (3 ·) Α · Cohen," Three-dimensional micromanufacturing by electrochemical Processing operations (3-D 5 Micromachining by Electrochemical Fabrication),

Micromachine Devices,1999年3 月。 (4.)G. Zhang, A. Cohen, U. Frodis, F. Tseng, F. Mansfeld 以及P· Will, “EFAB :真實3維微結構之快速桌上製造 (EFAB : Rapid Desktop Manufacturing of True 3-D 10 Microstructures)”,Proc· 2nd International Conference onMicromachine Devices, March 1999. (4.) G. Zhang, A. Cohen, U. Frodis, F. Tseng, F. Mansfeld and P. Will, "EFAB: Rapid Desktop Manufacturing of True 3D Microstructure (EFAB: Rapid Desktop Manufacturing of True 3 -D 10 Microstructures) ", Proc · 2nd International Conference on

Integrated MicroNanotechnology for Space Applications, The Aerospace Co·,1999年4月。Integrated MicroNanotechnology for Space Applications, The Aerospace Co., April 1999.

(5.)F. Tseng, U. Frodis, G. Zhang, A. Cohen, F. Mansfeld 及P· Will,“EFAB :利用低成本自動批量製程之高深寬比、 15 任意3維金屬微結構(EFAB : High Aspect Ratio,Arbitrary 3-D(5.) F. Tseng, U. Frodis, G. Zhang, A. Cohen, F. Mansfeld, and P. Will, "EFAB: High aspect ratio using a low-cost automated batch process, 15 arbitrary 3-dimensional metal microstructures ( EFAB: High Aspect Ratio, Arbitrary 3-D

Metal Microstructures using a Low-Cost Automated Batch Process),5,3rd International Workshop on High Aspect Ratio Microstructure Technology (HARMST’99),1999年6月0 (6·)Α· Cohen,U. Frodis,F. Tseng,G· Zhang, F. 20 Mansfeld,及P· Will, “EFAB :任意3維微結構之低成本自動 電化學批量製造(EFAB ·· Low-Cost, Automated Electrochemical Batch Fabrication of Arbitrary 3-D Microstructures)’’,Micromachining and Microfabrication Process Technology,SPIE 1999 Symposium on 200533926Metal Microstructures using a Low-Cost Automated Batch Process), 5,3rd International Workshop on High Aspect Ratio Microstructure Technology (HARMST'99), June 1999 0 (6 ·) Α · Cohen, U. Frodis, F. Tseng, G. Zhang, F. 20 Mansfeld, and P. Will, "EFAB: Low-Cost, Automated Electrochemical Batch Fabrication of Arbitrary 3-D Microstructures' ', Micromachining and Microfabrication Process Technology, SPIE 1999 Symposium on 200533926

Micromachining and Microfabrication, 1999年9月。 (7.)F. Tseng,G. Zhang, U· Frodis, A· Cohen, F. Mansfeld, 及P. Will, “EFAB :利用低成本自動批量製程之高深寬比、 任意 3維金屬微結構(EFAB ·· High Aspect Ratio,Arbitrary 3-D 5 Metal Microstructures using a Low-Cost Automated Batch Process)”,MEMS Symposium, ASME 1999 International Mechanical Engineering Congress and Exposition,1999年 11 月。 (8·)Α· Cohen,” 電化學製造(EFABTM)(electrochemical 10 Fabrication(EFABTM)),,,Chapter 19 of The MEMS Handbook,edited by Mohamed Gad-El-Hak,CRC Press,2002 年0 (9·)“微製造-快速原型殺手級應用 (Microfabncation-Rapid Prototyping、Killer Application),,, 15 pages 1-5 of the Rapid Prototyping Report, CAD/CAM Publishing,Inc·,1999年6月。 該九項刊物之揭露内容,於此係以全文引用方式並入 本文以為參考貢料。 能夠以如上述專利及刊物中所提出之複數種不同方式 20完成電化學沉積製程。於一形式中,於形成每一結構層期 間此製程包含執行三個個別動作,其係如下般地構成: 1.藉由心儿積在基板之—或更多所需區域上而選擇性 地至少沉積一材料。 2·接著,藉由電沉積而至少覆蓋沉積一附加材料,因 200533926 Λ、力'儿積物覆蓋該二事先選擇性沉積於其上的二區 -=及未接受佐何事先所施加之選擇性沉積的該等基板 之區域。 …,3·最後’將於第-及第二作業期間沉積之材料平面 一勹人乂產生至少具有一包含至少-材料的區域以及至少 、匕3至夕—附加材料的區域的-所需厚度之第一層的平 滑表面。 構成4第-層之後,緊接著前面層相鄰地構成一或 10 、力㉟並與该前面層之平滑表面黏合。該等附加層 ,、精由重複該第—至第三作業—或更多次而構成,其中所 ,成之每-接續層將先前所構成之該等層及初使基板處理 成為新的且加厚之基板。 小一::完成構成所有層,至少其中之一所沉積材料的至 土口ρ刀’一般係藉由一姓刻製程加以去除用以曝光或將 思欲構成之三維結構脫模。 〜執行包括在第-作業中的選擇性電沉積之較佳方法, :、、藉由巧和式接觸光罩電鑛。於此類型之電鑛巾,首先構 成一或更多的調和式接觸(cc)光罩。該調和式接觸(cc)光 20 f包括一圖案化調和介電材料係黏合或構成於其上的輔助 〇、=構。每_光罩所用之調和材料係根據所電料之一特 义4只截面製作成形。至少一調和式接觸(cc)光罩係為每一 電錢之獨特橫截面圖案所需。 調和式接觸(CC)光罩所用之輔助結構,典型地係為由 廷擇性電鍍並且電鍍材料會自其溶解的金屬所構成之一 200533926 平板狀結構。於此典型的方法中,在電鍍製程中該輔助結 構係使用作為-陽極。於-可任擇的方法中,該輔助結構 係可替代地為-多孔或是其他穿孔材料,在電鑛作業期間 沉積材料通過該多孔或是其他穿孔材料自一末端陽極至— 5沉積表面。於任-方法中,該調和式接觸(cc)光罩能夠共 用-共同的輔助結構,亦即,用於電錄多重材料層之調和 介電材料之圖案可位在一單一輔助結構的不同區域中。當 -單-輔助結構包含多重電鍍圖案時,該整體結構係視為 調和式接觸(CC)光罩’同時該等個別的電錢光罩可視為“子 10光罩,,。於本申請案中,僅在與一完成之特定位置相關時才 有該一區別。 就執行第一作業之選擇性沉積之製備而言,該調和式 接觸(CC)光罩之調和部分係經配置對準並壓按靠著於其上 進行沉積的基板之一選定部分(或是在一先前構成層或一 15層之先前沉積部分上)。將調和式接觸(CC)光罩之調和部分 中所有開口包含電錢溶液,以該一方式進行將該調和式接 觸(CC)光罩與基板壓按在一起。與基板接觸的調和式接觸 (CC)光罩之調和材料,係使用作為電沉積之一阻障物,同 日守以電鍍溶液填注之位在調和式接觸(cc)光罩中的開口, 20在供給一適當電位及/或電流時,使用作為將材料自一陽極 (例如,調和式接觸(CC)光罩輔助結構)轉移至基板的未接觸 部分(在電鍍作業期間其係使用作為陰極)。 於第1A-1C圖中所示係為一調和式接觸(cc)光罩及調 和式接觸(CC)光罩電鍍的一實例。第1A圖係為由在_陽極 200533926 12上圖案化而成的調和或可變形的(例如,彈性體的)絕緣體 1〇所構成的一調和式接觸(CC)光罩8的一側視圖。陽極具有 '""""功% 弟1A圖亦圖不與該光罩8分開的一基板6。由於該 圖案係表面結構上複雜(t〇p〇l〇gicallyC〇niplex)(例如,包含 5絕緣體材料之隔離“島,,),所以其中一功能係作為圖案化絕 緣體10用以維持其之整體性及對準所用的輔助材料。另一 功能係作為一電鍍作業用陽極。如第1]3圖中所示,調和式 接觸(CC)光罩電鍍簡單地藉由將絕緣體壓按靠著基板接著 將材料電沉積通過絕緣體中的孔口 26a&26b而選擇性地將 10材料22沉積在一基板6上。在沉積之後,如第1C圖中所示, 該調和式接觸(CC)光罩較佳係非破壞地與該基板6分開。調 和式接觸(CC)光罩電鍵製程與“透過光罩(through-mask)’’式 電鍍製程不同之處在於,該一透過光罩式電鍍製程中將遮 光材料與基板分離係具破壞性。就透過光罩式電鍍而言, 15 5周和式接觸(cc)光罩電鍍選擇性且同時地將材料沉積覆蓋 e亥整層。電鍍區域可由一或更多的隔離電鍍區域所組成, 其中该等隔離電鍵區域可屬所構成之一單一結構,或可屬 同時構成的多重結構。就調和式接觸(cc)光罩電鍍而言, 在去除製程中並非故意破壞該等個別光罩,所以在多重電 20鍍作業中其仍為可用。 於第1D-1F圖中所示係為一調和式接觸(cc)光罩及調 和式接觸(CC)光罩電鍍的另一實例。第1〇圖係顯示與包括 一圖案化調和材料10,及一輔助結構2〇的一光罩8,分開的一 陽極12’。第1D圖亦圖示與該光罩8,分開的基板6。第1E圖 200533926 圖示光罩8’與基板6接觸。第1F圖係圖示自陽極12,將電流傳 導至基板6所造成之沉積物22,。第ig圖係圖示在與光罩8, 分開後,位在基板6上的沉積物22’。於此實例中,將一適 當的電解液配置在基板6與陽極12,之間,並將來自於溶液 5及陽極其中之一或二者的離子電流經由光罩中之開口傳導 至沉積材料之基板。此類型之光罩可視為一絕緣 (an〇deleSS)INSTANT MASK™(AIM)或視為一絕緣 (anodeless)調和式接觸(ACC)光罩。 與透過光罩式電鍍不同,調和式接觸(cc)光罩電鍍容 10許所構成之調和式接觸(CC)光罩係與進行電鍍之基板之製 造完全地分開(例如,係與一所構成之3維(31:))結構分開 可以複數種方式構成該調和式接觸光罩,例如,可使 用光微影蝕刻製程。在結構製造之前而非製造期間,可同 時地構成所有的光罩。如此之分離狀況始能成為一簡單、 15低成本、自動化、自足式、以及内部潔淨幾乎任何位置皆 能夠安裝的“桌上製造廠,,用以製造3維結構,由維修單位或 相似單位執行留下諸如光微影钱刻術的任何所需之潔淨室 製程。 第2A-2F圖中所示係為上述說明之電化學製程的一實 20例。該等圖式顯示該製程包括沉積係為一犧牲材料的一第 一材料2,以及係為一結構材料的一第四材料4。於此實例 中,调和式接觸(CC)光罩8包括一圖案化調和材料(例如, 一彈性體介電材料)10及一由沉積材料2製成的辅助結構 12凋和式接觸(CC)光罩之調和部分,係以配置在調和材 200533926 料10之開口 16中的電鑛溶液14壓按靠著基板6。接著來自電 、、、的I 由⑻同時作為陽極的輔助結構I2及(b)同時 作為陰極的基板6通過電錢溶液14。第2A圖係圖示電流通過 致使電錢溶液中的材料2以及材料2,自陽極12選擇性地轉 移並電鍍在陰極6上。在利用調和式接觸(cc)光罩8將第一 /儿積材料2電錢在基板6上之後,如第沈圖中所示,去除該 调和式接觸(CC)光罩8。第%圖圖示第二沉積材料4已覆蓋 積(亦即,未遥擇地沉積)涵蓋先前沉積的第一沉積材料 2,以及覆盍基板6之其他部分。藉由自一由第二材料所構 鲁 1〇成的陽極(未顯示)通過一適當的電鍍溶液,並電鍍至陰極/ 基板6而進行覆蓋式沉積。如第2D圖中所示,接著將整個二 材料層平面化用以達到精確的厚度及平坦度。如第2E圖中 所不,針對所有層重複此製程之後,將由第二材料4(亦即, 結構材料)構成的多層結構20嵌入在第一材料2(亦即,犧牲 15材料)中。如第2F圖中所示,將該嵌入結構蝕刻用以產生所 需元件,亦即,結構2〇。 如第3A-3C圖中所示,係為一示範性手動電化學製造系 ® 統32的不同元件。系統32係由數個子系統34、36、38及40 所組成。第3A至3C圖之每一上部分中所示係為一基板固持 20 子系統34,並包括複數之元件:(1)一托架48(2)該等層沉積 於其上的一金屬基板6、以及(3)—線性滑座42能夠因應得自 於致動器44之驅動力,將基板6相對於該托架48上下地移 動。子系統34亦包括一指示器46,用於測量基板之垂直位 置上的差異,其可用以設定或是確定層厚度及/或沉積厚 13 200533926 其能夠精確 度。該子系統34進—步包括托架48用腳件68, 地安裝在子系統36上。 第3A圖之下部分中所示的調和式接觸(cc)光罩 36 ’、包括複數之元件:⑴―調和式接觸(cc)光罩咕實際上 系、複數之^用一共同的輔助結構/陽極Η的調和 ㈣光罩(亦即’子光罩)所構成,(2)精度χ平台μ,⑶精 度Υ平台56,⑷子系統34之腳件68安裝於其上的框架π, 以及⑶用於包含電解液16的一槽別。子系統34及36亦包括 適當的電連接裝置(未顯示),用於連接至—適當的電源,用 10以驅動該調和式接觸(CC)遮光製程。 第3Β圖之下。[1分中所示係為覆蓋式沉積子系統%,並 包括複數之元件··⑴一陽極62,(2)一電解液槽⑽於固持 該電鍍溶液66,以及(3)子系統34之腳件68安置於其上的框 架74。子系統38亦包括適當的電連接裝置(未顯示),用於將 15 &極與適當的電源連接,用以驅動該覆蓋式沉積製程。 第3C圖之下部分中所示係為平面化子系統4〇,並包括 一重疊板52以及所結合之移動及與控制系統(未顯示),用於 將沉積物平面化。 由電錢金屬構成微結構的另一方法(亦即,使用電化學 2〇 製造技術),係於頒給Henry Guckel之美國專利第5,190,637 號’標題為”藉由利用犧牲金屬層之多級深部X射線微影蝕 刻術構成微結構(Formation of Microstructures by Multiple Level Deep X-ray Lithography with Sacrificial Metal layers)”一文中講授。該專利講授利用光罩曝光而構成金屬 200533926 結構。將主要金屬之第一層電鍍在一暴露的電鑛基材上, 用以填注位在光阻劑中的空隙,接著將光阻劑去除以及將 -輔助金屬雜覆蓋該帛-層及覆蓋該f職材。接著將 輔助金屬之暴露表面向下加工至露出第一金屬的一高度, 5用以產生延伸涵蓋該二主要及輔助金屬的一平坦均勻表 面。接著藉由施以-光阻劑層覆蓋該第一層❿開始構成一 第一層並接著重複该用以產生第一層之製程。接著重複 該製程直至構成整個結構為止,並藉由姓刻去除該輔助金 屬。藉由鑄造方式將光阻劑構成覆蓋該電鍍基材或是先前 10層,並藉經由X射線或紫外光輻射將光阻劑通過一圖案化光 罩而曝光,在光阻劑中構成空隙。 電化學製造提供在合理成本及時間下構成微型物件、 部件、結構、元件及相似物之原型及商業量產的能力。事 貫上,電化學製造係為一輔助技術(enabler),用於構成多數 15迄今無法產生之結構。電化學製造開啟在多數工業領域中 新設計及產品之範圍。即使電化學製造提供此新穎能力, 並且應瞭解的是電化學製造技術能夠與不同領域内所熟知 的設計及結構結合用以產生新結構,就發展中之科技的目 前進步水準而言,提供設計、結構、能力及/或特性的電化 20學製造之特定用途並非廣為熟知或顯著的。 於複數領域中,存在著對於具改良特性、減少製造時 間、降低製造成本、簡化的製程及/或在幾何構形與選定製 程之間更具獨立性的微型元件之需求。在微型(亦即,中尺 度的及微尺度的)元件製造領域中,亦存在著對於改良製作 15 200533926 方法及裝置的需求。 於電化學製造領域中,亦存在著強化對於補充該等於 該領域中已為所熟知之用以容許在元件設計上具更多用 途、改良材料之選擇、改良材料特性、更具成本效益及較 5 小的製造該等元件之風險及相似因素的技術之需求。 【發明内容】 發明概要 本發明之一些觀點的一目的在於提供一能夠製造改良 式微探針接點的電化學製造技術。 10 本發明之一些觀點的一目的在於提供一能夠製造改良 式微探針及微探針接點的電化學製造技術。 本發明之一些觀點的一目的在於提供一能夠製造微探 針接點的改良式電化學製造技術。 本發明之一些觀點的一目的在於提供一能夠製造微探 15 針及微探針接點的改良式電化學製造技術。 熟知此技藝之人士一旦檢閱於此的講授内容,對於本 發明之複數觀點的其他目的與優點係為顯而易見的。本發 明之複數觀點,於此明確地提出或是以其他方法於此由講 授内容查明,可獨自或是結合地提出上述一或更多之目 20 的,或是可任擇地提出由此之講授内容所查明的本發明之 其他目的。即使與一些觀點有關的情況一樣,但並非必定 意欲所有目的係藉由本發明之任一單一觀點提出。 於本發明之第一觀點中,一種用於產生接觸結構的方 法,包括:構成一具有所需形式的接觸接點;以電化學方 16 200533926 式構成顺應式摄* 用以構成-接觸”及將接觸接點黏附至探針結搆 於本發明之M — 法,包括:構^ 種用於產生接觸結構的方 5 10 15 20 沉積材料的黏著層=====接點;由複數之電 黏附至探針結構用以1 =:構;以及將接觸接點 *:發dr中,一種用於產生接觸結構的方 ㈣式構成順=:::形:::觸接點;、電化 順應式探針結構。其中在該接觸接點上構成一 法:發:=第四觀點中,一種用於產生接觸結構的方 之電沉積材有所需形式的接觸接點;以及由複數 觸接點上^===醜_,其中在該接 法,===‘::,於產生接觸結構的方 -具有所需形式的=成:=_構,、及構成 構成—接觸接點觸接點,其中在該順應式探針結構上 :=構其-: 可瞭==亡士:旦檢閱於此提出之講授内容,應 步觀點。本發明之其他觀點可包含結 17 200533926 合上述提及的觀點。本發明之其他觀點包括能夠用以執行 上述本發明之一或更多方法觀點的裝置。本發明之該等其 他觀點可提供上述觀點之不同結合方式以及提供其他構 形、結構、功能關係、以及上述並未特別提出的製程。 5 圖式簡單說明 第1A -1C圖係為一調和式接觸光罩電鍍製程於不同階 段的概略側視圖,同時第1D-1G圖係為使用一不同型式的調 和式接觸光罩的一調和式接觸光罩電鍍製程的不同階段的 概略側視圖。 10 第2A-2F圖係為用以構成一特定結構之電化學製程於 不同階段的概略側視圖,該結構中選擇性地沉積一犧牲材 料同時覆盍式沉積一結構材料。 第3 A - 3 C圖係為不同示範性子總成的概略側視圖,其可 用以手動地執行第2A-2F圖中所示之電化學製造方法。 15 第4A-4I圖係概略地圖示使用黏著光罩電鍍所構成的 一結構之第一層,其中一第二材料之覆蓋式沉積將介於第 一材料之沉積位置與第一材料本身之間的開口覆蓋。 第5 A - 5 J圖係為根據本發明之第一具體實施例用於構 成一探針元件陣列之製程於不同階段的概略側視圖,其中 20 探針元件接點係經由電鍍構成在一以環氧模板塗佈的種晶 層上,該環氧模板係以一接受圖案化非等向性蝕刻的矽晶 圓模塑而成。 第6 A - 6 E圖係為根據本發明之第二具體實施例用於構 成一探針元件陣列之製程於不同階段的概略側視圖,其係 18 200533926 與本發明之第一具體實施例相似,不同之處在於探針元件 接點之構成材料係與探針元件的其餘部分不同。 第7A-7F圖係為根據本發明之第三具體實施例用於構 成一板針元件之製程於不同階段的概略側視圖,其中探針 元件接點係使用製作具有一底切(undercut)的突出之圖案化 光阻劑所構成。 10 15 20 第8A-8F圖係為根據本發明之第四具體實施例用於構 成一棟針元件之製程於不同階段的概略側視圖,其中探針 兀件接點係使用製作具有向外推拔側壁位在一圖案化光阻 劑中的内縮部分所構成。 第9 A - 9 G圖係為根據本發明之第五具體實施例用於構 成一铋針兀件陣列之製程於不同階段的概略側視圖,其中 如針兀件接點係使用一圖案化光阻劑材料之突出部分所構 成製作為蕈形以及蝕刻穿過之開口的一電鍍材料覆蓋該 圖案化光阻劑材料。 第^A-IOC圖係為根據本發明之第六具體實施例用於 構成k針元件陣列之製程於不同階段的概略側視圖,其 中抓針TL件接點係使用—圖案化光阻劑材料之突出部分所 構成^料蕈形的—電鍍材料覆蓋該圖案化光阻劑材料。 、第UAdlFij係為根據本發明之第七具體實施例用於 構成-探針接轉列之製程於不同階段的概略部分穿透、、 透視圖、沿著一中央切割平面的側視圖以 =係利用由一圖案化沉積所構成之模具所二其: I、構成複數之由覆蓋式沉積所覆蓋之空隙(每個接點二 19 200533926 個空隙)’其㈣等空隙窄化並使其具有-所需形狀。 第12A-12E圖係為根據本發明之第八具體實施例用於 構成一探針接點陣列之製程於不同階段的概略部分穿透、 透視圖,其中探針接點係利用由一犧牲材料所環繞之結 5材料或是接點材料之部分遮光區域所構成,並接著相對於 犧牲材料蝕刻該結構或接點材料用以達到所需之接點步 式。 ^ 第13A-13C圖係為根據本發明之第九具體實施例用於 構成-楝針兀件陣列之製程於不同階段的概略側視圖,其 中係於遠下位於元件之先前構成部分上該等接點元件的暴 露區域中,藉由將圖案化遮光材料配置覆蓋該一接點^ 料,並將接點材料钱刻去除而構成元件之其他部分之 成該等探針接點。 第14A-14D圖係為用於構成一壓花工具的一製程於不 15同階段的概略側視圖,該工具用於構成具有所有存在之陣 列兀件並具有-第-接點形式的探針接點。 第15A 15D圖係為用於構成一壓花工具的一製程於不 同階段的概略側視圖,該工具用於構成僅具有存在之陣列 兀件的一部分並具有一第二接點形式的探針接點。 20 第16A-16M圖係為用於根據本發明之第十具體實施例 構成一探針元件陣列的一製程於不同階段的概略側視圖, 其中利用根據第14A-14D圖所生產之壓花工具構成探針元 件接點。 第17A-17L圖係為用於根據本發明之第十一具體實施 20 200533926 探針元件陣列的—製程於不同階段的概略側視 圖:接中利用根據第14A卿 兀件接點,_花㈣係具料性 的探針元件。 j未構成選定 5 10 15 20 第齡⑻圖係為用於根據本發明之第十二 例構成一探針元件陣列的一 f ^ 圖,直_的概略側視 元件接點14D圖所生產之壓花卫具構成探針 / |且其中未構成選定的探針元件及探針接點。 ㈣η·19Ν圖係為用於根據本發明之第十三具體實施 例構成一探針元件陣列的-製程於不同階段的概略側視 圖,其中一此摈斜 U合W視 "…同高度以及不同的接點形 j,並且利用根據第14Α挪圖及第15A15D圖所生產之麼 才匕工具構成探針接點元件。 第20A-20E圖係為用於根據本發明之第十 _成一探針元件的-製程於不同階段的概略側視圖,、其 中抓針接U _在構成探針元件巾防護 牲材料影響的所需接觸材料塗佈。 犧 ⑽Γ一T1F圖係為用於根據本發明之第十五具體實施 例構成-板針元件的一製程於不同階段的概略側視圖,苴 中抓係具—推拔形式以及一在構成探針元件中防護 不受所使用之犧牲材料影響的所需接觸材料之淹声。 圖係為用於根據本發明之第十六具體實施 ::::元件之陣列的一製程於不同階段該示 祕、,°構的概略部分穿透、透視圖,其中探針接點係使用 21 200533926 -石夕模具所構成,並且在去除犧牲材料之前將1 劑影 構材料料之間而該㈣點受防護不受犧崎^刻 響0 5 10 第23A-23U圖係圖示 不範性製程流程,用於利用蕈 形化作業而製造單-高度之探針㈣產生該等接點。 第24A-24CC圖係圖示本發明之一具體實施例的製程 流程,其巾在適當層處經由簟形化作業構成用以界定接點 所需之光阻劑圖案,但犧牲材料之蕈形化沉積係經推遲直 至將該等層建構至-足夠高度為止,Μ容許構成最大的 接點面度。Micromachining and Microfabrication, September 1999. (7.) F. Tseng, G. Zhang, U. Frodis, A. Cohen, F. Mansfeld, and P. Will, "EFAB: High-aspect-ratio ratio of arbitrary low-dimensional automated batch processes, arbitrary 3-dimensional metal microstructures ( EFAB ·· High Aspect Ratio, Arbitrary 3-D 5 Metal Microstructures using a Low-Cost Automated Batch Process) ", MEMS Symposium, ASME 1999 International Mechanical Engineering Congress and Exposition, November 1999. (8 ·) Α · Cohen, "Electrochemical Manufacturing (EFABTM) (electrochemical 10 Fabrication (EFABTM))," Chapter 19 of The MEMS Handbook, edited by Mohamed Gad-El-Hak, CRC Press, 2002 0 (9 ·) "Microfabncation-Rapid Prototyping, Killer Application,", 15 pages 1-5 of the Rapid Prototyping Report, CAD / CAM Publishing, Inc., June 1999. The disclosures of the nine publications are incorporated herein by reference in their entirety for reference. The electrochemical deposition process can be performed in a number of different ways 20 as proposed in the aforementioned patents and publications. In one form, this process includes performing three individual actions during the formation of each structural layer, which is structured as follows: 1. Selectively by accumulating on the substrate-or more required areas-the substrate At least one material is deposited. 2. Next, at least one additional material is deposited and deposited by electrodeposition, because 200533926 Λ, force 'children's product covers the two regions that were selectively deposited on it in advance-= and did not accept the choice previously given by Zuo He The areas of the substrates that are deposited. …, 3. · Finally, the plane of the material to be deposited during the first and second operations creates a required thickness of at least a region containing at least -material and at least, a region of additional material- The smooth surface of the first layer. After the 4th layer is formed, the front layer is immediately adjacent to a one or 10 layer, and is bonded to the smooth surface of the front layer. The additional layers are composed of repeating the first to third operations or more, wherein each of the succeeding layers will form the previously formed layers and make the substrate processing new and Thickened substrate. Primary 1: Complete the formation of all the layers, and at least one of the deposited materials is generally removed by a surname engraving process to expose or demould the three-dimensional structure formed by the desire. ~ A better method of performing selective electrodeposition, including in the first operation,: ,,, and a photomask electrosupplier by Qiaohe type. In this type of electric mineral towel, one or more harmonic contact (cc) photomasks are first formed. The harmonic contact (cc) light 20 f includes a patterned harmonic dielectric material that is bonded or formed on it. The blending material used in each mask is made according to one of the four materials with a special cross section. At least one harmonic contact (cc) mask is required for the unique cross-sectional pattern of each battery. Auxiliary structures used in harmonized contact (CC) masks are typically one of metal plates that are selectively plated and the plating material will dissolve from them. 200533926 Flat plate structure. In this typical method, the auxiliary structure is used as an anode in a plating process. In an optional method, the auxiliary structure may alternatively be a porous or other perforated material, and the deposition material passes through the porous or other perforated material from an end anode to the deposition surface during the electric mining operation. In any method, the harmonic contact (cc) mask can share a common auxiliary structure, that is, the pattern of the harmonic dielectric material for recording multiple material layers can be located in different regions of a single auxiliary structure in. When the -single-auxiliary structure contains multiple plating patterns, the overall structure is considered as a harmonized contact (CC) mask. At the same time, the individual electric money masks can be regarded as "sub-10 masks." In this application The difference is only relevant in relation to a completed specific position. For the preparation of the selective deposition performed in the first operation, the harmonic portion of the harmonic contact (CC) mask is configured to align and Press on a selected portion of the substrate against which it is being deposited (or on a previously deposited portion of a previously formed layer or a 15 layer layer). Include all openings in the harmonic portion of the Harmonic Contact (CC) mask An electric money solution is used to press the harmonized contact (CC) mask and the substrate together in this way. The harmonious contact (CC) mask material that is in contact with the substrate is used as a resistance to electrodeposition. Obstacles, the openings in the Harmonic Contact (cc) reticle that are filled with a plating solution on the same day, 20 are used to supply material from an anode (for example, Harmonic Contact) when an appropriate potential and / or current is supplied. (CC) Mask auxiliary structure) The non-contact portion of the plate (which is used as the cathode during the plating operation). Figures 1A-1C show an example of a harmonic contact (cc) mask and a harmonic contact (CC) mask plating. Figure 1A is a side view of a harmonic contact (CC) reticle 8 composed of a harmonic or deformable (eg, elastomeric) insulator 10 patterned on _anode 200533926 12. The anode has a " " " " work%. The 1A drawing also shows a substrate 6 that is not separated from the photomask 8. Because the pattern is complex on the surface structure (top-levelly complex) (For example, an isolation "island containing 5 insulator materials," so one of the functions is to serve as an auxiliary material for the patterned insulator 10 to maintain its integrity and alignment. The other function is to serve as an anode for electroplating operations. As shown in Figure 1] 3, the harmonized contact (CC) mask electroplating simply selects 10 by pressing the insulator against the substrate and then electrodepositing the material through the apertures 26a & 26b in the insulator. The material 22 is deposited on a substrate 6. After deposition, as shown in FIG. 1C, the harmonized contact (CC) mask is preferably non-destructively separated from the substrate 6. The difference between the harmonized contact (CC) mask key manufacturing process and the "through-mask" plating process is that the separation of the light-shielding material from the substrate in the through-mask plating process is destructive. In the case of through-the-plate plating, 15-5 week Japanese-style contact (cc) mask plating selectively and simultaneously deposits a material to cover the entire layer. The plating area may consist of one or more isolated plating areas, where The isolation key areas may be a single structure or multiple structures formed at the same time. In the case of harmonic contact (cc) mask plating, the individual masks are not intentionally damaged during the removal process, so It is still available in multiple electroplating operations. Figures 1D-1F show another example of a Harmonic Contact (CC) mask and Harmonic Contact (CC) mask plating. Section 1〇 The figure shows a photomask 8 separated from the photomask 8 including a patterned blending material 10, and an auxiliary structure 20. Figure 1D also illustrates the substrate 6 separated from the photomask 8. 1E Figure 200533926 illustrates the photomask 8 'in contact with the substrate 6. Figure 1F The figure shows the deposit 22 'caused by conducting current from the anode 12 to the substrate 6. The figure ig shows the deposit 22' on the substrate 6 after being separated from the photomask 8. In this example, An appropriate electrolyte is arranged between the substrate 6 and the anode 12, and the ionic current from one or both of the solution 5 and the anode is conducted to the substrate of the deposition material through the opening in the mask. This type The mask can be regarded as an insulated INSTANT MASK ™ (AIM) or regarded as an insulated (anodeless) harmonic contact (ACC) mask. Unlike the through-hole plating, the harmonic contact (cc) light The harmonized contact (CC) mask formed by the mask plating capacity is completely separated from the manufacturing of the plated substrate (for example, it is separated from a three-dimensional (31 :) structure) and can be constructed in multiple ways. The harmonious contact mask, for example, can use a photolithographic etching process. All the masks can be formed simultaneously before the structure is manufactured, rather than during the manufacturing process. This separation can be a simple, low cost, and automated process. , Self-contained, and almost clean Both can be mounted anywhere "table ,, factory for the manufacture of 3-dimensional structures, by the maintenance organization or the like is performed in units leave any desired process, such as a cleanroom photolithographic money engraved surgery. Figures 2A-2F show 20 examples of the electrochemical process described above. The figures show that the process includes depositing a first material 2 which is a sacrificial material, and a fourth material 4 which is a structural material. In this example, the Harmonic Contact (CC) mask 8 includes a patterned Harmonic material (eg, an elastomeric dielectric material) 10 and an auxiliary structure 12 made of a deposition material 2. The reconciling part of the photomask is pressed against the base plate 6 with the power mineral solution 14 disposed in the opening 16 of the reconciling material 200533926 material 10. Then, the substrates 6 from the electrodes I,, and I pass through the electrolyte solution 14 through the auxiliary structures I2 and (b) serving as anodes at the same time. Figure 2A illustrates the passage of current causing material 2 and material 2 in the battery solution to be selectively transferred from the anode 12 and plated on the cathode 6. After the first / child product 2 is charged on the substrate 6 using the harmonized contact (cc) mask 8, the harmonized contact (CC) mask 8 is removed as shown in the figure. Figure% illustrates that the second deposition material 4 has been covered (i.e., not remotely deposited) covering the previously deposited first deposition material 2, and other parts of the overlying substrate 6. Overlay deposition is performed by forming an anode (not shown) formed from a second material through a suitable plating solution and electroplating to the cathode / substrate 6. As shown in Figure 2D, the entire two material layers are then planarized to achieve precise thickness and flatness. As shown in FIG. 2E, after repeating this process for all layers, the multilayer structure 20 composed of the second material 4 (ie, the structural material) is embedded in the first material 2 (ie, the sacrificial 15 material). As shown in Figure 2F, the embedded structure is etched to produce the desired component, i.e., the structure 20. As shown in Figures 3A-3C, these are the different components of an exemplary manual electrochemical manufacturing system ® 32. The system 32 is composed of several subsystems 34, 36, 38, and 40. Shown in each upper part of Figures 3A to 3C is a substrate holding 20 subsystem 34 and includes a plurality of components: (1) a bracket 48 (2) a metal substrate on which the layers are deposited 6. and (3) —The linear slide 42 can move the substrate 6 up and down relative to the bracket 48 in response to the driving force obtained from the actuator 44. The subsystem 34 also includes an indicator 46 for measuring the difference in the vertical position of the substrate, which can be used to set or determine the thickness of the layer and / or the thickness of the deposit 13 200533926 which can be accurate. The subsystem 34 further includes feet 68 for brackets 48 and is mounted on the subsystem 36. Harmonic contact (cc) mask 36 ′ shown in the lower part of FIG. 3A, including a plurality of elements: ⑴—harmonic contact (cc) mask is actually a common auxiliary structure / Anode Η Harmonic ㈣ reticle (ie, 'sub reticle'), (2) accuracy χ platform μ, ⑶ accuracy Υ platform 56, the frame π on which the feet 68 of the subsystem 34 are mounted, and (3) It is used for a slot containing the electrolyte 16. Subsystems 34 and 36 also include appropriate electrical connections (not shown) for connection to an appropriate power source and 10 to drive the harmonized contact (CC) shading process. Below Figure 3B. [The points shown in 1 point are the coverage type of the deposition subsystem, and include a plurality of elements ... an anode 62, (2) an electrolyte tank holding the plating solution 66, and (3) the subsystem 34 The frame 74 rests on the feet 68. Subsystem 38 also includes appropriate electrical connections (not shown) for connecting 15 & poles to a suitable power source to drive the overlay deposition process. Shown in the lower part of Figure 3C is a planarization subsystem 40 and includes an overlay plate 52 and a combined movement and control system (not shown) for planarizing the sediment. Another method of forming microstructures from electromoney metals (that is, using electrochemical 20 manufacturing technology) is based on U.S. Patent No. 5,190,637 issued to Henry Guckel, entitled "By Utilizing Multi-Level Deep Sections of Sacrificial Metal "Formation of Microstructures by Multiple Level Deep X-ray Lithography with Sacrificial Metal layers." This patent teaches using a photomask to construct a metal 200533926 structure. The first layer of the main metal is electroplated on an exposed electric ore substrate to fill the gaps in the photoresist, and then the photoresist is removed and the -assisted metal is covered with the hafnium layer and the cover. The f job. Then, the exposed surface of the auxiliary metal is processed down to a height where the first metal is exposed, 5 for generating a flat and uniform surface extending to cover the two main and auxiliary metals. Then, a first layer is formed by covering the first layer with a photoresist layer, and then the process for generating the first layer is repeated. The process is then repeated until the entire structure is formed, and the auxiliary metal is removed by the last name engraving. The photoresist composition is formed to cover the electroplated substrate or the previous 10 layers by casting, and the photoresist is exposed through a patterned mask through X-ray or ultraviolet radiation to form a void in the photoresist. Electrochemical manufacturing provides the ability to construct prototypes and commercial mass production of micro-objects, components, structures, components, and the like at a reasonable cost and time. In principle, the electrochemical manufacturing system is an enabler for forming most structures that have not been produced so far. Electrochemical manufacturing opens the door to new designs and products in most industrial sectors. Even if electrochemical manufacturing provides this novel capability, it should be understood that electrochemical manufacturing technology can be combined with designs and structures that are well known in different fields to generate new structures, providing design in terms of the current level of progress in developing technology. The specific uses of electrochemical fabrication, structures, capabilities, and / or characteristics are not widely known or significant. In the plural field, there is a need for micro-components with improved characteristics, reduced manufacturing time, reduced manufacturing costs, simplified manufacturing processes, and / or more independence between geometric configuration and customized processes. There is also a need for improved manufacturing methods and devices in the field of micro (i.e., medium and micro scale) component manufacturing. In the field of electrochemical manufacturing, there are also enhancements to complement this already well-known in the field to allow for more uses in component design, improved material selection, improved material characteristics, more cost-effective, and 5 Small technology needs to manufacture these components with similar risks and risks. SUMMARY OF THE INVENTION An object of some aspects of the present invention is to provide an electrochemical manufacturing technology capable of manufacturing an improved microprobe contact. 10 An object of some aspects of the present invention is to provide an electrochemical manufacturing technique capable of manufacturing improved microprobes and microprobe contacts. It is an object of some aspects of the present invention to provide an improved electrochemical manufacturing technique capable of manufacturing microprobe contacts. An object of some aspects of the present invention is to provide an improved electrochemical manufacturing technology capable of manufacturing microprobe 15-pin and microprobe contacts. Once those skilled in the art have reviewed the teachings here, other objects and advantages of the plural viewpoint of the present invention will be obvious. The plural viewpoints of the present invention are hereby explicitly proposed or ascertained by the teaching content in other ways, and one or more of the above-mentioned headings 20 may be proposed alone or in combination, or alternatively Other objects of the invention identified by its teachings. Even if it is the case with some viewpoints, it is not necessarily intended that all purposes are presented by any single viewpoint of the present invention. In a first aspect of the present invention, a method for producing a contact structure includes: forming a contact contact having a desired form; constituting an compliant photo by an electrochemical method 16 200533926 * for forming-contacting " And the method of adhering contact contacts to the probe structure in the M-method of the present invention includes: constructing a method for generating a contact structure 5 10 15 20 an adhesive layer of a deposited material ===== contacts; Electro-adhesion to the probe structure for 1 =: structuring; and for the contact contacts *: hair dr, a formula for generating contact structures is composed of == ::: shape ::: contact contacts; A compliant probe structure in which a method is formed on the contact point: hair: = In the fourth aspect, a square electrodeposited material for generating a contact structure has a contact form of a desired form; and On the contact ^ === ugly_, where in the connection method, === '::, in the side that produces the contact structure-having the required form = 成: = _ 结构, and constitutional composition-contact contact Contact points, where on the compliant probe structure: = 建 其-: 可 了 == 死士: Once reviewing the teaching content presented here, should Step viewpoint. Other viewpoints of the present invention may include the above-mentioned viewpoints of 200533926. Other viewpoints of the present invention include a device capable of performing one or more method viewpoints of the above-mentioned invention. These other viewpoints of the present invention Can provide different combinations of the above points and provide other configurations, structures, functional relationships, and processes not specifically mentioned above. 5 Schematic illustrations 1A-1C are a harmonic contact mask electroplating process in different 1D-1G is a schematic side view of the different stages of a harmonic contact mask plating process using a different type of harmonic contact mask. Figures 2A-2F are for use. In order to form a schematic side view of the electrochemical process of a specific structure at different stages, a sacrificial material is selectively deposited at the same time while a structural material is deposited overlying. Figures 3 A-3 C are different exemplary sub-assemblies. A schematic side view of FIG. 2A can be used to manually perform the electrochemical manufacturing method shown in FIGS. 2A-2F. 15 FIGS. 4A-4I are schematic illustrations of the use of an adhesive mask The first layer of a structure formed by plating, in which the overlay deposition of a second material covers the opening between the deposition location of the first material and the first material itself. Figures 5 A-5 J are based on The first specific embodiment of the present invention is used to form a schematic side view of a probe element array manufacturing process at different stages, in which 20 probe element contacts are formed by plating on a seed layer coated with an epoxy template. The epoxy template is molded from a silicon wafer subjected to patterned anisotropic etching. Figures 6A-6E are used to form a probe element according to a second embodiment of the present invention. Array manufacturing process is a schematic side view of different stages. It is similar to the first embodiment of the present invention, except that the constituent materials of the probe element contacts are different from the rest of the probe element. Figures 7A-7F are schematic side views of different stages of the process for forming a pin component according to a third embodiment of the present invention, wherein the contact of the probe element is made using an undercut Consisting of a patterned photoresist. 10 15 20 Figures 8A-8F are schematic side views of the manufacturing process of a needle element according to a fourth embodiment of the present invention at different stages. The probe element contacts are made with outward pushing The drawn sidewall is formed by a constricted portion in a patterned photoresist. Figures 9A-9G are schematic side views of the manufacturing process for forming an array of bismuth needle elements at different stages according to the fifth embodiment of the present invention. For example, the contact of the needle elements uses a patterned light. The patterned photoresist material is covered by a plating material made of a protruding portion of the resist material and made of a mushroom shape and an opening etched through. The ^ A-IOC diagram is a schematic side view of a process for forming a k-pin element array at different stages according to a sixth embodiment of the present invention, in which the contact points of the TL pin are used-patterned photoresist The protruding portion is made of a mushroom-shaped material—the plating material covers the patterned photoresist material. The UAdlFij is a rough part of the process for forming the probe connection process at different stages according to the seventh specific embodiment of the present invention. A perspective view, a side view along a central cutting plane, Using a mold composed of a patterned deposition, the other two: I. forming a plurality of voids covered by overlay deposition (each contact is 19 200533926 voids) 'its first narrowing is narrowed and has- Desired shape. 12A-12E are schematic partial penetration and perspective views of a process for forming a probe contact array at different stages according to an eighth embodiment of the present invention, in which the probe contact is made of a sacrificial material The surrounding knot 5 material or a part of the light-shielding area of the contact material is formed, and then the structure or the contact material is etched relative to the sacrificial material to achieve the required contact step. ^ Figures 13A-13C are schematic side views of the manufacturing process of the array of needles and elements in different stages according to the ninth embodiment of the present invention, which are located far below the previous components of the component. In the exposed area of the contact element, the patterned light-shielding material is configured to cover the contact material, and the contact material is removed to form the probe contacts of other parts of the element. Figures 14A-14D are schematic side views of a process used to form an embossing tool at different stages. The tool is used to form a probe with all existing array elements and a -first-contact form. contact. Figures 15A and 15D are schematic side views of a process for forming an embossing tool at different stages. The tool is used to form a probe connector having only a part of an array element existing and having a second contact form. point. 20 Figures 16A-16M are schematic side views of a process for forming a probe element array at different stages according to a tenth embodiment of the present invention, in which an embossing tool produced according to Figures 14A-14D is used Make the probe element contacts. Figures 17A-17L are for the eleventh specific implementation of the invention according to the present invention. 20 200533926 Probe element array-a schematic side view of the process at different stages: in the connection, the contact according to the 14A element is used. Fastening probe element. j is not constituted and selected 5 10 15 20 The age chart is an f ^ drawing for constructing a probe element array according to the twelfth example of the present invention, and a straight side view of a schematic 14D drawing of a component contact The embossed guard constitutes a probe, and the selected probe element and probe contact are not formed therein. ㈣η · 19N is a schematic side view of a process for forming a probe element array in accordance with the thirteenth embodiment of the present invention at different stages, one of which is obliquely viewed at the same height and Different contact shapes j, and the probe contact elements are constructed using the tool produced according to the 14A and 15A15D drawings. Figures 20A-20E are schematic side views for the tenth _ forming a probe element according to the present invention-the manufacturing process is at different stages, in which the pin is connected to U Need to contact material coating. The sacrifice Γ-T1F diagram is a schematic side view of a process for forming a plate pin element at different stages according to the fifteenth embodiment of the present invention. The middle gripper-pushing form and a forming probe Drowning of the required contact material in the component to protect it from the sacrificial material used. The figure is a schematic partial penetrating and perspective view of a structure of the array of elements used in the sixteenth specific implementation of the :::: element at different stages. The probe contacts are used. 21 200533926-Shi Xi mold, and before removing the sacrificial material between the 1 dose of shadow material and the point is protected from sacrifice ^ 刻 响 0 5 10 Figure 23A-23U is not a good illustration The manufacturing process is used to make single-height probes using mushroom-shaped operations to generate these contacts. Figures 24A-24CC are diagrams illustrating the process flow of a specific embodiment of the present invention. The towel is formed at the appropriate layer through a sculpting operation to form the photoresist pattern required to define the contacts, but sacrifices the mushroom shape of the material. The chemical deposition system was postponed until the layers were constructed to a sufficient height, and M allowed to form the largest contact area.

第25A-25D圖係為用於構成一與第7A 7F圖之具體實 施例相似的底切介電圖案的一可任擇製程於不同階段的概 略側視圖,其中光阻劑之多重沉積物可用與多重曝光結合 使用。 15 第26A-26H圖係圖示用於製作接觸光罩的製程,而第Figures 25A-25D are schematic side views of an optional process at different stages for forming an undercut dielectric pattern similar to the embodiment of Figures 7A-7F. Multiple photoresist deposits are available. Use in combination with multiple exposures. 15 Figures 26A-26H illustrate the process used to make a contact mask, and

26I-26M圖係圖示接觸光罩在一晶圓上構成接點時之用途。 第27 A-27B圖係為用於產生探針接點的一具體實施 例’其包含產生具有傾斜側壁的光阻劑模具。 第28A-28S圖係為與製造具有探針接點之探針的方法 20 相關的一具體實施例。 第29A-29D圖係圖示一製程,其中由於犧牲材料膨脹 因而造成接點引導表面呈喇。八形狀展開。 第30A-30D圖係圖示假若發生膨脹及呈喇々\形狀展開 可使用的一強化製程。 22 200533926 第31A-32B圖係圖示一可任擇製程,用以容許聚合物成 型,接著使用一方向性電漿蝕刻用以自蕈形狀犧牲材料之 表面及孔之底部去除聚合物,但讓其仍留在底切區域之後 方。 5 第33A-33D圖係圖示一方法,其中銅填充物可使用作 為之後將接點材料自鎳模具脫模及分離的一方式。 第34A-34D圖係圖示一2層式接點結構其可首先使用 光阻劑製作,具有一較寬的第一層及一較窄的第二層。 第35A-35B圖係圖示如於此所說明之一或更多之不同 10 製程所製作的探針接點,其上配裝具有一附裝材料並於之 後用以將接點與探針黏合。 L實施方式3 較佳實施例之詳細說明 第1A-1G、2A-2F及3A-3C圖係圖示所熟知之電化學的 15 一形式之不同的特徵。其他的電化學製造技術係於以上參 考的’630專利、先前不同的合併公開案、不同的其他專利 以及於此併入本案以為參考資料的專利申請案中提出,而 仍有其他的技術可由結合於該等公開案、專利以及申請案 中所說明之方法衍生而得,或為由熟知此技藝之人士以其 20 他方法自於此提出之講授内容中所熟知或可確定的。所有 該等技術可與本發明之不同觀點的不同具體實施例結合, 用以產生強化的具體實施例。仍有該等其他的具體實施例 係結合於此明確地提出的不同具體實施例所衍生而的。 第4A-4I圖係圖示於構成一多層製程之單一層的不同 23 200533926 階段,其中一第二金屬係沉積在一第一金屬上以及位在第 一金屬中的開口中,其之沉積物構成部分之層。於第4A圖 中,所示係為一基板82的一側視圖,如第4B圖中所示將一 可圖案化光阻劑84澆鑄在基板上。於第4C圖中,所示係為 5將光阻劑固化、曝光及顯影所造成之光阻劑圖案。光阻劑 84之圖案化造成開口或孔口 92A-92C,其係自光阻劑之一表 面86延伸穿過光阻劑之厚度到達基板82之表面88。於第4D 圖中,如圖所示已將金屬94(例如,鎳)電鍍進入開口 92A-92C中。於第4E圖中,已自基板去除(亦即,以化學方 10式剝除)光阻劑用以露出基板82之未以第一金屬94覆蓋的 該等區域。於第4F圖中,如圖所示已將第二金屬96(例如, 銀)以覆蓋式電鍍覆蓋基板82之整個露出部分(其係具傳導 性)以及覆蓋該第一金屬94(其亦係具傳導性)。第4G圖係圖 示所完成結構之第一層,其係將第一及第二金屬向下平面 15化至露出第一金屬的一高度而構成並設定第一層之厚度。 於第4H圖中,係為重複第4B-4G圖中所示製程步驟數次用 以構成一多層結構的結果,該多層結構中之每一層係由二 材料所組成。就大多數之應用而言,如第4][圖中所示,去 除該等材料的其中之一材料,用以產生一所需的3維結構 20 98(例如,組件或元件)。 於此所揭露之不同的具體實施例、任擇方案及技術可 /、黾化學技術結合或是經由電化學技術執行。該等結合咲 是完成結果可在所有層上利用一單一圖案化技術,或是在 不同層上使用不同的圖案化技術用以構成多層結構。例 24 200533926 /可使用不同型式的圖案化光罩及遮光技術,或甚至是 執行直接選擇性沉積而不需遮光的技術。例如,於構成一 曰』門可使用_和式接觸光罩,同時能夠結合構成其他 層使用非調和式接觸光罩。可使用接近光罩(Pr〇Ximity mask) 、、光作業(亦即’使用光罩之作業,即使未接觸亦使其接 i板而至夕σ|5分選擇性地保護一基板),並可使用黏著光 2及=光作業(光罩以及使用光罩之作業,該等光罩係黏附 /、 〃有‘擇性〉儿積物的基板,或是與僅係與其接觸 之相對處進行蝕刻)。 、第5A-5J圖係為根據本發明之第一具體實施例用於構 」罙、’十元件陣列之製程於不同階段的相义略側才見圖,其中 居、十兀件接點係經由電鑛構成在一以環氧模板塗佈的種晶 層上,该壞氧模板係以一接受圖案化非等向性姓刻的石夕晶 圓模塑而成。 ▲第5A圖係圖不在供給一圖案切晶圓之後該製程的一 狀恕。石夕晶圓已藉由將一光罩配置覆蓋其之表面並將光罩 ^案化用以在與所需探針接點位置相對應之該等區域中具 有開口。當將光罩置於適當位置,執行等向性I虫刻用以在 夕中產生V形狀或是圓錐狀孔。 巨於該等可任擇的具體實施例中,該等開口可採用V形狀 t C之开/式其係為探針接點所需採用的該一形式。該等 開口 104及石夕1〇2係與所需探針接點位置相對應,並表示探 針接點形狀的順應性。如第5B圖中所示,在完成圖案化矽 之後將諸如-環氧化物的洗鑄材料1〇6模塑覆蓋石夕之圖案 25 200533926 "ί匕表面。 如第5C圖中所不,接著將圖案化矽之經模塑上下顛倒 的複製物自矽分離。 第5D圖係圖示在將一犧牲材料1〇8電沉積並經平面化 5覆蓋該複製物之圖案化表面上之後,該製程的狀態。該犧 牲材料108,例如,可為銅。視構成複製物1〇6之材料的傳 導性及介電性質而定,在電鍍作業之前需要在材料1〇6之表 面上構成一種晶層或是電鍍基材。該一種晶層可採用喷濺 鈦或鉻之形式,於製備供電鍍作業所用時可將一噴濺種晶 10 層配置覆蓋其上。 第5E圖係圖示該製程在將電鍍材料1〇8自複製物1〇6分 離後的一狀態。 第5 F圖係圖示該製程在將一所需接點材料丨i 〇電鍍覆 蓋犧牲材料108之圖案化表面後的一狀態。 15 接著如第5(3圖中所示,接點材料11〇及犧牲材料108係 經平面化至一致使個別接點112a、112b、112c、U2(L^ii2e 相互分開的程度。 第5 Η圖係圖示製程在已構成結構之多重層之後的一狀 態’其中每-層係由犧牲材料刚之該等區域與結構材料 π 110之該等區域所組成。同時,如第5關中所示,已選擇性 地對與每-探針元件結合的料材料丨狀該等暴露區域 施以—結合材料116。可以複數種方式,例如,諸如經由位 在遮光材料中之開口的電鑛作業施以材料116。例如,該材 料116可為-低溶點金屬,諸如錫、錯、錫錯合金、或是其 26 200533926 他焊料_ ϋ 1 , 貝材料。如第5H圖中所示,沉積黏著性持料之後, 回使其為一球狀形式。在施以黏合或是凸塊材料之 刖或之後’可進行將探針元件切割成所需群組,其中該等 群組代表在一所需應用中可用之分離的探針數量及圖案。 5 第51圖係圖示製程在探針結構已翻轉並經由凸塊或黏 6材料116點合至基板118之後的一狀態。例如,該基板118 可為一空間轉換器或包含一所需導線網絡的中間結構。 第5J圖係圖示製程在已將造成獨立地接觸並安裝至基 板118的探針120a-120e的犧牲材料108去除之後的一狀態。 10如圖所不,探針120a-120e之層層式建構部分,並非意圖圖 示任竹特疋板針特徵或設計形式’而係意欲顯示所存在之 自基板118延伸至接點112a_112e的一伸長結構。所使用的探 針構形在一適當形式上可製作為緊密的,例如,在2〇〇3年 12月31曰提出申請的美國專利申請案第60/533,933號,標題 15為電化學製造的微探針(Electrochemically Fabricated Microprobes)”一文中所說明之探針形式。此參考的專利申 請案於此以全文引用方式併入本文以為參考資料。 鲁 概括言之,第一具體實施例之主要元件包括:(1)經由 一圖案化光罩對矽進行所需探針接點形式之等向性蝕刻。 20 (2)於矽中澆鑄開口之贈送複製物。該澆鑄材料,例如,可 為一絕緣性或是傳導性環氧材料。在澆鑄作業之前,將矽 表面以一適畲的脫模劑處理,有助於將晶圓與該複製圖案 分離。(3)將複製物與矽晶圓分離。假若複製物之表面係 不具傳導性或為不可電鍍的,則對複製物之圖案化表面施 27 200533926 10 15 20 以一種晶層。如有需要 以-黏合層材料。經由2施以—種晶層材料之前,可施 化學氣相沉積製程、益卞理沉積製程’諸如喷滅作業、 程,進行施加該等其^積製程、及/或—直接金屬化製 料,例如,可為鈦、鉻、或疋5亥一材料。黏σ層材 .. 欽鶴合金或是相似物。種晶層材 =例如’可為鋼、鎳或是任何可施加至黏合層材料 鑛至-所需高度,其至=他材料。⑶將-犧牲材料電 二更佳地係大於突出部分之高度。犧牲 料分離,r針:點鋼或為—些其他材料,可立即與結構材 ^ : ’〃及#針元件的其餘部分可以該材料製作 牲材料擇地將犧牲材料之表面平面化,俾便給予犧 面,有助於執行接續的作業。可任擇地, 利用-顺或是相似作業給予犧牲材料一所需的來考 ==材料與環氧物模具分離。⑻將-所需接點 金屬以復盖式電鑛在犧牲材料之圖案化表面上 將表面中空隙填滿的高度。⑼將接點材料及犧牲材料= 化,因此分別地將接點金屬填滿犧牲材料中的空隙 將個別的接點區域橋接。進行一多層式電化學製程 由複數之結構材料之黏合層建構探針元件,其中每一 括位在所需位置的結構材料以及位在其餘位 料。⑽私料層之後,將—黏合__合材= 十 -探針兀件選擇性地配置在結構材料上。此結 用低溫金屬類型,諸如錫、錫,或是其他焊料類材铜The 26I-26M diagram illustrates the use of a contact mask to form contacts on a wafer. Figures 27A-27B are a specific embodiment for producing probe contacts' which includes the production of a photoresist mold having inclined sidewalls. Figures 28A-28S are a specific embodiment related to the method 20 of manufacturing a probe with a probe contact. Figures 29A-29D illustrate a process in which the contact guide surface is drawn due to expansion of the sacrificial material. Eight shapes unfold. Figures 30A-30D are illustrations of a strengthening process that can be used if expansion and expansion occur. 22 200533926 Figures 31A-32B illustrate an optional process to allow polymer molding, followed by a directional plasma etch to remove polymer from the surface of the mushroom-shaped sacrificial material and the bottom of the hole, but let It remains behind the undercut area. 5 Figures 33A-33D illustrate a method in which a copper filler can be used as a way to later release and separate the contact material from a nickel mold. Figures 34A-34D are diagrams of a 2-layer contact structure that can be made using a photoresist first, with a wider first layer and a narrower second layer. Figures 35A-35B are diagrams of probe contacts made in one or more different 10 processes as described herein, which are equipped with an attachment material and are used later to connect the contacts to the probe Sticky. L Embodiment 3 Detailed Description of the Preferred Embodiments Figures 1A-1G, 2A-2F, and 3A-3C illustrate different characteristics of a well-known form of electrochemistry. Other electrochemical manufacturing technologies are proposed in the above-referenced '630 patent, previously different combined publications, different other patents, and patent applications incorporated herein for reference, while there are still other technologies that can be combined Derived from the methods described in these publications, patents, and applications, or are known or ascertainable from the teachings presented here by those skilled in the art in 20 other ways. All of these techniques can be combined with different embodiments of different aspects of the present invention to produce enhanced embodiments. There are still these other specific embodiments derived from the combination of the different specific embodiments explicitly set forth herein. Figures 4A-4I illustrate different 23 200533926 stages of a single layer forming a multi-layer process, in which a second metal system is deposited on a first metal and in an opening located in the first metal, and its deposition Layers of objects. In FIG. 4A, a side view of a substrate 82 is shown. As shown in FIG. 4B, a patternable photoresist 84 is cast on the substrate. In Figure 4C, the photoresist pattern resulting from curing, exposing, and developing the photoresist is shown. The patterning of the photoresist 84 results in openings or apertures 92A-92C, which extend from one surface 86 of the photoresist through the thickness of the photoresist to the surface 88 of the substrate 82. In Figure 4D, a metal 94 (eg, nickel) has been plated into the openings 92A-92C as shown. In Figure 4E, the photoresist has been removed from the substrate (i.e., stripped in a chemical manner 10) to expose the areas of the substrate 82 that are not covered with the first metal 94. In FIG. 4F, the second metal 96 (for example, silver) has been plated to cover the entire exposed portion of the substrate 82 (which is conductive) and the first metal 94 (which is also Conductive). Figure 4G is a diagram showing the first layer of the completed structure, which is formed by setting the first and second metals down to a height where the first metal is exposed and setting the thickness of the first layer. In FIG. 4H, the process steps shown in FIGS. 4B-4G are repeated several times to form a multilayer structure, and each layer in the multilayer structure is composed of two materials. For most applications, as shown in Figure 4] [, one of these materials is removed to produce a desired 3-dimensional structure 20 98 (eg, a component or element). The different specific embodiments, alternatives, and technologies disclosed herein can be combined with chemical techniques or implemented through electrochemical techniques. These combinations are achieved by using a single patterning technique on all layers or using different patterning techniques on different layers to form a multilayer structure. Example 24 200533926 / Different types of patterned photomasks and shading techniques can be used, or even techniques that perform direct selective deposition without shading. For example, in the formation of a gate, a Japanese-style contact mask can be used, while a non-harmonic-type contact mask can be used in combination with other layers. You can use the proximity mask (PrOXimity mask), light work (that is, 'work using a photomask, even if it is not in contact, it will be connected to the i-plate and σ | 5 points to selectively protect a substrate), and Adhesive light 2 and = light operations (photomasks and operations using photomasks, which are attached to substrates that are 'selective'), or opposite to those that are only in contact with them Etching). Figures 5A-5J are diagrams showing the process of constructing the ten-element array at different stages according to the first embodiment of the present invention, and the schematic diagram of the ten-element array is shown in the figure. An electric seed layer is formed on the seed layer coated with an epoxy template, and the bad oxygen template is molded from a Shi Xi wafer that accepts a patterned anisotropic surname. ▲ Figure 5A is not forgiveness of the process after a pattern cut wafer is supplied. The Shi Xi wafer has covered a surface by arranging a photomask configuration and patterning the photomask to have openings in the areas corresponding to the desired probe contact positions. When the mask is in place, an isotropic I engraving is performed to create a V-shaped or conical hole in the evening. Larger than these optional embodiments, the openings can adopt the V shape t C opening / style which is the form required for the probe contacts. The openings 104 and Shixi 102 correspond to the desired probe contact positions and indicate the compliance of the probe contact shape. As shown in FIG. 5B, after the patterned silicon is completed, a wash cast material such as -epoxide 10 is molded to cover the pattern of Shi Xi 25 200533926 " Dagger surface. As shown in Figure 5C, the molded upside-down replica of the patterned silicon is then separated from the silicon. Figure 5D illustrates the state of the process after electrodeposition of a sacrificial material 108 and planarization 5 covering the patterned surface of the replica. The sacrificial material 108 may be, for example, copper. Depending on the conductivity and dielectric properties of the material constituting the replica 106, it is necessary to form a crystal layer or a plating substrate on the surface of the material 106 before the plating operation. This kind of crystal layer can be in the form of sputtering titanium or chromium, and a sputtering seed crystal 10 layer configuration can be covered thereon when preparing for power plating operation. Figure 5E illustrates a state of the process after the plating material 108 is separated from the replica 106. FIG. 5F illustrates a state of the process after a desired contact material is plated on the patterned surface of the sacrificial material 108. 15 Next, as shown in FIG. 5 (3, the contact material 11 and the sacrificial material 108 are planarized to the extent that the individual contacts 112a, 112b, 112c, U2 (L ^ ii2e are separated from each other. Section 5) The diagram illustrates a state of the process after the multiple layers of the structure have been formed, where each layer is composed of the regions of the sacrificial material and the regions of the structural material π 110. At the same time, as shown in level 5 The exposed areas that have been combined with the per-probe element have been selectively applied to the exposed areas—the bonding material 116. Multiple methods can be used, such as, for example, an electrical mining operation through an opening in a light-shielding material. Take the material 116. For example, the material 116 may be a low melting point metal, such as tin, tin, tin tin alloy, or other materials. 2005 20052626 Other solder_ ϋ 1, shell material. As shown in Figure 5H, deposition adhesion After holding the material, return it to a spherical form. After applying the adhesive or bump material, or after the 'probe cutting of the probe elements into the desired groups, where these groups represent a Requires the number and pattern of separate probes available in the application. The diagram illustrates a state of the manufacturing process after the probe structure has been flipped and bonded to the substrate 118 via bumps or adhesive materials 116. For example, the substrate 118 may be a space converter or an intermediate including a required wire network Structure FIG. 5J illustrates a state of the process after the sacrificial material 108 that has caused the probes 120a-120e that have been independently contacted and mounted to the substrate 118 has been removed. 10 As shown in FIG. The layered construction part is not intended to illustrate the characteristics or design form of any bamboo special pin needle, but is intended to show the existence of an elongated structure extending from the substrate 118 to the contacts 112a-112e. The configuration of the probe used is appropriate It can be made compact in form, for example, US Patent Application No. 60 / 533,933 filed on December 31, 2003, and titled 15 is Electrochemically Fabricated Microprobes. The probe form described in the text. The patent application referred to herein is hereby incorporated by reference in its entirety as reference material. In summary, the main elements of the first embodiment include: (1) via A patterned photomask performs isotropic etching of silicon in the form of the desired probe contacts. 20 (2) Cast a free copy of the opening in silicon. The casting material can be, for example, an insulating or conductive material. Epoxy material. Prior to the casting operation, the silicon surface is treated with a suitable release agent to help separate the wafer from the copied pattern. (3) Separate the replica from the silicon wafer. If the surface is non-conductive or non-platable, apply 27 200533926 10 15 20 to the patterned surface of the replica as a crystalline layer. Adhesive layer material if needed. Via 2 application-before the seed layer material, a chemical vapor deposition process, a beneficial deposition process such as a blowout operation, a process, an application process, and / or a direct metallization process may be performed. For example, it can be titanium, chromium, or rhenium. Sticky σ layer material: Qinhe alloy or similar. Seed layer material = For example, ′ may be steel, nickel or any material that can be applied to the adhesive layer to the required height, which is equal to the other material. (3) The sacrifice material is more preferably larger than the height of the protruding portion. Sacrifice material separation, r needle: point steel or some other material, can be immediately connected with the structural material Giving sacrifice helps to carry out the work. Optionally, the use of a -shun or similar operation to give the sacrificial material a necessary consideration == the material is separated from the epoxy mold. ⑻Which is the height required to fill the voids in the surface of the sacrificial material on the patterned surface of the sacrificial material by covering the electric metal with the required contacts.化 The contact material and the sacrificial material are changed, so the contact metal is used to fill the gaps in the sacrificial material separately, and the individual contact areas are bridged. A multi-layer electrochemical process is performed by constructing a probe element from an adhesive layer of a plurality of structural materials, each of which includes the structural material at a desired position and the remaining materials. After the private material layer is set, the -adhesive__composite material = ten -probe elements are selectively arranged on the structural material. This junction uses low temperature metal types such as tin, tin, or other solder materials.

28 200533926 、、、°&何料可以複數種方式選擇 除遮光材料之後,以及可 >地加以應用。例如,在去 10 15 20 光及選擇性電鑛作業進行,材料流回之後可經由遮 一探針元件。(11)就製^言,,予其―圓滑形式覆蓋每 所需形式之探針元件群組一構可切割成較小的具有 置上,諸如空間轉換器或探針曰將其配置在基板之所需位 利用覆晶製程,用以將探針元=結構或是相似物。02) 板結合。㈣藉祕刻去除犧7結合或黏合材料與基 的個別探針元件脫模並分離。…用以將已安震至基板 於可任擇的具體實施例中, 針元件。於此具體實施例之—些變化以產生單-探 其他選擇性圖案材料製作而成 :2圖案可以 針接點形式。 了採用其他形狀的探 第6A-6E圖係為根據本發 成一探針元件陣列之、體貫她例用於構 與本發明之第-具體實_相似,μ之處在 = 接點之構成材料係與探針元件的其餘部分所用材=十同兀件 —第6Α圖係圖示製程在將—接點材料㈣沉積進入一犧 牲拉塑材料152後的-狀態。假若犧牲模塑材料152係不具 傳^性或是不可電鍍的,則在電鍍材料150之前在模具表面 上構成一種晶層及可能的一黏合層。於此具體實施例的變 化形式中,可使用電鍍作業之外的一製程將材料15〇配置在 材料152之圖案化表面上。 第6Β圖圖示製程在已將接點材料150及模具材料152平 29 200533926 面化,用以藉由去除將該等元件在沉積作業之後連接的任 何橋接材料150而使接點元件150a-150e相互獨立的一狀綠。 10 15 20 第6C圖係圖示製程在已根據一電化學製程構成探針元 件之複數層之後的一狀態,其中每一層包括該等犧牲材料 154之該等區域及結構材料156之該等區域。位在每一層上 的該等材料區域係藉由與該橫截面相關的探針元件陣列之 所需檢截面加以界定。在構成所有層158之後,將一黏合戋 結合材料160選擇性地配置覆蓋結構材料156之端部(亦 即,覆蓋探針元件之末端)。藉由層158之遮光表面162選擇 性地施加材料160,並接著材料16〇(例如,錫、錫鉛、或其 他焊料類材料)電沉積進人光罩中的該等開口内。完成電: 積之後’可去除光罩,並且若為所需該結合材料16〇可經加 熱,因此其流回用以構成材料之圓球或凸塊。 第6D圖係圖示製程在將探針元件164陣列已經由结合 材料⑽與—基板166結合,並已去除犧牲材料154之後的一 狀態。該附裝作業以及去除作業之順序,可以任一所需方 式執行。易言之,於此具體實施例之-些變化形式令,可 在附裝作業之前進行去除作f 崎岐此具體實_之其他 义"’可在去除作業之前進行附裝作業。 ^裝作業之前進行去除犧牲材料的本發明之其他變 二=構成黏合材料之凸塊16〇之前進行去除犧牲 合材料係附裝至構成探針元件的結構材料⑽ 於本具體實施例之其他變化形式中,可使用一與犧牲 30 200533926 5 10 15 20 材料154不同的材料構成探針树之最後層。此不同的材料 可為一傳導性或介電犧牲材料,或是可為-介電結構材 料。此不同的材料可置於適當位置作為用於該(等)最後声的 部分之構絲程,或其可任擇地在完祕成層以及自表面 162姓刻犧牲材料去除材料之—或更多層之後置於適 置。在將不同的材料置於適當位置之後,可將表面162再平 面化並接著構成凸塊16〇。於本具體實施例之進—步變化形 式中’該等凸塊刚可不直接地構成在結構材料156上但 可替代地構成在-基板166上的所需位置處並接著在黏合 作業期間與探針元件164接觸並結合。 第6E圖係圖示製程在去除固持接點l5〇a i5^的原始 犧牲材料152之後從而在基板166上構成獨立探針元件 164a-164e的一狀態。假若使用在上述其中之一的變化形式 中所說明的不同材料,則可在黏合製程進行之前或是之後 去除该不同材料,或可留存作為部分之最後結構並且實際 上用以增強探針元件164a_164e與基板166之間的黏合性。 第7A-7F圖係為根據本發明之第三具體實施例用於構 馨 成一探針元件之製程於不同階段的概略側視圖,其中探針 元件接點係使用製作具有一底切(undercut)的突出之圖案化 光阻劑所構成。 第7A圖係圖示製程的一狀態,其中一暫時基板182係以 一負光阻劑材料184塗佈,例如Futurrex NR9-8000,其具有 一或更多之輻射19〇直接通過的開口 188,用以暴露光阻劑 材料。開口 188係與探針元件接點材料192最後配置在基板 31 200533926 182上的位置相對應。 第7B圖係圖示製程在基板182及光版劑184已浸入顯影 /谷液194 ’致使去除光阻劑184之未曝光部分並保留曝光部 分184a之後的一狀態。 5 帛7C_圖示製程在㈣將纽^件馳暴露至顯 影液,因此其變成致使光阻劑在形成梯形元件獅之前發 生底切的過度顯影之後的一狀態。28 200533926 ,,, ° & What can be selected in multiple ways After the light-shielding material is selected, it can be applied >. For example, after the 10 15 20 light and selective power mining operation is performed, after the material flows back, it can be shielded by a probe element. (11) Regarding the formulation, it can be cut into smaller pieces with a sleek form covering each group of probe elements in the desired form, such as a space converter or a probe. The required bits are used in a flip-chip process to change the probe element = structure or similar. 02) Board bonding.秘 Remove the sacrificial bond or adhesive material from the individual probe elements of the substrate by mold removal and separation. ... Is used to shake the substrate to an optional embodiment of the needle element. In this specific embodiment, some changes are made to produce mono-probes and other selective pattern materials: 2 patterns can be in the form of pin contacts. Figures 6A-6E using other shapes are used to form an array of probe elements according to the present invention, which is used to construct the example similar to the first embodiment of the present invention. The μ is at the structure of the contact. The material used is the same as that used in the rest of the probe element—Figure 6A shows the state of the process after the contact material is deposited into a sacrificial stretched material 152. If the sacrificial molding material 152 is not conductive or non-platable, a crystal layer and possibly an adhesive layer are formed on the mold surface before the plating material 150 is plated. In a variation of this embodiment, the material 150 may be disposed on the patterned surface of the material 152 using a process other than a plating operation. Figure 6B illustrates the process where the contact material 150 and the mold material 152 have been flattened, and 200533926 is used to make the contact components 150a-150e by removing any bridging material 150 that connects the components after the deposition operation. Independent green shape. 10 15 20 FIG. 6C illustrates a state of the process after a plurality of layers of the probe element have been formed according to an electrochemical process, each of which includes the regions of the sacrificial material 154 and the regions of the structural material 156 . The areas of the material on each layer are defined by the required cross-sections of the array of probe elements associated with the cross-section. After forming all the layers 158, an adhesive-bonded bonding material 160 is selectively arranged to cover the ends of the structural material 156 (that is, to cover the ends of the probe element). The material 160 is selectively applied through the light-shielding surface 162 of the layer 158, and then the material 160 (e.g., tin, tin-lead, or other solder-like materials) is electrodeposited into the openings in the human photomask. After the electricity is completed, the photomask can be removed and the bonding material 160 can be heated if necessary, so it flows back to the balls or bumps used to form the material. Figure 6D illustrates a state of the process after the probe element 164 array has been bonded to the substrate 166 by a bonding material ⑽ and the sacrificial material 154 has been removed. The order of the attaching and removing operations can be performed in any desired manner. In other words, some variations of this specific embodiment order can be removed before the attaching operation. The other meanings of the specific implementation " 'can be performed before the removing operation. ^ Other variations of the present invention in which the sacrificial material is removed before the mounting operation = The bumps constituting the adhesive material are removed before the sacrificial material is removed before the structural material is attached to the structural material constituting the probe element. Other changes in this embodiment In the form, a material different from the sacrificial 30 200533926 5 10 15 20 material 154 may be used to form the last layer of the probe tree. This different material may be a conductive or dielectric sacrificial material, or it may be a -dielectric structural material. This different material can be placed in place as a thread forming process for the (etc.) final part, or it can optionally be layered in layers and sacrifice material removed from the surface 162—or more Place the layer afterwards. After placing the different materials in place, the surface 162 can be replanned and then formed into a bump 160. In a further variation of this embodiment, the bumps may not be directly formed on the structural material 156 but may instead be formed at a desired position on the substrate 166 and then during the bonding process and the probe The needle element 164 is in contact and engaged. FIG. 6E illustrates a state in which the manufacturing process forms the independent probe elements 164a-164e on the substrate 166 after removing the original sacrificial material 152 of the holding contacts 150a and 5b. If different materials described in one of the above variants are used, the different materials can be removed before or after the bonding process is performed, or the final structure can be retained as part and actually used to strengthen the probe elements 164a-164e Adhesion to substrate 166. Figures 7A-7F are schematic side views of a process for constructing a probe element at different stages according to a third embodiment of the present invention. The probe element contacts are made with an undercut. Is composed of a prominent patterned photoresist. Figure 7A illustrates a state of the process, in which a temporary substrate 182 is coated with a negative photoresist material 184, such as Futurrex NR9-8000, which has one or more openings 188 through which radiation 19 passes directly, Used to expose photoresist materials. The opening 188 corresponds to the position where the probe element contact material 192 is finally arranged on the substrate 31 200533926 182. FIG. 7B illustrates a state of the process after the substrate 182 and the photoresist 184 have been immersed in the developing / valley solution 194 'so that the unexposed portion of the photoresist 184 is removed and the exposed portion 184a is retained. 5 帛 7C_ The process shown in FIG. 7C shows the state after exposing the button to the developer solution, so that it becomes a state after the photoresist is over-developed before undercut formation before the formation of the trapezoidal element.

10 15 第7D圖係圖示製程在光阻劑元件丨 錄作業中使用作為-光罩之後的-狀態,該作業積 犧牲材料’其係與基板材料182之沉積作業相同或為不同。 假若犧牲㈣196之沉積並不充分地㈣—致,則可利用一 平面化作業用以達成第7D圖中所示之形式 第7E圖係圖示製程在探針接點材料192已沉積進入藉 由去除光阻劑材料184b所產生的空隙中之後的一狀態。假 若需給予探針接點材料192及犧牲材料196一所需表面形 式則可將。亥一材料之上表面平面化用以產生於第7E圖中 所不之形式。 一㈣圖係圖示製程在複數層之電化學製造作業之後的 狀恶,所產生的探針元件2〇2一端與探針接點材料結 2〇合以及另-端與黏合材料·結合。在構成完整的探針接點 圖所丁)或疋^木針接點陣列(未顯示)之後,可將犧牲材料 去除以及在δ亥暫時基板182去除之後該探針元件與一基 板結各。 ' 當其可直接地沉積圖 於此具體實施例之變化形式中 32 200533926 木才钻0材料200不需由犧牲材料196所環繞。於該等狀 =中,或假若其中進行去除犧牲材料之上多數部分了則其 i夠在去除所有犧牲材料之前,經由黏合材⑽◦將探針元 件202與戶斤需基板結合。於該等狀況中,可在進行黏合作 5業之珂或之後去除該暫時基板材料182。 …此具體實施例之變化形式及特性可應用在先前說明之 该寺具體實施例或是將於之後說明的該等具體實施例之變 化形式,恰如先前具體實施例之變化形式及特性可應用在 產生本具體貫施例之進一步的變化形式或是將於之後說明 1〇的該等具體實施例之變化形式,恰如將於之後說明的不同 具體貫施例之特性以及其之變化形式可應用產生本具體實 施例或先纟’j說明之該等具體實施例之進一步的變化形式。 第8A-8F圖係為根據本發明之第四具體實施例用於構 成一探針元件之製程於不同階段的概略側視圖,其中探針 15 元件接點係使用製作具有向外推拔側壁位在一圖案化光阻 劑中的内縮部分所構成。 第8A圖係圖示製程在將一暫時基板212以一正光阻劑 214以及配置在該光阻劑上方具有一或更多開口 218的一光 罩216塗佈之後的一狀態。 20 第8B圖係圖示製程在將曝光光阻劑214顯影並因而過 度顯影用以產生具有推拔側壁224的該(等)開口 222。 第8 C圖係圖示製程在將一探針元件接點材料226沉積 進入光阻劑214之開口 222中並接著去除光阻劑之後的一狀 態。 33 200533926 第8D圖係圖示製程在將-犧牲;j 板212以及覆蓋探針接點材料226之後 第8E圖係圖示製 化之後的一狀態。 一犧牲材料228電沉積覆蓋基 226之後的一狀態。 製程在將犧牲材料及探針接點材料平面10 15 Figure 7D is a diagram showing the state of the manufacturing process after the photoresist element is used as a photomask. This operation product sacrificial material ’is the same as or different from the substrate material 182 deposition operation. If the deposition of sacrifice 196 is not sufficient, a planarization operation can be used to achieve the form shown in Figure 7D. Figure 7E is a graphical representation of the process where the probe contact material 192 has been deposited by A state after removing the voids created by the photoresist material 184b. If it is necessary to give the probe contact material 192 and the sacrificial material 196 a desired surface form, they can be used. The planarization of the upper surface of the helium material is used to produce a form not shown in Fig. 7E. The first figure shows the state of the process after the electrochemical manufacturing operation of multiple layers. One end of the produced probe element 202 is bonded to the probe contact material and the other end is bonded to the adhesive material. After forming a complete probe contact diagram) or a wooden pin contact array (not shown), the sacrificial material can be removed and the probe element can be bonded to a substrate after the delta substrate 182 is removed. '' When it can be directly deposited in a variation of this embodiment 32 200533926 The wood drill 0 material 200 need not be surrounded by the sacrificial material 196. In this state, or if the majority of the sacrificial material is removed, i is sufficient to combine the probe element 202 with the household substrate through the bonding material before removing all the sacrificial material. In these situations, the temporary substrate material 182 may be removed after the adhesion process is performed. … The variations and characteristics of this specific embodiment can be applied to the specific embodiments of the temple previously described or the variations of these specific embodiments to be described later, just as the variations and characteristics of the previous specific embodiments can be applied to Further variants of this specific embodiment or the specific variants of these specific embodiments which will be described later will be applied to produce the characteristics of the different specific embodiments and their variants which will be described later. This specific embodiment or a further variation of the specific embodiments described above. 8A-8F are schematic side views of a process for forming a probe element at different stages according to a fourth embodiment of the present invention, in which the contacts of the probe 15 element are made with side walls that are pushed outward. It consists of a constricted portion in a patterned photoresist. FIG. 8A illustrates a state of the process after a temporary substrate 212 is coated with a positive photoresist 214 and a photomask 216 having one or more openings 218 disposed above the photoresist. 20 FIG. 8B illustrates the process in which the exposure photoresist 214 is developed and thus over-developed to create the (or other) opening 222 with the push-out sidewall 224. FIG. 8C illustrates a state of the process after depositing a probe element contact material 226 into the opening 222 of the photoresist 214 and then removing the photoresist. 33 200533926 Figure 8D shows the manufacturing process after sacrificing; the board 212 and the covering probe contact material 226. Figure 8E shows the state after manufacturing. A state after the sacrificial material 228 is electrodeposited to cover the substrate 226. The process is to place the sacrificial material and the probe contact material plane

—端處,包括一黏合或是結合材料234。 再者,如相Hθ 1 . i〇 / h ,如相關於前述具體實施例之說明,探針元件23〇 或:仏針讀㈣(未顯示)可自犧牲材料及自暫時基板 脫輪’亚經由黏合材料234與-所需基板結合。 -於上述具體實_之變化形式巾,所產生光阻劑材料 之曰大的斜度或推拔程度,不僅洽為過度顯影的結果,亦 為曝光不足及/或定製烘烤作業之結果。 第9A 9G圖係為根據本發明之第五具體實施例用於構 成探針元件陣列之製程於不同階段的概略側視圖,其中 π、'十元件接點係使用一圖案化光阻劑材料之突出部分所構 成衣作為覃形以及蝕刻穿過之開口的一電鍍材料覆蓋該 圖案化光阻劑材料。 2〇 第9八圖係圖示製程在將一暫時基板232以一種晶層材 料或是種晶層堆疊234塗佈並依次以一光阻劑材料236塗佈 之後的一狀態。將一包含開口 240a_240e的光罩238配置在光 阻^彳材料上方,輪射242經由該等開口曝光並可潛在地將光 阻劑材料236圖案化。 34 200533926 弟9B圖係圖示製程在將曝露且潛在地圖案化的光阻劑 238顯影用以產生將構成探針接點元件之位置遮光的光阻 劑材料之該等小栓塞238a-238d之後的一狀態。 第9C圖係圖示製程在將一犧牲材料244沉積進入介於 5 光阻劑栓塞238a-238d之間並與其相鄰的該等開口中之後 的一狀態。如有需要,可將光阻劑栓塞及沉積的犧牲材料 244平面化,用以產生如第9C圖中所示的結構形式。 , 於具體實施例之變化形式中,可不需該平面化作業, 而於其他具體實施例中,該平面化作業有助於增進所產生 鲁 10 之模具圖案的均勻性。 弟9D圖係圖示製程在造成覆蓋光阻劑栓塞之犧牲材料 向外蕈形化的附加沉積或是持續沉積作業之後的一狀態。 於本申請案之内文中,與電沉積材料所進行覆蓋介電材料 的平面中擴散作業有關的蕈形化,係隨著沉積之高度而增 15 加。 第9E圖係圖示製程在完成所需之蕈形化量(亦即,傳導 性犧牲材料沉積在介電光阻劑栓塞上之溢出量”以及當反 · 應離子蝕刻(RIE)曝光246已等向性蝕刻穿過光阻劑栓塞用 以產生一自電鍍基材232延伸穿過介電及犧牲材料的開 20 口。該等開口及環繞的傳導性及犧牲材料構成模具,其中 可沉積探針元件接點材料。探針接點材料可由填注開口 250a-25〇d之一單一材料248(見第所組成,或可任擇地 可為一由一輔助接點材料(未顯示)所支持之相對薄的所需 材料塗層。如有需要,在探針接點材料248之沉積後,可將 35 200533926 犧牲及探針接點材料之表面平面化,用以產生第圖中所 不之形式。 第9G圖係圖示製程在該複數之電化學製成層,完成該 由一結構材料254及犧牲材料244所構成之探針元件252之 5後,以及已完成沉積一黏合或是結合材料256之後的一狀 態。 就先前說明的具體實施例而言,探針元件可個別地或 以所需的陣列圖案相互切割可去除暫時基板材料,去除種 晶層材料,去除殘留的光阻劑材料並可將探針元件252經由 10結合或黏合材料256與一所需基板結合。 第10A-10C圖係為根據本發明之第六具體實施例用於 構成一探針元件陣列之製程於不同階段的概略側視圖,其 中楝針元件接點係使用一圖案化光阻劑材料之突出部分所 構成製作為蕈开》的一電鍍材料覆蓋該圖案化光阻劑材 15料。第10A_10C圖之具體實施例係與第9A-9G圖之具體實施 例相似,不同之處在於並未蝕刻穿過進行犧牲材料之蕈形 化作業所覆蓋的光阻劑材料。 第10A圖係圖示製程在一探針接點材料262開始填注空 隙264a至264d,但沉積物係自犧牲材料244之側邊水平成長 2〇 之後的一狀態。 第10B圖係圖ητ製程在已以探針接點材料262填注開口 264a至26做後,収在進行平面化去除橋接覆蓋犧牲材 料244之材料262的該等部分並且將個別探針接點元件連接 在一起之後的一狀態。 36 200533926 第10C圖係圖示製程在已藉由電化學製 材料254及犧牲材料244層完成探針科266,以及在已_ 合或是黏合材料256之後的—狀態。就第I%圖之具 體實施例而言’探針元件266可經由結合材料256黏附至一 5 所需基板以及將犧牲材料244連同光阻劑材料238、種晶層 材料234、以及暫時基板232-同去除,用以產生複數之獨 立探針元件,輯需的料性互連元件及相似物盘一基板 連接。 第UA-11F圖係為根據本發明之第七具體實施例用於 10構成一探針接點陣列之製程於不同階段的概略部分穿透、 透視圖、沿著一中央切割平面的側視圖以及俯視圖其中 探針接點係利用由-圖案化沉積所構成之模具所構成,該 模具構成複數之由覆蓋式沉積所覆蓋之空隙(每個接點一 個空隙)’其將該等空隙窄化並使其具有一所需形狀。 15 f 11塌係圖示製程在供給-基板之後該狀態的三視 圖」視圖302]係為基板之-透視圖。視圖地韻為該基板 沿著X輛之側視圖,同時視圖302_3係為在χ γ平面中基板 之—俯視圖。基板302係為-f時基板,並可由其上構二具 有—種晶層的-傳導性材料或是-介電材料所製作而成。 2〇 第UB圖係圖示已將一犧牲材料(例如,銅)之一圖案化 沉積物於其上圖案化之基板的三視圖。犧牲材料3〇4經=案 化用以包含二空隙30W及3〇6_2。該等空隙係表示探針接: 將座落之位置,並且於此說明中’僅構成二探針接點。當 然,此製程可用以構成一單一探針接點或是用以構成包= 37 200533926 數十、數百、或甚至數千元件的探針接點陣列。就第iia 圖而言,所示之結合座標軸符號的第11B圖之不同視圖,係 顯示所取之透視圖。 第1ic圖係圖示製程在進行犧牲材料3〇8之覆蓋式沉積 5之後該狀態的三視圖。材料3〇8可或非與犧牲材料綱為相 同材料材料3〇6之覆盍式沉積造成空隙及3〇6_2自材 料304之初始沉積填注及閉合。空隙之閉合造成環繞空隙 306-1及306_2之未填注部分的該材料3〇8之傾斜壁。進行空 隙3〇M之填注作業上至一由312]所示之位置同時進行= H)隙306-2之填注作業上至一線元件3122。空隙之未填注部分 的形狀,係視秘空隙306]及306_2之初始餘留物_〇及 形式而定。 第11D圖係圖示製程在進行犧牲材料(亦即,鎳)沉積之 後、及在進行平面化作業之後以及在進行去除任何與圖案 15化沉積有關的遮光材料之後的該狀態之三視圖。如第加 圖中所不’材料3G6之覆蓋式沉積物提供所需的空隙形式 314 2及3M-1 ’其之形狀係與所構成之探針接點的所需形狀 相輔相成。第11D圖之作業導致產生探針接點元件训指 316-2 〇 20 第UE圖係圖示製程在進行另一犧牲材料320之沉積之 後’以及進行將最終沉積物平面化之後該狀態的三視圖。 犧牲材料320可與犧牲㈣篇及3_同,或可與該等犧牲 材料中之一或二者不同。第UE圖之沉積及平面化作業之性 能係基於假設將該等構成探針元件之結構材料層添加至該 38 200533926 等接點,如於此所提出之先前不同的具體實施例中所示。 假若未進行該添加作業,則無需進行第11E圖之該等作業。 第11F圖係圖示製程在已去除每一犧牲材料及基板之 後,以及在假ό又並热進行附加該等結構層(例如,探針元件 5之該等附加層)的狀態之三視圖。 10 15 20 可考里於弟11A-11F圖中所示之本發明之第七具體實 施例包括以下的主要作業!(1)供給一基板。(2)在造成探針 接點元件的該等位置中,將一第一犧牲材料圖案化沉積在 基板上,於犧牲材料中留有開口或空隙。可以不同之方式 進行犧牲材料之圖案化,例如,首先將一遮光材料圖案化 並配置在基板之表面上,並於之後將犧牲材料電鍍在基板 之该等_露區域上。可任擇地,在圖案化遮光作業及選擇 14餘刻作業之後進行犧牲材料之-覆蓋式沉積。於-進_ ^的可任擇方案中,例如,可藉由喷墨印刷或相似方式進 2牲材料之直接沉積。⑶覆蓋式沉積-與第-犧牲材料 ιΖΓ犧牲材料、,用以建構第二犧牲材料覆蓋該等第 中的2區域’並用以部分地填注位在第-犧牲材料 的=空隙,致使在第二犧牲材料中產生所需 故侧目輔相成。 中並=圖案化沉積進入第二犧牲材料之該等空隙 可以複數财式進行結構材料之需形式的結構。 由將-光罩材料配置覆蓋第二犧牲::積:例如,可藉 圖案化並未接受結構〃轉部份並加以 ”、 行。(5)結構材料及遮光材料 39 200533926 之表面’可任擇地於-所需高度處加以平面化。⑹假設增 加該等附加材料層,則可進行第三犧牲材料之沉積。該第 =牲材料可與第-及第二犧牲材料之任_材料或是該二 ==為:同。可以覆蓋式或是圖案化方式進行第三 ⑺如為所需’接著將沉積材料之表面平 面化’因此將該二犧牲及結構材料暴露並準備接受盘建構 木^件或是相似物相關的附加材料沉積。⑼例如,利用 別處所揭露之電製造技術,建構所需之該等結構 10 15 20 2脫 ㈣心將探針接點以及探針結構之其他 ;件:板。可在將探針元件與-新基板結合之前或是之後 進仃該脫模作業。 促 在第=七具體實施例可具有複數之可任擇方案。例如, 4:=料之圖案化沉積作業之後以及去除任何所結 :一= 前,可將犧牲材料之表面平面化,俾便造 二制表面作為接續作業用的一開始點。 於具體實施例之另—變化形式中,在第二犧 覆盍式沉積作業 才枓之 刻及沉積料Γ,我躲速㈣作業衫連續的触 整物,特二Γ將第二才料之表面中的任何不平 等空隙區域:二雜針接點兀件所用之第二犧牲材料之該 的任何不平整物加以平坦化。 其中地’在第二犧牲材料之沉積作業之後, ,、“暫時的傳導性或是介電材料填注,並 犧㈣料之表面平面化,之後去除該暫時性材料 此平面化作業可改良與接點區域稍微偏移的該等二 40 200533926 針接點元件的品質。 ”藉^具體實施例之另—變化形式中,可將犧牲材料之 構㈣之沉_序_,致使犧牲㈣之沉積係 二二:Γ冗積’而結構材料之沉積可為-覆蓋式沉積或 叮、、,k#成為一選擇性沉積。 10 15 口此對所說明的具體實施例深思熟慮 件本身1料_部分之前漏㈣接點元件。於可= 的:體4例中’例如,應瞭解的是可構成探針元件之該 等#件(亦即’延伸部分),以及之後用以構成並將接點元件 黏附至該等臂件。到目前為止所論及的複數之具體實施 例,係易受顛倒構成順序的影響。 第12A-12E圖係為根據本發明之第八具體實施例用於 構成探針接點卩車列之製程於不同階段的概略部分穿透、 透視圖,其中探針接點係、利用由—犧牲材料所環繞之結構 材料或是接點材料之部分遮光區域所構成,並接著相對於 犧牲材料似彳該結構或接點材料用以達騎需之接點形 式。 * 第12A圖係圖示此製程狀態之—初使狀況,其中已在一 基板332上構成探針元件334a.334d(I_,並以—犧牲材料 20 336囊封(除了-上表面之外)。於此體實施例之一些變化形 式中,該基板可為一暫時基板,而於其他的變化形式中, 該基板可為一永久基板。 第12B圖係圖示製程在將一所需形式的遮光材料配置 覆蓋至少元件334a-334d之接點由其所構成之結構材料338 41 200533926 之該等區域後的一狀態。該遮光作業可呈現複數之圖案。 例如,如元件342a所示,可將遮光材料相對於其中之一探 針之材料338之最後層而配置於中心處,如元件342b所示, 該遮光材料可朝向其中之一探針元件之一側邊或前側或是 5背側偏移,如元件342c所示,該遮光材料可為一圓形貼片 於中心處覆盍該接點材料,或是如元件342d所示,該遮光 材料可為一正方形貼片經配置覆蓋該接點材料。 第12C圖係圖示製程在容許於未遮光區域中的結構材 料上進行一選擇性钱刻作業之後的一狀態。 1〇 第12D圖係圖示製程在已去除覆蓋該經餘刻的結構材 料之該光罩材料後的一狀態。 第12E圖係圖示製程在將基板與犧牲材料去除之後,留 下具有接點結構344a-344d的元件334a-334d的一狀態,其與 光罩尺寸、其之位置及暴露至蝕刻劑之該結構材料尺寸之 15 間的關係有關。 於此具體實施例中,探針元件係採用槓桿臂結構形 式,與於先前具體實施例中所呈現的一些形式相反。熟知 此技藝之人士應瞭解的是,探針結構可利用本具體實施例 之探針接點製造技術’或可為所顯示之形式或為於先前具 20體實施例中所呈現之形式。同樣地,熟知此技藝之人士應 瞭解的是,該等具體實施例之探針接點製造技術必需與本 具體實施例之懸臂樑式結構之構成作業相結合。熟知此技 藝之人士應暸解的是,探針接點材料可與用以構成探針元 件之其餘部分的材料不同’或其可為相同的材料。熟知此 42 200533926 ===的是,與探針元件相關的接觸材料可 ^接材料身不同。料制材财在,例如,: 由一經選定的雷务風、” h1 错 成接點之後施用' 製程或是相似方式構 5 10 =,擇地,可在針對接點結構本身的作 業期間沉積該接觸材料。熟 曰^ ^ « 议农疋人士亦應瞭解的 ^且^^、體實施例,探針接點陣列中的不同探針接點, 甘、f相似的接點形式,或可任擇地,視其所構成之方式 及…“之使用目的而定,具有不同的形式。 "-At the end, including an adhesive or bonding material 234. Furthermore, as for the phase Hθ 1. IO / h, as described in relation to the foregoing specific embodiments, the probe element 23 or the needle reading (not shown) can be self-sacrificing material and can be removed from the temporary substrate. It is bonded to a desired substrate via an adhesive material 234. -In the variation of the above-mentioned specific form, the large slope or pushing degree of the photoresist material produced is not only the result of over-development, but also the result of underexposure and / or customized baking operations. . Figures 9A and 9G are schematic side views of different stages of the process for forming a probe element array according to a fifth embodiment of the present invention, in which the π and 'ten-element contacts are made of a patterned photoresist material. The protruding portion covers the patterned photoresist material as a Qin shape and an electroplated material etched through the opening. 20 FIG. 98 illustrates a state of the process after a temporary substrate 232 is coated with a crystal layer material or a seed layer stack 234 and sequentially coated with a photoresist material 236. A photomask 238 including openings 240a-240e is disposed above the photoresist material, and the round shot 242 is exposed through these openings and can potentially pattern the photoresist material 236. 34 200533926 Figure 9B is a diagram showing the process after developing the exposed and potentially patterned photoresist 238 to produce the small plugs 238a-238d of the photoresist material that will block the position of the probe contact element. A state. FIG. 9C illustrates a state of the process after depositing a sacrificial material 244 into the openings between and adjacent to the 5 photoresist plugs 238a-238d. If desired, the photoresist plug and deposited sacrificial material 244 can be planarized to produce a structural form as shown in FIG. 9C. In a variation of the specific embodiment, the planarization operation may not be needed, and in other specific embodiments, the planarization operation helps to improve the uniformity of the mold pattern produced. Figure 9D shows the state of the process after the additional deposition or continuous deposition of the sacrificial material covering the photoresist emboli has been mushroomed outward. In the context of this application, the mushroom formation related to the diffusion operation in the plane of the dielectric material covering the dielectric material is increased by 15% with the height of the deposition. Figure 9E illustrates the amount of mushroom formation required to complete the process (ie, the amount of overflow of the conductive sacrificial material deposited on the dielectric photoresist plug) and when the reactive ion etching (RIE) exposure 246 has been completed. Isotropic etching passes through the photoresist plug to create an opening 20 that extends from the electroplated substrate 232 through the dielectric and sacrificial material. The openings and surrounding conductive and sacrificial material form a mold in which a probe can be deposited. Needle element contact material. The probe contact material may be a single material 248 (see section consisting of filling openings 250a-25d), or may alternatively be an auxiliary contact material (not shown). Supports a relatively thin coating of the required material. If needed, after the deposition of probe contact material 248, the surface of 35 200533926 sacrificial and probe contact material can be planarized to produce Figure 9G is a diagram showing the manufacturing process on the plurality of electrochemical layers, after the completion of the probe element 252-5 composed of a structural material 254 and a sacrificial material 244, and the deposition or adhesion A state after bonding material 256. Just before In the illustrated specific embodiment, the probe elements can be cut individually or in a desired array pattern to remove the temporary substrate material, remove the seed layer material, remove the remaining photoresist material, and pass the probe element 252 through 10 Bonding or bonding material 256 is combined with a desired substrate. Figures 10A-10C are schematic side views of the process for forming a probe element array according to a sixth embodiment of the present invention at different stages, in which the pin The element contact is made of a patterned photoresist material with a protruding portion made of a plating material to cover the patterned photoresist material 15. The specific embodiments of Figures 10A-10C are the same as those of Figures 9A-9G. The specific embodiment of the figure is similar, except that the photoresist material covered by the mushrooming operation of the sacrificial material is not etched. Figure 10A shows the process of filling a probe contact material 262. The gaps 264a to 264d, but the deposit is a state after the side of the sacrificial material 244 has grown horizontally by 20. Figure 10B is a diagram of the ητ process after the openings 264a to 26 are filled with the probe contact material 262. Receive A state after performing planarization to remove these portions of the material 262 that bridges the sacrificial material 244 and connects the individual probe contact elements together. 36 200533926 Figure 10C shows the process after the material has been electrochemically fabricated 254 and 244 layers of sacrificial material complete the probe section 266, and the state after the material 256 has been bonded or bonded. For the specific embodiment of FIG. 1%, the 'probe element 266 can be attached to the bonding material 256 via 5 The substrate and the sacrificial material 244 are removed together with the photoresist material 238, the seed layer material 234, and the temporary substrate 232, so as to generate a plurality of independent probe elements, the required material interconnection elements, and The analog disk-substrate connection. Figure UA-11F is a schematic partial penetration, a perspective view, a side view along a central cutting plane, and a process for forming a probe contact array at different stages according to a seventh embodiment of the present invention. In the top view, the probe contacts are formed by using a patterned-deposition mold, and the mold constitutes a plurality of voids covered by the overlay deposition (one void per contact). Give it a desired shape. 15 f 11 is a three-view view of the state of the process after the substrate is supplied-"view 302" is a perspective view of the substrate. The view is the side view of the substrate along X vehicles, and the view 302_3 is the top view of the substrate in the χ γ plane. The substrate 302 is a -f substrate, and can be made of a conductive material or a dielectric material having a seed layer thereon. 2 0 Figure UB illustrates three views of a substrate on which a deposit has been patterned on one of a sacrificial material (eg, copper). The sacrifice material 304 was modified to contain two voids 30W and 306_2. These gaps indicate the probe contacts: the positions where they will be seated, and in this description, 'only constitutes two probe contacts. Of course, this process can be used to form a single probe contact or to form a package = 37 200533926 probe array with dozens, hundreds, or even thousands of components. For the figure iia, the different views of figure 11B in combination with the coordinate axis symbols are shown showing the perspective taken. Figure 1ic is a three-view diagram illustrating the state of the process after the overlay deposition 5 of the sacrificial material 308 is performed. The material 308 may or may not be the same as the sacrificial material. The overlying deposition of the material 306 causes voids and the filling and closing of the initial deposition of 306_2 from the material 304. The closing of the void results in an inclined wall of the material 308 surrounding the unfilled portions of voids 306-1 and 306_2. The filling operation of the gap 30M is performed up to a position shown by 312] while the filling operation of the gap 306-2 is performed up to the line element 3122. The shape of the unfilled part of the void depends on the initial residues_0 and the form of the void 306] and 306_2. FIG. 11D is a three-view diagram illustrating the state of the process after the deposition of the sacrificial material (ie, nickel), after the planarization operation, and after the removal of any light-shielding material related to the patterned deposition. The covered deposits of material 3G6, as not shown in the figure, provide the required void form 314 2 and 3M-1 ', whose shape is complementary to the desired shape of the probe contact formed. The operation of Fig. 11D results in the production of probe contact elements and training fingers 316-2 〇20 The UE diagram shows the process after the deposition of another sacrificial material 320 'and the state of the state after planarizing the final deposit. view. The sacrificial material 320 may be the same as the sacrificial articles and 3_, or may be different from one or both of the sacrificial materials. The performance of the deposition and planarization operations in the UE figure is based on the assumption that the structural material layers constituting the probe element are added to the contacts such as 38 200533926, as shown in the previously different specific embodiments proposed here. If the addition operation is not performed, the operations of FIG. 11E are not required. FIG. 11F is a three-view diagram illustrating the state of the process after each sacrificial material and substrate have been removed, and the additional structural layers (eg, the additional layers of the probe element 5) are performed in parallel. 10 15 20 The seventh specific embodiment of the present invention shown in Fig. 11A-11F, including the following main tasks! (1) Supply a substrate. (2) In these positions that cause the probe contact element, a first sacrificial material is patterned and deposited on the substrate, leaving openings or voids in the sacrificial material. The sacrificial material can be patterned in different ways, for example, a light-shielding material is first patterned and disposed on the surface of the substrate, and then the sacrificial material is plated on the exposed areas of the substrate. Optionally, the overlaying deposition of the sacrificial material is performed after patterning the shading operation and selecting the 14-minute operation. In an alternative solution, for example, the direct deposition of the material can be performed by inkjet printing or the like. (3) Overlay deposition- and first-sacrifice material ιZΓ sacrificial material, used to construct a second sacrifice material to cover the 2 areas of the first, and used to partially fill the = space of the first-sacrifice material, resulting in the first Two sacrifice materials produce the necessary complementarity. Neutralization = patterned deposition of these voids into the second sacrificial material. The required form of the structure material can be performed in multiple forms. The masking material configuration covers the second sacrifice :: product: for example, the structure can not be accepted by patterning and the part of the structural transition is accepted. ", OK. (5) The surface of the structural material and light-shielding material Selectively planarize at-the required height. ⑹ Assuming that these additional material layers are added, the third sacrificial material can be deposited. The first and second sacrificial materials can be combined with any of the first and second sacrificial materials. Yes the two == is: the same. The third method can be covered or patterned. If necessary, 'then planarize the surface of the deposition material', so the two sacrifices and structural materials are exposed and ready to accept the tray construction wood. ^ Piece or similar additional material deposition. For example, using the electrical manufacturing technology disclosed elsewhere to build the required structure 10 15 20 2 carelessly to the probe contacts and other probe structures; Piece: plate. The demolding operation can be performed before or after the probe element is combined with the new substrate. The seventh embodiment may have a plurality of optional solutions. For example, 4: = 料 之After patterned deposition and removal The conclusion: First = before, the surface of the sacrificial material can be planarized, and the second surface can be created as a starting point for subsequent operations. In another embodiment of the embodiment, in a variant, a second sacrificial deposition method is used. The engraving of the job and the deposit material Γ, I avoid the work shirt to touch the whole thing continuously. In particular, Γ will remove any unequal gaps in the surface of the second material: the second miscellaneous needle contact element is used. Any irregularities of the second sacrificial material should be flattened. Wherein, after the second sacrificial material deposition operation, the "temporary conductive or dielectric material is filled, and the surface of the sacrificial material is planarized. After that, the temporary material is removed. This planarization operation can improve the quality of the two 40 200533926 pin contact components slightly offset from the contact area. "Through another embodiment of the embodiment-in a variant form, the structure of the sacrificial material can be reduced, so that the deposition of the sacrificial material is 22:" redundant "and the deposition of the structural material can be-overlay deposition Or, k # becomes a selective deposition. 10 15 mouths This carefully considers the specific embodiment illustrated. The contact element is missing before the material _ part. In the case of: = 4 cases, for example, 'For example, It should be understood that these #pieces (ie, 'extensions') that can constitute the probe element, and later used to construct and adhere the contact element to these arm pieces. The plural specific examples discussed so far Figures 12A-12E are schematic partial penetration and perspective views of the process of forming the probe contact and car train according to the eighth specific embodiment of the present invention at different stages. The probe contact is composed of a structural material surrounded by a sacrificial material or a part of a light-shielding area of the contact material, and then the structure or contact material is used to achieve the required riding contact with respect to the sacrificial material. Point format. * Figure 12A is a diagram This process state is the initial state, in which a probe element 334a.334d (I_ has been formed on a substrate 332, and is encapsulated with a sacrificial material 20 336 (except-the upper surface). In this embodiment In some variations, the substrate may be a temporary substrate, while in other variations, the substrate may be a permanent substrate. Figure 12B illustrates the manufacturing process in which a desired form of light-shielding material is configured to cover at least the element 334a. The state of the -334d contact is composed of the structural material 338 41 200533926. The shading operation can present multiple patterns. For example, as shown in element 342a, the shading material can be opposed to one of them. The last layer of probe material 338 is placed at the center, as shown by element 342b. The light-shielding material can be shifted towards one of the probe elements, one side or the front side, or 5 back sides, as shown by element 342c. The light-shielding material may be a circular patch covering the contact material at the center, or as shown in element 342d, the light-shielding material may be a square patch configured to cover the contact material. Figure 12C Illustrated process at A state after performing a selective engraving operation on the structural material in the unshielded area. 10D is a diagram illustrating a process after the photomask material covering the structural material that has been etched has been removed. FIG. 12E is a diagram showing a state in which, after removing the substrate and the sacrificial material, the elements 334a-334d having the contact structures 344a-344d are left in contact with the mask size, its position, and exposed to the etchant. The relationship between the size of the structural material is 15. In this specific embodiment, the probe element is in the form of a lever arm structure, as opposed to some of the forms presented in the previous specific embodiments. Those skilled in the art should understand It is to be noted that the probe structure may utilize the probe contact manufacturing technology of the specific embodiment, or may be the form shown or the form presented in the previous embodiment. Similarly, those skilled in the art should understand that the probe contact manufacturing technology of these specific embodiments must be combined with the construction of the cantilever beam structure of this specific embodiment. Those skilled in the art should understand that the probe contact material may be different from the material used to form the rest of the probe element 'or it may be the same material. Knowing this 42 200533926 === is that the contact material associated with the probe element can be different. Materials, for example: from a selected lightning storm, "h1 is applied after the contact is staggered" process or similar 5 10 =, optionally, can be deposited during the operation on the contact structure itself The contact material. ^ ^ ^ ^ ^ ^, The embodiment should also be understood by people in agriculture and agriculture, different probe contacts in the probe contact array, similar contact forms, or Optionally, there are different forms depending on the way it is constituted and the purpose for which "..." is used. "

、第H13C®係、為根據本發明之第九具體實施例用於 構成&針7〇件陣狀製程於不同階段的概略側視圖,发 :係於遠下位於疋件之先前構成部分上該等接點元件的暴 路區域中,精由將圖案化遮光材料配置覆蓋該—接點材 料,並將接點__去除_成私之其他部分之 成該等探針接點。 構 15 第13A圖係圖示製程在已由結構材料352及犧牲材料The H13C® series is a schematic side view of the ninth embodiment of the present invention for forming & needles in a 70-piece array at different stages. It is issued at a distance from the previous component of the file. In the storm area of the contact elements, the patterned light-shielding material is configured to cover the contact material, and the contact points are __removed into other parts of the probe contact points. Structure 15 Figure 13A shows the manufacturing process

354之複數堆疊與黏合層構成複數之探針元件後的一狀 態。該等層構成在可為一暫時基板或是一永久基板的一基 板356上。建構探針元件之的最後層係以一探針接點材料 358層覆盍,其依次以一已圖案化的遮光材料所覆蓋,用以 20將遮光材料之栓塞覆蓋該等探針接點元件存在的位置。遮 光材料之栓塞的尺寸與形狀,將支配钱刻劑362等向性地姓 刻採針接點材料之後的最終接點形式。 第13B圖係圖示製程在已完成蝕刻作業以及將探針接 點材料I虫刻且露出犧牲材料之後的一狀態。由遮光材料所 43 200533926The multiple stacks and adhesive layers of 354 constitute a state after a plurality of probe elements. The layers are formed on a substrate 356 which may be a temporary substrate or a permanent substrate. The final layer for constructing the probe element is covered with a probe contact material 358 layer, which is covered with a patterned light-shielding material in turn, and the plug of the light-shielding material covers the probe contact elements with 20 Existing location. The size and shape of the plug of the light-shielding material will govern the final contact form after the needle contact material is engraved using the money engraving agent 362 isotropically. FIG. 13B illustrates a state of the process after the etching operation has been completed and the probe contact material I is etched and the sacrificial material is exposed. Institute of Light-shielding Materials 43 200533926

態,其產生騎至基板356之探針元件3咖_3術陣列並包 造成之遮蔽作用,提供為該姑 作業, 實施/ 業,, 括所需形式的接點368。State, which produces the probe element 3c_3 array of substrates riding on the substrate 356 and includes the shielding effect, and provides the contact 368 of the required form for the operation, implementation, and operation.

同階段的概略側視圖n用於構成具有所有存在之$ φ 10 15 列元件並具有第一接點形式的探針接點。 第14A圖係圖示製程在供給_所需基板材料372之後的 一狀態,而第14B圖係圖示製程在選擇性地蝕刻基板材料 372並完成構成該等空隙374a-374e之後的一狀態。可經由該 位置並將一光罩材料圖案化在基板372之表面上,執行所進 行用以產生空隙374a-374e的蝕刻作業。例如,基板372可為 石夕,以及該餘刻劑,例如,可為氫氧化钟(KOH)。 第14C圖係圖示製程在將一模塑材料(例如,環氧材 料)376澆鑄覆蓋基板372之圖案化表面之後的一狀態。 第14D圖係圖示製程在該模塑材料376固化並已自該圖 案化基板372分離之後的一狀態。位在工具380上的突出部 分378a-378e之間隔,係與探針接點元件所構成位置相對 應,例如,於第16圖之具體實施例中所說明者。 第15 A -15 D圖係為用於構成一壓花工具的一製程於不 同階段的概略側視圖,該工具用於構成僅具有存在之陣列 44 200533926 元件的-部分並具有第二接點形式的探針接點。 5 10 第15A-15D圖所圖tf之製程狀態係與第14A_14B圖中 所示為相似之製程狀態,不同之處在於空隙微及魏係 祕刻俾便與空隙微及374d之形式不同,並且於基板撕 中無構成空隙處係與第MB圖之空隙別心遍及徽之位 置相對應。就其本身而論,在由固化的模塑材料綱完成工 具390之後,紅具僅包含^部分遍及咖。A schematic side view n of the same stage is used to form a probe contact having all existing $ φ 10 15-row elements and having a first contact form. FIG. 14A illustrates a state of the process after the substrate material 372 is supplied_required, and FIG. 14B illustrates a state of the process after the substrate material 372 is selectively etched and the gaps 374a-374e are completed. An etching operation to generate the voids 374a-374e can be performed by passing a pattern of a mask material on the surface of the substrate 372 through this position. For example, the substrate 372 may be Shi Xi, and the after-etching agent may be, for example, KOH. FIG. 14C illustrates a state of the process after a molding material (e.g., an epoxy material) 376 is cast onto the patterned surface of the cover substrate 372. Figure 14D illustrates a state of the process after the molding material 376 is cured and separated from the patterned substrate 372. The distance between the protrusions 378a-378e on the tool 380 corresponds to the position of the probe contact element, for example, as described in the specific embodiment of FIG. Figures 15 A -15 D are schematic side views of a process used to form an embossing tool at different stages. The tool is used to form the -part of an array that has only 44 200533926 elements and has a second contact form. Probe contacts. 5 10 The process state of tf shown in Figures 15A-15D is similar to the process state shown in Figures 14A_14B. The difference is that the form of void micro and Wei system secret seal is different from that of void micro and 374d, and The place where no gap is formed in the substrate tearing corresponds to the position where the gap intent of the MB figure permeates the emblem. For its part, after the tool 390 is completed from the cured molding material, the red tool contains only a portion throughout the coffee.

比較第i测與第14D圖之卫具,可考量第別圖之工 具僅包括㈣構成-完整探針接料朗需之可能的突出 元件之-部分,㈣第MD圖之該等突出部分可用以構成一 完整陣列。在檢視接下去_等具體實施例應可瞭解,1 每-工具可㈣構成具有所需形式之接點的探針元料 列0Comparing the guards in Figure i and Figure 14D, consider that the tools in Figure ii include only the part of the protrusive components that are necessary for the complete probe to receive the material, and those projecting parts in md To form a complete array. After reviewing the following specific examples, it should be understood that each tool can form a probe element having a contact of a desired form. Column 0

第16A-16M圖係為用於根據本發明之第十具體實施例 15構成一探針元件陣列的一製程於不同階段的概略側視圖^ 其中利用根據第14A-14D圖所製作之壓花工具構成探=元 件接點。 第16A圖係圖示製程在將一基板402以一光阻气戈曰其 他聚合材料404塗佈之後的一狀態。 20 第16B圖係圖示製程在壓花工具380已配置靠著^人材 料404之後的一狀態,同時第16C圖係圖示製程在該厂、― 义彳匕 具380用以使聚合材料404凸起之後的一狀態。 第16D圖係圖示製程在已去除工具380,留下具有 材料404配置於其上的基板402,並且於該聚合材料中酉己^ 45 200533926 有空隙406A-406E。 第16E圖係圖示製程在將一種晶層材料4〇8塗佈覆蓋該 經圖案化之聚合材料404後的一狀態。該種晶層材料可為任 一適合的犧牲材料,其可自一探針接點材料分離而不致將 5其損害。例如,可將種晶層材料噴濺銅、錫、金或是相似 材料。在構成種晶層之前,#有需要,可將一黏合層配置 在該經圖案化之聚合材料的表面上。 第16F圖係圖示製程在將一探針接點材料412電鍛覆蓋 電鑛基材408之後的一狀態。如第邮圖中所示該探針接 1〇點材料412之沉積作業係一覆蓋形式進行。於此具體實施例 之變化形式中’可以一選定的方式沉積該探針接點材料, 致使介於探針接點位置414A_414E間的該等區域並未接受 探針接點材料。 15 20Figures 16A-16M are schematic side views of a process for forming a probe element array according to the tenth embodiment 15 of the present invention at different stages. ^ An embossing tool made according to Figures 14A-14D is used. Composition probe = component contact. Figure 16A illustrates a state of the process after a substrate 402 is coated with a photoresist gas or other polymeric material 404. 20 Figure 16B shows the manufacturing process after the embossing tool 380 has been placed against the material 404. At the same time, Figure 16C shows the manufacturing process at the plant. A state after being raised. FIG. 16D illustrates the process in which the tool 380 has been removed, leaving a substrate 402 having a material 404 disposed thereon, and a void 406A-406E in the polymer material. Figure 16E illustrates a state of the process after a crystal layer material 408 is applied to cover the patterned polymeric material 404. The seed layer material can be any suitable sacrificial material, which can be separated from a probe contact material without damaging it. For example, the seed layer material can be sprayed with copper, tin, gold, or similar materials. Before the seed layer is formed, an adhesive layer may be disposed on the surface of the patterned polymer material, if necessary. FIG. 16F illustrates a state of the manufacturing process after a probe contact material 412 is electro-forged to cover the electric ore substrate 408. As shown in the figure, the deposition operation of the probe 10-point material 412 is performed in a cover form. In a variation of this embodiment, the probe contact material may be deposited in a selected manner, so that the areas between the probe contact positions 414A-414E do not accept the probe contact material. 15 20

於㈣變化形式中,可去除與選擇性沉積作業相關 遮_並沉積-犧牲材料(其係與種晶層材料相同),接 將犧牲材料與探針接點材料平面化至一該等結構層可構In the modified form, the shielding and deposition-sacrificial material (which is the same as the seed layer material) associated with the selective deposition operation can be removed, and then the sacrificial material and the probe contact material are planarized to one of these structural layers. Constructable

於其上所需高度。 τ任擇地,結除遮储料之前,可進行結合遮光 1 及箱采Γ接‘輯料之平面化作f。接著去_光材料然 增加犧牲材料,如有需要可執行另_平面化作業。 及犧係圖示製程在—平坦化作業將探針接點… 材料(例如,種晶層材料)之高度修整至一並同高卢』 之後的—“。就完成第16G圖中所示之結果而言,假㈤ 46 200533926The desired height above it. τ Optionally, before removing the storage material, a combination of shading 1 and box mining Γ can be used to planarize the material as f. Then go to _light material and then add sacrificial material. If necessary, perform another _ planarization operation. And the sacrifice is shown in the process of flattening the probe contacts ... The height of the material (for example, the seed layer material) is adjusted to the same as the "Gaul"-". The 16G figure is completed As a result, fake ㈤ 46 200533926

=16H圖係81不製程在已沉積複數之結構材料416及犧 牲材料418層用以建構探針元件之結構後的—狀態。該結構 材料,例如,可為鎳或鎳-始合金,以及探針接點材料,例 如’可為铑或銖’同時犧牲材料’例如,可為銅或錫。如 第簡圖中所示,儘管所有探針元件接點係構成為陣列形 式,但並未構成所有的相關探針元件結構。特別地,探針 10接點414A、414B及414E已構成探針結構之相關元件,然而 探針接點414C及414D並未構成探針結構之相關元件。於梦 程之-接續作業期間,將探針接純4CA414d自探針陣= 去除。= 16H Picture 81 shows the state after the multiple layers of structural material 416 and sacrificial material 418 have been deposited to construct the structure of the probe element. The structural material may be, for example, nickel or a nickel-alloy, and the probe contact material, for example, 'may be rhodium or baht' and the sacrificial material 'may be, for example, copper or tin. As shown in the simplified diagram, although all of the probe element contacts are configured in an array form, not all related probe element structures are constituted. In particular, the contact points 414A, 414B, and 414E of the probe 10 already constitute related elements of the probe structure, but the contact points 414C and 414D do not constitute related elements of the probe structure. During the dream process-continued operation, connect the probe to pure 4CA414d from the probe array = remove.

於-可任擇的具體實施例中,在沉積探針接點材料之 15前可簡單地將該等探針接點位置遮蔽,而取代構成該等探 針接點元件414C及414D。 IIn an optional embodiment, the positions of the probe contacts can be simply masked before 15 of the probe contact material is deposited, instead of constituting the probe contact elements 414C and 414D. I

第161圖係圖示製程在將—黏合或結合材料選擇性地 沉積在探針結構之末端上後的一狀態。 第16 J圖係圖示製程在黏合材料已流回用以制成 20 形或球狀形式之後的狀態。 已反向並與 弟一黏合材 第16 K圖係顯示製程在該未脫模探針結構 一永久基板424接觸之後的狀態,該基板包括_ 料426之該等與黏合材料420之該等位置相對應的區域 永久基板結 第16 L圖係圖示製程在進行將探針結構與 47 200533926 合並去除犧牲材料418之後的一狀態。 第16M圖係圖示製程在探針接點414a、41413及414(1已 自種晶層材料、聚合材料及基板402脫模,用以在永久基板 424上產生完整的探針426a、426b及426c。 第17A-17L圖係為用於根據本發明之第十一具體實施 例構成一探針元件陣列的一製程於不同階段的概略側視 圖’其中利用根據第14A-14D圖所製作之壓花工具構成探針Figure 161 illustrates the state of the process after the -adhesive or bonding material is selectively deposited on the ends of the probe structure. Figure 16J shows the state of the process after the bonding material has flowed back to form a 20 or spherical form. Figure 16K, which has been reversed and bonded to the first bonding material, shows the state of the process after the unmolded probe structure contacts a permanent substrate 424. The substrate includes the positions of the material 426 and the positions of the bonding material 420. Corresponding region 16L of the permanent substrate junction is a diagram showing a state after the process of combining the probe structure with 47 200533926 and removing the sacrificial material 418. Figure 16M illustrates the manufacturing process at the probe contacts 414a, 41413, and 414 (1 has been demolded from the seed layer material, polymer material, and substrate 402 to produce a complete probe 426a, 426b and 426c. Figures 17A-17L are schematic side views of a process for forming a probe element array according to the eleventh embodiment of the present invention at different stages, wherein the pressure produced according to Figures 14A-14D is used. Flower tool make up probe

元件接點,該壓花材料係具傳導性,並且其中未構成選定 的探針元件。 1〇 第17A」71^之製程係與第16A-16M圖之製程相似,所 不同之處在於第16E圖之種晶層並非為必需(當凸起的材料 係為一導體時,諸如此具體實施例中的錫)。 第17A圖係圖不製程在提供於其上配置具有一傳導性 犧牲材料454之平面化塗層的㈣基板税之後的一狀態。 Μ犧牲材料45何為任—適合的材料,其可自—探針接㈣料 去除而不致損害該等接點並且能夠自-基板452材料去除。Element contact, the embossed material is conductive and does not constitute a selected probe element. 1〇The process of 17A ″ 71 ^ is similar to the process of FIGS. 16A-16M, except that the seed layer of FIG. 16E is not necessary (when the raised material is a conductor, such as this specific Tin in the examples). FIG. 17A is a diagram showing a state after the process of providing a holmium substrate having a planarized coating having a conductive sacrificial material 454 disposed thereon. What is the M sacrificial material 45-a suitable material that can be removed from the probe interface without damaging the contacts and capable of being removed from the substrate 452 material.

於此具體實施例之一些變化形式中,犧牲材料454及A 板材料452可為一種且相同的材料。 土 第17B圖係圖示製程在壓花 加始接觸之後的-狀態。1化工具⑽與犧牲材料物初 弟^圖係圖示製程在壓花工具谓已完成穿過該賴 材料454之後的-狀態。例如,此係可藉由加熱該麼花工 380及/或犧牲材料而完成,致使在完成接觸的該等位 中’該犧牲材料係可流動並能夠經流動或是以其他方式 48 200533926 業所支配的形 新成形用以達到工具380所進行之圖案化作 式。 相對應 第_係圖示製程錢花工具38〇已自凸起 料物去除之後的-狀態,留下空隙伽顿其之位置係: 十接點可存在於所構成之_探針接點陣列中的該等位置 第ΠΕ圖係圖示製程在將—探針接點材料伐沉積覆罢 犧牲材料454之圖案化表面後的—狀態。 、里 第HF圖係圖示製程在將犧牲材料與探針接點材料+ ^ 10面化至一共同高度後的一狀態。 第17G圖係圖示製程在由於電沉積複數層而完成構成 探針兀件後的-狀態,其中每一層包含結構材料偷之該等 區域,其係與探針元件及犧牲材料464之位置相對應。犧牲 材料464可與犧牲材料454相同或為不同。 第ΠΗ圖係圖不製程在將黏合材料或結合材料偏圖案 化沉積在探針結構之最上表面上後的一狀態。 第171圖係圖示製程在黏合材料466已流回使其具有如 · 第Θ中所示的一圓形或是氣泡形狀後的一狀態。 第17J圖係圖示製程在將未脫模探針結構反向並與一 20水久基板468結合之後的一狀態,其包括一第二黏合材料 之"亥專區域係與配置在組成探針元件的電化學製造結 構層上的第1合材料466之該等區域相對應。 第17K圖係圖示製程在已去除犧牲材料464之後的一狀 態。 49 200533926 第17L圖係圖示製程在已去除原始基板452及犧牲材料 454,從而產生與永久基板468結合之脫模探針結構472a、 472b及472e後的一狀態。如第17G圖中所示,探針接點區域 474a、474b及474e具有與其黏合之探針元件相對應的結構 5 材料,然而探針接點元件474c及474d並未具有結構材料。 就其本身而論,在將犧牲材料454及基板452自與基板 .468結合的探針構件最後分離之後,將接點元件47如及47牝 去除。 第18A-18J圖係為用於根據本發明之第十二具體實施 10例構成一探針元件陣列的一製程於不同階段的概略側視 圖,其中利用根據第14A-14D圖所製作之壓花工具構成探針 兀件接點,並且其中未構成選定的探針元件及探針接點。 第18A圖中的一起始結構係與第17F圖中所示之結構 相似,其具有一遮光材料472配置在探針接點元件上方。 15 第18B圖係圖示製程在將遮光材料圖案化在將去除的 探針元件474c及474d上方造成該(等)開口後的一狀態。 第18C圖係圖示製程在一選擇性姓刻作業將探針接點 材料438自探針接點位置474c及474d去除後的一狀態。 第18D圖係圖示製程已去除遮光材料472後的一狀態。 第丨犯圖係圖示製程在探針接點元件上方進行電化學 製造複數層後的-狀態。特別地,將一結構材料偷連同一 犧牲材料464沉積。於構成第_電化學製造層的製程中,以 犧牲材料464填注空隙476c及476d。 第18F-18J圖係與第1711视圖相似,因而此時並不詳 50 200533926 加S兄明’所不同之應注意處在於一旦最終脫模則並無需去 除之探針接點元件474c或474d。 第19A-19N圖係為用於根據本發明之第十三具體實施 例構成一探針元件陣列的一製程於不同階段的概略側視 5圖’其中一些探針元件具有不同高度以及不同的接點形 式,並且利用根據第14A-14D圖及第15A-15D圖所製作之壓 花工具構成探針接點元件。 第19A-19N圖之製程係由如第17G圖中所示之構成微 結構陣列之製程的狀態開始。 馨 10 第19A圖係圖示製程在覆蓋探針接點474c及474d的區 域中,將一開口蝕刻穿過複數之沉積犧牲材料層後的一狀 態。可藉由將最後構成的結構層之上表面以一遮光材料遮 蔽而進行蝕刻作業,將遮光材料圖案化用以在探針47牝及 474d之該等區域上方於其中配置一開口,並接著蝕刻進入 15犧牲材料且去除該光罩。 第19 B圖係圖示製程在將一可凸起犧牲材料至少配置 在触刻穿過犧牲材料層的開σ中後的一狀態。如第19 B圖巾 # 所示,該可凸起犧牲材料482係覆蓋沉積地涵蓋先前沉積材 料。4可凸起犧牲材料係為錫或銅或是相似材料。 20 帛19C圖係圖示製程在將該沉積之可凸起犧牲材料平 面化用以將其自除填注蝕刻穿過犧牲材料之開口外的所有 位置中去除後的一狀態。 第19D圖係圖示製程在將壓花工具3_己置與可凸起材 料482初始接觸之後的一狀態,同時第19E圖係圖示製程在 51 200533926 將工具390插入一凸起材料482後的一狀態。 第19F圖係圖示製程在去除壓花工具39〇後的一狀態。 第19G圖係圖示製程在沉積一所需探針接點材料填注 凸起材料482中之孔48牝及484(1後的一狀態。例如,該探針 5接點材料可為銖或铑。 第19H圖係圖示製程在平面化作業將該沉積材料裁製 回至一與所構成之最後結構層相對應的一高度後的一狀 恶。於此具體實施例之變化形式中,初始時該所構成之最 後結構層可構成具有超過的高度,致使由於造成第19h圖中 1〇所圖示之製程狀態的一加工作業而執行不同的平面化作 業,遞增地向下裁製直至完成所需高度為止。 第191圖係圖示製程在構成複數之附加結構層後的一 狀態,其中該等附加結構層包括結構材料之該等區域係與 抓針元件及配置於其間之犧牲材料的該等區域相對應。 15 第⑼圖係圖示製程在已去除所有結構層之後,並在施 以-黏合或是結合材料,例如,錫或錫錯或是其他焊料類 材料或相似材料選擇性地沉積覆蓋結構材料之該等區域後 的一狀態。 第19K圖係圖示製程在黏合材料流回而造成一圓形或 20是顯著外觀後的一狀態。 第19L圖係圖示製程在已將探針結構反向並配置在與 位在-永久基板490(例如,空間轉換器)上的焊塾相鄰。 第應圖係圖示製程在進行將探針元件黏合至永久基 板490以及去除犧牲材料464之後的一狀雜。 52 200533926 5 10 15 20 “第腿圖係圖示製程在去除犧牲材料454、基板452及麼 :材料482伙而產生—附裝至永久基板的脫模探針陣列 ::的-:態。如圖式中可見’其令三探針元件具有指向接 ,而,、他採針元件具有圓形接點形式。同樣地該1中 二兀件於本質上與另外二元件相較係更為伸長的。In some variations of this embodiment, the sacrificial material 454 and the A-plate material 452 may be one and the same material. Soil Figure 17B shows the state of the process after embossing and contact. Figure 1 shows the first state of the tool and the sacrificial material. The figure shows the state of the process after the embossing tool is said to have passed through the material 454. For example, this can be accomplished by heating the flower worker 380 and / or the sacrificial material such that, among the bits that make contact, the 'sacrifice material is flowable and can be flowed or otherwise 48 200533926 The dominant shape is used to achieve the patterning operation performed by the tool 380. Corresponding to the _ system shown in the figure-making process after the tool 38 has been removed from the raised material, leaving a gap to clarify its position: Ten contacts can exist in the _probe contact array formed Figure ΠE of these positions in the figure shows the state of the process after the -probe contact material is deposited over the patterned surface of the sacrificial material 454. Figure HF shows the state of the process after the sacrificial material and probe contact material + ^ 10 are surfaced to a common height. Figure 17G is a diagram showing the state of the process after the probe elements have been completed due to electrodeposition of multiple layers, where each layer contains these areas where the structural material steals, which are relative to the locations of the probe element and the sacrificial material 464. correspond. The sacrificial material 464 may be the same as or different from the sacrificial material 454. Figure ΠΗ is a diagram showing a state in which the bonding material or the binding material is partially patterned and deposited on the uppermost surface of the probe structure. Figure 171 illustrates the state of the process after the bonding material 466 has flowed back so that it has a circular or bubble shape as shown in Figure Θ. Figure 17J illustrates a state of the process after the unmolded probe structure is reversed and combined with a 20 water substrate 468, which includes a second bonding material. The areas of the first composite material 466 on the electrochemical manufacturing structure layer of the needle element correspond. Figure 17K illustrates the state of the process after the sacrificial material 464 has been removed. 49 200533926 Figure 17L is a diagram showing the state of the process after the original substrate 452 and the sacrificial material 454 have been removed, thereby producing the release probe structures 472a, 472b, and 472e combined with the permanent substrate 468. As shown in FIG. 17G, the probe contact areas 474a, 474b, and 474e have a structure 5 material corresponding to the bonded probe element, but the probe contact elements 474c and 474d do not have a structural material. For its part, after the sacrifice material 454 and the substrate 452 are finally separated from the probe member combined with the substrate .468, the contact elements 47 such as 47 去除 are removed. 18A-18J are schematic side views of a process for forming a probe element array according to the twelfth embodiment of the present invention at different stages, in which embossing made according to FIGS. 14A-14D is used. The tool constitutes the probe element contact, and the selected probe element and the probe contact are not constituted therein. A starting structure in Fig. 18A is similar to the structure shown in Fig. 17F, and has a light-shielding material 472 disposed above the probe contact element. 15 FIG. 18B is a diagram illustrating a state after the process of patterning a light-shielding material over the probe elements 474c and 474d to be removed to cause the opening (s). FIG. 18C is a diagram showing a state where the probe contact material 438 is removed from the probe contact positions 474c and 474d in a selective lasting operation. FIG. 18D illustrates a state after the light shielding material 472 has been removed during the manufacturing process. The first diagram shows the state after the process of electrochemically manufacturing a plurality of layers over the probe contact element. Specifically, a structural material is deposited on the same sacrificial material 464. In the process of forming the electrochemical manufacturing layer, the voids 476c and 476d are filled with the sacrificial material 464. The 18F-18J picture is similar to the 1711 view, so it is not detailed at this time. 50 200533926 plus S brother Ming ’The difference is that the probe contact element 474c or 474d does not need to be removed once it is finally demolded. Figures 19A-19N are schematic side views of a process for forming a probe element array according to a thirteenth embodiment of the present invention at different stages. 5 Figures' Some of the probe elements have different heights and different connections. Point form, and the embossing tool made according to FIGS. 14A-14D and 15A-15D is used to form a probe contact element. The process of FIGS. 19A-19N starts from the state of the process of forming a microstructure array as shown in FIG. 17G. Xin 10 FIG. 19A illustrates a state in which the process etches an opening through a plurality of deposited sacrificial material layers in the areas covering the probe contacts 474c and 474d. An etching operation can be performed by masking the upper surface of the final structure layer with a light-shielding material, patterning the light-shielding material to arrange an opening in the areas of the probes 47 牝 and 474d, and then etching Enter 15 sacrificial material and remove the mask. FIG. 19B illustrates a state of the manufacturing process after a bumpable sacrificial material is disposed at least in the opening σ that touches through the sacrificial material layer. As shown in Fig. 19B, the embossable sacrificial material 482 covers the deposited material to cover the previously deposited material. 4 The bumpable sacrificial material is tin or copper or a similar material. The 20 帛 19C diagram illustrates the state of the process after planarizing the deposited bumpable sacrificial material to remove it from all locations except for filling and etching through the opening of the sacrificial material. Figure 19D shows the state of the manufacturing process after the embossing tool 3_ has been placed in contact with the embossable material 482, and Figure 19E shows the manufacturing process at 51 200533926 after inserting the tool 390 into a raised material 482. A state. Fig. 19F shows a state of the process after the embossing tool 39o is removed. Figure 19G illustrates the process in which a desired probe contact material is deposited to fill the holes 48 牝 and 484 (1 in the raised material 482). For example, the probe 5 contact material may be baht or Rhodium. Figure 19H is a diagram illustrating a process in which the deposition material is cut back to a height corresponding to the final structure layer formed in a planarization operation. In a variation of this embodiment, Initially, the final structural layer formed may have a height exceeding the level, which results in different planarization operations due to a processing operation that causes the process state illustrated in 10 in FIG. 19h, and is cut down incrementally until Until the required height is completed, Figure 191 illustrates a state of the process after forming a plurality of additional structural layers, where the additional structural layers include structural materials, the regions and the needle grasping elements and the sacrificial material disposed therebetween. 15 The first figure shows the process after all structural layers have been removed, and after applying-bonding or bonding materials, such as tin or tin oxide or other solder-based materials or similar materials selection Sexually Figure 19K is a state after the structural material covers these areas. Figure 19K is a diagram showing the manufacturing process after the bonding material flows back to create a circle or 20 is a significant appearance. Figure 19L is a diagram showing the manufacturing process has been The probe structure is reversed and disposed adjacent to a solder pad on a permanent substrate 490 (for example, a space converter). The first figure shows the process of adhering the probe element to the permanent substrate 490 and removing the sacrifices. The shape after the material 464. 52 200533926 5 10 15 20 "The first leg is a diagram showing the process of removing the sacrificial material 454, the substrate 452, and the material 482: the demolding probe array attached to the permanent substrate :: 的-: State. As can be seen in the figure, 'it makes the three-probe element have a directional connection, and the other needle element has a circular contact form. Similarly, the two elements in 1 are essentially different from the others. The two elements are more elongated than the system.

熟知此技藝之Air1- JU + 的是’使職本發明之此第 + -程’能夠產生之探針元件陣列且有 ^結合複數之探針元件、㈣的接,卿式(無論是單I高 =是多重高度)、單-或多重或是可變高度探針元件及/ :不同結構形式的探針4 (例如,垂直伸展的彈菁狀元 及大體上水平伸展的料式元件)。 \ Ε圖係為用於根據本發明之第十四具體實施 冓成^針7〇件的_製程於不同階段的概略側視圖,其 木、’十接點係以-在構成探針元件巾防護*受所使用之犧 牲材料影響的所需接觸材料塗佈。 +第20Α-20Ε圖之製程可用以在一探針接點上構成一所 而塗層材料’同時防護探針接點材料不受一與其不相容之 犧牲材料㈣劑或是相似物的影響。 第20Α圖係圖不製程在—犧牲材料搬已接受一經圖案 化之犧牲材料5〇4(例如’銅)塗層後的一狀態。基板5〇2可與 5〇4為相同的犧牲材料,或可任擇地係為一些其他的犧牲材 料或'曰在地甚至為—結構材料,最終能夠與探針接點分 離°覆蓋基板502穿過犧牲材料5_該#開口,係與構成 探針接點元件之該等位置相對應。 53 200533926 第20B圖係圖示製程完成防護材料5〇6之覆蓋式沉積用 以覆盍防護基板及犧牲材料後的一狀態。接著,一探針接 點洋動材料508係覆蓋式沉積在防護材料5〇6上並於之後覆 蓋式沉積一結構材料510。 5 第2〇C®係圖示製程在平面化作業將覆蓋犧牲材料504 之忒等區域的防護材料5〇6、探針接點塗層材料5〇8及結構 材料510之該等部分切除後的一狀態。如第2〇c圖中所示, 探針接點塗層材料508係藉由一防護材料506塗層與犧牲材 料504隔開。 1〇 ㈣關係圖示製程在增加結構及犧牲材料之-附加 層後的-狀態。特別地,應注意的是該構成部分之探針元 件的結構材料係配置具有一伸展寬度,完全地覆蓋探針接 點,層材料及防護材料。由於選擇第二層之尺寸及形式用 以凡全地覆蓋楝針接點塗層材料,所以該探針接點塗層材 15料係夾合在結構材料510與防護材料篇之間,因而任何接 勺姓刻作業係思欲去除材料如4而不致造成探針接點塗 層材料508損害。 —第20Ε圖係圖示製程在構成一彈菁狀探針元件之後的 -狀態’其中所示之探針糾之接觸區域仍係以防護材料 及捺針接點塗層材料覆蓋塗佈。於接續的未顯示作業中, =除防護材料5〇6用以產生具有一所需探針接點塗層材料 的探針元件。 t知此^之人士應瞭解的是,儘管於此具體實施例 圖不^ k針接點及探針元件,但此具體實施例之 54 200533926 製程^斤提出的原理可擴大,同時地產生-探針接點元件 陣列或疋複數之探針接點元件陣列。 第21A-21F圖係為用於根據本發明之第十五具體實施 例構成-探針元件的一製程於不同階段的概略側視圖,、直 中探針接點係具-推拔形式以及一在構成探針元件中防誤 不受所使用之犧牲材料影響的所需接觸材料之塗層。 10 弟21A圖係圖不製程在—基板$ η接受一犧牲材料別 之圖案化沉積後的-狀態。該基板,例如,可為一結構材 料能夠於之後與構成之該(等)探針接點分開,或可任擇地, 其係為-犧牲材料可破壞地自所構成之 針接點元件去除。 私 於具體貫施例之—些變化 514相同的材料。於本發明之 〜、犧牲材料 二具體實施例中,犧牲材料 514可為銅、錫、金或相似材料。 則材抖 15 第·圖係圖示製程在使用電化學 用以使經由該處延伸之開口 έ士八 乍業 的Κ態。 1的犧牲材料之轉角圓滑後 第21C圖係圖示製裎右彳隹 練在進仃防護材料516、探 層材料518之沉積以及探針接 要^ 土 2〇狀態。 〜。構材料520之沉積後的一 第21D圖係圖示製程在進 第-作業係為沉積材料的平 付加作#後的—狀態,該 5Μ之材細、观52〇ι 522的-緊接層524。 —業包含構成覆蓋平面層 55 200533926 第21E圖係圖示自基板512及犧牲材料514脫模的探針 接點元件526,其中探針接點元件仍包括防護材料516環繞 該探針接點塗層材料518,並且該探針接點塗層材料518係 藉由探針接點結構材料520維持在該一狀態。 5 第21F圖係圖示製程在去除防護塗層516留下探針接點 塗層材料518環繞該探針接點結構材料5 2 〇後的一狀態。 第22A-22H圖係為用於根據本發明之第十六具體實施 例構成一探針接點及元件之陣列的一製程於不同階段該示 範性結構的概略部分穿透、透視圖,其中探針接點係使用 1〇 一矽模具所構成,並且在去除犧牲材料之前將其密封在結 構材料與石夕之間而該等接點受防護不受犧牲材料姓刻劑影 響。 / 第22A圖係圖具體實施例之起始狀態,其巾供給一石夕 基板552(例如,具有-⑽方位)。該等具體實_中,其他 I5接點形式可選定為所需之不同基板。於本具體實施例中, 選定石夕基板用以具有低電阻。 第22B圖係圖示製程在基板中已蝕刻複數之空隙 空隙係與一探針接點形狀及 一渠道556亦>§虫刻進入石夕中。 該渠道之用途僅係作為在其 20 554a-554j後的一狀態,該每一 相對位置相對應。如圖所示, 構成該一渠道係為可任擇的, 將接點結構財”時料⑽作#㈣収。該等接點 形式可藉使賴如KOH或四f基聽域(tmah)及相似 物的非等向關劑而構成為三跡體或是楔之形式。藉由 使用諸如HCN或XeF2的其他_劑而達到球狀或是半雜 56 200533926 形式。藉由使用該專結合之姓刻劑,而達成圓形的三角錐 體或是楔之形式。 於具體實施例之變化形式中,可利用一單_光罩或可 任擇地利用多重光罩同時地執行所有開口之餘刻作業,並 5 且於不同時刻執行蝕刻作業。 弟22C圖係圖示製程在以一所需的接點材料mo填注空 隙554a-554j後的一狀態。藉由一電鍍作業、一噴濺作業或 是一些其他方式進行空隙554a-554j之填注作業。將渠道556 遮蔽或是如於之後作業中簡單地使渠道556中的任何沉積 10 接點材料消失而為開放的,進行空隙之填注作業。空隙 554a-554j之填注作業可包括不僅使用一探針接點材料,亦 使用一探針接點塗層材料。 第22D圖係圖示製程在選擇性沉積結構材料562構成密 封蓋覆蓋探針接點材料之後的一狀態。密封蓋較佳地延伸 15超越該探針接點材料之區域,用以完全地將接點材料封閉 在矽基板與結構材料之間。假若並未以一選擇性方式沉積 邊探針接點材料,則在如第22D圖所示沉積結構材料之前, 可任擇地利用一平面化作業用以確保該結構材料可直接地 與矽材料結合。 20 在結構材料沉積之後,可覆蓋式沉積一犧牲材料並將 表面平面化留下結構材料之一暴露區域覆蓋該等接點位置 以及在別處的犧牲材料(未顯示)。 第22E圖係圖示製程在已經由一電化學製程或是相似 製程建構複數探針元件層後的一狀態,其中該最後層留有 57 200533926 與由犧牲材料所環繞之探針元件的最後層相對應的結構材 料之该等暴露區域。 第22F圖係顯示製程在構成_黏合或是結合材料566覆 盍結構材料562之該等區域後的一狀態,其係由或未由犧牲 5材料564所裱繞。該未脫模的探針元件及基板552係為下一 個與如第22G圖中所示的一所需之永久基板(例如,一空間 轉換器)結合的覆晶片。 接著,經由一蝕刻作業去除犧牲材料,可由陣列之側 邊朝向中心加工,或可任擇地將矽基板研磨用以露出以犧 1〇牲材料填注的渠道區域,接著該蝕刻作業可自陣列之側邊 以及中心區域加工。 第22H圖係圖示製程在已去除石夕基板及犧牲材料之後 的一狀態。 本發明下一個具體貫施例係有關於使用前述用於製造 15接點的,,蕈形化,,方法製造微探針用接點,以及轉換/結合/ 脫模法用以在一暫時晶圓上建構顛倒的微探針並將其末端 與一空間轉換裔結合’(於美國專利申請案第6〇/533,947號 中詳加說明)。此專利申請案於此併入本案以為參考資料。 此具體實施例亦係有關於一種製造具有不同高度之探針的 20方法,容許在該等不同高度接點上利用簟形化方法製造该 等接點。 當利用EFAB™製造多重高度的配備接點式探針時,位 在中間南度的该寺棟針(亦即’未與暫時晶圓上的脫模岸相 鄰)必需構成與通常層特徵同高,構成部分之其他探針,其 58 200533926 之接點係位在與該等接點不同的高度(例如,與脫模層相 鄰)。利用蕈形化作業製造位在中間高度的主要挑戰性在 於,假若在接點高度下該接點係較單一層之厚度為高,則 所常見狀況在於除非扭曲於此區域中該層厚度(非所欲)用 5 以容納接點高度。本發明之此具體實施例係為一用於製造 中間高度之接點的方法,其中a)接點高度可大於對應層之 高度;b)不需以任一方式改變對應層高度用以容納接點。 第23A-23U圖係圖示一示範性製程流程,用於利用簟 形化作業而製造單一高度之探針用以製作該等接點。於第 10 23A圖中,所示係為一暫時晶圓(假設係為以種晶及黏合層 所塗佈之氧化鋁)。所示係為容許直接進入端部指向探針之 位在晶圓表面上的一覆蓋區域;此區域能夠藉由局部地蝕 刻該種晶及黏合層而產生。除了自此端部指向”墊”區域之 邊緣蕈形化作業之外(此蕈形化作業於圖式中未顯示),該墊 15 並未電鍍。於第23B圖中,已電鍍一厚的犧牲材料(假設為 銅)層,並於第23C圖中,經平面化用以構成一所需厚度的 脫模層。於第23D圖中,將薄光阻劑圖案化用以構成絕緣結 構,覆蓋於其上的犧牲金屬能夠蕈形化用以構成接點幾何 形狀,並於第23E圖中,藉由電鍍持續一段控制時間,將銅 20 蕈形化覆蓋該等層。 第23F圖係圖示製程之一狀態,其中已藉由物理氣相沉 積(PVD)(例如,喷濺)將銅沉積覆蓋晶圓,因此具有一連續 金屬薄膜用於電鍍該等接點(除此之外除經由蕈形化作業 無法電鍍覆蓋該暴露的光阻劑區域,其需厚電鍍作業)。第 59 200533926 猎由名虫 23F圖亦顯示已將銅自端部指向墊區域去除(例如 刻),因此其並未電鍍。 ,、T,列如,猎由電裔 已施加接點塗層材料(例如,銖)(假若藉由卿施加接心 層材料,則可材量先前l^PVD施蝴之步驟)。^ 5 10The Air1- JU + that is familiar with this technique is the array of probe elements that can be used to make the first + -process of the present invention, and has a combination of a plurality of probe elements, a ㈣ connection, and a simple (whether single I Height = is multiple height), single- or multiple or variable height probe elements and /: probes 4 of different structural forms (for example, vertically stretched elastic element and generally horizontally stretched material elements). \ Ε Figure is a schematic side view of the _ manufacturing process at different stages for the implementation of the fourteenth embodiment of the ^ needle 70 pieces according to the fourteenth embodiment of the present invention. Protection * Coating of required contact materials affected by the sacrificial material used. + The process of Figures 20A-20E can be used to form a coating on a probe contact and to protect the probe contact material from an incompatible sacrificial material tincture or the like. . Figure 20A is a diagram showing a state in which the sacrificial material has been coated with a patterned sacrificial material 504 (e.g., 'copper'). The substrate 502 can be the same sacrificial material as 504, or can optionally be some other sacrificial material or 'locally or even-a structural material, which can eventually be separated from the probe contacts. ° Covering the substrate 502 The opening through the sacrificial material 5 corresponds to the positions constituting the probe contact element. 53 200533926 Figure 20B is a diagram showing a state after the process is completed to cover the protective substrate 5006 with the overlay deposition of the protective material and the sacrificial material. Next, a probe contact oceanic material 508 is deposited over the protective material 506 and then a structural material 510 is deposited overlying. 5 The 20C® is shown in Figure 2. After flattening, the protective material 5106, probe contact coating material 508, and structural material 510 will be covered after the sacrificial material 504 and other areas are removed. A state. As shown in Figure 20c, the probe contact coating material 508 is separated from the sacrificial material 504 by a protective material 506 coating. The 10㈣ relationship shows the state of the process after adding structure and additional layers of sacrificial material. In particular, it should be noted that the structural material of the probe element of the constituent part is configured to have an extended width, completely covering the probe contact, the layer material and the protective material. Since the size and form of the second layer are selected to cover the needle contact coating material, the probe contact coating material 15 is sandwiched between the structural material 510 and the protective material, so any The scribing operation is to remove materials such as 4 without causing damage to the probe contact coating material 508. —Figure 20E shows the contact state of the probe shown in the “state” shown after the formation of a bullet-shaped probe element in the manufacturing process is still covered with a protective material and a pin contact coating material. In subsequent unshown operations, = 506 is used to remove the protective material to produce a probe element having a desired probe contact coating material. Anyone who knows this should understand that although the specific embodiment does not show pin contacts and probe elements, the principle proposed by 54 200533926 process in this specific embodiment can be expanded and produced simultaneously- An array of probe contact elements or a plurality of arrays of probe contact elements. 21A-21F are schematic side views of a process for forming a probe element according to a fifteenth specific embodiment of the present invention at different stages, a straight probe contact fixture-pushing form, and a A coating that prevents accidental contact with the desired contact material in the constituent probe elements that is not affected by the sacrificial material used. Fig. 21A is a diagram showing a state in which the substrate $ η receives a patterned deposition of a sacrificial material. The substrate, for example, may be a structural material that can be separated from the (or) probe contacts constituting it later, or alternatively, it may be that the sacrificial material is destructively removed from the formed needle contact elements. . Private to the specific implementation examples-some changes 514 the same material. In the second embodiment of the sacrificial material of the present invention, the sacrificial material 514 may be copper, tin, gold, or similar materials. The material shakes. Figure 15 shows the process using electrochemistry to make the openings extending there through the K state. After the corner of the sacrificial material of 1 is smooth, FIG. 21C shows the manufacturing process of the protective material 516, the deposition of the probe material 518, and the state of the probe interface. ~. A 21D image after the deposition of the structural material 520 is a diagram showing the state of the process after the first operation is a flat payment of the deposited material. The state of the 5M material is detailed, and the 52m 522 is immediately adjacent to the layer. 524. —Including the covering plane layer 55 200533926 FIG. 21E illustrates the probe contact element 526 that is demolded from the substrate 512 and the sacrificial material 514. The probe contact element still includes a protective material 516 to coat the probe contact. Layer material 518, and the probe contact coating material 518 is maintained in this state by the probe contact structure material 520. 5 FIG. 21F illustrates a state in which the coating material 518 surrounds the probe contact structure material 5 2 0 after the protective coating 516 is removed during the manufacturing process. Figures 22A-22H are penetration and perspective views of a rough outline of the exemplary structure at a different stage of a process for forming an array of probe contacts and components according to a sixteenth embodiment of the present invention. The pin contacts are constructed using a 10-silicon mold, and are sealed between the structural material and Shi Xi before the sacrificial material is removed. These contacts are protected from the sacrifice of the sacrificial material. / Figure 22A is the initial state of the specific embodiment, and the towel is provided with a stone substrate 552 (for example, with -⑽ orientation). In these specific cases, other I5 contact types can be selected as the different substrates required. In this embodiment, the Shixi substrate is selected to have low resistance. Fig. 22B illustrates the process in which a plurality of voids have been etched in the substrate. The voids are related to the shape of a probe contact and a channel 556. In addition, worms enter Shi Xi. The use of this channel is only as a state behind its 20 554a-554j, and each of these relative positions corresponds. As shown in the figure, the formation of this channel is optional, and the contact structure will be used as the "collection". These contact forms can be based on KOH or four-base listening area (tmah). And similar non-isotropic agents are formed in the form of three traces or wedges. By using other agents such as HCN or XeF2 to achieve a spherical or semi-heterogeneous form 56 200533926. By using the special combination In the form of a triangular pyramid or a wedge, in the form of a specific embodiment, a single photomask or multiple photomasks can optionally be used to perform all openings simultaneously. The remaining work, and the etching operation is performed at different times. The 22C diagram shows the state of the process after filling the gaps 554a-554j with a required contact material mo. By a plating operation, a spray Splash operation or some other way to fill the gaps 554a-554j. Cover the channel 556 or simply make any deposited 10 contact material in the channel 556 disappear and become open as in subsequent operations. Filling operations. Filling operations for gaps 554a-554j may include A probe contact material is used, and a probe contact coating material is also used. Figure 22D is a diagram illustrating a state after the selective deposition of the structural material 562 forms a sealing cover to cover the probe contact material. It extends 15 beyond the area of the probe contact material to completely seal the contact material between the silicon substrate and the structural material. If the edge probe contact material is not deposited in a selective manner, then Before depositing the structural material as shown in Figure 22D, a planarization operation can optionally be used to ensure that the structural material can be directly combined with the silicon material. 20 After the structural material is deposited, a sacrificial material can be deposited overlying and Surface planarization leaves one of the structural materials with exposed areas covering the contact locations and sacrificial material elsewhere (not shown). Figure 22E illustrates the process where multiple probes have been constructed by an electrochemical process or a similar process. A state after the element layer, in which the last layer leaves 57 200533926 the exposed areas of the structural material corresponding to the last layer of the probe element surrounded by the sacrificial material. FIG. 22F shows a state of the process after the _adhesive or bonding material 566 overlies the areas of the structural material 562, and it is wound with or without the sacrificial material 564. The unmolded probe The element and substrate 552 are the next wafers combined with a required permanent substrate (for example, a space converter) as shown in Figure 22G. Then, the sacrificial material is removed by an etching operation, and the side of the array can be removed. The edge is processed toward the center, or the silicon substrate can optionally be ground to expose the channel area filled with the sacrificial material, and then the etching operation can be processed from the side of the array and the center area. Figure 22H is a diagram A state in which the process is after the Shixi substrate and the sacrificial material have been removed. The next specific embodiment of the present invention relates to the use of the aforementioned method for manufacturing 15 contacts, a method for manufacturing microprobe contacts, and a conversion / combination / release method for a temporary crystal. An upside-down microprobe is constructed on the circle and its end is combined with a spatially-translated population '(described in detail in US Patent Application No. 60 / 533,947). This patent application is hereby incorporated herein by reference. This embodiment is also related to a method for manufacturing probes having different heights, which allows the contacts to be manufactured using the sagging method on the contacts at different heights. When using EFAB ™ to make multi-height contact probes, the temple pin in the middle south (that is, 'not adjacent to the release bank on the temporary wafer) must be constructed with the same layer characteristics Height, the other probes of the component, the contact of 58 200533926 is located at a different height from these contacts (for example, adjacent to the release layer). The main challenge of using a mushrooming operation to make it at the middle height is that if the contact is thicker than a single layer at the height of the contact, the common situation is that unless the thickness of the layer in the area is distorted (non- Desirable) Use 5 to accommodate the contact height. This specific embodiment of the present invention is a method for manufacturing a contact of intermediate height, wherein a) the height of the contact may be greater than the height of the corresponding layer; b) the height of the corresponding layer does not need to be changed in any way to accommodate the contact point. Figures 23A-23U illustrate an exemplary process flow for making a single-height probe to make these contacts using a contouring operation. In Fig. 10 23A, a temporary wafer is shown (assuming that it is alumina coated with seed crystal and adhesive layer). Shown is a coverage area on the wafer surface that allows direct access to the end-pointing probe; this area can be created by locally etching the seed crystal and the adhesive layer. The pad 15 is not electroplated except for the edge mushrooming operation which points from this end to the "pad" area (this mushrooming operation is not shown in the drawing). In Fig. 23B, a thick layer of sacrificial material (assuming copper) has been plated, and in Fig. 23C, it is planarized to form a release layer of a desired thickness. In Fig. 23D, a thin photoresist is patterned to form an insulating structure, and the sacrificial metal covering it can be mushroom-shaped to form a contact geometry. In Fig. 23E, electroplating is continued for a controlled period of time. Mushroomize the copper 20 to cover these layers. Figure 23F illustrates a state of a process in which copper has been deposited on a wafer by physical vapor deposition (PVD) (e.g., sputtering), and therefore has a continuous metal film for plating the contacts (except In addition to this, the exposed photoresist area cannot be plated through a mushrooming operation, which requires a thick plating operation). Figure 59 200533926 Hunting by the famous insect 23F Figure also shows that the copper has been removed from the end pointing pad area (for example, engraved), so it is not electroplated. , T , 列 如, hunting by the electrician has applied the contact coating material (for example, baht) (if the core layer material is applied by Qing, you can use the previous step of PVD application). ^ 5 10

第顶圖係圖示製程之-狀態,其中已電^_墊 材料(例如,鎳)。於-錄況中纽意的是,能夠完全地以 接點塗層材料製成該等接點且不需襯塾材料。然而,就接 點塗層而言,當沉積時’其係、太軟(例如,金)或是具有太多 的殘留應力(例如’可能為銖或铑),較佳地使料塗層並以 另一材料作襯塾。 第2爛係圖示製程之_狀態,其中晶圓已平面化,造 成接點之最終形式。於第23〗圖中,已製成探針之其餘層(包 括焊料用基材)。於第23K圖中,已沉積一厚光阻劑並經圖 =化。於第23L圖中,已將焊料電錢進入光阻劑孔中,並於 第231V[圖中,已將光阻劑剝除。於第23n圖中,焊料已流回。The top diagram illustrates the state of the process in which the pad material (for example, nickel) has been electrically charged. What is new in the recording is that these contacts can be made entirely of contact coating material without the need for lining materials. However, with regard to contact coatings, when deposited 'it is too soft (e.g., gold) or has too much residual stress (e.g.,' may be baht or rhodium), it is better to coat the material and Lining with another material. The second state is the state of the process, in which the wafer has been planarized, resulting in the final form of contacts. In Figure 23, the remaining layers of the probe (including the substrate for solder) have been made. In Figure 23K, a thick photoresist has been deposited and converted. In Figure 23L, solder electricity has been inserted into the photoresist hole, and in Figure 231V [picture, the photoresist has been stripped. In Figure 23n, solder has flowed back.

第230圖係圖示焊料的一狀態,其巾已添加一防護塗層 用以在切割作業之前保護該所建構者。假若梢硬,則此塗 層亦此夠在切割作業期間將晶粒之頂部(最終係為底部)表 面上的亡刺狀部分降至最低程度。於第23p圖中,已切割晶 圓產生具有複婁文探針的一單一晶粒;可見到該芒刺狀部 分。於第23Q圖中,已部分地將晶粒脫模,為7a)去除該芒 釗狀邛分,b)使銅表面凹入到焊料表面下方。完成後者之 —原因為· 1)為消除將焊料芯吸遍及銅並與相鄰探針一起 60 200533926 縮短的風險A為將焊料與銅分離, (underfm)中,在將鋼脫模期間保護焊料。;;嵌進一底膠 可能原因在於,有助於 °卩分脫模之第三 、亚細短之後完+ 就這一點而言,可較目^^ _ 王肌技所需的時間; 5 10 15 ㈡則所不更進__^ 需要加以限定)用以a)將所有探針維^ =脫模作細按 結合為止;b)將對探針造 〜 ' 的對準狀態直至 為止;印方止底谬聚合物(若貝告的風險降至最低直至結合 其之順從性(事實上,假若使用)不致包覆探針以及干擾 細壓力無法適當地芯吸)。曰隙太大則該底膝由於減小的毛 第23R圖係圖示製程的一 轉並與-空間轉換器上的針^、中該晶粒大體上已翻 之任一者或是二者施以助=2。對晶粒或空間轉換器 一起用以㈣對準狀態“ 將—者完全地黏著在 作業造成妨礙的氧化物形成狀況降至最2)將θ對良好結合 第23S圖係圖示製程的_ 粒自,、, 4,,、中焊料已流回,將晶 狀取’亚 除輯劍。於第23T圖中,已芯吸一底 膠4合物用以填注晶粒下的窆間。 - 第卿係圖示製程的Γ·,其中晶粒已完全地自銅 _。於此製程期間’典型地較早圖案化的該等包覆銅的 阻劑特徵消失或為溶解。如為所需,一旦光阻劑曝光則 可h止5亥脫核製程亚且使用—光阻去除機㈣Ρ㈣,接著 繼續脫模作業。 第24A-24CC圖係圖示本發明之一具體實施例的製程 流程。於此具體實施例中’在適當層處經由葦形化作業構 20 200533926 成用以界定接點所需之光阻劑圖案(無論在何情況下其係 與最後的接點相鄰),但犧牲材料之葦形化沉積係經推遲直 至將該等層建構至-足夠高度為止,用以容許構成最大的 接點高度。在圖案化作業之後藉由以一介電薄膜塗佈該光 5阻劑而完成此推遲作業。亦可使用該等可任擇的塗層(例 如,利用金屬),但假若該等塗層係為可電鍵的,則需費更 大功夫去除該塗層’首先必需去除覆蓋於其上的金屬。'於 另一具體實施例(未顯示)中,以—遞增方式執行簟形化作業 (亦即,通常在每-層上電鍍銅(部分地蕈形化)或是電鑛肖 # 1〇別厚的銅’其能夠完全地蕈形化),接著將簟形化形狀平面 化(連同整層)至該層厚度(使該蕈形化形狀成平面广在複數 層重複該動作,逐漸建構接點用蕈形化,,模具,,。如此係預 期造成-與藉由第廉圖中所示蕈形化製程所製成之不同 ㈣點形狀,但如此係為可接受的。事實上針對均句性 I5右有而要’可將所有接點電鑛進入於此層層式製程所製造Figure 230 shows a state of the solder whose protective coating has been added to protect the builder before the cutting operation. If the tip is hard, this coating is also sufficient to minimize the stab-like portion on the top (and ultimately the bottom) surface of the die during the cutting operation. In Fig. 23p, the wafer has been cut to produce a single crystal grain with the compound probe; the thorn-like portion can be seen. In Figure 23Q, the crystal grains have been partially demolded to 7a) remove the ridges, and b) recess the copper surface under the solder surface. Completing the latter—the reasons are: 1) To eliminate the risk of solder wicking through copper and with adjacent probes 60 200533926 Shortening risk A is to separate solder from copper (underfm) and protect the solder during demolding of the steel . ;; The reason why it is embedded in a primer is that it helps to release the third part of the mold, and then finish it in a short time. + In this regard, it can be more time ^^ _ Wang Jiji; 5 10 15 The rule is not changed __ ^ needs to be limited) used to a) all the probe dimensions ^ = demoulding and fine pressing and combining; b) the alignment state of the probe to ~ 'until so far; the Indian side Stop the polymer (if the risk is minimized until combined with its compliance (in fact, if used) does not coat the probe and interfere with fine pressure and cannot properly wick). If the gap is too large, the knee will be reduced due to the reduced hair. Figure 23R shows one turn of the process and the needle on the space converter. Give help = 2. To the grain or the space converter together to align the state "to fully adhere to the oxide formation that hinders the operation to the minimum 2) the θ pair is well combined with the _ grain of the process shown in Figure 23S Since ,, 4 ,, and Chinese solder have flowed back, the crystal is taken as the sub-sword. In Figure 23T, a primer 4 compound has been wicked to fill the interdental space under the grain. -The 卿 · is a pictorial process of the process in which the grains have been completely removed from copper. During this process, the 'typically earlier patterned copper-coated resist features disappeared or were dissolved. Yes, once the photoresist is exposed, the denuclearization process can be stopped and the photoresist removal machine ㈣Ρ㈣ is used, and then the demolding operation is continued. The 24A-24CC diagram illustrates the process flow of a specific embodiment of the present invention. . In this specific embodiment, 'the photoresist pattern required to define the contact is formed at the appropriate layer through a reed-shaped operation structure 20 200533926 (it is adjacent to the last contact in any case), However, the reed-shaped deposition of sacrificial material was postponed until the layers were constructed to a sufficient height To allow for the formation of the maximum contact height. This postponement is completed by coating the photoresist with a dielectric film after the patterning operation. These optional coatings (for example, using Metal), but if the coatings are bondable, more work is needed to remove the coating 'the metal covering it must first be removed.' In another embodiment (not shown), -Perform the morphing operation incrementally (that is, usually electroplated copper on each layer (partially mushroomed) or electric ore # 1〇 other thick copper 'which can be completely mushroomed), then Planarize the shape (together with the entire layer) to the thickness of the layer (make the mushroom shape flat and wide. Repeat this action in multiple layers, and gradually build the contacts with mushroom shapes, molds, etc. This is expected Caused-a different shape of the dots made by the mushrooming process shown in the figure, but this is acceptable. In fact, for the average sentence I5, it is necessary to 'can all contacts Mine enters this layer-by-layer manufacturing process

20 亦寺Μ於弟23A-23I圖,但在第24A-: =狀況中,並非所有探針係為最大高度。僅有三個 :能之接點係構成與脫模層相鄰。第24j圖係圖示製程 ,二”中已構成—些附加層,在需要以光阻劑圖案 層處停止’用以界定接點之簟形化作業。 处豹1目已將°亥—4光阻劑圖案化用以構成犧牲 =夠覃形化用以構祕點幾何形狀覆蓋於其上的絕 構。於第24L圖中,光阻貌以—薄介糊塗佈。關 62 200533926 在於光阻劑與此介電塗層之結合厚度未超過下—層之層 厚’否則介電塗層(可能與光阻劑)將因此層之接續平面化作 業而受損害(視塗層本質及所執行之平面化作業類型而 疋去除,I电塗層之_部分係為可接受的只要足夠的剩 5餘部分用以防止電鍍覆蓋該等接點直至正確時間為止)。 第24M圖係圖示製程的一狀態,其中已施加用於將下 -層圖案化的光阻劑,並於第24N圖中,其經圖案化。於第 240圖中’已電鍍銅(於此假定藉由將銅圖案化電錢而非探 針結構材料,製成探針)。應注意的是在介電塗層上並益電 _ 1〇鍍(除了一些未顯示的旁邊簟形化作業)。 第24P圖係圖示製程的一狀態,其中已剝除光阻劑,於 苐24R圖中’已電鐘輕: 私幾抓針材料。於第24S圖中,晶圓已平面 化。可重複第24Μ-24ς闻+ ^ w 4S圖中所示之製程數次,用以建構數層 直至具有用以藉由;,μ 曰田早一步驟蕈形化作業建構整個接點模且 15 所適用的足夠高度。 、/' 第24Τ圖係圖示製程的_狀態,其中已去除塗層,於第 4U圖中藉由電錢持續一段控制時間將銅葦形化覆蓋光㉟ φ 劑特徵。於第24VFI 士 圓平’已藉由物理氣相沉積(例如,噴濺) 銅覆蓋晶圓。 ' - 20 第24W圖亦圖干 ’、已再r人將銅自端部指向塾區域去除。 於第24W圖中,你u ^ ’糟由電鍍已施加一接點塗層材料(例 士 銖)(再者,假若藉由物理氣相沉積施以接點塗層材料, 夠越過$述藉由物理氣相沉積施加銅之步驟)。 弟24X圖传圓一 ,、闺不已電鍍一接點襯墊材料(例如,鎳)。於 63 200533926 第24Y圖中,已將晶圓平面化,造成接點之最終形式。 第24Z圖係圖示製程的一狀態,其中已製作探針之 剩餘層(包括焊料用基材)。於第24AA圖中,、 碎料已圖案化 沉積並接著流回。接續此製程,將晶圓切割。 5 10 J於弟24BB圖 中,已將晶粒翻轉以及焊料在祕劑面前流回用以自對準 並與晶粒結合,並且已去除助溶劑。同時,於 、 、米24BB圖中, 已芯吸一底膠聚合物用以填注晶粒下空間。 第24CC圖係圖示製程的—狀態,其中晶 銅脫模,造成具有不同高度的該等接點。儘管所^程产 程係針對具有二不同高度的該等探針,但此係經由 因而能夠製成具有三或更多不同高度的探針群組。、^ 於上述具體實施例中,重點係放在一特別犧牲材料, 銅’及結構材料’ 4,但於可轉的具體實施例中,可使 用其他的材料。 15 第25 A-25D圖係為用於構成一與第7A-7F圖之具體實 施例相似的底切介電圖案的一可任擇製程於不同階段的概 略側視圖,其中光阻劑之多重沉積物可用與多重曝光結合 使用。 第25A圖係圖示製程的一狀態,其中一基板582係以一 20正光阻劑材料塗佈並接著給予一相對小的覆蓋式轄射曝 光0 第25B圖係圖示製程在光阻劑之第一曝光塗層以一第 二塗層586覆蓋塗佈之後的一狀態。 第25C圖係圖示製程在將一光罩配置在該塗層586上方 64 200533926 域施"對 第25D圖係圖示萝 塗層划之底她㈣的H料㈣使練劑之初始 5 10 15 20 本^之下—個具體實施例係有關於-種構成肿 —m 接點之方法。該方法利用-相似作模 塑成具有推拔側壁的接觸光罩,為了產生具有與平直相: 2推拔側壁的犧牲材料(典型地為銅)之沉積 另-獨細管係為可任擇的)外觀在於其係為部分= =:Γ位在晶圓上的標爾、般而言如此係 為有用的(亦即,更勝於具有平直側壁的接觸光罩),使接觸 光罩在對準而求上更如同一光罩,容許接觸光罩與晶圓之 間對準不%利料卿準設備巾的相對面向攝影機等觀視 Α母-者。假若需其用以構成部分地穿過建構物的該等接 點(亦即’產生具有不同高度接點的該等探針),則需部分透 月的接觸光罩用以構成接點,於該狀況下需要與現有幾何 形狀對準(與大部分未圖案化晶圓表面相對)。 第26A-26H圖係圖示用於製成接觸光罩的製程,而第 26I-26MS)係圖示接觸光罩在—晶圓上構成接點時之用途。 第26A-26B圖係圖示製程在製作接觸光罩基板(通常只 為一厚的矽晶圓)後的一狀態,假定需要一部分透明的接觸 光罩。於第26A圖中,所示之低電阻率(亦即,重摻雜)矽係 與直徑大於晶圓的一堅硬玻璃板相鄰,其至少具有一孔用 以容納一彈簧接點。於第26B圖中,已將晶圓及玻璃結合(例 65 200533926 如’藉由陽極結合)並插入彈簧,俾便經由玻璃與晶圓電接 觸。為了對準,能夠觀視穿過合成接觸光罩基板(環繞矽晶 圓之邊緣)。用以製造諸如此之接觸光罩基板的該等可任擇 方法’包括鑽動穿過一矽晶圓製成觀視孔並藉由一與其結 5 合或壓入配合的玻璃環環繞該石夕晶圓。 第26C-26E圖係圖示製備一模塑該接觸光罩所用之模 具。於第26C圖中,所示係為一矽晶圓;而於第26D圖中已 非等向性地蝕刻(例如,使用KOH)用以構成渠道(例如,三 角椎體或伸長的三角椎體,假若矽表面係為1〇〇矽結晶面, 馨 10則其之平滑側壁係與該表面成54·74度的一角度)。該模具亦 乂石夕燒處理或是以聚對二甲苯(parylene)塗佈,為了提供聚 二甲基矽氧烷(PDMS)所用的非黏著表面。 第26E圖係圖示製程之一狀態,其中已對模具施加 b PDMS ’於第26F圖中,已將接觸光罩基板降低位在該模具 上並施加壓力,俾便將過多的接著會固化的PDMS擠出。於 第26G圖巾’已將接觸光罩基板脫模並已執行反應離子姓刻 ()用以去除自该等特徵申間任何的PDMS模塑溢料,留 · 下裸石夕。於第26H圖中,已經由彈簧及薄鎳(未顯示)完成與 2接觸光罩之矽晶圓電接觸,並接著已將銅電鍍在接觸光罩 - 2〇基板上,當以下使用接觸光罩時,該接觸光罩基板係使用 — 作為沉積銅所用之原料。應注意的是,儘管接觸光罩基板 及模具係為獨特的,但除此之外模塑及電錢製程係與在製 造接觸光罩中通常所用的該等製程相似。 第261圖係圖示製程的一狀態,其中接觸光罩及一晶圓 66 200533926 (例如,鎳、塗佈鈦/金的氧化鋁)已利用位在彼此上的對準 標靶對準,並且二者已嚙合同時大體上為平行的。施以一 完全經控制的壓力,儘管於此情況下如此作業係為可接受 的,但是所施加壓力太大將使PDMS接點的形狀扭曲;所施 5 加壓力太小將可能造成接點下方電鍍溢料。由於目的在於 建構位在此晶圓上顛倒的探針並且最終將其自晶圓脫模, 所以在第261圖中所示步驟之前沉積一通常為厚的銅脫模 層,因此一些銅電鍍溢料幾乎不致流出。於第26J圖中,已 與接觸光罩(使用作為陽極)接觸並已將銅電鍍在晶圓上環 10 繞著該等PDMS接點。於第26K圖中,該接觸光罩已脫離, 留下具有渠道的銅沉積物,其之幾何形狀係與PDMS相似並 因而與原始矽模具相似。 於第26L圖中,已沉積一接點材料(事實上,此係可為 二材料··一諸如铑的薄膜其係由另一諸如鎳的較厚薄臈所 15 支撐)。於第26M圖中,已將該層平面化,製作一接點陣列。 於此,能夠執行標準EFAB製程用以製造與上述該等接點對 準之該等探針。如為所需,在建構用以產生具有多重高度 接點之探針的狀況下,第26I-26M圖中所示之製程能夠在〜 或更多進一步向上的高度下完成(儘管通常具有一與用以 2〇 針對最高探針所示接點圖案化不同的接觸光罩圖案)。於此 狀況下,如已提及,小心地將接觸光罩與位在晶圓上的對 準標靶對準。 應注意的是使用本發明之此具體實施例,探針接點之 間的節距無法極小,因為該等PDMS接點之間必需留有空間 67 200533926 為了電鑛銅原料,以及銅原料層與晶圓之間的距離典型地 必需合理(例如,50微米或更大),或是在電鍍期間可縮短。 5 10 用於產生探針接點的另一具體實施例包含產生具有傾 斜側壁的光阻劑模具。藉助第27a&27B圖說明此具體實施 例。一蔽蔭或灰階光罩(亦即,一光罩具有紫外光通過但強 度較低之區域)係與正光阻劑(例如,AZ462〇)結合使用。第 27A圖係圖示一標準光罩,用以達成一階梯狀光阻劑圖案。 第27B圖係圖示使用一灰階光罩用以達成光阻劑之傾斜側 土並彳足而達成一傾斜模具。藉由將一適合的金屬電錢進入 模具中可製作而成該等探針接點。 a ^ 本發明之下一具體實施例係有關於一種製造具有探針 接點之探針的方法。第28®中所示係為該製程。 第28Α圖係圖示具有一厚的(例如,電鑛覆蓋噴機)犧牲 材料(例如’銅)之種晶層的一基板(例如,氧化鋁)(,,美板 Γ’)。如有需要,可在種晶層下方使用一黏合層(例二,20 Yisi M Yudi 23A-23I, but in the 24A-: = condition, not all probes are at the maximum height. There are only three of them: the contacts of the energy system are adjacent to the release layer. Figure 24j shows the manufacturing process, and some additional layers have been formed in the second step. Stop the 'shape-forming operation' to define the contacts where the photoresist pattern layer is needed. Photoresist patterning is used to form sacrificial = enough to form a structure to cover the secret point geometry. In Figure 24L, the photoresist appearance is coated with a thin paste. Guan 62 200533926 lies in light The thickness of the combination of the resist and the dielectric coating does not exceed the layer thickness of the lower layer. Otherwise, the dielectric coating (possibly with the photoresist) will be damaged due to the subsequent planarization of the layer (depending on the nature of the coating and The type of planarization operation performed is removed, and the _ part of the I coating is acceptable, as long as there are enough remaining 5 parts to prevent the plating from covering these contacts until the correct time). Figure 24M is a diagram A state of the process in which a photoresist for patterning the lower-layer has been applied and is patterned in Figure 24N. In Figure 240, 'coated copper (this is assumed by copper Patterned electricity, not probe structure material, made of probes.) It should be noted that the dielectric coating Bianyidian_10 plating (except for some side-shaping operations not shown). Figure 24P shows a state of the process, in which the photoresist has been stripped, and the clock is light in Figure 24R: Private pin-scratch material. In Figure 24S, the wafer has been planarized. The process shown in Figure 24M-24-24wen + ^ w 4S can be repeated several times to construct several layers until it is used; , μ said that Tian ’s step one step mushrooming operation to build the entire contact mold and a height of 15 is sufficient. / 'Figure 24T shows the state of the process, in which the coating has been removed, borrowed from Figure 4U The copper reed was shaped by the electric power for a controlled period of time to cover the photoluminous φ agent characteristics. At the 24th VFI Shi Yuanping 'has covered the wafer by physical vapor deposition (for example, sputtering).-20 24W In the figure, you have removed the copper from the end to the 塾 region. In Figure 24W, you have a contact coating material (for example, baht) applied by electroplating (moreover, if Applying the contact coating material by physical vapor deposition is enough to bypass the steps of applying copper by physical vapor deposition). Brother 24X Picture Transmission 1. The contact pad material (for example, nickel) has not been electroplated. In Figure 63 200533926, Figure 24Y, the wafer has been planarized, resulting in the final form of the contact. Figure 24Z shows a state of the process The remaining layers of the probe (including the substrate for solder) have been made. In Figure 24AA, the scraps have been patterned and deposited and then flowed back. Following this process, the wafer is cut. 5 10 J 于 弟 24BB In the figure, the grains have been flipped and the solder has flowed back in front of the secret agent for self-alignment and bonding with the grains, and the co-solvent has been removed. At the same time, in the 24BB picture, a primer has been wicked to polymerize The object is used to fill the space below the grain. Figure 24CC shows the state of the process, in which the crystal copper is demolded, resulting in these contacts with different heights. Although the process is directed to such probes having two different heights, this system can be used to make probe groups with three or more different heights. In the above specific embodiments, the emphasis is placed on a special sacrificial material, copper 'and structural material' 4, but in the transferable specific embodiment, other materials can be used. 15 Figure 25 A-25D is a schematic side view of an optional process at different stages for forming an undercut dielectric pattern similar to the specific embodiment of Figures 7A-7F, in which the multiple photoresist Deposits can be used in combination with multiple exposures. Figure 25A shows a state of the manufacturing process, in which a substrate 582 is coated with a 20 positive photoresist material and then given a relatively small coverage exposure. Figure 25B shows the manufacturing process in the photoresist. The first exposure coating layer is covered with a second coating layer 586 in a state after coating. Figure 25C shows the manufacturing process in which a photomask is placed above the coating 586. 64 200533926 Field application "The figure 25D shows the bottom of the coating and the H material is used to make the initial 5 10 15 20 Below this embodiment, a specific embodiment relates to a method for forming a swollen-m contact. This method utilizes-similarly molding a contact mask with a push-out side wall, in order to produce a deposition with sacrificial material (typically copper) with a push-out side: 2-a thin tube system is optional The appearance is that it is a part = =: Γ located on the wafer, so it is generally useful (ie, better than a contact mask with flat sidewalls), making the contact mask In terms of alignment, it is more like the same photomask, allowing the misalignment between the contact photomask and the wafer to be viewed from the opposite side of the camera. If it is needed to form these contacts that partially pass through the structure (ie, 'producing these probes with contacts of different heights), then a partially transparent contact mask is needed to form the contacts. This situation requires alignment with existing geometries (as opposed to most unpatterned wafer surfaces). Figures 26A-26H illustrate the process used to make a contact mask, while 26I-26MS) illustrates the use of a contact mask when forming contacts on a wafer. Figures 26A-26B show the state of the process after the contact mask substrate (usually only a thick silicon wafer) is made. It is assumed that a part of the transparent contact mask is required. In Fig. 26A, the low-resistivity (ie, heavily doped) silicon system shown is adjacent to a rigid glass plate having a diameter larger than the wafer, and has at least one hole for receiving a spring contact. In Figure 26B, the wafer and glass have been bonded (for example, 65 200533926, such as by anodic bonding) and a spring is inserted, and then the wafer and glass are electrically contacted. For alignment, look through the synthetic contact reticle substrate (around the edge of the silicon circle). Alternative methods for making contact mask substrates such as this include 'drilling through a silicon wafer to make a viewing hole and surrounding the stone with a glass ring bonded or press-fitted with it Evening wafer. Figures 26C-26E illustrate the mold used to prepare the contact mask. In Figure 26C, a silicon wafer is shown. In Figure 26D, an anisotropic etch (for example, using KOH) has been used to form a channel (for example, a triangular vertebra or an elongated triangular vertebra). If the silicon surface is a 100-crystalline silicon surface, the smooth side wall of Xin 10 is at an angle of 54.74 degrees with the surface). The mold is also sintered with vermiculite or coated with parylene to provide a non-adhesive surface for polydimethylsiloxane (PDMS). Fig. 26E shows a state of the manufacturing process, in which b PDMS has been applied to the mold. In Fig. 26F, the contact mask substrate has been lowered on the mold and pressure is applied, and then too much will be cured. PDMS extrusion. At 26G, the contact mask substrate has been demolded and reactive ion engraving has been performed () to remove any PDMS molding flash from these features, and leave bare stones. In Fig. 26H, the electrical contact with the silicon wafer of the 2 contact mask has been completed by the spring and thin nickel (not shown), and then copper has been plated on the contact mask-20 substrate. When the contact light is used below When masking, this contact mask substrate is used — as a raw material for the deposition of copper. It should be noted that although the contact mask substrate and mold are unique, the molding and electrical processes are otherwise similar to those commonly used in the manufacture of contact masks. Figure 261 illustrates a state of the process in which a contact mask and a wafer 66 200533926 (eg, nickel, titanium / gold coated aluminum oxide) have been aligned with alignment targets positioned on each other, and The two have meshed while being substantially parallel. Applying a completely controlled pressure, although this operation is acceptable in this case, too much pressure will distort the shape of the PDMS contact; too little applied pressure may cause plating under the contact Flash. Since the purpose is to construct the inverted probe on this wafer and finally demold it from the wafer, a generally thick copper release layer is deposited before the steps shown in Figure 261, so some copper plating overflows The material hardly flows out. In Fig. 26J, a contact mask (used as an anode) has been contacted and copper has been electroplated on the wafer ring 10 around the PDMS contacts. In Figure 26K, the contact mask has been disengaged, leaving behind copper deposits with channels, whose geometry is similar to PDMS and thus similar to the original silicon mold. In Fig. 26L, a contact material has been deposited (in fact, this can be two materials ... a thin film such as rhodium is supported by another thicker thin film such as nickel). In Figure 26M, the layer has been planarized to make a contact array. Here, a standard EFAB process can be performed to manufacture the probes aligned with the above-mentioned contacts. If desired, the process shown in Figures 26I-26M can be completed at a height of ~ or more further upwards (though usually having a Use 20 to pattern different contact mask patterns for the contacts shown by the highest probe). In this case, as already mentioned, carefully align the contact mask with the alignment target on the wafer. It should be noted that using this specific embodiment of the present invention, the pitch between the probe contacts cannot be extremely small, because there must be space between the PDMS contacts. 67 200533926 The distance between the wafers must typically be reasonable (for example, 50 microns or greater) or can be shortened during plating. 5 10 Another specific embodiment for producing a probe contact includes producing a photoresist mold having a sloped sidewall. This specific embodiment will be described with reference to Figs. 27a & 27B. A shading or grayscale mask (i.e., a mask having a region through which ultraviolet light passes but with lower intensity) is used in combination with a positive photoresist (e.g., AZ462). Figure 27A illustrates a standard photomask used to achieve a stepped photoresist pattern. Figure 27B illustrates the use of a gray scale mask to achieve the sloped side soil of the photoresist and lameness to achieve a sloped mold. These probe contacts can be made by inserting a suitable metal battery into the mold. a ^ A specific embodiment of the present invention relates to a method for manufacturing a probe having a probe contact. This process is shown in Section 28®. Figure 28A illustrates a substrate (e.g., alumina) (, U.S.A. ') with a thick (e.g., electric ore overlay sprayer) seed layer of sacrificial material (e.g.,' copper '). If needed, an adhesive layer can be used under the seed layer (Example 2,

Tl_w,未顯示)。於第28β圖中,已將光阻劑圖案化並 焊料電鍍進入孔中。於箆9sr同士 1 ^以28C圖中’已施加一可去除材 如’銦或與焊料相較能夠在一較低溫度下溶化 «時不致損害到焊料的材料),以及於第2_ = "玄層平面化。於此假定此材料係具傳導性並能夠以声 =合性的犧牲材料加以電t假若並非如此,則 、,作業之前施加適合轉晶(可以及黏合)層。在持 於昂观圖中,已構絲人在犧牲材料中的—多 、'°構°如圖所不應注意的是,於第28f圖中,已將光阻:圖 20 200533926 案化並已電鑛-相對高的適合用於使用作為一探針接點$ 的材料(例如,錄)沉積物。於第28G圖中,已將晶圓之魏 加以防護(例如’藉由快乾漆或街,以及於第簡圖中,已 在造成突出沉積金屬結構之尖銳化的狀況下執行電化學钮 5刻。亦可進行姓刻壞繞探針的犧牲材料。假若此作業進行 至-無法容許的程度,則可在餘刻作業之前防護該犧牲材 料(例如,藉由圖案化的光阻劑)。 於第281圖中,已將光阻劑圖案化,俾便將尖銳的接點 露出。於第28J圖中,已將一接點塗層材料(例如,鍺)沉積 10覆盍該等接點。於第28K圖中,已將該光阻劑剝除,以及於 第28L圖中,已沉積犧牲材料俾便包覆該等接點,儘管能夠 去除此步驟,例如,如第28Μ圖中所示假若所施加的黏著 劑夠厚則足以容納接點高度。 於第28Μ圖中,已利用黏著劑將第28L圖中所示之結構 15附裝至基板2(如此作業應能夠容許與接續加工相關的溫 度)。如有需要,在此步驟之前能夠將如第28L圖中所示施 加的犧牲材料平面化,致使此夠將黏著層構成較薄。於第 28Ν圖中,將基板1及種晶層塗層去除(例如,藉由溶解該種 晶層)。於第280圖中,去除該可去除材料並接著讓焊料漭 20回。為將黏著劑之加熱作業減至最少,則可去除該可去除 材料及/或利用一局部化熱空氣流讓焊料流回。 於第28Ρ圖中,已將第28〇圖中所示之結構翻轉並安置 在一配置有焊墊的空間轉換為(或是其他裝置)上。於第28q 圖中,焊料已流回,將探針與空間轉換器結合。於第28r 69 200533926 圖中’已將基板2去除(例如,拉士 (』如稭由去除塗佈其之黏著劑)以 及錢牲材料與空間轉換器之間已芯吸(若有需要,例如, 防叹焊料不致x到蝴犧牲材料的影響)底膠(於此狀沉 下,係為永久的)。於第28S圖中,p μ 口 τ 已蝕刻犧牲材料,留下 共空間轉換器結合的探針。 於可任擇的具體實施例中, 了利用其他技術取得所需 的叙針接點形式。 於,、他只例中,可藉由建構—擠製形狀(亦即,通常建 10 15 20Tl_w, not shown). In Figure 28β, the photoresist has been patterned and solder plated into the holes. In 箆 9sr Tongshi 1 ^ In the 28C picture, 'a removable material such as' indium' has been applied or a material which does not damage the solder when melted at a lower temperature compared to solder), and 2_ = " Xuan layer flattening. It is assumed here that this material is conductive and can be electrically charged with a sacrificial material that is acoustical. If this is not the case, then, apply a layer suitable for crystal transfer (possible and adhesive) before operation. In the view of Ang Kuang, the structured person in the sacrifice material-more, '° structure ° As should not be noted, in Figure 28f, the photoresist has been converted: Figure 20 200533926 Galvanic-relatively high deposits of material (eg, recording) suitable for use as a probe contact $. In Figure 28G, the wafer's Wei has been protected (for example, 'by quick-drying paint or street, and in the simplified figure, the electrochemical button has been executed under conditions that cause sharpening of the protruding deposited metal structure. .Sacrifice material that can be engraved with a wound probe can also be performed. If this operation is performed to an unacceptable level, the sacrificial material can be protected before the rest of the operation (for example, by patterned photoresist) In Fig. 281, the photoresist has been patterned, and the sharp contacts have been exposed. In Fig. 28J, a contact coating material (for example, germanium) has been deposited 10 over the contacts. In Fig. 28K, the photoresist has been stripped, and in Fig. 28L, sacrificial material has been deposited to cover the contacts, although this step can be removed, for example, as shown in Fig. 28M If the applied adhesive is thick enough to accommodate the contact height. In Fig. 28M, the structure 15 shown in Fig. 28L has been attached to the substrate 2 with an adhesive (this operation should be able to allow for related processing Temperature). If necessary, before this step, The planarization of the sacrificial material applied as shown in FIG. 8L is sufficient to make the adhesive layer thin. In FIG. 28N, the substrate 1 and the seed layer coating are removed (for example, by dissolving the seed layer). In Figure 280, the removable material is removed and the solder is then allowed to simmer 20 times. To minimize the heating operation of the adhesive, the removable material can be removed and / or a localized hot air flow can be used to let the solder flow In Figure 28P, the structure shown in Figure 28 has been inverted and placed in a space with pads (or other devices). In Figure 28q, the solder has flowed back. , The probe is combined with the space converter. In the 28r 69 200533926 picture, the substrate 2 has been removed (for example, Russ ("such as straw to remove the adhesive that coats it)) and the money material and space converter. Has been wicked (if necessary, for example, the anti-sighing solder does not affect the sacrificial material of the butterfly) primer (sinking in this way, is permanent). In Figure 28S, the p μ port τ has been etched The material is sacrificed, leaving a probe coupled to the co-space converter. Body embodiment, the classification made in the form of pin contacts required to use other techniques ,, he only embodiment, by may be Construction - extruded shape (i.e., generally built 101520

產生探針接點,並接著在轉移及脫模之後進行電化學銳 作業。該作業可能對探針結構的其餘部分造成若干扭 ’但針對-些應用而言如此係為可接受的。假若扭曲程 :係為無法接受的’則可選擇結合探針材料、探針接點材 二及_劑,以致在—較侧探針主體為快的速率下, 進行探針接點的蝕刻作業。Probe contacts are created and then electrochemically sharpened after transfer and demolding. This operation may cause some distortion to the rest of the probe structure, but it is acceptable for some applications. If the twisting process is unacceptable, you can choose to combine the probe material, the probe contact material and the agent, so that the probe contact is etched at a faster rate than the side of the probe body. .

乂於-可任擇方核是除小叫擇材料外,在銳化作業 j可執行作業’優先地增強探針主體材料的抗銳化 例如’氧化或是-適當的化學氣相沉積(cvd)反應。 ★於第9A-9G,l〇A-10c、23Α·23υ以及24A 24cc圖之該 點、體,施例中,經由利用一電錢效應的一製程構成接 “其中一犧牲金屬經覆蓋電鍍及簟形化作業覆蓋一圖案 化光阻劑層’用以構成-製作接點所用的犧牲模具。 八應注思的疋覆盍電鍍作業(亦即,簟形化作業)可在犧牲 ^屬之蕈形化側射構成微小凸塊。此膨出狀況具有複數 種坆果。其中_效果在於#在由犧牲金屬所構成的孔中電 70 200533926 艘結構材料時,該結構材料依循犧牲金屬壁之彎曲輪廊流 動,直至該材料抵達初始光阻劑停留之該孔的底部為止。 於此區域中,由於犧牲金屬的膨出,因而在凸塊下方存有 一小的邊緣空間(skirting space),致使當將結構材料填注該 5區域並脫模時,構成一與接點前導表面呈喇π八狀展開部 分。此狀況係圖示於第29A-29D圖中。 假若進行该膨出及擴口作業’則可使用如第3〇A-30D 圖中所示之一增強製程。在一傳導性基板(無論是開始的一 金屬基板,抑或是具有沉積種晶層的一介電基板)上,旋轉 10塗佈一薄光阻劑並針對所需接點形狀及尺寸以適當的幾何 形狀加以圖案化〔第30A圖〕。根據先前所說明的製造方法 執行覆蓋電鍍作業,但使用一極低的電流密度。一旦完成 此作業,則在由犧牲金屬所構成的該等孔之側壁中存有凸 塊。假定低電鍍電流密度可減少膨出量。該樣本接著接受 15 一輔助種晶層ipVD沉積(例如,TiW/Cu之喷濺沉積),調 和地塗佈所有適用表面-包括如上所述位在凸塊下方的空 間〔見苐30A圖〕。一旦完成此作業,將一薄銅層電錢(例如, 具有〜總厚度)覆蓋種晶層〔見第3〇b圖〕。接著,將結構材 料覆蓋式地電鍍覆蓋於整個樣本上,填注接點所用之孔〔 2〇見第30C圖〕,並接著將表面重疊及拋光〔見第30D圖〕。因 而構成該等接點並可進行製造該探針主體。 此方法提供複數種優點。首先,藉由使用一輔助種晶 層及一接續犧牲材料(例如,銅)電鍍層,如此將造成填注該 區域,導致構成接點之擴口。因此,當電鍍結構材料時, 71 200533926 在接點之前導表面處不致構成剩σ八狀唇件。 第二優點在於藉由增加一種晶層及一覆蓋其上的傳導 層,首先可使用與犧牲及結構材料分離的一第三材料電㉝ 進入孔中,接著以結構材料填注其餘空間。如此容許該等 5 接點以一可電鍍的第三、任意材料塗佈(例如,首先可將铑 之薄膜電鍍進入孔中,接著使用結構材料鎳填注孔之其餘 部分,因而在脫模之後構成以铑塗佈的鎳接點)。 第三,於先前實驗中亦應注意的是,針對接點圖案化 光阻劑之特定的幾何形狀,結構材料不完全地填注孔中之 馨 10空間,在接點之中間部分造成一狹縫或是一間隙。就複數 之原因而言,如此可能非為所欲,包括污染流出物。 最後,經驗所顯示有時針對初始覆蓋電鍍作業所使用 的光阻劑,並非總是在接點之脫模蝕刻作業後立即消除。 彺往,该光阻劑會留在原處,在脫模後立即在接點結構之 15頂部上非所欲地拍動。藉由增加一種晶層及位在其上的犧 牲層,可消除接點與光阻劑之間任何直接的實體連接,致 使在犧牲材料之脫模蝕刻作業後,光阻劑立即喪失對建構 鲁 物的機械黏著性,並在姓刻溶液中去除。 20、、主於:可任擇的具體實施例中,可使用一聚合物用以支真 一 =立在藉由蕈形化犧牲材料(例如,銅)所產生之凸塊下方❺ 2 B i先構成聚合物用以填注整個孔,接著其可優先地 /心邛分去除,以及沉積一種晶層製備用於沉積接 料可糟由簡單地將聚合物自孔傾注而出,並容許表 張力用以將聚合物保持在凸塊下方的區域中,以及接著 72 200533926 將聚合物固化’完成此優先去除聚合物作業。考量進行此 作業’開始時該聚合物需為極薄的液體。一第-可任擇方 法容許聚合物成型,接著使用方向性電裝敍刻用以將聚合 物自蕈形化犧牲材料之表面以及孔之底部去除,但讓其留 5在底切區域原處。此製程之二實例係圖示於第Μ·圖及 第32A-32B圖中。第MA圖係圖示構成具有一以聚合物填注 之開口的簟形化犧牲材料。第31B圖係圖示藉由傾注作業將 液體聚合物的-部分去除。第31C_W示餘留在孔之底部 亚填注凸塊下方區域的聚合物。第31£)圖係圖示將—種晶層 · 川沉積覆蓋整個表面結構製備用於沉積接點材料。第32A圖係 圖示具有聚合物之開口的塗層,其容許在用以優先地將聚 合物自暴露的朝上表面去除的方向性電聚餘刻作業之後成 型。第32B圖係圖示沉積一種晶層覆蓋整個表面結構製備用 於沉積接點材料。 15 於另一可任擇的具體實施例中,能夠執行簟形化銅之 蝕刻,試圖減小凸塊之尺寸。於蝕刻作業期間,利用延伸 幾何形狀傾向平坦化,如此作業對於特別顯著的凸塊極為 鲁 有用。 於另一可任擇的具體實施例中,能夠利用可任擇的電 2〇 鍍浴(plating bath)及電鍍條件將凸塊最小化或是消除。可能 的電鍍浴包括,例如,與目前所使用相較具有不同配方的 酉夂銅(acid-Cu)、焦碟酸鹽》谷、以及無電錢浴(eiectr〇iess bath)。亦可考慮添加物用以更精確地調整生長,減小凸塊 之數量。亦可藉由或高或低地變化電流密度、利用脈衝電 73 200533926 鍍用以沉積、去除、沉積材料或用以在一持續變化的速率 下沉積,試圖修改電鍍條件。 一進一步的可任擇具體實施例中,在構成蕈形化過度 生長(overgrowth)作業上可使用一不同的犧牲材料(例如,除 5銅之外的某些材料)。例如,可使用鎳。當銅、種晶層沉積、 銅填注電鐘以及構成接點之其餘部分時,可精確地放下 鎳。銅填注作業亦可使用作為之後將接點材料自鎳模具脫 模及分離所用的一方式。第33^331:)圖中所示係為此方法的 一實例。 1〇 第33A圖係圖示利用鋼以外的一金屬·•例如,鎳-構成蕈 形化材料,該金屬與銅相較在沉積一種晶層覆蓋整個表面 結構後產生較少凸塊。 第33B圖係圖示電鍍一薄銅層覆蓋該沉積的種晶層。如 此作業將構成一銅層覆蓋光阻劑以及填注位在凸塊下方的 15任何剩餘邊緣處。 第33C圖係圖不沉積材料之平坦化的開始作業狀況,而 於第33D®巾係®示平坦化作#的結果,其構成進行剩餘建 構作業所用的平台。 於其他可任擇的方式中,能夠使用修改的光阻劑圖案 2〇用以優先地形成蕈形化過度生長。例如,首先可利用光阻 刈構成一 ’’馬雅金字塔(Maya pynmid),,狀二層結構,其之第 一層較寬而第二層較窄。當膨出部分抵達第二層時,則停 ^電鍍並取用第二層之頂部表面作為接點模具之現在的底 部。由於該二層光阻劑係與外形配合,所以凸塊下方的裂 74 200533926 =決不致暴紅電鍍_。可任擇地, 案化,電賴並料切絲㈣成 π:且劑/光微影颠刻術步驟用以容許將光阻劑填注該 5 10 15 20 ===圖案化㈣將第二層填注接點模具之底部。 列峻/之方式’將光阻劑聚合物填注凸塊下方的 :=广積—種晶層並建構接點的其餘部分。使用 修改圖議-方切㈣❹刊 阻劑環取代一圓盤。三角 尤 34A-34D圖中。 、方法的—實例係圖示於第 ::圖:沉㈣晶層覆蓋整個表面結構,以及-薄的 ::ΓΓ则盖該沉積的種晶層。第34c圖係圖示沉積 ;、之“ L化的開始作業狀況,而於第34D1I中係圖示平坦 化作業的結果,其構成進行職建構作業湘的平台。 於一可任擇的具體實施例中,藉由於此所說明一或 更夕的不同衣構成的探針接點,在其之背側(亦即,遠離 接點側)配置有焊料歧其他結合材料,接著可將該等接點 與任-所需預製金屬標起結合。第35八圖中所示係為該等探 針接點之貫例,以及第35B圖中所示係為與一組c〇BRA探 針結合的該等探針接點的一實例。當然於其他具體實施例 中’該等接點可與其他物件結合,可同時地與較小數量接 點或是一較大數量接點進行結合作業,及/或可轉移接點外 的一些物件。 於可任擇的具體實施例中,可使用其他的技術用以構 75 200533926 成所需的探針接點形式。例如,能夠藉由使用蔽蔭或灰階 光罩構成底切光阻劑,用以將一經顯影即產生一斜面的光 阻劑曝光。 於一些具體實施例中,探針接點可由與探針元件本身 5 相同的材料所構成(例如,Ni或Ni-P),而於其他具體實施例 中’楝針接點可由一或更多不同的材料(例如,|巴(Pd)、金 (Au)、姥(Rh)、或銖)所構成,或是位在探針接點上的塗層 可由該等其他材料所構成。 一些具體實施例可使用擴散結合(diffusion bonding)或 10 相似方法用以增強連續材料層間的黏著性。於2003年12月 31曰由Cohen等人提出申請,標題為”用於製造包括製備沉 積一第二材料的一第一材料之表面處理的三維結構的方法 (Method for Fabricating Tree-Dimensional Structures Including Surface Treatment of a First Material in 15 Preparation for Deposition of a Second Material)” 的美國專 利申請案第60/534,204號中提出與在電化學製程中使用擴 散結合作業有關的不同講授内容,於此以全文引用方式併 入本案以為參考資料。 與微探針及電化學製造技術有關的進一步講授内容係 20 於2003年12月31日提出申請的複數之美國專利申請案中提 出。該等文件檔案包括··(1)由Arat等人提出的美國專利申 請案第60/533,933號,標題為”電化學製造的微探針 (Electrochemically Fabricated Microprobes)”,(2)由 Kumar 等人提出的美國專利申請案第60/533,947號,標題為“探針 76 200533926 陣列及其之製作方法(Probe Arrays and Method for Making)’’ ;(3)由Cohen等人提出的美國專利申請案第 60/533,948號,標題為“共同製造探針及空間轉換器所用的 電化學製造方法(Electrochemical Fabrication Method for 5 Co-Fabricating Probes and Space Transformers)’’ ;以及(4)由 Cohen等人提出的美國專利申請案第60/533,897號,標題為 “構成多層多種材料微探針結構所用的電化學製程 (Electrochemical Fabrication Process for Forming Multilayer Multimaterial Microprobe structures)’’。該每一專利文件檔案 10 於此以全文引用方式併入本案以為參考資料。 與將該等層平面化並設定該等層厚度及相似作業有關 的進一步講授内容係於以下的美國專利申請案中提出:(1) 由Cohen等人於2003年12月31日提出申請的美國專利申請 案第60/534,159號,標題為“包括在材料沉積之平面化作業 15 中使用鑽石加工的用於製造多層結構的電化學製造方法 (Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization of Deposits of Material)”以及 (2)由Cohen等人於2003年12月31日提出申請的美國專利申 20 請案第60/534,183號,標題為“於電化學製造結構期間用於 保持層之平行及/或達成所需之層厚的方法與裝置(Method and Apparatus for Maintaining Parallelism of Layers and/or Archieving Desired Thicknesses of Layers During the Electrochemical Fabrication of Structures)’’。該等專利文件 77 200533926 才δ案於此以全文引用方式併入本案以為參考資料。 與在介電基板上構成結構及/或構成結構其中將介電 材料併入構成製程並可能與最終結構結合有關的附加講授 内容,係於複數之專利申請案中提出。該等文件檔案中的 5第一檔案係為於2003年12月31日提出申請的美國專利申請 案第60/534J84號,標題為“結合介電材料及/或使用介電基 板的 % 化 士 衣 k 方法(Electrochemical Fabrication Methods Incorporating Dielectric Materials and/or Using Dielectric Substrates)”。該等文件檔案中的第二檔案係為於2〇〇3年12 10月31日提出申請的美國專利申請案第60/533,932號,標題 為使用川黾基板的電化學製造方法(ElectrochemicalIn the optional core, in addition to the small selection of materials, the sharpening operation can be performed to increase the anti-sharpening of the probe body material, such as' oxidation or-appropriate chemical vapor deposition (cvd). )reaction. ★ At the points and bodies of 9A-9G, 10A-10c, 23A · 23υ, and 24A 24cc, in the embodiment, a process using an electricity effect is used to connect "one of the sacrificial metals is covered by electroplating and The patterning operation is covered with a patterned photoresist layer 'to form-sacrifice the mold used to make the contacts. The coating and plating process (that is, the patterning operation) that should be considered can be performed at the expense of The side shot of the mushroom shape constitutes a small bump. This bulging condition has multiple types of capsules. Among them, the effect is # in the hole formed by the sacrificial metal. 70 200533926 When the structural material of the ship follows the sacrificial metal wall The curved contour flowed until the material reached the bottom of the hole where the initial photoresist stayed. In this area, due to the swelling of the sacrificial metal, there was a small skirting space under the bump, causing When the structural material is filled in the 5 area and demolded, it forms a π-shaped eight-shaped unfolded portion with the leading surface of the contact. This situation is shown in Figures 29A-29D. If the bulging and flaring are performed Assignments' can be used as in section 30. A-30D picture shows one of the enhanced processes. On a conductive substrate (whether it is a starting metal substrate or a dielectric substrate with a seed layer deposited), spin 10 to apply a thin photoresist and aim at The required contact shape and size are patterned with an appropriate geometry [Figure 30A]. The overlay plating operation is performed according to the manufacturing method described previously, but using a very low current density. Once this operation is completed, the There are bumps in the sidewalls of the holes made of sacrificial metal. It is assumed that the low plating current density can reduce the amount of bulging. The sample then receives 15 an auxiliary seed layer ipVD deposition (eg, TiW / Cu sputter deposition) Coat all applicable surfaces-including the space below the bumps as described above (see Figure 30A). Once this is done, cover a thin copper layer of electricity (for example, with ~ total thickness) over the seed crystals Layer [see Figure 30b]. Next, the entire sample is covered by plating on the structural material, filling the holes used for the contacts [see Figure 30C, and then overlaying and polishing the surface [see Figure 30C]. Figure 30D The contacts are thus formed and the probe body can be manufactured. This method provides a number of advantages. First, by using an auxiliary seed layer and a subsequent sacrificial material (eg, copper) plating layer, this will cause filling Note that this area leads to the flaring of the contact. Therefore, when plating structural materials, 71 200533926 does not form a sigma-shaped lip at the guide surface before the contact. The second advantage is that by adding a crystal layer and a The conductive layer covering it can first use a third material that is separated from the sacrificial and structural materials into the hole, and then fill the remaining space with the structural material. This allows these 5 contacts to be plated with a third 2. Coating of any material (for example, the rhodium film can be electroplated into the hole first, and then the rest of the hole is filled with nickel, which is a structural material, so the nickel contacts coated with rhodium are formed after demolding). Third, it should also be noted in previous experiments that, for the specific geometry of the patterned photoresist of the contact, the structural material incompletely fills the space of Xin 10 in the hole, causing a narrow gap in the middle of the contact. A gap or a gap. This may be undesirable for a number of reasons, including contaminating effluents. Finally, experience has shown that sometimes the photoresist used for the initial overlay plating operation is not always eliminated immediately after the contact release etching operation. For a while, the photoresist will stay in place, and immediately after the demoulding, it will flap on the top of the contact structure 15 undesirably. By adding a crystal layer and a sacrificial layer thereon, any direct physical connection between the contact point and the photoresist can be eliminated, so that the photoresist will immediately lose its effect on the construction after the release etching operation of the sacrificial material. The mechanical adhesion of the object is removed in the solution. 20. Master: In an optional embodiment, a polymer can be used to support the true one = standing under the bump generated by the mushroom-shaped sacrificial material (for example, copper) ❺ 2 B i The polymer is used to fill the entire pore, which can then be preferentially / principle removed, and a crystal layer can be prepared for depositing the splice. This can be done by simply pouring the polymer out of the pore and allowing surface tension. Used to hold the polymer in the area under the bump, and then curing the polymer at 72 200533926 'to complete this priority polymer removal operation. Consider that at the beginning of this operation, the polymer needs to be an extremely thin liquid. A first-optional method allows the polymer to be shaped, and then uses directional electrical engraving to remove the polymer from the surface of the mushroom-shaped sacrificial material and the bottom of the hole, but leaves it in place in the undercut area. . Two examples of this process are shown in Figures M and 32A-32B. Figure MA illustrates the formation of a sacrificial sacrificial material having a polymer-filled opening. Figure 31B illustrates the removal of the -part of the liquid polymer by pouring. Section 31C_W shows the polymer remaining in the bottom of the hole underfilling the area under the bump. (Figure 31 £) The diagram shows the seed layer-Sichuan deposits covering the entire surface structure to prepare contact material. Figure 32A shows a coating with an opening in the polymer, which allows molding after a directional electropolymerization finish operation to preferentially remove the polymer from the exposed upper surface. Figure 32B illustrates the deposition of a crystalline layer covering the entire surface structure to prepare the contact material. 15 In another optional embodiment, the etching of the hafnium copper can be performed in an attempt to reduce the size of the bumps. The extension geometry tends to be flattened during the etching operation, which is extremely useful for particularly prominent bumps. In another optional embodiment, the bumps can be minimized or eliminated by using an optional electroplating bath and plating conditions. Possible electroplating baths include, for example, acid-Cu with a different formulation than currently used, pyrogenate valleys, and eiectries baths. Additives can also be considered to more precisely adjust growth and reduce the number of bumps. It is also possible to modify the plating conditions by varying the current density to a higher or lower level, using pulsed electricity to deposit, remove, deposit materials or depositing at a continuously changing rate. In a further alternative embodiment, a different sacrificial material (e.g., some materials other than 5 copper) may be used in constituting the mushroom overgrowth operation. For example, nickel can be used. When copper, the seed layer is deposited, the copper fills the clock, and the rest of the contacts make up the nickel accurately. The copper filling operation can also be used as a method for later releasing and separating the contact material from the nickel mold. Figure 33 ^ 331 :) shows an example of this method. 10 Figure 33A illustrates the use of a metal other than steel. For example, nickel-composes a mushroom-shaped material that produces fewer bumps than copper after depositing a crystal layer covering the entire surface structure. Figure 33B illustrates the plating of a thin copper layer over the deposited seed layer. This operation will form a copper layer to cover the photoresist and fill it at any remaining edge under the bump. Figure 33C shows the start of the flattening operation without the deposition of materials. The result of the 33D® towel system® shows the flattening operation #, which constitutes a platform for the remaining construction operations. In other alternatives, a modified photoresist pattern 20 can be used to preferentially form a mushroom-shaped overgrowth. For example, a photoresist may first be used to form a 'Maya pynmid', a two-layer structure, the first of which is wider and the second is narrower. When the bulged portion reaches the second layer, the plating is stopped and the top surface of the second layer is used as the current bottom of the contact mold. Because the two-layer photoresist is matched with the shape, the cracks under the bumps 74 200533926 = Never cause red plating. Optionally, the solution is electrically cut into π: and the agent / photolithography step is used to allow the photoresist to be filled into the 5 10 15 20 === The second layer fills the bottom of the contact mold. Column Jun / Method ’will fill the photoresist polymer under the bumps: = Extensive—seed layer and build the rest of the contacts. Replace the disc with a modified graphic-cutting resistor ring. The triangle especially in the 34A-34D picture. An example of the method is shown in Figure :: Figure: The sinker crystal layer covers the entire surface structure, and-a thin :: ΓΓ covers the deposited seed layer. Figure 34c is a diagram showing the deposition; the status of the start of the L operation is shown, while in 34D1I the results of the flattening operation are shown, which constitutes a platform for carrying out professional construction operations. In an optional specific implementation In the example, with the probe contacts made of different garments described here on one or more days, solder bonding and other bonding materials are arranged on the back side (that is, away from the contact side), and then these contacts can be connected. The points are combined with any desired pre-fabricated metal markings. Figure 35 shows the conventional examples of these probe contacts, and Figure 35B shows the combination with a set of cobra probes. An example of such probe contacts. Of course, in other embodiments, the contacts can be combined with other objects, and can be combined with a smaller number of contacts or a larger number of contacts at the same time, and / Or some objects other than transferable contacts. In alternative embodiments, other techniques can be used to construct 75 200533926 into the desired probe contact form. For example, by using shade or The gray scale photomask forms an undercut photoresist. Inclined photoresist exposure. In some embodiments, the probe contacts may be made of the same material as the probe element 5 (eg, Ni or Ni-P), while in other embodiments, the pin The contacts can consist of one or more different materials (e.g., Pd, Au, Rh, or Baht), or the coating on the probe contacts can be made from Made of other materials. Some specific embodiments can use diffusion bonding or 10 similar methods to enhance the adhesion between continuous material layers. Application was made by Cohen et al. On December 31, 2003, entitled "for Method for Fabricating Tree-Dimensional Structures Including Surface Treatment of a First Material in 15 Preparation for Deposition of a Second Material Application No. 60 / 534,204 proposes different teaching content related to the use of diffusion bonding operations in electrochemical processes, which is hereby incorporated by reference in its entirety for reference. Further lectures related to microprobes and electrochemical manufacturing technology were filed in multiple U.S. patent applications filed on December 31, 2003. These documents include: (1) by Arat et al. U.S. Patent Application No. 60 / 533,933, entitled "Electrochemically Fabricated Microprobes", (2) U.S. Patent Application No. 60 / 533,947, titled Kumar et al. "Probe 76 200533926 Arrays and Method for Making"; (3) US Patent Application No. 60 / 533,948 filed by Cohen et al., Entitled "Co-producing Probes and Spaces" Electrochemical Fabrication Method for 5 Co-Fabricating Probes and Space Transformers); and (4) US Patent Application No. 60 / 533,897 filed by Cohen et al., Entitled "Constructing Multilayers Electrochemical Fabrication Process for Forming Multilayer Multimaterial Microprobe st ructures) ’’. Each of these patent document files 10 is hereby incorporated by reference in its entirety as reference material. Further lectures related to planarizing the layers and setting the thickness of the layers and similar operations are presented in the following U.S. patent applications: (1) United States of America filed by Cohen et al. On December 31, 2003 Patent Application No. 60 / 534,159 entitled "Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization of Deposits of Material "and (2) US Patent Application No. 60 / 534,183 filed by Cohen et al. on December 31, 2003, entitled" During the Electrochemical Fabrication of Structures " Methods and Apparatus for Maintaining Parallelism of Layers and / or Archieving Desired Thicknesses of Layers During the Electrochemical Fabrication of Structures ''. These patent documents 77 200533926 Only the δ case is hereby incorporated by reference in its entirety. References. Additional teaching content related to forming structures on dielectric substrates and / or forming structures in which dielectric materials are incorporated into the forming process and may be combined with the final structure are filed in multiple patent applications. These documents 5 The first file in the file is US Patent Application No. 60 / 534J84, filed on December 31, 2003, entitled "% Chemicals method combining dielectric materials and / or using a dielectric substrate" (Electrochemical Fabrication Methods Incorporating Dielectric Materials and / or Using Dielectric Substrates) ". The second file in these files is US Patent Application No. 60 / 533,932, filed on October 31, 2003. , Titled Electrochemical Manufacturing Method Using Chuanxiong Substrate

Fabrication Methods Using Dielectric Substrates)”。該等文件 檔案中的第三檔案係為於2003年12月31日提出申請的美國 專利申請案第60/534,157號,標題為“結合介電材料的電化 15 學製造方法(Electrochemical Fabrication Methods Incorporating Dielectric Materials)’’。該等文件稽案中的第 四檔案係為於2003年12月31日提出申請的美國專利申請案 第60/533,891號,標題為“結合經由平面化部分地去除的介 電薄片及/或種晶層的電化學製造結構的方法(Methods for 20 Electrochemically Fabricating Structures Incorporating Dielectric sheets and/or Seed layers That Are Partially Removed Via Planarization)”。該等文件槽案中的第五槽案 係為於2003年12月31日提出申請的美國專利申請案第 60/533,895號,標題為“用於在一多孔電介質上生產多層三 78 200533926 維結構的電化學製造方法(Electrochemical Fabrication Method for Producing Multi-layer Three-Dimensional Structures on a Porous Dielectric)”。該每一專利文件稽案於 此以全文引用方式併入本案以為參考資料。 5 本發明存在不同的其他具體實施例。該一些具體實施 例可根據於此的講授内容與於此併入本案作為參考資料的 複數講授内容的結合。一些具體實施例可不使用任一覆蓋 式沉積製程,及/或其可不使用一平面化製程。一些具體實 施例可包含在一單一層或是在不同層上選擇性地沉積複數 10 之不同材料。一些具體實施例在一些層上可使用選擇性地 沉積製程或是覆蓋式沉積製程,並非為電沉積製程。一些 具體實施例可使用鎳作為一結構材料,而於其他具體實施 例可使用不同材料。一些具體實施例可使用銅作為一結構 材料,具有或不需一犧牲材料。一些具體實施例可去除一 15 犧牲材料,而其他具體實施例可不去除。一些具體實施例 可使用以光罩為基本的選擇性#刻作業,結合覆蓋式沉積 作業。一些具體貫施例可在一層層式基材(layer-by-layer base)上構成結構,但脫離有助於在層間使材料交織的一製 程的一精確平面層疊式建構製程。該等可任擇的建構製程 2〇係揭露在2003年5月7日提出申請的美國專利申請案第 10/434,519號,標題為“經由交織層或是經由選擇性蝕刻及 填注空隙的電化學製造結構所用的方法及裝置(Methods of and Apparatus for Electrochemically Fabricating Structures Via Interlaced Layers or Via Selective Etching and Filling of 79 200533926Fabrication Methods Using Dielectric Substrates ". The third file in these files is U.S. Patent Application No. 60 / 534,157, filed on December 31, 2003, entitled" Electrification with Dielectric Materials 15 Manufacturing method (Electrochemical Fabrication Methods Incorporating Dielectric Materials) ''. The fourth file in these documents is U.S. Patent Application No. 60 / 533,891, filed on December 31, 2003, entitled "Combining Dielectric Sheets and / or Seeds Partially Removed by Planarization" Methods for 20 Electrochemically Fabricating Structures Incorporating Dielectric sheets and / or Seed layers That Are Partially Removed Via Planarization ". The fifth slot of these file slots is U.S. Patent Application No. 60 / 533,895, filed on December 31, 2003, and entitled "For the production of multilayer trilayers on a porous dielectric. Electrochemical Fabrication Method for Producing Multi-layer Three-Dimensional Structures on a Porous Dielectric ". Each patent document case is hereby incorporated by reference in its entirety. 5 There are various other specific embodiments of the present invention. The specific embodiments can be based on the combination of the teaching content here and the plural teaching content incorporated herein as a reference. Some embodiments may not use any overlay deposition process, and / or may not use a planarization process. Some embodiments may include a single layer or selectively deposit a plurality of different materials on different layers. In some embodiments, a selective deposition process or an overlay deposition process may be used on some layers, rather than an electrodeposition process. Some embodiments may use nickel as a structural material, while other embodiments may use different materials. Some embodiments may use copper as a structural material, with or without a sacrificial material. Some embodiments may remove a sacrificial material, while other embodiments may not remove it. Some embodiments may use selective masking operations based on photomasks in combination with overlay deposition operations. Some specific embodiments may construct a structure on a layer-by-layer base, but depart from a precise planar stacking construction process that facilitates a process that interweaves materials between layers. These optional construction processes 20 disclose U.S. Patent Application No. 10 / 434,519, filed on May 7, 2003, entitled "Electrification via interlaced layers or via selective etching and void filling. Methods and Apparatus for Manufacturing Structures (Methods of and Apparatus for Electrochemically Fabricating Structures Via Interlaced Layers or Via Selective Etching and Filling of 79 200533926

Voids)’’,於此以全文引用方式併入本案以為參考資料。 就此該等講授内容而言,熟知此技藝之人士對於複數 之進一步具體實施例、設計上的可任擇方式以及使用本發 明係為顯而易見的。就其本身而論,本發明並不意欲限定 5 在特定的說明性具體實施例、可任擇方式以及上述用途, 而僅藉由之後提出的申請專利範圍加以限定。 L圖式簡單説明3 第1A-1C圖係為一調和式接觸光罩電鍍製程於不同階 段的概略側視圖,同時第1D-1G圖係為使用一不同型式的調 10 和式接觸光罩的一調和式接觸光罩電鍍製程的不同階段的 概略側視圖。 第2A-2F圖係為用以構成一特定結構之電化學製程於 不同階段的概略側視圖’該結構中選擇性地沉積一犧牲材 料同時覆蓋式沉積一結構材料。 15 第3A-3C圖係為不同示範性子總成的概略側視圖,其可 用以手動地執行第2A-2F圖中所示之電化學製造方法。 第4A-4I圖係概略地圖示使用黏著光罩電鍍所構成的 一結構之第一層,其中一第二材料之覆蓋式沉積將介於第 一材料之沉積位置與第一材料本身之間的開口覆蓋。 20 第5 A - 5 J圖係為根據本發明之第一具體實施例用於構 成一探針元件陣列之製程於不同階段的概略側視圖,其中 捺針元件接點係經由電鍍構成在一以環氧模板塗佈的種晶 層上’該環氧模板係以一接受圖案化非等向性蝕刻的矽晶 圓模塑而成。 80 200533926 第6A-6E圖係為根據本發明之第二具體實施例用於構 成一彳木針兀件陣列之製程於不同階段的概略側視圖,其係 與本發明之第-具體實施例相似,不同之處在於探針元件 接點之構成材料係與探針元件的其餘部分不同。 5 第7A-7F®係為根據本發明之第三具體實施例用於構 成抓針元件之製程於不同階段的概略側視圖,其中探針 元件接點係使用製作具有—底切(undercut)的突出之圖案化 光阻劑所構成。 第8A-8F圖係為根據本發明之第四具體實施例用於構 1〇成一探針元件之製程於不同階段的概略側視圖,其中探針 元件接點係使用製作具有向外推拔側壁位在一 圖案化光阻 劑中的内縮部分所構成。 第9A-9G圖係為根據本發明之第五具體實施例用於構 成一捸針元件陣列之製程於不同階段的概略側視圖,其中 15奴針元件接點係使用一圖案化光阻劑材料之突出部分所構 成,製作為蕈形以及蝕刻穿過之開口的一電鍍材料覆蓋該 圖案化光阻劑材料。 第10A-10C圖係為根據本發明之第六具體實施例用於 構成一探針元件陣列之製程於不同階段的概略側視圖,其 2〇中楝針元件接點係使用一圖案化光阻劑材料之突出部分所 構成’製作為簟形的一電鍍材料覆蓋該圖案化光阻劑材料。 第11A-11F圖係為根據本發明之第七具體實施例用於 構成一探針接點陣列之製程於不同階段的概略部分穿透、 ^視圖、沿著一中央切割平面的側視圖以及俯視圖,其中 81 200533926 探針接點係利用由-圖案化沉積所構成之模具所構成,該 模具構成複數之由覆蓋式沉積所覆蓋之空隙(每個接點一 個空隙),其將該等空隙窄化並使其具有_所需形狀。 第12A-12E圖係為根據本發明之第八具體實施例用於 5構成一探針接點陣列之製程於不同階段的概略部分穿透、 透視圖,其中探針接點係利用由一犧牲材料所環繞之結構 材料或是接點材料之部分遮光區域所構成,並接著相對於 犧牲材料蝕刻該結構或接點材料用以達到所需之接點形 式。 10 第13A-13C圖係為根據本發明之第九具體實施例用於 構成一探針元件陣列之製程於不同階段的概略側視圖,其 中係於留下位於元件之先前構成部分上該等接點元件的暴 露區域中,藉由將圖案化遮光材料配置覆蓋該一接點材 料,並將接點材料餘刻去除而構成元件之其他部分之後構 15 成該等探針接點。 第14A-14D圖係為用於構成一壓花工具的一製程於不 同階段的概略側視圖,該工具用於構成具有所有存在之陣 列元件並具有一第一接點形式的探針接點。 弟15A-15D圖係為用於構成一壓花工具的一製程於不 20 同階段的概略側視圖,該工具用於構成僅具有存在之陣列 元件的一部分並具有一第二接點形式的探針接點。 第16A-16M圖係為用於根據本發明之第十具體實施例 構成一探針元件陣列的一製程於不同階段的概略側視圖, 其中利用根據第14A-14D圖所生產之壓花工具構成探針元 82 200533926 件接點。 第mi7L圖係為用於根據本發明之第十一具體實施 例構成-探針元件陣列的—製程於不同階段的概略側視 圖其中利用根據第14八_14〇圖所生產之麼花工具構成探針 元件接』^續花材料係具傳導性,並且其中未構成選定 的探針元件。 第8A 18J圖係為用於根據本發明之第十二具體實施 例構成-探針元件陣列的—製程於不⑽段的概略側視 圖’其中利用根據第i 4 A _ j 4 D圖所生產之壓花工具構成探針 10兀件接點,並且其中未構成選定的探針元件及探針接點。 第19A-聰圖係為用於根據本發明之第十三具體實施 例構成仏針兀件陣列的一製程於不同階段的概略側視 圖,其中—些探針元件具有不同高度以及不同的接點形 式’並且利用根據第14A_14D圖及第HMD圖所生產之壓 15花工具構成探針接點元件。 2〇A-2GE圖係為用於根據本發明之第十四具體實施 例構成-探針科的_製程於不同階段的概略側視圖,、盆 中探針接點係以-在構成探針元件中防護不受所使用之犧 牲材料影響的所需接觸材料塗佈。 20 第21A-21F圖係為用於根據本發明之第十五具體實施 例構成-探針S件的—製程於不同階段的概略側視圖,直 中探針接點係具—推拔形式以及—在構成探針讀中防護 不叉所使用之犧牲材料影響的所需接觸材料之塗層。 第22Α·22Η圖係為用於根據本發明之第十六i體實施 83 200533926 例構成-探針接點及元件之陣列 範性結構的概略部分穿透、透視圖,其中探針接== 構所構成,並且在去除犧牲材料之前將其密封在“ :材物之間而該等接點受防護不受犧牲材料_劑景; 札1王衣程流程,用於利用 形化作業而製造單-高度之探針“產生鱗接點。 10 15Voids) ’’, which is hereby incorporated by reference in its entirety as reference material. As far as these teachings are concerned, it is obvious to those skilled in the art for a plurality of further specific embodiments, design alternatives, and use of the present invention. As such, the present invention is not intended to be limited to 5 specific illustrative embodiments, alternatives, and uses described above, but is limited only by the scope of patent applications filed thereafter. Brief description of the L pattern 3 Figures 1A-1C are schematic side views of a harmonic contact mask electroplating process at different stages, and Figures 1D-1G are schematic diagrams of a different type of 10-type contact mask. A schematic side view of the different stages of a harmonic contact mask plating process. Figures 2A-2F are schematic side views of an electrochemical process used to form a specific structure at different stages. The structure selectively deposits a sacrificial material and overlays a structural material. 15 Figures 3A-3C are schematic side views of different exemplary sub-assemblies, which can be used to manually perform the electrochemical manufacturing methods shown in Figures 2A-2F. Figures 4A-4I are schematic illustrations of the first layer of a structure constructed using an adhesive mask electroplating, where the overlay deposition of a second material will be between the deposition location of the first material and the first material itself The openings are covered. 20 Figures 5 A-5 J are schematic side views of the process for forming a probe element array at different stages according to a first embodiment of the present invention, in which the contact points of the pin element are formed by electroplating. The epoxy template-coated seed layer is molded from a silicon wafer that is subjected to patterned anisotropic etching. 80 200533926 Figures 6A-6E are schematic side views of the process of forming an alder needle element array at different stages according to the second embodiment of the present invention, which is similar to the first embodiment of the present invention. The difference is that the material of the probe element contacts is different from the rest of the probe element. 5 The 7A-7F® is a schematic side view of the process of forming the needle grasping element at different stages according to the third embodiment of the present invention, in which the contact of the probe element is made using an undercut Consisting of a patterned photoresist. Figures 8A-8F are schematic side views of a process for constructing a probe element at different stages according to a fourth embodiment of the present invention, wherein the contacts of the probe element are made with side walls pushed outward. A constricted portion located in a patterned photoresist. Figures 9A-9G are schematic side views of the process of forming a pin element array at different stages according to a fifth embodiment of the present invention, in which the 15-pin pin element contacts use a patterned photoresist material The patterned photoresist material is covered with a plating material made of a mushroom shape and an opening etched through. Figures 10A-10C are schematic side views of the process of forming a probe element array at different stages according to a sixth specific embodiment of the present invention. The contacts of the 20-pin pin element use a patterned photoresist. An electroplating material made of a 'shape is formed by the protruding portion of the agent material to cover the patterned photoresist material. 11A-11F are schematic partial penetration, ^ views, side views along a central cutting plane, and top views of a process for forming a probe contact array according to a seventh embodiment of the present invention at different stages Among them, 81 200533926, the probe contacts are formed by a patterned-deposition mold, and the mold forms a plurality of voids covered by the overlay deposition (one void per contact), which narrows the voids. Make it the desired shape. 12A-12E are schematic partial perspective and perspective views of a process for forming a probe contact array at different stages according to an eighth specific embodiment of the present invention, wherein the probe contact is sacrificed by a The structural material surrounded by the material or a part of the shading area of the contact material is formed, and then the structure or the contact material is etched relative to the sacrificial material to achieve the desired contact form. 10 Figures 13A-13C are schematic side views of the process for forming a probe element array according to a ninth specific embodiment of the present invention at different stages, in which the connection is left on the previous constituent parts of the element. In the exposed area of the point device, the patterned light-shielding material is arranged to cover the one contact material, and the contact material is removed in a moment to form other parts of the device, and then the probe contacts are formed. Figures 14A-14D are schematic side views of a process for constructing an embossing tool at different stages. The tool is used to construct a probe contact having all the array elements present and having a first contact form. 15A-15D are schematic side views of a process used to form an embossing tool at different stages. The tool is used to form a probe that has only a part of an existing array element and has a second contact form. Pin contacts. 16A-16M are schematic side views of a process for forming a probe element array according to a tenth embodiment of the present invention at different stages, in which an embossing tool produced according to FIGS. 14A-14D is used. Probe element 82 200533926 pieces of contact. Figure mi7L is a schematic side view of a probe element array constructed in accordance with the eleventh embodiment of the present invention. The process is at different stages. The probe element connection is continuous and the selected probe element is not formed therein. Figures 8A and 18J are schematic side views of a process for manufacturing a probe element array according to a twelfth embodiment of the present invention. The embossing tool constitutes the probe element contact, and the selected probe element and probe contact are not formed therein. 19A-Cong diagram is a schematic side view of a process for forming an array of needle elements in accordance with a thirteenth embodiment of the present invention at different stages, in which some probe elements have different heights and different contacts. Form ', and the embossing tool produced according to FIGS. 14A-14D and HMD is used to form the probe contact element. The 20A-2GE diagram is a schematic side view of a probe according to the fourteenth embodiment of the present invention. The probe process is at different stages. The probe contacts in the basin are formed with- Coating of the required contact material in the component to protect it from the sacrificial material used. 20 Figures 21A-21F are schematic side views for forming a probe S piece in accordance with the fifteenth embodiment of the present invention—the manufacturing process is at different stages, and straightening the probe contact fixture—a push-out form and -A coating of the contact material required to protect the sacrificial material used in the probe reading from the sacrificial material. The 22A · 22Η diagram is a schematic partial penetration and perspective view of the exemplary structure of the array of probe contacts and components according to the sixteenth embodiment of the present invention. Structure and seal it before the sacrificial material is removed ": between the materials and the contacts are protected from the sacrificial material _ 剂 景; Zha 1 Wang Yicheng process for manufacturing by shape Single-height probes "create scale contacts. 10 15

第24A-24CC圖係圖示本發明之—具體實施例的紫 流程’其中在適當層處經由簟形化作業構成用以界定接1 所需之光阻劑圖案’但犧牲材料之蕈形化沉積係姐推遲 至將該㈣建構至-足夠高度為止,㈣容許構成最^ 接點高度。 第25A-25D圖係為用於構成一與第7A_7F圖之具體實 施例相似的底切介電圖案的一可任擇製程於不同階段的二 略側視圖,其中光阻劑之多重沉積物可用與多重曝光結合 使用。Figures 24A-24CC are diagrams illustrating the purple flow of a specific embodiment of the present invention, in which the photoresist pattern required to define the connection is formed by a sculpting operation at the appropriate layer, but the sacrificial material is mushroomed The sedimentary system is postponed until the ridge is constructed to a sufficient height, and the ridge is allowed to constitute the maximum contact height. Figures 25A-25D are schematic side views of an optional process at different stages for forming an undercut dielectric pattern similar to the embodiment of Figures 7A-7F. Multiple photoresist deposits are available. Used in conjunction with multiple exposures.

第26A-26H圖係圖示用於製作接觸光罩的製程,而第 26I-26M圖係圖示接觸光罩在一晶圓上構成接點時之用途。 第27A-27B圖係為用於產生探針接點的一具體實施 20 例,其包含產生具有傾斜側壁的光阻劑模具。 第28A-28S圖係為與製造具有探針接點之探針的方法 相關的一具體實施例。 第29A-29D圖係圖示一製程,其中由於犧牲材料膨服 因而造成接點引導表面呈喇叭形狀展開。 84 200533926 第30A-30D圖係圖示假若發生膨脹及呈別η八形狀展開 可使用的一強化製程。 弟31A-32B圖係圖示一可任擇製程,用以容許聚合物成 型,接著使用一方向性電漿蝕刻用以自簟形狀犧牲材料之 5表面及孔之底部去除聚合物,但讓其仍留在底切區域之後 方。 第33A-33D圖係圖示一方法,其中銅填充物可使用作 為之後將接點材料自鎳模具脫模及分離的一方式。Figures 26A-26H illustrate the process for making a contact mask, while Figures 26I-26M illustrate the use of a contact mask when forming contacts on a wafer. Figures 27A-27B are a specific implementation of 20 examples for generating probe contacts, which include the production of a photoresist mold with inclined sidewalls. 28A-28S are specific embodiments related to a method for manufacturing a probe having a probe contact. Figures 29A-29D illustrate a process in which the contact guide surface is expanded in the shape of a horn due to the expansion of the sacrificial material. 84 200533926 Figures 30A-30D are diagrams showing an intensified process that can be used if swelling and unfolding occur. Figure 31A-32B shows an optional process to allow the polymer to be molded, and then a directional plasma etch is used to remove the polymer from the 5 surface of the sacrificial material and the bottom of the hole, but let it Remain behind the undercut area. Figures 33A-33D illustrate a method in which a copper filler can be used as a way to later release and separate the contact material from a nickel mold.

第34A-34D圖係圖示一 2層式接點結構其可首先使用 1〇光卩且劑製作,具有一較寬的第一層及一較窄的第二層。 第35A-35B圖係圖示如於此所說明之一或更多之不同 製糕所衣作的探針接點,其上配裝具有一附裝材料並於之 後用以將接點與探針黏合。 【主要元件符號說明】 20…輔助結構 22…材料 22’···沉積物 26a,26b···孔口 32…電化學製造系統 34、36、38、40…子系統 40…平面化子系統 42···線性滑座 44…致動器 46…指示器Figures 34A-34D are diagrams of a 2-layer contact structure. It can be made with 10 ohms first, and it has a wider first layer and a narrower second layer. Figures 35A-35B are diagrams showing probe contacts made of one or more different cakes, as described herein, equipped with an attachment material and used later to connect the contacts and probes. Needle sticking. [Description of Symbols of Main Components] 20 ... Auxiliary Structure 22 ... Material 22 '... Deposits 26a, 26b ... Pore 32 ... Electrochemical Manufacturing System 34, 36, 38, 40 ... Subsystem 40 ... Planarization Subsystem 42 ... linear slider 44 ... actuator 46 ... indicator

2···第一材料/輔助結構 4· ··第四材料/第二沉積材料 6···基板 8,8’ ···調和式接觸光罩 10···絕緣體 10’···圖案化調和材料 12,12’…陽極 14···電鍍溶液 价··開口/電解液 18···電源 85 200533926 48…托架 52…重疊板 54…精度X平台 56…精度Y平台 58…槽 62…陽極 64…電解液槽 66…電鍍溶液 68…腳件 72…框架 74…框架 82…基板 84…光阻劑 86…光阻劑之表面 88…基板之表面 92A-92C···開口 或孔口 94…第一金屬 96…第二金屬 98···3維結構 102···矽 104…開口 106···澆鑄材料 108···犧牲材料 110…接點材料 112a-112e···接點 116…結合材料 118…基板 120a-120e…探針 150…接點材料 150a-150e…接點元件 152…犧牲模塑材料 154…犧牲材料 156…結構材料 158…層 160···黏合或結合材料 162…表面 164…探針元件 164a-164e…探針元件 166…基板 182…暫時基板 184···負光阻劑材料 184a…光阻劑元件 184b…梯形元件 188···開口 190…輻射 192···探針元件接點材料 194…顯影溶液 196…犧牲材料2 ... First material / auxiliary structure 4 ... Fourth material / Second deposition material 6 ... Substrate 8, 8 '... Harmonic contact mask 10 ... Insulator 10' ... Pattern Blending materials 12,12 '... Anode 14 ... Plating solution price ... Opening / electrolyte 18 ... Power supply 85 200533926 48 ... Bracket 52 ... Overlapping plate 54 ... Accuracy X platform 56 ... Accuracy Y platform 58 ... Slot 62 ... anode 64 ... electrolyte tank 66 ... plating solution 68 ... foot 72 ... frame 74 ... frame 82 ... substrate 84 ... photoresist 86 ... surface of photoresist 88 ... surface 92A-92C of the substrate or opening or Orifice 94 ... first metal 96 ... second metal 98 ... 3-dimensional structure 102 ... silicon 104 ... opening 106 ... casting material 108 ... sacrificial material 110 ... contact material 112a-112e ... Contact 116 ... bonding material 118 ... substrate 120a-120e ... probe 150 ... contact material 150a-150e ... contact element 152 ... sacrificial molding material 154 ... sacrificial material 156 ... structural material 158 ... layer 160 ... Bonding material 162 ... Surface 164 ... Probe elements 164a-164e ... Probe element 166 ... Substrate 182 ... Temporary substrate 184 ... Negative photoresist Photoresist material member 184B ... 184A ... ladder element openings 190 ... 188 ··· ··· probe radiation element 192 contacts the material 194 ... 196 ... developing solution sacrificial material

86 200533926 200…黏合材料 202···探針元件 212…暫時基板 214…正光阻劑 216…光罩 218…開口 222…開口 224…側壁 226…探針元件接點材料 230···探針元件 228···犧牲材料 232…結構材料/暫時基板/電 鑛基材 234…黏合或是結合材料/種晶 層材料 238···光罩/光阻劑材料 23 8a-23 8d…光阻劑栓塞 240a-240e· · ·開口 242…輻射 244…犧牲材料 246···反應離子蝕刻曝光 24m料/探針接點材料 250a'250d…開口 252···探針元件 254…結構材料 256···黏合或是結合材料 262…探針接點材料 264a-264d· · ·空隙 266…探針元件 302…基板 304…犧牲材料 306…材料 306-1,306-2· ••空 p+、 308…犧牲材料 312-1···位詈 312-2…線元件 314-2,314-1···空隙形式 316-1,316-2···探針接點元件 320…犧牲材料 332…基板 334a-334d···探針元件 336…犧牲材料 338…結構材料 342a-342d···元件 344a-344d···接點結構 352…結構材料 354…犧牲材料 356…基板86 200533926 200 ... adhesive material 202 ... probe element 212 ... temporary substrate 214 ... positive photoresist 216 ... mask 218 ... opening 222 ... opening 224 ... side wall 226 ... probe element contact material 230 ... probe element 228 ... sacrificial material 232 ... structural material / temporary substrate / electric substrate material 234 ... bonding or bonding material / seed layer material 238 ... photomask / photoresist material 23 8a-23 8d ... photoresist Plugs 240a-240e ... Opening 242 ... Radiation 244 ... Sacrificial material 246 ... Reactive ion etching exposure 24m material / probe contact material 250a'250d ... Opening 252 ... Probe element 254 ... Structural material 256 ... · Adhesive or bonding material 262 ... Probe contact material 264a-264d ··· Gap 266 ... Probe element 302 ... Substrate 304 ... Sacrificial material 306 ... Material 306-1, 306-2 ... 312-1 ... Position 312-2 ... Wire element 314-2,314-1 ... Gap form 316-1, 316-2 ... Probe contact element 320 ... Sacrificial material 332 ... Substrate 334a-334d ... ·· probe element 336 ... sacrificial material 338 ... structural material 342a-342d ... element 344a-344d ... contact structure 3 52 ... Structural material 354 ... Sacrificial material 356 ... Substrate

87 200533926 358···探針接點材料 362…姓刻劑 366a-366d···探針元件 368…接點 372…基板材料 374a-374e···空隙 376…模塑材料 378a-378e…突出部分 380…工具 382…基板 384c、384d···空隙 386…模塑材料 390…工具 402…基板 404…光阻劑或聚合材料 406A-406E· · ·空隙 408…種晶層材料/電鍍基材 412···探針接點材料 414A414E· · ·探針接點位置 416…結構材料 418···犧牲材料 420···黏合材料 424…永久基板 426···苐二黏合材料 438···探針接點材料 452···暫時基板 454···傳導性犧牲材料 456a-456e···空隙 458···探針接點材料 462…結構材料 464…犧牲材料 466…黏合材料或結合材料 468···永久基板 470···第二黏合材料 472···遮光材料 472a、472b、472e…糊果針結構 474a-474e…探針接點區域 476c-476d··.空隙 482…可凸起犧牲材料 484c,484d···孔 488…焊墊 490…永久基板 502…犧牲材料 504…犧牲材料 506…防護材料 508…探針接點浮動材料 510···結構材料 512…基板87 200533926 358 ·· Probe contact material 362 ... Episode 366a-366d ... Probe element 368 ... Contact 372 ... Substrate material 374a-374e ... Gap 376 ... Molding material 378a-378e ... protruding Section 380 ... Tool 382 ... Substrate 384c, 384d ... Gap 386 ... Molding material 390 ... Tool 402 ... Substrate 404 ... Photoresist or polymer material 406A-406E ... Gap 408 ... Seed layer material / plating substrate 412 ... Probe contact material 414A414E ... Probe contact position 416 ... Structure material 418 ... Sacrificial material 420 ... Adhesive material 424 ... Permanent substrate 426 ... Probe contact material 452 ... Temporary substrate 454 ... Conductive sacrificial material 456a-456e ... Gap 458 ... Probe contact material 462 ... Structural material 464 ... Sacrificial material 466 ... Adhesive material or bonding material 468 ... Permanent substrate 470 ... Second adhesive material 472 ... Shading materials 472a, 472b, 472e ... Fruit pin structure 474a-474e ... Probe contact area 476c-476d ... Space 482 ... Can be convex Sacrificial material 484c, 484d ... hole 488 ... pad 490 ... permanent substrate 502 ... sacrificial material Sacrificial material 506 ... 504 ... 508 ... shield material floating point probe material 510 ... 512 of the substrate structural material ?????

88 200533926 514…犧牲材料 516···防護材料 518···探針接點塗層材料 520…探針接點結構材料 522···平面層 524…層 526···探針接點元件 552···矽基板 554a-554j…空隙 556…渠道 560…接點材料 562…結構材料 564…犧牲材料 566···黏合或結合材料 582…基板 584···初始塗層 586···第二塗層 8988 200533926 514 ... sacrificial material 516 ... protective material 518 ... probe contact coating material 520 ... probe contact structure material 522 ... plane layer 524 ... layer 526 ... probe contact element 552 ··· Si substrates 554a-554j ... voids 556 ... channels 560 ... contact materials 562 ... structural materials 564 ... sacrificial materials 566 ... adhesive or bonding materials 582 ... substrates 584 ... initial coating 586 Coating 89

Claims (1)

200533926 十、申請專利範圍: 1. 一種用於製作一接觸結構的方法,其包含: 構成一具有一所需形式的接觸接點; 電化學式地構成一順應式探針結構;以及 5 將該接觸接點黏附至探針結構,用以構成 一接觸結構。 2. 如申請專利範圍第1項之方法,其中該接觸接點具有一 形狀,該形狀至少部分地係自一電沉積犧牲材料之簟形 化作業覆蓋一介電材料所衍生而得。 10 3.如申請專利範圍第1項之方法,其中該接觸接點包含一 與該順應式探針結構不同的材料。 4. 一種用於製作一接觸結構的方法,其包含: 構成一具有一所需形式的接觸接點; 由複數之電沉積材料的黏合層構成順應式探針結 15 構;以及 將該接觸接點黏附至探針結構,用以構成一接觸結 構。 5. 如申請專利範圍第4項之方法,其中該接觸接點具有一 形狀,該形狀至少部分地係自一電沉積犧牲材料之蕈形 20 化作業覆蓋一介電材料所衍生而得。 6. 如申請專利範圍第4項之方法,其中該接觸接點包含一 與該順應式探針結構不同的材料。 7. —種用於製作一接觸結構的方法,其包含: 構成一具有一所需形式的接觸接點;以及 90 200533926 電化學式地構成順應式探針結構,其中該順應式探 針結構係構成在該接觸接點上。 8. 如申請專利範圍第7項之方法,其中該接觸接點具有一 形狀,該形狀至少部分地係自一電沉積犧牲材料之蕈形 5 化作業覆蓋一介電材料所衍生而得。 9. 如申請專利範圍第7項之方法,其中該接觸接點包含一 與該順應式探針結構不同的材料。 10. —種用於製作一接觸結構的方法,其包含: 構成一具有一所需形式的接觸接點;以及 10 由複數之電沉積材料的黏合層構成順應式探針結 構,其中該順應式探針結構係構成在該接觸接點上。 11. 如申請專利範圍第10項之方法,其中該接觸接點具有一 形狀,該形狀至少部分地係自一電沉積犧牲材料之蕈形 化作業覆蓋一介電材料所衍生而得。 15 12.如申請專利範圍第10項之方法,其中該接觸接點包含一 與該順應式探針結構不同的材料。 13. —種用於製作一接觸結構的方法,其包含: 電化學式地構成順應式探針結構;以及 構成一具有一所需形式的接觸接點,其中該接觸接 20 點係構成在該順應式探針結構上。 14. 如申請專利範圍第13項之方法,其中該接觸接點具有一 形狀,該形狀至少部分地係自一電沉積犧牲材料之蕈形 化作業覆蓋一介電材料所衍生而得。 15. 如申請專利範圍第13項之方法,其中該接觸接點包含一 91 200533926 與該順應式探針結構不同的材料。 16. —種用於製作一接觸結構的方法,其包含: 由複數之電沉積材料的黏合層構成順應式探針結 構;以及 5 構成一具有一所需形式的接觸接點,其中該接觸接 點係構成在該順應式探針結構上。 Π.如申請專利範圍第16項之方法,其中該接觸接點具有一 形狀,該形狀至少部分地係自一電沉積犧牲材料之簟形 化作業覆蓋一介電材料所衍生而得。 10 18.如申請專利範圍第16項之方法,其中該接觸接點包含一 與該順應式探針結構不同的材料。200533926 10. Scope of patent application: 1. A method for making a contact structure, comprising: forming a contact contact having a desired form; electrochemically forming a compliant probe structure; and 5 making the contact The contact is adhered to the probe structure to form a contact structure. 2. The method according to item 1 of the patent application, wherein the contact has a shape derived at least in part from a dielectric material covered by an electrodeposition sacrificial material. 10 3. The method according to item 1 of the patent application, wherein the contact point comprises a material different from the structure of the compliant probe. 4. A method for making a contact structure, comprising: forming a contact contact having a desired form; forming a compliant probe structure with an adhesive layer of a plurality of electrodeposited materials; and connecting the contact The points are adhered to the probe structure to form a contact structure. 5. The method according to item 4 of the patent application, wherein the contact has a shape that is derived at least in part from a mushroom-shaped process of electrodeposition sacrificial material covering a dielectric material. 6. The method according to item 4 of the patent application, wherein the contact point comprises a material different from the compliant probe structure. 7. A method for making a contact structure, comprising: constructing a contact contact having a desired form; and 90 200533926 electrochemically constructing a compliant probe structure, wherein the compliant probe structure is constituted by At this contact. 8. The method according to item 7 of the patent application, wherein the contact contact has a shape that is derived at least in part from a mushroom-shaped operation of an electrodeposition sacrificial material covering a dielectric material. 9. The method according to item 7 of the patent application, wherein the contact point comprises a material different from the structure of the compliant probe. 10. A method for making a contact structure comprising: forming a contact contact having a desired form; and 10 a compliant probe structure composed of an adhesive layer of a plurality of electrodeposited materials, wherein the compliant type The probe structure is formed on the contact point. 11. The method of claim 10, wherein the contact has a shape that is at least partially derived from a dielectric material covered by a mushrooming operation of an electrodeposited sacrificial material. 15 12. The method of claim 10, wherein the contact comprises a material different from the structure of the compliant probe. 13. A method for making a contact structure, comprising: electrochemically constructing a compliant probe structure; and constructing a contact contact having a desired form, wherein the 20 points of the contact contact are formed in the compliance Structural probe. 14. The method according to item 13 of the patent application, wherein the contact has a shape derived at least in part from a dielectric material covered by a mushrooming operation of an electrodeposited sacrificial material. 15. The method according to item 13 of the patent application, wherein the contact point comprises a material having a structure different from that of the compliant probe. 16. A method for making a contact structure comprising: a compliant probe structure composed of an adhesive layer of a plurality of electrodeposited materials; and 5 forming a contact contact having a desired form, wherein the contact contact The points are formed on the compliant probe structure. Π. The method according to item 16 of the patent application, wherein the contact contact has a shape derived at least in part from a dielectric material covered by a step of forming an electrodeposited sacrificial material. 10 18. The method of claim 16 in which the contact point comprises a material different from the structure of the compliant probe.
TW93141484A 2003-12-31 2004-12-30 Microprobe tips and methods for making TW200533926A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US53397503P 2003-12-31 2003-12-31
US53393303P 2003-12-31 2003-12-31
US53686504P 2004-01-15 2004-01-15
US54051004P 2004-01-29 2004-01-29
US54051104P 2004-01-29 2004-01-29
US10/772,943 US20050104609A1 (en) 2003-02-04 2004-02-04 Microprobe tips and methods for making
US10/949,738 US20060006888A1 (en) 2003-02-04 2004-09-24 Electrochemically fabricated microprobes

Publications (1)

Publication Number Publication Date
TW200533926A true TW200533926A (en) 2005-10-16

Family

ID=34754057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93141484A TW200533926A (en) 2003-12-31 2004-12-30 Microprobe tips and methods for making

Country Status (2)

Country Link
TW (1) TW200533926A (en)
WO (1) WO2005065431A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822486B (en) * 2022-11-24 2023-11-11 漢民測試系統股份有限公司 Membrane circuit structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029747A (en) * 2022-07-26 2022-09-09 上海泽丰半导体科技有限公司 Probe processing method and probe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114227B2 (en) * 1989-01-07 1995-12-06 三菱電機株式会社 Wafer test probe
US5070297A (en) * 1990-06-04 1991-12-03 Texas Instruments Incorporated Full wafer integrated circuit testing device
US6520778B1 (en) * 1997-02-18 2003-02-18 Formfactor, Inc. Microelectronic contact structures, and methods of making same
US6255126B1 (en) * 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822486B (en) * 2022-11-24 2023-11-11 漢民測試系統股份有限公司 Membrane circuit structure

Also Published As

Publication number Publication date
WO2005065431A2 (en) 2005-07-21
WO2005065431A3 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US7412767B2 (en) Microprobe tips and methods for making
US7363705B2 (en) Method of making a contact
US7273812B2 (en) Microprobe tips and methods for making
TWI267567B (en) Methods for electrochemically fabricating structures using adhered masks, incorporating dielectric sheets, and/or seed layers that are partially removed via planarization
US20100155253A1 (en) Microprobe Tips and Methods for Making
TWI297045B (en) Methods and apparatus for forming multi-layer structures using adhered masks
US7163614B2 (en) Methods of and apparatus for making high aspect ratio microelectromechanical structures
US8551314B2 (en) Mesoscale and microscale device fabrication methods using split structures and alignment elements
US20140209470A1 (en) Electrochemically Fabricated Structures Having Dielectric or Active Bases and Methods of and Apparatus for Producing Such Structures
US20080108221A1 (en) Microprobe Tips and Methods for Making
US7241689B2 (en) Microprobe tips and methods for making
US9671429B2 (en) Multi-layer, multi-material micro-scale and millimeter-scale devices with enhanced electrical and/or mechanical properties
US20050202180A1 (en) Electrochemical fabrication methods for producing multilayer structures including the use of diamond machining in the planarization of deposits of material
US20160258075A1 (en) Method of Forming Electrically Isolated Structures Using Thin Dielectric Coatings
US20070221505A1 (en) Method of and Apparatus for Forming Three-Dimensional Structures Integral With Semiconductor Based Circuitry
US7198704B2 (en) Methods of reducing interlayer discontinuities in electrochemically fabricated three-dimensional structures
US20110132767A1 (en) Multi-Layer, Multi-Material Fabrication Methods for Producing Micro-Scale and Millimeter-Scale Devices with Enhanced Electrical and/or Mechanical Properties
US7384530B2 (en) Methods for electrochemically fabricating multi-layer structures including regions incorporating maskless, patterned, multiple layer thickness depositions of selected materials
US20050142739A1 (en) Probe arrays and method for making
US20060053625A1 (en) Microprobe tips and methods for making
US9244101B2 (en) Electrochemical fabrication process for forming multilayer multimaterial microprobe structures
TW200533926A (en) Microprobe tips and methods for making
US20150108002A1 (en) Microprobe Tips and Methods for Making
US20160194774A1 (en) Electrochemical Fabrication Process for Forming Multilayer Multimaterial Microprobe Structures Incorporating Dielectrics
TW200534519A (en) Probe arrays and method for making