TW200530309A - Etching composition, method of preparing the same, method of etching an oxide film, and method of manufacturing a semiconductor device - Google Patents

Etching composition, method of preparing the same, method of etching an oxide film, and method of manufacturing a semiconductor device Download PDF

Info

Publication number
TW200530309A
TW200530309A TW093131410A TW93131410A TW200530309A TW 200530309 A TW200530309 A TW 200530309A TW 093131410 A TW093131410 A TW 093131410A TW 93131410 A TW93131410 A TW 93131410A TW 200530309 A TW200530309 A TW 200530309A
Authority
TW
Taiwan
Prior art keywords
layer
etching
oxide
composition
ionic polymer
Prior art date
Application number
TW093131410A
Other languages
Chinese (zh)
Other versions
TWI386445B (en
Inventor
Yong-Kyun Ko
Sang-Mun Chon
In-Hoi Doh
Pil-Kwon Jun
Sang-Mi Lee
Kwang-Shin Lim
Myoung-Ok Han
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200530309A publication Critical patent/TW200530309A/en
Application granted granted Critical
Publication of TWI386445B publication Critical patent/TWI386445B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/008Polymeric surface-active agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

An exemplary etching composition includes about 0.1 to 8% by weight of hydrogen fluoride, about 10 to 25% by weight of ammonium fluoride, about 0.0001 to 3% by weight of a non-ionic polymer surfactant, and water. Using the composition in a wet etching process, an oxide layer may be selectively removed while a pattern or storage electrode including polysilicon may be effectively passivated. The oxide layer may be removed with a high etching selectivity, while at the same time minimizing damage to the polysilicon layer.

Description

200530309 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種餘刻組合物,且更詳言之,本發明係 關於-種具有高度姓刻選擇性之韻刻組合物、一種製備其 之方法、-種選譲刻一氧化物薄膜之方法及一種使用 其製造一半導體裝置之方法。 【先前技術】 哭2常,半導體記憶體裝置(諸如DRAM4sram)中的電容 、^有儲存電極、一介電薄膜及一板電極。該介電薄膜 通常由-具有低介電常數之材料製成,該材料諸如二氧化 石夕(Sl〇2)、二氧化石夕/氮化石夕(叫/叫义)及其類似物。 由^憶體裝置之整合程度已增加至吉比特之範圍或更 大:每單位單元之可用面積已減少至已在該等記憶體裝置 ,製造中出現問題之程度。在高度整合之裝置中可獲得的 車乂小可用面積中形成一具有至少25 μΙ?/單元之所要電容之 電容器特別困難。 l來在努力生產充足的電容時製造具有圓柱形狀 、、:構之電谷态。藉由利用該結構,電容器之内部與外部區 域均形成電容區域。另夕卜增加儲存電極之高度允許電容 之增加’而不占額外表面積。亦可在儲存電極上形成一半 球狀晶粒(HSG)層以進—步增加電容器之表面積,藉此進一 步增加電容。 在美國專利第6,413,813號(;eng Edk發表)及美國專利第 〜他’川號咖咖仙㈤等人發表^揭示了製造具有 96824.doc 200530309 hsg石夕層之電容器的半導體記憶體裝置之方法。 參看圖1A至1D,其為說明製造一半導體記憶體裝置之 HSG電容器之習知方法之截面圖。 如圖1A所示,隔離層15在基板1〇上形成以界定一活動區 域。接著’在基板10之活動區域上形成閘極結構35。各個 閘極結構35包括一閘電極20、一封頂層25及一隔離片3〇。200530309 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a kind of composition, and more specifically, the present invention relates to a kind of rhyme composition with a high degree of surname selectivity, a preparation A method thereof, a method for selecting and engraving an oxide thin film, and a method for manufacturing a semiconductor device using the same. [Prior art] In general, capacitors in semiconductor memory devices (such as DRAM4sram) have storage electrodes, a dielectric film, and a plate electrode. The dielectric film is usually made of a material having a low dielectric constant, such as SiO 2 (SiO 2), SiO 2 / Nitride (called / named), and the like. The level of integration of memory devices has increased to the range of gigabits or more: the usable area per unit unit has been reduced to the extent that problems have occurred in the manufacture of these memory devices. It is particularly difficult to form a capacitor with a desired capacitance of at least 25 μI / unit in the small usable area of a car available in a highly integrated device. l To produce a cylindrical shape with a cylindrical shape when trying to produce sufficient capacitors. By using this structure, both the internal and external regions of the capacitor form a capacitance region. In addition, increasing the height of the storage electrode allows the capacitance to be increased 'without taking up additional surface area. It is also possible to form a hemispherical grain (HSG) layer on the storage electrode to further increase the surface area of the capacitor, thereby further increasing the capacitance. Published in U.S. Patent No. 6,413,813 (published by eng Edk) and U.S. Patent No. ~ He Kawasaki Kakasenchi et al. ^ Discloses a method for manufacturing a semiconductor memory device having a capacitor having 96824.doc 200530309 hsg Shixian . 1A to 1D, cross-sectional views illustrating a conventional method of manufacturing a HSG capacitor for a semiconductor memory device. As shown in FIG. 1A, an isolation layer 15 is formed on the substrate 10 to define an active area. Next, a gate structure 35 is formed on the active region of the substrate 10. Each gate structure 35 includes a gate electrode 20, a top layer 25, and a spacer 30.

Ik後,源極/汲極區域4〇藉由在閘極結構3 5之間之一離子植 入處理形成。一導電層在包括閘極結構35之基板1〇之整個 表面上沉積,且接著將經沉積之導電層平面化以形成一接 觸墊片45。一層間介電層(或層間絕緣層)50在基板1〇上形 成。接著,®案化制介電層5(m形成-曝露接觸塾片45 之接觸孔。-導電層在層間介電層5〇上沉積以填充該接觸 孔。接著平面化該導電層以形成_連接至接觸墊片45之儲 存卽點接觸插塞5 5。 接著, 一蝕刻中止層60及一下 F節點接觸插塞55上沉 料’且該下部犧牲層65 如在圖1B中所示,隨後,一 部犧牲層65在層間介電層5〇及儲存節 積。該蝕刻中止層60包括氮化物材料, 包括諸如BPSG之氧化物材料。After Ik, the source / drain region 40 is formed by an ion implantation process between the gate structures 35. A conductive layer is deposited on the entire surface of the substrate 10 including the gate structure 35, and then the deposited conductive layer is planarized to form a contact pad 45. An interlayer dielectric layer (or interlayer insulating layer) 50 is formed on the substrate 10. Next, the dielectric layer 5 is formed. The contact hole of the contact pad 45 is exposed. A conductive layer is deposited on the interlayer dielectric layer 50 to fill the contact hole. Then the conductive layer is planarized to form a _ The storage contact point plug 5 5 connected to the contact pad 45. Next, an etch stop layer 60 and a lower F-node contact plug 55 sink the material, and the lower sacrificial layer 65 is as shown in FIG. 1B, and then A sacrificial layer 65 is deposited between the interlayer dielectric layer 50 and the storage layer. The etch stop layer 60 includes a nitride material, including an oxide material such as BPSG.

96824.doc 200530309 層。接著圖案化該摻雜多晶矽層以在儲存節點接觸孔乃之 =土 口卩刀及儲存節點接觸插塞上形成一儲存電極肋。接 著,在儲存電極80上選擇性地形成一HSQ矽層85。 接著,參看圖1D,移除上部犧牲層7〇及下部犧牲層65。 通常,此藉由一利用LAL蝕刻溶液之濕式蝕刻處理來實 見接著,連績地沉積一氧化物層或一氮化物層,及導電 層奴後圖案化導電層、氧化物層或氮化物層,及蝕刻中 止層60以形成介電薄膜9〇及覆蓋儲存電極肋上之一電池陣 列區域之上部電極95,從而完成HSG電容器97。 该習知方法具有一缺點,即多晶矽儲存電極在hsg矽層 之形成期間傾向於惡化。結果,當移除上部及下部犧牲層 時,儲存電極易受損害。此將在下文中進一步解釋。 圖2為在使用一習知LAL溶液蝕刻氧化物犧牲層之後的 儲存電極之電子顯微鏡影像。 “如圖2中所見,當移除上部及下部犧牲層時,多晶矽儲存 電極受損害⑷。此係由於在用以生長HSG石夕層之熱處理期 間,儲存電極中之多晶矽結晶化。包含於用以移除氧化物 T牲層之LAL蝕刻溶液中的氟化銨⑺私”離子容易剝落結 晶化多晶矽。因此,引入儲存電極之損害。 在防止與LAL蝕刻溶液之使用相關之問題的努力中,已 研九種使用氟化氫與去離子水之混合比為大約5 :丨之蝕 刻溶液來移除氧化物層之濕式蝕刻方法。 圖3為在使用5:1氟化氫溶液蝕刻氧化物犧牲層之後的儲 存電極之電子顯微鏡圖片。 96824.doc 200530309 參看圖3 ’當5:1氟化氫溶液用以移除上部及下部氧化物 犧牲層0守,與使用LAL蝕刻溶液之蝕刻處理相比,儲存電 極相對未受損害。然而,在安置於基板上之敍刻中止層上 的姓刻分散之量增加。钮刻分散意味著韻刻為不均勾的。 另外,蝕刻之氮化物層之量亦增加,因此,當產生過蝕刻 時,減少了餘刻範圍。 圖4A為解釋在使用習知5:1氟化氫溶液之浸潰技術之钱 刻處理之後’殘留氮化物層之厚度(触刻)分散之俯視圖。圖 4B為解釋在使用習知5:1氟化氫溶液之猶環技術之敍刻處 理之後’彡留氮化物層之厚度(蝕刻)分散之俯視圖。 參看圖4A,執行一浸潰類型濕式蝕刻處理大約67〇秒。殘 留在基板上之氮化物層之平均厚度大約為419A。其最大厚 度大約為442 A,且其最小厚度大約為373 A。即,在氮化 物層之最大厚度與最小厚度之間的差值大約為69 A。因 此,可得出結論,即對於氮化物層而言蝕刻處理為不均勻 的。 參看圖4B,執行一循環類型濕式蝕刻處理大約了⑽秒。殘 留在基板上之氮化物層之平均厚度大約為425人。其最大厚 度大約為444 A,且其最小厚度大約為4〇5 A。即,在殘= 氮化物層之最大厚度與最小厚度之間之差值大約為% A。 與/叉/貝類型濕餘刻相比,該差值大大減少,但是對於氮化 物層而言該濕姓刻處理仍為不均勻的。 5:1氟化氫溶液之PH大約為丨,即強酸。因此,濕式蝕刻 處理在強酸環境下執行。結果’氮化物層被不均勻地蝕刻 96824.doc 200530309 且氮化物層之分散較高。另外,自基板之傾斜部分或背面 部分剝落之顆粒可在基板之表面部分上在濕式蝕刻處理期 間被吸收以致引入軟炫類型之缺陷。 【發明内容】 根據本發明之一態樣,一種蝕刻組合物包括大約心丨至^ 重量百分比之氟化氫(HF),大約 銨(NH4F),大約0.0001至3重量百 活性劑,及水(h2o)。 10至25重量百分比之氟化 分比之非離子聚合物界面 根據本發明之另一態樣,一種製備蝕刻組合物之方法包 括以下步驟:藉由將非離子聚合物界面活性劑與氣化氣溶 液扣口來製備第一混合物溶液,及藉由將水與該第一混合 物溶液混合來製備第二混合物溶液。接著藉由將氣化錄溶 液與該第二混合物溶液混合來製備蝕刻組合物。 仍根據本發明之另一態樣,一種蝕刻方法包括以下步 驟二在-基板上形成-氮化物層;在該氮化物層上方形成 -氧化物層;及圖案化該氧化物層以形成曝露該氮化物層 之接觸孔。接著,在該曝露之氮化物層及該接觸孔之内側 壁部分上形成-多晶梦層圖案’且使用㈣組合物來移除 該氧化物層。錢刻組合物包括非離子聚合物界面活性 劑,其選擇性地吸附於多晶石夕層圖案之表面部分,以鈍化 该多晶碎層圖案。 又根據本發明之另-態樣,—種製造半導體裝置之方法 包括以下步驟:在一半導體基板上形成-蝕刻中止層;在 該姓刻中止層上形成第—氧化物層;在該第-氧化物層上 96824.doc 200530309 第一乳化物層’·及部分地移除第一96824.doc 200530309 layer. Then, the doped polycrystalline silicon layer is patterned to form a storage electrode rib on the storage node contact hole = a trowel and a storage node contact plug. Next, an HSQ silicon layer 85 is selectively formed on the storage electrode 80. Next, referring to FIG. 1D, the upper sacrificial layer 70 and the lower sacrificial layer 65 are removed. Generally, this is achieved by a wet etching process using an LAL etching solution. Next, an oxide layer or a nitride layer is successively deposited, and a conductive layer is patterned after the conductive layer, oxide layer, or nitride is patterned. Layer, and an etch stop layer 60 to form a dielectric film 90 and cover the upper electrode 95 of a battery array region on the storage electrode rib, thereby completing the HSG capacitor 97. This conventional method has a disadvantage that the polycrystalline silicon storage electrode tends to deteriorate during the formation of the hsg silicon layer. As a result, when the upper and lower sacrificial layers are removed, the storage electrode is easily damaged. This will be explained further below. Figure 2 is an electron microscope image of a storage electrode after etching a sacrificial oxide layer using a conventional LAL solution. "As seen in Figure 2, the polycrystalline silicon storage electrode was damaged when the upper and lower sacrificial layers were removed. This is due to the crystallization of polycrystalline silicon in the storage electrode during the heat treatment used to grow the HSG stone layer. To remove the ammonium fluoride ions from the LAL etching solution of the oxide T layer, the crystalline polycrystalline silicon is easily peeled off. Therefore, damage to the storage electrode is introduced. In an effort to prevent problems associated with the use of LAL etching solutions, nine wet etching methods have been developed that use an etching solution with a mixing ratio of hydrogen fluoride and deionized water of about 5: 1 to remove the oxide layer. Fig. 3 is an electron microscope picture of a storage electrode after etching a sacrificial oxide layer using a 5: 1 hydrogen fluoride solution. 96824.doc 200530309 Refer to Figure 3 ′ When 5: 1 hydrogen fluoride solution is used to remove the upper and lower oxide sacrificial layers, the storage electrode is relatively undamaged compared with the etching process using LAL etching solution. However, the amount of dispersion of the last names on the last stop layer placed on the substrate increases. Dispersion of the button carving means that the rhyme carving is uneven. In addition, the amount of the nitride layer to be etched is also increased, and therefore, when the over-etching is generated, the range of the etching is reduced. Fig. 4A is a plan view explaining the dispersion (thickness) of the residual nitride layer's thickness after the etching process using the conventional 5: 1 hydrogen fluoride solution impregnation technique. Fig. 4B is a plan view explaining the thickness (etching) dispersion of the 'retained nitride layer' after the etch process using the conventional 5: 1 hydrogen fluoride solution still ring technique. Referring to FIG. 4A, an immersion type wet etching process is performed for about 670 seconds. The average thickness of the nitride layer remaining on the substrate is about 419A. Its maximum thickness is approximately 442 A and its minimum thickness is approximately 373 A. That is, the difference between the maximum thickness and the minimum thickness of the nitride layer is about 69 A. Therefore, it can be concluded that the etching process is non-uniform for the nitride layer. Referring to FIG. 4B, it takes about a leap second to perform a cycle-type wet etching process. The average thickness of the nitride layer remaining on the substrate is about 425 people. Its maximum thickness is approximately 444 A, and its minimum thickness is approximately 4.05 A. That is, the difference between the maximum thickness and the minimum thickness of the residual = nitride layer is approximately% A. This difference is greatly reduced compared to the / fork / shell type wet afterburning, but the wet lasting treatment is still uneven for the nitride layer. The pH of 5: 1 hydrogen fluoride solution is about 丨, which is a strong acid. Therefore, the wet etching process is performed under a strong acid environment. As a result, the nitride layer was etched unevenly 96824.doc 200530309 and the dispersion of the nitride layer was high. In addition, particles peeled off from the inclined portion or the back portion of the substrate may be absorbed on the surface portion of the substrate during the wet etching process so as to introduce a soft-glare type defect. [Summary of the Invention] According to one aspect of the present invention, an etching composition includes about 5% to about 5% by weight of hydrogen fluoride (HF), about ammonium (NH4F), about 0.0001 to 3 weight percent active agent, and water (h2o) . 10 to 25 weight percent fluorinated non-ionic polymer interface. According to another aspect of the present invention, a method for preparing an etching composition includes the following steps: by combining a non-ionic polymer surfactant with a gasification gas The solution is clipped to prepare a first mixture solution, and a second mixture solution is prepared by mixing water with the first mixture solution. Then, an etching composition is prepared by mixing the vaporization recording solution with the second mixture solution. According to still another aspect of the present invention, an etching method includes the following steps: forming a nitride layer on a substrate; forming an oxide layer over the nitride layer; and patterning the oxide layer to form an exposed layer The contact hole of the nitride layer. Next, a polycrystalline dream layer pattern 'is formed on the exposed nitride layer and the inner wall portion of the contact hole, and the oxide layer is removed using a samarium composition. The coin-cut composition includes a non-ionic polymer surfactant, which is selectively adsorbed on a surface portion of the polycrystalline stone layer pattern to passivate the polycrystalline layer pattern. According to another aspect of the present invention, a method for manufacturing a semiconductor device includes the following steps: forming an etching stop layer on a semiconductor substrate; forming a first oxide layer on the last stop layer; and On the oxide layer 96824.doc 200530309 the first emulsion layer 'and partially removed the first

曝露一接觸區域。接著, 物層M 接觸區域,且使用㈣έ日人仏+ 曰口茶,、接觸该 刻組合物來移除第-與第二氧化物 層。該蝕刻組合物包括非離 务 lL , 卜雕卞來合物界面活性劑,1 性地吸附於多晶矽層圖宰 /、&擇 圖案。 ^案之表面部分’以鈍化該多晶石夕層 【實施方式】 考夕個較佳但非限制性之實施例來描述本發明。 該等實施例係關於一種姓刻組合物,一種製備錄合物 之方法’ -種蝕刻方法’及一種製造半導體裝置之方法。 银刻組合物 /據本發明之一實施例之钮刻組合物包括氟化氫、氟化 鉍、非離子聚合物界面活性劑、及水。 、-種具有大約40至60重量百分比之濃度之敦化氫卿容 液可用以製備該㈣組合物。包含於該㈣組合物之氣化 氫的量較佳在大約(M至大約〇8重量百分比之範圍内。 、一具有大約30至50重量百分比之濃度之氟化銨…^。溶 液可用以製備該蝕刻組合物。包含於該蝕刻組合物之氟化 銨之量較佳地在大约1〇至大約25重量百分比之範圍内。 當非離子聚合物界面活性劑之量低於大約〇 〇〇〇1重量百 刀比時’由於顆粒之背面吸收之缺陷之防止將會不充分, 且當界面活性劑之量超過大約3重量百分比時,防止缺陷之 改進較為微小。因此,非離子聚合物界面活性劑之量基於 組合物之總量較佳在大約〇 〇〇〇1至大約3重量百分比之範 96824.doc 200530309 更佳在大約0·001至大約〇·〇2重量百分比之範圍内。 非離子聚合物界面活性劑可包括一種具有親水性與疏水 性之非離子聚合物(即,非離子聚合物既具有親水基又具有 疏水基)。 非離子聚合物界面活性劑之實例包括聚乙二醇與聚丙二 醇之篏段共聚物(替代地稱作,,乙二醇/丙二醇嵌段共聚物,,,其 為/、有環氧乙烧及環氧丙烧鏈之嵌段共聚物且其藉由共聚 乙二醇與丙二醇單體來製造)、聚乙二醇與聚丙二醇之隨機 共聚物(替代地稱作"乙二醇/丙二醇隨機共聚物,,,其為具有 環氧乙烷及環氧丙烷鏈之隨機共聚物且其藉由共聚乙二醇 與丙二醇單體來製造)、聚氧化乙烯與聚氧化丙烯之嵌段共 聚物(替代地稱作,,環氧乙烷/環氧丙烷”般段共聚物,其為具 有氧化乙稀及環氧丙烧鏈之嵌段共聚物且其藉由共聚環氧 乙烷與環氧丙烷單體來製造)、或聚氧化乙烯與聚氧化丙烯 之隨機共聚物(替代地稱作”環氧乙烷/環氧丙烷隨機共聚 物Π ’其為具有環氧乙烷及環氧丙烷鏈之隨機共聚物且其藉 由共聚環氧乙烷/環氧丙烷單體來製造)。 較佳地’非離子聚合物界面活性劑具有下列結構··Expose a contact area. Then, the material layer M is in contact with the area, and the first and second oxide layers are removed by contacting the composition with ㈣ 日人 仏 + 口 口 茶. The etching composition includes a non-removable lL, a disulfonate compound surfactant, and is characteristically adsorbed on a polycrystalline silicon layer. The surface portion of the case is used to passivate the polycrystalline stone layer. [Embodiment] The present invention will be described with reference to a preferred but non-limiting example. The embodiments are related to a surname-engraving composition, a method for preparing a recording material '-an etching method', and a method for manufacturing a semiconductor device. Silver engraved composition / The button engraved composition according to one embodiment of the present invention includes hydrogen fluoride, bismuth fluoride, a nonionic polymer surfactant, and water. A hydrazone solution having a concentration of about 40 to 60% by weight can be used to prepare the tincture composition. The amount of hydrogenated hydrogen contained in the thorium composition is preferably in the range of about (M to about 08% by weight). An ammonium fluoride having a concentration of about 30 to 50% by weight ... The etching composition. The amount of ammonium fluoride included in the etching composition is preferably in the range of about 10 to about 25 weight percent. When the amount of the non-ionic polymer surfactant is less than about 0.0000 At a weight ratio of 100 knives, the prevention of defects due to absorption on the back of the particles will be insufficient, and when the amount of the surfactant exceeds about 3% by weight, the improvement in preventing defects is relatively small. Therefore, the nonionic polymer interface activity The amount of the agent is preferably in the range of about 0.0001 to about 3 weight percent based on the total amount of the composition. 96824.doc 200530309, more preferably in the range of about 0.001 to about 0.002 weight percent. Nonionic The polymer surfactant may include a nonionic polymer that is both hydrophilic and hydrophobic (ie, a nonionic polymer has both hydrophilic and hydrophobic groups). Nonionic polymer interface activity Examples include fluorene copolymers of polyethylene glycol and polypropylene glycol (alternatively referred to as, ethylene glycol / propylene glycol block copolymers), which are Block copolymers and made by copolymerizing polyethylene glycol and propylene glycol monomers), random copolymers of polyethylene glycol and polypropylene glycol (alternatively referred to as " ethylene glycol / propylene glycol random copolymers, and, Is a random copolymer with ethylene oxide and propylene oxide chains and is produced by copolymerizing polyethylene glycol and propylene glycol monomers), a block copolymer of polyethylene oxide and polypropylene oxide (alternatively ,, "Ethylene oxide / propylene oxide" -like copolymer, which is a block copolymer with ethylene oxide and propylene oxide chain and is manufactured by copolymerizing ethylene oxide and propylene oxide monomers), Or a random copolymer of polyethylene oxide and polypropylene oxide (alternatively referred to as a "ethylene oxide / propylene oxide random copolymer" which is a random copolymer having ethylene oxide and propylene oxide chains and which borrows Manufactured from copolymerization of ethylene oxide / propylene oxide monomers. Ionic polymeric surfactant having the following structure ··

H-(OCH2CH2)x-(OCH(CH3)CH2)y-(〇CH2CH2)z-OH 其中X、y及z為正整數,且平均分子量之重量大約為3000或 更少。 具有上述結構之聚乙二醇與聚丙二醇之嵌段共聚物包括 商業可獲得之 Synperonic PE/L64 或 Synperonic PE/L61,其 由德國之FLUKA公司製造。Synperonic PE/L64或 96824.doc 12 200530309H- (OCH2CH2) x- (OCH (CH3) CH2) y- (〇CH2CH2) z-OH where X, y, and z are positive integers, and the weight of the average molecular weight is about 3000 or less. The block copolymer of polyethylene glycol and polypropylene glycol having the above structure includes commercially available Synperonic PE / L64 or Synperonic PE / L61, which are manufactured by the company FLUKA in Germany. Synperonic PE / L64 or 96824.doc 12 200530309

Synperonic PE/L61為基於醇淨化並洗滌之分散劑,且產生 少量副產品,藉此其有利於環境且具有較好可濕性。 Synp⑽nic PE/L64具有大約2900或更少之分子量2大約 1.05 g/ml之密度。Synperonic !^/£61具有大約2〇〇〇或更少 之分子量及大約1.02 g/ml之密度。 或者,非離子聚合物界面活性劑可包括聚醇非離子聚合 物界面活性劑。聚醇非離子界面活性劑之實例包括聚醇單 酯及二酯、其環氧乙烷添加劑、脂肪族烷醇醯胺⑷ alkanol amide)、其環氧乙烷添加劑及其類似物。聚醇之實 例可包括丙三醇、異戊四醇、山梨聚糖等。 山衆眾糠酯之環 ......... 于乂狂眾醇非離子 界面活性劑。當用一諸如氫氧化鈉之催化劑加熱山梨醇 (s〇rbit)與脂族酸時,山梨醇脫水產生山梨聚糖。因此形成 之山梨聚糖與脂族酸反應產生酯化合物。Synperonic PE / L61 is a dispersant based on alcohol purification and washing, and produces a small amount of by-products, which is beneficial to the environment and has good wettability. Synp⑽nic PE / L64 has a molecular weight of about 2900 or less and a density of about 1.05 g / ml. Synperonic! ^ / £ 61 has a molecular weight of about 2000 or less and a density of about 1.02 g / ml. Alternatively, the non-ionic polymer surfactant may include a polyalcohol non-ionic polymer surfactant. Examples of the polyalcohol nonionic surfactant include polyalcohol monoesters and diesters, ethylene oxide additives thereof, aliphatic alkanolamines (alkanol amide), ethylene oxide additives thereof, and the like. Examples of the polyhydric alcohol may include glycerol, isoprene tetraol, sorbitan, and the like. The ring of Shanzhongzhong furfuryl ester ......... When sorbitol and aliphatic acids are heated with a catalyst such as sodium hydroxide, the sorbitol is dehydrated to produce sorbitan. The sorbitan thus formed reacts with an aliphatic acid to produce an ester compound.

聚山梨醇酯8 0之結構如下列山梨聚糖脂之實例所說明 HO(CH,aia〇)t (aaaCH,)x0H ΜThe structure of polysorbate 8 0 is illustrated by the following examples of sorbitan lipids HO (CH, aia〇) t (aaaCH,) x0H Μ

、。入严 ocuaUyOH CH,(oCB,aU〇ooai,(ai,)ftcHiaKaaii(a^•巩 其中w、x、y&z為正整數。 上述化合物之化學結構如下列化學式所說明: 96824.doc -13- 200530309. Enter strict ocuaUyOH CH, (oCB, aU〇ooai, (ai,) ftcHiaKaaii (a ^ • Gong where w, x, y & z are positive integers. The chemical structure of the above compounds is as illustrated by the following chemical formula: 96824.doc -13 -200530309

包括聚山梨醇酯60、聚山梨醇酯65及其類似物之山梨聚 糖酯的環氧乙烷添加劑亦可用於本發明之實施例。 將在下文中描述一種用於在一氧化物層之選擇性蝕刻期 間,藉由非離子聚合物來鈍化一多晶矽層之機制。 圖5 A與5B為用於解釋藉由本發明之一實施例之蝕刻組 合物來鈍化一多晶石夕層之機制的示意性截面圖。 圖5A中,當將具有疏水基與親水基之非離子聚合物作為 界面活性劑添加進包括氟化銨、氟化氫及水之溶液中時, 如圖5B中所示,非離子聚合物選擇性地吸附於多晶矽層表 面。界面活性劑之吸收在隨後之氧化物層之濕蝕刻期間有 助於保護多晶矽層。即,當選擇性地蝕刻氧化物層時,由 於非離子聚合物之存在可最小化或避免對多晶矽層之損 害。而且,可獲得氮化物層之蝕刻均勻性。 蝕刻組合物之製備 圖6為說明根據本發明之一實施例製備蝕刻組合物之方 法的流程圖。 96824.doc -14- 200530309 參看圖6,在步驟Sl0中,將具有大約5〇重量百分比濃度 、勺〇. 1至8重里百分比之最終濃度的說化氯(HF)溶液添 ^進-容器中。接著’在步驟S2q中,將大狀刪⑴重 量百分比’車交佳為大約0.001至〇〇2重量百分比之界面活性 劑添加進絲化氫溶液中。在步对,將因此獲得之氣 化氫/合液與界面活性劑之混合物搜摔大約3個小時或更多 :句勻地此合5亥 >谷液以製備第一混合物溶液(該步驟稱作 第一混合步驟)。 在步驟S40中,向第一混合物溶液添加一預定量之水 (氏〇)。在步驟S50,將因此獲得之混合物攪拌大約3個小時 或更夕以均勻地將該第一混合物溶液與水混合以製備第二 混合物溶液(該步驟稱作第二混合步驟)。 在步知S60中,向第二混合物溶液添加具有大約4〇重量百 刀比之/辰度的氟化銨溶液,使得氟化銨溶液之最終濃度大 約為10至25重量百分比。在步驟S7〇中,將第二混合物溶液 與氟化銨溶液均句地攪拌大約12個小時或更多以獲得均勻 混合之蝕刻組合物(該步驟稱作第三混合步驟)。 一循環泵與一過濾器連接至該容器以循環並過濾第一混 a物/谷液、第一混合物溶液及|虫刻組合物中的顆粒。在第 一混合物溶液、第二混合物溶液及蝕刻組合物之製備期 間’所有溶液及蝕刻組合物保持在大約丨〇至大約4〇艺之溫 度。 若各個組份並未如上文所述被添加及攪拌,則氟化銨可 潛在地與氟化氫反應產生NH4FHF2晶體,藉此產生不具有 96824.doc ^ 200530309 所要特性之蝕刻組合物。 實例1 :::大約50重量百分比之濃度之氟化氫(HF)溶液添加 …今I I #著將少量界面活性劑添加進具有該氟化氫 夜之谷π中。可使用市售之由德國fluka公司製造的 y PfOnie PE/L64來作為界面活性劑。攪拌包括界面活性 劑之肌化氫溶液超過3個小時,以製備第—混合物溶液。向 該第一混合物溶液添加水(H2〇)。㈣水與該第—混合物溶 液超過3個小時,以獲得均勾混合之第二混合物溶液。 〆向第二混合物溶液添加具有大約4〇重量百分比之濃度的 就化錢溶液,使得該氟化銨之最終濃度大約為1G至25重量 百刀比。攪拌第二混合物溶液與氟化銨溶液超過12個小 時,以製備均勻混合之蝕刻組合物。 將循娘泵與一過濾器連接至該容器,以循環並過濾第 一混合物溶液、第二混合物溶液及蝕刻組合物中的顆粒。 在第一混合物溶液、第二混合物溶液及蝕刻組合物之製備 期間’該溶液保持在大約1〇至大約4〇〇c之溫度。 獲得包含大約18重量百分比之氟化銨、大約4 5重量百分 比之氟化氫及大約〇.001至〇 〇2重量百分比之非離子聚合物 界面活性劑的蝕刻組合物。 實例2 以如實例1中所描述之相同方式製備蝕刻組合物,除了使 用 Synperonic PE/L64 及 polysorbate 80 代替 Synperonic PE/L64來用作界面活性劑以外。所獲得之触刻組合物包含 96824.doc -16- 200530309 大約18重量百分比之氟化銨及大約4 5重量百分比之氟化 氫及大約1 〇 ppm之非離子界面活性劑、Synper〇nic pE/L64 及大約200 ppm之聚山梨醇酯8〇。 實例3 以如實例1中所描述之相同方式製備蝕刻組合物,除了使 用聚山梨醇酯80代替Synperonic PE/L64來用作界面活性劑 以外。所獲得之蝕刻組合物包含大約18重量百分比之氟化 銨及大約4.5重量百分比之氟化氫,及作為非離子界面活性 劑之大約200 ppm之聚山梨醇酯8〇。 比較實例1 藉由將氟化氫(HF)與去離子水(EU•水)以大約之混合 比混合來製備钱刻組合物。 比較實例2 藉由將大約40重量百分比之氟化銨、大約5〇重量百分比 之氟化氫及去離子水以大約5:1:5之混合比混合,並接著添 加相同莫耳比之CgHnNH2與C^HbCOOH以將界面活性劑之 濃度調整至大約200 ppm來製備蝕刻組合物(LAL 5〇〇水溶 液)。 比較實例3 藉由將相同莫耳比之與C9Hi9C〇〇H添加進比較 貝例1之I虫刻組合物中以將界面活性劑之濃度調整至大約 200 ppm來製備蝕刻組合物。 比較實例4 以與比較實例2中所描述之相同方式製備蝕刻組合物,除 96824.doc 17 200530309 了未添加界面活性劑之外。 蚀刻氧化物層 圖7A至7C為說明藉由使用根據本發明之蝕刻組合物選 擇性地蝕刻在一氧化物層、一氮化物層及一多晶矽層中之 一氧化物層之方法的截面圖。圖7A至7C中,為簡單起見, 並未展示或描述在一基板與一氮化物層之間的下層結構。 參看圖7A,在諸如矽晶圓之基板1〇〇上連續地形成一氮化 物層105、第一氧化物層11〇及第二氧化物層115。在該實例 中,氮化物層105使用氮化矽(SiN)形成,第一氧化物層11〇 使用BPSG形成,且第二氧化物層115使用pE-TE〇s形成。 簽看圖7B ’部分地蝕刻第二氧化物層j丨5及第一氧化物層 110以开^/成一用於藉由微影技術曝露氮化物層1 〇 $之接觸孔 120。在通過接觸孔12〇在曝露之氮化物層1〇5上及在接觸孔 120之内側壁及第二氧化物層115上形成一多晶矽層之後, 圖案化該多晶矽層以形成一多晶矽層圖案丨2 5。 參看圖7C,第二氧化物層115及第一氧化物層11〇藉由使 用根據本發明之一實施例之上文所述之蝕刻組合物的濕式 颠刻處理來餘刻。亦部分地蝕刻基板1〇〇上之氮化物層1〇5 之上部部分。此處,由於該實施例之蝕刻組合物包括非離 子聚合物’其吸附於多晶矽層圖案125之表面部分,以鈍化 該多晶矽層圖案125,因此在蝕刻第一與第二氧化物層11() 與115期間’多晶矽層圖案125之損害可顯著地減少。另外, 與習知LAL或5:1氟化氫蝕刻溶液相比,改良了在氮化物層 105上的餘刻均勻性。將在下文描述蝕刻處理之後在氮化物 96824.doc -18- 200530309 層105、第一與第二氧化物層11〇與115、及多晶矽層圖案i25 上的蝕刻結果。 蝕刻實驗1 圖8A至8D為說明在藉由使用根據本發明之實例1獲得之 姓刻組合物及根據比較實例1至3獲得之蝕刻組合物之濕式 蝕刻處理中用於PE_TE〇s層、Bpsg層、氮化矽層(SiN)及多 晶矽層之蝕刻速率之圖。圖8A對應於氮化矽層之蝕刻結 果;圖8B對應於BPSG層之蝕刻結果;圖8(:對應於pE_TE〇s 層之蝕刻結果;及圖8〇對應於多晶矽層之蝕刻結果。 參看圖8A,在藉由使用實例丨之蝕刻組合物之濕式蝕刻處 理蝕刻PE-TEOS層與BPSG層期間,用於氮化矽層之平均蝕 刻速率大約為每分鐘26 A。其最大蝕刻速率大約為每分鐘 27 A ’且其最小蝕刻速率大約為每分鐘24 a。因此,蝕刻 速率分散僅大約為每分鐘3 A。 相反,當使用根據比較實例丨之氟化氫蝕刻溶液時,用於 氮化矽層之平均蝕刻速率大約為每分鐘76 A。其最大蝕刻 速率大約為每分鐘86 A,且其最小蝕刻速率大約為每分鐘 6 5入。因此’ I虫刻速率分散大約為每分鐘2丨A。 當使用根據比較實例2之LAL 500蝕刻溶液時,用於氮化 物層之平職刻速率大約為每分鐘14 A。其最大#刻速率 大約為每分鐘15 A,且其最小蝕刻速率大約為每分鐘13 A。因此,蝕刻速率分散大約為每分鐘2 A,其很低。 、,當使用根據比較實例3之蝕刻组合物時,用於氮化物層之 平均钱刻速率大約為每分鐘46 A。其最大姓刻速率大約為 96824.doc -19- 200530309 每分鐘49 A,且其最小勒刻速率大約為每分鐘43 A。因此, 钱刻速率分散大約為每分鐘6 A。 因此,與習知姓刻組合物相比,在藉由使用實例!之敍刻 組合物姓刻PE_TE〇s層與鹏G層期間,大大改良了氮化石夕 層之姓刻均勻性。 參看圖8B,在藉由使用根據實例〗之蝕刻組合物之濕蝕刻 處理中,用於BPSG層之平均蝕刻速率大約為每分鐘23〇3 A。其最大蝕刻速率大约為每分鐘239〇 A,且其最小蝕刻速 率大約為每分鐘2215 A。因此,蝕刻速率分散大約為每分 鐘 175 A 〇 當使用根據比較實例1之氟化氫蝕刻溶液時,用於BpsG 層之平均蝕刻速率大約為每分鐘5885 A。其最大蝕刻速率 大、力為母分知6298 A,且其最小银刻速率大約為每分鐘 5472 A。因此,蝕刻速率分散大約為每分鐘826 a。即,用 於BPSG層之蝕刻速率增加而阶⑽層之蝕刻均勻性大大降 低。 當使用根據比較實例2之LAL 5 00蝕刻溶液時,用於BPSG 層之平均蝕刻速率大約為每分鐘582 A。其最大蝕刻速率大 約為每分鐘591 A,且其最小蝕刻速率大約為每分鐘572 A。因此,蝕刻速率分散大約為每分鐘19 A,其很低。儘管 可獲得8?80層之姓刻均勻性,但是當使用習知[入1^ 500姓 刻溶液時,蝕刻速率大大降低了。 當使用根據比較實例3之蝕刻組合物時,用於BPSG層之 平均钱刻速率大約為每分鐘3939 A。其最大蝕刻速率大約 96824.doc -20- 200530309 ,母刀44181 A,且其最小㈣速率大約為每分鐘· 。因此,姓刻速率分散大約為每分她A。儘管可獲得 BPSG層之充分的㈣速率,但是BpsG層之㈣均勾性降 低0 因此’當應用根據本發明之實施例之蝕刻組合物時, BPSG層以_適#蚀刻速桂刻,而與習知㈣組合物相比 具有名虫刻均勻性。 參看圖8C,在藉由使用根據實例j之蝕刻'組合物之濕蝕刻 處理中,用於PE-TEOS層之平均姓亥彳速率大約為每分鐘 3124 A。其最大蝕刻速率大約為每分鐘3132 A,且其最小 姓刻速率大約為每分鐘3116 Αβ因此,钱刻速率分散僅大 約為每分鐘16 A,其很低。 當使用根據比較實例丨之氟化氫蝕刻溶液時,用於 PE-TEOS層之平均蝕刻速率大約為每分鐘3〇31 A。其最大 蝕刻速率大約為每分鐘3529 A,且其最小蝕刻速率大約為 每分鐘2533 A。因此,蝕刻速率分散大約為每分鐘996 A。 即,當使用習知5:1氟化氫蝕刻溶液時,用於pE_TE〇s層之 蝕刻速率降低,同時PE-TEOS層之蝕刻均勻性亦大大降低。 當使用根據比較實例2之LAL 500蝕刻溶液時,用於 PE-TEOS層之平均蝕刻速率大約為每分鐘1262 A。其最大 I虫刻速率大約為每分鐘1316 A,且其最小蝕刻速率大約為 每分鐘1208 A。因此,蝕刻速率分散大約為每分鐘1〇8入, 其很低。儘管可獲得PE_TEOS層之蝕刻均勻性,但是當使 用習知LAL 500#刻溶液時,|虫刻速率大大降低。 96824.doc -21 - 200530309 當使用根據比較實例3之姓刻、組合物時,用於pE_丁删層 之平侧速率大約為每分鐘· A。其最大韻刻速率: 約為每分鐘3195 A,且其最小㈣速率大約為每分鐘刪 A。因此,勤刻速率分散大約為每分鐘1575人。儘管可獲得 ΡΕ-TEOS層之高蝕刻速率,但是當使用習知Μ 5_虫刻溶 液時,PE-TEOS層之蝕刻均勻性降低。 因此’當藉由使用根據本發明之實#J1之姓刻組合物敍刻 PE-TEOS層時’獲得較㈣刻速率及適當㈣均勾性。 參看圖8D,在藉由使用實例1之钮刻組合物之濕敍刻處理 姓刻PE-TEOS層及BPSG層期間,用於多晶石夕層之平均韻刻 ,率大約為每分鐘9 A。其最大㈣速率大約為每分鐘9.8 ,且其最小_速率大約為每分鐘88 此, 率分散僅大約為每分鐘! A。即,在_處理期間,多晶石夕 層被適當地純化。 當使用根據比較實例!之氟化氫姓刻溶液時,用於多晶石夕 率:約為每分鐘8A。其最大敍刻速率大約 刀里.,且〆、最小姓刻速率大約為每分鐘ΜΑ。因 此,蝕刻速率分散大約為每分鐘1 A。 欲Γ吏用根據比較實例&LAL_刻溶液時,用於多晶 =他刻速率大約為每分鐘“。其最大敍刻速率大 因f ·5Α,且其最小_速率大約為每分鐘7·5Αβ :’蝕刻速率分散大約為每分鐘1Α,其很低。 當使用根據比較實例3之_組合物時,用於多 平均蝕刻速率大約為每分Α θ /、取人蝕剡逮率大約為每 96824.doc -22- 200530309 分鐘8.4 A,且其最小蝕刻速率大約為每分鐘7·5 A。因此, 蝕刻速率分散大約為1。 如圖8A至8D中所說明,在藉由使用根據本發明之實例J 之蝕刻組合物蝕刻諸如PE-TEOS層及BPSG層之氧化物層 期間’可有效地鈍化多晶石夕層。另外,可充分地獲得氧化 物層及氮化物層之蝕刻均勻性。 蝕刻實驗2Ethylene oxide additives including polysorbate 60, polysorbate 65, and the like can also be used in the embodiments of the present invention. A mechanism for passivation of a polycrystalline silicon layer by a non-ionic polymer during selective etching of an oxide layer will be described below. 5A and 5B are schematic cross-sectional views for explaining a mechanism of passivation of a polycrystalline layer by an etching composition according to an embodiment of the present invention. In FIG. 5A, when a nonionic polymer having a hydrophobic group and a hydrophilic group is added as a surfactant to a solution including ammonium fluoride, hydrogen fluoride, and water, as shown in FIG. 5B, the nonionic polymer selectively Adsorbed on the surface of the polycrystalline silicon layer. Surfactant absorption helps protect the polycrystalline silicon layer during subsequent wet etching of the oxide layer. That is, when the oxide layer is selectively etched, damage to the polycrystalline silicon layer can be minimized or avoided due to the presence of the non-ionic polymer. Moreover, the uniformity of etching of the nitride layer can be obtained. Preparation of Etching Composition FIG. 6 is a flowchart illustrating a method of preparing an etching composition according to an embodiment of the present invention. 96824.doc -14- 200530309 Referring to FIG. 6, in step S10, a chemical chloride (HF) solution having a final concentration of about 50% by weight and a final concentration of 0.1 to 8% by weight is added to the container. . Next, in step S2q, a large-scale deletion weight percentage 'is added to the filamentous hydrogen solution with a surfactant having a weight of about 0.001 to 0.02 weight percentage. In step pair, the thus obtained mixture of the hydrogenated gas / hybrid solution and the surfactant is searched for about 3 hours or more: evenly combine this solution to make a first mixture solution (this step Called the first mixing step). In step S40, a predetermined amount of water (° C) is added to the first mixture solution. In step S50, the mixture thus obtained is stirred for about 3 hours or more to uniformly mix the first mixture solution with water to prepare a second mixture solution (this step is referred to as a second mixing step). In Step S60, an ammonium fluoride solution having a knife ratio of about 40% by weight is added to the second mixture solution so that the final concentration of the ammonium fluoride solution is about 10 to 25 weight percent. In step S70, the second mixture solution and the ammonium fluoride solution are uniformly stirred for about 12 hours or more to obtain a uniformly mixed etching composition (this step is referred to as a third mixing step). A circulation pump and a filter are connected to the container to circulate and filter the particles in the first mixture / valley, the first mixture solution and the insect-carved composition. During the preparation of the first mixture solution, the second mixture solution and the etching composition, all the solutions and the etching composition are maintained at a temperature of about 10 to about 40 ° C. If the components are not added and stirred as described above, ammonium fluoride can potentially react with hydrogen fluoride to produce NH4FHF2 crystals, thereby producing an etching composition that does not have the desired characteristics of 96824.doc ^ 200530309. Example 1 ::: Addition of a hydrogen fluoride (HF) solution at a concentration of about 50% by weight ...... present I I # Add a small amount of a surfactant to the valley π with the hydrogen fluoride. As the surfactant, commercially available y PfOnie PE / L64 manufactured by the German company Fluka can be used. The muscle hydrogenation solution including the surfactant was stirred for more than 3 hours to prepare a first mixture solution. To this first mixture solution was added water (H2O). Decanter water and the first mixture solution are used for more than 3 hours to obtain a second mixture solution which is evenly mixed. (2) A solution of hydrazine having a concentration of about 40% by weight is added to the second mixture solution so that the final concentration of the ammonium fluoride is about 1G to 25% by weight. The second mixture solution and the ammonium fluoride solution were stirred for more than 12 hours to prepare a uniformly mixed etching composition. A cycle pump and a filter were connected to the container to circulate and filter the particles in the first mixture solution, the second mixture solution, and the etching composition. During the preparation of the first mixture solution, the second mixture solution, and the etching composition ', the solution is maintained at a temperature of about 10 to about 400c. An etching composition comprising about 18 weight percent ammonium fluoride, about 45 weight percent hydrogen fluoride, and about 0.001 to 0.02 weight percent nonionic polymer surfactant is obtained. Example 2 An etching composition was prepared in the same manner as described in Example 1, except that Synperonic PE / L64 and polysorbate 80 were used instead of Synperonic PE / L64 as a surfactant. The obtained engraving composition contains 96824.doc -16- 200530309 about 18 weight percent ammonium fluoride and about 45 weight percent hydrogen fluoride and about 10 ppm of non-ionic surfactant, Synperonic pE / L64 and Approximately 200 ppm of polysorbate 80. Example 3 An etching composition was prepared in the same manner as described in Example 1, except that Polysorbate 80 was used instead of Synperonic PE / L64 as a surfactant. The obtained etching composition contained about 18% by weight of ammonium fluoride and about 4.5% by weight of hydrogen fluoride, and about 200 ppm of polysorbate 80 as a nonionic surfactant. Comparative Example 1 A coin-cut composition was prepared by mixing hydrogen fluoride (HF) and deionized water (EU • water) at about a mixing ratio. Comparative Example 2 By mixing approximately 40% by weight of ammonium fluoride, approximately 50% by weight of hydrogen fluoride and deionized water at a mixing ratio of approximately 5: 1: 5, and then adding the same molar ratios of CgHnNH2 and C ^ HbCOOH was prepared by adjusting the concentration of the surfactant to about 200 ppm (LAL 5000 aqueous solution). Comparative Example 3 An etching composition was prepared by adding the same mole ratio of C9Hi9COOH to Comparative Example 1's engraved composition to adjust the concentration of the surfactant to about 200 ppm. Comparative Example 4 An etching composition was prepared in the same manner as described in Comparative Example 2, except that 96824.doc 17 200530309 was added without a surfactant. Etching an oxide layer Figs. 7A to 7C are cross-sectional views illustrating a method for selectively etching an oxide layer among an oxide layer, a nitride layer, and a polycrystalline silicon layer by using the etching composition according to the present invention. In FIGS. 7A to 7C, for the sake of simplicity, the underlying structure between a substrate and a nitride layer is not shown or described. Referring to FIG. 7A, a nitride layer 105, a first oxide layer 110, and a second oxide layer 115 are continuously formed on a substrate 100 such as a silicon wafer. In this example, the nitride layer 105 is formed using silicon nitride (SiN), the first oxide layer 110 is formed using BPSG, and the second oxide layer 115 is formed using pE-TEs. See FIG. 7B ', the second oxide layer 5 and the first oxide layer 110 are partially etched to form a contact hole 120 for exposing the nitride layer 100 by photolithography. After forming a polycrystalline silicon layer on the exposed nitride layer 105 through the contact hole 120 and on the inner sidewall of the contact hole 120 and the second oxide layer 115, the polycrystalline silicon layer is patterned to form a polycrystalline silicon layer pattern 丨2 5. Referring to FIG. 7C, the second oxide layer 115 and the first oxide layer 110 are etched by a wet inversion process using the above-described etching composition according to an embodiment of the present invention. The upper portion of the nitride layer 105 on the substrate 100 is also partially etched. Here, since the etching composition of this embodiment includes a non-ionic polymer, which is adsorbed on the surface portion of the polycrystalline silicon layer pattern 125 to passivate the polycrystalline silicon layer pattern 125, the first and second oxide layers 11 () are etched The damage to the polycrystalline silicon layer pattern 125 during the period 115 can be significantly reduced. In addition, compared with the conventional LAL or 5: 1 hydrogen fluoride etching solution, the remaining uniformity on the nitride layer 105 is improved. The etching results on the nitride 96824.doc -18-200530309 layer 105, the first and second oxide layers 110 and 115, and the polycrystalline silicon layer pattern i25 after the etching process will be described below. Etching Experiment 1 FIGS. 8A to 8D are diagrams illustrating the use of the PE_TE0s layer in a wet etching process by using the surname composition obtained according to Example 1 of the present invention and the etching composition obtained according to Comparative Examples 1 to 3. Graph of etch rates for Bpsg layer, silicon nitride layer (SiN) and polycrystalline silicon layer. FIG. 8A corresponds to an etching result of a silicon nitride layer; FIG. 8B corresponds to an etching result of a BPSG layer; FIG. 8 (: corresponds to an etching result of a pE_TE0s layer; and FIG. 8 corresponds to an etching result of a polycrystalline silicon layer. See FIG. 8A, during the etching of the PE-TEOS layer and the BPSG layer by the wet etching process using the etching composition of the example 丨, the average etching rate for the silicon nitride layer is about 26 A per minute. Its maximum etching rate is about 27 A 'per minute and its minimum etch rate is about 24 a per minute. Therefore, the etch rate dispersion is only about 3 A per minute. In contrast, when using a hydrogen fluoride etching solution according to Comparative Example 丨, it is used for a silicon nitride layer The average etch rate is approximately 76 A per minute. Its maximum etch rate is approximately 86 A per minute, and its minimum etch rate is approximately 65 A per minute. Therefore, the dispersion rate of the etch rate is approximately 2 A per minute. When the LAL 500 etching solution according to Comparative Example 2 is used, the average etch rate for the nitride layer is approximately 14 A per minute. Its maximum #etch rate is approximately 15 A per minute, and its minimum etch rate is approximately 13 A per minute. Therefore, the etching rate dispersion is about 2 A per minute, which is very low. When the etching composition according to Comparative Example 3 is used, the average etch rate for the nitride layer is about 46 A per minute . Its maximum surname engraving rate is approximately 96824.doc -19- 200530309 49 A per minute, and its minimum stroking rate is approximately 43 A per minute. Therefore, the rate of money engraving is scattered at approximately 6 A per minute. Therefore, and Xi Compared with the known composition of the last name, the uniformity of the last name of the nitrided stone layer has been greatly improved during the use of the example to describe the composition of the last name of the PE_TE0s layer and the Peng G layer. See FIG. 8B. From the wet etching process using the etching composition according to the example, the average etch rate for the BPSG layer is about 2303 A per minute. Its maximum etch rate is about 2390 A per minute, and its minimum etch rate is about It is 2215 A per minute. Therefore, the etching rate dispersion is approximately 175 A per minute. When the hydrogen fluoride etching solution according to Comparative Example 1 is used, the average etching rate for the BpsG layer is approximately 5885 A per minute. Its maximum etching rate The large force is 6298 A, and the minimum silver etch rate is about 5472 A per minute. Therefore, the etching rate dispersion is about 826 a per minute. That is, the etching rate for the BPSG layer increases and the stepped layer Etching uniformity is greatly reduced. When using the LAL 5 00 etching solution according to Comparative Example 2, the average etch rate for the BPSG layer is approximately 582 A per minute. Its maximum etch rate is approximately 591 A per minute, and its minimum etch The rate is approximately 572 A per minute. Therefore, the etch rate dispersion is approximately 19 A per minute, which is very low. Although the uniformity of the engraving of 8 to 80 layers can be obtained, the etching rate is greatly reduced when the conventional engraving solution is used. When the etching composition according to Comparative Example 3 was used, the average engraving rate for the BPSG layer was about 3939 A per minute. The maximum etch rate is about 96824.doc -20-200530309, the female knife is 44181 A, and the minimum ㈣ rate is about 1 minute per minute. Therefore, the spread of the surname engraving rate is about A per minute. Although a sufficient rate of the BPSG layer can be obtained, the uniformity of the BpsG layer is reduced to zero. Therefore, when the etching composition according to the embodiment of the present invention is applied, the BPSG layer is etched at The conventional maggot composition has a well-known uniformity. Referring to FIG. 8C, the average surname rate for the PE-TEOS layer in a wet etch process by using the etch composition according to Example j is about 3124 A per minute. Its maximum etch rate is about 3132 A per minute, and its minimum last etch rate is about 3116 Αβ per minute. Therefore, the money etch rate spread is only about 16 A per minute, which is very low. When the hydrogen fluoride etching solution according to Comparative Example 丨 is used, the average etching rate for the PE-TEOS layer is about 3031 A per minute. Its maximum etch rate is approximately 3529 A per minute, and its minimum etch rate is approximately 2533 A per minute. Therefore, the etch rate dispersion is approximately 996 A per minute. That is, when the conventional 5: 1 hydrogen fluoride etching solution is used, the etching rate for the pE_TE0s layer is reduced, and at the same time, the etching uniformity of the PE-TEOS layer is also greatly reduced. When the LAL 500 etching solution according to Comparative Example 2 was used, the average etching rate for the PE-TEOS layer was about 1262 A per minute. Its maximum etch rate is about 1316 A per minute, and its minimum etch rate is about 1208 A per minute. Therefore, the dispersion of the etching rate is about 108 μm per minute, which is very low. Although the etch uniformity of the PE_TEOS layer can be obtained, when the conventional LAL 500 # etching solution is used, the insect etching rate is greatly reduced. 96824.doc -21-200530309 When using the composition and composition according to Comparative Example 3, the flat-side rate for pE_Dinger layer is about A per minute · A. Its maximum rhyme rate is about 3195 A per minute, and its minimum rate is about A deleted per minute. As a result, the diligence rate spreads around 1575 people per minute. Although a high etch rate of the PE-TEOS layer can be obtained, the etch uniformity of the PE-TEOS layer is reduced when the conventional M 5_ etch solution is used. Therefore, when the PE-TEOS layer is engraved by using the surname engraving composition according to the present invention # J1 ', a relatively high engraving rate and appropriate uniformity are obtained. Referring to FIG. 8D, during the processing of the PE-TEOS layer and the BPSG layer by using the wet engraving composition of the button engraving composition of Example 1, the average engraving rate for the polycrystalline stone layer was about 9 A per minute. . Its maximum rate is approximately 9.8 per minute, and its minimum rate is approximately 88 per minute. The rate dispersion is only approximately approximately per minute! A. That is, during the treatment, the polycrystalline layer was appropriately purified. When using the hydrogen fluoride solution according to the comparative example! For polycrystalline stone rate: about 8A per minute. Its maximum engraving rate is about $. And the minimum engraving rate is about MA per minute. Therefore, the etching rate is dispersed at about 1 A per minute. According to the comparative example & LAL_ etching solution, for polycrystalline = other etching rate is about per minute ". Its maximum engraving rate is large factor f · 5A, and its minimum _ rate is about 7 per minute · 5Αβ: The etching rate dispersion is about 1A per minute, which is very low. When the composition according to Comparative Example 3 is used, the average etching rate for multiples is about Δθ per minute, and the rate of etching loss is about 8.4 A per 96824.doc -22- 200530309 minutes, and its minimum etch rate is approximately 7.5 A per minute. Therefore, the etch rate dispersion is approximately 1. As illustrated in Figures 8A to 8D, the The etching composition of Example J of the present invention, during the etching of oxide layers such as the PE-TEOS layer and the BPSG layer, can effectively passivate the polycrystalline layer. In addition, uniform etching of the oxide layer and the nitride layer can be sufficiently obtained Etching Experiment 2

圖9A至9D為說明在藉由使用根據本發明之實例2與3獲 得之蝕刻組合物及根據比較實例4獲得之蝕刻組合物之濕 蝕刻處理中,用於PE-TE0S層、3?;5(}層、氮化矽層及多晶 矽層之蝕刻速率之圖。圖9人對應於氮化矽層之蝕刻結果; 圖9B對應於BPSG層之蝕刻結果;圖9C對應於pE-TE〇s層之 蝕刻結果;圖9D對應於多晶矽層之蝕刻結果。9A to 9D are diagrams illustrating the use in a PE-TEOS layer, 3? In a wet etching process by using the etching compositions obtained according to Examples 2 and 3 of the present invention and the etching composition obtained according to Comparative Example 4; 5 (} Layer, silicon nitride layer and polycrystalline silicon layer etch rate. Figure 9 corresponds to the etching result of the silicon nitride layer; Figure 9B corresponds to the etching result of the BPSG layer; Figure 9C corresponds to the pE-TE0s layer Etching results; FIG. 9D corresponds to the etching results of the polycrystalline silicon layer.

參看圖9A,在藉由使用根據實例2之蝕刻組合物之濕蝕刻 處理蝕刻PE-TEOS層與BPSG層期間,用於氮化矽層之平均 ㈣速率大約為每分鐘32 A。其最大_速率大約為每分 鐘33 A,且其最小蝕刻速率大約為每分鐘3〇 a。因此,蝕 刻速率分散僅大約為每分鐘3 A。 當使用根據實例3之韻刻組合物時,用於氮化梦層之平土 敍刻速率大約為每分鐘3G A。其最大_速率大約為每; 鐘32 A,且其最小餘刻速率大約為每分鐘29 A。因此,爸 刻速率分散亦大約為每分鐘3 A,其很低。 當使用根據比較實例4之㈣組合物時,用於氮化石夕層之 平均韻刻速率大約為每分鐘32 A。其最大㈣速率大^為 96824.doc •23- 200530309 每分鐘34 A,且其最小蝕刻速率大約為每分鐘3〇A。因此, 钱刻速率分散僅大約為每分鐘4 A。 因此,當使用根據本發明之實例之蝕刻組合物蝕刻 PE-TEOS與BPSG氧化物層日寺,與習知姓刻溶液相比,增強 了在钱刻期間之氮化矽層的蝕刻均勻性。 參看圖9B,在藉由使用根據實例2之蝕刻組合物之濕蝕刻 處理期严曰 1,詩BPSG層之平均姓刻速率大約為每分鐘1978 A。其最大蝕刻速率大約為每分鐘2155入,且其最小蝕刻速 率大約為每分鐘1800 A。㈣,蝕刻速率分散大約為每分 鐘 355 A 〇 田使用根據貫例3之蝕刻組合物時,用於6卩;5〇層之平均 蝕刻速率大約為每分鐘136〇 A。其最大蝕刻速率大約為每 分鐘1381 A,且其最小蝕刻速率大約為每分鐘i339 A。因 此,蝕刻速率分散大約為每分鐘42A。當使用根據實例3之 钱刻組合物時,用於BPSG層之㈣速率降低。然而,大大 改良了 BPSG層之姓刻均勻性。 當使用根據比較實例4之蝕刻組合物時,用於BpsG層之 平均蝕刻速率大約為每分鐘2796 A。其最大蝕刻速率大約 為每分鐘2889 A,且其最小蝕刻速率大約為每分鐘27〇3 A。因此,蝕刻速率分散大約為每分鐘186 A,其很低。 因此,S根據本發明之實例2與3之蝕刻組合物用於蝕刻 BPSG層時’與其中不包括如比較實例4中之界面活性劑的 蝕刻組合物相比,蝕刻速率降低。 芩看圖9C,在藉由使用根據實例2之蝕刻組合物之濕蝕刻 96824.doc • 24 - 200530309 處理中,用於PE_TE0S層之平均㈣速率大約為每分鐘 2802 A。其最大蝕刻速率大約為每分鐘川料A,且其最小 蝕刻速率大約為每分鐘2556 A。因此,蝕刻速率分散大約 為每分鐘492 A。 當使用根據實例3之蝕刻組合物時,用於pE_TE〇s層之平 ,姓刻速率大約為每分鐘2358 A。其最大#刻速率:約為 每刀釦2581 A,且其最小蝕刻速率大約為每分鐘2i35 a。 因此,蝕刻速率分散大約為每分鐘446 A。 當使用根據比較實例4之钮刻組合物時,用於pE_TE〇s層 之平均姓刻速率大約為每分鐘加A。其最大姓刻速率: 約為每分鐘3639 A,且其最小餘刻速率大約為每分鐘⑽ A。因此,㈣速率分散僅大約為每分鐘出a,其很低。 當使用根據*較實例4之_組合物㈣pe_teqs層時,可 獲得蝕刻均勻性。然而,蝕刻速率極低。 因此’當使用根據本發明之一實施例之姓刻組合物钮刻 PE-TEOS層時,獲得適當㈣均勾性。 參看圖9D’在藉由蚀用柄抽《每 祆據a例2之蝕刻組合物之濕蝕刻 處理钮細·㈣认BPSG層期間,用於多⑭層之平均姓 =率大約為每分鐘32 A。其最大钮刻速率大約為每分鐘 =A,且其最小_速率大約為每分鐘μ。因此,㈣ 速率分散大約為每分鐘28 A。 當使用根據實例3线刻組合物時,用於多晶石夕層之平均 虫亥^率大約為每分鐘26A。其最大㈣速率大約為每分 、’里A’且其最小钮刻速率大約為每分鐘i6 A。因此,蝕 96824.doc -25- 200530309 刻速率分散大約為每分鐘丨9 A。 當使用根據比較實例4之姓刻組合物時,用於多 二均兹刻速率大約為每分鐘128A。其最大㈣速率大^為 母刀4里131 A ’且其最小蝕刻速率大約為每分鐘125 A。因 此’敍刻速率分散大約為每分鐘3A,其相當低。然而,用 於多晶矽層之蝕刻速率為不良的高。 由於自貫例2與3獲得之姓刻組合物比自比較實例4獲得Referring to FIG. 9A, during the etching of the PE-TEOS layer and the BPSG layer by a wet etching process using the etching composition according to Example 2, the average hafnium rate for the silicon nitride layer is about 32 A per minute. Its maximum rate is about 33 A per minute, and its minimum etch rate is about 30 a per minute. Therefore, the etch rate dispersion is only about 3 A per minute. When the rhyme composition according to Example 3 is used, the lithography rate for the nitrided dream layer is approximately 3 G A per minute. Its maximum rate is approximately 32 A per clock; and its minimum remaining rate is approximately 29 A per minute. Therefore, the dispersion of the datum rate is also about 3 A per minute, which is very low. When the osmium composition according to Comparative Example 4 was used, the average engraving rate for the nitrided layer was about 32 A per minute. Its maximum rate is 96824.doc • 23- 200530309 34 A per minute, and its minimum etch rate is about 30 A per minute. As a result, the money rate spread is only about 4 A per minute. Therefore, when the PE-TEOS and BPSG oxide layers are etched using the etching composition according to the example of the present invention, the etching uniformity of the silicon nitride layer is enhanced compared with the conventional etching solution. Referring to FIG. 9B, during the wet etching treatment period using the etching composition according to Example 2, the average etch rate of the poem BPSG layer is about 1978 A per minute. Its maximum etch rate is about 2155 in. Per minute, and its minimum etch rate is about 1800 A per minute. That is, the etching rate dispersion was about 355 A per minute. When the etching composition according to Example 3 was used, the average etching rate for the 50 layer was about 1360 A per minute. Its maximum etch rate is approximately 1381 A per minute, and its minimum etch rate is approximately i339 A per minute. Therefore, the etch rate dispersion is approximately 42A per minute. When the coin engraving composition according to Example 3 is used, the hafnium rate for the BPSG layer is reduced. However, the uniformity of the nickname of the BPSG layer has been greatly improved. When the etching composition according to Comparative Example 4 is used, the average etching rate for the BpsG layer is about 2796 A per minute. Its maximum etch rate is approximately 2889 A per minute, and its minimum etch rate is approximately 2703 A per minute. Therefore, the etch rate dispersion is about 186 A per minute, which is very low. Therefore, when the etching compositions of Examples 2 and 3 according to the present invention are used to etch the BPSG layer ', the etching rate is reduced compared to an etching composition that does not include a surfactant as in Comparative Example 4. Looking at FIG. 9C, in the wet etching by using the etching composition according to Example 2 96824.doc • 24-200530309 processing, the average ㈣ rate for the PE_TE0S layer is about 2802 A per minute. Its maximum etch rate is approximately A per minute, and its minimum etch rate is approximately 2556 A per minute. Therefore, the etch rate dispersion is approximately 492 A per minute. When the etching composition according to Example 3 is used, the engraving rate for the pE_TE0s layer is about 2358 A per minute. Its maximum #etching rate: about 2581 A per cutter, and its minimum etch rate is about 2i35 a per minute. Therefore, the etch rate dispersion is approximately 446 A per minute. When the button-engraving composition according to Comparative Example 4 is used, the average surname rate for the pE_TE0s layer is approximately A per minute plus A. Its maximum engraving rate: about 3639 A per minute, and its minimum remaining engraving rate is about ⑽ A per minute. Therefore, the rate dispersion is only about a per minute, which is very low. When using the _composition pe_teqs layer according to * Comparative Example 4, etching uniformity can be obtained. However, the etching rate is extremely low. Therefore, when the PE-TEOS layer is engraved using the surname engraving composition according to one embodiment of the present invention, appropriate uniformity is obtained. Referring to FIG. 9D ', during the "wet etching process of the etching composition of Example 2 according to Example 2", the average surname of the multi-layer layer during the extraction of the etched composition according to Example 2 was approximately 32 per minute. A. Its maximum engraving rate is approximately A per minute and its minimum _ rate is approximately μ per minute. Therefore, the ㈣ rate dispersion is approximately 28 A per minute. When the composition according to Example 3 was used, the average insecticide rate for the polycrystalline layer was about 26 A per minute. Its maximum chirping rate is approximately 1 ', and its minimum button rate is approximately i6 A per minute. Therefore, the etching rate spread of etch 96824.doc -25- 200530309 is about 9 A per minute. When using the engraving composition according to Comparative Example 4, the rate for multi-division engraving was about 128 A per minute. The maximum ㈣ rate is 131 A ′ in the female knife 4 and the minimum etch rate is about 125 A per minute. Therefore, the 'sequence rate dispersion is about 3A per minute, which is quite low. However, the etching rate for a polycrystalline silicon layer is unacceptably high. Since the composition of the engraved composition obtained from Examples 2 and 3 is better than that obtained from Comparative Example 4

之餘刻組合物展現較低㈣速率,所以自實例2與3獲得之 蝕刻組合物較佳。 如圖从至9〇中所說明的’當使用根據本發明之敍刻組合 ㈣刻諸如PE-TE0S層及则⑽之氧化物層時,關於氧化 物層在蚀刻速率中展示—較大差別,關於氮化物層在_ 速率中展示—較小差別,且關於多晶㈣展示—很⑽刻 速率。因向蝕刻組合物中添加界面活性劑對於獲得較 佳飯刻結果係有效的。 製造半導體裝置之方法The rest of the composition exhibited a lower tadpole rate, so the etching compositions obtained from Examples 2 and 3 were better. As illustrated in Figures from 90 to 'When an oxide layer such as a PE-TEOS layer and an oxide layer is etched using the engraving combination according to the present invention, the oxide layer is shown in the etching rate—a large difference, For the nitride layer, the rate is shown—smaller differences, and for the polycrystalline silicon—it is very etched. This is because the addition of a surfactant to the etching composition is effective for obtaining a better result of the rice carving. Method for manufacturing semiconductor device

圖10A至10E為說明根據本發明之一實施例製造一半導 體裝置之方法的截面圖。在圖1GAjL中,^目同參考數字 代表相同元件。 圖10A為說明-用於在半導體基板15G(其上形成包括一 閘極結構175之電晶體結構i 83)上形成第一墊片·及第二 墊片205之步驟的截面圖。 參看圖10A,藉由使用一諸如淺槽隔離(sti)方法或石夕之 局部氧化⑽⑽)方法之絕緣方法來在該半導體基板15〇 96824.doc -26- 200530309 上形成一隔離層1 5 5以將該半 及一 '區域。 導體基板1 50分成一活動區域 藉由g氧化方法或一化學氣相沉積(CVD)方法在半導 體基板⑼上形成-薄間極氧化物層(未展示在該薄閉極 乳化物層上順序地形成第__導電層(未展示)及第—遮罩層 (展丁)帛v電層及第一遮罩層分別對應於一閉極導電 層及:閑極遮罩層。第一導電層藉由使用雜質摻雜多晶石夕 形成亚圖案化以形成_閘極導電圖案165。第—導電層亦可 作為一具有摻雜多晶矽及複晶金屬矽化物(polycide)之結 構而形成。 圖案化第一遮罩層以形成一閘極遮罩圖案〗7〇,且使用對 第一層間介電層195(隨後形成)具有蝕刻選擇性之材料形成 °玄第遮罩層。舉例而言,當第一層間介電層i 95使用氧化 物形成時,第一遮罩層使用諸如氮化矽之氮化物形成。 第一光阻薄膜(未展示)沉積在第一遮罩層上,且曝露並 顯影該第一光阻薄膜以獲得第一光阻圖案(未展示)。藉由使 用弟 光阻圖案作為钱刻遮罩來連續地圖案化第一遮罩 層、第一導電層及閘極氧化物層以形成一閘極結構175,其 包括一閘極氧化物圖案160、一閘極導電圖案165及閘極遮 罩圖案170。 使用諸如氮化矽之氮化物在半導體基板15〇上及在閘極 結構175上形成第一介電層(未展示)。接著,各向異性地蝕 刻第一介電層以形成如在閘極結構175之側壁上之閘極隔 離片的第一隔離片W0。 96824.doc -27- 200530309 隨後,在藉由離子植入處理將雜質藉由將閘極結構l75 . 用作離子植入遮罩而摻雜進在閘極結構丨75之間曝露之半 導體基板150之後,執行一熱處理以形成第一接觸區域185 及第二接觸區域190,即,源極/汲極區域。因此,形成具 有第一與第二接觸區域185與190之MOS電晶體結構183。 將第一與第二接觸區域185與19〇分成一電容器接觸區域 及一位元線接觸區域,並分別連接電容器之第一墊片2〇〇 及位7L線之第二墊片2〇5(後續步驟)。換言之,第一接觸區 域185對應於與第一墊片2〇〇連接之儲存節點接觸區域,而 第二接觸區域190則對應於與第二墊片2〇5連接之位元線接 觸區域。 使用氧化物材料在包括電晶體結構183之半導體基板15〇 之整個表面部分上形成第一層間介電層195。第一層間介電 層195可為BPSG、USG或HDP-CVD氧化物材料。 使用化學機械拋光(CMP)處理、回蝕處理、或其組合來10A to 10E are sectional views illustrating a method of manufacturing a semiconducting device according to an embodiment of the present invention. In Figure 1GAjL, the same reference numerals denote the same components. Fig. 10A is a cross-sectional view illustrating a step for forming a first pad · and a second pad 205 on a semiconductor substrate 15G on which a transistor structure i 83 including a gate structure 175 is formed. Referring to FIG. 10A, an isolation layer 1 5 5 is formed on the semiconductor substrate 15060824.doc -26- 200530309 by using an insulating method such as a shallow trench isolation (sti) method or a localized hafnium oxide method of Shi Xi. To the half and one 'area. The conductor substrate 150 is divided into an active region by a g-oxidation method or a chemical vapor deposition (CVD) method to form a thin inter-electrode layer (not shown on the thin closed-electrode emulsion layer sequentially) Form the __ conductive layer (not shown) and the first-masking layer (shown) 帛 v electric layer and the first masking layer respectively correspond to a closed-electrode conductive layer and: a leisure electrode masking layer. The first conductive layer Sub-patterning is performed by using impurity-doped polycrystalline stones to form the _gate conductive pattern 165. The first conductive layer can also be formed as a structure with doped polycrystalline silicon and polycide. The first mask layer is changed to form a gate mask pattern, and a material having an etching selectivity to the first interlayer dielectric layer 195 (subsequently formed) is used to form a first mask layer. For example, When the first interlayer dielectric layer i 95 is formed using an oxide, the first mask layer is formed using a nitride such as silicon nitride. A first photoresist film (not shown) is deposited on the first mask layer, And exposing and developing the first photoresist film to obtain a first photoresist pattern ( (Shown). The first mask layer, the first conductive layer, and the gate oxide layer are continuously patterned by using a photoresist pattern as a mask to form a gate structure 175, which includes a gate oxide. The object pattern 160, a gate conductive pattern 165, and a gate mask pattern 170. A first dielectric layer (not shown) is formed on the semiconductor substrate 150 and the gate structure 175 using a nitride such as silicon nitride. Next, the first dielectric layer is anisotropically etched to form a first spacer W0, such as a gate spacer on a side wall of the gate structure 175. 96824.doc -27- 200530309 Subsequently, by ion implantation After the impurity is doped by using the gate structure 175. As an ion implantation mask, the semiconductor substrate 150 exposed between the gate structure 75 and 75 is subjected to a heat treatment to form a first contact region 185 and a second The contact region 190, that is, the source / drain region. Therefore, a MOS transistor structure 183 having first and second contact regions 185 and 190 is formed. The first and second contact regions 185 and 190 are divided into a capacitor contact Area and one-bit line contact area, The first gasket 200 of the capacitor and the second gasket 200 of the 7L line are connected respectively (in the next step). In other words, the first contact area 185 corresponds to the storage node connected to the first gasket 200. Area, and the second contact area 190 corresponds to the bit line contact area connected to the second pad 205. An oxide material is used to form a first portion on the entire surface portion of the semiconductor substrate 15 including the transistor structure 183. Interlayer dielectric layer 195. The first interlayer dielectric layer 195 may be a BPSG, USG, or HDP-CVD oxide material. A chemical mechanical polishing (CMP) process, an etch-back process, or a combination thereof is used to

蝕刻層間介電層195之上部部分,以平面化第一層間介電層 19 5之上部部分。 在經平面化之第一層間介電層195上,塗布第二光阻薄 (未展不)。曝露並顯影該第二光阻薄膜以形成第二光阻 案。接著,使用第二光阻圖案作為蝕刻遮罩,部分且各 異性地蝕刻第一層間介電層195,以形成曝露第一與第二 觸區域185與190之第一接觸孔198。因此,第一接觸孔] 在曝路第一與第二接觸區域185與190的同時,其相對於電 晶體結構1 83是自行對齊的。 96824.doc -28- 200530309 μ藉由灰化處理及剝離處理來移除第二光阻圖案。在填充 弟一接觸孔198之第一層間介電層195上形成第二導電層 (未展不)。第二導電層係藉由使用高濃度雜質摻雜多晶矽或 金屬而形成。 藉由CMP處理、回钱處理或其組合來姓刻第二導電層直 至曝露經平面化之第一層間介電層195的上表面,以形成第 墊片200與第一墊片2〇5,其中第—與第二塾片测與 為自對齊接觸(SAC)。圖刚為說明形成—位元線及第四塾 片240之步驟的截面圖。 參看圖1〇B,使用BPSG、_或HDP-CVD氧化物材料在 第一層間介電層195上及第一與第二墊片2〇〇、2〇5上形成第 -層間介電層210。第二層間介電層21〇將位元線(隨後形成) 與第一儲存節點接觸墊片之第一墊片2〇〇電絕緣。 藉由CMP處理、回蝕處理或其組合來蝕刻第二層間介電 層210以平面化第二層間介電層21〇之上表面。 第三光阻薄膜(未展示)塗覆在第二層間介電層21〇上。曝 路並顯影第二光阻薄膜以形成第三光阻圖案(未展示)。 藉由使用第三光阻圖案作為蝕刻遮罩來部分地蝕刻第二 層間介電層210以在第二層間介電層21〇中形成第二接觸孔 (未展示)以曝露掩埋在第一層間介電層195中之第一位元線 接觸墊片的第二墊片205。第二接觸孔對應於用於將位元線 與第一位元線接觸墊片之第二墊片2〇5電連接之一位元線 接觸孔。 藉由灰化處理與剝離處理來移除第三光阻圖案。接著在 96824.doc -29- 200530309 填充位元線接觸孔第— 丨店产, 乐一接觸孔的第二層間介電 順序地形成第三導電層(未 ^M210± ψ it Μ ~ m. 第一遮罩層(未展示)。圖 系化弟二導電層盥篦— ^ ^ R s 〇 遮罩層以分別形成一位元線導電# 圖案(未展示)與一位开綠喷$门〜 m增 々 )/、位凡線遮罩圖案(未展示)。 第四光阻薄膜塗覆在第二遮 光阻薄膜以在第二遮翠層上开,㈣上I曝路並顯影該第四 丄/± 層形成苐四光阻圖案(未展示)。莽 由使用第四光阻圖荦作A 4 )曰 罩声鱼第-…連續地圖案化第二遮 :二= 成填充對應於位元線接觸孔之第二 妾觸孔的第三墊片(未展示),並形成包括位元線導電圖案及 位70線遮罩層圖案之位元線(未展示卜 〃 第二墊片對應於第二位元線接觸㈣用於將位元線盈第 一位元線接觸墊片之第二墊片205電連接。第三塾片亦^知 作為位元線接觸插塞之第一插塞。在隨後執行之用於形成 储存節點接觸孔之第四接觸孔27()(圖1GC)之姓刻處理期 間,位7L線遮罩圖案鈍化位元線導電圖案。使用對氧化物、 第一氧化物層260及第二氧化物層265形成之第四層間介電 層250具有蝕刻選擇性之材料來形成位元線遮罩圖案。舉例 而言,位元線遮罩圖案使用諸如氮化矽之氮化物形成。 在位元線與第二層間介電層21〇上形成第二介電層(未展 不)。接著,各向異性地蝕刻該第二介電層以形成對應於各 個位元線之側壁部分上之位元線隔離片的第二隔離片(未 展示)。使用對第二層間介電層210及第三層間介電層215(隨 後形成)具有蝕刻選擇性的材料來形成第二隔離片,以用於 在第二儲存節點接觸墊片之第四墊片240之形成期間純化 96824.doc -30· 200530309 位元線。 第二層間介電層21 5在第二層間介電層210上形成,同時 覆蓋在其側壁部分上包括第二隔離片之位元線。第三層間 介電層215使用諸如BPSG、USG及HDP-CVD氧化物之氧化 合物形成。 藉由CMP處理、回蝕處理或其組合來蝕刻第三層間介電 層215直至曝露位元線遮罩圖案之上表面部分,以平面化第 三層間介電層215之上表面。 第五光阻薄膜塗覆在經平面化之第三層間介電層215 上。曝路並顯影該第五光阻薄膜以形成第五光阻圖案(未展 示)。第三層間介電層215與第二層間介電層21〇使用第五光 阻圖案作為餘刻㉟|來部分地钱刻以形成用力冑露第一塾 片200之第三接觸孔238。第三接觸孔汨8對應於第一儲存節 點接觸孔。第三接㈣238關於位元線之側壁部分上形成之 第二隔離片以自對齊方式形成。 在填充第二接觸孔23 8之第三層間介電層215上形成第四 導電層。接著,藉由CMP處理、㈣處理或其組合來㈣ 第四導電層直至曝露第三層間介電層215之上表面與位元 線,以在第三接觸孔内形成第二儲存節點接觸塾片之第四 ^24Q°第四墊片240亦已知為儲存節點接觸插塞之第二 插塞。第四W係使用諸如雜f摻雜多_之導電材料 而形成。第四墊片240將第-儲存節點接觸塾片之第一塾片 2〇〇與儲存電極29G(參看圖9D)電連接。因此,儲存電極携 精由第-墊片200與第四塾片_電連接至儲存節點接觸區 96824.doc -31 - 200530309 域之第一接觸區域185。 圖10C為說明形成第四接觸孔27〇與儲存電極29〇之步驟 的截面圖。 參看圖10C,藉由BPSG、USG、s〇(^HDp_CVD氧化物 在第二儲存節點接觸墊片之第四墊片240、位元線及第三層 間介電層215上形成第四層間介電層25〇。第四層間介電層 250將位元線與儲存電極29〇電分離。 在弟四層間;I電層250上形成一餘刻中止層255。使用對 第四層間介電層250、第一氧化物層26〇及第二氧化物層265 具有蝕刻選擇性之材料,來形成該蝕刻中止層255。舉例而 言,蝕刻中止層255藉由使用諸如氮化矽之氮化合物形成。 此處,在藉由CMP處理、回蝕處理或其組合平面化第四層 間介電層250之上表面之後,則可在經平面化之第四層間介 電層250上形成蝕刻中止層255。 在蝕刻中止層255上形成第一氧化物層26〇與第二氧化物 層265以充當用於形成儲存電極29〇之模。第一氧化物層26〇 使用BPSG或USG形成,且第二氧化物層265使用諸如 PE-TEOS之氧化物材料形成。第一與第二氧化物層26〇、265 可在蝕刻中止層255气上表面上形成至大約5〇〇〇至大約 50000 A之厚度。然而,第一與第二氧化物層26〇與265之總 厚度可根據電谷為310(參看圖1〇E)之所要電容適當地控 制。即,電容為310之南度由第一與第二氧化物層26〇、265 之厚度決定。 在第二氧化物層265上形成第六光阻薄膜(未展示)。藉由 96824.doc -32- 200530309 曝露並顯影來圖案化該第六光阻薄膜以在第二氧化物層 265上形成第六光阻圖案。 使用第六光阻圖㈣為㈣料來部分地㈣苐二氧化 物層265、第—氧化物層、㈣中止層…及第四層間介 電層25〇以形成用於曝露第四塾片㈣的儲存節點接觸孔之 第四接觸孔270。 圖靡為說明在第四接觸孔27〇内形成-儲存電極290之 步驟的截面圖。 參看圖跡藉由灰化處理與剝離處理來移除第六光阻圖 案。接著,在曝露之第四墊片24〇及第四接觸孔27〇之内壁 部分上形成雜質摻雜多晶矽之第五導電層。 藉由CMP處j里' 回餘處理或其組合來移除一部分第五導 電層直至曝露第二氧化物層265之上表面,以在第四墊片 240及第四接觸孔27〇之内壁部分上形成一導電層圖案2⑽。 在V電圖案280之表面上選擇性地生長一 HSG矽層285以 形成一電連接至第一接觸區域185之儲存電極29〇。 圖10E為說明形成電容器31〇之步驟的截面圖。 參看圖10E,藉由使用根據本發明之一實施例之蝕刻組合 物之濕蝕刻處理來移除第二氧化物層265與第一氧化物層 260 〇 在儲存電極290之底部表面、内壁部分及外壁部分上形成 氮化物材料或氧化物材料之介電層薄膜。接著,在使用 至屬或雜貝摻雜多晶石夕之介電薄膜上形成一上部電極 3〇〇以完成電容器310。圖案化上部電極300及介電薄膜295 96824.doc -33- 200530309 以將各個電容器310彼此分_ μ人+ a ^。在電谷器310上形成第五層 間;丨電層(未展示)以用於盥 、^、上V線电絕緣。上部導線在第 五層間;丨電層上形成以形成半導體裝置。 根據本發明之實施例,將在下文進-步描述用於藉由使 用八有上文所述特性之Μ刻組合物來移除第二及第一氧化 物層2 6 5與2 6 0之钱刻處理。 260與265之影像。該等圖形分別說明使用敍刻組合物分別 執行大約15分鐘、大約16分鐘、大約17分鐘、大約18分鐘、 大約19分鐘及大約20分鐘之濕式蝕刻處理之後的結果。 如圖11Α至11F所說明’藉由使用多晶石夕形成之儲存電極 290在第^氧化物層265與第-氧化物層·之姓刻期間並 未受損害。 »11Α至⑽為藉由電子顯微鏡所拍之用於說明使用根據 本發明之-實施例之银刻組合物的第一與第二氧化物層 圖12Α與12Β分別為說明在使用根據本發明之一實施例 之蝕刻組合物的浸潰類型蝕刻處理及循環類型蝕刻處理之 後’殘留氮化物層之厚度分散之俯視圖。 圖12Α為說明當使用浸潰技術執行濕式蝕刻處理時蝕刻 中止層255之厚度分散(其為半導體基板15〇上殘留氮化物 層)之俯視圖。圖12Β為說明當使用循環技術執行濕蝕刻處 理時蝕刻中止層255之厚度分散(其為半導體基板15〇上殘 留氮化物層)之俯視圖。 參看圖12Α,浸潰類型濕蝕刻處理執行大約9〇〇秒。半導 體基板1 50上之殘留餘刻中止層25 5之平均厚度大約為404 96824.doc -34- 200530309 A’其最大厚度大約為41lA且其最小厚度大约為395 a。因 此,殘留韻刻中止層255之厚度分散大約為i5A。即,當使 用根據本發明之—實施例之㈣組合物執行㈣處理時, 與習知蝕刻組合物相比,氮化物層之厚度分散實質上減少 了。 參看圖12B,循環類型濕蝕刻處理執行大約84〇秒。半導 體基板150上之殘留蝕刻中止層255之平均厚度大約為47〇 A。其最大厚度大約為474 A,且其最小厚度大約為牝2人。 因此,殘留蝕刻中止層255之厚度分散大約為丨2 a,其很 低。因此,當藉由使用根據本發明之一實施例之蝕刻組合 物的濕蝕刻處理來選擇性地移除氧化物層時,顯著地改良 了姓刻均勻性。 根據本發明之實施例,蝕刻組合物(藉此使用多晶矽形成 一圖案或一儲存電極)可有效地被鈍化,即,保護使其免受 過钱刻。當藉由使用钱刻組合物之濕钱刻處理來移除氧化 物層時,移除該氧化物層而具有高蝕刻選擇性,且多晶石夕 層被保護以免受損害。另外,與習知蝕刻組合物相比,大 大地改良了藉由用於選擇性地移除氧化物層之濕蝕刻處理 所產生的餘刻均勻性。 儘管參看隨附實施例詳細地描述了本發明,但是,可不 背離本發明之真實精神及範疇而使用各種修改、替代之構 造及均等物。 【圖式簡單說明】 圖1A至id為說明製造具有HSG電容器之習知半導體記 96824.doc 200530309 憶體裝置之方法的截面圖; 圖2為藉由電子顯微鏡所拍之在使用習知LAL溶液蝕刻 處理氧化物層之後的儲存電極之影像; 圖3為藉由電子顯微鏡所拍之在使用習知5:1氟化氫溶液 颠刻處理氧化物層之後的儲存電極之影像; 、圖4A與4B分別為代表在使用習知5 ·· i氟化氫溶液之浸潰 類5L餘刻處理及循環類型钱刻處理之後,殘冑氮化物層之 厚度分散之俯視圖; 圖5A與5B為說明藉由根據本發明之一實施例的蝕刻組 合物鈍化多晶矽層之機制的示意性截面圖; 圖6為說明製備根據本發明之一實施例的蝕刻組合物之 方法的流程圖; 圖7A至7C為說明藉由使用根據本發明之一實施例的蝕 刻組合物在氧化物層、氮化物層及多晶矽層中選擇性地蝕 刻氧化物層之方法的截面圖; 圖8A至8D為說明在藉由使用根據本發明之實例丨獲得之 蝕刻組合物及根據比較實例丨至3獲得之蝕刻組合物之濕式 蝕刻處理中用於PE-TEOS層、BPSG層、氮化矽層及多晶^ 層之钱刻速率之圖; 圖9A至9D為說明在藉由使用根據本發明之實例2與3獲 得之钱刻組合物及根據比較實例4獲得之蝕刻組合物之^ 餘刻處理中用於PE-TE〇S層、BPSG層、氮化矽層及多晶= 層之餘刻速率之圖; 圖10A至10E為說明一種製造根據本發明夕一余 ^ 貝施例的 96824.doc -36- 200530309 半導體裝置之方法的截面圖; 圖11A至IIF為藉由電子顯微鏡所拍之 明之-實施例之㈣組合㈣刻之氧化物層 及本發 圖12A與12B分別為代表在使用根據本發明之一實施例 之蝕刻溶液進行浸潰類型蝕刻處理及循環類型蝕刻處理之 後,殘留氮化物層之厚度分散之俯視圖。 【主要元件符號說明】 10, 100 基板 15, 155 隔離層 20 閘極電極 25 封頂層 30 隔離片 35 閘極結構 40 源極/汲極區域 45 接觸塾片 50 層間介電層 55, 75 儲存節點接觸插塞 60 蝕刻中止層 65 下部犧牲層 70 上部犧牲層 75 儲存節點接觸孔 80, 290 儲存電極 85 HSG石夕層 90 介電薄膜The upper portion of the interlayer dielectric layer 195 is etched to planarize the upper portion of the first interlayer dielectric layer 195. On the planarized first interlayer dielectric layer 195, a second photoresist layer is coated (not shown). The second photoresist film is exposed and developed to form a second photoresist pattern. Next, using the second photoresist pattern as an etching mask, the first interlayer dielectric layer 195 is partially and anisotropically etched to form a first contact hole 198 exposing the first and second contact regions 185 and 190. Therefore, the first contact hole] is aligned with respect to the transistor structure 183 while exposing the first and second contact regions 185 and 190. 96824.doc -28- 200530309 μ removes the second photoresist pattern by ashing treatment and peeling treatment. A second conductive layer (not shown) is formed on the first interlayer dielectric layer 195 filling the first contact hole 198. The second conductive layer is formed by doping polycrystalline silicon or metal with a high concentration of impurities. The second conductive layer is engraved by a CMP process, a cashback process, or a combination thereof until the upper surface of the planarized first interlayer dielectric layer 195 is exposed to form the second spacer 200 and the first spacer 205. , Where the first and second diaphragms are self-aligned contact (SAC). The figure is just a cross-sectional view illustrating the steps of forming a bit line and a fourth ridge 240. Referring to FIG. 10B, a first interlayer dielectric layer is formed on the first interlayer dielectric layer 195 and the first and second pads 200 and 2005 using a BPSG, _ or HDP-CVD oxide material. 210. The second interlayer dielectric layer 21 electrically insulates the bit line (formed later) from the first pad 2000 of the first storage node contact pad. The second interlayer dielectric layer 210 is etched by a CMP process, an etch-back process, or a combination thereof to planarize the upper surface of the second interlayer dielectric layer 21o. A third photoresist film (not shown) is coated on the second interlayer dielectric layer 21o. A second photoresist film is exposed and developed to form a third photoresist pattern (not shown). The second interlayer dielectric layer 210 is partially etched by using the third photoresist pattern as an etch mask to form a second contact hole (not shown) in the second interlayer dielectric layer 21 to expose the buried first layer. The first bit line in the inter-dielectric layer 195 contacts the second pad 205 of the pad. The second contact hole corresponds to a bit line contact hole for electrically connecting the bit line to the second pad 205 of the first bit line contact pad. The third photoresist pattern is removed by an ashing process and a peeling process. Then at 96824.doc -29- 200530309 filling the bit line contact hole No. 丨 shop, the second interlayer dielectric of Leyi contact hole sequentially formed a third conductive layer (not ^ M210 ± ψ it Μ ~ m. No. A masking layer (not shown). The picture shows the second conductive layer — ^ ^ R s 〇 The masking layer forms a one-bit wire conductive # pattern (not shown) and one opens a green spray door ~ m 增 々) /, Weifan line mask pattern (not shown). A fourth photoresist film is coated on the second photoresist film to open on the second photomask layer, and an I exposure path is developed and developed to form a fourth photoresist pattern (not shown). The fourth photoresist is used as A 4) The cover sound fish is continuously-patterned the second cover: two = a third gasket that fills the second contact hole corresponding to the bit line contact hole (Not shown) and form bit lines including bit line conductive patterns and bit 70 line masking layer patterns (not shown) The second pad corresponds to the second bit line contact and is used to make the bit line profit The second pad 205 of the first bit line contact pad is electrically connected. The third cymbal is also known as the first plug as the bit line contact plug. During the engraving process of the four contact holes 27 () (Fig. 1GC), the bit 7L line mask pattern passivates the bit line conductive pattern. The first and second oxide layers 260 and 265 are used to form the The four-layer dielectric layer 250 has an etch-selective material to form a bit line mask pattern. For example, the bit line mask pattern is formed using a nitride such as silicon nitride. An interposer is formed between the bit line and the second layer. A second dielectric layer (not shown) is formed on the electrical layer 21. Then, the second dielectric layer is anisotropically etched. A second spacer (not shown) corresponding to a bit line spacer on a side wall portion of each bit line is formed. The second interlayer dielectric layer 210 and the third interlayer dielectric layer 215 (formed later) are etched. Selective material to form a second spacer for purifying the 96824.doc -30 · 200530309 bit line during the formation of the fourth spacer 240 of the second storage node contact spacer. Second interlayer dielectric layer 21 5 is formed on the second interlayer dielectric layer 210 while covering the bit lines including the second spacers on the sidewall portions thereof. The third interlayer dielectric layer 215 uses an oxygen compound such as BPSG, USG, and HDP-CVD oxide. Forming. The third interlayer dielectric layer 215 is etched by a CMP process, an etch-back process, or a combination thereof until the upper surface portion of the bit line mask pattern is exposed to planarize the upper surface of the third interlayer dielectric layer 215. Five photoresist films are coated on the planarized third interlayer dielectric layer 215. The fifth photoresist film is exposed and developed to form a fifth photoresist pattern (not shown). The third interlayer dielectric layer 215 and The second interlayer dielectric layer 21 uses a fifth photoresist The pattern is used as a engraving ㉟ | to partially engraved the money to form a third contact hole 238 for exposing the first cymbal 200. The third contact hole 汨 8 corresponds to the first storage node contact hole. The third connection 238 is about a bit A second spacer formed on the side wall portion of the line is formed in a self-aligned manner. A fourth conductive layer is formed on the third interlayer dielectric layer 215 filling the second contact hole 23 8. Then, a CMP process, a hafnium process, or The combination comes from the fourth conductive layer until the upper surface of the third interlayer dielectric layer 215 and the bit lines are exposed, so as to form the fourth ^ 24Q ° fourth pad of the second storage node contact pad in the third contact hole. 240 is also known as the second plug of the storage node contact plug. The fourth W is formed using a conductive material such as hetero-doped poly. The fourth spacer 240 electrically connects the first diaphragm 200 of the first storage node contact diaphragm with the storage electrode 29G (see FIG. 9D). Therefore, the storage electrode is electrically connected to the first contact area 185 of the storage node contact area 96824.doc -31-200530309 by the first pad 200 and the fourth diaphragm _. Fig. 10C is a sectional view illustrating a step of forming a fourth contact hole 27o and a storage electrode 29o. Referring to FIG. 10C, a fourth interlayer dielectric is formed on the fourth pad 240, the bit line, and the third interlayer dielectric layer 215 of the second storage node contact pad by BPSG, USG, and SO (^ HDp_CVD oxide). Layer 25. The fourth interlayer dielectric layer 250 electrically separates the bit line from the storage electrode 29. Between the fourth layer and the I layer 250, a stop layer 255 is formed for a while. The fourth interlayer dielectric layer 250 is used. The first oxide layer 260 and the second oxide layer 265 have etch-selective materials to form the etch stop layer 255. For example, the etch stop layer 255 is formed by using a nitrogen compound such as silicon nitride. Here, after the upper surface of the fourth interlayer dielectric layer 250 is planarized by a CMP process, an etch-back process, or a combination thereof, an etching stop layer 255 may be formed on the planarized fourth interlayer dielectric layer 250. A first oxide layer 26 and a second oxide layer 265 are formed on the etching stop layer 255 to serve as a mold for forming the storage electrode 29. The first oxide layer 26 is formed using BPSG or USG, and the second oxide The material layer 265 is formed using an oxide material such as PE-TEOS. The oxide layers 26 and 265 may be formed on the upper surface of the etching stopper layer 255 to a thickness of about 5000 to about 50000 A. However, the total thickness of the first and second oxide layers 26 and 265 may be Appropriately controlled according to the required capacitance of the valley of 310 (see FIG. 10E). That is, the south of the capacitance of 310 is determined by the thickness of the first and second oxide layers 26 and 265. In the second oxide layer A sixth photoresist film (not shown) is formed on 265. The sixth photoresist film is patterned by exposure and development on 96824.doc -32- 200530309 to form a sixth photoresist pattern on the second oxide layer 265. The sixth photoresist pattern is used as a material to partially pierce the dioxide layer 265, the first oxide layer, the puppet stop layer ... and the fourth interlayer dielectric layer 25 to form a fourth film for exposing the film. The fourth contact hole 270 of the storage node contact hole. FIG. 4 is a cross-sectional view illustrating a step of forming-storing the electrode 290 in the fourth contact hole 270. See the trace to remove the first through ashing and peeling processing. Six photoresist patterns. Next, the exposed fourth pad 24 and the fourth contact hole 27 A fifth conductive layer of impurity-doped polycrystalline silicon is formed on the inner wall portion. A portion of the fifth conductive layer is removed by the CMP process or a combination thereof until the upper surface of the second oxide layer 265 is exposed, so that A conductive layer pattern 2⑽ is formed on the inner wall portion of the four pads 240 and the fourth contact hole 27. A HSG silicon layer 285 is selectively grown on the surface of the V electrical pattern 280 to form an electrical connection to the first contact region 185. The storage electrode 29. FIG. 10E is a cross-sectional view illustrating a step of forming the capacitor 31. Referring to FIG. 10E, the second oxide layer is removed by a wet etching process using an etching composition according to an embodiment of the present invention. 265 and the first oxide layer 260. A dielectric layer film of a nitride material or an oxide material is formed on the bottom surface, the inner wall portion, and the outer wall portion of the storage electrode 290. Next, an upper electrode 300 is formed on the dielectric film doped with polycrystalline or hetero-shell polysilicon to complete the capacitor 310. The upper electrode 300 and the dielectric film 295 96824.doc -33- 200530309 are patterned to separate the respective capacitors 310 from each other _ μperson + a ^. A fifth layer is formed on the electric valley device 310; an electric layer (not shown) is used for electrical insulation of the upper, lower, and upper V lines. The upper conductive line is formed between the fifth layer and the electric layer to form a semiconductor device. According to an embodiment of the present invention, further description is provided below for removing the second and first oxide layers 2 6 5 and 2 6 0 by using the M-etching composition having the characteristics described above. Money carved. Images of 260 and 265. The figures illustrate the results after performing the wet etching treatment using the scoring composition for about 15 minutes, about 16 minutes, about 17 minutes, about 18 minutes, about 19 minutes, and about 20 minutes, respectively. As shown in FIGS. 11A to 11F, the storage electrode 290 formed by using polycrystalline silicon is not damaged during the etching of the ^ th oxide layer 265 and the -oxide layer. »11Α to ⑽ are photographs taken by an electron microscope to illustrate the use of the first and second oxide layers of the silver-etched composition according to the embodiment of the present invention. FIGS. 12A and 12B are illustrations illustrating the use of the silver oxide composition according to the present invention. A plan view of the thickness dispersion of the residual nitride layer after the dip type etching process and the cycle type etching process of the etching composition of an embodiment. FIG. 12A is a plan view illustrating a thickness dispersion of the etching stop layer 255 (which is a residual nitride layer on the semiconductor substrate 150) when a wet etching process is performed using an immersion technique. FIG. 12B is a plan view illustrating the dispersion of the thickness of the etching stop layer 255 (which is a residual nitride layer on the semiconductor substrate 150) when the wet etching process is performed using a cycle technique. Referring to FIG. 12A, an immersion type wet etching process is performed for about 900 seconds. The average thickness of the remaining discontinuity stop layer 25 5 on the semiconductor substrate 150 is approximately 404 96824.doc -34- 200530309 A ', its maximum thickness is approximately 41 lA and its minimum thickness is approximately 395 a. Therefore, the thickness dispersion of the residual rhyme stop layer 255 is approximately i5A. That is, when the osmosis treatment is performed using the osmium composition according to the embodiment of the present invention, the thickness dispersion of the nitride layer is substantially reduced as compared with the conventional etching composition. Referring to FIG. 12B, the cycle-type wet etching process is performed for about 84 seconds. The average thickness of the residual etch stop layer 255 on the semiconductor substrate 150 is about 47 Å. Its maximum thickness is approximately 474 A, and its minimum thickness is approximately 人 2 persons. Therefore, the thickness dispersion of the residual etching stop layer 255 is about 2a, which is very low. Therefore, when the oxide layer is selectively removed by a wet etching process using an etching composition according to an embodiment of the present invention, the uniformity of the etching is significantly improved. According to an embodiment of the present invention, the etching composition (by which a pattern or a storage electrode is formed using polycrystalline silicon) can be effectively passivated, that is, protected from being engraved. When the oxide layer is removed by a wet-money engraving process using a money-engraving composition, the oxide layer is removed to have a high etching selectivity, and the polycrystalline silicon layer is protected from damage. In addition, compared with the conventional etching composition, the remaining uniformity produced by the wet etching process for selectively removing the oxide layer is greatly improved. Although the present invention has been described in detail with reference to the accompanying embodiments, various modifications, alternative constructions, and equivalents can be used without departing from the true spirit and scope of the invention. [Schematic description] Figures 1A to id are cross-sectional views illustrating a method for manufacturing a conventional semiconductor device having an HSG capacitor 96824.doc 200530309. Figure 2 is a conventional LAL solution in use taken by an electron microscope. An image of the storage electrode after the oxide layer is etched; FIG. 3 is an image of the storage electrode after the oxide layer is etched in a conventional 5: 1 hydrogen fluoride solution by an electron microscope; FIG. 4A and 4B are respectively It is a plan view showing the thickness dispersion of the residual nitride layer after the conventional 5L iF treatment of the immersion type 5L after-treatment and the cycle-type money engraving treatment; FIGS. 5A and 5B are illustrations for explaining the method according to the present invention. A schematic cross-sectional view of the mechanism by which the polysilicon layer is passivated by an etching composition according to an embodiment; FIG. 6 is a flowchart illustrating a method for preparing an etching composition according to an embodiment of the present invention; FIGS. 7A to 7C are views illustrating the use of Cross-sectional views of a method for selectively etching an oxide layer in an oxide layer, a nitride layer, and a polycrystalline silicon layer according to an etching composition according to an embodiment of the present invention; FIGS. 8A to 8D are diagrams illustrating Used for PE-TEOS layer, BPSG layer, silicon nitride layer, and polycrystalline in a wet etching process by using the etching composition obtained according to the example of the present invention and the etching composition obtained according to the comparative examples. Figures 9A to 9D are diagrams illustrating the use of the etch-off treatment in the etch-off process obtained by using the etch-in composition obtained according to Examples 2 and 3 of the present invention and the etching composition obtained in accordance with Comparative Example 4. PE-TE0S layer, BPSG layer, silicon nitride layer, and polycrystalline silicon layers; Figures 10A to 10E illustrate a manufacturing method according to the present invention. -200530309 A cross-sectional view of a method of a semiconductor device; Figures 11A to IIF are taken by an electron microscope, and the oxide layer engraved with the combination of the example and the present invention. Figures 12A and 12B are representative of the use according to the present invention. A top view of the dispersion of the thickness of the residual nitride layer after the etching solution of one embodiment is subjected to an immersion type etching process and a cyclic type etching process. [Description of main component symbols] 10, 100 Substrates 15, 155 Isolation layer 20 Gate electrode 25 Capping layer 30 Isolator 35 Gate structure 40 Source / drain region 45 Contact diaphragm 50 Interlayer dielectric layer 55, 75 Storage node Contact plug 60 Etch stop layer 65 Lower sacrificial layer 70 Upper sacrificial layer 75 Storage node contact hole 80, 290 Storage electrode 85 HSG Shixi layer 90 Dielectric film

96824.doc -37- 200530309 95 上部電極 97 HSG電容器 105 氮化物層 110 第一氧化物層 115 第二氧化物層 120 接觸孔 125 多晶矽層圖案 150 半導體基板 165 閘極導電圖案 170 閘極遮罩圖案 175 閘極結構 180 第一隔離片 183 電晶體結構 185 第一接觸區域 190 第二接觸區域 195 第一層間介電層 198 第一接觸孔 200 電容器 200 第一墊片 205 第二墊片 210 第二層間介電層 215 第三層間介電層 238 第三接觸孔 240 第四墊片96824.doc -37- 200530309 95 upper electrode 97 HSG capacitor 105 nitride layer 110 first oxide layer 115 second oxide layer 120 contact hole 125 polycrystalline silicon layer pattern 150 semiconductor substrate 165 gate conductive pattern 170 gate mask pattern 175 gate structure 180 first spacer 183 transistor structure 185 first contact area 190 second contact area 195 first interlayer dielectric layer 198 first contact hole 200 capacitor 200 first spacer 205 second spacer 210 first Second interlayer dielectric layer 215 Third interlayer dielectric layer 238 Third contact hole 240 Fourth spacer

96824.doc -38- 200530309 250 第四層間介電層 255 餘刻中止層 260 第一氧化物層 265 第二氧化物層 270 第四接觸孔 280 導電層圖案 285 HSG矽層 290 儲存電極 295 介電薄膜 300 上部電極 310 電容器 96824.doc -39-96824.doc -38- 200530309 250 Fourth interlayer dielectric layer 255 Interrupt stop layer 260 First oxide layer 265 Second oxide layer 270 Fourth contact hole 280 Conductive layer pattern 285 HSG silicon layer 290 Storage electrode 295 Dielectric Film 300 Upper electrode 310 Capacitor 96824.doc -39-

Claims (1)

200530309 十、申請專利範圍: L -種餘刻組合物,其包含大約〇1至8重量百分比之氣化氮 (HF)、大約10至25重量百分比之氟化銨(nh4f)、大約 0.0001至3重量百分比之非離子聚合物界面活性劑及水 (H20) 〇 2. 如請求们之姓刻組合物,#中該非離子聚合物界面活性 劑之量為大約0·001至大約〇.〇2重量百分比之範圍。 3. 如請求項2之姓刻組合物,其中該非離子聚合物界面活性 自由聚乙二醇與聚丙二醇之嵌段共聚物、聚乙二醇 〃承丙—.之隨機共聚物、聚氧化乙烯與聚氧化丙烯之 欲段共聚物及聚氧化乙料聚氧化㈣之隨機共聚物所 組成之群。 4. 如睛求項!之钱刻組合物,其中該非離子聚合物界面活性 劑具有 h-(OCH2CH2)x-(och(CH3)CH2V(〇ch2CH2)z 〇h 之結構’其中x、yh為正整數,且其中該非離子聚合物 界面活性劑之平均分子量大約為3〇〇〇或更少。 5. 如請求们之姓刻組合物,其中該非離子聚合物界面活性 劑包含聚醇非離子聚合物界面活性劑。 6. 如請求項5之姓刻組合物,其中該聚醇非離子聚合物界面 活性劑為如下列結構所表示之添加聚氧化乙烯之山梨聚 糖脂, H〇(CHJCH<0)y^ /(OCHagUxOH ' rt N0^pi(0〇tCHi)y〇H ),00001,(¾ )5 CH, okbch, (CH, )$ CH, 96824.doc 200530309 其中X、y及Z為正整數。 7· 一種製備蝕刻組合物之方法,該方法包含以下步驟: 藉由將非離子聚合物界面活性劑與氟化氫溶液混合來 製備第一混合物溶液; 藉由將水與該第一混合物溶液混合來製備第二混合物 溶液;及 藉由將氟化叙〉谷液與该弟二混合物溶液混合以製傷該 餘刻組合物。 8·如請求項7之方法,其中該非離子聚合物界面活性劑與氟 化氫溶液以大約10至40T:之溫度範圍,混合大約3小時或 更久。 9·如明求項7之方法,其中該水與該第一混合物溶液以大約 10至4(TC之溫度範圍,混合大約3小時或更久。 1 〇· 士明求項7之方法,其中該第二混合物溶液與該氟化銨溶 液以大約10至4(TC之溫度範圍,混合大約12小時或更久。 11·如請求項7之方法,其中在該第一混合物溶液、該第二混 合物溶液及該蝕刻組合物之製備期間,過濾包含在該第 此口物溶液、該第二混合物溶液及該蝕刻組合物中之 顆粒。 12·如叫求項7之方法,其中該非離子聚合物界面活性劑選自 由聚乙一醇與聚丙二醇之嵌段共聚物、聚乙二醇與聚丙 T醇之隨機共聚物、聚氧化乙烯與聚氧化丙烯之嵌段共 聚物及聚氧化乙_與聚氧化丙稀之隨機共聚物所組成之 96824.doc 200530309 a如請求項7之方法,其中該非離子聚合物界面活性劑且有 WH2CH2H〇CH(CH3^^^ ^ t X ^ t為正整數,J_ #中該非離子聚合物界面活性劑之平均 分子量大約為3000。 二长員7之方法’其中該非離子聚合物界面活性劑包含 聚醇非離子界面活性劑。 15·如喷求項14之方法,其中該聚醇非離子聚合物界面活性200530309 10. Scope of patent application: L-a kind of afterburning composition, which contains about 0.01 to 8 weight percent of gasified nitrogen (HF), about 10 to 25 weight percent of ammonium fluoride (nh4f), about 0.0001 to 3 Weight percent of non-ionic polymer surfactant and water (H20) 〇2. As requested by the composition, the amount of the non-ionic polymer surfactant in # is about 0.001 to about 0.02 weight Range of percentages. 3. The composition as claimed in claim 2, wherein the non-ionic polymer has interfacial activity free block copolymers of polyethylene glycol and polypropylene glycol, random copolymers of polyethylene glycol and polypropylene, polyethylene oxide It is a group consisting of a poly-propylene oxide copolymer and a random copolymer of polyethylene oxide and polyfluorene oxide. 4. Ask for it! Zhiqian composition, wherein the nonionic polymer surfactant has a structure of h- (OCH2CH2) x- (och (CH3) CH2V (〇ch2CH2) z 〇h 'where x and yh are positive integers, and wherein the non-ionic The average molecular weight of the polymer surfactant is about 3000 or less. 5. The composition as claimed, wherein the non-ionic polymer surfactant comprises a polyalcohol non-ionic polymer surfactant. 6. The composition as claimed in claim 5, wherein the polyalcohol nonionic polymer surfactant is a sorbitan lipid with polyethylene oxide as shown in the following structure, H〇 (CHJCH < 0) y ^ / (OCHagUxOH 'rt N0 ^ pi (0〇tCHi) y〇H), 00001, (¾) 5 CH, okbch, (CH,) $ CH, 96824.doc 200530309 where X, y and Z are positive integers. 7. One kind of preparation A method of etching a composition, the method comprising the steps of: preparing a first mixture solution by mixing a nonionic polymer surfactant with a hydrogen fluoride solution; preparing a second mixture solution by mixing water with the first mixture solution ; And by mixing the fluorinated syrup> Valley fluid with the younger brother The material solution is mixed to make the remaining composition. 8. The method of claim 7, wherein the non-ionic polymer surfactant and the hydrogen fluoride solution are mixed at a temperature range of about 10 to 40 T: for about 3 hours or more. 9. The method of claim 7, wherein the water and the first mixture solution are mixed at a temperature range of about 10 to 4 ° C for about 3 hours or more. 1 The method of claim 7, in which The second mixture solution and the ammonium fluoride solution are mixed at a temperature range of about 10 to 4 ° C. for about 12 hours or more. 11. The method of claim 7, wherein the first mixture solution, the second During the preparation of the mixture solution and the etching composition, the particles contained in the first mouthpiece solution, the second mixture solution, and the etching composition are filtered. 12. The method of claim 7, wherein the non-ionic polymer The surfactant is selected from the group consisting of a block copolymer of polyethylene glycol and polypropylene glycol, a random copolymer of polyethylene glycol and polypropylene T alcohol, a block copolymer of polyethylene oxide and polypropylene oxide, and polyethylene oxide and polyethylene oxide. C 96824.doc 200530309 a composed of random copolymers, the method of claim 7, wherein the non-ionic polymer surfactant has WH2CH2H0CH (CH3 ^^^^ t X ^ t is a positive integer, J_ # 中非The average molecular weight of the ionic polymer surfactant is approximately 3000. The method of the second member 7 'wherein the non-ionic polymer surfactant comprises a polyalcohol non-ionic surfactant. 15. The method of claim 14, wherein the polyalcohol nonionic polymer has interfacial activity 劑為如下列結構所表示之添加聚氧化乙稀之山梨聚糖 脂, HQ^CKaO)^ /0Ca2CR%)xm Γ\ '0 八严 οα^αί,ν» 恥(οαι,αΛοοοα^αΐΑατ,σκΒα^α!,)·^ 其中χ、y及ζ為正整數。 16·如請,項7之方法,其中該氟化氫溶液之濃度為大約40至 60重量百分比之範圍。The agent is a sorbitan lipid with polyoxyethylene as shown in the following structure, HQ ^ CKaO) ^ / 0Ca2CR%) xm Γ \ '0 Eight strict οα ^ αί, ν (耻 αι, αΛοοοα ^ αΐΑατ, σκΒα ^ α!,) · ^ where χ, y, and ζ are positive integers. 16. If requested, the method of item 7, wherein the concentration of the hydrogen fluoride solution is in the range of about 40 to 60 weight percent. 士明长項7之方法,其中該氟化銨溶液之濃度為大約3〇至 5〇重量百分比之範圍。 18·種钱刻方法,其包含以下步驟: 在一基板上形成一氮化物層; 形成一氧化物層; 圖案化該氧化物以形成一曝露該氮化物層之接觸孔; 在忒曝路之氮化物層及該接觸孔之一内側壁部分上, 形成一多晶矽層圖案;及 使用蝕刻組合物移除該氧化物層,其中該蝕刻組合物 96824.doc 200530309 包括非離子聚合物界面活性劑,其選擇性地吸附於該多 晶矽層之表面部分,以鈍化該多晶矽層圖案。 19.如請求項18之蝕刻方法,其中該非離子聚合物界面活性 劑選自由聚乙二醇與聚丙二醇之嵌段共聚物、聚乙二醇 與聚丙二醇之隨機共聚物、聚氧化乙烯與聚氧化丙烯之 嵌段共聚物及聚氧化乙烯與聚氧化丙烯之隨機共聚物所 組成之群。 20. 如請求項19之蝕刻方法,其中該非離子聚合物界面活性 劑具有 H-(〇CH2CH2)x-(OCH(H3)CH2)y-(〇CH2CH2)z 〇I^ 結構,其中X、7及2為正整數,且其中該非離子聚合物界 面活性劑之平均分子量大約為3000。 21. 如請求項18之蝕刻方法,其中該非離子聚合物界面活性 Μ包含聚醇非離子界面活性劑。 22. 如請求項21之蝕刻方法,其中該聚醇非離子聚合物界面 活性劑為如下列結構所表示之添加聚氧化乙烯之山梨聚 糖脂, HCXCHjCHjO)冒 .(ΟΟί,ΟΙ^χΟΗThe method of Shiming Chang item 7, wherein the concentration of the ammonium fluoride solution is in the range of about 30 to 50 weight percent. 18. A money engraving method comprising the steps of: forming a nitride layer on a substrate; forming an oxide layer; patterning the oxide to form a contact hole exposing the nitride layer; Forming a polycrystalline silicon layer pattern on a nitride layer and an inner sidewall portion of the contact hole; and removing the oxide layer using an etching composition, wherein the etching composition 96824.doc 200530309 includes a nonionic polymer surfactant, It is selectively adsorbed on the surface portion of the polycrystalline silicon layer to passivate the polycrystalline silicon layer pattern. 19. The etching method according to claim 18, wherein the non-ionic polymer surfactant is selected from the group consisting of a block copolymer of polyethylene glycol and polypropylene glycol, a random copolymer of polyethylene glycol and polypropylene glycol, polyethylene oxide and polyethylene. A group of block copolymers of propylene oxide and random copolymers of polyethylene oxide and polyoxypropylene. 20. The etching method according to claim 19, wherein the non-ionic polymer surfactant has a structure of H- (〇CH2CH2) x- (OCH (H3) CH2) y- (〇CH2CH2) z 〇I ^, wherein X, 7 And 2 are positive integers, and the average molecular weight of the non-ionic polymer surfactant is about 3000. 21. The etching method of claim 18, wherein the nonionic polymer interfacial activity M comprises a polyalcohol nonionic surfactant. 22. The etching method according to claim 21, wherein the polyalcohol non-ionic polymer surfactant is a polysorbate added with polyethylene oxide, HCXCHjCHjO) represented by the following structure. (ΟΟί, ΟΙ ^ χΟΗ ^CJKOCH.CHOyOH CH,(〇CHaaU〇d〇CH B(CHa)tfCHaCHKaCHt(CHa)eCH3 其中X、y及z為正整數 23.如請求項18之蝕刻方法,其中該形成氧化物層之步驟包 含: 在該氮化物層上形成一第一氧化物層,·及 在該第一氧化物層上形成一第二氧化物層。 96824.doc 200530309 24. 如請求項23之蝕刻方法,其中該氮化物層包含氮化矽, 該第一氧化物層包含BPSG,且該第二氧化物層包含 PE-TEOS。 25. 如請求項1 8之蝕刻方法,其中該蝕刻組合物包含大約〇. i 至8重量百分比之氟化氫(HF、大約1〇至25重量百分比之 氟化銨(NHj)、大約〇.〇〇01至3重量百分比之非離子聚合 物界面活性劑,及水(H2〇)。 26· —種製造一半導體裝置之方法,該方法包含以下步驟: 在半導體基板上形成一 |虫刻中止層; 在該蝕刻中止層上形成一第一氧化物層; 在該第一氧化物層上形成一第二氧化物層,· 部分地移除該第一與該第二氧化物層以曝露一接觸區 形成一接觸該接觸區域之多晶矽層圖案;及 使用敍刻組合物移除該第一與該第二氧化物層, ^虫刻組合物包括非離子聚合物界面活性劑,擇 層圖案。 曰⑽之表面』分,以鈍化該多晶石夕 27. 如清求項2 6之方法 料,該第一氧化物層 PE-TEOS 〇 其中該㈣中止層包含氮化石夕# 包含BPSG’且該第二氧化物層包含 2 8 ·如清求項2 6之方法, 自由聚乙二醇與聚丙 丙二醇之隨機共聚物 其中該非離子聚合物界面活性_ 二醇之嵌段共聚物、聚乙二醇企聚 、聚氧化乙婦與聚氧化丙稀之钱严 96824.doc 200530309 共聚物及聚氧化乙烯與聚氧化丙烯之隨機共聚物所組成. 之群。 29·如請求項28之方法,其中該非離子聚合物界面活性劑具 有 H-(OCH2CH2)x-(〇CH(CH3)CH2)y-(〇CH2CH2V〇H 之結 構,其中X、y及Z為正整數,且其中該非離子聚合物界面 活性劑之平均分子量大約為3000。 30·如请求項26之方法,其中該非離子聚合物界面活性劑包 含聚醇非離子界面活性劑。 3 1 ·如清求項30之方法,其中該聚醇非離子界面活性劑為如· 下列結構所表示之添加聚氧化乙烯之山梨聚糖脂, W(Ol9ai90)w (OCHaCHa)x〇H 秦 0 OKOCHaCHaJyOH ® jiCXSaOit )i〇〇〇C2Is(£3I, )eCMa(»<HCHa(CHa)« CH, 其中x、y及z為正整數。 32·如請求項26之方法,其進一步包含以下步驟: 在该多晶矽層圖案上形成一 HSG矽層; _ 在該HSG矽層上形成一介電薄膜;及 在該介電層上形成一板電極。 33.如請求項26之方法,其中該蝕刻組合物包含大約至^ 重量百分比之氟化氫(HF)、大約1〇至25重量百分比之氟 , 化叙(NHUF)、大約〇 〇〇〇1至3重量百分比之非離子聚合物 界面活性劑,及水(Η20)。 96824.doc^ CJKOCH.CHOyOH CH, (〇CHaaU〇d〇CH B (CHa) tfCHaCHKaCHt (CHa) eCH3 where X, y, and z are positive integers 23.) The etching method according to claim 18, wherein the step of forming an oxide layer includes : Forming a first oxide layer on the nitride layer, and forming a second oxide layer on the first oxide layer. 96824.doc 200530309 24. The etching method as claimed in claim 23, wherein the nitrogen I。 The compound layer comprises silicon nitride, the first oxide layer comprises BPSG, and the second oxide layer comprises PE-TEOS. 25. The etching method as claimed in claim 18, wherein the etching composition comprises about 0.1 to 8 weight percent hydrogen fluoride (HF, about 10 to 25 weight percent ammonium fluoride (NHj), about 0.0001 to 3 weight percent non-ionic polymer surfactant, and water (H20). 26 A method of manufacturing a semiconductor device, the method comprising the following steps: forming a worm stop layer on a semiconductor substrate; forming a first oxide layer on the etch stop layer; on the first oxide layer Forming a second oxide layer, partly Removing the first and the second oxide layers to expose a contact area to form a polycrystalline silicon layer pattern in contact with the contact area; and using a engraving composition to remove the first and the second oxide layers, The material includes a non-ionic polymer surfactant, a layer-selecting pattern. The surface of the ytterbium is divided to passivate the polycrystalline stone. 27. If the method of item 26 is clear, the first oxide layer is PE-TEOS. Wherein the ㈣stop layer contains nitride stone eve # contains BPSG 'and the second oxide layer contains 2 8 · As in the method of seeking item 26, a random copolymer of free polyethylene glycol and polypropylene glycol wherein the non-ionic polymer Interfacial activity _ Block copolymers of diols, polyethylene glycol polymerization, polyethylene oxide and polypropylene oxide Qian Yan 96824.doc 200530309 copolymers and random copolymers of polyethylene oxide and polypropylene oxide 29. The method according to claim 28, wherein the non-ionic polymer surfactant has a structure of H- (OCH2CH2) x- (〇CH (CH3) CH2) y- (〇CH2CH2V〇H), wherein X, y and Z are positive integers, and wherein the non-ionic polymer The average molecular weight of the surfactant is about 3000. 30. The method of claim 26, wherein the non-ionic polymer surfactant comprises a polyalcohol non-ionic surfactant. 3 1 · The method of claim 30, wherein the polymer Alcohol nonionic surfactants are sorbitan lipids with polyethylene oxide as shown in the following structure, W (Ol9ai90) w (OCHaCHa) x〇H Qin 0 OKOCHaCHaJyOH ® jiCXSaOit) i〇〇〇C2Is (£ 3I, ) eCMa (»< HCHa (CHa)« CH, where x, y, and z are positive integers. 32. The method of claim 26, further comprising the steps of: forming an HSG silicon layer on the polycrystalline silicon layer pattern; forming a dielectric thin film on the HSG silicon layer; and forming a plate on the dielectric layer. electrode. 33. The method of claim 26, wherein the etching composition comprises about to ^ weight percent of hydrogen fluoride (HF), about 10 to 25 weight percent of fluorine, chemical conversion (NHUF), and about 0.001 to 3 Non-ionic polymer surfactants by weight, and water (Η20). 96824.doc
TW093131410A 2003-10-17 2004-10-15 Etching composition, method of preparing the same, method of etching an oxide film, and method of manufacturing a semiconductor device TWI386445B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20030072692 2003-10-17
KR1020040000235A KR100558194B1 (en) 2003-10-17 2004-01-05 Etching composition having high etching selectivity, method of preparing the same, method of selectively etching an oxide film, and method of manufacturing a semiconductor device using the same

Publications (2)

Publication Number Publication Date
TW200530309A true TW200530309A (en) 2005-09-16
TWI386445B TWI386445B (en) 2013-02-21

Family

ID=37240179

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093131410A TWI386445B (en) 2003-10-17 2004-10-15 Etching composition, method of preparing the same, method of etching an oxide film, and method of manufacturing a semiconductor device

Country Status (2)

Country Link
KR (1) KR100558194B1 (en)
TW (1) TWI386445B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260861B2 (en) * 2006-11-29 2013-08-14 東京エレクトロン株式会社 Capacitor electrode manufacturing method, manufacturing system, and recording medium
TWI401666B (en) * 2008-02-19 2013-07-11 Hannstar Display Corp Contrast ratio promotion method
US8685272B2 (en) 2008-08-08 2014-04-01 Samsung Electronics Co., Ltd. Composition for etching silicon oxide layer, method for etching semiconductor device using the same, and composition for etching semiconductor device
KR101316054B1 (en) * 2008-08-08 2013-10-10 삼성전자주식회사 Composition for etching silicon oxide layer and method for etching silicon oxide layer using the same
US9868902B2 (en) 2014-07-17 2018-01-16 Soulbrain Co., Ltd. Composition for etching
CN114334833B (en) * 2020-09-29 2024-07-02 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same
CN115232624B (en) * 2022-07-04 2023-07-11 湖北兴福电子材料股份有限公司 Buffer oxide etching solution for etching nanoscale silicon oxide intermediate layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761245A (en) * 1987-01-27 1988-08-02 Olin Corporation Etching solutions containing ammonium fluoride and an alkylphenol polyglycidol ether surfactant
DE69717982T2 (en) * 1996-04-09 2003-11-13 Johnson Diversey Inc NON-CORROSIVE BOTTLE WASHING SOLUTION
US6303506B1 (en) * 1999-09-30 2001-10-16 Infineon Technologies Ag Compositions for and method of reducing/eliminating scratches and defects in silicon dioxide during CMP process
TW556238B (en) * 2002-05-02 2003-10-01 Samsung Electronics Co Ltd One-cylinder stack capacitor and method for fabricating the same

Also Published As

Publication number Publication date
TWI386445B (en) 2013-02-21
KR20050037332A (en) 2005-04-21
KR100558194B1 (en) 2006-03-10

Similar Documents

Publication Publication Date Title
KR100703014B1 (en) Silicon oxide etching solution and method of manufacturing a semiconductor device using the same
US6037216A (en) Method for simultaneously fabricating capacitor structures, for giga-bit DRAM cells, and peripheral interconnect structures, using a dual damascene process
JP4799843B2 (en) Etching composition having high etching selectivity, manufacturing method thereof, selective etching method of oxide film using the same, and manufacturing method of semiconductor device
KR100840782B1 (en) Siloxane polymer composition and method of manufacturing a capacitor using the same
US6228739B1 (en) Pre-treatment method performed on a semiconductor structure before forming hemi-spherical grains of capacitor storage node
KR100666387B1 (en) Method of manufacturing a conductive pattern and semiconductor device using the same
TW200849386A (en) A first inter-layer dielectric stack for non-volatile memory
GB2399944A (en) Bottom electrode of capacitor of semiconductor device
TW559926B (en) Method for fabricating semiconductor device
JP3897934B2 (en) Contact hole manufacturing method of semiconductor device
KR100541682B1 (en) Method for forming capacitor of semiconductor device
TW200530309A (en) Etching composition, method of preparing the same, method of etching an oxide film, and method of manufacturing a semiconductor device
KR100839360B1 (en) Method of forming a pattern and method of manufacturing a capacitor using the same
JP2006114896A (en) Method of manufacturing semiconductor device, method of forming etch stop layer having tolerance over wet etching, and semiconductor device
KR100685734B1 (en) Porous spin-on glass composition, method of forming the same and method manufacturing a porous silicon oxide layer using the same
KR101260945B1 (en) Siloxane polymer composition and method of manufacturing a capacitor using the siloxane polymer composition
JP3355504B2 (en) Semiconductor device manufacturing method and etchant
TWI282121B (en) Method for fabricating contact pad of semiconductor device
JP2004056130A (en) Forming method of contact plug of semiconductor device
JP2002141486A (en) Semiconductor device and manufacturing method thereof
US6169002B1 (en) Methods of forming trench isolation structures by etching back electrically insulating layers using etching masks
US7361547B2 (en) Method for forming a capacitor for use in a semiconductor device
KR100839357B1 (en) Method of forming a pattern and method of manufacturing a capacitor
KR100919676B1 (en) Method for forming a capacitor in semiconductor device
KR20090074531A (en) Method for forming capacitor of semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees