TW200529541A - Asymmetric half-bridge forward converter - Google Patents

Asymmetric half-bridge forward converter Download PDF

Info

Publication number
TW200529541A
TW200529541A TW093103836A TW93103836A TW200529541A TW 200529541 A TW200529541 A TW 200529541A TW 093103836 A TW093103836 A TW 093103836A TW 93103836 A TW93103836 A TW 93103836A TW 200529541 A TW200529541 A TW 200529541A
Authority
TW
Taiwan
Prior art keywords
switching element
transformers
rectifier
capacitor
parasitic
Prior art date
Application number
TW093103836A
Other languages
Chinese (zh)
Inventor
Shih-An Liang
Ching-Wen Huang
Shyh-Fa Lin
Original Assignee
Spi Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spi Electronic Co Ltd filed Critical Spi Electronic Co Ltd
Priority to TW093103836A priority Critical patent/TW200529541A/en
Publication of TW200529541A publication Critical patent/TW200529541A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

An asymmetric half-bridge forward converter circuit is suitably applied in a low-profile system. The invented circuit is able to not only reduce the switching noises and switching loss for a semiconductor switch during operation, but also increase the overall efficiency of the converter by the synchronous rectification control technique, thereby improving the circuit design in the conventional skill. Furthermore, the use of an externally applied harmonic inductance is easier to achieve a zero voltage switching for a switch, and the externally applied saturated inductance can effective reduce electromagnetic interference (EMI).

Description

200529541 五、發明說明(1) 【發明所屬之技術領域】 本發明係涉及具有雙變壓器同步整流控制功能之非對 稱半橋順向式轉換器電路架構創設,旨在提供一可用來達 到高效率與薄型化目的之順向式換器電路。 【先前技術】200529541 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to the creation of an asymmetric half-bridge forward converter circuit architecture with a dual-transformer synchronous rectification control function, and aims to provide a high efficiency and Forward converter circuit for thinner purpose. [Prior art]

按,所謂順向轉換器(F 1〇r w a r d C ο η v e r t e r ),係為將直流電壓轉換成不同直流電壓的一 種電源轉換架構,其作用類似返驰式轉換器(F 1 y b a c k C〇n v e r t e r ),但採用順向型電源交換器時 ,由於能量只通過變壓器,所以適合較小型變壓器之使用 ,而廣被應用於低輸出電壓、大輸出電流之電源内。 又,一般電腦系統之電源供應,其電源之穩定與充足 是必要的;然而,一般低輸出電壓、大輸出電流之電源傳 輸的最大問題在於输出階段產生的電源流失及熱度消耗, 傳統的線性輸出階段提供電腦系統連續的電壓;惟,此方 法將會浪費大量的電力。 因此,即有透過以脈衝寬度調節(P u 1 s e W iAccording to the so-called forward converter (F 1〇rward C ο η verter), it is a power conversion architecture that converts DC voltage to different DC voltages, and its function is similar to a flyback converter (F 1 yback C0nverter) However, when a forward power converter is used, because the energy only passes through the transformer, it is suitable for the use of smaller transformers, and is widely used in power supplies with low output voltage and large output current. In addition, for the power supply of general computer systems, the stability and adequacy of the power supply are necessary; however, the biggest problem of power transmission with low output voltage and large output current is the power loss and heat consumption in the output stage. Traditional linear output The stage provides continuous voltage to the computer system; however, this method will waste a lot of power. Therefore, the transmission is adjusted by the pulse width (P u 1 s e W i

d t h M〇d u 1 a t i〇n )把變壓器的輸出電壓斬 波成為脈衝,通過改變脈衝的寬度、數量或者分佈規則, 以改變輸出電壓的數值和頻率以達到最大化能量傳輸之技 術,加上前述’順向轉換器(F 1 ◦ r w a r d C ο η v e r t e r )適合較小型變壓器使用之特性,應該可更適 合應用於薄型化(L 〇 w — P r 〇 f i 1 e )之系統中。 然而,由於在同一電源供應系統當中,其電源流失亦dth M〇du 1 ati〇n) The technology of chopping the output voltage of the transformer into pulses, by changing the width, number or distribution rules of the pulses, in order to change the value and frequency of the output voltage to maximize the energy transmission technology, plus the aforementioned 'The forward converter (F 1 ◦ r C ο η verter) is suitable for the characteristics of smaller transformers, and should be more suitable for applications in thin systems (L 〇w — P r 〇fi 1 e). However, due to the power loss in the same power supply system,

第6頁 200529541 五、發明說明(2) . 可能發生在變壓器之功率消耗,而其變壓器所產生之高溫 即為所消耗之功率所轉化而成,因此在薄型化(1^〇\¥ — P r 〇 f i 1 e )之系統中如何降低變壓器之功率消耗, 將視為另一重要之課題。 【發明内容】 本發明「非對稱半橋順向式轉換器」,係為一種高效 率電源轉換電路,其藉由半導體開關(以下統稱開關元件 )的切換來控制電路的動作,並利用諧振電感之電流對開 關寄生電容的充放電,可以達成開關的零電壓導通,使其 切換損失能予以降低。 藉此,使用兩顆變壓器時可以將此磁性元件予以薄型 化,並將其所消耗之功率適度分散在兩顆變壓器上,不致 於造成變壓器過熱之問題產生。 【實 '施方式】 為能使 貴審查委員清楚本發明之結構組成,以及整 體運作方式,茲配合圖式說明如下: 本發明「非對稱半橋順向式轉換器」,乃係為一種高 效率電源轉換電路,藉由開關元件的切換來控制電路的動 作,並且利用諧振電感之電流對開關元件之寄生電容的充 放電,達成開關元件的零電壓導通,使其切換損失能予以 降低。 首先,如第一圖所示,係為本發明非對稱半橋順向式 轉換器電路第一實施例之電路配置方式圖,整個電路架構 係在_聯之第一、第二變壓器T 1 、T 2之輸入一次側與Page 6 200529541 V. Description of the invention (2). It may occur in the power consumption of the transformer, and the high temperature generated by the transformer is converted by the power consumed, so in the thin (1 ^ 〇 \ ¥ — P How to reduce the power consumption of the transformer in the system of 〇fi 1 e) will be regarded as another important issue. [Summary of the Invention] The "asymmetric half-bridge forward converter" of the present invention is a high-efficiency power conversion circuit, which controls the operation of the circuit by the switching of semiconductor switches (hereinafter collectively referred to as switching elements), and uses resonant inductance The charge and discharge of the switch's parasitic capacitance can achieve zero voltage conduction of the switch, which can reduce the switching loss. Therefore, when using two transformers, the magnetic component can be thinned, and the power consumed by it can be appropriately distributed on the two transformers, which will not cause the problem of transformer overheating. [Implementation method] In order to make your reviewing committee aware of the structure and overall operation of the present invention, the following diagrams are used to explain it: The "asymmetric half-bridge forward converter" of the present invention is a high The efficiency power conversion circuit controls the operation of the circuit by switching the switching element, and uses the current of the resonant inductor to charge and discharge the parasitic capacitance of the switching element to achieve zero-voltage conduction of the switching element, which can reduce the switching loss. First, as shown in the first figure, it is a circuit configuration diagram of the first embodiment of the asymmetric half-bridge forward converter circuit of the present invention. The entire circuit architecture is connected to the first and second transformers T 1, T 2 input primary side and

200529541 五、發明說明(3) 控制電路1 0構成聯結之線路間設有主開關元件Q 1以及 副開關元件Q 2 ,主開關元件Q 1之兩接點之間係配設有 第一寄生二極體D 1與第一寄生電容C 1 ,其副開關元件 Q 2之兩接點之間係配設有第二寄生二極體D 2與第二寄 生電容C 2 ,並且分別在主開關元件Q 1以及副開關元件 Q 2其中一接點之通路處設有第一飽和電感L 1與第二飽 和電感L2 ,而其第一變壓器T1與第二變壓器T2之控 制電路1 0則係藉由P W Μ控制電路I C 1與驅動控制電 路I C 2來予以實現;另外,於第一、第二變壓器Τ 1 、 丁 2與控制電路1 0聯結之一次側外加一諧振電感L 3與 一阻隔電容C 3 。 俾由諧振諧振電感L 3用以達成諧振功能,以令第一 、第二變壓器ΤΙ 、Τ2之漏感以及第一寄生電容C 1與 第二寄生電容C 2 ,在開關之間的盲時 (dead t i m e )產生共振,以分別達到主開關元件Q 1與副開關元 件Q 2的零電壓切換;當然,其諧振電感L 3亦可以如第 五圖所示,配設在第一、第二變壓器Τ 1 、T 2之二次側 ,亦能達到相同之功效。又,阻隔電容C 3 ( b 1 〇 c k i n g capacitor),由於其值足夠大,跨於 其上之電壓可視為定值。 至於,第一、第二變壓器Τ 1 、T 2之輸出二次側則 係由第一、第二變壓器Τ 1 、T 2之次級繞組加上第一整 流二極體D 3與第二整流二極體D 4 ,或是採用第一同步 整流開關Q 3與第二同步整流開關Q 4 ,以及由第一濾波200529541 V. Description of the invention (3) A main switching element Q 1 and a sub switching element Q 2 are arranged between the lines constituting the control circuit 10, and a first parasitic element 2 is arranged between two contacts of the main switching element Q 1 A second parasitic diode D 2 and a second parasitic capacitor C 2 are arranged between the two contacts of the secondary switching element Q 2 of the polar body D 1 and the first parasitic capacitor C 1, and are respectively disposed on the main switching element. The first saturation inductor L 1 and the second saturation inductor L 2 are provided at the path of one of the contacts of Q 1 and the auxiliary switching element Q 2, and the control circuit 10 of the first transformer T 1 and the second transformer T 2 is provided by PW Μ control circuit IC 1 and drive control circuit IC 2 are implemented; in addition, a resonant inductor L 3 and a blocking capacitor C are added to the primary side of the first and second transformers T 1, D 2 and control circuit 10 0. 3.俾 The resonance resonant inductor L 3 is used to achieve the resonance function, so that the leakage inductance of the first and second transformers TI and T2 and the first parasitic capacitance C 1 and the second parasitic capacitance C 2 are blind between the switches ( dead time) to generate resonance to achieve zero-voltage switching of the main switching element Q 1 and the sub switching element Q 2 respectively; of course, its resonance inductance L 3 can also be arranged on the first and second transformers as shown in the fifth figure The secondary side of T 1 and T 2 can also achieve the same effect. In addition, since the blocking capacitor C 3 (b 1 0 c k i n g capacitor) is large enough, the voltage across it can be regarded as a constant value. As for the output secondary sides of the first and second transformers T 1 and T 2, the secondary windings of the first and second transformers T 1 and T 2 plus the first rectifying diode D 3 and the second rectifying Diode D 4, or the first synchronous rectifier switch Q 3 and the second synchronous rectifier switch Q 4 are used, and the first filter

200529541 五、發明說明(4) 電容C 4 、第二濾波電容C 5與濾波電感L 4所組成之整 流濾波電路2 0所達成。 在此電路架構中,主開關元件Q 1與副開關元件Q 2 之工作週期(duty eye 1 e)不相同,而為互補 之情況,因此稱之為非對稱之架構。 由於使用第一、第二變壓器T 1 、T 2可以將此磁性 元件予以薄型化,並將其所消耗之功率可以適度分散在兩 顆變壓器上,不致於造成變壓器過熱之問題產生;尤其, 第一變壓器T 1與第二變壓器T 2在不同週期分別同時扮 演正常運作之變壓器以及儲能電感之角色,當主開關元件 Q 1導通時,第一變壓器T 1視為正常運作之變壓器將能 量傳送到二次側,同時第二變壓器T 2則視為儲能電感而 被充電;反之,當副開關元件Q 2導通時,第二變壓器T 2則視為正常運作之變壓器將能量傳送到二次側,而第一 變壓器T 1則視為儲能電感將能量予以儲存。 再者,進一步對第一圖所示(第一實施例)之電路架 構其工作原理與零電壓導通之機制說明如下: 如第二圖所示,當主開關元件Q 1導通且副開關元件 Q 2截止時,電流係由輸入電源端V i η流入阻隔電容C 3 、第一變壓器Τ 1與第二變壓器Τ 2之一次側繞組、外 加之諧振電感L 3 ,以及主開關元件Q 1與第一飽和電感 L 1 ,此時能量係藉由第一變壓器Τ 1傳送到二次側繞組 ,並經由第一同步整流開關Q 3或第一整流二極體D 3 , 以及整流濾波電路2 0傳送至輸出負載端,此時第二變壓200529541 V. Description of the invention (4) A rectifier filter circuit 20 composed of a capacitor C 4, a second filter capacitor C 5 and a filter inductor L 4 is achieved. In this circuit architecture, the duty cycle (duty eye 1 e) of the main switching element Q 1 and the sub switching element Q 2 is different and complementary, so it is called an asymmetrical architecture. Because the first and second transformers T 1 and T 2 can be used to reduce the thickness of this magnetic component, and the power consumed by it can be appropriately distributed on the two transformers, it will not cause the problem of transformer overheating; especially, the first A transformer T 1 and a second transformer T 2 respectively play the role of a normal operating transformer and an energy storage inductor at different periods. When the main switching element Q 1 is turned on, the first transformer T 1 is regarded as a normally operating transformer to transmit energy. To the secondary side, at the same time, the second transformer T 2 is charged as an energy storage inductor; conversely, when the auxiliary switching element Q 2 is turned on, the second transformer T 2 is regarded as a normally operating transformer to transmit energy to the secondary Side, and the first transformer T 1 is regarded as an energy storage inductor to store energy. Furthermore, the working principle of the circuit architecture shown in the first diagram (the first embodiment) and the zero-voltage conduction mechanism are further described as follows: As shown in the second diagram, when the main switching element Q 1 is turned on and the auxiliary switching element Q At the time of cut-off, the current flows from the input power terminal V i η into the blocking capacitor C 3, the primary winding of the first transformer T 1 and the second transformer T 2, the external resonant inductor L 3, and the main switching element Q 1 and the first A saturated inductance L 1, at which time energy is transmitted to the secondary winding through the first transformer T 1, and is transmitted through the first synchronous rectification switch Q 3 or the first rectification diode D 3, and the rectification filter circuit 20. To the output load, at this time the second transformer

200529541 五、發明說明(5) 器T 2就如同電感之作用會將能量儲存在繞組中。 緊接著若當主開關Q 1被截止時,則原來流經主開關 元件Q 1之電流會分別對主開關元件Q 1與副開關元件Q 2之第一寄生.電容C1與第二寄生電容C 2進行充放電( 對第一寄生電’容C 1充電,而對第二寄生電容C 2放電) , 此時主開關元件Q 1之汲-源極兩端之跨壓以共振之形 式開始上升,當主開關元件Q 1汲-源極兩端之跨壓上升 到輸入電壓後,會使得副開關元件Q 2的第二寄生二極體 D 2順向導通,如此可使得副開關元件Q 2汲-源極兩端 之跨壓箝制在零電壓。若此一次側之諧振電流在反向前, 也就是副開關元件Q 2的第二寄生二極體D 2截止之前, 驅動控制電路I C 2之控制信號可以將副開關元件Q 2予 以導通,即可達成副開關元件Q 2之零電壓導通。 所以,當副開關元件Q 2導通且主開關元件Q 1截止 時,如第三圖所示,儲存於阻隔電容C 3之能量會藉由第 二變壓器T 2傳送到二次側繞組,並經由第二同步整流開 關Q 4或第二整流二極體D 4 ,以及整流濾波電路2 0傳 送至輸出負載端,此時第一變壓器T 1就如同電感之作用 會將能量儲存在繞組中。 同樣的,緊接著若當副開關元件Q 2被截止時,則原 來流經副開關元件Q 2之電流會分別對主開關元件Q 1與 副開關元件Q 2之第一寄生電容C 1 、第二寄生電容C 2 進行充放電(對第一電容寄生C 1放電,而對第二寄生電 容C 2充電),此時主開關元件Q 1之汲-源極兩端之跨200529541 V. Description of the invention (5) The device T 2 acts like an inductor and stores energy in the winding. Then, if the main switch Q 1 is turned off, the current that originally flows through the main switching element Q 1 will first parasitize the main switching element Q 1 and the sub switching element Q 2 respectively. The capacitor C1 and the second parasitic capacitor C 2 charge and discharge (charge the first parasitic capacitance C 1 and discharge the second parasitic capacitance C 2), at this time, the voltage across the drain-source terminal of the main switching element Q 1 starts to rise in the form of resonance When the cross-voltage across the drain-source terminal of the main switching element Q 1 rises to the input voltage, the second parasitic diode D 2 of the auxiliary switching element Q 2 will be conducted in a forward direction, so that the auxiliary switching element Q 2 The voltage across the drain-source is clamped at zero voltage. If the resonance current of the primary side is in the reverse direction, that is, before the second parasitic diode D 2 of the auxiliary switching element Q 2 is turned off, the control signal of the driving control circuit IC 2 can turn on the auxiliary switching element Q 2, that is, Zero voltage conduction of the secondary switching element Q 2 can be achieved. Therefore, when the secondary switching element Q 2 is turned on and the main switching element Q 1 is turned off, as shown in the third figure, the energy stored in the blocking capacitor C 3 is transmitted to the secondary winding through the second transformer T 2 and passes through The second synchronous rectifier switch Q 4 or the second rectifier diode D 4 and the rectifier filter circuit 20 are transmitted to the output load end. At this time, the first transformer T 1 acts as an inductor and stores energy in the winding. Similarly, immediately when the sub-switching element Q 2 is turned off, the current that originally flows through the sub-switching element Q 2 will cause the first parasitic capacitances C 1 and The two parasitic capacitors C 2 are charged and discharged (the first parasitic capacitor C 1 is discharged, and the second parasitic capacitor C 2 is charged). At this time, the drain between the main switching element Q 1 and the source terminal

第10頁 200529541 五、發明說明(6) 壓以共振之形式開始下降,當主開關元件Q 1汲-源極兩 端之跨壓下降到零電壓後,會使得主開關元件Q 1的第一 寄生二極體D 1順向導通,如此可使得主開關元件Q 1汲 -源極兩端之跨壓箝制在零電壓。若此一次側之諧振電流 在反向前,也就是主開關元件Q 1的第一寄生二極體D 1 截止之前,驅動控制電路I C 2之控制信號可以將主開關 元件Q 1予以導通,即可達成主開關元件Q 1之零電壓導 通。 至於輸出電壓與輸入電壓之間的電壓轉換關係可表示 如下: V ο / V i η 二[D(l-D)]/[(Np 1 / N s 1 ) D +( N P2/Ns2)(l-D)]; 在此D表示主開關之工作週期(Duty Cyc le ) ,N p 1 / N s 1為第一變壓器T 1之一次側與二次側圈數比, N p 2 / N s 2為第二變壓器T 2之一次側與二次側圈數 比。 當然,本發明之電路架構亦可以如第四圖所示,將主 開關元件Q 1由下橋移至上橋,而將副開關元件Q 2由上 橋移至下橋,而其相關之動作原理與前述實施例之電路架 構相同,並且同樣具有多重變壓器同步整流之功能。 如上所述,本發明提供一可達到高效率與薄型化目的 之非對稱半橋順向式轉換器電路架構,爰依法提呈發明專 利之申請;惟,以上之實施說明及圖式所示,係本發明較 佳實施例之一者,並非以此侷限本發明,是以,舉凡與本Page 10 200529541 V. Description of the invention (6) The voltage starts to decrease in the form of resonance. When the voltage across the main switching element Q 1 drain-source drops to zero voltage, it will make the first switching element Q 1 The parasitic diode D 1 is conducted in a forward direction, so that the voltage across the drain of the main switching element Q 1 to the source is clamped to zero voltage. If the resonance current of this primary side is before the reverse direction, that is, before the first parasitic diode D 1 of the main switching element Q 1 is turned off, the control signal of the drive control circuit IC 2 can turn on the main switching element Q 1, that is, Zero-voltage conduction of the main switching element Q 1 can be achieved. As for the voltage conversion relationship between the output voltage and the input voltage, it can be expressed as follows: V ο / V i η Two [D (lD)] / [(Np 1 / N s 1) D + (N P2 / Ns2) (lD) ]; Here D represents the duty cycle (Duty Cycle) of the main switch, N p 1 / N s 1 is the ratio of the primary side to the secondary side of the first transformer T 1, and N p 2 / N s 2 is the first The ratio of the number of turns on the primary and secondary sides of the two transformers T 2. Of course, the circuit architecture of the present invention can also move the main switching element Q 1 from the lower bridge to the upper bridge, and move the auxiliary switching element Q 2 from the upper bridge to the lower bridge, as shown in the fourth figure, and its related operating principle The circuit structure is the same as the previous embodiment, and it also has the function of multiple transformer synchronous rectification. As mentioned above, the present invention provides an asymmetric half-bridge forward converter circuit architecture that can achieve high efficiency and thinness, and filed an application for an invention patent according to the law; however, the above implementation description and drawings show that It is one of the preferred embodiments of the present invention, and is not intended to limit the present invention.

200529541200529541

第12頁 200529541 圖式 簡單說明 第 — 圖 係 為 本 發 明 第 一 實 施 例 之 電 路 配 置 架 構 示 意 圖 〇 第 二 圖 係 為 本 發 明 第 — 實 施 例 中 主 開 關 元 件 Q 1 導 通 時之 電 路 運 作 狀 態 示 意 圖 〇 第 三 圖 係 為 本 發 明 第 一 實 施 例 中 副 開 關 元 件 Q 2 導 通 時之 電 路 運 作 狀 態 示 意 圖 〇 第 四 圖 係 為 本 發 明 第 二 實 施 例 之 電 路 配 置 架 構 示 意 圖 〇 第 五 圖 係 為 本 發 明 第 二 實 施 例 之 電 路 配 置 架 構 示 意 圖 〇 [ 元 件 代 表 符 號 說 明 ] C 1 第 一 寄 生 電 容 C 2 第 二 寄 生 電 容 C 3 阻 隔 電 容 C 4 第 一 〉慮 波 電 容 C 5 第 二 波 電 容 D 1 第 一 寄 生 二 極 體 D 2 第 二 寄 生 二 極 體 D 3 第 一 整 流 二 極 體 D 4 第 二 整 流 極 體 I C 1 P W Μ 控 制 電 路 I C 2 驅 動 控 制 電 路 L 1 • 第 飽 和 電 感 L 2 • 第 ,—' 飽 和 電 感 L 3 • 諧 振 電 感 L 4 濾 波 電 感Page 12 200529541 Brief description of the drawings The first diagram is a schematic diagram of the circuit configuration architecture of the first embodiment of the present invention. The second diagram is the schematic diagram of the circuit operation state when the main switching element Q 1 is turned on in the first embodiment of the present invention. The third diagram is a schematic diagram of the circuit operation state when the auxiliary switching element Q 2 is turned on in the first embodiment of the present invention. The fourth diagram is a schematic diagram of the circuit configuration architecture of the second embodiment of the present invention. The fifth diagram is the first diagram of the present invention. Schematic diagram of the circuit configuration and architecture of the second embodiment. [Description of Symbols of Components] C 1 First parasitic capacitor C 2 Second parasitic capacitor C 3 Blocking capacitor C 4 First> Wave capacitor C 5 Second wave capacitor D 1 First parasitic Diode D 2 Second parasitic diode Body D 3 First rectifier diode D 4 Second rectifier body IC 1 PW Μ Control circuit IC 2 Drive control circuit L 1 • Saturation inductance L 2 • Saturation inductance L 3 • Resonance inductance L 4 Filter inductance

第13頁 200529541 圖式簡單說明Page 13 200529541 Schematic description

12341200ο- Q Q Q τ τ IX 0¾ 開開 流流 路 件件整整器器 電 元元步步壓壓路波 關關同同變變電濾 開開一二一二制流 主副第第第第控整 第14頁12341200ο- QQQ τ τ IX 0¾ Open and open the flow path pieces of the device rectifier electric element step pressure pressure wave wave off with the same transformer transformer filter open on the 12th and 12th of the main and secondary control flow control Page 14

Claims (1)

200529541_ 六、申請專利範圍 1 、一種.「非對稱半橋順向式轉換器」,係在兩個串 聯之變壓器輸入一次側與控制電路構成聯結之線路間設有 主開關元件以及副開關元件,各變壓器之,該主開關元件 之兩接點之間係配設有第一寄生二極體與第一寄生電容, 該副開關元件之兩接點之間係配設有第二寄生二極體與第 二寄生電容;另外,於兩變壓器與控制電路聯結之一次側 外加一諧振電感與一阻隔電容;俾由諧振諧振電感用以達 成諧振功能,以令兩變壓器之漏感以及第一寄生電容與第 二寄生電容,在開關之間的盲時產生共振,以分別達到主 開關元件與副開關元件的零電壓切換者。 2 、一種「非對稱半橋順向式轉換器」,係在兩個串 聯之變壓器輸入一次側與控制電路構成聯結之線路間設有 主開關元件以及副開關元件,各變壓器之,該主開關元件 之兩接點之間係配設有第一寄生二極體與第一寄生電容, 該副開關元件之兩接點之間係配設有第二寄生二極體與第 二寄生電容;另外,於兩變壓器與控制電路聯結之一次側 外加一阻隔電容,以及在兩變壓器之二次側分別外加一諧 振電感;俾由諧振諧振電感用以達成諧振功能,以令兩變 壓器之漏感以及第一寄生電容與第二寄生電容,在開關之 間的盲時產生共振,以分別達到主開關元件與副開關元件 的零電壓切換者。 3 、如申請專利範圍第1項或第2項所述「非對稱半 橋順向式轉換器」,其中,該兩串聯變壓器之輸出二次側 係由兩變壓器之次級繞組加上第一整流二極體與第二整流200529541_ 6. Application patent scope 1. One kind of "asymmetric half-bridge forward converter" is provided with a main switching element and a sub-switching element between two lines connected in series with the input side of the transformer and the control circuit. Among the transformers, a first parasitic diode and a first parasitic capacitor are arranged between two contacts of the main switching element, and a second parasitic diode is arranged between two contacts of the auxiliary switching element. And the second parasitic capacitor; in addition, a resonant inductor and a blocking capacitor are added to the primary side of the two transformers connected to the control circuit; the resonant resonant inductor is used to achieve the resonance function, so that the leakage inductance of the two transformers and the first parasitic capacitor Resonance with the second parasitic capacitance occurs when the switches are blind, so as to reach the zero-voltage switchers of the main switching element and the sub-switching element, respectively. 2. An "asymmetric half-bridge forward converter" is provided with a main switching element and a sub-switching element between the lines connecting the input primary side of two transformers in series with the control circuit. Among the transformers, the main switch A first parasitic diode and a first parasitic capacitor are arranged between two contacts of the element, and a second parasitic diode and a second parasitic capacitor are arranged between the two contacts of the auxiliary switching element; A blocking capacitor is added to the primary side of the two transformers and the control circuit, and a resonant inductor is added to the secondary side of the two transformers. The resonant resonant inductor is used to achieve the resonance function, so that the leakage inductance and A parasitic capacitor and a second parasitic capacitor generate resonance when the switches are blind, so as to reach the zero-voltage switchers of the main switching element and the sub-switching element, respectively. 3. The "asymmetric half-bridge forward converter" as described in item 1 or 2 of the scope of patent application, wherein the output secondary side of the two series transformers is the secondary winding of the two transformers plus the first Rectifier diode and second rectifier 第15頁 200529541 六、申請專利範圍 二極體,以及整流濾波電路所達成者。 4 、如申請專利範圍第1項或第2項所述「非對稱半 橋順向式轉換器」,其中,該兩串聯變壓器之輸出二次側 係由兩變壓器之次級繞組加上第一同步整流開關與第二整 流開關,以及整流濾波電路所達成者。 5 、如申請專利範圍第2項所述「非對稱半橋順向式 轉換器」,其中,該兩串聯變壓器之輸出二次側係由兩變 壓器之次級繞組加上第一整流二極體與第二整流二極體, 以及整流濾波電路所達成;該整流濾波電路係由第一濾波 電容、第二濾波電容與濾波電感所組成者。 6 、如申請專利範圍第1項或第2項所述「非對稱半 橋順向式轉換器」,其中,該兩串聯變壓器之輸出二次側 係由兩變壓器之次級繞組加上第一同步整流開關與第二整 流開關,以及整流濾波電路所達成;該整流濾波電路係由 第一濾波電容、第二濾波電容與濾波電感所組成者。 7 、如申請專利範圍第1項或第2項所述「非對稱半 橋順向式轉換器」,其中,該控制電路係藉由P W Μ控制 電路與驅動控制電路予以實現者。 8 、如申請專利範圍第1項或第2項所述「非對稱半 橋順向式轉換器」,其中,該主開關元件其中一接點之通 路處設有第一飽和電感,該副開關元件其中一接點之通路 處設有第二飽和電感者。Page 15 200529541 VI. Scope of Patent Application Diodes and those who achieve rectifier and filter circuits. 4. The "asymmetric half-bridge forward converter" as described in item 1 or 2 of the scope of patent application, wherein the output secondary side of the two series transformers is the secondary winding of the two transformers plus the first A synchronous rectifier switch, a second rectifier switch, and a rectifier filter circuit. 5. The "asymmetric half-bridge forward converter" as described in item 2 of the scope of the patent application, wherein the output secondary side of the two series transformers is the secondary winding of the two transformers plus the first rectifying diode. It is achieved with a second rectifier diode and a rectifier filter circuit. The rectifier filter circuit is composed of a first filter capacitor, a second filter capacitor and a filter inductor. 6. The "asymmetric half-bridge forward converter" as described in item 1 or 2 of the scope of patent application, wherein the output secondary side of the two series transformers is the secondary winding of the two transformers plus the first This is achieved by a synchronous rectifier switch, a second rectifier switch, and a rectifier filter circuit. The rectifier filter circuit is composed of a first filter capacitor, a second filter capacitor, and a filter inductor. 7. The "asymmetric half-bridge forward converter" as described in item 1 or 2 of the scope of patent application, wherein the control circuit is implemented by a PWM control circuit and a drive control circuit. 8. The "asymmetric half-bridge forward converter" as described in item 1 or 2 of the scope of patent application, wherein a first saturation inductance is provided at a path of one of the contacts of the main switching element, and the auxiliary switch A second saturation inductor is provided at a path of one of the contacts of the component. 第16頁Page 16
TW093103836A 2004-02-17 2004-02-17 Asymmetric half-bridge forward converter TW200529541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW093103836A TW200529541A (en) 2004-02-17 2004-02-17 Asymmetric half-bridge forward converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093103836A TW200529541A (en) 2004-02-17 2004-02-17 Asymmetric half-bridge forward converter

Publications (1)

Publication Number Publication Date
TW200529541A true TW200529541A (en) 2005-09-01

Family

ID=52348344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093103836A TW200529541A (en) 2004-02-17 2004-02-17 Asymmetric half-bridge forward converter

Country Status (1)

Country Link
TW (1) TW200529541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578684B (en) * 2016-03-21 2017-04-11 崑山科技大學 Asymmetric half-bridge high step-down converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578684B (en) * 2016-03-21 2017-04-11 崑山科技大學 Asymmetric half-bridge high step-down converter

Similar Documents

Publication Publication Date Title
Lee et al. Resonant Capacitor O n/O ff Control of Half-Bridge LLC Converter for High-Efficiency Server Power Supply
TWI683522B (en) High frequency time-division multi-phase power converter
KR100772658B1 (en) Active-clamp current-source push-pull dc-dc converter
Wang A novel ZCS-PWM flyback converter with a simple ZCS-PWM commutation cell
US7379309B2 (en) High-frequency DC-DC converter control
US7830684B2 (en) Reverse biasing active snubber
Do Zero-voltage-switching synchronous buck converter with a coupled inductor
US7557546B2 (en) Unidirectional DC-DC converter
US8743565B2 (en) High power converter architecture
US9019724B2 (en) High power converter architecture
Wu et al. An active-clamp push–pull converter for battery sourcing applications
US7692937B2 (en) Resonant converter and voltage stabilizing method thereof
Chung et al. A zero-current-switching PWM flyback converter with a simple auxiliary switch
WO2019206067A1 (en) Switched-mode power supply circuit
US7948775B2 (en) Duty-cycle-controlled half-bridge resonant converter
JP2004524788A (en) Method and circuit for reducing reverse current in a synchronous rectifier converter circuit
TW201034364A (en) Power converter
CN103069705A (en) Isolated switched mode power supply
TWI513164B (en) Flyback active clamping power converter
US6906931B1 (en) Zero-voltage switching half-bridge DC-DC converter topology by utilizing the transformer leakage inductance trapped energy
TWI495245B (en) Method of controlling phase-shift full-bridge converter at light load operation
KR100732612B1 (en) High efficiency dc-dc converter for hybrid car
US11539285B2 (en) DC-to-DC converter
CN102290975A (en) Power factor corrector and driving method thereof
CN110224605B (en) Full-bridge conversion circuit