TW200527710A - Light emitting diode and method for manufacturing the same - Google Patents

Light emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TW200527710A
TW200527710A TW93103571A TW93103571A TW200527710A TW 200527710 A TW200527710 A TW 200527710A TW 93103571 A TW93103571 A TW 93103571A TW 93103571 A TW93103571 A TW 93103571A TW 200527710 A TW200527710 A TW 200527710A
Authority
TW
Taiwan
Prior art keywords
layer
light
substrate
emitting diode
type
Prior art date
Application number
TW93103571A
Other languages
Chinese (zh)
Other versions
TWI253186B (en
Inventor
Chuong A Tran
Original Assignee
Highlink Technology Corp
Chuong A Tran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Highlink Technology Corp, Chuong A Tran filed Critical Highlink Technology Corp
Priority to TW93103571A priority Critical patent/TWI253186B/en
Publication of TW200527710A publication Critical patent/TW200527710A/en
Application granted granted Critical
Publication of TWI253186B publication Critical patent/TWI253186B/en

Links

Abstract

A light-emitting diode (LED) and a method for manufacturing the same are disclosed. A LED epitaxial structure is grown on a silicon (Si) substrate, and a highly reflective p-type contact layer is formed on the LED epitaxial structure. Then, the Si substrate with the LED epitaxial structure are flipped on a n-type gallium arsenide (GaAs) substrate. Subsequently, the Si substrate is removed, and n-type electrodes are formed on the n-type GaAs substrate and the GaN layer of the LED structure respectively.

Description

200527710 玖、發明說明 【發明所屬之技術領域】 本發明是有關於一種於 種七九一極體(Light Emitting Diode ; LED)及其製造古、土口 a V S δ 乂 w方法,且特別是有關於一種高亮度 之發光二極體及其製造方法。 【先前技術】 發光二極體係利用车1 』用+導體材料所製作而成的元件,其 為一種可將電能轉換為朵〜+ 為先月匕之微細固態光源。由於,發光 二極體不但體積小,具有壽命長、驅動電壓低、反應速率 快、财震等特性,i能夠配合各種應用設備輕、薄、以及 小型化之需求。因此,已成為當 风兩曰吊生活中十分普及的電子 產品。 …近年來,許多的焦點集中在以氮化物為主的半導體所 形成的發光元件’例如說化鎵(GaN)、氮化銘(αιν)、氣化 鋁鎵(AlGaN)、氮化銦鎵(InGaN)、以及氮化鋁銦鎵 ⑽nGaN)等。此類的發光元件半導體大多成長 之藍寶石(Sapphire)基板上,而與其他發光元件採用可導 電的基板不同。由於藍寶石基板為一絕緣體,因此不能直 接製作電極於基板上,故電極的製作必須直接與p型的半 導體層以及N型的半導體層做各別地接觸,才能完成此 類發光元件的製作。 請參照第1圖,第1圖係繪示傳統之發光二極體結構 的剖面圖。此一傳統發光二極體至少包括依序堆疊之基板 1〇〇、緩衝層(Buffer Layer) 102、η型半導體層1〇4、主動 200527710 層(Active Layer)l〇6、p型半導體層1〇8、與透明穿透電 極層 110(Transparent Contact Layer; TCL)’ 以及位於二 分之透明電極層110上之p型電極112與位於暴露之n 型半導體層104上的η型電極114。 在此傳統發光二極體中,基板100之材質為藍寶石, 緩衝層102之材質可為氮化録、氮化銘(Α1Ν)、氮化銘錄、 氮化銦鎵、以及氮化鋁銦鎵等,ρ型半導體層1〇8可為摻 雜鈹(Be)、鳃(Sr)、鋇(Ba)、辞(Ζη)、或鎂(Mg)元素之氮 化鎵系列(GaN.based)材料。由於採用藍f石作為基板 100 ’ P型電S 112與n型電極114分別位於發光二極體 結構之同-側之透明電極層11〇以及n型半導體層1〇4 上,以使Ρ型電極型電㈣4分別與?型半導體 層108以及η型半導體層1〇4電性接觸。 然而,製作η型電極114前,必須先利用微影與蝕刻 方式移除部分之ρ型半導體層1〇8、以及部分之主動層ι〇6 後’以暴露出部分之η型半導體I1G4,才得以將η型電 極114形成於暴露之η型半導體層1〇4上。因此,此種形 式之發光一極體在製作上較為繁複;同時,因為η型電 極114而要利用#影與飯刻方式移除部分之ρ型半導體層 108以及一口Ρ刀之主動^ 1〇6後才得以製作,因此該形 式之lx光極體’其發光面積會較小,連帶地也影響發光 效率。 再者由於P型電極112與η型電極114都位在同一 側’而且由於採用的 曰]疋絕緣基板,迫樣的電極配置屬於非 對稱性結構,當亓杜、孟 凡件通入外加電流操作時,會造成電流壅 200527710 塞效應(Current Crowding Effect),這樣的情況不但使得元 件的發光效率降低,連帶地也影響元件的可靠度;同時因 為這樣(採用絕緣基板與電極配置不對稱),也使得該類形 的兀件’其靜電消散特性(Electrostatic Discharge ; ESD) 不佳。 ’ 其次,由於P型半導體層108之材質型摻雜之氮 化物、因為P型氮化物半導體材料的摻雜濃度無法像η 型材料那麼^,使得ρ型電極㈣良好歐姆接觸⑽*200527710 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a kind of light Emitting Diode (LED) and a method for manufacturing the ancient and soil a VS δ 乂 w, and particularly there is The invention relates to a high-brightness light-emitting diode and a manufacturing method thereof. [Previous technology] The light-emitting diode system uses car 1 ”+ conductor material to make a component, which is a kind of fine solid-state light source that can convert electrical energy into flowers ~ + as the moon. Because the light-emitting diode is not only small in size, but also has long life, low driving voltage, fast response rate, financial shock and other characteristics, i can meet the requirements of light, thin and miniaturized for various applications. Therefore, it has become a very popular electronic product in life. … In recent years, much attention has been focused on light-emitting elements formed of nitride-based semiconductors, such as gallium (GaN), nitride (αιν), aluminum gallium (AlGaN), and indium gallium nitride ( InGaN), and aluminum indium gallium ⑽nGaN). This type of light-emitting element semiconductor is mostly grown on a sapphire substrate, which is different from other light-emitting elements that use a conductive substrate. Since the sapphire substrate is an insulator, it is not possible to directly make electrodes on the substrate. Therefore, the electrodes must be directly contacted with the p-type semiconductor layer and the N-type semiconductor layer separately to complete the production of such light-emitting elements. Please refer to Fig. 1. Fig. 1 is a sectional view showing a conventional light emitting diode structure. This traditional light emitting diode includes at least a substrate 100 sequentially stacked, a buffer layer 102, an n-type semiconductor layer 104, an active 200527710 layer (active layer 106), and a p-type semiconductor layer 1 〇8, and a transparent transparent electrode layer 110 (Transparent Contact Layer; TCL) ', a p-type electrode 112 on the half of the transparent electrode layer 110, and an n-type electrode 114 on the exposed n-type semiconductor layer 104. In this conventional light-emitting diode, the material of the substrate 100 is sapphire, and the material of the buffer layer 102 can be nitrided nitride, nitrided nitride (A1N), nitrided nitride, indium gallium nitride, and aluminum indium gallium nitride. Etc., the p-type semiconductor layer 108 may be a GaN.based material doped with beryllium (Be), gill (Sr), barium (Ba), silicon (Zη), or magnesium (Mg) element. . Since blue fite is used as the substrate 100 ′, the P-type electric S 112 and the n-type electrode 114 are respectively located on the same-side transparent electrode layer 11 and the n-type semiconductor layer 104 of the light-emitting diode structure, so that the P-type What are the electrode type electrodes? The semiconductor layer 108 and the n-type semiconductor layer 104 are in electrical contact. However, before making the n-type electrode 114, a portion of the p-type semiconductor layer 108 and the active layer ι06 must be removed by lithography and etching to expose a portion of the n-type semiconductor I1G4. As a result, the n-type electrode 114 is formed on the exposed n-type semiconductor layer 104. Therefore, this form of light-emitting monopole is more complicated to manufacture; at the same time, because of the n-type electrode 114, a part of the p-type semiconductor layer 108 and the active part of a p-knife are removed using # 影 和 饭 刻 饭 ^ 1〇 It can be produced only after 6 years, so the light emitting area of this type of lx photopole body will be smaller, and it will also affect the luminous efficiency. In addition, because the P-type electrode 112 and the η-type electrode 114 are on the same side, and because of the use of a 疋 insulating substrate, the forced electrode configuration is an asymmetric structure. During operation, it will cause current 壅 200527710 Current Crowding Effect. This situation not only reduces the luminous efficiency of the component, but also affects the reliability of the component. At the same time, because of this (the insulation substrate and the electrode configuration are asymmetric), It also makes this type of component's poor Electrostatic Discharge (ESD). ’Secondly, due to the material-type doped nitride of the P-type semiconductor layer 108 and the doping concentration of the P-type nitride semiconductor material cannot be the same as that of the η-type material ^, the ρ-type electrode ㈣good ohmic contact ⑽ *

Contact)製作不易,即ρ型電極U2不易與ρ型半導體層 08形成良好之歐姆接觸,因而需要於ρ型半導體層 上額外形成透明電極層11G,以面電極的方式降低接曰觸電 阻。透明電極g 110雖然為透明結構,然透明電極層 的加入仍會影響發光二極體之亮度(因為雖然是透明電極 層,但是該透明電極層仍{由薄金屬層堆疊形&,其光穿 透率並非1〇〇%)。此外,透明電極層11〇並不容 =厚度很薄,均句度的控制不易,在其後的製程稍有不 慎也極易損壞。 L贫明内容】 有4L本發明之目的就是在提供一種發光二極體,具 金屬㈣所構成之p型接觸層,不僅可以 (E1 x、—極體之壳度,更具有相當優良之靜電消,索 ectrostatlc Discharge ; esd)特性。 本發明之另一目的是在提供—種發光二極體,1 i接觸層為高反射率之全屬屏 ^ 丰之金屬層,因此可省略透明接觸層 200527710 同時較厚的金屬層除了容易製作外,其電阻亦較透明接觸 層低。如此-來,不僅可降低發光二極體之操作電麼,使 之具有極佳之應用性,更可簡化製程並降低生產成本。 本發明之另一目的就是在提供一種發光二極體,其主 動層(Active Layer)自當貼近基板’當元件操作時y特 別在高溫環境及高功率的應用時,這樣的結構因為敎流的 1縮短’相對於傳統的元件’本發明之主動層貼近基板 的αχ汁可以使得元件快速有效地散熱。除了可有效提升 發光二極體之發光效率外,亦可改善元件的可靠性與穩定 性。本發明之又一目的是在提供一種發光二極體之製造方 :,其矽基板為一導電基板,除了可使得元件於封裝製程 時’可以完全與傳統發光二極體完全相容外(封裝時只需 要釘-條線”其電極亦為垂直對稱式的結構,除了有利 於電流均勾分佈外,其元件的靜電消散特性也提升;同 時’這樣的元件,也不會因為需要將電極製作在同一側而 造成發光區面積的縮減。 根據本發明之上述目的,提出_種發光二極體,至少 匕括:一 η型半導體基板;- ρ型接觸層位於上述之η 型半導體基板上,其中此型 一 Ρ ^接觸層係一咼反射率金屬 θ ’一主動層位於上述之?型接觸層上;以及—η型 體接觸層位於上述之主動層上。 根據本發明之上述目的,提出_種發光二極體,至少 一接觸層複合結構至少包括相對之第一表面以及第 =第其中:面接Τ合結構至少包括-高反射率接觸 s弟一表面;一基板接合於接觸層複合結構之第二表 200527710 ::’一發光磊晶結構接合於上述之接觸層複合結構之第 :士:上’一第一電極接合於上述之發光蟲晶結構上;以 及弟一電極接合於上述之基板上。 依a本叙明一較佳實施例,上述之接觸層複合結構更 至>、包括金屬接觸層與基板接合。另外,依照本發明之另 -較佳實施例,上述之接觸層複合結構更至少包括打型接 觸層與η型半導體層’其中n型接觸層位於n型半導體層 與高反射率接觸層之間,且„型半導體層與基板接合。日 根據本發明之目的,提出一種發光二極體之製造方 法,至少包括下列步驟:首先,形成一發光蟲晶結構於一 矽基板上;接著,形成- Ρ型接觸層於上述之發光磊晶結 構上’其中此ρ型接觸層係一高反射率導電層;然後,提 供- η型半導體基板;再倒覆上述之梦基板上的發光蟲晶 結構於η型半導體基板上,以使ρ型接觸層與η型半導體 基板接合;接下來,移除上述之矽基板。待矽基板移除後, 分別形成二接觸電極於η型半導體層以及η型半導體基板 上0 依照本發明一較佳實施例,原生(Growth)基板為η型 石夕ρ型接觸層之材質可為鎳、把、鉑、鉻、金、鈦、銀、 鋁、鍺(Ge)、鎢(W)、矽化鎢(siw)、鈕(Ta)、金鋅合金 (AuZn)、金鈹合金(AuBe)、金鍺合金(AuGe)或金鍺鎳合金 (AuGeN〇等具高反射率之金屬和透明導電材料,例如:銦 錫氧化物層(ιτο)、銦鋅氧化物層(IZ0)、氧化鋅層(Zn〇)、 氧化鎳層(NiO)、或鎘錫氧化物層(CT〇)所組合成之複合層 結構。 200527710 根據本發明之目的,描 的獒出一種發光二極體之製造方 法,至 > 包括下列步驟:首先 # ^ L . 无形成一發光磊晶結構於第 土板上,再形成一南反射率拉總恩 μ . „ .. 耵丰接觸層於上述之發光磊晶結 構上,接者,提供第二基板,農 萝 — /、中此第一基板為導體;倒 :上:之弟-基板於第二基板上,以使高反射率接觸層與 =基板接合;接下來,移除上述之第一基板;然後,形 — X尤猫日日、纟口構接合以及第二電極盥 弟二基板接合。 … 依π本發明一較佳實施例,上述之第〔基板上更至少 包括金屬接觸層與高反射率接觸層接合。另外,依昭本發 :,另-較佳實施例’上述之第二基板上更至少包括料 ^:之η型半導體層與n型接觸層,其中η型接觸層與高 反射率接觸層接合。 於第基板與發光磊晶結構之η型氮化鎵層之間 的=面可達到最佳化,並可獲得不碎裂且高品質之η型氮 化鎵層。此外,兩接觸電極位於發光二極體結構之上下兩 側,較容易製作。而高反射率之導電材質作為接觸層,不 僅可縮少晶粒尺寸,提升發光二極體之應用性,更可大幅 文。毛光一極體之亮度,並具有相當優良之靜電消散特 性。同時,由於採用熱導性較傳統藍寶石基板 (例如:梦基板、砰化録基板),使得該元件的== 明顯優於傳統以藍寶石基板製成的元件。 再者,由於特別將發光二極體結構倒覆在另一導恭美 上,這樣的製程,可以有效地將主動層貼近基板,當元 件在操作過程中,所產生的熱可以快速有效地透過導熱性 200527710 、土板政熱,使得利用本發明所製成的元件,不但穩定 度同,而且即使在高溫惡劣或高功率的應用下,相對於傳 、、先的兀件’其性能與可靠度都可獲得大幅的提升。 ^本發明揭露一種發光二極體及其製造方法,其係利用 问反射率之導電材料作為接觸層。因此,可縮減發光二極 體之尺寸並可提升發光二極體之亮度,更具有極佳之靜 電消散特性。為了使本發明之敘述更加詳盡與完備,可參 照下列描述並配合第2圖至第丨5圖之圖示。 請荼照第2圖至第5圖,第2圖至第5圖係綠示依照 本發明第一較佳實施例的一種發光二極體之製程剖面 圖。本發明之發光二極體之製作,首先提供基板2〇〇,其 中基板200之較佳實施例係採用n型矽基板。再於基^ 2〇〇上成長發光二極體之磊晶結構,而依序在基材2⑻成 長η型半導體@2〇4、纟n型半導體層2()4上成長主動層 206、以及在主動層206上成長p型半導體層2〇7,而形 成如第2圖所示之結構。其中,n型半導體層綱之材料 可為η型氮化鎵,主動層206可為單_量子井(81叫^ Quantum Well ; SQW)、多重量子井(MuUipie 如咖腿 wen ·’ MQw)或PN結構(PN Junctlon)。在n型石夕所構成 之基板200上成長氮化物時,由於氮化物和基板間的熱膨 脹係數差異很大,因此採用恰當的材料,於適當的蠢晶條 件下成長氮化物層,以獲得無碎裂且高品質之I化鎵層是 非常重要的。 11 200527710 待發光蠢晶結構形成後’利用例如蒸錢的方式形成車六 厚之P型接觸層208覆蓋在p型半導體層2〇?上,而形成 如第3圖所示之結構。其中,p型接觸層2〇8之材質較佳 為採用具有高反射率之導電材料,例如金屬。在本發明之 較佳實施例中,p型接觸層208之材質可選用鎳、鈀、鉑、 鉻、金、鈦、銀、紹、鍺(Ge)、鶬(W)、石夕化鎢(Siw)、鈕Contact) is not easy to produce, that is, the p-type electrode U2 is not easy to form a good ohmic contact with the p-type semiconductor layer 08. Therefore, an additional transparent electrode layer 11G needs to be formed on the p-type semiconductor layer to reduce the contact resistance by means of a surface electrode. Although the transparent electrode g 110 is a transparent structure, the addition of a transparent electrode layer will still affect the brightness of the light-emitting diode (because it is a transparent electrode layer, the transparent electrode layer is still {stacked by a thin metal layer & its light The transmittance is not 100%). In addition, the transparent electrode layer 11 is not very thin, and it is not easy to control the uniformity, and it is easy to be damaged in the subsequent manufacturing process. The content of the L] is 4L. The purpose of the present invention is to provide a light-emitting diode with a p-type contact layer made of metal rhenium, which can not only (E1 x,-the shell of the pole, but also has a very good static electricity. Elimination, cable ectrostatlc Discharge; esd) characteristics. Another object of the present invention is to provide a kind of light-emitting diode. The 1 i contact layer is a metal layer with high reflectivity. Therefore, the transparent contact layer can be omitted. 200527710 At the same time, thicker metal layers can be easily manufactured. In addition, its resistance is lower than that of the transparent contact layer. In this way, not only can the operating power of the light-emitting diode be reduced, it has excellent applicability, it can also simplify the manufacturing process and reduce production costs. Another object of the present invention is to provide a light-emitting diode, the active layer of which is close to the substrate. When the component is operated, especially in high-temperature environments and high-power applications, such a structure is susceptible to flow. 1. Shortening the "relative to traditional components" The αχ juice of the active layer of the present invention close to the substrate can make the components dissipate heat quickly and effectively. In addition to effectively improving the light emitting efficiency of the light emitting diode, the reliability and stability of the device can also be improved. Another object of the present invention is to provide a light-emitting diode manufacturing method: the silicon substrate is a conductive substrate, in addition to making the component 'completely compatible with traditional light-emitting diodes during the packaging process (package Only the nail-line is needed. Its electrodes are also vertically symmetrical. In addition to the uniform current distribution, the static dissipation characteristics of its components are also improved. At the same time, such components will not be made because of the need to make electrodes. On the same side, the area of the light-emitting area is reduced. According to the above purpose of the present invention, a light-emitting diode is proposed, which at least includes: an n-type semiconductor substrate; and a p-type contact layer on the n-type semiconductor substrate. Wherein, this type of P ^ contact layer is a reflectivity metal θ '-an active layer is located on the? -Type contact layer described above; and-n-type body contact layer is located on the aforementioned active layer. According to the above object of the present invention, it is proposed _ Kinds of light-emitting diodes, at least one contact layer composite structure includes at least the first surface opposite to the first one, wherein: the surface-connected T-junction structure includes at least-high reflectance contacts s A surface; a substrate bonded to the second layer of the contact layer composite structure 200527710 :: 'a luminescent epitaxial structure bonded to the above-mentioned contact layer composite structure: the first: a: upper' a first electrode is bonded to the above-mentioned luminescent worm crystal Structurally; and the first electrode is bonded to the above-mentioned substrate. According to a preferred embodiment of the present invention, the above-mentioned contact layer composite structure is further changed to include a metal contact layer and a substrate. In addition, according to the present invention, In another preferred embodiment, the above-mentioned contact layer composite structure further includes at least a type contact layer and an n-type semiconductor layer, wherein the n-type contact layer is located between the n-type semiconductor layer and the high reflectance contact layer, and the “type semiconductor layer” Bonded to a substrate. According to the purpose of the present invention, a method for manufacturing a light emitting diode is provided, which includes at least the following steps: first, a light emitting insect structure is formed on a silicon substrate; and then, a -P-type contact layer is formed on the above. On the light-emitting epitaxial structure, wherein the p-type contact layer is a high-reflectivity conductive layer; then, a-n-type semiconductor substrate is provided; and the light-emitting insect on the dream substrate is inverted It is structured on the n-type semiconductor substrate so that the p-type contact layer is bonded to the n-type semiconductor substrate. Next, the above silicon substrate is removed. After the silicon substrate is removed, two contact electrodes are formed on the n-type semiconductor layer and η, respectively. On a semiconductor substrate according to a preferred embodiment of the present invention, the material of the primary (Growth) substrate is an η-type stone ρ-type contact layer, which can be nickel, platinum, chromium, gold, titanium, silver, aluminum, germanium ( Ge), tungsten (W), tungsten silicide (siw), button (Ta), gold zinc alloy (AuZn), gold beryllium alloy (AuBe), gold germanium alloy (AuGe), or gold germanium nickel alloy (AuGeN〇) Reflective metals and transparent conductive materials, such as: indium tin oxide layer (ιτο), indium zinc oxide layer (IZ0), zinc oxide layer (Zn〇), nickel oxide layer (NiO), or cadmium tin oxide layer (CT0) the combined layer structure. 200527710 According to the purpose of the present invention, a method for manufacturing a light-emitting diode is described, which includes the following steps: First, a light-emitting epitaxial structure is not formed on the first soil plate, and then a south reflection is formed.拉拉 总 恩 μ. „.. The Fengfeng contact layer is on the above-mentioned light-emitting epitaxial structure. In turn, a second substrate is provided, Nongluo-/, the first substrate is a conductor; down: up: brother- The substrate is on the second substrate so that the high-reflectivity contact layer is bonded to the substrate. Next, the above-mentioned first substrate is removed; and then, the X-ray cat, the mouth structure, and the second electrode are bonded. The two substrates are bonded. According to a preferred embodiment of the present invention, the above-mentioned [the substrate further includes at least a metal contact layer and a high reflectance contact layer bonded. In addition, according to Zhao Benfa :, another-preferred embodiment ' The above second substrate further includes at least an n-type semiconductor layer and an n-type contact layer, wherein the n-type contact layer is bonded to the high-reflectivity contact layer. The n-type gallium nitride on the second substrate and the light-emitting epitaxial structure. = Faces between layers can be optimized and obtained Fractured and high-quality η-type GaN layer. In addition, the two contact electrodes are located on the upper and lower sides of the light emitting diode structure, which is easier to fabricate. The conductive material with high reflectivity as the contact layer can not only reduce the grain size Size, enhance the applicability of light-emitting diodes, and can be more extensive. The brightness of the hair-light-polarity and has a very good static dissipation characteristics. At the same time, due to the use of thermal conductivity than traditional sapphire substrates (such as: dream substrate, bang Substrate), making this component's == significantly better than traditional components made with sapphire substrates. Furthermore, because the light-emitting diode structure is specifically inverted on another substrate, this process can be effective The active layer is close to the substrate. When the component is in operation, the heat generated can quickly and effectively pass through the thermal conductivity 200527710 and the soil plate. This makes the component made by the present invention not only have the same stability, but also Under severe high temperature or high power applications, the performance and reliability can be greatly improved compared to the first and second components. ^ The present invention discloses a light emitting diode and The manufacturing method uses a conductive material with a reflectivity as the contact layer. Therefore, the size of the light emitting diode can be reduced and the brightness of the light emitting diode can be improved, and the electrostatic dissipative property is more excellent. In order to make the invention The description is more detailed and complete, you can refer to the following description and cooperate with the diagrams in Figure 2 to Figure 5. Please refer to Figures 2 to 5, Figures 2 to 5 are shown in green according to the first of the present invention. A cross-sectional view of a manufacturing process of a light-emitting diode in a preferred embodiment. In the production of the light-emitting diode of the present invention, a substrate 200 is first provided, and a preferred embodiment of the substrate 200 is an n-type silicon substrate. ^ The epitaxial structure of the light-emitting diode is grown on 2000, and the active layer 206 is grown on the substrate 2⑻n-type semiconductor @ 2〇4, the n-type semiconductor layer 2 () 4, and the active layer A p-type semiconductor layer 207 is grown on 206 to form a structure as shown in FIG. 2. Among them, the material of the n-type semiconductor layer can be n-type gallium nitride, and the active layer 206 can be a single-quantum well (81 called ^ Quantum Well; SQW), multiple quantum wells (MuUipie such as coffee leg Wen MQ MQ) or PN structure (PN Junctlon). When nitride is grown on a substrate 200 made of n-type stone, the thermal expansion coefficient between the nitride and the substrate is very different, so the appropriate material is used to grow the nitride layer under appropriate stupid crystal conditions to obtain A fragmented and high-quality gallium nitride layer is very important. 11 200527710 After the formation of the luminous stupid crystal structure, a car-thick P-type contact layer 208 is formed on the p-type semiconductor layer 20? By, for example, steaming, to form a structure as shown in FIG. Among them, the material of the p-type contact layer 208 is preferably a conductive material with high reflectivity, such as metal. In a preferred embodiment of the present invention, the material of the p-type contact layer 208 may be selected from nickel, palladium, platinum, chromium, gold, titanium, silver, Shao, germanium (Ge), thorium (W), and tungsten tungsten ( Siw), button

(Ta)、金鋅合金(AuZn)、金鈹合金(AuBe)、金鍺合金(AuGe) 或金鍺鎳合金(AuGeNi)等具高反射率之金屬和透明導電 材料,例如:錮錫氧化物層(IT0)、銦辞氧化物層(ιζ〇)、 氧化鋅層(ZnO)、氧化鎳層(Ni0)、鎘錫氧化物(ct〇)所組 合成之複合層結構。此外,p型接觸層2〇8之材質更佳是 採用具有高反射率以及低電阻之導電材料。藉由高反射率 之P型接觸層208,可將主動層206所發出之光有效地反 射。如此一來,可大幅增加發光二極體之發光亮度。由於 P型接觸層208係由例如金屬等高反射之導電材料所構 成,導電性佳,因此無需於p型接觸層2〇8上再額外形成 無法達成100%光穿透率的透明接觸層(Ta), gold-zinc alloy (AuZn), gold-beryllium alloy (AuBe), gold-germanium alloy (AuGe) or gold-germanium-nickel alloy (AuGeNi) and other highly reflective metals and transparent conductive materials, such as: rhenium tin oxide Layer (IT0), indium oxide layer (ιζ〇), zinc oxide layer (ZnO), nickel oxide layer (Ni0), cadmium tin oxide (ct〇) combined layer structure. In addition, the material of the p-type contact layer 208 is preferably a conductive material having high reflectance and low resistance. With the highly reflective P-type contact layer 208, the light emitted from the active layer 206 can be effectively reflected. In this way, the light emitting brightness of the light emitting diode can be greatly increased. Since the P-type contact layer 208 is made of a highly reflective conductive material such as metal and has good conductivity, there is no need to form an additional transparent contact layer on the p-type contact layer 208, which cannot achieve 100% light transmittance.

接觸層(TCL)製作不易的困擾。 又有透月 P型接觸層208形成後’先提供基板21G,再將基板 2〇〇連同其上之n型半導體層2〇4、主動層2〇6、p型半導 體層207以及"接觸層2〇8倒覆在基板21〇上,而使p 型接觸層均句地接合在基板21〇上,形成如第4圖所 不之結構。其中,基板210之材質較佳可為η型之石申化鎵、 石夕、錯、氮化銘鎵、氮化鎵、碳化石夕、碟化録(Gap)、氧 化鋅(Zn〇)、石夕/碳化石夕、物錯/碳化石夕、石夕/碳化物 12 200527710 rr-氧化錮錫/碳切氧化銦錫、简切/碳化 、以石/乳化鋅、神化鎵/氧切/碳切、秒/氧 ^匕辞、石中化鎵/氧切/氧化辞、石夕/多晶石夕/碳化 夕晶矽/氧化鋅、或絕緣層上有碳化矽等。The trouble of making contact layer (TCL) is not easy. After the formation of the translucent P-type contact layer 208, the substrate 21G is provided first, and then the substrate 2000 is provided with the n-type semiconductor layer 204, the active layer 206, the p-type semiconductor layer 207, and "contact". The layer 208 is overlaid on the substrate 21o, and the p-type contact layer is uniformly bonded to the substrate 21o to form a structure as shown in FIG. 4. Among them, the material of the substrate 210 may preferably be n-type gallium sulphide, gallium sulphide, gallium nitride, gallium nitride, gallium nitride, carbites, gap, zinc oxide (Zn〇), Shi Xi / Carbide Shi Xi, Wu Za / Carbide Shi Xi, Shi Xi / Carbide 12 200527710 rr-Half tin oxide / Carbon cut indium tin oxide, simple cut / Carbonization, stone / emulsified zinc, deified gallium / oxygen cut / Carbon cutting, sec / oxygen dagger, gallium in the gas / oxygen cutting / oxidation, Shixi / polycrystalline stone / Carbonium crystal / Zinc oxide, or silicon carbide on the insulation layer.

I利用例如4擇式化學㈣或機械研磨(Lapping) 方式移除基板_。在基板_㈣後,本發明更可If 暴露出之η型半導體層2G4進行加工處理,例如以餘刻方 式來縮減η型半導體層2〇4之厚度、將η型半導體層⑽ 之暴露表面予以粗链化、或圖案化η型半導體層鳩等。 然後’利用例如—般的半導體製程’以蒸鏟或沉積的方式 刀別於。卩分之η型半導體層2〇4以及部分之基板上製 成馱姆電極212與214,形成如第5圖所示之堆疊發光二 ,體、、Ό構。其中,電極212與電極214因皆為η型,不僅 製作上合易,和絕大多數的Ρ型電極比較起來,其穩定性 與可靠性也較好。 4The substrate is removed by, for example, a 4-selective chemical rhenium or mechanical lapping method. After the substrate ㈣, the present invention can further perform processing on the exposed η-type semiconductor layer 2G4, such as reducing the thickness of the η-type semiconductor layer 204 by leaving aside, and exposing the exposed surface of the η-type semiconductor layer ⑽. Rough chaining or patterning of n-type semiconductor layers. Then, 'e.g., using a general semiconductor process', the blade is separated by steaming or deposition. The n-type semiconductor layer 204 and a part of the substrate are fabricated with the ohmic electrodes 212 and 214 to form a stacked light-emitting body structure as shown in FIG. 5. Among them, the electrodes 212 and 214 are both η-type, which is not only easy to manufacture, but also has better stability and reliability than most P-type electrodes. 4

刀明苓如、第6圖至第1 〇圖,第6圖至第i 〇圖係繪示依 =、本杳明第二較佳實施例的一種發光二極體之製程剖面 ° "先利用例如蠢晶成長的方式於基板300上依序形 ^ η型半導體層302、主動層304、以及p型半導體層3〇6, ”中11型半導體層302、主動層304與ρ型半導體層3 06 籌成毛光μ晶結構。在此實施例中,基板300之材質可為 導體材料,例如矽、砷化鎵、矽/碳化矽(SiC)、矽/矽鍺 (SiGe)/^ Al· τα, t 人儿砂、矽/碳化矽/硒鍺(SeGe)、矽/氧化銦錫 )、人化石夕、石夕/氧化銦錫、氧化鋅(ZnO)、或氮化鎵等, 亦可為非^體材料,例如藍寳石/氧化辞、矽/氧化矽/碳化 13 200527710 矽、砷化鎵/氧化矽/碳化碎、秒/氧化碎/氧化鋅、坤化嫁/ 氧化石夕/氧化辞、石夕/多晶石夕/碳化石夕、石夕/多晶碎/氧化辞、 或絕緣層上有碳化矽(SiCOI)等。此外,η型半導體層3〇2 之材質可為由氮化鎵(GaN)、氮化鋁(Α1Ν)、氮化鋁鎵 (AlGaN)、氮化錮鎵(in(jaN)、以及氮化鋁銦鎵(A1InGaN) 所形成的複合層;主動層304可為由氮化鎵(GaN)、氮化 銘(A1N)、氮化鋁鎵(A1GaN)、氮化錮鎵(InGaN)、以及氮 化鋁銦鎵(AlInGaN)等複合組合所形成的單一量子井 (Smgle Quantum Well ; SQW)、多重量子井(Multiple Quantum Well ; MQW)或 PN 結構(PN Juncti〇n);而 p 型 半導體層306可為由氮化鎵(GaN)、氮化鋁(A1N)、氮化鋁 鎵(AlGaN)、氮化銦鎵(InGaN)、以及氮化鋁銦鎵(AUnGaN) 所形成的p型複合層。接著,利用蒸鍍或沉積的方式形成 高反射率接觸層308接合在p型半導體層3〇6上,而形成 如第6圖所示之結構。其中,高反射率接觸層3〇8之材質 較佳可採用具有高反射率之導電材料,例如金屬、或是由 金屬和透明導電材料所形成的複合層。在本發明之較佳實 施例中,咼反射率接觸層308之材質可選用鎳、鈀、鉑、 鉻、金、鈦、銀、無、鍺(Ge)、鶬(w)、石夕化鐫(Siw)、叙 (Ta)、金鋅合金(AuZn)、金鈹合金(AuB勾、金鍺合金 或金鍺鎳合金(AuGeNi)等具高反射率之金屬和透明導電 材料,例如:銦錫氧化物層(IT〇)、銦鋅氧化物層(ιζ〇)、 氧化鋅層(ZnO)、氧化鎳層(Nl〇)、鎘錫氧化物(CT〇)所組 合成之複合層結構。高反射率接觸層3〇8係由具有高反射 率以及低電阻之金屬與導電氧化物所構成之複合導電材 14 200527710 料層。藉由該高反射率接觸層308,可將主動層3〇4所發 出之光有效地反射出元件外,以增進元件的外部量子t ^ (Ex— Qua— Effieieney),如此—來,可大幅增何 光一極體之發光/¾度。 高反射率接觸層·形成後,可先利用例如切割或敍 刻的方式將個別晶粒分開,而形成如第7圖所示之結構。 其中,經切割或敍刻後,兩相鄰晶粒之間所移除之結構的 形狀可為第7圖所示之倒三角形,或者可為U字型或碗 狀。 待晶粒切割完成後,先提供基板310,其中基板310 ^已形成-高反射金屬接觸層312。在此較佳實施例中, 土板310之材質可例如為導體材料,例如η型之石申化錄、 ^、錯、鼠化铭嫁、氮化鐘 ρ γ 録奴化矽、磷化鎵(GaP)、氧 化鋅(ZnO)、矽/碳化矽、矽 A ^ 矽鍺/妷化矽、矽/碳化矽/硒 、、秒/氧化銦錫/碳化石夕、秒/氧 石夕、藍寶石/氧化鋅、坤化鎵^錫 /碳化 f化1豕/乳化矽/碳化矽、矽/氧化矽/ 乳化辞、砷化鎵/氧化碎/氧 夕曰 礼化鮮、矽/多晶矽/碳化矽、矽/ 夕日日石夕/氧化鋅、或絕緣層上 板300連同其上之發 反。再將原生之基 , 心光猫日日結構以及高反射率接觸層3〇8 是土板3 1 0上,而使高反射率接觸居^ ^ ^ ^ ^ 在基板3H)上之高及射八^羊接觸層308均句地接合 干t ^ ϋ 、孟屬接觸層3 12,形成如第8圖所 不之結構。其中,經接人 _ 射八Μ # _ @ 。後,向反射率接觸層308與高反 屬接觸層312構成接觸複合結構。 斤生:1用例如4擇式化學钱刻或機械磨平方式移除 '、之基板而暴露出„型半導體層3〇2,如第9圖 15 200527710 所示。然後,利用沉積與蒸鏟方式分別於部分u型半導 體層302以及基板31〇上形成^之電極316以及 电極3 1 4 ’而*成如帛i 〇圖所示之堆疊發光二極體結構。 δ月爹知、第11圖至第1 5圖,第i i圖至第i 5圖係綠示 依照本發明第2較佳實施例的—種發光二極體之製程剖 面圖。在此實施例中,與本發明之第二實施例相同,基板 400上依序形成有由所構成之發光磊晶結構,且於p型半 導體層406上形成有高反射率接觸層彻,如第^圖所 示0 如本發明之第二實施例一般,待高反射率接觸層4〇8 % 形成後,可先利用例如切割或蝕刻的方式將個別晶粒分 開,而形成如第12圖所示之結構。 然後,提供基板410,而此基板41〇上更具有依序堆 疊之η型半導體層412以及η型接觸層414,其中η型半 導體層412與基板410接合。在此較佳實施例中,基板 1 〇之材貝較佳為導體材料,例如石夕、鍺、珅化鎵、碳化 矽、磷化鎵、氧化鋅、氮化鎵、矽/碳化矽、矽/矽鍺/碳化 石夕、石夕/碳化石夕/石西鍺、石夕/氧化銦錫/碳化石夕、或石夕/氧化銦 _ 錫等。此外’ η型半導體層4丨2之材質較佳為η型氮化鎵。 接下來,將原生之基板400連同其上之發光磊晶結構以及 面反射率接觸層408倒覆在基板410上,而使高反射率接 觸層408均勻地接合在基板410上之η型接觸層414,進 而形成如第1 3圖所示之結構。經接合後,高反射率接觸 層408、η型接觸層414與^型半導體層412構成接觸複 合結構。 16 200527710 接著,如第二實施例—私,# λ 貝也1夕』叙’移除原生之基板400,而 形成如第14 w所示之結構。再分別於部分之^半導體 層402以及基板410上形成n型電極418以及n型電極 416’而形成如第15圖所示之堆疊發光二極體結構。 在本發明中,發光二極騁姓 Τ篮、、、°構之二電極可直接製作於Dao Mingling, Figures 6 to 10, Figures 6 to i 〇 are drawings showing the process cross section of a light emitting diode according to the second preferred embodiment of the present invention. The n-type semiconductor layer 302, the active layer 304, and the p-type semiconductor layer 306 are sequentially formed on the substrate 300 by using, for example, stupid crystal growth. The 11-type semiconductor layer 302, the active layer 304, and the p-type semiconductor layer 3 06 The hair-gloss μ crystal structure is formed. In this embodiment, the material of the substrate 300 may be a conductive material, such as silicon, gallium arsenide, silicon / silicon carbide (SiC), silicon / silicon germanium (SiGe) / ^ Al · τα, t human sand, silicon / silicon carbide / selenium germanium (SeGe), silicon / indium tin oxide), human fossil, stone / indium tin oxide, zinc oxide (ZnO), or gallium nitride, etc. Non-material materials, such as sapphire / oxide, silicon / silicon oxide / carbonized 13 200527710 silicon, gallium arsenide / silicon oxide / carbonized broken, second / oxidized broken / zinc oxide, kunhua marrying / stone oxide / oxidized , Shi Xi / polycrystalline Shi Xi / carbide Shi Xi, Shi Xi / polycrystalline broken / oxidized, or silicon carbide (SiCOI) on the insulating layer, etc. In addition, the material of the n-type semiconductor layer 30 may be Composite layer formed of gallium nitride (GaN), aluminum nitride (A1N), aluminum gallium nitride (AlGaN), gallium gallium nitride (in (jaN), and aluminum indium gallium nitride (A1InGaN); active layer 304 Can be a single quantum formed by a composite combination of gallium nitride (GaN), nitride nitride (A1N), aluminum gallium nitride (A1GaN), gallium gallium nitride (InGaN), and aluminum indium gallium nitride (AlInGaN) (Smgle Quantum Well; SQW), Multiple Quantum Well (MQW), or PN structure (PN JunctiOn); and the p-type semiconductor layer 306 may be made of gallium nitride (GaN), aluminum nitride (A1N ), Aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), and aluminum indium gallium nitride (AUnGaN) p-type composite layer. Next, a high reflectivity contact layer is formed by evaporation or deposition 308 is bonded on the p-type semiconductor layer 306 to form a structure as shown in FIG. 6. Among them, the material of the high-reflectivity contact layer 308 is preferably a conductive material with high reflectivity, such as metal, Or a composite layer formed of a metal and a transparent conductive material. In a preferred embodiment of the present invention, the The material can be selected from nickel, palladium, platinum, chromium, gold, titanium, silver, none, germanium (Ge), thorium (w), Siw (Siw), Syria (Ta), gold zinc alloy (AuZn), gold Beryllium alloy (AuB hook, gold germanium alloy, or AuGeNi) and other highly reflective metals and transparent conductive materials, such as: indium tin oxide layer (IT〇), indium zinc oxide layer (ιζ〇) , A composite layer structure composed of a zinc oxide layer (ZnO), a nickel oxide layer (N10), and a cadmium tin oxide (CT0). The high reflectivity contact layer 308 is a composite conductive material composed of a metal and a conductive oxide having high reflectivity and low resistance. 14 200527710. With the high-reflectivity contact layer 308, the light emitted by the active layer 304 can be effectively reflected out of the element, so as to enhance the external quantum of the element (Ex-Qua-Effieieney). Increase the light / polarity of the light-polar body. After the high-reflectivity contact layer is formed, individual crystal grains may be separated by, for example, cutting or engraving to form a structure as shown in FIG. 7. Among them, after cutting or engraving, the shape of the structure removed between two adjacent crystal grains may be an inverted triangle as shown in FIG. 7, or may be U-shaped or bowl-shaped. After the die cutting is completed, a substrate 310 is first provided, where the substrate 310 has been formed-a highly reflective metal contact layer 312. In this preferred embodiment, the material of the soil plate 310 may be, for example, a conductive material, such as η-type Shishenhualu, ^, Wu, ratified inscriptions, nitride nitride ρ γ silicon nitride, gallium phosphide ( GaP), zinc oxide (ZnO), silicon / silicon carbide, silicon A ^ silicon germanium / silicon carbide, silicon / silicon carbide / selenium, sec / indium tin oxide / carbide, sec / oxide, sapphire / Zinc oxide, gallium ^ tin / carbide f1 豕 / emulsified silicon / silicon carbide, silicon / silicon oxide / emulsification, gallium arsenide / oxide crushed / oxygenated, fresh silicon, silicon / polycrystalline silicon / silicon carbide, Silicon / Xixi Shixixi / Zinc Oxide, or the insulating upper plate 300 with the reverse on it. Then the original substrate, the heart-light cat day-to-day structure, and the high-reflectivity contact layer 3008 are on the soil plate 3 1 0, so that the high-reflectivity contact is located on the substrate 3H). The eighth sheep contact layer 308 joins the dry t ^ 、 and the Mons contact layer 3 12 in a sentence, forming a structure not shown in FIG. 8. Among them, after receiving people _ 射 八 Μ # _ @. Later, the retroreflective contact layer 308 and the high-reflection contact layer 312 constitute a contact composite structure. Jinsheng: 1 The substrate is removed by, for example, 4-selective chemical engraving or mechanical polishing, and the „type semiconductor layer 3 is exposed, as shown in FIG. 9 200527710. Then, the deposition and steaming shovel are used. In the method, an electrode 316 and an electrode 3 1 4 ′ are formed on a part of the u-type semiconductor layer 302 and the substrate 31, and the stacked light-emitting diode structure shown in FIG. 8 is formed. Figures 11 to 15 and Figures ii to i 5 are green cross-sectional views of a process of a light-emitting diode according to the second preferred embodiment of the present invention. In this embodiment, it is the same as that of the present invention. The second embodiment is the same. A light emitting epitaxial structure composed of the substrate 400 is sequentially formed, and a high-reflectivity contact layer is formed on the p-type semiconductor layer 406, as shown in FIG. In the second embodiment, after the high reflectance contact layer 408% is formed, individual crystal grains may be separated by, for example, cutting or etching to form a structure as shown in FIG. 12. Then, a substrate 410 is provided. The substrate 41 has an n-type semiconductor layer 412 and an n-type contact layer 414 which are sequentially stacked. The n-type semiconductor layer 412 is bonded to the substrate 410. In this preferred embodiment, the material of the substrate 10 is preferably a conductive material, such as Shi Xi, Germanium, Gallium Tritide, Silicon Carbide, Gallium Phosphide, and Zinc Oxide. , Gallium nitride, silicon / silicon carbide, silicon / silicon germanium / silicon carbide, stone evening / carbide stone / lithium germanium, stone evening / indium tin oxide / carbide stone, or stone evening / indium oxide_tin, etc. In addition, the material of the n-type semiconductor layer 4 丨 2 is preferably n-type gallium nitride. Next, the original substrate 400 together with the light-emitting epitaxial structure and the surface reflectance contact layer 408 are overlaid on the substrate 410. The high-reflectivity contact layer 408 is uniformly bonded to the n-type contact layer 414 on the substrate 410, thereby forming a structure as shown in FIG. 13. After bonding, the high-reflectivity contact layer 408 and the n-type contact layer are formed. 414 and the ^ -type semiconductor layer 412 constitute a contact composite structure. 16 200527710 Next, as in the second embodiment—Private, # λ 贝 也 1 夕 ”, the original substrate 400 is removed, and a structure as shown in FIG. 14 is formed. And then forming n-type electrodes 418 and n-type electrodes on part of the semiconductor layer 402 and the substrate 410, respectively. 416 'is formed as a stacked structure of a light emitting diode of FIG. 15. In the present invention, a light emitting diode employed Τ basket name ,,, ° configuration of the second electrode may be fabricated directly

發光二極體結構之上下兩側,在製作上㈣統電極位於同 -側之發光二極體簡單;也沒有因為在同一側需要製作兩 個電極,而使得發光面積減損影響發光效率的問題;此 外’因為電極是對稱性的上下配置,所以當元件通電操作 時’不會造成類似傳統氮化耗晶在藍寶石基板之元件所 形成的電流S塞效應(Current CrGwding職et);這樣的情 況不但可以有效提升兀件的發光效率和可靠度以外丨同 時因為採用導電基板的關係’利用本發明的元件,其靜 電消散特性(Electrostatic Discharge ; ESD)也相對提升。It is easy to make light-emitting diodes with the upper system electrodes located on the same-side at the upper and lower sides of the light-emitting diode structure. There is also no problem of reducing the light-emitting area and affecting the light-emitting efficiency because two electrodes need to be made on the same side. In addition, 'because the electrodes are symmetrically arranged up and down, when the device is energized, it will not cause the current S plug effect (Current CrGwding), which is similar to that of the traditional nitrided depletion crystal on the sapphire substrate; this situation is not only It can effectively improve the luminous efficiency and reliability of the element, and at the same time, because of the use of the conductive substrate, the components of the present invention are used, and their electrostatic dissipation characteristics (ESD) are also relatively improved.

尤其’愈來愈多的發光二極體朝向照明與高功率應用的同 時,本發明的設計與製程,特別針對散熱的考量,特別將 發光兀件的主動層(熱的最大來源)利用倒覆製程,使之更 貼近基板,這樣的設計可以大大的減少熱流的行程,大幅 增加熱量散逸的效率。因此,利用本發明所製成的元件: 除了穩定性增加外,也非常適合於高功率發光元件的製 作。 值得注意的一點是,本發明之發光二極體製程為標準 製程,不僅適用於上述實施例之氮化鎵發光二極體,:適 用於填化紹錮鎵(AlinGaP)發光二極體之製作。 雖然本發明已以一較佳實施例揭露如上,然其並非用 17 200527710 以限定本發明,任何熟技藝者,在$脫離本發明之精 神=乾圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 L圃式間單說明】 =1圖係繪示傳統之發光二極體結構的剖面圖。 第2圖至第5圖係繪 -種發光依…、本^明弟-較佳實施例 禋I尤一極體之製程剖面圖。In particular, while more and more light-emitting diodes are being used for lighting and high-power applications, the design and manufacturing process of the present invention are specifically directed to consideration of heat dissipation, and the active layer (the largest source of heat) of the light-emitting element is used to reverse The manufacturing process makes it closer to the substrate. This design can greatly reduce the stroke of heat flow and greatly increase the efficiency of heat dissipation. Therefore, in addition to the increased stability, the device made by the present invention is also very suitable for the production of high-power light-emitting devices. It is worth noting that the light emitting diode system of the present invention is a standard process, which is not only applicable to the gallium nitride light emitting diode of the above embodiment, but also suitable for the production of a filled gallium (AlinGaP) light emitting diode. . Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention by 17 200527710. Any skilled artisan can deviate from the spirit of the present invention = within the scope, and can make various changes and decorations. Therefore, the scope of protection of the present invention shall be determined by the scope of the appended patent application. Description of the L-style room sheet] = 1 is a cross-sectional view showing a conventional light-emitting diode structure. Figures 2 to 5 are drawings-a kind of luminescence according to the present invention-a preferred embodiment 剖面 I is a cross-sectional view of the process of a particular polar body.

=6^第Η)圖料示依照本發明第二較 的一種發光二極體之製程剖面圖。 、 第11圖至第15圖係繪示 的-種發光二極體之製程剖面圖。“-較佳實施 【元件代表符號簡單說明】 100 :基板 1 0 2 ·緩衝層 104 : η型半導體層 106 :主動層 _ 108 : ρ型半導體層 110 :透明電極層 112 : Ρ型電極 114 : η型電極 200 :基板 204 : η型半導體層 206 :主動層 18 200527710 207 : 208 : 210 : 212 : 214 : 300 : 302 : 304 : 306 ·· 308 : 310 : 312 : 314 : 316 : 400 : 402 : 404 406 408 410 412 414 416 418 P型半導體層 P型接觸層 基板 歐姆電極 歐姆電極 基板 η型半導體層 主動層 Ρ型半導體層 高反射率接觸層 基板 高反射金屬接觸層 電極 電極 基板 η型半導體層 主動層 Ρ型半導體層 高反射率接觸層 •基板 :η型半導體層 :η型接觸層 •電極 :電極= 6 ^ 第 Η) The drawing shows a cross-sectional view of the manufacturing process of a light emitting diode according to the second comparison of the present invention. Figures 11 to 15 are cross-sectional views of the manufacturing process of a light-emitting diode. "-Preferred implementation [simple description of element representative symbols] 100: substrate 1 0 2 · buffer layer 104: n-type semiconductor layer 106: active layer _ 108: p-type semiconductor layer 110: transparent electrode layer 112: p-type electrode 114: n-type electrode 200: substrate 204: n-type semiconductor layer 206: active layer 18 200527710 207: 208: 210: 212: 214: 300: 302: 304: 306 ... 308: 310: 312: 314: 316: 400: 402 : 404 406 408 408 410 412 414 416 418 P-type semiconductor layer P-type contact layer substrate ohmic electrode ohmic electrode substrate n-type semiconductor layer active layer P-type semiconductor layer high reflectance contact layer substrate highly reflective metal contact layer electrode electrode substrate n-type semiconductor Layer active layer P-type semiconductor layer High reflectance contact layer • Substrate: n-type semiconductor layer: n-type contact layer • Electrode: electrode

1919

Claims (1)

200527710 拾、申請專利範圍 •一種發光二極體(LED),至少包括: 一 η型半導體基板; 一 Ρ型接觸層位於該η型半導體基板上,其中該ρ 型接觸層係一高反射率導電層;以及 一發光蠢晶結構位於該ρ型接觸層上。 2_如申請專利範圍第丨項所述之發光二極體,其中 忒η型半導體基板之材質為η型砷化鎵(GaAs)。 二3·如申請專利範圍第1項所述之發光二極體,其中 ,η型半導體基板之材質係選自η型之砷化鎵、矽、鍺、 氮化。鋁鎵、氮化鎵、碳化矽、磷化鎵(Gap)、氧化鋅(Ζη〇)、 夕:化石夕、石夕/石夕鍺/碳化石夕、石夕/碳化石夕/石西鍺、石夕/氧化鋼 錫厌化矽、矽/氧化錮錫、矽/氧化矽/碳化矽、藍寳石/氧 化鋅、坤化鎵/氧化碎/碳化碎、砍/氧化秒/氧化鋅、砷化 鎵/氧化石夕/氧化鋅、石夕/多晶石夕/碳化石夕、石夕/多曰曰曰石夕/氧化 辞、以及絕緣層上有碳化矽所組成之一族群。 如申請專利範圍第"員所述之發光二極體,其中 β Ρ型接觸層之材f可選自於由—金屬、—透明導電材料 =組合所組成之—族群,該金屬之材質係選自於由錄 ::;把⑽、翻⑼、鉻(Cr)、金(Au)、鈦(τι)、銀(Ag)、 .(A1)、鍺(Ge)、嫣(W)、秒化鶴(Siw)、鈕(Ta)、金辞合 20 200527710 金(AuZn)、金鈹合金(AuBe)、金鍺合金(AuGe)以及金錯錄 合金(AuGeNi)所組成之一族群,且該透明導電材料係選自 於由銦錫氧化物層(ITO)、銦鋅氧化物層(IZ〇)、氧化辞層 (ZnO)、氧化鎳層(NiO)以及鎘錫氧化物層(CT〇)所組成之 一族群。 5·如申請專利範圍第1項所述之發光二極體,其中 该發光蠢晶結構至少包括依序堆疊之一 P型半導體層、_ 主動層以及一 η型半導體層,且該主動層位於該p型半導 體層上。 鲁 6·如申請專利範圍第5項所述之發光二極體,其中 該η型半導體層之材質為^型氮化鎵。 7·如申請專利範圍第1項所述之發光二極體,更至 少包括二η型電極分別位於該發光磊晶結構以及該^型半 導體基板上。 8 · —種適用以製作發光二極體之半導體結構,至少 包括: 一 η型半導體基板; 一 Ρ型接觸層位於該η型半導體基板上,其中該ρ 型接觸層係一高反射率導電層; 一發光蠢晶結構位於該ρ型接觸層上;以及 一石夕(Si)基板位於該發光磊晶結構上。 21 200527710 才 申明專利範圍帛8項所述之適用以製作發光一 :ΓΓ體結構,其中該㈣半導體基板之材質係= 破化二砷化鎵、矽、鍺、氮化銘鎵、氮化鎵、碳化矽、 :化·)、氧化辞(ζη0)、石夕/碳化石夕、石夕… 料厌化物錯、简化錮錫/碳切、W氧化銦錫、石夕 ,化矽:¼化矽、藍寶石/氧化鋅、砷化鎵/氧化矽/碳化 氧切/氧化鋅、神化鎵/氧切/氧化辞、石夕/多晶 多晶镜终 1〇·如申請專利範圍第8項所述之適用以製作發光二 桎體之半導體結構,其中該p型接觸層之材質可選自於由 -金屬、-透科電材料及其組合所組成t一族群,該金 屬之材質係選自於由鎳(Nl)、鈀(Pd)、鉑(pt)、鉻(cr)、金 (U)鈦(Tl)、銀(Ag)、鋁(A1)、鍺(Ge)、鎢(W)、矽化鎢 (SlW)、鈕(Ta)、金鋅合金(AuZn)、金鈹合金(AuBe)、金 鍺合金(AuGe)以及金鍺鎳合金(AuGeNi)所組成之一族 群,且该透明導電材料係選自於由銦錫氧化物層(ITO)、 、’口鋅氧化物層(IZO)、氧化鋅層(Zn〇)、氧化鎳層(Ni〇)以 及鎘錫氧化物層(CT0)所組成之一族群。 u. 一種發光二極體之製造方法,至少包括: 形成一發光磊晶結構於一矽基板上; 形成一 p型接觸層於該發光磊晶結構上,其中該p 22 200527710 型接觸層係一高反射率導電層; 提供一 η型半導體基板; 倒覆該矽基板於該η型半導體基板上,以使該ρ型接 觸層與該η型半導體基板接合;以及 移除該秒基板。 1 2 ·如申請專利範圍第11項所述之發光二極體之製 造方法,其中該矽基板為η型。 1 3 ·如申請專利範圍第11項所述之發光二極體之製 造方法,其中該ρ型接觸層之材質可選自於由一金屬、_ 透明導電材料及其組合所組成之一族群,該金屬之材質係 選自於由鎳(Ni)、鈀(Pd)、鉑(Pt)、鉻(Cr)、金(Au)、鈦(Ti)、 銀(Ag)、鋁(A1)、鍺(Ge)、鎢(W)、矽化鎢(SiW)、鈕(Ta)、 金鋅合金(AuZn)、金鈹合金(AuBe)、金鍺合金(AuGe)以及 金鍺鎳合金(AuGeNi)所組成之一族群,且該透明導電材料 係選自於由銦錫氧化物層(ITO)、銦鋅氧化物層(ιζο)、氧 化鋅層(ZnO)、氧化鎳層(NiO)以及鎘錫氧化物層(CTO)所 組成之一族群。 14·如申請專利範圍第η項所述之發光二極體之製 方法’其中5亥發光蠢晶結構至少包括依序堆疊之^一 ρ 型半導體層、一主動層以及一 η型半導體層,且該ρ型接 觸層位於該ρ型半導體層上。 23 200527710 15·如申請專利範圍第ι4項所述之發光二極體之製 造方法’其中該n型半導體層之材質為η型氮化鎵。 16.如申請專利範圍第Η項所述之發光二極體之製 造方法,於移除該矽基板之步驟後,更至少包括形成二幻 型電極分別位於該發光磊晶結構以及該η型半導體基板 1 7 _ —種發光二極體,至少包括: 一接觸層複合結構,其中該接觸層複合結構具有相對 之一第一表面以及一第二表面,且該接觸層複合結構至少 包括一高反射率接觸層位於該第一表面; 一基板接合於該接觸層複合結構之該第二表面上;. 一發光蠢晶結構接合於該接觸層複合結構之該第一 表面上; 一第一電極接合於該發光磊晶結構上;以及 一第二電極接合於該基板上。 1 8 ·如申睛專利範圍第1 7項所述之發光二極體,其 中4接觸層複合結構更至少包括一金屬接觸層與該基板 接合。 1 9 ·如申凊專利範圍第1 7項所述之發光二極體,其 中忒接觸層複合結構更至少包括一 η型接觸層與一 ^型半 導體層’而該η型接觸層位於該η型半導體層與該高反射 24 200527710 率接觸層之間,且該n型半導體層與該基板接合。 20.如申請專利範圍第1 9項所述之發光二極體,其 中該η型半導體層之材質為^型氮化鎵。 2 1 ·如申請專利範圍第1 7項所述之發光二極體,其 中該高反射率接觸層之材質可選自於由一金屬、一透明導 電材料及其組合所組成之一族群,該金屬之材質係選自於 由鎳(Ni)、|巴(Pd)、鉑(pt)、鉻(Cr)、金(Au)、鈦(Ti)、銀 (Ag)、銘(A1)、鍺(Ge)、鎢(W)、石夕化鎢(SiW)、鈕(Ta)、 金鋅合金(AuZn)、金鈹合金(AuBe)、金錯合金(AuGe)以及 金鍺鎳合金(AuGeNi)所組成之一族群,且該透明導電材料 係選自於由錮錫氧化物層(IT〇)、銦鋅氧化物層(IZ〇)、氧 化鋅層(Zn0)、氧化鎳層(NiO)以及鎘錫氧化物層(CT〇)所 組成之一族群。 其 22·如申請專利範圍第17項所述之發光二極體 中該基板之材質為導體。 23·如申請專利範圍第17項所述之發光二極體,其 中忒基板之材質係選自於由n型之砷化鎵、矽、鍺、氮化 鋁鎵、氮化鎵、碳化矽、磷化鎵(GaP)、氧化鋅、矽 =切、靖鍺/碳切碳化物鍺、…氧化姻錫 反化石夕、石夕/氧化銦錫、石夕/氧化石夕/碳化石夕、藍寶石/氧化 鋅、坤化鎵/氧化石夕/破化石夕、石夕/氧化石夕/氧化辞、坤化録/ 25 200527710 氧化石夕/氧化鋅、石夕/多晶石夕/碳化石夕、石夕/多晶石夕/氧化鋅、 以及絕緣層上有碳化矽所組成之一族群。 24·如申請專利範圍第1 7項所述之發光二極體,其 中該發光磊晶結構至少包括依序堆疊之一 p型半導體 層、一主動層、以及一 n型半導體層,而該p型半導體層 與該高反射率接觸層接合。 25 ·如申請專利範圍第24項所述之發光二極體,其 中該p型半導體層係一複合層,且該複合層係選自於由氮 化鎵(GaN)、氮化鋁(aiN)、氮化鋁鎵(AiGaN)、氮化錮鎵 (InGaN)、以及氮化鋁銦鎵(AiinGaN)所組成之一族君辱。 26·如申請專利範圍第24項所述之發光二極體,其 中该主動層係選自於由單一量子井(Single Quantum Well ; SQW)、多重量子井(Multiple Quantum Well ; MQW) 以及PN結構(PN Junction)所組成之一族群,且該主動層 之材料係選自於由氮化鎵(GaN)、氮化鋁(A1N)、氮化鋁鎵 (AlGaN)、氮化銦鎵(inGaN)、以及氮化鋁銦鎵(AlInGaN) 所組成之一族群。 27·如申請專利範圍第24項所述之發光二極體,其 中該η型半導體層係一複合層,且該複合層之材料係選自 於由氮化鎵(GaN)、氮化鋁(Α1Ν)、氮化鋁鎵(AlGaN)、氮 化銦鎵(InGaN)、以及氮化鋁銦鎵(AlInGaN)所組成之一族 26 200527710 群0 28·如申請專利範圍第17項所述之發光二極體,其 中該第一電極與該第二電極為η型。 29. —種發光二極體之製造方法,至少包括: 形成一發光磊晶結構於一第一基板上; 形成一高反射率接觸層於該發光磊晶結構上; 提供一第二基板; 倒覆該第一基板於該第二基板上,以使該高反射率接 觸層與該第二基板接合; 移除該第一基板,以暴露出該發光磊晶結構;以及 形成一第一電極與該發光磊晶結構接合以及一第二 電極與該第二基板接合。 3 0 ·如申請專利範蜀第2 9項所述之發光二極體之製 j方去,其中該第二基板上更至少包括一金屬接觸層與該 高反射率接觸層接合。 人 3 1 ·如申請專利範圍第29項所述之發光二極體之擊 造方法,其中該第二基板上更至少包括依序堆疊之—1 梨半導體層以及一 !!型接觸層,且該11型接觸層與該高 射率接觸層接合。 q 32.如申請專利範圍第31項所述之發光二極體之擊 27 200527710 造方法,其中該η型半導體層之材質為η型氮化鎵。 3 3 ·如申請專利範圍第29項所述之發光二極體之製 造方法’其中該南反射率接觸層之材質可選自於由一金 屬、一透明導電材料及其組合所組成之一族群,該金屬之 材質係選自於由鎳(Ni)、鈀(Pd)、鉑(Pt)、鉻(Cr)、金(Au)、 鈦(Ti)、銀(Ag)、鋁(A1)、鍺(Ge)、鎢(W)、矽化鎢(Siw)、 鈕(Ta)、金鋅合金(AuZn)、金鈹合金(AuBe)、金鍺合金 (AuGe)以及金鍺鎳合金(AuGeNi)所組成之一族群,且該 透明導電材料係選自於由銦錫氧化物層(IT〇)、銦鋅氧化 物層(ιζο)、氧化鋅層(Ζη〇)、氧化鎳層(Ni〇)以及鎘錫氧 化物層(CTO)所組成之一族群。 1 34·如申請專利範圍第29項所述之發光二極體之製 迨方法,其中该第二基板之材質為導體。 35. ”請專利範圍第29項所述之發光二極體 ;方法’其中㈣二基板之材質係選自於由η型之坤化' ’永石夕、錯、氮化铭鎵、氮彳b鉉、ψ 氧化鋅(…夕/碳化發、二 硒鍺、矽/氧化銦錫人 石夕/石反化矽/ 化矽、m气务拉 夕/乳化銦錫、矽/氧化矽/碳 …氧化;、、神:::化坤:鎵/氧化梦/碳化梦,氧化 群。 鋅上切切社成之—族 28 200527710 36·如申請專利範圍第29項所述之發光二極體之製 造方法,其中該發光磊晶結構至少包括依序堆疊之一 ρ 型氮化鎵層、一主動層、以及一 η塑氮化鎵層,而該ρ 型氮化鎵層與該高反射率接觸層接合。 37·如申請專利範圍第36項所述之發光二極體之製 造方法,其中該主動層係選自於由單一量子井(Single Quantum Well ; SQW)、多重量子井(MultiPle Quantum Well ; MQW)以及PN結構(PN Junction)所組成之一族群, 且該主動層之材料係選自於由氮化鎵(GaN)、氮化鋁 (A1N)、氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)、以及氮化 鋁銦鎵(AlInGaN)所組成之一族群。 38_如申請專利範圍第29項所述之發光二極體之製 造方法,其中該第一電極與該第二電極為n型。 29200527710 Scope of patent application • A light emitting diode (LED) at least includes: an n-type semiconductor substrate; a p-type contact layer on the n-type semiconductor substrate, wherein the p-type contact layer is a highly reflective conductive A layer; and a light-emitting stupid structure on the p-type contact layer. 2_ The light-emitting diode according to item 丨 in the scope of the patent application, wherein the material of the 忒 n-type semiconductor substrate is n-type gallium arsenide (GaAs). 2. The light-emitting diode according to item 1 in the scope of the patent application, wherein the material of the n-type semiconductor substrate is selected from the group consisting of n-type gallium arsenide, silicon, germanium, and nitride. Aluminum gallium, gallium nitride, silicon carbide, gap, zinc oxide (Zη〇), Xi: Fossil Xi, Shi Xi / Shi Xi Ge / Carbide Shi Xi, Shi Xi / Carbide Shi Xi / Shi Xi Ge , Shi Xi / Steel Oxide Tin Anodized Silicon, Silicon / Small Tin Oxide, Silicon / Silica Oxide / Silicon Carbide, Sapphire / Zinc Oxide, Gallium Oxide / Small Oxide / Carbon Smash, Chop / Oxidation / Zinc Oxide, Arsenic A group consisting of gallium oxide / stone oxide / zinc oxide, stone evening / polycrystalline stone evening / carbide stone evening, stone evening / multiday stone evening / oxidation, and silicon carbide on the insulating layer. According to the light-emitting diode described by the member of the scope of the patent application, the material f of the β-P contact layer may be selected from the group consisting of -metal, -transparent conductive material = combination, and the material of the metal is Selected from Yulu ::; ⑽, turn ⑼, chromium (Cr), gold (Au), titanium (τι), silver (Ag),. (A1), germanium (Ge), Yan (W), seconds Siw, Ta, Ta, 20 200527710 AuZn, AuBe, AuGe, and AuGeNi, and this group The transparent conductive material is selected from the group consisting of an indium tin oxide layer (ITO), an indium zinc oxide layer (IZ0), an oxide layer (ZnO), a nickel oxide layer (NiO), and a cadmium tin oxide layer (CT〇). A group of people. 5. The light-emitting diode according to item 1 of the scope of patent application, wherein the light-emitting stupid structure includes at least one P-type semiconductor layer, an active layer, and an n-type semiconductor layer sequentially stacked, and the active layer is located at On the p-type semiconductor layer. Lu 6. The light-emitting diode according to item 5 of the scope of patent application, wherein the n-type semiconductor layer is made of ^ -type gallium nitride. 7. The light-emitting diode described in item 1 of the scope of patent application, further comprising at least two n-type electrodes located on the light-emitting epitaxial structure and the ^ -type semiconductor substrate, respectively. 8 · A semiconductor structure suitable for manufacturing light emitting diodes, including at least: an n-type semiconductor substrate; a p-type contact layer on the n-type semiconductor substrate, wherein the p-type contact layer is a highly reflective conductive layer A light emitting stupid structure is located on the p-type contact layer; and a stone evening (Si) substrate is located on the light emitting epitaxial structure. 21 200527710 Only declared the scope of the patent 帛 8 is applicable for making light-emitting one: ΓΓ bulk structure, where the material of the ㈣ semiconductor substrate = broken gallium diarsenide, silicon, germanium, gallium nitride, gallium nitride , Silicon Carbide,: Chemical ·), Oxidation (ζη0), Shi Xi / Carbide Shi Xi, Shi Xi ... Expected anorexia, simplified tin / carbon cutting, W indium tin oxide, Shi Xi, siliconized: ¼ chemical Silicon, sapphire / zinc oxide, gallium arsenide / silicon oxide / oxycarbide cut / zinc oxide, gallium / oxon cut / oxidation, Shi Xi / polycrystalline polycrystalline mirror end 10. The semiconductor structure suitable for making a light-emitting diode is described, in which the material of the p-type contact layer may be selected from the t group consisting of -metal, -transtech electrical material, and combinations thereof, and the material of the metal is selected from Based on nickel (Nl), palladium (Pd), platinum (pt), chromium (cr), gold (U), titanium (Tl), silver (Ag), aluminum (A1), germanium (Ge), tungsten (W) , Tungsten silicide (SlW), button (Ta), gold zinc alloy (AuZn), gold beryllium alloy (AuBe), gold germanium alloy (AuGe), and gold germanium nickel alloy (AuGeNi), and the group is transparent The electrical material is selected from the group consisting of an indium tin oxide layer (ITO), a zinc oxide layer (IZO), a zinc oxide layer (Zn〇), a nickel oxide layer (Ni〇), and a cadmium tin oxide layer (CT0). ). u. A method for manufacturing a light emitting diode, at least comprising: forming a light emitting epitaxial structure on a silicon substrate; forming a p-type contact layer on the light emitting epitaxial structure, wherein the p 22 200527710 type contact layer is a A high-reflectivity conductive layer; providing an n-type semiconductor substrate; flipping the silicon substrate on the n-type semiconductor substrate so that the p-type contact layer is bonded to the n-type semiconductor substrate; and removing the second substrate. 1 2 · The method for manufacturing a light-emitting diode according to item 11 of the scope of patent application, wherein the silicon substrate is of an n-type. 1 3 · The method for manufacturing a light-emitting diode according to item 11 in the scope of the patent application, wherein the material of the p-type contact layer may be selected from a group consisting of a metal, a transparent conductive material, and a combination thereof. The material of the metal is selected from the group consisting of nickel (Ni), palladium (Pd), platinum (Pt), chromium (Cr), gold (Au), titanium (Ti), silver (Ag), aluminum (A1), and germanium (Ge), tungsten (W), tungsten silicide (SiW), button (Ta), gold zinc alloy (AuZn), gold beryllium alloy (AuBe), gold germanium alloy (AuGe), and gold germanium nickel alloy (AuGeNi) A group, and the transparent conductive material is selected from the group consisting of an indium tin oxide layer (ITO), an indium zinc oxide layer (ιζο), a zinc oxide layer (ZnO), a nickel oxide layer (NiO), and a cadmium tin oxide Stratum (CTO). 14. The method for manufacturing a light-emitting diode as described in item η of the scope of the patent application, wherein the 5H-emission stupid crystal structure includes at least a p-type semiconductor layer, an active layer, and an n-type semiconductor layer sequentially stacked, And the p-type contact layer is located on the p-type semiconductor layer. 23 200527710 15. The manufacturing method of the light-emitting diode according to item 4 of the scope of the patent application, wherein the material of the n-type semiconductor layer is n-type gallium nitride. 16. The method of manufacturing a light-emitting diode as described in item (1) of the scope of the patent application, after the step of removing the silicon substrate, it further includes at least forming a magic-type electrode located in the light-emitting epitaxial structure and the n-type semiconductor, respectively. Substrate 17 — A light-emitting diode, at least comprising: a contact layer composite structure, wherein the contact layer composite structure has an opposite first surface and a second surface, and the contact layer composite structure includes at least a high reflection The rate contact layer is located on the first surface; a substrate is bonded to the second surface of the contact layer composite structure; a light-emitting stupid structure is bonded to the first surface of the contact layer composite structure; a first electrode is bonded On the light-emitting epitaxial structure; and a second electrode is bonded on the substrate. 18 · The light-emitting diode as described in item 17 of the patent scope of Shenyan, wherein the 4-contact layer composite structure further includes at least one metal contact layer bonded to the substrate. 19 · The light-emitting diode as described in item 17 of the patent scope of Shenying, wherein the rhenium contact layer composite structure further includes at least an n-type contact layer and a ^ -type semiconductor layer, and the n-type contact layer is located at the η Between the semiconductor layer and the high reflection 24 200527710 rate contact layer, and the n-type semiconductor layer is bonded to the substrate. 20. The light-emitting diode according to item 19 of the scope of patent application, wherein the material of the n-type semiconductor layer is ^ -type gallium nitride. 2 1 · The light-emitting diode according to item 17 of the scope of patent application, wherein the material of the high-reflectivity contact layer may be selected from a group consisting of a metal, a transparent conductive material, and a combination thereof, the The material of the metal is selected from the group consisting of nickel (Ni), | bar (Pd), platinum (pt), chromium (Cr), gold (Au), titanium (Ti), silver (Ag), inscription (A1), germanium (Ge), tungsten (W), tungsten carbide (SiW), button (Ta), gold zinc alloy (AuZn), gold beryllium alloy (AuBe), gold alloy (AuGe), and gold germanium nickel alloy (AuGeNi) The transparent conductive material is selected from the group consisting of a tin oxide layer (IT0), an indium zinc oxide layer (IZ0), a zinc oxide layer (Zn0), a nickel oxide layer (NiO), and A group of cadmium tin oxide layers (CT0). 22. The material of the substrate in the light-emitting diode described in item 17 of the scope of patent application is a conductor. 23. The light-emitting diode according to item 17 in the scope of the patent application, wherein the material of the rubidium substrate is selected from n-type gallium arsenide, silicon, germanium, aluminum gallium nitride, gallium nitride, silicon carbide, Gallium phosphide (GaP), zinc oxide, silicon = cut, germanium / carbon-cut carbide germanium, ... oxidized tin inverse fossil, stone eve / indium tin oxide, stone eve / stone oxidized / carbide carbide, sapphire / Zinc Oxide, Kunhua Gallium / Stone Oxide / Fossil Breaking, Shixue / Stone Oxide / Oxidation, Kunhualu / 25 200527710 Stone Oxide / Zinc Oxide, Shixue / Polycrystalline Stone / Carbide Stone , Shi Xi / polycrystalline Shi Xi / Zinc oxide, and a group of silicon carbide on the insulating layer. 24. The light-emitting diode according to item 17 in the scope of patent application, wherein the light-emitting epitaxial structure includes at least one p-type semiconductor layer, an active layer, and an n-type semiconductor layer sequentially stacked, and the p A semiconductor layer is bonded to the high-reflectivity contact layer. 25. The light-emitting diode according to item 24 of the scope of the patent application, wherein the p-type semiconductor layer is a composite layer, and the composite layer is selected from the group consisting of gallium nitride (GaN) and aluminum nitride (aiN) , Aluminium gallium nitride (AiGaN), Indium gallium nitride (InGaN), and aluminum indium gallium nitride (AiinGaN). 26. The light-emitting diode according to item 24 in the scope of patent application, wherein the active layer is selected from the group consisting of a single quantum well (SQW), a multiple quantum well (Multiple quantum well; MQW), and a PN structure (PN Junction), and the material of the active layer is selected from the group consisting of gallium nitride (GaN), aluminum nitride (A1N), aluminum gallium nitride (AlGaN), and indium gallium nitride (inGaN). , And a group of aluminum indium gallium nitride (AlInGaN). 27. The light-emitting diode according to item 24 of the scope of patent application, wherein the n-type semiconductor layer is a composite layer, and the material of the composite layer is selected from the group consisting of gallium nitride (GaN), aluminum nitride ( A1N), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), and aluminum indium gallium nitride (AlInGaN), a family of 26 200527710 group 0 28 · as described in the scope of patent application No. 17 A polar body, wherein the first electrode and the second electrode are n-type. 29. A method for manufacturing a light emitting diode, at least comprising: forming a light emitting epitaxial structure on a first substrate; forming a high reflectance contact layer on the light emitting epitaxial structure; providing a second substrate; Covering the first substrate on the second substrate so that the high-reflectivity contact layer is bonded to the second substrate; removing the first substrate to expose the light-emitting epitaxial structure; and forming a first electrode and The light emitting epitaxial structure is bonded and a second electrode is bonded to the second substrate. 30. The manufacturing method of the light-emitting diode according to item 29 of the applied patent, wherein the second substrate further includes at least a metal contact layer bonded to the high-reflectivity contact layer. Person 3 1 · The method for striking a light-emitting diode as described in item 29 of the scope of patent application, wherein the second substrate further includes at least one -1 pear semiconductor layer and one! !! Type contact layer, and the 11 type contact layer is bonded to the high-emissivity contact layer. q 32. The manufacturing method of the light emitting diode as described in item 31 of the scope of patent application 27 200527710, wherein the material of the n-type semiconductor layer is n-type gallium nitride. 3 3 · The manufacturing method of the light-emitting diode according to item 29 of the scope of the patent application, wherein the material of the south-reflectivity contact layer may be selected from a group consisting of a metal, a transparent conductive material, and a combination thereof The material of the metal is selected from the group consisting of nickel (Ni), palladium (Pd), platinum (Pt), chromium (Cr), gold (Au), titanium (Ti), silver (Ag), aluminum (A1), Germanium (Ge), tungsten (W), tungsten silicide (Siw), button (Ta), gold zinc alloy (AuZn), gold beryllium alloy (AuBe), gold germanium alloy (AuGe), and gold germanium nickel alloy (AuGeNi) And a transparent conductive material selected from the group consisting of an indium tin oxide layer (IT0), an indium zinc oxide layer (ιζο), a zinc oxide layer (Zη〇), a nickel oxide layer (Ni〇), and A group of cadmium tin oxide (CTO) layers. 1 34. The method of manufacturing a light emitting diode as described in item 29 of the scope of patent application, wherein the material of the second substrate is a conductor. 35. "Please refer to the light-emitting diode described in item 29 of the patent scope; method 'where the material of the second substrate is selected from the η type of Kun's'" Yong Shixi, Cu, gallium nitride, gadolinium b铉, ψ Zinc Oxide (... Xi / Carbonated Hair, Diselenium Germanium, Silicon / Indium Tin Oxide Stone / Silicon Inverted Silicon / Siliconized Silicon, M Gas Lax / Emulsified Indium Tin, Silicon / Silicon Oxide / Carbon ... Oxidation ;, God ::: Chemical: Gallium / Oxidation dream / Carbonization dream, Oxidation group. Zinc upper cut cut into a group-family 28 200527710 36. Manufacturing of light-emitting diodes as described in item 29 of the scope of patent application Method, wherein the light emitting epitaxial structure includes at least one p-type gallium nitride layer, an active layer, and an n-type gallium nitride layer sequentially stacked, and the p-type gallium nitride layer and the high-reflectivity contact layer 37. The method of manufacturing a light-emitting diode as described in item 36 of the scope of the patent application, wherein the active layer is selected from a single quantum well (Single Quantum Well; SQW) and a multiple quantum well (MultiPle Quantum Well; MQW) and PN Junction, and the material of the active layer is selected from A group of gallium nitride (GaN), aluminum nitride (A1N), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), and aluminum indium gallium nitride (AlInGaN). 38_If you apply for a patent The method for manufacturing a light-emitting diode according to item 29 of the scope, wherein the first electrode and the second electrode are n-type.
TW93103571A 2004-02-13 2004-02-13 Light emitting diode and method for manufacturing the same TWI253186B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93103571A TWI253186B (en) 2004-02-13 2004-02-13 Light emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93103571A TWI253186B (en) 2004-02-13 2004-02-13 Light emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200527710A true TW200527710A (en) 2005-08-16
TWI253186B TWI253186B (en) 2006-04-11

Family

ID=37565033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93103571A TWI253186B (en) 2004-02-13 2004-02-13 Light emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI253186B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505500B (en) * 2012-06-07 2015-10-21 Lextar Electronics Corp Light emitting diode and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505500B (en) * 2012-06-07 2015-10-21 Lextar Electronics Corp Light emitting diode and method for manufacturing the same

Also Published As

Publication number Publication date
TWI253186B (en) 2006-04-11

Similar Documents

Publication Publication Date Title
US7705348B2 (en) Semiconductor light-emitting device with electrode for N-polar InGaAIN surface
US7405431B2 (en) Light-emitting semiconductor device having an overvoltage protector
JP5334601B2 (en) Semiconductor light emitting diode element and semiconductor light emitting device
TWI270222B (en) Light emitting diode chip
TWI291253B (en) Light emitting diode structure
TWI253770B (en) Light emitting diode and manufacturing method thereof
TW201444117A (en) Roughened high refractive index layer/LED for high light extraction
JP2008103674A (en) Multilayer reflection film electrode and compound semiconductor light emitting device with same
TW200924239A (en) Light emitting diodes with a p-type surface bonded to a transparent submount to increase light extraction efficiency
TW200921928A (en) Light-emitting device, light-emitting diode and method for forming a light-emitting device
JP2006324685A5 (en)
JP2000294837A (en) Gallium nitride compound semiconductor light emitting element
TW200409378A (en) GaN-based light-emitting diode and the manufacturing method thereof
JP2012212929A (en) InGaAlN LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME
US20070114515A1 (en) Nitride semiconductor device having a silver-base alloy electrode
TW201240147A (en) Light-emitting semiconductor chip
KR20100120027A (en) Light emitting device and method for fabricating the same
KR20090015633A (en) Ohmic electrode and method for forming the same
TW200406076A (en) Gallium nitride series light-emitting diode structure and its manufacturing method
KR20090032211A (en) Vertically structured gan type led device
KR101114047B1 (en) Light emitting device and method for fabricating the same
KR101534846B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR20090111889A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TW200527710A (en) Light emitting diode and method for manufacturing the same
TW201340397A (en) Light emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent