TW200526802A - Metal complex having BETA-diketonato ligand and method for producing metal-containing thin film - Google Patents

Metal complex having BETA-diketonato ligand and method for producing metal-containing thin film Download PDF

Info

Publication number
TW200526802A
TW200526802A TW093131152A TW93131152A TW200526802A TW 200526802 A TW200526802 A TW 200526802A TW 093131152 A TW093131152 A TW 093131152A TW 93131152 A TW93131152 A TW 93131152A TW 200526802 A TW200526802 A TW 200526802A
Authority
TW
Taiwan
Prior art keywords
metal
complex
thin film
carbon atoms
metal complex
Prior art date
Application number
TW093131152A
Other languages
Chinese (zh)
Inventor
Takumi Kadota
Chihiro Hasegawa
Kouhei Watanuki
Original Assignee
Ube Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries filed Critical Ube Industries
Publication of TW200526802A publication Critical patent/TW200526802A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Abstract

Disclosed is a novel beta-diketonato metal complex which can be advantageously used in a method wherein a metal thin film is produced by CVD, which represented by the following formula: (1) (wherein X represents a silyl ether group having a specific structure; Y represents the above-mentioned silyl ether group or an alkyl group; Z represents a hydrogen atom or an alkyl group; M represents Lu, Ir, Pd, Ni, V, Ti, Zr, Hf, Al, Ga, In, Sn, Pb, Zn, Mn, It, Cr, Mg, Co, Fe or Ag; and n represents the valence of the metal atom M.)

Description

200526802 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關新穎之具有/3 -二酮合配位基的金屬錯 合物’及使用該金屬錯合物利用化學氣相蒸鍍法(C V D法) 製造金屬薄膜或金屬氧化物薄膜等之合金屬薄膜的方法。 【先前技術】 曾檢討以第V111族金屬所屬之釕或銥等貴金屬的薄 膜或其氧化物薄膜,作爲DRAM、FeRAM等半導體記憶 體之薄膜電極形成用材料。其因爲,該貴金屬作爲電極形 成用材料時具有優良電特性。又,曾檢討將鈀或鎳之薄膜 利用於’提升矽半導體所使用之銅配線上所產生的銅核密 度’及提升銅配線與其底層之密合性用。 該金屬薄膜之製造方法可利用PVD法及CVD法,但 隨著今後裝置微細化之趨向,又以易製造均勻薄膜之 c V D法成膜爲佳,故需求適用之原料化合物。 已知之CVD法形成含有釕、銥、鈀或鎳之薄膜用的 化合物如,各金屬之/3 -二酮合錯合物。但釕、銥、鈀及 鎳之Θ -二酮合錯合物的熔點較高,因此CVD裝置內送輸 原料時恐阻塞配管,故作爲CVD法用金屬原料恐有疑慮 。又’ CVD法之成膜速度較小,故不利於對象薄膜之生 產面。 專利文獻1曾提案2,2,6 -三甲基-3,5 -庚二酮或2, 6 - 一甲基_ 3,5 _庚二酮之釕錯合物或銥錯合物,相對性該 -5- 200526802 (2) 錯合物之熔點較低,但任何一種錯合物之熔點均高於l 1 〇 以上’故作爲CVD法用金屬原料恐有疑慮。 專利文獻2曾提案以具有碳數大之烷基的B -二酮作爲 配位基之釕錯合物。室溫下該錯合物爲液體,故可解決 CVD裝置內配管組塞之問題,但釕膜之成膜速度同先前 三(2,2,6,6-四甲基-3,5-庚二酮合基)釕錯合物,故工 業上仍無法解決釕薄膜之生產性。 專利文獻3及4曾提案,爲了改善所生成之薄膜均化, 而各自對三(2,4-辛二酮合基)釕錯合物(式1)之化合物及 三(2,4-辛二銅合基)銥錯合物進行順-反異構物分離之方 法。 對釕錯合物曾提案,不同於石-二酮合基之環戊二烯 基之釕錯合物。 專利文獻5至7曾記載,室溫下爲液體之雙(乙基環戊 二烯基)釕錯合物。但該釕錯合物爲有機金屬,對水具敏 銳性,故合成時及後處理之過程煩雜。又,以市場可取得 之三價氯化釕爲開始原料合成時,目的物雙(乙基環戊二 烯基)釕錯合物爲二價物,故需進行還原反應而使用還原 劑之金屬鋅等,因此以工業製造法大量生產恐有疑慮。 先前未曾檢討使用鈀錯合物以CVD法製造鈀薄膜。 專利文獻8曾記載,超臨界乙烷中使用雙(2,2,7-三甲 基—3,5 -辛二酮合基)鈀錯合物製造鈀薄膜之例,但超臨 界乙烷中之反應不具實用性。 非專利文獻1曾記載,使用雙(環戊二烯基)鎳錯合物 -6 - 200526802 (3) 以C V D法製造鎳薄膜。但該錯合物爲固體(熔點:丨7 3) 〇 因此半導體、電子零件及光學材料等之領域開始檢討 以合釩薄膜作爲薄膜材料。含釩薄膜之製造方法如,塗布 熱分解法、PVD法及CVD法,但就組成控制性及今後裝 置微細化之傾向,又以易製造均勻薄膜之CVD法成膜爲 佳,故需求適用之原料化合物。 已知以CVD法製造含釩薄膜時,所使用之釩源如 VO(OEth般具有烷氧基金屬之錯合物,但含烷氧基金屬之 錯合物於僅存在水之情形下易產生分解變質,而有難保存 之問題。 專利文獻9曾揭不,使用V(dpm)3(該dpm爲2,2,6 ,6-四甲基3,5-庚二酮合基)所示之二酮合錯合物。該 V(dpm)3錯合物因不含烷氧基金屬,故存在水時具安定性 ,但熔點過高爲1 5 5 t,故供給原料時恐阻塞CVD裝置內 之配管,因此作爲CVD法之薄膜製造用原料恐有疑慮。 開始檢討以含有周期表第IVA族所屬之鈦、鉻或鉛 等金屬元素之氧化物的薄膜作爲半導體、電子零件及光學 零件等領域之材料,特別是近年來極限開發以氧化飴作爲 晶體管之出入口絕緣膜。含該元素之薄膜的製造方法如, 塗布熱分解法、PVD法或CVD法,但就成膜之組成控制 性、半導體裝置微細化之對應性,又以CVD法成膜最佳 已知之以CVD法製造含IVA族金屬元素之薄膜用的 200526802 (4) 原料如,T i ( Ο E t)4般烷氧基金屬,或專利文獻丨〇至〗2所記 載之含有烷氧基金屬及A -二酮合基之金屬錯合物。 該金屬錯合物均含有烷氧基金屬,故僅存在水之情形 下恐分解變質,而有保存中或合成時溶劑中之水分管理問 題。又,上述專利文獻中所記載之錯合物中,除了部分鈦 錯合物外,室溫下幾乎所有的鈦錯合物、锆錯合物及給錯 合物均爲固體,故CVD裝置內輸送原料時恐阻塞配管, 因此作爲CVD法之原料恐有疑慮。 專利文獻13曾揭不不含院氧基金屬之Hf(dpm)4(該 dpm爲2,2,6,6-四甲基-3,5_庚二酮合基)錯合物。該 錯合物於水中等較安定,但熔點過高爲3 1 5 °C,故供給原 料時會有配管阻塞問題,而有相同之CVD法原料用問題 〇 因此開始檢討以含有第IIIB族所屬之金屬硼、鋁、 鎵、銦等金屬或其化合物之薄膜,作爲半導體、電子零件 及光學零件等領域之材料。例如檢討以鋁氧化膜作爲半導 體記憶體之出入口絕緣膜等電子裝置用機能性薄膜,又, 以銦氧化膜作爲透明電極膜用。含該金屬之薄膜的製造方 法如,塗布熱分解法、PVD法及CVD法,但就薄膜之組 或控制性及今後裝置微細化之傾向,又以易製造均勻薄膜 之C V D法成膜爲佳,故需求適用之原料化合物。 以CVD法製造含第ΙΠΒ族金屬之薄膜用原料如,製 造化合物半導體用之三甲基鋁、三甲基鎵等三烷基金屬錯 合物,但僅存在水分及空氣下該錯合物今產生激烈變質, -8- 200526802 (5) 且具引火性而難處理。又,Al(dpm)3(dpm爲2,2,6,6-四甲基3,5 -庚一酮合基)所示-二酮合基銘錯合物可作 爲半導體記憶體之出入口絕緣膜用的形成氧化鋁薄膜用, 但Al(dpm)3錯合物爲熔點26 5 °C之固體,故供給原料時 CVD裝置內恐阻塞配管,而難作爲CVD法製膜用之原料 。另外專利文獻14及專利文獻15曾揭示,分子內含有烷氧 基金屬之鋁錯合物,但僅存在水分下該含烷氧基金屬之錯 合物也會產生分解變質,而有保存性問題。專利文獻1 6曾 提案烷基鋁鹵化物,但同樣地僅於水分及空氣下會產生激 烈變質,且具有引火性而難處理。對鋁以外之第ΠΙΒ族 金屬中硼、鎵及銦而言,現狀下幾乎未開發三烷基金屬錯 合物以外之物,且該金屬之/3 -二酮合錯合物,例如三(乙 酿基丙酮合基)銦錯合物、I n (d p m)等之錯合物爲高熔點固 體,故難作爲CVD法之製膜用原料。 又,開始檢討以第IVB族金屬所屬 錫、錯之氧化 物薄膜作爲半導體、電子零件等領域之原料用,及將第 IVB族金屬氧化物使用於氧化錫、錫膠氧化銦(I TO)等透 明導電性薄膜或BTS(鋇、鈦、錫氧化物、PZT(鉛、鉻、 鈦氧化物)等之氧化物強介電體膜。製造該含第IVB族金 屬之薄膜的方法如,塗布熱分解法、PVD法及CVD法, 但就組成控制性及今後裝置微細化之傾向,又以易製造均 勻薄膜之CVD法成膜爲佳,故需求適用之原料化合物。 以CVD法製造含第IVB族金屬元素之薄膜用的原料 如/5 -二酮合基金屬錯合物。其例如,Sn(AcAc)2(該AcAc 200526802 (6) 爲乙醯基丙酮合基)。但該S η錯合物對水極爲敏感,故合 成時或保存時會有水分管理問題(專利文獻1 7)。專利文獻 1 8曾記載,以S η直接鍵結烷基而具有S n- C鍵之四甲基錫 (Sh(CH3)4)作爲氧化物系強介電體之BTS薄膜原料用,該 Sn(CH3)4雖可避色上述万-二酮合基錯合物等因水分而分 解之問題,但比較使用Sn(dpm)2下,所得BTS膜之特性 差。其因係,Sn與烷基間之Sn-C鍵的共鍵性太強故比具 有Sn-0-C鍵之Sn(dpm)2錯合物更難分解Sn-C鍵。同樣 地具有Sn-C鍵之二丁基錫二乙酸鹽及專利文獻19所示 (CH3)2Sn(dPm)2之錫錯合物也有相同問題。 又,有關鉛錯合物曾提案Pd(dmp)2(專利文獻20)、雙 (1,3-二苯基-1,3-丙二酮合基)鉛(專利文獻21)等/3 -二酮 合基鉛錯合物,但該物均爲高熔點之固體,故以CVD法 成膜時,恐阻塞CVD裝置內供給原料系統中之配管,而 難作爲CVD法之製膜用原料。 近年來有非常多有關半導體、電子零件等領域之原料 用的鋅化合物、錳化合物及釔化合物硏究及開發。其中曾 硏究將鋅化合物使用於太陽電池、液晶顯示裝置等透明導 電膜及表面彈性波裝置,將錳化合物使用於電變色裝置或 利用其對溫度具有較大之電阻率變化及溫度分解能的熱敏 電阻元件,又’將釔化合物使用於氧化銦系高溫超傳導體 材料。製造合該金屬原子之薄膜的方法中,又以易製造均 句薄膜之CVD法成膜最佳,故需求適用之原料化合物。 已知以CVD法製造含鋅原子、錳原子及銦原子之薄 200526802 (7) 膜用原料如,以 Zn(acac)(acac=乙醯基丙酮合基)、 Zn(dpm)(dpm =雙(2,2,6,6-四甲基-3,5-庚二酮合基 、Mn(acac)2、Mn(acac))3 、Mn(dpm)3 Y(dpm)3 Y(tod)3(tod)3(tod =雙(2,2,6,6-四甲基 3,5-辛二酬合其 )等A -二酮合基爲配位基之金屬錯合物。 已知使用鋅錯合物製造含鋅薄膜之例如,使用 Z n ( d p m) 2以等離子C V D法製造鋅氧化膜之方法(例如參考 專利文獻22及23)、使用Zn(acac)2以熱CVD法製造鲜氧 化膜之方法(專利文獻24)。但常溫下任何一種鋅錯合物均 爲固體,且具有高熔點,故以CVD法成膜時,恐使CVD 裝置內供給原料用配管阻塞,而不適用於工業上CVD法 製膜原料。 己知使用錳錯合物製造合錳薄膜之例如,使用 Mn(acaC)3以CVD法製造錳氧化膜之方法(非專利文獻2)。 但同樣地常溫下該錳錯合物爲固體,具有高熔點之問題。 己知使用銦錯合物製造含銦薄膜之例如,使用 Y(todh以CVD法製造銦氧化膜之方法(專利文獻25)。但 同樣地常溫下該錳錯合物爲固體,具有高熔點之問題。 有關鉻化合物及鎂化合物已有不少作爲半導體、電子 零件等領域之原料用的硏究開發案。其中曾硏究將鉻化合 物使用於製造光纖雷射用玻璃或鋼板之表面上的被膜,又 ’將鎂化合物使用於等離子顯示板之介電體玻璃層上的保 護膜。製造含該金屬原子之薄膜的方法中,又以易製造均 勻薄膜之CVD法成膜最爲盛行,故需求適用之原料化合 200526802 (8) 物。 已知以CVD法製造含鉻原子或鎂原子之薄膜用的原 料如,以Cr(acac)3(acac =乙醯基丙酮合基)、Cr(dpm)3(dpm =2,2,6,6 -四甲基-3,5 -庚二酮合基)、Mg(acaC)2、 ^^(时111)2等冷-二酮合基爲配位基之金屬錯合物,或以 Cr(CO)6等羰基爲配位基之金屬錯合物,以MgCp2(Cp =環 戊二烯基)等環戊二烯基爲配位基之金屬錯合物。 已知使用鉻錯合物製造含鉻薄膜之例如,使用 Cr(dpm)3以等離子C V D法製造氧化鉻膜之方法(專利文獻 26、27),或使用Cr(CO)6以鉻被覆鋼板之方法(專利文獻 2 8)。又,已知使用鎂錯合物製造含鎂薄膜之例如,使用 Mg(acac)2、Mg(dpm)2 或 MgCp2 以熱 CVD 法或等離子 CVD 法製造鎂氧化膜之方法(專利文獻2 7、2 9)。但常溫下任何 一種金屬錯合物均爲固體,且具有高熔點,故以CVD法 成膜時恐使CVD裝置內供給原料用之配管阻塞,而不適 用於工業上CVD法製造薄膜用之原料。 另外專利文獻3 0曾記載,以具有矽烷基醚基之$ -二 酮合基爲配位基之銅錯合物。 專利文獻1 :特開平9 - 4 9 0 8 1號公報 專利文獻2 :特開2 0 0 0 - 2 1 2 7 4 4號公報 專利文獻3 :特開2 0 0 3 - 5 5 2 9 4號公報 專利文獻4 :特開2 0 0 3 - 6 4 0 1 9號公報 專利文獻5 :特開平1 1- 3 5 5 8 9號公報 專利文獻6 :特開2 0 0 2 - 1 0 5 0 9 1號公報 200526802 (9) 專利文獻7:特開2 00 3 - 5 5 3 90號公報 專利文獻8:美國專利5 7 8 9027號公報 專利文獻9:特開2003 -49269號公報 專利文獻10:特開200 1 -2003 67號公報 專利文獻1 1 :特開2002-6964 1號公報 專利文獻12:特開2002-69027號公報 專利文獻13 :特開2002-2 494 5 5號公報 專利文獻14:特開200 1 -2 1 4268 9號公報 專利文獻1 5 :特開2 0 0 3 - 3 4 8 6 8號公報 專利文獻16 :特開平9- 1 2 5 8 1號公報 專利文獻17:特開平6-23 4779號公報 專利文獻18 :特開平9-249 9 73號公報 專利文獻19:特開平7-2 5 8 8 6號公報 專利文獻20:特開平2002- 1 5 5 00 8號公報 專利文獻21 :特開平2003 -226664號公報 專利文獻2 2 :特開2 0 0 0 - 2 7 3 6 3 6號公報 專利文獻2 3 :特開2 0 0 3 - 8 9 8 7 5號公報 專利文獻24:特開2003 -3 1 846號公報 專利文獻25 :特開平9-22 8 04 9號公報 專利文獻26 :特開平6-92647號公報 專利文獻27 :特開平1 1 - 3 665號公報 專利文獻28 :特開平2-661 71號公報 專利文獻29 :特開平1 0-26995 2號公報 專利文獻30 : WO 03/064437A1報告 200526802 (10) 非專利文獻 1 : Electrochemical and Solid-State letters,5 ( 6 ) C 6 4 - C 6 6 (2 0 0 2 ) 非專利文獻 2: J.Electrochemical Society,142(9), 3137(1995) 【發明內容】 發明所欲解決之課題 本發明之目的爲,提供釕、銥、鈀、鎳、釩、鈦、鉻 、給、銘、鎵、銦、錫、鋅、錯、猛、配、鉻、鎂、銘、 鐵及銀群中所選出之金屬原子的新穎錯合物。又,係提供 低熔點且空氣中具有優良安定性及具有優良成膜特性,而 適用CVD法形成金屬薄膜或金屬氧化物薄膜等含金屬薄 膜之錯合物。 解決課題之手段 本發明者們發現,以具有砂院基醚基鍵之/3-二酮合 基爲配位基之金屬錯合物可解決上述課題,而完成本發明 〇 本發明爲下列式(1)所示金屬錯合物:200526802 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to novel metal complexes having a / 3-diketone ligand 'and chemical vapor deposition using the metal complexes Method (CVD method) A method for manufacturing a metal thin film such as a metal thin film or a metal oxide thin film. [Previous technology] A thin film of noble metals such as ruthenium or iridium belonging to the Group V111 metal or its oxide film has been reviewed as a material for forming thin-film electrodes of semiconductor memories such as DRAM and FeRAM. This is because the noble metal has excellent electrical characteristics when used as a material for electrode formation. In addition, the use of a thin film of palladium or nickel for the purpose of 'increasing the density of copper cores on copper wirings used in silicon semiconductors' has been reviewed, as well as improving the adhesion between copper wirings and their underlying layers. The manufacturing method of the metal thin film can use the PVD method and the CVD method, but with the trend of miniaturization of the device in the future, it is better to use the c V D method to form a uniform thin film. Therefore, a suitable raw material compound is required. A known CVD method for forming a thin film containing ruthenium, iridium, palladium or nickel, such as a / 3-diketone complex of each metal. However, the θ-diketone complex of ruthenium, iridium, palladium, and nickel has a high melting point. Therefore, when feeding raw materials in a CVD apparatus, the piping may be blocked, so there is a doubt as a metal raw material for the CVD method. Also, the film formation speed of the CVD method is small, which is disadvantageous for the target film production surface. Patent Document 1 has proposed a ruthenium complex or an iridium complex of 2,2,6-trimethyl-3,5-heptanedione or 2,6-monomethyl-3,5-heptanedione. This -5- 200526802 (2) complex has a lower melting point, but the melting point of any complex is higher than l 10 or higher. Therefore, it is suspected as a metal raw material for the CVD method. Patent Document 2 has proposed a ruthenium complex containing a B-diketone having a large carbon number alkyl group as a ligand. The complex is a liquid at room temperature, so it can solve the problem of piping plugs in the CVD device, but the film formation speed of the ruthenium film is the same as that of the previous three Diketo) ruthenium complex, so the productivity of ruthenium film cannot be solved industrially. Patent Documents 3 and 4 have proposed that, in order to improve the homogenization of the formed thin film, a compound of tris (2,4-octanedionate) ruthenium complex (formula 1) and tris (2,4-octane) Method for separation of cis-trans isomers of dicopper) iridium complex. Ruthenium complexes have been proposed to be different from cyclopentadienyl ruthenium complexes of stone-diketone groups. Patent Documents 5 to 7 describe bis (ethylcyclopentadienyl) ruthenium complexes which are liquid at room temperature. However, the ruthenium complex is an organic metal and is sensitive to water, so the process of synthesis and post-treatment is complicated. In addition, when starting from a commercially available trivalent ruthenium chloride as a starting material, the target bis (ethylcyclopentadienyl) ruthenium complex is a divalent compound, so a reduction reaction is required and a reducing metal Zinc, etc., there are doubts about mass production by industrial manufacturing methods. The fabrication of palladium films by CVD using palladium complexes has not been previously reviewed. Patent Document 8 describes an example of producing a palladium film using bis (2,2,7-trimethyl-3,5-octanedionate) palladium complex in supercritical ethane, but in supercritical ethane, The response is not practical. Non-patent document 1 describes that a bis (cyclopentadienyl) nickel complex -6-200526802 (3) A nickel thin film is produced by the C V D method. However, the complex is solid (melting point: 7 3) ○ Therefore, the fields of semiconductors, electronic parts, and optical materials have begun to use vanadium thin films as thin film materials. Vanadium-containing thin film manufacturing methods such as coating thermal decomposition method, PVD method, and CVD method. However, in terms of composition control and the tendency of device miniaturization in the future, it is better to use CVD method to easily produce uniform thin films. Starting compound. It is known that when a vanadium-containing thin film is produced by a CVD method, the vanadium source used is a complex of an alkoxy metal such as VO (OEth), but the complex of an alkoxy metal is easily generated in the presence of only water Decomposition and deterioration, and it is difficult to keep it. Patent Document 9 has disclosed that using V (dpm) 3 (the dpm is 2,2,6,6-tetramethyl 3,5-heptanedione) Diketone complex. Because the V (dpm) 3 complex does not contain an alkoxy metal, it is stable in the presence of water, but its melting point is too high for 15 5 t, so it may block the CVD device when supplying raw materials. It is suspected that it will be used as a raw material for the production of thin films by CVD method. Began to review the use of thin films containing oxides of metal elements such as titanium, chromium or lead belonging to Group IVA of the periodic table as semiconductors, electronic parts, and optical parts. Materials in the field, especially in recent years, have been developed to use hafnium oxide as the entrance and exit insulating film of transistors. Manufacturing methods of thin films containing this element, such as coating thermal decomposition method, PVD method, or CVD method, Correspondence of miniaturization of semiconductor devices is best known by CVD 200526802 (4) raw materials for manufacturing thin films containing group IVA metal elements by CVD method, such as T i (Ο E t) 4-like alkoxy metal, or alkoxy-containing metal described in patent documents 丨 〇 ~ 〖2 And A-diketometal complexes. The metal complexes contain metal alkoxylates, so they may decompose and deteriorate in the presence of water only, and there is a problem of water management in the solvent during storage or synthesis. In addition, among the complexes described in the above patent documents, except for some titanium complexes, almost all titanium complexes, zirconium complexes, and donor complexes are solid at room temperature. Piping may be blocked when conveying the raw material, so there is a concern as a raw material for the CVD method. Patent Document 13 has disclosed that Hf (dpm) 4 (the dpm is 2, 2, 6, 6-tetramethyl) without containing oxymetal. -3,5_heptanedionate) complex. The complex is more stable in water, etc., but the melting point is too high at 3 1 5 ° C, so there will be problems with piping blockage when supplying raw materials, and the same Questions on raw materials for the CVD method. Therefore, a review was started to include metals such as boron, aluminum, gallium, and indium belonging to the group IIIB or their chemical compounds. Material films are used as materials in the fields of semiconductors, electronic parts, and optical parts. For example, review of functional films for electronic devices such as aluminum oxide films as the entrance and exit insulation films of semiconductor memory, and indium oxide films for transparent electrode films. Manufacture methods of thin films containing this metal, such as coating thermal decomposition method, PVD method, and CVD method, but in terms of the group or controllability of the film and the tendency of future device miniaturization, the CVD method is easy to produce uniform thin films. For the production of thin film containing Group IIIB metal by CVD method, such as trialkyl aluminum, trimethyl gallium and other trialkyl metal complexes for compound semiconductor, but only exist The complex under moisture and air has undergone drastic deterioration, -8-200526802 (5), and it is pyrophoric and difficult to handle. In addition, Al (dpm) 3 (dpm is 2,2,6,6-tetramethyl 3,5-heptanone ketone) -diketonyl complex can be used as the entrance and exit insulation of semiconductor memory The film is used to form alumina thin film, but the Al (dpm) 3 complex is a solid with a melting point of 26 5 ° C. Therefore, when the raw material is supplied, the pipe may be blocked in the CVD device, which is difficult to use as a raw material for CVD film formation. In addition, Patent Document 14 and Patent Document 15 have disclosed that an aluminum complex containing an alkoxy metal in the molecule, but the alkoxy metal-containing complex in the presence of only moisture will also decompose and deteriorate, which has a storage problem. . Patent Document 16 has proposed an alkylaluminum halide, but similarly, it undergoes severe deterioration only under moisture and air, and is pyrophoric and difficult to handle. For boron, gallium, and indium in Group IIIB metals other than aluminum, under the current situation, almost no other than trialkyl metal complexes have been developed, and the / 3-diketone complexes of this metal, such as tri ( Ethyl acetone) indium complexes, indium (dpm) complexes, etc. are high melting point solids, so it is difficult to use them as raw materials for CVD film formation. In addition, we began reviewing the use of tin and miscellaneous oxide films belonging to Group IVB metals as raw materials in the fields of semiconductors and electronic parts, and the use of Group IVB metal oxides in tin oxide, tin oxide indium oxide (I TO), etc. Transparent conductive film or oxide ferroelectric film of BTS (barium, titanium, tin oxide, PZT (lead, chromium, titanium oxide), etc.) The method for manufacturing the group IVB metal-containing film is, for example, coating heat Decomposition method, PVD method, and CVD method, but in terms of composition control and the tendency of device miniaturization in the future, it is better to form a uniform thin film by CVD method. Therefore, a suitable raw material compound is required. A raw material for a thin film of a group metal element is a / 5-diketo metal complex. For example, Sn (AcAc) 2 (The AcAc 200526802 (6) is an acetamidoacetone). However, the S η is wrong. The compound is extremely sensitive to water, so there is a problem of water management during synthesis or storage (Patent Document 17). Patent Document 18 has described that the tetramethyl group having a Sn-C bond is directly bonded to the alkyl group by Sη. Base tin (Sh (CH3) 4) is used as a raw material for BTS thin films of oxide-based ferroelectrics. Although Sn (CH3) 4 can avoid the problem of decomposition of the above-mentioned 10,000-diketone complexes due to moisture, the characteristics of the BTS film obtained by using Sn (dpm) 2 are relatively poor. The reason is that Sn and Sn-C bond between alkyl groups is too strong for co-bonding, so it is more difficult to break Sn-C bond than Sn (dpm) 2 complex with Sn-0-C bond. Similarly, dibutyltin with Sn-C bond Diacetate and the tin complex of (CH3) 2Sn (dPm) 2 shown in Patent Document 19 also have the same problem. Moreover, Pd (dmp) 2 (Patent Document 20), double (1, 3-diphenyl-1,3-propionedionate) lead (Patent Document 21) and other / 3-diketo lead complexes, but these are high-melting solids, so they are formed by CVD. When filming, it is feared to block the piping supplied to the raw material system in the CVD device, which is difficult to use as a raw material for the CVD method. In recent years, there are many zinc compounds, manganese compounds, and yttrium compounds for raw materials in the fields of semiconductors and electronic parts Research and development. Among them, zinc compounds have been used in transparent conductive films and surface acoustic wave devices such as solar cells and liquid crystal display devices, and manganese compounds have been used in electrochromic devices or Using a thermistor element that has a large resistivity change and temperature decomposition energy to temperature, it also uses yttrium compounds for indium oxide-based high-temperature superconductor materials. In the method of manufacturing a thin film incorporating the metal atom, it is easy to The CVD method for producing uniform thin films has the best film formation, so a suitable raw material compound is required. It is known that the CVD method is used to produce a thin film containing zinc atoms, manganese atoms, and indium atoms. 200526802 (acac = ethenylacetone), Zn (dpm) (dpm = bis (2,2,6,6-tetramethyl-3,5-heptanedione, Mn (acac) 2, Mn ( acac)) 3, Mn (dpm) 3 Y (dpm) 3 Y (tod) 3 (tod) 3 (tod = bis (2,2,6,6-tetramethyl 3,5-octane diacetate)) Iso-dione complexes are metal complexes of ligands. For example, a method for producing a zinc-containing film using a zinc complex is known, for example, a method for producing a zinc oxide film by a plasma CVD method using Z n (dpm) 2 (for example, refer to Patent Documents 22 and 23), and a thermal CVD method using Zn (acac) 2 Method for producing fresh oxide film (Patent Document 24). However, at room temperature, any zinc complex is solid and has a high melting point. Therefore, when the film is formed by the CVD method, the pipes for supplying raw materials in the CVD device may be blocked, which is not suitable for industrial CVD film forming materials. A known method for producing a manganese film using a manganese complex is a method for producing a manganese oxide film by a CVD method using Mn (acaC) 3 (Non-Patent Document 2). However, the manganese complex is a solid at normal temperature and has a problem of high melting point. For example, it is known to use an indium complex to produce an indium-containing thin film. For example, Y (todh is a method for manufacturing an indium oxide film by a CVD method (Patent Document 25). However, the manganese complex is a solid at normal temperature and has a high melting point. There are many research and development projects concerning chromium compounds and magnesium compounds as raw materials in the fields of semiconductors and electronic parts. Among them, the use of chromium compounds on the surface of glass or steel plates for optical fiber lasers has been investigated. Also, the magnesium film is used as a protective film on the dielectric glass layer of the plasma display panel. In the method for manufacturing a thin film containing the metal atom, the CVD method which is easy to manufacture a uniform thin film is most popular, so the demand is Suitable raw material compounds are 200526802 (8). Raw materials for producing Cr or Mg-containing films by CVD are known, for example, Cr (acac) 3 (acac = acetamidoacetone), Cr (dpm) 3 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedione), Mg (acaC) 2, ^^ (Hour 111) 2 and other cold-diketone groups as coordination Metal complexes, or metal complexes using carbonyl groups such as Cr (CO) 6 as the ligand, with MgCp2 (Cp = ring Metal complexes such as pentadienyl) as ligands. It is known to use chromium complexes to produce chromium-containing thin films. For example, Cr (dpm) 3 is used to produce chromium oxide films by plasma CVD. Method (Patent Documents 26 and 27), or a method of coating a steel sheet with chromium using Cr (CO) 6 (Patent Document 28). It is also known to use Mg (acac) for the production of a magnesium-containing film using a magnesium complex. 2. Mg (dpm) 2 or MgCp2 is a method for manufacturing magnesium oxide film by thermal CVD method or plasma CVD method (Patent Documents 27, 29). However, any metal complex is solid at normal temperature and has a high melting point. Therefore, when the film is formed by the CVD method, the piping for supplying the raw materials in the CVD device may be blocked, which is not suitable for the raw materials for manufacturing thin films by the industrial CVD method. In addition, it is described in Patent Document 30 that the silane group -A copper complex of a diketone group as a ligand. Patent Document 1: Japanese Patent Application Laid-Open No. 9-4 9 0 81 Patent Literature 2: Japanese Patent Application Laid-Open No. 2000-2 1 2 7 4 Document 3: Japanese Unexamined Patent Publication No. 2 0 3-5 5 2 9 4 Patent Document 4: Japanese Unexamined Patent Publication No. 2 0 3-6 4 0 1 1 1- 3 5 5 8 9 Patent Document 6: JP 2 0 0 2-1 0 5 0 9 Patent Publication 200526802 (9) Patent Document 7: JP 2 00 3-5 5 3 90 Patent Document 8: U.S. Patent 5 7 8 9027 Patent Document 9: JP 2003-49269 Patent Document 10: JP 200 1 -2003 67 Patent Document 1 1: JP 2002-6964 Patent Document 1 12: JP 2002-69027 Patent Document 13: JP 2002-2 494 5 Patent Document 14: JP 200 1 -2 1 4268 9 Patent Document 15: JP 2 0 0 3- 3 4 8 6 8 Patent Document 16: JP 9- 1 2 5 8 1 Patent Document 17: JP 6-23 4779 Patent Document 18: JP 9-249 9 73 Patent Document 19 : Japanese Patent Application Laid-open No. 7-2 5 8 8 Patent Literature 20: Japanese Patent Application Laid-Open No. 2002- 1 5 5 00 8 Patent Literature 21: Japanese Patent Application Laid-open No. 2003-226664 Patent Literature 2 2: Japanese Patent Application Laid-Open No. 2 0 0 0- 2 7 3 6 3 Patent Document 23: JP 2 0 3-8 9 8 7 Patent Document 24: JP 2003-3 1 846 Patent Document 25: JP 9-22 8 04 Publication No. 9 Patent Document 26: JP-A-Hei 6-92647 Patent Document 27: Japanese Patent Application Laid-Open No. 1 1-3 665 Patent Literature 28: Japanese Patent Application Laid-Open No. 2-661 71 Patent Literature 29: Japanese Patent Application Laid-Open No. 1 0-26995 Japanese Patent Publication No. 30: WO 03 / 064437A1 report 200526802 (10) Non-Patent Literature 1: Electrochemical and Solid-State letters, 5 (6) C 6 4-C 6 6 (2 0 0 2) Non-Patent Literature 2: J. Electrochemical Society, 142 (9), 3137 (1995) [Summary of the Invention] Problem to be Solved by the Invention The object of the present invention is to provide ruthenium, iridium, palladium, nickel, vanadium, titanium, chromium, copper, aluminum, gallium, indium, tin, zinc, zinc, copper A novel complex of selected metal atoms in the copper, copper, chromium, magnesium, iron, iron, and silver groups. In addition, it provides a complex with a low melting point, excellent stability in the air, and excellent film-forming properties, and is suitable for forming metal-containing films such as metal thin films or metal oxide thin films by applying the CVD method. Means for Solving the Problems The present inventors have found that the above-mentioned problem can be solved by using a metal complex having a / 3-diketo group having a sulphonic ether bond as the ligand, and the present invention has been completed. The present invention is the following formula (1) The metal complex shown:

-14 - 200526802 (11) [式(1)中, X爲下列(2)所示矽烷基醚基, Y爲下列(2)所示矽烷基醚基,或碳原子數丨至8之直鏈或 支鏈狀烷基; Z爲氫原子或碳數1至4之烷基, Μ爲釕、銥、鈀、鎳、釩、鈦、锆、給、鋁、_家、銦、錫 、f □、鋅、鐘、纟乙、絡、鎂、銘、鐵及銀群中所選出之金 屬原子, η爲Μ所示金屬原子之價數(例如2、3、4),-14-200526802 (11) [In the formula (1), X is a silyl ether group shown in the following (2), Y is a silyl ether group shown in the following (2), or a straight chain having a carbon number of 丨 to 8 Or branched alkyl; Z is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and M is ruthenium, iridium, palladium, nickel, vanadium, titanium, zirconium, aluminum, aluminum, indium, tin, f □ , Zinc, bell, stilbene, complex, magnesium, Ming, iron, and silver group selected metal atom, η is the valence of the metal atom shown by M (for example 2, 3, 4),

Rb (2) -Ra-〇—Si—RcRb (2) -Ra-〇-Si-Rc

V (式(2)中,Ra爲碳原子數1至5之直鏈或支鏈狀伸烷基,Rb 、Re、Rd各自獨立爲碳原子數1至5之直鏈或支鏈狀烷基)] 又,本發明爲以具有下列式(3 )所示矽烷基醚基之;S -二酮合基爲配位基的金屬錯合物(該金屬爲釕、銥、鈀、 鎳、釩、鈦、锆、鉛、鋁、鎵、銦、錫、鉛、鋅、錳、釔 、鉻、鎂、鈷、鐵及銀群中所選出之金屬)。 - 15- (3) 200526802 (12)V (In formula (2), Ra is a linear or branched alkylene group having 1 to 5 carbon atoms, and Rb, Re, and Rd are each independently a linear or branched alkyl group having 1 to 5 carbon atoms. )] In addition, the present invention is a metal complex containing a silane alkyl group represented by the following formula (3); S-diketone as a coordination group (the metal is ruthenium, iridium, palladium, nickel, vanadium , Selected from the group consisting of titanium, zirconium, lead, aluminum, gallium, indium, tin, lead, zinc, manganese, yttrium, chromium, magnesium, cobalt, iron, and silver). -15- (3) 200526802 (12)

[式(3 )中,X爲下列(2 )所示矽烷基醚基, Y爲下列(2)所示矽烷基醚基,或碳原子數1至8之直鏈或 支鏈狀烷基, Z爲氣原子或碳原子數1至4之丨兀基’[In the formula (3), X is a silyl ether group represented by the following (2), Y is a silyl ether group represented by the following (2), or a linear or branched alkyl group having 1 to 8 carbon atoms, Z is a gas atom or a carbon atom having 1 to 4 carbon atoms.

Rb / c -Ra-0一Si一-R ( 2 )Rb / c -Ra-0-Si-R (2)

\ d R\ d R

(式(2)中,Ra爲碳原子數1至5之直鏈或支鏈狀伸烷基,Rb 、1^及Rd各自獨立爲碳原子數1至5之直鏈或支鏈狀烷基 )]。 又,Y較佳爲碳原子數1至8之直鏈或支鏈狀烷基,Z 較佳爲氫原子。Y特佳爲碳數1至4之直鏈或支鏈狀烷基’ Ra特佳爲二甲基伸甲基,Rb、Re及Rd特佳均爲碳原子數 1至3之直鏈狀烷基。 本發明又爲,將上述式(1)之金屬錯合物或以具有上 述式(3)所示矽烷基醚基之A -二酮合基作爲配位基的金屬 錯合物氣化後,將該氣化金屬錯合物熱分解而堆積於基板 -16- 200526802 (13) 上,以生成合金屬薄膜之含金屬薄膜的製造方法。 又,係存在氧下進行氣化金屬錯合物之熱分解,故可 於基板上生成金屬氧化物薄膜。 發朋之效果 比較先前對應之已知金屬錯合物,本發明之金屬錯合 物除了具有優良安定性及低熔點外,含金屬薄膜之成膜速 度較快,故工業上可有效製造各種含金屬薄膜。 實施發明之最佳形態 下面將詳細說明本發明。 本發明作爲金屬錯合物之配位基用,具有砂院基醚基 之;8 -二酮的具體例如下列化合物。(In formula (2), Ra is a linear or branched alkylene group having 1 to 5 carbon atoms, and Rb, 1 ^ and Rd are each independently a linear or branched alkyl group having 1 to 5 carbon atoms. )]. Further, Y is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and Z is preferably a hydrogen atom. Y is particularly preferably a straight or branched alkyl group having 1 to 4 carbon atoms. Ra is particularly preferably a dimethyl methyl group, and Rb, Re, and Rd are particularly preferably a linear alkyl group having 1 to 3 carbon atoms. base. In the present invention, after the metal complex of the above formula (1) or the metal complex having an A-diketone group having a silyl ether group represented by the above formula (3) as a ligand is vaporized, This vaporized metal complex is thermally decomposed and deposited on a substrate-16-200526802 (13) to produce a metal-containing thin film. Furthermore, since the thermal decomposition of the vaporized metal complex occurs in the presence of oxygen, a metal oxide thin film can be formed on the substrate. The effect of fapon is compared with the previously known metal complexes. In addition to the excellent stability and low melting point of the metal complexes of the present invention, the film-forming speed of metal-containing films is faster, so various metals can be efficiently produced industrially film. Best Mode for Carrying Out the Invention The present invention will be described in detail below. The present invention is used as a complex of a metal complex, and has a styrenic ether group; specific examples of the 8-diketone are the following compounds.

該/3 -二酮可由’存在鹼下使矽烷基化有機酸酯與酮 反應後’對生成物進行酸處理,再以蒸顧或柱色譜法等精 製法單離、精製之已知方法而得。以該万-二酮化合物爲 配位基之金屬/3 -一酮合基錯合物可由,存在鹼下使二 酮與金屬鹽反應之已知方法而得。精製反應所得之金屬錯 合物的方法可爲柱色譜法或蒸f留法。 含有具砂院基酸基之A -二酮合配位基的金屬錯合物 -17- 200526802 (14) 例如下所示。下列各式中,Μ 2 +爲二價金屬離子(例如N i2 H 、Pd2+、Sn2+、Pb2+、Zn2+、Mg2+、Co2+、Ag2 + ),M3+爲 三價金屬離子(例如 Lu3+、Ir3+、V3+、Al3+、B3+、Ga3+、 In3+、Mn3+、Y3+、Cr3+、Fe3 + ),M4+爲四價金屬離子(例 如 Hf4+、Zr4+、Ti4 + )。The / 3-diketone can be subjected to acid treatment of the resulting product 'after reacting a silylated organic acid ester with a ketone in the presence of a base', followed by isolation or purification by a known method such as distillation or column chromatography. Got. The metal / 3-monoketo complex containing the 10,000-diketone compound as a ligand can be obtained by a known method of reacting a diketone with a metal salt in the presence of a base. The method for purifying the metal complex obtained by the reaction may be a column chromatography method or a distillation method. A metal complex containing an A-diketone complex having a sulphonic acid group -17- 200526802 (14) An example is shown below. In the following formulas, M 2 + is a divalent metal ion (for example, Ni 2 H, Pd2 +, Sn2 +, Pb2 +, Zn2 +, Mg2 +, Co2 +, Ag2 +), and M3 + is a trivalent metal ion (for example, Lu3 +, Ir3 +, V3 +, Al3 + , B3 +, Ga3 +, In3 +, Mn3 +, Y3 +, Cr3 +, Fe3 +), and M4 + is a tetravalent metal ion (for example, Hf4 +, Zr4 +, Ti4 +).

CVD法中需將形成薄膜用之原料化合物氣化,但本 發明所使用之將含有具矽烷基醚基之/3 -二酮合配位基的 金屬錯合物氣化之方法可爲,將錯合物本身塡入或運送至 -18- 200526802 (15) 氣化室之方法,或利用液體運送用泵將該錯合物經適當溶 劑(例如己烷、辛烷、甲基環己烷或乙基環己烷等脂肪族 烴;甲苯等芳香族烴;四氫呋喃或二丁基醚等醚)稀釋而 得之溶液導入氣化室氣化,即溶液法。 又,可使用已知之CVD法蒸餾於基板上。即,減壓 下或存在不活性氣體下,使本發明之金屬錯合物蒸氣接觸 加熱之基板而熱分解以析出金屬薄膜之方法,或存在氫等 還原性氣體下析出金屬薄膜之方法,或氧等氧化性氣體下 析出該元素之氧化薄膜的方法,或存在氨氣等含氮鹼性氣 體下析出該元素之氮化膜的方法。又,可使用等離子 CVD法以析出合金屬薄膜的方法。 以蒸鍍法由本發明含有具矽烷基醚基之-二酮合配 位基的金屬錯合物生成合金屬薄膜時,其蒸鍍條件可如下 所示。即,反應系內壓力較佳爲IPa至200kPa,更佳爲 l〇Pa至llOkPa,基板溫度較佳爲50至700 °C,更佳爲1〇〇 至5 0 0 °C,金屬錯合物之氣化溫度較佳爲5 0至2 5 0。(:,更佳 爲 90 至 200°C。 使用氧等氧化性氣體生成金屬氧化物薄膜時,氧化性 氣體對全部氣體量之含量較佳爲10至90容量%,更佳爲20 至7 0容量%。蒸鍍金屬錯合物時使用氫等還原性氣體時, 還原性氣體對全部氣體量之含量較佳爲10至95容量%,更 佳’爲3 0至9 0容量%。蒸鍍金屬錯合物時使用氨等含氮驗 性氣體時,含氮鹼性氣體對全部氣體量之含量較佳爲1 0至 9 5容量%,更佳爲2 0至9 0容量%。 -19- 200526802 (16) 【實施方式】 [實施例1 ] 合成2,6 -一甲基_2_(三甲基矽烷氧基卜3,%庚二酮(下列 式所不之/3-一嗣’稱爲s〇ph)In the CVD method, it is necessary to vaporize a raw material compound for forming a thin film, but the method used in the present invention to vaporize a metal complex containing a / 3-diketone complex having a silane ether group may be: The complex itself is poured into or transported to -18-200526802 (15) Gasification chamber, or the complex is subjected to a suitable solvent (such as hexane, octane, methylcyclohexane or Aliphatic hydrocarbons such as ethyl cyclohexane; aromatic hydrocarbons such as toluene; ethers such as tetrahydrofuran or dibutyl ether) are introduced into the gasification chamber for gasification, that is, the solution method. The substrate can be distilled using a known CVD method. That is, a method of contacting a metal complex vapor of the present invention with a heated substrate under reduced pressure or in the presence of an inert gas to thermally decompose it to precipitate a metal thin film, or a method of depositing a metal thin film in the presence of a reducing gas such as hydrogen, or A method of depositing an oxide film of the element under an oxidizing gas such as oxygen, or a method of depositing a nitride film of the element under a nitrogen-containing alkaline gas such as ammonia. In addition, a plasma CVD method can be used to deposit a thin metal film. When a metal thin film is formed from the metal complex containing a silane alkyl-dione complex by the vapor deposition method, the vapor deposition conditions can be as follows. That is, the pressure in the reaction system is preferably IPa to 200 kPa, more preferably 10 Pa to 110 kPa, the substrate temperature is preferably 50 to 700 ° C, and more preferably 100 to 500 ° C. The metal complex The gasification temperature is preferably 50 to 25. (:, More preferably 90 to 200 ° C. When the metal oxide film is formed using an oxidizing gas such as oxygen, the content of the oxidizing gas to the total gas amount is preferably 10 to 90% by volume, and more preferably 20 to 70. Capacity%. When a reducing gas such as hydrogen is used for vapor deposition of a metal complex, the content of the reducing gas to the total gas content is preferably 10 to 95% by volume, and more preferably 30 to 90% by volume. When a nitrogen-containing test gas such as ammonia is used for the metal complex, the content of the nitrogen-containing alkaline gas to the total gas content is preferably 10 to 95% by volume, and more preferably 20 to 90% by volume. -200526802 (16) [Embodiment] [Example 1] Synthesis of 2,6-monomethyl_2_ (trimethylsilyloxybubble 3,% heptanedione (Called soph)

5 〇 〇 m 1燒瓶中,將鈉酸胺1 3 · 7 g (〇 · 3 5 1莫耳)懸浮於己 j:兀200ml中’再加入2-(三甲基矽烷氧基卜2_甲基-丙酸甲酯 26.7g(0.140莫耳)。將甲基_2_丁酮12 lg(〇 Mi莫耳)滴入 所得溶液中’保持1 5 °C下進行反應,可發現反應液產生氨 氣。1 5 C下反應1小時後,以乙酸使反應液爲弱酸性。以 水將所得己院層洗淨後,以硫酸鈉酐乾燥再蒸餾(〗〇 } /8mmHg),得目的物2,6-二甲基_2_(三甲基矽烷氧基)_3, 5-庚二酮18.8g(0.07 7莫耳,收穫率55%)。 以NMR ’ IR及MS同時分析所得化合物。 j-NMRCCDCh) : δ 0.14(s,9Η),1.14(d,6Η),i.39(s,6Η), 2.44〜2.50(m,0.85H),2.64〜2.69(m,0.15H), 3.77(s,0.3H),5.97(s.〇.85H),15.51(s,0.85H)。 IR(cm-1) : 2971,1606(br),1253,1199,1045,842 MS(m/e) : 244 -20- 200526802 (17) [實施例2] 合成三(2,6 -二甲基- 2- (三甲基矽烷氧基)-3,5 -庚二酮合 基)釕錯合物[R u ( s 〇 p d) 3 ] 1 0 0 m 1燒瓶中,將氯化釕(111) 3水合物3 · 6 3 g (1 3 · 9毫莫 耳)溶解於乙醇30ml後,室溫下加入28%鈉甲基化物/甲醇 溶液7g(36.3毫莫耳),室溫下再攪拌30分鐘。其次加入2, 6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮l〇g(4 0.9毫莫 耳),以3 0分鐘加熱至1 0 0 °C。加熱途中餾去甲醇、乙醇及 水。其後以3 0分鐘升溫至1 8 0°C,此時溶液由黑褐化變爲 紅色。接著返回室溫,加入己烷100ml後進行過濾,得紅 色溶液。以水洗淨後乾燥及濃縮,得紅色液體。以柱色譜 法(己烷/乙酸乙酯=9.5/0.5)得目的物之橙紅色液體三(2, 6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮合基)釕錯合物 2.72g(3.3毫莫耳,收穫率24%)。 對所得化合物進行IR分析、元素分析及M S分析。 IR(cm-1): 2966, 1545, 1501, 1403, 1251, 1199, 1047 ,890 , 842 兀素分析 C36H69〇9Si3Ru 測定値 C : 5 2 · 7 %,Η : 8 · 2 0 %,Ru : 1 2 % 理論値 C : 5 2.0 %,Η : 8.3 7 %,Ru : 1 2.2 % M S (m/e) 測定値:8 3 1,5 8 8,1 3 1,7 3 理論値(Exact mass) : 831.33 200526802 (18) 由I R分析得知,冷-二酮特有之1 6 0 6 -1 c m峰消失,取 而代之出現二酮合基特有之1 5 4 5 c m_ 1峰。故該釕錯合物爲 新穎物質。 [實施例3] 合成雙(2’ 6-一甲基- 2- (二甲基石夕院氧基)-3,5 -庚二酮合 基)IG 錯合物[Pd(sopd)2] 將己垸1 0 0 m 1加入3 0 0 m 1燒瓶中,使6 0 %氫化鈉 1.2g(3 0毫莫耳)懸浮後,冰冷下滴下2,6-二甲基_2_(三甲 基矽烷氧基)-3,5-庚二酮6.10g(25.0毫莫耳),可發現產生 氫。產生氫時,將乙酸鈀2.80 g( 12· 5毫莫耳)溶解於二氯甲 烷3 0 m 1而得之溶液加入該己烷溶液中,室溫下反應1小時 後加入水l〇〇ml,使有機層分液後進行水洗、乾燥及濃縮 ,得橙色液體。以柱色譜法(己烷/乙酸乙酯=9.5/0.5)得目 的物之黃色固體雙(2,6-二甲基- 2-(三甲基矽烷氧基)-3, 5-庚二酮合基)鈀錯合物5.40g(9.10毫莫耳,收穫率73%)。 對所得化合物進行IR分析、元素分析及M S分析。 兀素分析 C24H46〇6Si2Pd 測定値 c : 4 8 · 3 % ’ Η ·· 7 · 9 0 % ’ P d : 1 8 °/〇 理論値 C : 4 8 · 6 %,Η : 7 · 8 2 % ’ P d : 1 7.9 % M S (m / e)In a 500 ml flask, 3.7 g (0.351 mol) of sodium ammonium sulphate was suspended in 200 ml of hexane: and then 2- (trimethylsilyloxy-2-methyl) was added. 26.7 g (0.140 mole) of methyl-propionate. 12 lg (0 Mi mole) of methyl-2-butanone was dropped into the resulting solution, and the reaction was performed while maintaining at 15 ° C, and it was found that the reaction solution produced Ammonia gas. After reacting at 15 C for 1 hour, the reaction solution was made weakly acidic with acetic acid. After washing the obtained layer with water, it was dried over sodium sulfate and then distilled (〖〇} / 8mmHg) to obtain the target substance. 18.8 g of 2,6-dimethyl_2_ (trimethylsilyloxy) _3,5-heptanedione (0.07 7 mol, yield 55%). The obtained compound was analyzed by NMR 'IR and MS simultaneously. J -NMRCCDCh): δ 0.14 (s, 9Η), 1.14 (d, 6Η), i.39 (s, 6Η), 2.44 ~ 2.50 (m, 0.85H), 2.64 ~ 2.69 (m, 0.15H), 3.77 ( s, 0.3H), 5.97 (s.0.85H), 15.51 (s, 0.85H). IR (cm-1): 2971, 1606 (br), 1253, 1199, 1045, 842 MS (m / e): 244 -20- 200526802 (17) [Example 2] Synthesis of tris (2,6 -dimethylformate) -(2- (trimethylsilyloxy) -3,5-heptanedione) ruthenium complex [R u (s oopd) 3] 1 0 0 m 1 In a flask, ruthenium chloride ( 111) 3 · 6.3 g (1 · 3.9 mmol) of 3 hydrate was dissolved in 30 ml of ethanol, and then 7 g (36.3 mmol) of 28% sodium methylate / methanol solution was added at room temperature. Stir for 30 minutes. Next, add 10 g of 2, 6-dimethyl-2- (trimethylsilyloxy) -3,5-heptanedione (4 0.9 mmol), and heat to 100 ° C in 30 minutes. . Methanol, ethanol and water were distilled off during heating. Thereafter, the temperature was raised to 180 ° C over 30 minutes, at which time the solution changed from dark brown to red. Subsequently, the temperature was returned to room temperature, and 100 ml of hexane was added, followed by filtration to obtain a red solution. It was washed with water, dried and concentrated to obtain a red liquid. Column chromatography (hexane / ethyl acetate = 9.5 / 0.5) to obtain the target orange-red liquid tris (2, 6-dimethyl-2-((trimethylsilyloxy) -3,5-heptane) Keto) ruthenium complex 2.72 g (3.3 mmol, yield 24%). The obtained compound was subjected to IR analysis, elemental analysis, and MS analysis. IR (cm-1): 2966, 1545, 1501, 1403, 1251, 1199, 1047, 890, 842. Analysis of C36H69〇9Si3Ru by Cholesterol Determination of C: 5 2 · 7%, Η: 8 · 2 0%, Ru: 1 2% theoretical 値 C: 5 2.0%, Η: 8.3 7%, Ru: 1 2.2% MS (m / e) determination 値: 8 3 1, 5 8 8, 1 3 1, 7, 3 theoretical 値 (Exact mass ): 831.33 200526802 (18) According to IR analysis, it is known that the peak of 16 0 6 -1 cm, which is unique to cold-diketones, disappears, and a peak of 1 5 4 5 c m_1, which is unique to diketones, appears instead. Therefore, the ruthenium complex is a novel substance. [Example 3] Synthesis of bis (2 '6-monomethyl-2- (dimethyllithium oxonoxy) -3,5-heptanedione) IG complex [Pd (sopd) 2] Hexane 100 m 1 was added to a 300 m 1 flask, and 1.2 g (30 mmol) of 60% sodium hydride was suspended, and then 2,6-dimethyl_2_ (trimethyl) was dripped under ice-cooling. Methylsilyloxy) -3,5-heptanedione 6.10 g (25.0 mmol), hydrogen was found to be produced. When hydrogen was generated, a solution prepared by dissolving 2.80 g (12.5 mmol) of palladium acetate in 30 ml of methylene chloride was added to the hexane solution, and after reacting at room temperature for 1 hour, 100 ml of water was added. After the organic layer was separated, it was washed with water, dried and concentrated to obtain an orange liquid. Column chromatography (hexane / ethyl acetate = 9.5 / 0.5) to obtain the target bis (2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptanedione as a yellow solid Compound) 5.40 g (9.10 mmol, 73% yield) of palladium complex. The obtained compound was subjected to IR analysis, elemental analysis, and MS analysis. Element analysis C24H46〇6Si2Pd Determination of 値 c: 4 8 · 3% Η Η ·· 7 · 90% 'P d: 1 8 ° / 〇Theoretical 値 C: 4 8 · 6%, Η: 7 · 8 2% 'P d: 1 7.9% MS (m / e)

測定値:592 , 131 , 73 理論値(Exact mass) : 5 92.1 9 熔點·· 9 5 °C -22- 200526802 (19) 由I R分析得知’ /3 - 一酮特有之1 6 0 6 c m-1峰消失,取 而代之出現二酮合基特有之1 5 5 6 cm·1峰,故該鈀錯合物爲 新穎物質。 [實施例4] 合成雙(2,6-二甲基- 2-(三甲基矽烷氧基)_3,5-庚二酮合 基)鎳錯合物[Ni(soph)2] 100ml燒瓶中,將乙酸鎳四水合物5.〇〇g(20.0毫莫耳) 溶解於水3 5 m 1後,將2,6 -二甲基-2 -(三甲基矽烷氧基)-3 ,5-庚二酮9.90g(40.6毫莫耳)溶解於己烷40ml而得之溶液 加入該水溶液。室溫下攪拌時加入氫氧化鈉水溶液 (NaOH1.60g溶解於水10ml)後,室溫下反應1小時。其次 加入25%氨水10ml,得雙層均勻液後分液,得己烷層後以 水洗淨,再進行乾燥、濃縮,得目的物之暗綠色液體雙(2 ,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮合基)鎳錯合 物5 · 6 7 g (1 0 · 4毫莫耳,收穫率5 2 %)。 對所得化合物進行IR分析、元素分析及M S分析。 IRCcnT1) : 2963 , 1579 , 1508 , 1413 , 1252 , 1195 , 1050 ,892 , 841 元素分析 C24H46〇6Si2Ni 測定値 C : 5 2.3 %,Η : 8 · 7 1 %,N i : 1 1 % 理論値 C : 5 2 · 8 %,Η : 8 · 5 0 %,N i : 1 0.8 % MS(m/e) 測定値:5 4 5,5 4 4,1 3 1 ’ 7 3 200526802 (20) 理論値(Exact mass) : 545.48 由IR分析得知,yS -二酮特有之1 606CHT1峰消失,取 而代之出現二酮合基特有之1 5 79cm·1峰,故該鎳錯合物爲 新穎物質。 [實施例5] 蒸鍍實驗(製造釕薄膜) 使用實施例2所得之Ru(spd)3錯合物以CVD法進行蒸 鍍試驗,以評估成膜特性。又,使用比較用之三(2,4-辛 二酮合基)釕錯合物進行蒸鍍試驗。 蒸鍍試驗係使用圖1所示之裝置。以加熱器1 0B將放 入氣化器3(玻璃製衣瓶)之Ru(sopd)3錯合物20加熱氣化後 ,經由質量流調節1 A隨同以預熱器1 0 A預熱後而導入之 氨氣排出氣化器,並導入反應器4。利用真空泵前之閥6的 開關,將反應系內壓力控制於一定壓力下,利用壓力計5 監控。玻璃製反應器之中央部爲可利用加熱器1 0加熱之構 造。將導入反應器之Rii(soPd)3錯合物安置於反應器內中 央部後,以經加熱器1 0加熱至一定溫度之被蒸鍍基板2 1之 表面熱分解,而於基板2 1上分析出釕金屬。排出反應器4 之氣體爲,經由凝氣閥7及真空泵排氣至大氣中之構造。 被蒸鍍基板21爲7mmx40mm之矩形物。 蒸鍍條件及所得之膜特性如下所示。 [蒸鍍條件] 氣化溫度:1 5 (Γc -24- 200526802 (21) 基板:Si02/Si 基板溫度:3 5 0 °c 蒸鑛時間:10分鐘 反應系內壓力:532Pa He流量:15ml/分 [膜特性] (1) 以Rix(sopd)3錯合物爲原料成膜時,結果基板上確 認形成膜厚1 〇〇nm之RU膜(以XPS分析)。 (2) 既使以三(2,4-辛二酮合基)釕錯合物爲原料成膜 後,基板上幾乎未形成膜。 [實施例6] 蒸鍍實驗(製進鎳薄膜): 使用圖1所示裝置以 CVD法對實施例4所得之 Ni(sopd)2錯合物進行蒸鍍試驗。將Ni(sopd)2錯合物塡入 氣化i器3後’將隨同氦氣排出氣化器之氣體,及經質量流 調節器1 B、停止閥2導入之氫氣導入反應器4,再依下列所 示變更蒸鍍條件’其他同實施例5之方法進行蒸鍍。 蒸鍍條件及所得之膜特性如下所示。 [蒸鍍條件] 氣化溫度:2 0 (TC 基板:S i 0 2 / S i 200526802 (22)Measurement 値: 592, 131, 73 Theoretical 値 (Exact mass): 5 92.1 9 Melting point · 9 5 ° C -22- 200526802 (19) According to IR analysis, it is known that '/ 3-a ketone specific 1 6 0 6 c The m-1 peak disappeared and a peak of 1 5 5 6 cm · 1 peculiar to the diketo group appeared instead, so the palladium complex was a novel substance. [Example 4] Synthesis of bis (2,6-dimethyl-2- (trimethylsilyloxy) _3,5-heptanedione) nickel complex [Ni (soph) 2] in a 100 ml flask After dissolving 5.0 g (20.0 mmol) of nickel acetate tetrahydrate in 3 5 ml of water, 2,6-dimethyl-2-(trimethylsilyloxy) -3,5 -A solution obtained by dissolving 9.90 g (40.6 mmol) of heptanedione in 40 ml of hexane was added to the aqueous solution. An aqueous sodium hydroxide solution (1.60 g of NaOH was dissolved in 10 ml of water) was added while stirring at room temperature, and then the reaction was performed at room temperature for 1 hour. Then add 10ml of 25% ammonia water to obtain a double-layer homogeneous solution and separate the liquid. After obtaining the hexane layer, wash with water, and then dry and concentrate to obtain the dark green liquid bis (2,6-dimethyl-2) of the object. -(Trimethylsilyloxy) -3,5-heptanedione) nickel complex 5.67 g (10. 4 millimoles, yield 5 2%). The obtained compound was subjected to IR analysis, elemental analysis, and MS analysis. IRCcnT1): 2963, 1579, 1508, 1413, 1252, 1195, 1050, 892, 841 Elemental analysis C24H46〇6Si2Ni Determination of 値 C: 5 2.3%, Η: 8 · 7.1%, Ni: 1 1% Theoretical 値 C : 5 2 · 8%, Η: 8 · 50%, Ni: 1 0.8% MS (m / e) Measurement 値: 5 4 5, 5 4 4, 1 3 1 '7 3 200526802 (20) Theoretical 値(Exact mass): 545.48 According to IR analysis, the 1 606CHT1 peak, which is unique to yS-diketone, disappeared, and a peak of 1 79 cm · 1, which is unique to diketone group, was replaced. Therefore, the nickel complex is a novel substance. [Example 5] Vapor deposition experiment (manufactured ruthenium thin film) The Ru (spd) 3 complex obtained in Example 2 was used to perform a vapor deposition test by a CVD method to evaluate film formation characteristics. In addition, a vapor deposition test was performed using a comparative tertiary (2,4-octanedionate) ruthenium complex. For the vapor deposition test, the apparatus shown in FIG. 1 was used. The Ru (sopd) 3 complex 20 placed in the vaporizer 3 (glass bottle) was heated and vaporized with a heater 1 0B, and then preheated with a preheater 1 0 A through mass flow adjustment 1 A The introduced ammonia gas exits the gasifier and is introduced into the reactor 4. The valve 6 in front of the vacuum pump is used to control the pressure in the reaction system to a certain pressure, and the pressure is monitored by the pressure gauge 5. The central part of the glass reactor is a structure that can be heated by a heater 10. The Rii (soPd) 3 complex introduced into the reactor was placed in the central part of the reactor, and then the surface of the vapor-deposited substrate 21 heated by a heater 10 to a certain temperature was thermally decomposed, and was placed on the substrate 21 The ruthenium metal was analyzed. The gas exhausted from the reactor 4 has a structure that is exhausted to the atmosphere through the gas condensing valve 7 and a vacuum pump. The substrate 21 to be vapor-deposited is a rectangular object of 7 mm × 40 mm. The deposition conditions and the characteristics of the obtained film are shown below. [Evaporation conditions] Gasification temperature: 1 5 (Γc -24- 200526802 (21) Substrate: Si02 / Si Substrate temperature: 3 5 0 ° c Mining time: 10 minutes Pressure in reaction system: 532Pa He Flow rate: 15ml / [Film characteristics] (1) When a film was formed using Rix (sopd) 3 complex as a raw material, it was confirmed that a RU film having a film thickness of 1000 nm was formed on the substrate (analyzed by XPS). (2) After the (2,4-octanedionate) ruthenium complex was formed as a raw material, almost no film was formed on the substrate. [Example 6] Vapor deposition experiment (made into a nickel film): The apparatus shown in FIG. 1 was used to The CVD method was used to perform a vapor deposition test on the Ni (sopd) 2 complex obtained in Example 4. After the Ni (sopd) 2 complex was poured into the gasifier 3, the gas of the gasifier was discharged with helium, And the hydrogen introduced into the reactor 4 through the mass flow regulator 1 B and the stop valve 2, and then the evaporation conditions were changed as shown below, and other methods were performed in the same manner as in Example 5. The evaporation conditions and the obtained film characteristics were as follows. [Deposition conditions] Gasification temperature: 2 0 (TC substrate: S i 0 2 / S i 200526802 (22)

基板溫度:3 00 °C 蒸鍍時間:3 0分鐘 · 反應系內壓力:3 990Pa .Substrate temperature: 3 00 ° C Evaporation time: 30 minutes · Internal reaction pressure: 3 990Pa.

He流量:80ml /分 [膜特性] 以Ni(sopd)2錯合物爲原料成膜時,結果基板上確認 形成膜厚50nm之Ni膜(以XPS分析)。 φ 由實施例5及6之結果得知,比較先前已知之材料,具 有矽烷基醚基之本發明的Θ -二酮合基錯合物具有優良之 成膜性。 [實施例7] 合成三(2,6 -二甲基_2_(三甲基矽烷氧基)-3,5 -庚二酮合 基)鈀錯合物(VcS〇Pd)3) 將氯化鈀(III)5.20g(33.1毫莫耳)放入3 00ml燒瓶中, 溶解於乙醇50ml後,室溫下加入28%鈉甲基化物/甲醇溶 液22 g(l 14.1毫莫耳),室溫下再攪拌1 〇分鐘。其次加入2, 6 -二甲基-2-(三甲基矽烷氧基)-3,5 -庚二酮24.3g(99.4毫 莫耳),室溫下攪拌30分鐘後加入己烷50ml,再加入水 8 0ml進行分液,得褐色溶液。以水洗淨後乾燥、濃縮, 得褐色液體。以柱色譜法(己烷/乙酸乙酯=9.5/0.5)得目的 物之褐色液體三(2,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮合基)鈀錯合物10.6(13.6毫莫耳,收穫率41%)。 -26- 1048 200526802 (23) 對所得化合物進行IR分析、元素分析及MS分析 IR(cm 】):2966 , 1560 , 1506 , 1409 , 1252 , 1198 ,He flow rate: 80 ml / min [Film characteristics] When a film was formed using a Ni (sopd) 2 complex as a raw material, it was confirmed that a Ni film having a film thickness of 50 nm was formed on the substrate (analyzed by XPS). φ From the results of Examples 5 and 6, it is known that the Θ-diketone complex of the present invention having a silane-based ether group has superior film-forming properties as compared with previously known materials. [Example 7] Synthesis of tris (2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptanedione) palladium complex (VcS0Pd) 3) Chlorination 5.20 g (33.1 mmol) of palladium (III) was placed in a 300 ml flask. After dissolving in 50 ml of ethanol, 22 g (l 14.1 mmol) of 28% sodium methylate / methanol solution was added at room temperature. Stir for another 10 minutes. Next, 24.3 g (99.4 mmol) of 2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptanedione was added, and after stirring at room temperature for 30 minutes, 50 ml of hexane was added, and then 80 ml of water was added for liquid separation to obtain a brown solution. It was washed with water, dried and concentrated to obtain a brown liquid. Column chromatography (hexane / ethyl acetate = 9.5 / 0.5) to obtain the target product as a brown liquid tris (2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptanedione Compound) palladium complex 10.6 (13.6 millimoles, 41% yield). -26- 1048 200526802 (23) IR analysis, elemental analysis and MS analysis of the obtained compounds IR (cm): 2966, 1560, 1506, 1409, 1252, 1198,

,890 , 842 元素分析C36H69〇9Si3V 測定値 C : 5 5 · 0 %,Η : 8 . 8 5 %,V : 6 · 5 % 理論値 C : 5 5 · 4 %,Η : 8 · 9 0 %,V : 6 · 5 % M S ( m / e) 測定値:780, 537, 131, 73 理論値(EXact mass) : 7 8 0.3 7 由IR分析得知,石-二酮特有之峰會消 取而代之出現二酮合基特有之1 5 60CHT1峰,故該鈀錯 爲新穎物質。 [實施例8] 蒸鍍實驗(製造氧化鈀薄膜) 使用實施例7所得之鈀錯合物,以CVD法進行蒸 驗,以評估成膜特性。 評估試驗係使用圖1所示之裝置。以加熱器1 0B 入氣化器3 (玻璃製安瓿)之鈀錯合物2 0加熱氣化後, 經質量流調節器1 A以預熱器10A預熱後導入之氨氣 氣化器。將排出氣化器3之氣體同經質量流調節器1 B 止閥2導入之氧氣一起導入反應器4。利用真空唧筒前 6開關將反應系內壓力控制於一定壓力下’又,利用 計5監控。玻璃製反應器之中央部爲能以加熱器1 〇c 失, 合物 鍍試 將放 隨同 排出 及停 之閥 壓力 加熱 -27- 200526802 (24) 之構造。將導入反應器之鈀錯合物安置於反應器內中央部 後,以經加熱器10C加熱至一定溫度的蒸鍍基板21表面氧 化熱分解,而於基板2 1上析出氧化鈀膜。經由凝氣閥7及 真空泵將排出反應器4之氣體排氣至大氣中。 蒸鍍條件及蒸鍍膜之特性如下所示。被蒸鍍基板爲 7mmx40mm之矩形物。 [蒸鍍條件] 氣化溫度:1 5 0 °C 基板:Si02/Si 基板溫度:400°c 蒸鍍時間:1 5分鐘 反應系內壓力:1 3 3 0Pa 〇 2流量:1 〇 m 1 /分 He流量:15ml /分 [膜特性] 成膜操作之結果爲,基板上確認形成膜厚3 Onm之氧 化鈀膜(以XP S分析)。即,以本發明之鈀錯合物爲原料時 ,可形成均勻氧化鈀薄膜。 [實施例9] 合成四(2,6-二甲基- 2-(三甲基矽烷氧基)_3,5-庚二_合 基)給錯合物(Hf(s〇pd)4) 200526802 (25) 將給四乙氧化物(DEt)41.60g(4.46毫莫耳)及2,6-二甲 基- 2- (二甲基5夕院氧基)_3,5 -庚二酮5.50g(22.5毫莫耳)放 入50ml燒瓶中,以2小時緩緩升溫至22(rc。其間可看見 由反應系內餾去約lml乙醇。120 °C /40Pa下以約1小時進 行濃縮後,室溫下加入己烷8 0ml。過濾不溶成分後,水洗 己烷層再乾燥及濃縮,接著蒸餾,得目的物之淡黃色固體 3.0g(2.60毫莫耳,收穫率58%)。 對所得化合物進行IR分析、元素分析及M S分析。 IRCcnT1): 2967, 1586, 1540, 1509, 1440, 1252, 1199 ,1047, 892, 841 元素分析 C48H92012 Si4Hf 測定値 C : 5 0.3 %,Η : 8 . 1 0 %,H f : 1 5 . 5 % 理論値 C : 5 0.0 %,Η : 8.0 5 %,H f : 1 5 . 5 0/〇 M S (m/e) 測定値:9 9 8,9 0 9,1 3 1,7 3 理論値(Exact mass) : 1 1 52.5 1, 890, 842 Elemental analysis C36H69〇9Si3V Determination of 値 C: 55. 0%, Η: 8. 85%, V: 6.5% Theoretical 値 C: 5 5 · 4%, Η: 8 · 90% , V: 6.5% MS (m / e) Determination of 値: 780, 537, 131, 73 EXact mass: 7 8 0.3 7 According to IR analysis, the unique peak of stone-dione disappears and appears instead. The diketo group has a unique peak of 15 60CHT1, so the palladium is a novel substance. [Example 8] Vapor deposition experiment (manufacturing a palladium oxide film) The palladium complex obtained in Example 7 was used to conduct a CVD method to evaluate the film formation characteristics. The evaluation test used the apparatus shown in FIG. The heater 10B enters the palladium complex 20 of the gasifier 3 (glass ampoule). After heating and gasification, the mass gas regulator 1A is used to preheat the ammonia gasifier introduced by the preheater 10A. The gas discharged from the gasifier 3 is introduced into the reactor 4 together with the oxygen introduced through the mass flow regulator 1 B check valve 2. The pressure in the reaction system is controlled to a certain pressure by using the front 6 switch of the vacuum pump, and monitored by the meter 5. The central part of the glass reactor is a structure that can be heated by the heater 10 ℃, and the plating test will be followed by the discharge and stop valve pressure heating -27- 200526802 (24). After the palladium complex introduced into the reactor was placed in the center of the reactor, the surface of the vapor-deposited substrate 21 heated to a certain temperature by a heater 10C was thermally decomposed by oxidation, and a palladium oxide film was deposited on the substrate 21. The gas discharged from the reactor 4 is exhausted to the atmosphere through the gas condensing valve 7 and the vacuum pump. The vapor deposition conditions and the characteristics of the vapor-deposited film are shown below. The substrate to be vapor-deposited was a rectangular object of 7 mm x 40 mm. [Evaporation conditions] Gasification temperature: 150 ° C Substrate: Si02 / Si Substrate temperature: 400 ° c Evaporation time: 15 minutes Pressure in the reaction system: 1 3 3 0Pa 〇2 Flow rate: 1 〇m 1 / He flow rate: 15 ml / min [Film characteristics] As a result of the film formation operation, it was confirmed that a palladium oxide film having a film thickness of 3 Onm was formed on the substrate (analyzed by XP S). That is, when the palladium complex of the present invention is used as a raw material, a uniform palladium oxide film can be formed. [Example 9] Synthesis of tetrakis (2,6-dimethyl-2- (trimethylsilyloxy) _3,5-heptadienyl) donor complex (Hf (soopd) 4) 200526802 (25) 41.60 g (4.46 mmol) of tetraethoxylate (DEt) and 2.50 g of 2,6-dimethyl-2- (dimethyl-5-oxenyloxy) -3,5-heptanedione will be given (22.5 millimoles) was placed in a 50 ml flask, and the temperature was gradually raised to 22 (rc) in 2 hours. During this time, about 1 ml of ethanol was distilled off from the reaction system. After concentration at 120 ° C / 40 Pa for about 1 hour, 80 ml of hexane was added at room temperature. After filtering the insoluble component, the hexane layer was washed with water, dried and concentrated, followed by distillation to obtain 3.0 g (2.60 mmol, 58%) of the target substance as a pale yellow solid. IR analysis, elemental analysis and MS analysis. IRCcnT1): 2967, 1586, 1540, 1509, 1440, 1252, 1199, 1047, 892, 841 Elemental analysis C48H92012 Si4Hf Determination of 値 C: 5 0.3%,%: 8.0.1 0 %, H f: 15. 5% Theoretical 値 C: 5 0.0%, Η: 8.0 5%, H f: 15. 5 0 / 〇MS (m / e) determination 値: 9 9 8, 9 0 9 , 1 3 1, 7 3 Exact mass: 1 1 52.5 1

熔點:6 8 °C 由IR分析得知,/3-二酮特有之MOScnr1峰消失,取 而代之出現二酮合基特有之1 5 8 6CHT1峰’故該給錯合物爲 新穎物質。 [實施例10] 蒸鍍實驗(製造飴氧化薄膜) 使用實施例9所得之Hf(s〇Pd)4錯合物’以CVD法同 -29- 200526802 (26) 實施例8之方法進行蒸鑛試驗’及評估成膜特性。 蒸鍍條件及蒸鍍膜之特性如下所示。被蒸鍍基板;^ 7mmx40mm之矩形物。 [蒸鍍條件] 氣化溫度:200°C 基板:Si02/Si 基板溫度:400°C 蒸鍍時間:30分鐘 反應系內壓力:5 3 20Pa 〇2流量:40ml/分 He流量:60ml/分 [膜特性] 成膜操作之結果爲,基板上確認形成膜厚3 0 n m之氧 化給膜(以XP S分析)。即,以本發明之給錯合物爲原料日寺 ,可得均勻氧化給薄膜。 [實施例1 1] 合成三(2,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮合 基)鋁錯合物(A 1 ( s 〇 p d) 3) 將鋁三乙氧化物5.60g(34.5毫莫耳)及2,6 -二甲基- 2- ( 三甲基矽烷氧基)-3,5-庚二酮31.3g(128.1毫莫耳)放入 200ml燒瓶中,以1小時緩緩升溫至1 70 °C。其間可看到由 -30- 200526802 (27) 反應系內餾去6ml之乙醇。120°C /40Pa下以約1小時進行 濃縮後,室溫下加入己烷8 0ml。過濾不溶成分後,水洗己 烷層再乾燥及濃縮,得褐色液體。以蒸餾精製(1 90 °C /53P a),得目的物之黃色液體三(2,6-二甲基-2-(三甲基 矽烷氧基)-3,5-庚二酮合基)鋁錯合物9.25g(12.2毫莫耳, 收穫率35%)。 對所得化合物進行IR分析,元素分析及MS分析。 IR(cm-1) : 2966,1 5 8 4,1 5 43,15 11,1 452,14 18,1252 ,1200, 1048, 891, 841 兀素分析 C36H69〇9Si3Al 測定値 C : 5 7.8 %,Η : 9.2 1 %,A1 : 3.6 % 理論値 C : 5 7 . 1 %,Η : 9 · 1 9 %,A1 : 3 . 6 % M S ( m / e ) 測定値:7 5 6,6 2 5,5 1 3 理論値(Exact mass) : 756.41 由I R分析得知,/3 -二酮特有之1 6 0 6 c ηΓ】峰會消失, 取而代之出現二酮合基特有之1 5 84cm·!峰,故該鉛錯合物 爲新穎物質。 [實施例12] 口成二(2,6 -二甲基- 2- (三甲基矽烷氧基)·3,5 -庚二酮合 基)銦錯合物(I n ( s 〇 p d ) 3) 〇°C下將2,6-二甲基_2_(三甲基矽烷氧基)-3, 5·庚二 画司15.5§(63.4毫莫耳)滴入1〇〇11)1燒瓶中之28%鈉甲基化物/ -31 - 200526802 (28) 甲醇溶液1 2 g ( 6 2 · 2毫莫耳)中,再滴入氯化銦四水合物 6 · 0 4 g (2 0 · 6毫莫耳)溶解於甲醇丨5 m i而得之氯化銦溶液。〇 · °C下攪拌30分鐘後,室溫下加入己烷/水(1 : 後分 · 液’再水洗己烷層,乾燥及濃縮後得淡黃色液體。將該液 體蒸餾精製(218 °C /59 Pa),得目的物之淡黃色液體三(2, 6-二甲基- 2-(三甲基矽烷氧基)_3,5-庚二酮合基)銦錯合物 12.2g(14.4毫莫耳,收穫率70%)。 對所得化合物進行IR分析、元素分析及M S分析。 肇 IR ( c πΓ 1) : 2 9 6 6,1 5 7 0,1 5 1 0,1 4 2 7,1 2 5 2,1 1 9 8,1 0 4 7 ,890 , 841 元素分析 C36H69〇9Si3In 測定値 C : 5 1 . 8 %,Η : 8 . 1 8 %,I η : 1 3.6 % 理論値 C : 5 1 . 2 %,Η : 8 · 2 3 %,I η : 1 3.6 % MS (m/e) 測定値:846, 830, 713, 601, 131, 73 理論値(Exact mass) : 844.33 _ 由IR分析得知,二酮特有之ΙόΟόεηΓ1峰會消失, 取而代之出現二酮合基特有之1 5 70cm·1峰,故該銦錯合物 爲新穎物質。 [實施例1 3 ] . 合成三(2,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮合 . 基)鎵錯合物(Ga(sopd)3) 〇t:下將2,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二 -32- 200526802 (29) 酮14.0g(5 7.3毫莫耳)滴入1〇〇ml燒瓶中之28%鈉甲基化物/ 甲醇溶液l〇.86g(56.3毫莫耳)中,再滴入氯化鎵3.15g(17.9 . 毫莫耳)溶解甲醇15nU而得之氯化鎵溶液中。下攪拌 · 3 0分鐘後’室溫下加入己烷/水(1 : i)100ml。分液後水洗 己院層’再乾燥及濃縮,得淡黃色液體。將該液體蒸餾精 製(196°C .4 1Pa),得目的物之淡黃色液體三(2,6_二甲基_ 2 -(三甲基矽烷氧基)-3,5 -庚二酮合基)鎵錯合物 10.4@(13.0毫莫耳,收穫率73%)。 φ ^寸所得化合物進行IR分析、兀素分析及M S分析。 IR ( c πΓ 1) : 2 9 6 6,1 5 7 5,1 5 4 2,1 5 1 2,1 4 3 6,1 4 0 4,1 2 5 3 ,1199, 1047, 891, 841 兀素分析 C36H69〇9Si3Ga 測定値 C ·· 5 4 · 4 °/〇,Η ·· 8.5 8 %,G a ·· 8.7 % 理論値 C ·· 5 4.1 %,Η : 8.6 9 %,G a : 7.7 2 % M S ( m / e ) 測定値:800, 798, 669, 667, 555, 483, 131, 73 φ 理論値(Exact mass) : 798.35 由I R分析得知,/5 -二酮特有之1 6 0 6 c m _ 1峰會消失, 取而代之出現二酮合基特有之1 5 7 5 cm_1峰’故該鎵錯合物 爲新穎物質。 [實施例1 4 ] . 蒸鍍實驗(製造鋁氧化膜、銦氧化膜及鎵氧化膜): 各自使用實施例1 1所得之Al(sopd)3錯合物,實施例 -33- 200526802 (30) 12所得之In(sopd)3錯合物,實施例13所得之Ga(sopd)3錯 合物以CVD法同實施例8之方法進行蒸鍍試驗,及評估成 膜特性。 蒸鑛條件及蒸鍍膜之特性如下所示。被蒸鍍基板爲 7mmx40mm之矩形物。 [製造鋁氧化膜] [蒸鍍條件] 氣化溫度:1 8 0 °C 基板:Si02/Si 基板溫度:3 5 0 °C 蒸鍍時間:3 0分鐘 反應系內壓力:2660Pa 〇2流量:l〇ml/分 H e流量:1 5 m 1 /分 [膜特性] 成膜操作之結果爲,基板上確認形成膜厚3 〇nm之氧 化鋁膜(以XP S分析)。即,使用本發明之鋁錯合物爲原料 時,可形成均勻氧化鋁薄膜。 [製造銦氧化膜] [蒸鑛條件]Melting point: 6 8 ° C According to IR analysis, the MOScnr1 peak, which is unique to / 3-diketone, disappears, and instead, a 158 8CHT1 peak, which is unique to diketone, appears. Therefore, the complex is a novel substance. [Example 10] Evaporation experiment (manufacture of rhenium oxide film) The Hf (sopd) 4 complex obtained in Example 9 was used to perform CVD by the same method as in -29-200526802 (26) Example 8 Test 'and evaluate film formation characteristics. The vapor deposition conditions and the characteristics of the vapor-deposited film are shown below. The substrate to be vapor-deposited; ^ 7mmx40mm rectangular. [Deposition conditions] Gasification temperature: 200 ° C Substrate: Si02 / Si Substrate temperature: 400 ° C Evaporation time: 30 minutes Pressure in the reaction system: 5 3 20Pa 〇2 flow rate: 40ml / min He flow rate: 60ml / min [Film characteristics] As a result of the film formation operation, it was confirmed that an oxide film having a film thickness of 30 nm was formed on the substrate (analyzed by XP S). That is, using the complex of the present invention as a raw material, Nichiji, a uniform oxidation film can be obtained. [Example 1 1] Synthesis of tris (2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptanedione) aluminum complex (A 1 (s oopd) 3) 5.60 g (34.5 mmol) of aluminum triethoxide and 31.3 g (128.1 mmol) of 2,6-dimethyl-2- (trimethylsiloxy) -3,5-heptanedione ) Put into a 200ml flask and slowly raise the temperature to 1 70 ° C over 1 hour. In the meantime, it was seen that 6ml of ethanol was distilled off from the -30-200526802 (27) reaction system. After concentration at 120 ° C / 40Pa for about 1 hour, 80 ml of hexane was added at room temperature. After filtering the insoluble components, the hexane layer was washed with water, dried, and concentrated to obtain a brown liquid. Purified by distillation (1 90 ° C / 53P a) to obtain the target product as a yellow liquid tris (2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptanedione) Aluminum complex 9.25 g (12.2 millimoles, 35% yield). The obtained compound was subjected to IR analysis, elemental analysis, and MS analysis. IR (cm-1): 2966, 1 5 8 4, 1 5 43, 15 11, 1 452, 14 18, 1252, 1200, 1048, 891, 841. Element analysis C36H69〇9Si3Al Determination of C: 5 7.8%, Tritium: 9.2 1%, A1: 3.6% Theoretical Tritium: 57.1%, Tritium: 9 · 19%, A1: 3.6% MS (m / e) Determination Tritium: 7 5 6, 6 2 5 , 5 1 3 Theoretical mass (Exact mass): 756.41 According to IR analysis, the peak of 1 6 0 6 c ηΓ, which is unique to / 3-diketone, will disappear, and the peak of 1 5 84 cm · !, which is unique to diketone, will appear instead. Therefore, the lead complex is a novel substance. [Example 12] Di (2,6-dimethyl-2- (trimethylsilyloxy) · 3,5-heptanedione) indium complex (I n (s oopd) 3) Drop 2,6-dimethyl_2_ (trimethylsilyloxy) -3,5 · heptanes at 15.0 § (63.4 mmol) into a 1001) flask at 0 ° C. 28% of sodium methylate / -31-200526802 (28) 1 2 g (6.2 2 mmol) of methanol solution, and then drop indium chloride tetrahydrate 6 · 0 4 g (2 0 · 6 millimolar) indium chloride solution obtained by dissolving in methanol 5 mi. After stirring for 30 minutes at 0 ° C, hexane / water was added at room temperature (1: post-separation · liquid ', then the hexane layer was washed with water, dried and concentrated to obtain a pale yellow liquid. This liquid was purified by distillation (218 ° C / 59 Pa) to obtain the target product as a pale yellow liquid tris (2, 6-dimethyl-2- (trimethylsilyloxy) _3,5-heptanedione) indium complex 12.2 g (14.4 Millimolar, yield 70%). IR analysis, elemental analysis, and MS analysis of the obtained compounds. IR (c πΓ 1): 2 9 6 6, 1 5 7 0, 1 5 1 0, 1 4 2 7 , 1 2 5 2, 1 1 9 8, 10 47, 890, 841 Elemental analysis C36H69〇9Si3In Determination of 値 C: 5 1.8%, Η: 8. 18%, I η: 1 3.6% theoretical 値C: 5 1.2%, Η: 8 · 23%, I η: 1 3.6% MS (m / e) determination 値: 846, 830, 713, 601, 131, 73 Theoretical 値 (Exact mass): 844.33 _ According to IR analysis, the peak ΙόΟόεηΓ1, which is unique to diketones, will disappear, and a peak 1 5 70cm · 1, which is unique to diketones, will appear instead. Therefore, the indium complex is a novel substance. [Example 1 3]. Synthesis III ( 2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptane Hexyl) gallium complex (Ga (sopd) 3) 〇t: the following 2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptane-32- 200526802 ( 29) 14.0 g (5 7.3 mmol) of ketone was dropped into a 28% sodium methylate / methanol solution in a 100 ml flask (10.86 g (56.3 mmol)), and 3.15 g of gallium chloride was added dropwise. (17.9. Millimolar) dissolve 15nU of methanol in a gallium chloride solution. Stir down for 30 minutes. 'Add hexane / water (1: i) at room temperature to 100ml. After separation, wash the courtyard layer with water' After drying and concentrating, a light yellow liquid was obtained. The liquid was distilled and refined (196 ° C. 4 1Pa) to obtain the target product as a light yellow liquid tris (2,6_dimethyl_ 2-(trimethylsilyloxy). ) -3,5 -heptanedionyl) gallium complex 10.4 @ (13.0 mmol, 73% yield). The obtained compound was analyzed by IR analysis, element analysis and MS analysis. IR (c πΓ 1): 2 9 6 6, 1 5 7 5, 1 5 4 2, 1 5 1 2, 1 4 3 6, 1 4 0 4, 1 2 5 3, 1199, 1047, 891, 841. Analysis of C36H69. 9Si3Ga determination 値 C ·· 5 4 · 4 ° / 〇, Η ·· 8.58%, G a ·· 8.7% theoretical 値 C ·· 5 4.1%, Η: 8.6 9% G a: 7.7 2% MS (m / e) Determination of 値: 800, 798, 669, 667, 555, 483, 131, 73 φ Theoretical 値 (Exact mass): 798.35 According to IR analysis, / 5-dione The unique peak of 16 0 6 cm _ 1 will disappear, and the unique peak of 1 5 7 5 cm_1 will appear instead. Therefore, the gallium complex is a novel substance. [Example 1 4]. Evaporation experiment (manufacturing aluminum oxide film, indium oxide film, and gallium oxide film): The Al (sopd) 3 complex obtained in Example 11 was used, Example-33-200526802 (30 ) The In (sopd) 3 complex obtained in 12 and the Ga (sopd) 3 complex obtained in Example 13 were subjected to a vapor deposition test by the CVD method in the same manner as in Example 8 and the film formation characteristics were evaluated. The vapor deposition conditions and the characteristics of the vapor-deposited film are shown below. The substrate to be vapor-deposited was a rectangular object of 7 mm x 40 mm. [Production of aluminum oxide film] [Evaporation conditions] Gasification temperature: 180 ° C Substrate: Si02 / Si Substrate temperature: 350 ° C Deposition time: 30 minutes Pressure in the reaction system: 2660Pa 〇2 Flow rate: 10 ml / min He flow rate: 15 m 1 / min [film characteristics] As a result of the film formation operation, it was confirmed that an aluminum oxide film having a film thickness of 30 nm was formed on the substrate (analyzed by XP S). That is, when the aluminum complex of the present invention is used as a raw material, a uniform alumina film can be formed. [Manufacture of indium oxide film] [Steaming conditions]

氣化溫度:190°C 200526802 (31) 基板:Si02/Si 基板溫度:3 5 0 °c · 蒸鍍時間分鐘 . 反應系內壓力:2660Pa 〇 2流量:1 〇 m 1 /分 H e流量:1 5 m 1 /分 [膜特性] φ 成膜操作之結果爲,基板上確認形成膜厚40nm之氧 化銦膜(以XP S分析)。即,以本發明之銦錯合物爲原料時 ,可形成均勻氧化銦薄膜。 [製造鎵氧化膜] [蒸鍍條件] 氣化溫度:1 8 Ot 基板:Si02/Si # 基板溫度:3 5 0 °C 蒸鍍時間:30分鐘 反應系內壓力:2660Pa 〇 2流量:1 〇 m 1 /分Gasification temperature: 190 ° C 200526802 (31) Substrate: Si02 / Si Substrate temperature: 3 5 0 ° c · Evaporation time min. Pressure in the reaction system: 2660Pa 〇2 flow rate: 1 〇m 1 / minH e flow rate: 15 m 1 / min [film characteristics] φ As a result of the film formation operation, it was confirmed that an indium oxide film having a film thickness of 40 nm was formed on the substrate (analyzed by XP S). That is, when the indium complex of the present invention is used as a raw material, a uniform indium oxide thin film can be formed. [Production of gallium oxide film] [Evaporation conditions] Gasification temperature: 1 8 Ot Substrate: Si02 / Si # Substrate temperature: 3 5 0 ° C Evaporation time: 30 minutes Pressure in the reaction system: 2660Pa 〇2 Flow rate: 1 〇 m 1 / min

He流量:15ml /分 · [膜特性] 成膜操作之結果爲,基板上確認形成膜厚3 Onm之氧 -35- 200526802 (32) 化鎵膜(以X P S分析)。即,以本發明之鎵錯合物爲原料時 ,可形成均勻氧化鎵薄膜。 [實施例1 5 ] 合成雙(2,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二_合 基)錫錯合物 將A -二酮用2,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚一酮20.(^(81.8毫莫耳)放入20〇1111燒瓶中,再加入28% 鈉甲基化物/甲醇溶液1 3 g ( 6 7.4毫莫耳)。 室溫下攪拌30分鐘後,室溫下滴入SnCl2 6.3 0g(33.2 毫旲耳)/乙醇(3 0 m 1)溶液。滴液時會產生白色沈源,將該 懸浮溶液濃縮後加入己烷50m卜再過除固體。水洗所得之 己院層’再乾燥及濃縮,得黃色液體。蒸餾精製(1 44 °C /15Pa)後,得目的物之黃色液體雙(2,6_二甲基(三甲 基砍院氧基)-3,5-庚二酮合基)錫錯合物6.3g(10.4毫莫耳 ,收穫率3 1 %)。 對所得化合物進行IR分析、元素分析及M S分析。 I R (c πΓ 1 ) : 2 9 6 6,1 5 7 0,1 5 0 7,1 4 0 4,1 3 7 0,1 2 5 2,1 1 9 7 ,1047 , 889 , 841 元素分析 C24H4606 Si2Sn 測定値 C : 4 7.2 %,Η : 7.8 8 %,S η : 1 9 % 理論値 C : 4 7 · 6 %,Η : 7.6 6 %,S η : 1 9.6 % M S (m / e ) 測定値:6 0 6,3 6 3 200526802 (33) 理論値(Exact mass) : 606.19 由IR分析得知,冷-二酮特有之1 606CHT1峰會消失, , 取而代之出現二酮合基特有之1 5 70cm-1峰,故該錫錯合物 · 爲新穎物質。 [實施例16] 蒸鍍實驗(製造錫氧化膜): 使用實施例17所得之Sn(sopd)2錯合物,以CVD法同 · 實施例8之方法進行蒸鍍試驗’及評估成膜特性。 蒸鍍條件及蒸鍍膜之特性如下所示。被蒸鍍基板爲 70mmx40mm之矩形物。 [製造錫氧化膜] [蒸鍍條件]He flow rate: 15ml / min · [Film characteristics] As a result of film formation operation, it was confirmed that an oxygen film having a thickness of 3 Onm was formed on the substrate -35- 200526802 (32) Gallium film (analyzed by XPS). That is, when the gallium complex of the present invention is used as a raw material, a uniform gallium oxide thin film can be formed. [Example 1 5] Synthesis of bis (2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptadienyl) tin complex using A-diketone 2, 6-Dimethyl-2- (trimethylsiloxy) -3,5-heptanone 20. (^ (81.8 mmol)) was placed in a 201111 flask, and 28% sodium methylate was added. / Methanol solution 1 3 g (6 7.4 mmol). After stirring at room temperature for 30 minutes, SnCl 2 6.3 0 g (33.2 mmol) / ethanol (30 m 1) solution was added dropwise at room temperature. A white sink source was generated. The suspension solution was concentrated, and then 50 m of hexane was added to remove solids. The washed layer was washed and dried to obtain a yellow liquid. After distillation (1 44 ° C / 15Pa), Yellow liquid bis (2,6_dimethyl (trimethylpyridyloxy) -3,5-heptanedione) tin complex 6.3 g (10.4 mmol, yield 3 1 %). The obtained compound was subjected to IR analysis, elemental analysis, and MS analysis. IR (c πΓ 1): 2 9 6 6, 1 5 7 0, 1 5 0 7, 1 4 0 4, 1 3 7 0, 1 2 5 2, 1 1 9 7, 1047, 889, 841 Elemental analysis C24H4606 Si2Sn Determination of 値 C: 4 7.2%, Η: 7.8 8%, S η : 19% theoretical 値 C: 47.6%, Η: 7.66%, S η: 19.6% MS (m / e) determination 値: 6 0 6, 3 6 3 200526802 (33) theoretical 値 (Exact mass): 606.19 According to IR analysis, the peak 1 606CHT1, which is unique to cold-diketones, will disappear, and a peak 1, 15 70cm-1, which is unique to diketones, will appear, so the tin complex is a novel substance. Example 16] Vapor deposition experiment (manufacturing of tin oxide film): Using the Sn (sopd) 2 complex obtained in Example 17, a CVD method was used in the same manner as in Example 8 to perform a vapor deposition test and evaluate the film formation characteristics. The plating conditions and the characteristics of the vapor-deposited film are shown below. The substrate to be vapor-deposited is a rectangular object of 70 mm x 40 mm. [Production of tin oxide film] [Evaporation conditions]

氣化溫度:1 9 0 °C 基板:Si02/Si # 基板溫度·· 400°C 蒸鍍時間:3 0分鐘 反應系內壓力:5 3 2 0Pa 〇 2流量:4 0 m 1 /分 H e流量:6 0 m 1 /分 , [膜特性] 成膜操作之結果爲’基板上確認形成膜厚5 Onm之氧 -37- 200526802 (34) 化錫膜(以XPs分析)。即,以本發明之錫錯合物爲原料時 ’可形成均勻氧化錫薄膜。 [實施例17] 合成雙(2,6 -一甲基-2-二甲基砂院氧基)_3,5 -庚二酮合 基)鋅(II)(Zn(sopd)2) 將2 8 %鈉甲氧化物之甲醇溶液1 7 · 6 g (9 1 . 0毫莫耳)加入 備有擾样裝置’溫度計及滴液漏斗之內容積2 0 0 m 1燒瓶中 ,保持4 °C液溫下緩緩滴入2,6 -二甲基_ 2 -三甲基矽烷氧 基-3,5_庚二酮23.1g(94.4毫莫耳),同溫下再攪拌3〇分鐘 。其次滴入氯化鋅(Π)6.08g(44· 6毫莫耳)溶解於乙醇120ml 而得之溶液,攪拌下以室溫反應1小時。結束反應後,將 己院1 0 0 m 1及水1 0 0 m 1加入反應液中,使有機層分液。以 水洗淨有機層後,以硫酸鈉酐乾燥,過濾後濃縮濾液,再 減壓蒸餾濃縮物(154 t,24P a),得淡黃色液體雙(2,6-二 甲基-2-甲基矽烷氧基-3,5-庚二酮合基)鋅(11)19.7§(單離 收穫率8 0 %)。 雙(2,6-二甲基-2-三甲基矽烷氧基_3,5_庚二酮合基 )鋅(II)爲,具有下列物性値之新穎化合物。 I R (n e a t (c irT 1) : 2 9 6 6,1 5 66,1 5 09,1410,1 2 5 2, 1198 (/3 -二酮特有之峰( 1 606CHT1)會消失,會出現/3 _二酮 合基特有之峰( 1 5 66CHT1)) 元素分析(C24H46〇6Si2Zn):碳:52.9%、氫:8.33%、 200526802 (35) 鋅:1 1 . 3 % (理論値:碳:5 2 · 2 %、氫:8.4 0 %、鋅:1 1 . 8 % ) MS(m/e) : 5.50,5 3 5,419,307 [實施例1 8 ] 合成三(2,6 -二甲基- 2- (三甲基砂院氧基)_3,5 -庚二酮合 基)錳(III)(Mn(sopd)3) 將2 8 %鈉甲氧化物之甲醇溶液1 2.5 g ( 6 4.9毫莫耳)加入 備有攪拌裝置,溫度計及滴液漏斗之內容積200ml燒瓶中 ,保持4 °C液溫下緩緩滴入2,6 -二甲基-2 -三甲基矽烷氧 基-3,5-庚二酮17.0g(69.6毫莫耳)後,同溫下再攪拌30分 鐘。其次滴入氯化錳(Π )四水合物6 · 0 6 g ( 3 0.6毫莫耳)溶解 於乙醇120ml而得之溶液,攪拌下以室溫反應1小時。結 束反應後加入己烷1 〇 〇 m 1及水1 0 〇 m 1,使有機層分液。以 水洗淨有機層後,以硫酸鈉酐乾燥。過濾後濃縮濾液,再 減壓蒸餾濃縮物(176t,44Pa),得黑褐色液體三(2,6-二 甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮合基)錳(III)2.73g( 單離收穫率:1 1%)。 三(2,6-二甲基- 2-(三甲基矽烷氧基)-3,5-庚二酮合 基)錳(III)爲,具有下列物性値之新穎化合物。 IR(neat(cm'1) : 2 9 6 7,1 5 6 5,1 4 9 9,14 14,1 2 5 2, 1197, 1046 , 889 , 841 (々-二酮特有之峰( 1 606 cnT1)會消失,會出現/3 -二酮 合基特有之峰( 1 5 6 5 CHT1)) 元素分析(C36H 69 09 Si3Mn):碳:55.6%、氫:7.78% 200526802 (36) 、猛· 7 · 〇 % (理 δ侖値.5灰· 5 5 · 1 %、氫:7 · 8 6 %、锰:7 · 0 % MS(m/e) : 784,541 [實施例1 9 ] 合成三(2,6 -二甲基-2-三甲基矽烷氧基_3,5_庚二酮合基 )釔(III)(Y(sopd)3) 將2 8 %鈉甲氧化物之甲醇溶液1 6 . 〇 g ( 8 3.0毫莫耳)加入 備有攪拌裝置,溫度計及滴液漏斗之內容積2 0 0 m 1燒瓶中 ,保持4 °C液溢下緩緩滴入2,6 -二甲基-2 -三甲基5夕院氧 基-3,5 -庚二酮22.0g(90.0毫莫耳)後,同溫下再攪拌3〇分 鐘。其次滴入氯化纟乙(111)六水合物8 · 1 1 g (2 6 · 7毫莫耳)溶角军 於乙醇160ml而得之溶液,攪拌下以室溫反應1小時。結 束反應後加入己烷1 〇 〇 m 1及水1 0 0 m 1,使有機層分液。以 水洗淨有機層後,以硫酸鈉酐乾燥,過濾後濃縮濾液,再 減壓蒸餾(210 °C,73 Pa)濃縮物,得黏性黃色液體之三(2 ,6-二甲基-2 -三甲基砂院氧基-3,5 -庚二酮合基)金乙 (III)12.0g(單離收穫率 55%)。 三(2,6-二甲基·2-三甲基矽烷氧基-3,5-庚二酮合基 )釔(III)爲,具有下列物性値之新穎化合物。 IR(neat(cm'1) : 2965,1 5 8 5,1 5 04,1412,125 1,1196, 1048 , 841 (冷·二酮特有之峰(ΙόΟόοηΓ1)會消失,會出現/3 -二酮 合基特有之峰( 1 5 8 5 0:1^1)) 元素分析(C36H69〇9Si3Y):碳:52.3%、氫:8.66%、 200526802 (37) 釔:10.6%(理論値:碳:52.8%、氫:8.49%、釔:1〇9% MS(m/e) : 8 1 8,77 5,6 8 7,5 99,5 1 1,3 97 ‘ [實施例20] (蒸鍍實驗:製造氧化金屬薄膜) 各自使用實施例17至19所得之金屬錯合物(鋅錯合物 (Zn(sopd)2)、錳錯合物(Mn(sopd)3)及釔錯合物(Y(s〇pd)3)) ,以CVD法同實施例8所記載之方法進行蒸鍍試驗,及評 φ 估成膜特性。 蒸鍍條件及蒸鍍膜之特性如下所示。被蒸鍍基板爲 7mmx40mm之矩形物。 [製造鋅氧化膜] [蒸鍍條件]Gasification temperature: 190 ° C Substrate: Si02 / Si # Substrate temperature · 400 ° C Evaporation time: 30 minutes Pressure in the reaction system: 5 3 2 0Pa 〇2 Flow rate: 4 0 m 1 / min H e Flow rate: 60 m 1 / min, [film characteristics] The result of the film formation operation was' on the substrate, it was confirmed that the film thickness was 5 Onm of oxygen-37- 200526802 (34) tin film (analyzed by XPs). That is, when the tin complex of the present invention is used as a raw material, a uniform tin oxide film can be formed. [EXAMPLE 17] Synthesis of bis (2,6-monomethyl-2-dimethylsandoloxy) _3,5-heptanedionyl) zinc (II) (Zn (sopd) 2) 2 8 % Sodium methoxide in methanol solution 17 · 6 g (9 1.0 mmol) was added to the internal volume of the thermometer and dropping funnel equipped with a sample disturbing device 2 0 0 m 1 in a flask, kept at 4 ° C 23.1 g (94.4 mmol) of 2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione was slowly added dropwise at a temperature, and the mixture was stirred for another 30 minutes at the same temperature. Next, a solution prepared by dissolving 6.08 g (44.6 mmol) of zinc chloride (Π) in 120 ml of ethanol was added dropwise, and the mixture was reacted at room temperature for 1 hour under stirring. After the reaction was completed, 100 m 1 of the own courtyard and 100 m of water were added to the reaction solution to separate the organic layer. The organic layer was washed with water, dried over sodium sulfate, filtered, and the filtrate was concentrated. The concentrate (154 t, 24P a) was distilled under reduced pressure to obtain a pale yellow liquid bis (2,6-dimethyl-2-methyl). Silyloxy-3,5-heptanedione) zinc (11) 19.7§ (isolated yield 80%). Bis (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione) zinc (II) is a novel compound having the following physical properties. IR (neat (c irT 1): 2 9 6 6, 1 5 66, 1 5 09, 1410, 1 2 5 2, 1198 (/ 3 -dione-specific peak (1 606CHT1) will disappear and / 3 will appear _Diketone-specific peak (1 5 66CHT1)) Elemental analysis (C24H46〇6Si2Zn): Carbon: 52.9%, Hydrogen: 8.33%, 200526802 (35) Zinc: 1 1.3% (Theoretical 値: Carbon: 5 2.2%, hydrogen: 8.40%, zinc: 11.8%) MS (m / e): 5.50, 5 3 5, 419, 307 [Example 1 8] Synthesis of tris (2,6 -dimethylformate -2-(trimethyl sulphonyloxy) _3,5-heptanedionyl) manganese (III) (Mn (sopd) 3) A 28% solution of sodium methoxide in methanol 1 2.5 g (6 4.9 millimoles) Add a 200ml flask equipped with a stirring device, a thermometer and a dropping funnel, and slowly drip into 2,6-dimethyl-2-trimethylsilyloxy while maintaining the liquid temperature at 4 ° C. -3,5-heptanedione 17.0 g (69.6 millimoles), and then stirred at the same temperature for another 30 minutes. Manganese chloride (Π) tetrahydrate 6.0 · 6 g (3 0.6 millimoles) was added dropwise. The solution obtained by dissolving in 120 ml of ethanol was reacted with stirring at room temperature for 1 hour. After the reaction was completed, hexane 100 m 1 and water 100 m 1 were added to The organic layer was separated. The organic layer was washed with water and dried over sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate (176t, 44Pa) was distilled under reduced pressure to obtain a dark brown liquid tris (2,6-dimethyl- 2- (trimethylsilyloxy) -3,5-heptanedione manganese (III) 2.73 g (isolated yield: 11%). Tris (2,6-dimethyl-2- 2- (Trimethylsilyloxy) -3,5-heptanedione manganese (III) is a novel compound having the following physical properties: IR (neat (cm'1): 2 9 6 7, 1 5 6 5, 1 4 9 9, 14 14, 1 2 5 2, 1197, 1046, 889, 841 (fluorene-dione-specific peak (1 606 cnT1) will disappear, and a / 3-diketopy-specific peak will appear (1 5 6 5 CHT1)) Elemental analysis (C36H 69 09 Si3Mn): Carbon: 55.6%, Hydrogen: 7.78% 200526802 (36), Meng · 7 · 〇% (Li δ 値 値. 5 ash · 5 5 · 1 %, Hydrogen: 7.86%, manganese: 7.0% MS (m / e): 784,541 [Example 19] Synthesis of tris (2,6-dimethyl-2-trimethylsilyloxy) 3,5_heptanedionyl) yttrium (III) (Y (sopd) 3) Add 26.0% (8 3.0 mmol) of 28% sodium methoxide in methanol solution with stirring Device The internal volume of the thermometer and the dropping funnel were 2,000 m 1 in a flask, and the solution was slowly dripped into the 2,6-dimethyl-2 -trimethyl-5Xinoxyloxy-3,5-while maintaining 4 ° C. After 22.0 g (90.0 mmol) of heptanedione, it was stirred for another 30 minutes at the same temperature. Next, 8.11 g (26. 7 mmol) of terbium chloride (111) hexahydrate was added dropwise to a solution of 160 ml of ethanol, and the reaction was carried out at room temperature with stirring for 1 hour. After the reaction was completed, hexane 100 m 1 and water 100 m 1 were added to separate the organic layer. After the organic layer was washed with water, dried over sodium sulfate, filtered, and the filtrate was concentrated, and the concentrate was distilled under reduced pressure (210 ° C, 73 Pa) to obtain a viscous yellow liquid (2,6-dimethyl- 1-g of 2-trimethylsuccinyloxy-3,5-heptanedione) gold ethyl (III) (55% yield). Tris (2,6-dimethyl · 2-trimethylsilyloxy-3,5-heptanedione) yttrium (III) is a novel compound having the following physical properties. IR (neat (cm'1): 2965, 1 5 8 5, 1 5 04, 1412, 125 1, 1196, 1048, 841 (The peak unique to cold dione (ΙόΟόοηΓ1) will disappear, and / 3-2 will appear Keto-specific peak (1 5 8 5 0: 1 ^ 1)) Elemental analysis (C36H69〇9Si3Y): Carbon: 52.3%, Hydrogen: 8.66%, 200526802 (37) Yttrium: 10.6% (Theoretical 値: Carbon: 52.8%, hydrogen: 8.49%, yttrium: 109% MS (m / e): 8 1 8, 77 5, 6 8 7, 5 99, 5 1 1, 3 97 '[Example 20] (Evaporation Experiment: Production of oxidized metal thin films) The metal complexes (zinc complexes (Zn (sopd) 2), manganese complexes (Mn (sopd) 3)) and yttrium complexes obtained in Examples 17 to 19 were used respectively. Y (soopd) 3)), the CVD method was used to perform the vapor deposition test in the same manner as described in Example 8, and the film formation characteristics were evaluated by φ. The vapor deposition conditions and the characteristics of the vapor deposition film are shown below. The substrate to be vapor-deposited It is a rectangular object of 7mmx40mm. [Production of zinc oxide film] [Deposition conditions]

氣化溫度:1 7 (TC 基板:Si02/Si Φ 基板溫度:4 0 0 t: 蒸鍍時間:30分鐘 反應系內壓力:5 3 20Pa 〇2流量:40ml /分Gasification temperature: 17 (TC substrate: Si02 / Si Φ substrate temperature: 4 0 0 t: evaporation time: 30 minutes pressure in the reaction system: 5 3 20Pa 〇2 flow rate: 40ml / min

He流量:60ml /分 , [膜特性] 成膜操作之結果爲,基板上確認形成膜厚70 nm之氧 -41 - 200526802 (38) 化鋅膜(以XP s分析)。即,以本發明之鋅錯合物爲原料時 ,可形成均勻氧化鋅薄膜。 [製造錳氧化膜] [蒸鑛條件] 氣化溫度:190°C 基板:S i Ο 2 / S i 基板溫度:400°C 蒸鍍時間:30分鐘 反應系內壓力:5320Pa 〇2流量:40ml/分 He流量:60ml /分 [膜特性] 成膜操作之結果爲,基板上確認形成膜厚5 Onm &氧 化錳膜(以XP S分析)。即,以本發明之錳錯合物爲原料時 ,可形成均勻氧化鑑薄膜。 [製造釔氧化膜] [蒸鍍條件] 氣化溫度:2 0 0 °C 基板:S i 0 2 / s i 基板溫度:4 0 0。(: -42- 200526802 (39) 蒸鍍時間:3 0分鐘 反應系內壓力:5 3 20Pa 〇2流量:40ml/分 He流量:60ml /分 [膜特性] 成膜操作之結果爲,基板上確認形成膜厚40nm之氧 化釔膜(以XPS分析)。即,以本發明之釔錯合物爲原料時 ,可形成均勻氧化釔薄膜。 [實施例21] 合成三(2,6-二甲基_2_三甲基矽烷氧基-3,5_庚二酮合基 )鉻(III)(Cr(S〇pd)3) 將28%鈉甲氧化物之甲醇溶液1 1.3 g( 5 8.4毫莫耳)加入 備有攪拌裝置,溫度計及滴液漏斗之內容積200ml燒瓶中 ,保持2°C液溫下緩緩滴入2,6-二甲基-2-三甲基矽烷氧 基-3,5-庚二酮14.7g(60.2毫莫耳)後,同溫下攪拌30分鐘 。其次滴入氯化鉻(III)六水合物 5.10g(19.2毫莫耳)溶解 於甲醇20ml而得之溶液,攪拌下以室溫反應1小時。結束 反應後濃縮餾去甲醇,再將己烷l〇〇ml及水100ml加入濃 縮液中,使有機層分液。以水洗淨有機層後,以硫酸鈉酐 乾燥,過濾後濃縮濾液,再減壓蒸餾(190°C,51Pa),得 紫色液體三(2,6-二甲基-2-三甲基矽烷氧基-3,5-庚二酮 合基)鉻(111)2. Olg(單離收穫率13%)。 -43- 200526802 (40) 三(2,6-二甲基-2-三甲基矽烷氧基-3,5-庚二酮合基 )錳(III)爲,具有下列物性値之新穎化合物。 IR(neat(cm_I) · 2966,1 5 67,1 5 0 5,1413,1 2 5 2 5 1 1 9 8, 1047, 841 (石-二酮特有之峰( 1 606CHT1)會消失,/3-二酮合基特 有之峰( 1 5 6 701^1)會出現) 元素分析(C36H69〇9Si3Cr):碳:55.8°/。、氫:8.81%、 鉻:6.7%(理論値:碳:55.3%、氫:8.89%、錳:6.65%) MS(m/e) : 781,5 3 8,279,205,131,73 [實施例22] 合成三(2,6-二甲基-2-三甲基矽烷氧基-3,5-庚二酮合基 )鎂(III)(Mg(s〇Pd)3) 將氫氧化鎂2.00g(34.3毫莫耳)及1,2·二甲氧基乙烷 40ml加入備有攪拌裝置,溫度計及滴液漏斗之內容積 200ml燒瓶中,再緩緩滴入2,6-二甲基-2-三甲基矽烷氧 基-3,5-庚二酮17.3g(70.8毫莫耳),攪拌下以室溫反應30 分鐘。結束反應後濃縮去除1,2 -二甲氧基乙烷,再將二 氯甲烷80ml加入濃縮液。以水洗淨濃縮液後,以硫酸鈉 酐乾燥,過濾後濃縮濾液,再減壓蒸餾(22 0 °C、2 9P a)濃 縮物,得黏性黃色液體之雙(2,6 -二甲基-2 -三甲基矽烷氧 基-3,5-庚二酮合基)鎂(11)9.01§(單離收穫率51%)。 雙(2,6-二甲基-2-三甲基矽烷氧基-3,5-庚二酮合基 )鎂(11)爲,具有下列物性値之新穎化合物。 -44- 200526802 (41) IR(neat(cm_1): 2964 , 1588 , 1506 , 1435 , 1251 ’ 1195 , 1049 , 891 , 841 (yS-二酮特有之峰(ΙόΟόοπΓ1)會消失,yS-二酮合基特 有之峰( 1 5 8 8 5 CITT1)會出現) 元素分析(C24H4606 SiMg):碳:56.8%、氫:9.13%、 鎂:4.8%(理論値:碳:5 6.4 8 %、氫:9.07%、鎂:4.76% MS(m/e) ·· 510,495,3 79,251,131,73 [實施例23] (蒸鍍實驗:製造氧化金屬薄膜) 各自使用貫施例2 1及2 2所得之金屬錯合物(鉻錯合物 (Cr(sopd)3)及鎂錯合物(Mg(sopd)2),以CVD法同實施例8 之方法進行蒸鍍試驗,及評估成膜特性。 蒸鍍條件及蒸鍍膜之特性如下所示。被蒸鍍基板爲 7mmx40mm之矩形物。 [製造鉻氧化膜] [蒸鍍條件] 氣化溫度:19(TC 基板:Si02/Si 基板溫度:350°C 蒸鍍時間:3 0分鐘 反應系內壓力:3990Pa 〇2流量:10ml/分 -45- 200526802 (42)He flow rate: 60ml / min, [film characteristics] As a result of the film formation operation, it was confirmed that an oxygen film with a film thickness of 70 nm was formed on the substrate -41-200526802 (38) Zinc film (analyzed by XP s). That is, when the zinc complex of the present invention is used as a raw material, a uniform zinc oxide thin film can be formed. [Manufacturing of manganese oxide film] [Steaming conditions] Gasification temperature: 190 ° C Substrate: S i 〇 2 / S i Substrate temperature: 400 ° C Evaporation time: 30 minutes Pressure in reaction system: 5320Pa 〇2 Flow rate: 40ml He flow rate: 60 ml / min [Film characteristics] As a result of the film formation operation, it was confirmed that a 5 Onm & manganese oxide film was formed on the substrate (analyzed by XP S). That is, when the manganese complex of the present invention is used as a raw material, a uniform oxide film can be formed. [Production of yttrium oxide film] [Evaporation conditions] Gasification temperature: 200 ° C Substrate: S i 0 2 / s i Substrate temperature: 4 0 0. (: -42- 200526802 (39) Evaporation time: 30 minutes Pressure in the reaction system: 5 3 20Pa 〇2 flow rate: 40ml / min He flow rate: 60ml / min [film characteristics] As a result of the film formation operation, It was confirmed that an yttrium oxide film having a film thickness of 40 nm was formed (analyzed by XPS). That is, when the yttrium complex of the present invention was used as a raw material, a uniform yttrium oxide film was formed. [Example 21] Synthesis of tris (2,6-dimethyl _2_trimethylsilyloxy-3,5-heptanedione) chromium (III) (Cr (Sopd) 3) 28% sodium methoxide in methanol 11.3 g (5 8.4 Millimoles) was added to a 200ml flask equipped with a stirring device, a thermometer and a dropping funnel, and 2,6-dimethyl-2-trimethylsilyloxy was slowly dropped into the flask while maintaining a liquid temperature of 2 ° C. After 14.7 g (60.2 mmol) of 3,5-heptanedione, stir at the same temperature for 30 minutes. Next, 5.10 g (19.2 mmol) of chromium (III) chloride hexahydrate was added dropwise to dissolve in 20 ml of methanol. The solution was stirred at room temperature for 1 hour under stirring. After the reaction was completed, methanol was concentrated and distilled off, and then 100 ml of hexane and 100 ml of water were added to the concentrate to separate the organic layer. After washing the organic layer with water, Sodium sulfate After drying, filtering and concentrating the filtrate, and distilling under reduced pressure (190 ° C, 51Pa), a purple liquid tris (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione) was obtained. ) Chromium (111) 2. Olg (13% yield) -43- 200526802 (40) Tris (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione Alkyl) manganese (III) is a novel compound with the following physical properties: IR (neat (cm_I) · 2966, 1 5 67, 1 5 0 5, 1413, 1 2 5 2 5 1 1 9 8, 1047, 841 (The peak unique to stone-diketone (1 606CHT1) will disappear, and the peak unique to / 3-diketo group (1 6 6 701 ^ 1) will appear) Elemental analysis (C36H69〇9Si3Cr): Carbon: 55.8 ° /. , Hydrogen: 8.81%, Chromium: 6.7% (Theoretical 値: Carbon: 55.3%, Hydrogen: 8.89%, Manganese: 6.65%) MS (m / e): 781, 5 3 8, 279, 205, 131, 73 [ Example 22 Synthesis of tris (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione) magnesium (III) (Mg (s0Pd) 3) Hydroxide 2.00g of magnesium (34.3 mmol) and 40ml of 1,2 · dimethoxyethane are added to a 200ml flask equipped with a stirring device, a thermometer and a dropping funnel, and then slowly dripped into 2,6-dimethylformamide 17.3 g (70.8 millimoles) of methyl-2-trimethylsilyloxy-3,5-heptanedione were reacted at room temperature with stirring for 30 minutes. After the reaction was completed, 1,2-dimethoxyethane was concentrated and removed, and 80 ml of dichloromethane was added to the concentrate. The concentrated solution was washed with water, dried over sodium sulfate, filtered, and the filtrate was concentrated, followed by distillation under reduced pressure (22 0 ° C, 2 9P a) to obtain a viscous yellow liquid bis (2,6 -dimethylformate). -2 -trimethylsilyloxy-3,5-heptanedione) magnesium (11) 9.01§ (51% yield). Bis (2,6-dimethyl-2-trimethylsilyloxy-3,5-heptanedione) magnesium (11) is a novel compound having the following physical properties. -44- 200526802 (41) IR (neat (cm_1): 2964, 1588, 1506, 1435, 1251 '1195, 1049, 891, 841 (yS-diketone-specific peak (ΙόόοπΓ1) will disappear, yS-diketone Gite-specific peak (1 5 8 8 5 CITT1) will appear) Elemental analysis (C24H4606 SiMg): Carbon: 56.8%, Hydrogen: 9.13%, Magnesium: 4.8% (Theoretical 値: Carbon: 5 6.4 8%, Hydrogen: 9.07 %, Magnesium: 4.76% MS (m / e) ··· 510, 495, 3 79, 251, 131, 73 [Example 23] (Evaporation Test: Production of Oxide Metal Film) Example 2 1 and 2 were used in each case The obtained metal complex (chromium complex (Cr (sopd) 3) and magnesium complex (Mg (sopd) 2)) were subjected to a vapor deposition test by the same method as in Example 8 by CVD method, and the film formation was evaluated. Characteristics. The vapor deposition conditions and the characteristics of the vapor-deposited film are as follows. The substrate to be vapor-deposited is a rectangular object of 7mmx40mm. [Manufacture of chromium oxide film] [Evaporation conditions] Gasification temperature: 19 (TC substrate: Si02 / Si substrate temperature: 350 ° C vapor deposition time: 30 minutes pressure in the reaction system: 3990Pa 〇2 flow rate: 10ml / min-45- 200526802 (42)

He流量:15ml/分 [膜特性] 基板上確認形成膜厚3〇nm之氧 以本發明之鉻錯合物爲原料日寺 成膜操作之結果爲 化鉻膜(以XPS分析)。即, ,可形成均勻氧化鉻薄膜。 [製造鎂氧化膜] [蒸鍍條件] 氣化溫度:19〇°C 基板:Si〇2/Si 基板溫度:3 5 0 °c 蒸鍍時間:30分鐘 反應系內壓力:3 990Pa 〇 2流量:1 〇 m 1 /分 He流量:15ml /分 [膜特性] 成膜操作之結果爲’基板上確認形成膜厚3 5 nm之氧 化鋅膜(以Xp s分析)°即’以本發明之鎂錯合物爲原料時 ,可形成均勻氧化鎂薄膜。 【圖式簡單說明】 圖1爲,蒸鍍裝置之構造圖。 -46- 200526802 (43) 【主要元件符號說明】 1 A :質量流調節器 1 B :質量流調節器 2 :停止閥 3 :氣化器 4 :反應器 6 :閥 7 : 凝氣閥 10A :預熱器 1 〇 B :氣化器加熱器 10C :反應器加熱器 2 0 :原料錯合物溶液 21 :基板 -47Flow rate of He: 15ml / min [Film characteristics] It was confirmed that an oxygen film having a thickness of 30 nm was formed on the substrate. The chromium complex of the present invention was used as a raw material. The result of the film formation operation was a chromium film (analyzed by XPS). That is, can form a uniform chromium oxide thin film. [Manufacturing of magnesium oxide film] [Deposition conditions] Vaporization temperature: 19 ° C Substrate: Si〇2 / Si Substrate temperature: 350 ° C Deposition time: 30 minutes Pressure in reaction system: 3 990Pa 〇2 flow rate : 10 m 1 / min. He flow rate: 15 ml / min. [Film characteristics] The result of the film formation operation was' the formation of a zinc oxide film with a film thickness of 3 5 nm (analyzed by Xp s) on the substrate was determined. When the magnesium complex is used as a raw material, a uniform magnesium oxide film can be formed. [Brief description of the drawings] FIG. 1 is a structural diagram of a vapor deposition device. -46- 200526802 (43) [Description of main component symbols] 1 A: Mass flow regulator 1 B: Mass flow regulator 2: Stop valve 3: Gasifier 4: Reactor 6: Valve 7: Condensate valve 10A: Preheater 1 〇B: Gasifier heater 10C: Reactor heater 2 0: Raw material complex solution 21: Substrate-47

Claims (1)

200526802 ⑴ 十、申請專利範圍 1·一種金屬錯合物,其爲,如下列式(1)所示,200526802 十 X. Scope of patent application 1. A metal complex, as shown in the following formula (1), [式(1)中,X爲下列式(2)所示之矽烷基醚基; Y爲下列式(2)所示之矽烷基醚基,或碳原子數1至8之直 鏈或支鏈狀烷基; Z爲氫原子或碳原子數1至4之烷基; Μ爲釕、銥、鈀、鎳、釩、鈦、鉻、給、鋁、鎵、銦、錫 、鉛、鋅、錳、釔、鉻、鎂、鈷、鐵及銀群中所選出之金 屬原子; η爲Μ所示金屬原子之價數; Rb a / c -Ra~0—Si—Rc (2) Rc (式(2)中,Ra爲碳原子數1至5之直鏈或支鏈狀伸烷基;Rb 、1^及Rd各自獨立爲碳原子數1至5之直鏈或支鏈狀烷基 )]。 2 .如申請專利範圍第1項之金屬錯合物,其中Y爲碳 -48- 200526802 原子數1至8之直鏈或支鏈狀烷基,Z爲氫原子。 3 ·如申請專利範圍第2項之金屬錯合物,其中 Y爲碳 數1至4之直鏈或支鏈狀烷基,Ra爲二甲基伸甲基,Rb、 Re及Rd均爲碳原子數1至3之直鏈烷基。 4.一種金屬錯合物,其特徵爲,以下列式(3)所示附矽 烷基醚基之Θ -二酮合基爲配位基,且金屬爲釕、銥、鈀 、鎳、釩、鈦、锆、給、鋁、鎵、銦、錫、鉛、鋅、錳、 釔、鉻、鎂、鈷、鐵及銀群中所選出之金屬,[In formula (1), X is a silyl ether group represented by the following formula (2); Y is a silyl ether group represented by the following formula (2), or a straight or branched chain having 1 to 8 carbon atoms Alkyl group; Z is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M is ruthenium, iridium, palladium, nickel, vanadium, titanium, chromium, aluminum, gallium, indium, tin, lead, zinc, manganese Yttrium, chromium, magnesium, cobalt, iron, and silver group selected metal atoms; η is the valence of the metal atom shown by M; Rb a / c -Ra ~ 0—Si—Rc (2) Rc (Formula ( In 2), Ra is a linear or branched alkylene group having 1 to 5 carbon atoms; Rb, 1 ^ and Rd are each independently a linear or branched alkyl group having 1 to 5 carbon atoms)]. 2. The metal complex according to item 1 of the scope of the patent application, wherein Y is a straight or branched chain alkyl group having 1 to 8 carbons and 48 to 200526802 carbon atoms, and Z is a hydrogen atom. 3. If the metal complex of item 2 of the patent application range, where Y is a linear or branched alkyl group having 1 to 4 carbon atoms, Ra is dimethyl methyl group, Rb, Re and Rd are all carbon A linear alkyl group having 1 to 3 atoms. 4. A metal complex, characterized in that the Θ-diketonyl group attached with a silane alkyl ether group represented by the following formula (3) is a coordination group, and the metal is ruthenium, iridium, palladium, nickel, vanadium, Titanium, zirconium, aluminum, gallium, indium, tin, lead, zinc, manganese, yttrium, chromium, magnesium, cobalt, iron and silver, [式(3)中,X爲下列式(2)所示之矽烷基醚基; γ爲下列(2)所示之矽烷基醚基,或碳原子數1至8之直鏈 或支鏈狀烷基; Z爲氫原子或碳原子數1至4之烷基; Ra—〇—Si—R[In formula (3), X is a silyl ether group represented by the following formula (2); γ is a silyl ether group represented by the following (2), or a linear or branched chain having 1 to 8 carbon atoms Alkyl; Z is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; Ra—O—Si—R (2) (式(2)中,Ra爲碳原子數1至5之直鏈或支鏈狀伸烷基;Rb -49- 200526802 (3) 'R/及Rd各自獨立爲碳原子數1至5之直鏈或支鏈狀烷基 )]。 5 ·如申請專利範圍第4項之金屬錯合物,其中 Y爲碳 原子數1至8之直鏈或支鏈狀烷基,Z爲氫原子。 6 ·如申請專利範圍第5項之金屬錯合物,其中 Y爲碳 數1至4之直鏈或支鏈狀烷基,Ra特佳爲二甲基伸甲基, Rb、Re及Rd均爲碳原子數1至3之直鏈狀烷基。 7 · —種含金屬薄膜之製造方法,其特徵爲,爲,將如 申請專利範圍第1項之金屬錯合物氣化後,將氣化之金屬 錯合物熱分解而堆積於基板上,以生成含金屬薄膜。 8 .如申請專利範圍第7項之含金屬薄膜的製造方法, 其中係於存在氧下使氣化之金屬錯合物熱分解,而於基板 上生成金屬氧化物薄膜。 9 ·如申請專利範圍第7項之含金屬薄膜的製造方法, 其中金屬錯合物係與溶劑同時氣化。 10.如申請專利範圍第9項之含金屬薄膜的製造方法, 其中溶劑爲脂肪族烴、芳香族烴或醚。 11· 一種含金屬薄膜之製造方法,其特徵爲,將如申 請專利範圍第4項之金屬錯合物氣化後,將氣化之金屬錯 合物熱分解而堆積於基板上,以生成含金屬薄膜。 1 2.如申請專利範圍第9項之含金屬薄膜的製造方法, 其中係於存在氧下使氣化之金屬錯合物熱分解,而於基板 上生成金屬氧化物薄膜。 1 3 .如申請專利範圍第1 1項之含金屬薄膜的製造方法 -50- 200526802 (4) ,其中金屬錯合物係與溶劑同時氣化。 1 4 .如申請專利範圍第1 3項之含金屬薄膜的製造方法 ,其中溶劑爲脂肪族烴、芳香族烴或醚。 -51 -(2) (In the formula (2), Ra is a linear or branched alkylene group having 1 to 5 carbon atoms; Rb -49- 200526802 (3) 'R / and Rd are each independently 1 to 6 carbon atoms 5's linear or branched alkyl group)]]. 5. The metal complex according to item 4 of the application, wherein Y is a linear or branched alkyl group having 1 to 8 carbon atoms, and Z is a hydrogen atom. 6. If the metal complex of item 5 of the patent application, where Y is a linear or branched alkyl group having 1 to 4 carbon atoms, Ra is particularly preferably dimethyl methyl, and Rb, Re and Rd are all It is a linear alkyl group having 1 to 3 carbon atoms. 7 · A method for manufacturing a metal-containing thin film, characterized in that, after vaporizing the metal complex as described in the first item of the patent application, the vaporized metal complex is thermally decomposed and deposited on a substrate, To produce a metal-containing film. 8. The method for manufacturing a metal-containing thin film according to item 7 of the scope of the patent application, wherein the metal complex that is vaporized in the presence of oxygen is thermally decomposed to form a metal oxide thin film on the substrate. 9 · The method for manufacturing a metal-containing thin film according to item 7 of the patent application, wherein the metal complex is vaporized simultaneously with the solvent. 10. The method for manufacturing a metal-containing thin film according to item 9 of the application, wherein the solvent is an aliphatic hydrocarbon, an aromatic hydrocarbon or an ether. 11. A method for manufacturing a metal-containing thin film, characterized in that after vaporizing a metal complex as described in item 4 of the patent application, the gasified metal complex is thermally decomposed and deposited on a substrate to generate Metal film. 1 2. The method of manufacturing a metal-containing thin film according to item 9 of the scope of the patent application, wherein the metal complex formed by vaporization is thermally decomposed in the presence of oxygen, and a metal oxide thin film is formed on the substrate. 13. The method for manufacturing a metal-containing thin film according to item 11 of the scope of patent application -50- 200526802 (4), wherein the metal complex is vaporized simultaneously with the solvent. 14. The method for manufacturing a metal-containing thin film according to item 13 of the application, wherein the solvent is an aliphatic hydrocarbon, an aromatic hydrocarbon or an ether. -51-
TW093131152A 2003-10-14 2004-10-14 Metal complex having BETA-diketonato ligand and method for producing metal-containing thin film TW200526802A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003353240 2003-10-14
JP2003353241 2003-10-14
JP2003364079 2003-10-24
JP2003366178 2003-10-27
JP2003386486 2003-11-17
JP2003404438 2003-12-03
JP2004026474 2004-02-03
JP2004038116 2004-02-16

Publications (1)

Publication Number Publication Date
TW200526802A true TW200526802A (en) 2005-08-16

Family

ID=34437813

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093131152A TW200526802A (en) 2003-10-14 2004-10-14 Metal complex having BETA-diketonato ligand and method for producing metal-containing thin film

Country Status (3)

Country Link
JP (1) JPWO2005035823A1 (en)
TW (1) TW200526802A (en)
WO (1) WO2005035823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736776B (en) * 2017-06-09 2021-08-21 日商高純度化學研究所股份有限公司 Raw material for chemical vapor deposition, light-shielding container containing the raw material for chemical vapor deposition, and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294229B2 (en) * 2007-02-16 2013-09-18 独立行政法人産業技術総合研究所 Hydrogen permeable membrane manufacturing equipment using chemical vapor deposition
JP5307072B2 (en) * 2009-06-17 2013-10-02 東京エレクトロン株式会社 Metal oxide film forming method and film forming apparatus
US8709917B2 (en) * 2010-05-18 2014-04-29 Rohm And Haas Electronic Materials Llc Selenium/group 3A ink and methods of making and using same
WO2014118750A1 (en) * 2013-01-31 2014-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Manganese-containing compounds, their synthesis, and use in manganese-containing film deposition
JP7209997B2 (en) * 2017-07-27 2023-01-23 公立大学法人大阪 NEAR INFRARED SPECTROSCOPY PROBE AND NEAR INFRARED ANALYSIS METHOD USING SAME PROBE
JP2024022694A (en) * 2020-12-28 2024-02-20 株式会社Adeka Thin film forming raw material for atomic layer deposition method, thin film manufacturing method, and aluminum compound
TW202342491A (en) * 2022-04-15 2023-11-01 日商東曹股份有限公司 Ruthenium complex, method for producing same, and method for producing ruthenium-containing thin film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313744A4 (en) * 2000-08-28 2004-03-31 Advanced Tech Materials Source reagent compositions and method for forming metal films on a substrate by chemical vapor deposition
KR20020022210A (en) * 2000-09-19 2002-03-27 김한준 New Method of Preparing Precursors for BST CVD, and Heterometallic Single Precursors, and Method of Preparing Them
JP2003147528A (en) * 2001-11-12 2003-05-21 Shipley Co Llc Precursor compound for metal oxide film deposition, and method of film deposition using the same
JP4120925B2 (en) * 2002-01-31 2008-07-16 宇部興産株式会社 Copper complex and method for producing copper-containing thin film using the same
JP2005042149A (en) * 2003-07-25 2005-02-17 Ube Ind Ltd Copper complex solution for chemical vapor deposition
JP4193631B2 (en) * 2003-08-06 2008-12-10 宇部興産株式会社 Process for producing β-diketonato copper complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736776B (en) * 2017-06-09 2021-08-21 日商高純度化學研究所股份有限公司 Raw material for chemical vapor deposition, light-shielding container containing the raw material for chemical vapor deposition, and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2005035823A1 (en) 2006-12-21
WO2005035823A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US6184403B1 (en) MOCVD precursors based on organometalloid ligands
KR101498732B1 (en) Process for forming the strontium-containing thin film
TWI397532B (en) Method for producing film and film for film formation
JP5375093B2 (en) Organic ruthenium complex and method for producing ruthenium thin film using the ruthenium complex
TWI678355B (en) Diazadienyl compounds, raw materials for forming thin film, method of manufacturing thin film and diazadiene compounds
TWI591070B (en) A metal alkoxide, a raw material for forming a thin film, a method for producing a thin film, and an alcohol compound
US6099903A (en) MOCVD processes using precursors based on organometalloid ligands
TWI742022B (en) Process for the generation of metallic films
KR102314653B1 (en) Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate
TW200535138A (en) Metal complex comprising β-diketonato as ligand
JP2024054140A (en) Method for producing metal-containing films
TW201714890A (en) A novel compound, a raw material for forming a thin film and a process for producing a thin film
TW200526802A (en) Metal complex having BETA-diketonato ligand and method for producing metal-containing thin film
TWI454463B (en) Complexes of imidazole ligands
JP5260148B2 (en) Method for forming strontium-containing thin film
US6340768B1 (en) MOCVD precursors based on organometalloid ligands
JP2003321416A (en) Raw material compound for cvd, and method of vacuum chemical vapor deposition for iridium or iridium compound thin film
KR20160148542A (en) Alkoxide compound, raw material for forming thin film, method for producing thin film, and alcohol compound
JP5699485B2 (en) Metal complex having β-diketonato having dialkylalkoxymethyl group as ligand, and method for producing metal-containing thin film using the metal complex
TWI668203B (en) Alkoxide compound, raw material for thin-film production, process for producing thin-film, and alcohol compound
JP2007290993A (en) STRONTIUM COMPLEX WITH ISOPROPYL OR ISOBUTYL GROUP-BEARING beta- DIKETONATO AS LIGAND, AND METHOD FOR PRODUCING METAL-CONTAINING THIN FILM USING THE STRONTIUM COMPLEX
JP2009120916A (en) Platinum-ruthenium-containing mixed particulate thin film, and method for producing the same
KR20220018546A (en) Methods of making metal or semimetal-containing films
JP2011246438A (en) Organometallic complex and production method of metal-containing thin film using the metal complex
JP4797474B2 (en) Metal complex having β-diketonato having alkoxyalkylmethyl group and alkoxy as ligand, and method for producing metal-containing thin film using the metal complex