JP2005042149A - Copper complex solution for chemical vapor deposition - Google Patents

Copper complex solution for chemical vapor deposition Download PDF

Info

Publication number
JP2005042149A
JP2005042149A JP2003201681A JP2003201681A JP2005042149A JP 2005042149 A JP2005042149 A JP 2005042149A JP 2003201681 A JP2003201681 A JP 2003201681A JP 2003201681 A JP2003201681 A JP 2003201681A JP 2005042149 A JP2005042149 A JP 2005042149A
Authority
JP
Japan
Prior art keywords
copper complex
copper
solution
vapor deposition
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003201681A
Other languages
Japanese (ja)
Inventor
Takumi Tsunoda
巧 角田
Chihiro Hasegawa
千尋 長谷川
Kohei Watanuki
耕平 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003201681A priority Critical patent/JP2005042149A/en
Publication of JP2005042149A publication Critical patent/JP2005042149A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical vapor deposition use copper complex solution of a bivalent copper complex with β-diketonato having a silyl ether linkage as a ligand, which is present as a solid at room temperature or present as a melt having high viscosity even in a liquid, can be fed into a vaporizer by a liquid transport pump and reduces a load on the vaporizer. <P>SOLUTION: In the copper complex solution, an ether is added by 1 to 2 mols per mol of a copper complex with a silyl ether as a ligand expressed by the general formula (1) (wherein, R<SB>1</SB>is a 1 to 5C straight chain or branched alkyl group; and R<SB>2</SB>is a 1 to 3C straight chain or branched alkylene group). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学気相蒸着法(CVD法)により銅あるいは銅含有合金等の金属銅薄膜または銅酸化物を一構成成分とする複合酸化物薄膜等の銅含有薄膜を形成させる際に原料として使用される、化学気相蒸着用銅錯体溶液に関する。
【0002】
【従来の技術】
有機銅錯体の化学蒸着法で形成された金属銅薄膜(以下、銅薄膜と称す)は、シリコン半導体の銅配線に利用される。また、酸化銅を一構成成分とする金属酸化物薄膜(以下、酸化銅薄膜と称す)は、高温超伝導体の材料として応用が期待されているものである。その出発原料である銅錯体は、2価の銅錯体の場合、室温では固体であるか、或いは液体であっても高粘性の液体として存在する(特許文献1、2)。
固体の銅錯体を用いてCVD法で薄膜を製造する場合、融点以上に加熱した銅錯体融液にキャリアーガスを吹込み、そのキャリアーガスに銅錯体蒸気を同伴させて蒸着装置内に導入する方法が一般的に採用されている(例えば、特許文献1)が、融液の粘度が高く、銅錯体の定量的な導入が困難である問題がある。
また、固体材料に溶媒を添加して溶液状態にして、液体用マスフローコントローラーを用いて気化器に定量的に供給して気化する方法もあるが、2価銅のβ−ジケトナト錯体はその溶解性が低い場合が多く、該方法を適用するには多量の溶媒を添加する必要がある。例えば、特許文献2および特許文献3においては、0.15mol/Lあるいは0.2mol/L濃度の希薄溶液で使用されおり、そのため、気化器における負荷が大きくなる問題が付随する。
【0003】
【特許文献1】
特開平9−53177号公報
【特許文献2】
特開2001−181840号公報
【特許文献3】
特開2003−166058号公報
【0004】
【発明が解決しようとする課題】
本発明は、室温で固体で存在するか、或いは液体であっても粘性の高い融液として存在する、シリルエーテル結合を持つβ−ジケトナトを配位子とする2価の銅錯体について、液体搬送ポンプによる気化器への送入が可能で、溶媒量が低減されていることから気化器への負荷が低減される、化学気相蒸着用溶液の提供を目的とする。
【0005】
【課題を解決するための手段】
本発明者は、シリルエーテル結合を持つβ−ジケトナトを配位子とする2価銅錯体に対するエーテル類の添加効果が特異的であり、その少量の添加により、前記課題が解決することを見出し、本発明を完成した。すなわち本発明は、下記一般式(I)で表されるシリルエーテルを配位子とする銅錯体(式中Rは、炭素原子数1〜5の直鎖または分枝のアルキル基、Rは、炭素原子数1〜5の直鎖または分枝のアルキレン基を表す。以下、銅錯体と称す。)1モル当たり1〜2モルのエーテルを添加する、化学気相蒸着用銅錯体溶液に関する。
【0006】
【化2】

Figure 2005042149
【0007】
【発明の実施の形態】
本発明において、シリルエーテル結合を持つβ−ジケトナト配位子を含む2価の銅錯体の具体的な例としては、たとえば、式(II)〜(IV)に示される銅錯体が挙げられる。これらの銅錯体のうち、(II)および(III)は室温で固体であるが、(IV)は室温で粘性の液体である。本発明では、これらの銅錯体にエーテル類を極めて少量添加することにより、液体搬送用ポンプによる搬送が可能な低粘性の液体にすることが出来る。
【0008】
【化3】
Figure 2005042149
【0009】
本発明で、銅錯体に添加するエーテルとしては、ジエチルエーテル、ジn−ブチルエーテル等の鎖状エーテル類、テトラヒドロフラン、ジオキサン等の環状エーテル類を挙げることができる。
【0010】
これらのエーテル類は、脱水、蒸留等により精製しておくことが望ましい。脱水方法としては、通常の方法、たとえば、脱水剤であるモレキュラシーブ、水素化カルシウム、塩化カルシウム等を添加して行われる。脱水乾燥後、蒸留によって更に精製を行い、銅錯体溶液形成用の溶媒として使用される。
【0011】
銅錯体溶液を気化器へ導入する場合、気化器に掛かる負荷を低減するためには、銅錯体の濃度は出来るだけ高い方が、すなわち、添加するエーテル量は少ない方が好ましいが、エーテルの添加量が少なすぎると粘性低下効果が十分に発現しない。従って、エーテルの添加量は、銅錯体1分子に対し1分子以上とするが、多すぎると、気化器への負荷の低減と言う本発明本来の目的を損なうことになることから、銅錯体1分子に対し1〜2分子とするのが好ましく、1.5〜2分子とするのが更に好ましい。例えば、本発明記載の銅錯体1分子にジn−ブチルエーテル1.5分子加えた銅錯体溶液の濃度は、1.27mol/Lの高濃度溶液となる。
シリルエーテル基を有するβ−ジケトナトを配位子とする銅錯体のエーテルに対する溶解性はかなり高く、この添加量でも、十分な粘性の低下が確認され、室温において、液体搬送用ポンプの一種である液体用マスフローコントローラーを使用しての気化器への定量的な送入が可能である。
【0012】
気化器に送入された銅錯体を含む液体は、公知の方法で気化される。すなわち一定温度に維持された気化器に導入された、銅錯体を含む液体は加熱気化し、気化した銅錯体は、基板が設定された蒸着室に送入され、CVD法により、基板上に銅膜あるいは、酸化銅膜としての薄膜を析出させるのに利用される。
【0013】
尚、少量のエーテル添加により溶液化した本発明の銅錯体は安定性にも優れており、当該銅錯体溶液を冷蔵庫内に長期保存しても、銅錯体溶液からの結晶の析出および粘性等の変化は認められない。
【0014】
以下では、具体例を挙げて、本発明を更に詳しく説明する。
実施例1 式(II)で示される銅錯体 ビス(2,6−ジメチル−2−(トリメチルシリロキシ)−3,5−ヘプタジオナト)銅(II)錯体(Cu(sopd))3.00g(5.45mmol)に、十分脱水したジn−ブチルエーテル 1.06g(8.18mmol)を添加し、暗緑色の均一な銅錯体溶液を得た。添加するジn−ブチルエーテルの量は、銅錯体Cu(sopd)1分子に対して、1.5分子という極めて少量の添加で十分である。この時の銅錯体溶液の濃度は、1.27mol/Lである。
銅錯体Cu(sopd)は室温で固体であるが、ジn−ブチルエーテルを上記に示した量を添加することにより、液体状となり、また粘度測定を行ったところ、24℃で6センチポイズであった。これは、通常の液体マスフローコントローラーの使用が十分可能な値であることを示している。
また、この銅錯体Cu(sopd)溶液を4℃で、3週間以上保存しても、結晶の析出は見られず、均一溶液のままであった。また粘性についても低いままで何ら変化は見られなかった。
【0015】
実施例2 ジn−ブチルエーテルに代えて、環状エーテル類であるテトラヒドロフラン0.59g(8.18mmol)を添加した以外は、実施例1と同様に行った。得られた銅錯体Cu(sopd)溶液は、実施例1の溶液同様、粘性が低い均一溶液であった。また、この溶液を4℃で、3週間以上保存しても、結晶の析出は見られず、均一溶液のままであり、粘性についても低いままで何ら変化は見られなかった。
【0016】
比較例1 公知銅錯体であるビス(アセチルアセトナト)銅[Cu(AcAc)]0.035g(0.134mmol)に、21倍モル量にあたるジn−ブチルエーテル0.356g(2.807mmol)を添加したが、全く溶けなかった。
【0017】
比較例2 公知銅錯体であるビス(アセチルアセトナト)銅[Cu(AcAc)]0.032g(0.121mmol)に、20倍モル量にあたるテトラヒドロフラン0.175g(2.427mmol)を添加したが、全く溶けなかった。
【0018】
比較例3 公知銅錯体であるビス(ジピバロイルメタナト)銅[Cu(DPM)]0.240g(0.558mmol)に、20倍モル量にあたるジn−ブチルエーテル1.433g(11.00mmol)を添加したが、完溶しなかった。
【0019】
比較例4 公知銅錯体であるビス(ジピバロイルメタナト)銅[Cu(DPM)]0.102g(0.237mmol)に、7倍モル量にあたるテトラヒドロフラン0.120g(1.660mmol)を添加したが、一部不溶の結晶が残り、完溶しなかった。
【0020】
比較例として示した、シリルエーテル基を持たない銅錯体は、本発明の銅錯体のような高濃度溶液を調製することができないため、希薄溶液として使用せざるを得ないことになる。
【0021】
【発明の効果】
シリルエーテル基を持つ銅錯体は、Cu(sopd)銅錯体で認められるように、エーテルに対し極めて高い溶解性を示す。銅錯体に対して1.5倍モル量という少量のエーテルに十分溶解し、粘性の低い液体を与えるが、この量の溶剤の添加で完溶し、低粘性で高濃度の溶液を与える効果は、シリルエーテル基を持たない銅錯体であるCu(AcAc)やCu(DPM)では認められない効果である。この方法で製造した銅錯体溶液は、液体搬送用ポンプによる搬送が容易で気化器に於ける負荷を低減されるだけでなく、蒸着基板への銅錯体の定量的な送入が可能となる。従って、たとえば、シリコン半導体での配線材料として需要の大きい銅薄膜をCVD法で作製する場合の原料調製法として非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is used as a raw material when forming a copper-containing thin film such as a metal copper thin film such as copper or a copper-containing alloy or a complex oxide thin film containing copper oxide as a constituent component by chemical vapor deposition (CVD). The present invention relates to a chemical vapor deposition copper complex solution used.
[0002]
[Prior art]
A metal copper thin film (hereinafter referred to as a copper thin film) formed by a chemical vapor deposition method of an organic copper complex is used for copper wiring of a silicon semiconductor. In addition, a metal oxide thin film (hereinafter referred to as a copper oxide thin film) containing copper oxide as a constituent component is expected to be applied as a material for a high-temperature superconductor. In the case of a divalent copper complex, the starting copper complex is a solid at room temperature or exists as a highly viscous liquid even if it is a liquid (Patent Documents 1 and 2).
When a thin film is produced by a CVD method using a solid copper complex, a carrier gas is blown into a copper complex melt heated to a temperature higher than the melting point, and the carrier gas is introduced into the vapor deposition apparatus along with the copper complex vapor. Is generally employed (for example, Patent Document 1), but there is a problem that the viscosity of the melt is high and it is difficult to quantitatively introduce the copper complex.
In addition, there is a method in which a solvent is added to a solid material to form a solution, which is quantitatively supplied to a vaporizer using a liquid mass flow controller and vaporized, but the divalent copper β-diketonate complex has its solubility. In many cases, it is necessary to add a large amount of a solvent in order to apply the method. For example, in Patent Document 2 and Patent Document 3, it is used in a dilute solution having a concentration of 0.15 mol / L or 0.2 mol / L, and therefore, there is a problem that the load on the vaporizer increases.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-53177 [Patent Document 2]
JP 2001-181840 [Patent Document 3]
Japanese Patent Laid-Open No. 2003-166058
[Problems to be solved by the invention]
The present invention relates to a divalent copper complex having a β-diketonate having a silyl ether bond as a ligand, which exists as a solid at room temperature or exists as a highly viscous liquid. An object of the present invention is to provide a chemical vapor deposition solution that can be fed into a vaporizer by a pump and that reduces the load on the vaporizer because the amount of solvent is reduced.
[0005]
[Means for Solving the Problems]
The present inventor has found that the addition effect of ethers to a divalent copper complex having a β-diketonate having a silyl ether bond as a ligand is specific, and that the above problems can be solved by adding a small amount thereof. The present invention has been completed. That is, the present invention provides a copper complex having a silyl ether represented by the following general formula (I) as a ligand (wherein R 1 is a linear or branched alkyl group having 1 to 5 carbon atoms, R 2 Represents a linear or branched alkylene group having 1 to 5 carbon atoms, hereinafter referred to as a copper complex.) Relates to a copper complex solution for chemical vapor deposition in which 1 to 2 mol of ether is added per mol. .
[0006]
[Chemical 2]
Figure 2005042149
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, specific examples of the divalent copper complex containing a β-diketonato ligand having a silyl ether bond include, for example, copper complexes represented by formulas (II) to (IV). Of these copper complexes, (II) and (III) are solid at room temperature, while (IV) is a viscous liquid at room temperature. In the present invention, by adding a very small amount of ethers to these copper complexes, a low-viscosity liquid that can be transported by a liquid transport pump can be obtained.
[0008]
[Chemical 3]
Figure 2005042149
[0009]
In the present invention, examples of the ether added to the copper complex include chain ethers such as diethyl ether and di-n-butyl ether, and cyclic ethers such as tetrahydrofuran and dioxane.
[0010]
These ethers are preferably purified by dehydration, distillation or the like. As a dehydration method, a usual method, for example, adding a molecular sieve as a dehydrating agent, calcium hydride, calcium chloride or the like is performed. After dehydration and drying, it is further purified by distillation and used as a solvent for forming a copper complex solution.
[0011]
When introducing a copper complex solution into a vaporizer, in order to reduce the load on the vaporizer, the concentration of the copper complex is preferably as high as possible, that is, the amount of ether added is preferably small, but the addition of ether If the amount is too small, the effect of reducing the viscosity is not sufficiently exhibited. Accordingly, the amount of ether added is at least one molecule per molecule of the copper complex. However, if the amount is too large, the original object of the present invention, which is to reduce the load on the vaporizer, will be impaired. The number of molecules is preferably 1 to 2 molecules, more preferably 1.5 to 2 molecules. For example, the concentration of a copper complex solution obtained by adding 1.5 molecules of di-n-butyl ether to one molecule of the copper complex described in the present invention is a high concentration solution of 1.27 mol / L.
The solubility of a copper complex having a β-diketonate having a silyl ether group as a ligand is quite high in ether, and even with this addition amount, a sufficient decrease in viscosity is confirmed, and this is a kind of liquid transport pump at room temperature. Quantitative feeding into the vaporizer using a liquid mass flow controller is possible.
[0012]
The liquid containing the copper complex sent to the vaporizer is vaporized by a known method. That is, the liquid containing the copper complex introduced into the vaporizer maintained at a constant temperature is vaporized by heating, and the vaporized copper complex is sent to the vapor deposition chamber in which the substrate is set, and the copper is deposited on the substrate by the CVD method. It is used to deposit a film or a thin film as a copper oxide film.
[0013]
In addition, the copper complex of the present invention formed into a solution by adding a small amount of ether is excellent in stability, and even if the copper complex solution is stored in the refrigerator for a long period of time, precipitation of crystals from the copper complex solution, viscosity, etc. There is no change.
[0014]
Below, a specific example is given and this invention is demonstrated in more detail.
Example 1 Copper complex represented by the formula (II) Bis (2,6-dimethyl-2- (trimethylsilyloxy) -3,5-heptadionato) copper (II) complex (Cu (sopd) 2 ) 3.00 g ( To 5.45 mmol), 1.06 g (8.18 mmol) of sufficiently dehydrated di-n-butyl ether was added to obtain a dark green uniform copper complex solution. As for the amount of di-n-butyl ether to be added, it is sufficient to add an extremely small amount of 1.5 molecules to one molecule of the copper complex Cu (sopd) 2 . The concentration of the copper complex solution at this time is 1.27 mol / L.
The copper complex Cu (sopd) 2 is solid at room temperature, but becomes liquid by adding di-n-butyl ether in the amount shown above. When the viscosity is measured, it is 6 centipoise at 24 ° C. It was. This shows that the use of a normal liquid mass flow controller is sufficiently possible.
Further, even when this copper complex Cu (sopd) 2 solution was stored at 4 ° C. for 3 weeks or more, no precipitation of crystals was observed, and the solution remained a uniform solution. The viscosity remained low and no change was observed.
[0015]
Example 2 It replaced with di n-butyl ether and carried out similarly to Example 1 except having added 0.59 g (8.18 mmol) of tetrahydrofuran which is cyclic ethers. The obtained copper complex Cu (spd) 2 solution was a homogeneous solution having a low viscosity like the solution of Example 1. Further, even when this solution was stored at 4 ° C. for 3 weeks or more, no precipitation of crystals was observed, and the solution remained as a uniform solution, and the viscosity remained low and no change was observed.
[0016]
Comparative Example 1 0.356 g (2.807 mmol) of di-n-butyl ether corresponding to a 21-fold molar amount was added to 0.035 g (0.134 mmol) of bis (acetylacetonato) copper [Cu (AcAc) 2 ], which is a known copper complex. Added but did not dissolve at all.
[0017]
Comparative Example 2 0.175 g (2.427 mmol) of tetrahydrofuran corresponding to a 20-fold molar amount was added to 0.032 g (0.121 mmol) of bis (acetylacetonato) copper [Cu (AcAc) 2 ], which is a known copper complex. It did not melt at all.
[0018]
Comparative Example 3 2.433 g (0.558 mmol) of bis (dipivaloylmethanato) copper [Cu (DPM) 2 ], which is a known copper complex, 1.433 g (11.00 mmol) of 20-fold molar amount of di-n-butyl ether ) Was added but was not completely dissolved.
[0019]
Comparative Example 4 To 0.102 g (0.237 mmol) of bis (dipivaloylmethanato) copper [Cu (DPM) 2 ], a known copper complex, 0.120 g (1.660 mmol) of tetrahydrofuran corresponding to a 7-fold molar amount was added. However, some insoluble crystals remained and did not dissolve completely.
[0020]
Since the copper complex which does not have a silyl ether group shown as a comparative example cannot prepare a high concentration solution like the copper complex of this invention, it must use it as a dilute solution.
[0021]
【The invention's effect】
A copper complex having a silyl ether group exhibits extremely high solubility in ether, as can be seen in a Cu (sopd) 2 copper complex. It dissolves sufficiently in a small amount of ether of 1.5 times molar amount with respect to the copper complex to give a low-viscosity liquid. This effect is not observed in Cu (AcAc) 2 and Cu (DPM) 2 which are copper complexes having no silyl ether group. The copper complex solution produced by this method is easy to be transported by a liquid transport pump and not only reduces the load on the vaporizer, but also enables quantitative delivery of the copper complex to the vapor deposition substrate. Therefore, for example, it is very useful as a raw material preparation method when a copper thin film having a great demand as a wiring material in a silicon semiconductor is produced by a CVD method.

Claims (1)

下記一般式(I)で表されるシリルエーテルを配位子とする銅錯体(式中Rは、炭素原子数1〜5の直鎖または分枝のアルキル基、Rは、炭素原子数1〜5の直鎖または分枝のアルキレン基を表す。以下、銅錯体)1モル当たり1〜2モルのエーテルを添加する、化学気相蒸着用銅錯体溶液。
Figure 2005042149
A copper complex having a silyl ether represented by the following general formula (I) as a ligand (wherein R 1 is a linear or branched alkyl group having 1 to 5 carbon atoms, and R 2 is the number of carbon atoms) 1 to 5 represents a linear or branched alkylene group, hereinafter referred to as a copper complex) a copper complex solution for chemical vapor deposition in which 1-2 mol of ether is added per 1 mol.
Figure 2005042149
JP2003201681A 2003-07-25 2003-07-25 Copper complex solution for chemical vapor deposition Abandoned JP2005042149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003201681A JP2005042149A (en) 2003-07-25 2003-07-25 Copper complex solution for chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003201681A JP2005042149A (en) 2003-07-25 2003-07-25 Copper complex solution for chemical vapor deposition

Publications (1)

Publication Number Publication Date
JP2005042149A true JP2005042149A (en) 2005-02-17

Family

ID=34261673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201681A Abandoned JP2005042149A (en) 2003-07-25 2003-07-25 Copper complex solution for chemical vapor deposition

Country Status (1)

Country Link
JP (1) JP2005042149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005035823A1 (en) * 2003-10-14 2006-12-21 宇部興産株式会社 Metal complex having β-diketonato ligand and method for producing metal-containing thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005035823A1 (en) * 2003-10-14 2006-12-21 宇部興産株式会社 Metal complex having β-diketonato ligand and method for producing metal-containing thin film

Similar Documents

Publication Publication Date Title
JP3963078B2 (en) Tertiary amylimidotris (dimethylamido) tantalum, method for producing the same, raw material solution for MOCVD using the same, and method for forming a tantalum nitride film using the same
Boysen et al. An N‐Heterocyclic Carbene Based Silver Precursor for Plasma‐Enhanced Spatial Atomic Layer Deposition of Silver Thin Films at Atmospheric Pressure
US20020085973A1 (en) Preparing metal nitride thin film employing amine-adduct single-source precursor
US20210082708A1 (en) Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt
JP2000281694A (en) Organometallic compound for organometallic vapor phase epitaxy
Saly et al. Volatility, high thermal stability, and low melting points in heavier alkaline earth metal complexes containing tris (pyrazolyl) borate ligands
Daniele et al. Molecular structures of volatile Ce (IV) tetrafluoroisopropoxide complexes with TMEDA and diglyme. CVD experiments
JP2005042149A (en) Copper complex solution for chemical vapor deposition
WO2000008225A2 (en) Organocopper precursors for chemical vapor deposition
JP2009040707A (en) Raw material for forming thin film and method for producing thin film
WO2000063461A1 (en) Novel organocuprous precursors for chemical vapor deposition of a copper film
JP2002538082A (en) Indium raw material reagent composition
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
JP2003292495A (en) Copper complex and method for producing copper- containing thin film using the same
JP3079814B2 (en) Copper film forming material
JP3632475B2 (en) Organic amino tantalum compound, raw material solution for metalorganic chemical vapor deposition containing the same, and tantalum nitride film made therefrom
JP2876980B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
JP2003335740A (en) Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same
KR20010062628A (en) Copper material for chemical vapor deposition and process for forming thin film using the same
JPWO2010032673A1 (en) Nickel-containing film forming material and method for producing nickel-containing film
JP4059662B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
KR100233961B1 (en) Method of decreasing viscosity of dimethylaluminum hydride which is useful as precursor in preparation of aluminum thin membrance
KR20100004795A (en) Gallium complexes with donor-functionalized ligands and process for preparing thereof
JP2757762B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
KR100954448B1 (en) Manufacturing method of Hydrido aluminum borohydride trialkylamine complexes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070326