TW200525272A - Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge - Google Patents
Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge Download PDFInfo
- Publication number
- TW200525272A TW200525272A TW93115847A TW93115847A TW200525272A TW 200525272 A TW200525272 A TW 200525272A TW 93115847 A TW93115847 A TW 93115847A TW 93115847 A TW93115847 A TW 93115847A TW 200525272 A TW200525272 A TW 200525272A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- hinge
- layer
- mirror plate
- mirror
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0035—Constitution or structural means for controlling the movement of the flexible or deformable elements
- B81B3/004—Angular deflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0841—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/04—Optical MEMS
- B81B2201/042—Micromirrors, not used as optical switches
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
Abstract
Description
200525272 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係關於空間光調變器(SLM ),特別關於具有 隱藏式鉸鏈以使像素塡充比最大、使散射及漫射最小、以 及取得高對比和高影像品質的微鏡結構。 【先前技術】200525272 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a spatial light modulator (SLM), and more particularly, to having a hidden hinge to maximize the pixel filling ratio, minimize scattering and diffusion, and Micromirror structure for high contrast and high image quality. [Prior art]
在光資訊處理、投射式顯示器、影像及圖形監視器、 電視、及電子照相列印領域中,空間光調變器具有不同的 應用。反射式S LM是以空間圖案調變入射以反射對應於 電或光輸入的影像。入射光可以在相位上、強度上、或偏 轉反向上被調變。反射式S L Μ典型上包含能夠反射入射 光之可尋址的畫素(像素)之區域或二維陣列。S L Μ的 關鍵參數,特別是在顯示器應用上,係光學上主動區至像 素區的部份(也以反映SLM的全部表面區之SLM表面區 的一部份作爲量測,也稱爲塡充比)。需要有高的塡充 比。 習知的S L Μ具有不同的缺點。這些缺點包含但不限 於:(])低於最佳光學主動區,降低光學效率;(2 )粗 縫的反射表面,降低鏡的反射率;(3 )繞射及散射,降 低顯示器的對比;(4 )所使用的材料具有長期可靠性問 題;及(5 )複雜製程,增加開銷及降低裝置產能。 很多習知的裝置在它們的表面上包含實質上非反射的 區域。這提供低塡充比,以及提供低於最佳反射效率。舉 - 5- 200525272 (2) 例而言,美國專利號4,2 2 9,7 3 2揭不形成於裝置表面上的 MOSFET裝置以及鏡。這些MOSFET裝置佔據表面區,降 低典型上是光學是主動之裝置面積的部份以及降低反射效 率。在裝置的表面上之 MOSFET裝置也會使入射光繞 射,降低顯示器的對比。此外,撞擊曝露的Μ 0 S F E T裝 置之強光會使MOSFET裝置充電及使電路過熱,因而干 擾裝置的適當操作。Spatial light modulators have different applications in the fields of optical information processing, projection displays, image and graphic monitors, televisions, and electrophotographic printing. Reflective S LM is a spatial pattern that modulates incident light to reflect an image corresponding to electrical or light input. Incident light can be modulated in phase, intensity, or inversion of polarization. Reflective SLM typically contains an area or two-dimensional array of addressable pixels (pixels) capable of reflecting incident light. The key parameters of SL Μ, especially in display applications, are the optically active area to the pixel area (also a part of the SLM surface area that reflects the entire surface area of the SLM as a measurement, also known as the charging ratio). A high charge ratio is required. The conventional SLM has different disadvantages. These disadvantages include, but are not limited to: (]) lower than the optimal optical active area, reducing optical efficiency; (2) rough reflective surface, reducing the reflectivity of the mirror; (3) diffraction and scattering, reducing the contrast of the display; (4) the materials used have long-term reliability issues; and (5) complex processes, which increase overhead and reduce device capacity. Many conventional devices include substantially non-reflective areas on their surface. This provides a low fill ratio and provides sub-optimal reflection efficiency. For example-5-200525272 (2) For example, US Patent No. 4, 2 2 9, 7 3 2 discloses a MOSFET device and a mirror that are not formed on the device surface. These MOSFET devices occupy the surface area, reducing the portion of the device area that is typically optically active and reducing reflection efficiency. A MOSFET device on the surface of the device will also diffract incident light, reducing the contrast of the display. In addition, the strong light from the impacted MOSFET device can charge the MOSFET device and overheat the circuit, thereby interfering with the proper operation of the device.
某些S L Μ設計具有使入射光散射及降低反射率之粗 f造表面。舉例而言,在某些S L Μ設計中,反射表面是沈 積於LPCVD氮化矽層上的鋁膜。由於這些反射鏡的表面 是沈積有薄膜,所以,它們的平滑度難以控制。因此,最 後的產品具有粗糙表面,降低反射效率。Some SLM designs have a roughened surface that scatters incident light and reduces reflectivity. For example, in some SLM designs, the reflective surface is an aluminum film deposited on a LPCVD silicon nitride layer. Since the surface of these mirrors is deposited with a thin film, their smoothness is difficult to control. Therefore, the final product has a rough surface, reducing the reflection efficiency.
因某些 SLM設計(特別是某些懸吊鏡設計)而降低 反射效率之另一問題是大的曝露鉸鏈表面積。這些曝露的 鉸鏈表面積會因鉸鏈結構而造成散射及漫射,相較於其它 參數,不利於對比。 很多傳統的S L Μ,例如美國專利號4 ; 5 6 6,9 3 5中所揭 示之 SLM具有由鋁合金製成的鉸鏈。鋁、以及其它金屬 易於受到疲勞及塑膠變形影響,導致長期可靠度的問題。 而且,鋁易於受到胞「記憶」影響,其中,其餘位置開始 向其最經常被佔據的位置傾斜。此外,4;5 66 J35專利中 所揭示的鏡會因移除鏡表面下方的犧牲材料而被釋放。此 技術通常造成精密的微鏡結構於釋放期間斷裂。其也需也 在鏡之間有大間隙以便蝕刻劑移除鏡下方的犧牲材料,降 -6- 200525272 (3) 低光學上主動的裝置區之部份。 其它傳統的S LM需要多層,包含用於鏡之分離層、 鉸鏈、電極及/或控制電路。例如如多層SLM等的製造 需要使用多層薄膜堆疊以及蝕刻技術和製程。使用這些技 術和製程是昂貴並造成低產能。舉例而言,使用這些技術 通常會牽涉到大規模沈積及移除鏡板之下的犧牲材料。鏡 板表面之下的多層薄膜沈積及堆疊會造成較粗糙的鏡表 面,藉因降低鏡的反射效率。此外,由於在不同層或基底 中具有鏡及鉸鏈,所以在鏡偏向時造成平移偏移。由於平 移偏移,陣列中的鏡必須相間隔以避免相鄰的鏡之間的機 械干擾。由於陣列中的鏡無法被設置成太接近陣列中的其 它鏡,所以,SLM會苦於比最佳光學主動區還低或較低 塡充比。 需要具有增進的反射效率、SLM裝置長期可靠度、 及簡化的製程之SLM。Another problem with reduced reflection efficiency due to some SLM designs (especially some pendant mirror designs) is the large exposed hinge surface area. These exposed hinge surface areas will cause scattering and diffusion due to the hinge structure. Compared with other parameters, it is not easy to compare. Many conventional SLMs, such as the SLMs disclosed in U.S. Patent Nos. 4; 666, 935, and 5 have hinges made of aluminum alloy. Aluminum, and other metals are susceptible to fatigue and plastic deformation, leading to long-term reliability issues. Moreover, aluminum is susceptible to cellular "memory", in which the remaining positions begin to tilt towards their most frequently occupied positions. In addition, the mirror disclosed in the 4; 5 66 J35 patent is released by removing sacrificial material beneath the mirror surface. This technique usually causes the delicate micromirror structure to break during release. It also needs to have a large gap between the mirrors so that the etchant removes the sacrificial material under the mirrors, reducing -6- 200525272 (3) the part of the device area with low optical activity. Other conventional S LMs require multiple layers, including separation layers for the mirror, hinges, electrodes, and / or control circuits. For example, manufacturing such as multilayer SLM requires the use of multilayer thin film stacking as well as etching techniques and processes. Using these technologies and processes is expensive and results in low productivity. For example, using these techniques often involves large-scale deposition and removal of sacrificial material beneath the mirror. The deposition and stacking of multiple thin films under the surface of the mirror plate will result in a rougher mirror surface, which reduces the reflection efficiency of the mirror. In addition, since there are mirrors and hinges in different layers or substrates, translational shifts are caused when the mirrors are deflected. Due to translational offsets, the mirrors in the array must be spaced apart to avoid mechanical interference between adjacent mirrors. Since the mirrors in the array cannot be set too close to other mirrors in the array, SLM suffers from lower or lower fill ratios than the optimal optical active area. There is a need for SLMs with enhanced reflection efficiency, long-term reliability of SLM devices, and simplified manufacturing processes.
【發明內容】 本發明係空間光調變器(SLM )。在一實施例中, SLM具有由第一基底製成之反射選擇性可偏轉微鏡陣 列,第一基底接合至具有個別可尋址的電極之第二基底。 第二基底也具有用於微鏡陣之定址及控制電路。或^$ 址及控制電路的部份是在分別的基底上且連接至第二其底 上的電路及電極。 微鏡陣列包含設有高度反射表面以反射入射光/之可· ?空 200525272 (4) 制地偏轉鏡板。此第一基底是單一材料的晶圓’在一貝方也 例中爲單晶ί夕。間隔器支撐壁在鏡板及電極之間提供分 離,該電極係與該鏡板相關連,控制鏡板的偏轉。電極設 於第二基底上,第二基底接合至微鏡陣列。SUMMARY OF THE INVENTION The present invention is a space light modulator (SLM). In one embodiment, the SLM has a reflective selectively deflectable micromirror array made of a first substrate, the first substrate being bonded to a second substrate having individually addressable electrodes. The second substrate also has an addressing and control circuit for the micromirror array. Or the part of the address and control circuit is a circuit and electrode on a separate substrate and connected to the second substrate. The micromirror array includes a highly reflective surface to reflect incident light. 200525272 (4) Ground deflection mirror plate. This first substrate is a single material wafer ', in one example, a single crystal. The spacer support wall provides separation between the mirror plate and an electrode, which is associated with the mirror plate and controls the deflection of the mirror plate. An electrode is provided on the second substrate, and the second substrate is bonded to the micromirror array.
由於鉸鏈及鏡板係在相同基底中(亦即,在相同層 中),所以,當鏡圍繞鉸鏈的縱軸旋轉時,不會有平移移 動或位移。由於沒有平移位移,所以,鏡與支撐壁之間的 間隙僅受限於製造技術及製程。鏡板的緊密間隔及鉸鏈實 質上隱藏設於反射表面下方會允許微鏡陣列有高塡充比、 增進的對比、最小化光的散射及繞射,以及實際地消除通 過微鏡陣列而撞擊第二基底上的電路之光。Since the hinge and the mirror plate are in the same base (that is, in the same layer), there is no translational movement or displacement when the mirror rotates about the longitudinal axis of the hinge. Because there is no translational displacement, the gap between the mirror and the support wall is limited only by manufacturing techniques and processes. The tight spacing of the mirror plates and the hinges are substantially hidden below the reflective surface will allow the micromirror array to have a high fill ratio, enhanced contrast, minimize light scattering and diffraction, and practically eliminate the impact of the second through the micromirror array. Light from the circuit on the substrate.
此外,由於在較佳實施例中鏡板及鉸鏈是由單晶矽材 料製成’所以,所造成的鉸鏈較強固且更可靠且實際上不 會苦於記憶效應、延著晶粒邊界斷裂或疲勞。單晶矽基底 比其它材料(特別是沈積的薄膜)具有顯著較少的微缺陷 及斷裂。結果,較不易延著裝置中的晶界斷裂(或增生微 斷裂)。而且,在本發明中使用單基底會最少使用多層薄 膜堆疊以及蝕刻製程及技術。在本發明中,犧牲材料沈積 及移除會被限於局部區域,亦即,圍繞鉸鏈。此外,在本 發明中’犧牲材料無須從鏡下方移除。因此,犧牲材料的 移除更加容易’且鏡板的上表面會維持平滑,允許反射表 面加入超平滑表面。 SLM由少數步驟製造,維持低製造成本及低複雜 度。在弟一基底的第一側中形成穴。平行地,在第二基底 -8- 200525272 (5) 的第一側上製造電極及可定址和控制電路。第一 一側接合至第二基底的第一側。這些側邊會相對 於第二基底上的電極會與電極將控制的鏡板處 係。第一基底會被薄化至預定的、所需的厚度, 倉虫刻’犧牲材料會被沈積於圍繞鉸鏈的區域中, 平坦化’沈積反射表面以遮蓋鉸鏈,藉由鈾刻 板,以及移除圍繞鉸鏈的犧牲層。 結果’可以容易地製造能夠取得高光學效率 S L Μ以可靠地及成本上有效地產生高品質影像。 【實施方式】 反射式空間光調變器(S L Μ ) 1 0 〇具有可偏 的陣列1 0 3。藉由在該鏡2 〇 2與對應的電極} 2 6 偏壓’可選擇性地偏轉個別鏡2〇2。每一鏡202 控制從光源反射至視頻顯示器之光。如此,控制 偏轉會允許撞擊該鏡2 〇 2之光於選擇的方向上反 而允許控制視頻顯示器上像素之出現。 空間光調變器槪述 圖】係顯示根據本發明的一實施例之SLM 般架構。所示之實施例具有三層。第一層是鏡層 有多個可偏轉的微鏡2 〇 2。在一較佳實施例中, ]〇3係由第一基底]〇5製造,在完成製造時,在 中,第一基底]05係例如單晶矽之單一材料。 基底的第 齊,以致 於適當關 鉸鏈會被 表面會被 以釋放鏡 及性能之 轉鏡202 之間施加 的偏轉會 鏡2 02的 射,並因 1 0 0 的一 1 03,具 微鏡陣列 S L Μ 1〇〇 200525272 (6) 第二層是具有多個用於控制微鏡2 02之電極1 2 6之電 極陣列104。每一電極126與微鏡2 02是相關連的並控制 該微鏡202的偏轉。尋址電路允許選取單一電極126,該 電極1 2 6係用於控制與其相關連之特定微鏡2 02。In addition, since the mirror plate and the hinge are made of single crystal silicon material in the preferred embodiment, the resulting hinge is stronger and more reliable and does not actually suffer from memory effects, fractures or fatigue along the grain boundary. Single crystal silicon substrates have significantly fewer micro-defects and fractures than other materials, especially deposited films. As a result, it is less likely to propagate grain boundary fractures (or proliferative microfractures) in the device. Moreover, the use of a single substrate in the present invention will minimize the use of multilayer film stacking and etching processes and techniques. In the present invention, the deposition and removal of the sacrificial material is limited to a local area, that is, around the hinge. Furthermore, the ' sacrifice material need not be removed from under the mirror in the present invention. Therefore, the removal of the sacrificial material is easier 'and the upper surface of the mirror plate will remain smooth, allowing the reflective surface to join a super smooth surface. SLM is manufactured in a few steps, maintaining low manufacturing costs and complexity. A hole is formed in the first side of the brother-base. In parallel, electrodes and addressable and control circuits are fabricated on the first side of the second substrate -8- 200525272 (5). The first side is bonded to the first side of the second substrate. These sides will be relative to the electrodes on the second substrate and will be in contact with the mirror plate that the electrodes will control. The first substrate will be thinned to a predetermined, desired thickness. The sacrifice sacrifice material will be deposited in the area surrounding the hinge, and the planarized deposition surface will be covered to cover the hinge by uranium stenciling and removal A sacrificial layer around the hinge. As a result, it is possible to easily manufacture high optical efficiency S L M to reliably and cost-effectively produce high-quality images. [Embodiment] A reflective spatial light modulator (SLM) 100 has a polarizable array 103. The individual mirrors 202 can be selectively deflected by biasing the mirrors 202 and the corresponding electrodes} 2 6. Each mirror 202 controls the light reflected from the light source to the video display. In this way, controlling the deflection will allow the light hitting the mirror 202 to control the appearance of pixels on the video display in the selected direction. Description of the spatial light modulator is a SLM-like architecture according to an embodiment of the present invention. The illustrated embodiment has three layers. The first layer is the mirror layer. There are multiple deflectable micromirrors 202. In a preferred embodiment, [03] is manufactured from the first substrate] 05, and upon completion of the manufacturing, the first substrate] 05 is a single material such as single crystal silicon. The alignment of the substrate is such that the hinges will be properly closed by the surface to release the deflection between the mirror and the rotating mirror 202. The mirror will shoot 20 02, and because of 1 0 1-1 03, it has a micromirror array. SL M 100200525272 (6) The second layer is an electrode array 104 having a plurality of electrodes 1 2 6 for controlling the micromirror 202. Each electrode 126 is associated with the micromirror 202 and controls the deflection of the micromirror 202. The addressing circuit allows the selection of a single electrode 126, which is used to control a particular micromirror 202 associated with it.
第三層是控制電路1 0 6的層。此控制電路1 〇 6具有尋 址電路,允許控制電路1 0 6控制施加至被選取的電極1 2 6 之電壓。這會允許控制電路1 0 6經由電極1 2 6來控制鏡陣 列1 0 3中的鏡2 0 2之偏轉。典型上,控制電路1 〇 6也包含 顯示控制1 〇 8、線記憶體緩衝器1 1 0、脈衝寬度調變陣列 ]1 2、及用於視頻訊號1 2 0及繪圖訊號1 2 2之輸入。在某 些實施例中,微控制器1 1 4、光控制電路1 1 6、及快閃記 憶體1 1 8可以是連接至控制電路1 06之外部元件、或是包 含於控制電路1 〇 6中。在不同的實施例中,上述所列之控 制電路1 06的某些構件可以不存在、可以是在分別的基底 上及連接至控制電路1 〇 6、或是其它增加的元件可以存在 以作爲控制電路1 〇 6的部份或連接至控制電路1 〇 6。 在一實施例中,在單一第二基底107上,使用半導體 製造技術,製造第二層1〇4及第三層106。亦即,第二層 104無須分開且在第三層106上方。然而,「層」一詞係 有助於槪念化空間光調變器I 〇〇的不同構件。舉例而言, 在一實施例中,電極1 2 6的第二層1 〇4係製於電制電路 1 06的第三層的頂部上,二者均製於單一第二基底]07 上。亦即,在一貫施例中’電極]2 6、以及顯示控制 1 0 8、線記憶體緩衝器Π 0、和脈衝寬度調變陣列]1 2均 - 10- 200525272 (7) 製於單一基底上。相較於顯示控制1 〇 8、線記憶體緩衝器 ]1 〇、及脈衝寬度調變陣列1 1 2製於分別的基底上之傳統 的液晶顯示裝置,控制電路I 〇 6的數個功能元件整合於相 同基底上會提供增進的資料傳送率之優點。此外,電極陣 列1 〇 4的第二層及控制電路〗〇 6的第三層製於單一基底 1 0 7上會提供簡單及便宜的製造、以及輕巧的最終產品之 優點。The third layer is the layer of the control circuit 106. This control circuit 106 has an addressing circuit which allows the control circuit 106 to control the voltage applied to the selected electrode 1 2 6. This would allow the control circuit 106 to control the deflection of the mirror 202 in the mirror array 103 via the electrodes 1226. Typically, the control circuit 1 06 also includes display control 1 08, line memory buffer 1 1 0, pulse width modulation array] 1 2 and inputs for video signals 1 2 0 and graphics signals 1 2 2 . In some embodiments, the microcontroller 1 1 4, the light control circuit 1 1 6, and the flash memory 1 1 8 may be external components connected to the control circuit 10 06, or may be included in the control circuit 1 06 in. In different embodiments, certain components of the control circuit 106 listed above may not exist, may be on separate substrates and connected to the control circuit 106, or other added components may exist as control A part of the circuit 1 06 may be connected to the control circuit 1 06. In one embodiment, the second layer 104 and the third layer 106 are fabricated on a single second substrate 107 using semiconductor manufacturing technology. That is, the second layer 104 need not be separated and above the third layer 106. However, the term "layer" helps to memorize the different components of the spatial light modulator IOO. For example, in one embodiment, the second layer 104 of the electrode 12 is fabricated on top of the third layer of the electrical circuit 106, and both are fabricated on a single second substrate] 07. That is, in the conventional embodiment, 'electrode] 2 6 and display control 108, line memory buffer Π 0, and pulse width modulation array] 12 2-10- 200525272 (7) made on a single substrate on. Compared with the display control 1 08, the line memory buffer] 1 0, and the pulse width modulation array 1 12 are conventional liquid crystal display devices made on separate substrates, the control circuit 10 has several functional elements. Integration on the same substrate provides the advantage of increased data transfer rates. In addition, the second layer of the electrode array 104 and the third layer of the control circuit 106 are fabricated on a single substrate 107, which provides the advantages of simple and inexpensive manufacturing, and a lightweight end product.
在製造層103及107之後,它們會被接合在一起以形 成SLM〗00。具有鏡陣列1〇3之第一層會遮蓋總稱107之 第二及第三層104和106。在鏡陣列1〇3中的鏡202之下 的層會決定第一層1 0 3之下有多少空間用於電極1 2 6、及 尋址和控制電路1 0 6。在鏡陣列1 〇 3中微鏡2 0 2之下具有 有限的空間以適用於電極1 2 6和適用於形成顯示控制 ]〇 8、線記憶體緩衝器 Η 〇、及脈衝寬度調變陣列1 1 2之 電子元件。本發明使用之製造技術允許產生小特徵尺寸, 舉例而言,允許製造〇. 1 8微米的特徵之製程,以及允許 製造0 ·] 3微米或更小的特徵之製程。傳統的空間光調變 器係由不允許如此小的特徵之製程所製造。典型上,傳統 的空間光調變器係由限制特徵尺寸於約1微米或更大之特 徵尺寸的製程所製造。如此,本發明允許在鏡陣列1 0 3的 微鏡之下的有限區域中製造更多例如電晶體等電路裝置。 這允許例如顯示控制I 〇 8、線記憶體緩衝器1 ] 〇、及脈衝 寬度調變陣列】]2等項目與電極]2 6集成於相同基底上。 在與電極]2 6相同的基底]0 7上包含此控制電路丨〇 6,會 -11 - 200525272 (8) 增進S L Μ 1 0 0的性能。這允許在微鏡陣列1 0 3中的微鏡 之下有限的面積中,將例如顯示控制1 0 8、線記憶體緩衝 器1 ] 〇、及脈衝寬度調變陣列1 1 2等更多項目與電極1 2 6 集成於相同基底上。在與電極126相同的基底107上包含 此控制電路]0 6,會增進S L Μ ] 0 0的性能。在其它實施例 中,電極1 2 6與控制電路的元件之不同組合可以製於不同 基底上及電連接。After the layers 103 and 107 are manufactured, they are joined together to form SLM 00. The first layer with the mirror array 103 covers the second and third layers 104 and 106, collectively 107. The layers below the mirror 202 in the mirror array 103 determine how much space under the first layer 103 is used for the electrodes 12 6 and the addressing and control circuit 106. There is limited space under the micromirror 2 0 2 in the mirror array 1 0 3 for the electrodes 1 2 6 and for the formation of display control] 0 8, the line memory buffer Η 〇, and the pulse width modulation array 1 1 2 of the electronic components. The manufacturing technology used in the present invention allows small feature sizes to be produced, for example, a process that allows 0.18 micron features to be manufactured, and a process that allows 0 to 3 micron or smaller features. Traditional spatial light modulators are manufactured by processes that do not allow such small features. Typically, conventional spatial light modulators are manufactured by processes that restrict feature sizes to feature sizes of about 1 micron or greater. As such, the present invention allows more circuit devices such as transistors to be manufactured in a limited area under the micromirrors of the mirror array 103. This allows items such as display control I 08, line memory buffer 1] 0, and pulse width modulation array]] 2 and electrodes] 2 6 to be integrated on the same substrate. The inclusion of this control circuit on the same substrate] 0 7 as the electrode 2 6 will improve the performance of the SL 10 100. This allows more items such as display control 108, line memory buffer 1] 0, and pulse width modulation array 1 1 2 in the limited area under the micromirror in the micromirror array 103. Integrated with the electrodes 1 2 6 on the same substrate. Including this control circuit on the same substrate 107 as the electrode 126 will improve the performance of S L M] 0 0. In other embodiments, different combinations of the electrodes 126 and the components of the control circuit can be made on different substrates and electrically connected.
在其它實施例中,電極1 2 6與控制電路的元件之不同 組合可以製於不同基底上及電連接。 鏡:In other embodiments, different combinations of the electrodes 126 and the components of the control circuit can be made on different substrates and electrically connected. mirror:
圖2是單一微鏡202的一實施例之立體視圖,圖2b 是圖2a中所示的微鏡202之角落2 3 6的更詳細立體視 圖。在一較佳實施例中,微鏡2 0 2包含至少一鏡板2 0 4、 鉸鏈206、連接器2]6及反射表面203。在另一實施例 中’微鏡2 0 2又包含間隔器支撐框2 1 0,用於支撐鏡板、 鉸鏈206、反射表面203及2]6。較佳地,鏡板204'鉸 鏈2 〇 6、連接器2〗6及間隔器支撐框2 1 0係由例如單晶矽 等單一材料的晶圓所製成。如此,在此實施例之圖1中所 示的第一基底1 05係單晶矽晶圓。從單材料晶圓製造微鏡 2 0 2會大幅地簡化鏡2 〇 2的製造。此外,單晶矽可以被拋 光以產生平滑鏡面,此平滑鏡面之表面粗糙度在量値等級 上比沈積膜之表面粗糙度更加平滑。由單晶矽製成的鏡 2〇2在機械上是堅硬的,防止不必要的鏡表面彎曲或捲 _ 12- 200525272 (9)Fig. 2 is a perspective view of an embodiment of a single micromirror 202, and Fig. 2b is a more detailed perspective view of the corner 2 3 6 of the micromirror 202 shown in Fig. 2a. In a preferred embodiment, the micromirror 202 includes at least one mirror plate 204, a hinge 206, a connector 2] 6, and a reflective surface 203. In another embodiment, the 'micromirror 202' further includes a spacer support frame 21, for supporting the mirror plate, the hinge 206, the reflective surfaces 203, and 2] 6. Preferably, the hinge 204 ′ of the mirror plate 204, the connector 2′6, and the spacer support frame 2 10 are made of a single material wafer such as single crystal silicon. As such, the first substrate 105 series single crystal silicon wafer shown in FIG. 1 in this embodiment. Fabricating a micromirror 200 from a single material wafer will greatly simplify the fabrication of the mirror 200. In addition, single crystal silicon can be polished to produce a smooth mirror surface. The surface roughness of this smooth mirror surface is smoother than the surface roughness of the deposited film. The mirror 202 made of monocrystalline silicon is mechanically rigid, preventing unnecessary mirror surfaces from bending or rolling _ 12- 200525272 (9)
曲,以及,由單晶矽製成的鉸鏈較強固、更可靠並實質上 未遭受微鏡陣列中所使用的很多其它材料製成的鉸鏈所共 有之記憶影響、延著晶界之斷裂等不利影響。在其它實施 例中,可以使用其它材料取代單晶矽。一種可能是使用其 它型式的矽(例如多晶矽、或非晶矽)於微鏡2 02,或 是,完全從金屬(例如鋁合金、或鎢合金)中製造鏡 202。而且,在本發明中使用單晶可以避免使用多層薄膜 堆疊及蝕刻製程和技術。 如圖2a-b、3、4a-b、7a及8所示及如上所述,微鏡 2 02具有鏡板204。鏡板204是微鏡2 02的部份,其以連 接器216耦合至鉸鏈206及藉由施加偏壓於鏡2 02與對應 的電極1 2 6之間而被選擇性地偏轉。圖3中所示的實施例 中之鏡板2〇4包含三角部份204a4及204b。在圖12a、And hinges made of monocrystalline silicon are stronger, more reliable, and virtually unaffected by the memory effects common to hinges made of many other materials used in micromirror arrays, and fractures along grain boundaries. influences. In other embodiments, other materials may be used instead of single crystal silicon. One possibility is to use other types of silicon (such as polycrystalline silicon or amorphous silicon) in the micromirror 202, or to make the mirror 202 entirely from a metal (such as an aluminum alloy or a tungsten alloy). Moreover, the use of single crystals in the present invention can avoid the use of multilayer film stacking and etching processes and techniques. As shown in FIGS. 2a-b, 3, 4a-b, 7a, and 8 and as described above, the micromirror 202 has a mirror plate 204. The mirror plate 204 is part of the micromirror 202, which is coupled to the hinge 206 with a connector 216 and is selectively deflected by applying a bias voltage between the mirror 202 and the corresponding electrode 1 2 6. The mirror plate 204 in the embodiment shown in Fig. 3 includes triangular portions 204a4 and 204b. In Figure 12a,
1 2b及13所示的實施例中,鏡板2 04之形狀爲實質方 形,且對於2 2 5微米平方之近似面積,幾乎爲1 5微米乘 ]5微米,但是,其它形狀及尺寸也是可能的。鏡板204 具有上表面205及下表面201。上表面205較佳地爲高度 平滑表面,平均粗糙度小於2埃均方根且較佳地構成微鏡 204的表面積之大部份。在鏡板204的上表面205上及在 鉸鏈2 0 6的部份上方,沈積例如鋁或任何其它高度反射材 料之反射表面203。較佳地此反射表面2 03具有3 00人或 更小的厚度。反射表面或材料2 0 3的薄度確保其繼承鏡板 2 04的上表面2 0 5之平滑表面。此反射表面2 03的面積大 於鏡板2 04的上表面2 0 5的面積,以及,以鏡板2 04的偏 -13- 200525272 (10)In the embodiments shown in Figs. 12b and 13, the shape of the mirror plate 204 is substantially square, and for an approximate area of 25 microns square, it is almost 15 microns by 5 microns, but other shapes and sizes are also possible . The mirror plate 204 has an upper surface 205 and a lower surface 201. The upper surface 205 is preferably a highly smooth surface with an average roughness of less than 2 angstroms and preferably constitutes a large portion of the surface area of the micromirror 204. On the upper surface 205 of the mirror plate 204 and above the portion of the hinge 206, a reflective surface 203 such as aluminum or any other highly reflective material is deposited. Preferably, the reflective surface 203 has a thickness of 300 people or less. The thinness of the reflective surface or material 203 ensures that it inherits the smooth surface of the upper surface 205 of the mirror plate 204. The area of this reflecting surface 20 03 is larger than the area of the upper surface 250 of the mirror plate 04 and the deviation of the mirror plate 04 is -13- 200525272 (10)
轉所決定之角度’反射來自光源的光。注意,扭力彈簧鉸 鏈206貫質上形成於鏡板204的上表面之下,且實質上由 沈積於上表面205上及鉸鏈2〇6部份之上方的反射表面 2 〇 3所隱蔽。圖2 a與3之間的差異在於圖2 a顯示之鏡板 2 04具有加至上表面2 05且實質上隱蔽鉸鏈2 0 6的反射表 面203,而圖3顯示之鏡板204未具有反射表面203,因 此,露出鉸鏈206。由於鉸鏈206及鏡板204是在相同基 底105中,且如圖7a及7b所示,鉸鏈206的中心高度 796與鏡板204的中心高度795或797實質上是共平面 的,當鏡2 02繞著鉸鏈2 06的縱軸旋轉時,不會有平移移 動或位移。由於沒有平移位移,所以,鏡板2 04與間隔器 支撐框2 1 0的支撐間隔器壁之間的間隙僅受限於製造技術 及製程,典型上小於 〇 · 1。鏡板2 04的緊密間隔與鉸鏈 2 0 6實質上隱蔽在反射表面2 0 3之下,允許微鏡陣列1 〇 3 有高塡充比、增加的對比、最小的光散射及繞射、以及實 質消除通過微鏡陣列1 〇 3的光撞擊在第二基底]0 7上的電 路。 如圖 23-1>、3、43-13、73、8、]23、1213及]3,鏡板 2〇4藉由連接器2]6連接至扭力彈簧鉸鏈2 0 6。扭力彈簧 鉸鏈2 0 6連接至間隔器支撐框2 ] 0,支撐框2 1 0將扭力彈 簧206、連接器2]6、及鏡板204固持在原位。鉸鏈206 包含第一臂206a及第二臂206b。如圖3及]3所示,每 一臂206a及206b的一端連接至間隔器支撐框2]0,而另 一端連接至連接器2 1 6。在另一實施例中,可以在鏡板 -14 - 200525272 (11)The angle determined by the rotation 'reflects the light from the light source. Note that the torsion spring hinge 206 is formed below the upper surface of the mirror plate 204 and is substantially hidden by the reflective surface 2 0 3 deposited on the upper surface 205 and above the portion 206 of the hinge. The difference between Figs. 2a and 3 is that the mirror plate 204 shown in Fig. 2a has a reflective surface 203 added to the upper surface 2 05 and substantially conceals the hinge 206, while the mirror plate 204 shown in Fig. 3 does not have a reflective surface 203. Therefore, the hinge 206 is exposed. Since the hinge 206 and the mirror plate 204 are in the same base 105, and as shown in FIGS. 7a and 7b, the center height 796 of the hinge 206 and the center height 795 or 797 of the mirror plate 204 are substantially coplanar. When the longitudinal axis of the hinge 206 is rotated, there is no translational movement or displacement. Because there is no translational displacement, the gap between the mirror plate 20 04 and the spacer wall of the spacer support frame 210 is limited only by the manufacturing technology and process, and is typically less than 〇 · 1. The tight spacing of the mirror plate 04 and the hinge 2 06 are substantially hidden under the reflective surface 230, allowing the micromirror array 10 to have a high fill ratio, increased contrast, minimal light scattering and diffraction, and substantial Eliminate the light passing through the micromirror array 103 from impacting the circuit on the second substrate]. As shown in Figure 23-1>, 3, 43-13, 73, 8, 23], 1213, and 3], the mirror plate 204 is connected to the torsion spring hinge 206 through the connector 2] 6. The torsion spring hinge 2 0 6 is connected to the spacer support frame 2] 0, and the support frame 2 1 0 holds the torsion spring 206, the connector 2] 6 and the mirror plate 204 in place. The hinge 206 includes a first arm 206a and a second arm 206b. As shown in FIGS. 3 and 3, one end of each arm 206a and 206b is connected to the spacer support frame 2] 0, and the other end is connected to the connector 2 1 6. In another embodiment, the mirror plate -14-200525272 (11)
2 04、鉸鏈 2 0 6、及間隔器支撐框 201之間使用其它彈 簧、鉸鏈及連接設計。如同圖3及4 a淸楚所示,扭力鉸 鏈2 0 6較佳地相對於間隔器支撐壁2 1 0而在對角線上定向 (例如,4 5度角),並將鏡板2 04分成二部份、或複數 側邊:第一側204a及第二側204b。如圖7b所示,二電 極126與鏡202、用於第一側204a的一電極126a及用於 第二側 2 04b之一電極126b相關連。這允許側204a或 204b附著至電極126a或126b之一之下並向下樞轉以及 提供寬廣範圍的角度運動。當藉由施加電壓於鏡202與對 應的電極1 26之間以將例如靜電力等力量施加至鏡板204 時,扭力彈簧2 06允許鏡板2〇4繞著鉸鏈206的縱軸、相 對於間隔器支撐框2 1 0旋轉。此旋轉產生角度偏轉以在選 取方向上將光反射。由於鉸鏈2 06及鏡板204是在相同基 底105中,以及,如圖7a及7b所示,鉸鏈206的中心高 度796與鏡板2〇4的中心高度7 95或797實質上共平面, 所以’鏡2 0 2會繞著鉸鏈2 0 6純旋轉地移動而無平移位 移。在一實施例中,如圖7a及8所示,扭力彈簧鉸鏈 206具有寬度222,寬度222小於鉸鏈206的深度223 (垂直於鏡板2 04之上表面2 0 5 )。鉸鏈2 0 6的寬度222 較佳地在約0 · 1 2微米至約0.2微米之間,且深度較佳地 在約0.2微米與約〇 . 3微米之間。 如圖 2 a - b、3、4 a - b、6、及7 a所示,間隔器支撐框 2 ] 〇將板2 〇 4定位於電極]2 6及尋址電路上方的預定距 離處,以致於鏡板204可以向下偏轉至預定角度。如圖 -15- k 200525272 (12) 2a、4a、] 2a及13所示,間隔器支撐框2] 〇包含間隔器 支撐壁’間隔器支撐壁較佳地由相同的第一基底]〇5形成 並較佳地正交定位。這些壁有助於界定間隔器支撐框2 1 〇 的高度。根據鏡板2 04與電極126之間所需的分離、以及 電極的拓蹼設計,選擇間隔器支撐框2 1 0的高度。較大的 局度允許鏡板2 04更多偏轉、以及更高的偏轉角度。較大 的偏轉角度通常提供更高的對比。在一實施例中,鏡板 2 〇4的偏轉角度是丨2度。在較佳實施例中,假使被供予 足夠的間隔及驅動電壓時,鏡板2 04可以旋轉多達9 0 度。間隔器支撐框2 1 0也提供支撐給鉸鏈2 0 6以及使鏡板 2 0 4與鏡陣列1 〇 3中其它的鏡板2 0 4相間隔。間隔器支撐 框2 1 0具有間隔器壁寬度2 1 2,當加上鏡板2 0 4與支撐框 2 1 0之間的間隙時,間隔器壁寬度2 ] 2實質上等於相鄰的 微鏡2 0 2之間的距離。_在一實施例中,間隔器壁寬度2 ! 2 是]微米或更少。在一較佳實施例中,間隔器壁寬度2 1 2 是0.5微米或更少。這會將這些鏡板2 04設置成緊密地在 一起以增加鏡陣列1 0 3的塡充比。 在某些實施例中,微鏡202包含元件405a或405b, 當鏡板2 0 4向下偏轉至預定角度時,元件4 〇 5 a或4 〇 5 b會 停止鏡板 2 04的偏轉。典型上,這些元件包含止動件 405a或405b以及著陸尖端7]〇a或710b。如圖4a、6、 7a、8、13及]5所示,當鏡表面204偏轉時,在鏡板204 上的止動件4 0 5 a或4 0 5 b會接觸著陸尖端7 1 0 ( 7 ] 0 a或 7 1 Ob )。當此發生時,鏡板2〇4不會進一步偏轉。止動件 -16 - 200525272 (13)2 04, hinges 206, and spacer support frame 201 use other springs, hinges and connection design. As shown in FIGS. 3 and 4a, the torsional hinge 2 0 6 is preferably oriented diagonally with respect to the spacer support wall 2 1 0 (for example, a 45 degree angle) and divides the mirror plate 2 04 into two Partial or plural sides: first side 204a and second side 204b. As shown in FIG. 7b, the two electrodes 126 are associated with the mirror 202, an electrode 126a for the first side 204a, and an electrode 126b for the second side 204b. This allows the side 204a or 204b to attach under one of the electrodes 126a or 126b and pivot downwards as well as provide a wide range of angular motion. When a voltage is applied between the mirror 202 and the corresponding electrode 126 to apply a force such as an electrostatic force to the mirror plate 204, the torsion spring 206 allows the mirror plate 204 to surround the longitudinal axis of the hinge 206 with respect to the spacer The support frame 2 10 rotates. This rotation creates an angular deflection to reflect light in the selected direction. Since the hinge 206 and the mirror plate 204 are in the same base 105, and as shown in FIGS. 7a and 7b, the center height 796 of the hinge 206 and the center height 7 95 or 797 of the mirror plate 204 are substantially coplanar, so 2 0 2 will move purely around the hinge 2 6 without translational displacement. In one embodiment, as shown in Figs. 7a and 8, the torsion spring hinge 206 has a width 222, which is smaller than the depth 223 of the hinge 206 (perpendicular to the upper surface 2 05 of the mirror plate 204). The width 222 of the hinge 206 is preferably between about 0.12 micrometers and about 0.2 micrometers, and the depth is preferably between about 0.2 micrometers and about 0.3 micrometers. As shown in Figures 2 a-b, 3, 4 a-b, 6, and 7 a, the spacer support frame 2] 〇 position the plate 2 〇4 at the electrode] 2 6 and a predetermined distance above the addressing circuit, So that the mirror plate 204 can be deflected downward to a predetermined angle. As shown in Figure-15-k 200525272 (12) 2a, 4a, 2a and 13, the spacer support frame 2] 〇 Includes the spacer support wall 'The spacer support wall is preferably made of the same first substrate] 〇5 Formed and preferably orthogonally positioned. These walls help to define the height of the spacer support frame 21. According to the required separation between the mirror plate 204 and the electrode 126, and the design of the electrode web, the height of the spacer support frame 210 is selected. The larger localization allows more deflection of the mirror plate 204 and a higher deflection angle. Larger deflection angles usually provide higher contrast. In one embodiment, the deflection angle of the mirror plate 204 is 2 degrees. In the preferred embodiment, the mirror plate 204 can be rotated up to 90 degrees if it is supplied with sufficient intervals and driving voltages. The spacer support frame 2 10 also provides support for the hinge 206 and spaced the mirror plate 204 from the other mirror plate 204 of the mirror array 103. The spacer support frame 2 1 0 has a spacer wall width 2 1 2. When a gap between the mirror plate 2 0 4 and the support frame 2 1 0 is added, the spacer wall width 2] 2 is substantially equal to the adjacent micromirror. The distance between 2 0 2. _ In one embodiment, the spacer wall width 2! 2 is] micrometers or less. In a preferred embodiment, the spacer wall width 2 1 2 is 0.5 microns or less. This will set these mirror plates 204 close together to increase the fill ratio of the mirror array 103. In some embodiments, the micromirror 202 includes an element 405a or 405b, and when the mirror plate 204 is deflected downward to a predetermined angle, the element 405a or 400b stops the deflection of the mirror plate 204. Typically, these elements include a stop 405a or 405b and a landing tip 7a or 710b. As shown in Figures 4a, 6, 7a, 8, 13 and 5], when the mirror surface 204 is deflected, the stopper 4 0 5 a or 4 0 5 b on the mirror plate 204 will contact the landing tip 7 1 0 (7 ] 0 a or 7 1 Ob). When this happens, the mirror plate 204 will not be further deflected. Stopper -16-200525272 (13)
405a或405b及著陸尖端7]0a或7 1〇b有數種可能的配 置。在圖4a、6、7a、8、]3及]5中所示的實施例中,止 動件是圓柱或機械止動件4〇5a或4〇5b’附者至鏡板2〇4 的下表面201,著陸尖端710是第二基底上對應的圓 形區。在圖7 a、7 b及8中所示的實施例中’著陸尖端 7 1 0a及7 1 Ob電連接至間隔器支撐框2 1 0,因此,相對於 止動件405a或405b,具有零電壓差,以防止止動件405a 或 4 0 5 b分別黏著或熔接至著陸尖端 71〇a或710b。如 此,當鏡板2 04相對於間隔器支撐框2 1 0旋轉至預定角度 (由機械止動件405 a或405b的長度及位置所決定)之外 時,機械止動件4 0 5 a或40 5 b將與著陸尖端710a或710b 分別進入實體接觸,以及,防止鏡板2 04任何進一步的旋 轉。There are several possible configurations for the 405a or 405b and the land-tip 7] 0a or 7 10b. In the embodiments shown in FIGS. 4a, 6, 7a, 8,] 3 and] 5, the stopper is a cylindrical or mechanical stopper 405a or 405b 'attached to the lower side of the mirror plate 204 The surface 201 and the landing tip 710 are corresponding circular regions on the second substrate. In the embodiments shown in Figs. 7a, 7b and 8, the 'landing tips 7 1 0a and 7 1 Ob are electrically connected to the spacer support frame 2 1 0, and therefore have zero relative to the stopper 405a or 405b. Voltage difference to prevent the stopper 405a or 40b from sticking or welding to the landing tip 71a or 710b, respectively. In this way, when the mirror plate 2 04 is rotated relative to the spacer support frame 2 10 beyond a predetermined angle (determined by the length and position of the mechanical stopper 405 a or 405b), the mechanical stopper 4 0 5 a or 40 5 b will come into physical contact with the landed tip 710a or 710b, respectively, and prevent any further rotation of the mirror plate 204.
在較佳實施例中,止動件 4〇5a或405b由第一基底 1 0 5及由與鏡板2 0 4、鉸鏈2 0 6、連接器2 1 6和間隔器支 撐框2 ] 0相同的材料所製成。著陸尖端7 1 〇 a或7 ] 〇 b也較 佳地由同於止動件4〇5a或405b、鉸鏈206、連接器216 及間隔器支撐框2 ] 0的材料所製成。在材料單晶矽之實施 例中,止動件4〇5a或405b以及著陸尖端7]〇3或7]〇b因 而由具有長的作用壽命之硬材料製成,這允許鏡陣列! 03 維持長時間。此外,由於單晶砂是硬材料,所以,止動件 4〇5a或405b及著陸尖端7]0a或7]〇b可以由小面積製 成’在此小面積中,止動件4 5 0 a或4 5 0 b會分別接觸著陸 尖端7 ] 0 a或7 1 0 b,大幅降低黏著力及允許鏡板2 〇 4自由 -17 - 200525272 (14) 地偏轉。而且’此思指止動件 4 0 5 a或 4 0 5 b及 7 ] 0 a或7 1 0 b維持在相同的電位,防止因止動件 4〇5b及著陸尖端710a或710b在不同電位時經 電荷注入處理而發生之黏著。本發明不限於停止 2 0 4的偏轉之元件或技術。可以使用此技藝中所 何元件及技術。 圖4a是立體視圖,顯示單一微鏡202之下 支撐壁2 1 0、鏡板2 0 4 (包含側2 0 4 a和2 0 4 b並具 面205和下表面201)、鉸鏈206、連接器216和 動件4 0 5 a和4 0 5 b。圖4 b係圖4 a中所示的微鏡 2 3 7的更詳細立體視圖。 圖5是立體視圖,顯示具有微鏡202-1至202 鏡陣列1 0 3的頂部及側邊。雖然圖5顯示具有三列 的微鏡陣列1 〇3,總共九個微鏡2 02,但是,其它 微鏡陣列1 0 3也是可能的。典型上,每一微鏡2 0 2 視頻顯示器上的像素。如此,具有更多微鏡2 02的 列會提供具有更多像素的視頻顯示器。 如圖5所示,微鏡陣列]〇 3的表面具有大的塡 亦即,微鏡陣列1 〇 3的表面的大部份是由微鏡2 0 2 表面2 0 3製成。微鏡陣列】〇 3的表面之非常小的部 反射的。如圖5所示,微鏡陣列】〇 3的表面之非反 是在微鏡2 〇 2的反射表面2 〇 3之間的區域。舉例而 202 -1與2 02 -2之間的區域的寬度是由間隔器支撐 2]2與微鏡2 0 2 ·]與2 02 - 2的鏡板2〇4與間隔器 ί陸尖端 4 0 5 a 或 i熔接或 .述鏡板 1知的任 丨,包含 有上表 機械止 之角落 -9之微 和三行 尺寸的 對應於 較大陣 充比。 的反射 份是非 射部份 言,鏡 壁寬度 支撐壁 -18 - 200525272 (15)In a preferred embodiment, the stopper 405a or 405b is formed by the first base 105 and the same as the mirror plate 204, the hinge 206, the connector 2 16 and the spacer support frame 2] 0. Made of materials. The landing tip 7 1a or 7] b is also preferably made of the same material as the stopper 4a or 405b, the hinge 206, the connector 216, and the spacer support frame 2] 0. In the embodiment of the material monocrystalline silicon, the stopper 405a or 405b and the landed tip 7] 〇3 or 7] 〇b are therefore made of a hard material with a long working life, which allows a mirror array! 03 for a long time. In addition, since the single crystal sand is a hard material, the stopper 405a or 405b and the landing land 7] 0a or 7] 〇b can be made of a small area. In this small area, the stopper 4 5 0 a or 4 5 0 b will touch the landing tip 7] 0 a or 7 1 0 b, respectively, greatly reducing the adhesive force and allowing the mirror plate 2 to freely deflect -17-200525272 (14). And 'this thinking means that the stopper 4 5 a or 4 0 5 b and 7] 0 a or 7 1 0 b is maintained at the same potential, preventing the stopper 405b and the landing land tip 710a or 710b from being at different potentials Adhesion that occurs after charge injection. The invention is not limited to elements or techniques that stop the deflection of 204. You can use any of the components and techniques in this technique. Figure 4a is a perspective view showing the supporting wall 2 1 0, the mirror plate 2 4 (including the side 2 4 a and 2 0 4 b, with the surface 205 and the lower surface 201), the hinge 206, and the connector under the single micromirror 202 216 and moving parts 4 5 a and 4 5 b. Fig. 4b is a more detailed perspective view of the micromirror 2 3 7 shown in Fig. 4a. FIG. 5 is a perspective view showing the top and sides with the micromirrors 202-1 to 202 mirror array 103. Although FIG. 5 shows a micromirror array 103 having three columns for a total of nine micromirrors 202, other micromirror arrays 103 are also possible. Typically, each micromirror is a pixel on a 202 video display. As such, a column with more micromirrors 202 will provide a video display with more pixels. As shown in FIG. 5, the surface of the micromirror array] 03 has a large 塡, that is, most of the surface of the micromirror array 103 is made of the micromirror 2 02 surface 230. Micromirror array] Very small portions of the surface of the 3 are reflective. As shown in FIG. 5, the non-reflection of the surface of the micromirror array] is a region between the reflective surfaces of the micromirror 202. For example, the width of the area between 202 -1 and 2 02 -2 is supported by the spacer 2] 2 and micromirror 2 0 2 ·] and 2 02-2 mirror plate 204 and the spacer 陆 LU tip 4 0 5 a or i welding or any of the above-mentioned mirror plate 1, including the mechanical stop corner -9 of the table above and the three rows corresponding to a larger array charge ratio. The reflection part is the non-radiation part. The width of the mirror wall and the supporting wall -18-200525272 (15)
2 ] 〇之間的間隙之寬度總合所決定。注意,雖然單一鏡 202如圖2a、2b' 3、4a及4b所示般被描述成具有其自 己的間隔器支撐框210,但是,典型上,在例如鏡2 02-1 與202 -2等鏡與鏡之間,未具有二分開的鄰接間隔器壁 2 ] 〇。然而,在鏡 202-1與 20-2之間典型上會有支撐框 21〇的一實體間隔器壁。由於在偏轉鏡板204時無平移位 移’所以,間隙與間隔器壁寬度2 1 2可以製成與製造技術 所支援的特徵尺寸一般小。因此,在一實施例中,間隙是 〇 · 2微米,在另一實施例中,間隙是〇. I 3微米或更小。由 於半導體製造技術允許更小的尺寸,所以,間隔器壁2 1 0 與間隙的尺寸可以降低而允許更高的塡充比。本發明的實 施例允許高塡充比。在較佳實施例中,塡充比是96%或更 局。2] The total width of the gap between 〇 is determined. Note that although the single mirror 202 is described as having its own spacer support frame 210 as shown in FIGS. 2a, 2b'3, 4a, and 4b, typically, for example, in the mirrors 2 02-1 and 202-2, etc. Between the mirrors, there are no two separate adjacent spacer walls 2]. However, there will typically be a solid spacer wall of the support frame 21 between the mirrors 202-1 and 20-2. Since there is no translational displacement when the mirror plate 204 is deflected, the gap and the spacer wall width 2 1 2 can be made and the feature size supported by the manufacturing technology is generally small. Therefore, in one embodiment, the gap is 0.2 μm, and in another embodiment, the gap is 0.1 3 μm or less. Since the semiconductor manufacturing technology allows a smaller size, the size of the spacer wall 2 10 and the gap can be reduced to allow a higher charge ratio. Embodiments of the present invention allow high charge ratios. In the preferred embodiment, the charge ratio is 96% or more.
圖6是立體視圖,顯示具有九個微鏡的微鏡陣列1 03 之底部及側邊。如圖6所示,微鏡2 0 2的間隔器支撐框 2 1 0的支撐壁界定鏡板2 0 4之下的穴。這些穴提供空間給 鏡板204以向下偏轉,也允許鏡板204之下的大區域用於 配置具有電極]26之第二層1 (Μ,以及/或用於具有控制 電路106的第三層。圖6也顯示鏡板2〇4 (包含側邊2 04 a 和2 04b )的下表面201,及間隔器支撐框210、扭力彈簧 鉸鏈206、連接器2]6、及止動件405a和405b的底部。 如圖5及6所示,正交於鏡板2 〇4之非常少的光可以 通過微鏡陣列1 〇 3之外而到達微鏡陣列I 〇 3下方的任何電 極或控制電路]〇 6。這是因爲間隔器支撐框2 1 0及鏡板 -19- 200525272 (16) 2 0 4的上表面2 0 5上和鉸鏈2 0 6的部份之上方的反 2 〇 3幾乎完全遮蓋微鏡陣列1 0 3之下的電路。而且 間隔器支撐框2] 0會將鏡板2 04與微鏡陣列1〇3之 路分開,所以,以非垂直角度行進至鏡板2 04並通 2 04之外的光容易撞擊間隔器支撐框2 1 0的壁以及 達微鏡陣列1 03之下。由於入射於微鏡陣列1 03之 光會到達電路,所以,SLM 100可以避免與強光撞 有關的問題。這些問題包含入射光將電路加熱,以 光子使電路元件充電,這二者均會造成電路固障。 圖12a係根據本發明的另一實施例之微鏡202 視圖,圖1 2 b係微鏡2 0 2的角落2 3 8之更詳細的 圖。本實施例中的扭力鉸鏈2 06與間隔器支提框2 隔器支撐壁平行。在鏡板204與對應的電極126之 偏壓,會使鏡板204選擇性地朝向電極偏轉。圖1 : 示的實施例比具有對角鉸鏈206之圖2a和2b中所 2 02提供更小的角運動的總範圍,此範圍係始於相 壁高度。然而,如同圖2a及2b中所示的實施例 ]2 a和1 2 b中所示的實施例中的鉸鏈2 0 6是在鏡板 上表面下方且由反射表面2 03隱蔽,造成具有高塡 高光學效率、高對比、低的光繞射和散射以及可靠 上有效的性能之S L Μ ] 0 0。圖1 2 b是微鏡2 0 2的角 詳細的立體視圖,並顯示鏡板2 04、鉸鏈2 06、間 撐框2 ] 0的支撐壁及反射表面2 0 3。圖]3顯示單 2 02的下側,其包含鉸鏈 2 0 6、連接器 2] 6及. 射表面 ,由於 下的電 至鏡板 不會到 少量強 擊電路 及入射 的立體 立體視 I 0的間 間施加 2a中所 示的鏡 同支撐 般,圖 2 0 4的 充比、 和成本 落之更 隔器支 一微鏡 止動件 -20- 200525272 (17) 4 〇 5 a。在其它實施例中,鉸鏈2 0 6可以實質上平行於鏡板 204的一側以及仍然設置成將鏡板2 04分成二部份4〇5a 和4 0 5 b。圖1 4和1 5提供如圖1 2 a、] 2 b和1 3中所示的 多微鏡202所組成之微鏡陣列的立體視圖。 空間光調變器的製造FIG. 6 is a perspective view showing the bottom and sides of the micromirror array 103 with nine micromirrors. As shown in FIG. 6, the support wall of the spacer support frame 2 10 of the micromirror 202 defines a cavity under the mirror plate 204. These cavities provide space for the mirror plate 204 to deflect downwards, and also allow a large area under the mirror plate 204 to be used to configure the second layer 1 (M) with electrodes 26 and / or for the third layer with the control circuit 106. Fig. 6 also shows the lower surface 201 of the mirror plate 204 (including the sides 2 04a and 2 04b), and the spacer support frame 210, the torsion spring hinge 206, the connector 2] 6, and the stoppers 405a and 405b. Bottom. As shown in Figures 5 and 6, very little light orthogonal to the mirror plate 2 0 4 can pass through the micro mirror array 1 0 3 and reach any electrode or control circuit below the micro mirror array 1 0 3] This is because the spacer 2 1 0 and the mirror plate -19- 200525272 (16) 2 0 4 on the upper surface 2 0 5 and above the part of the hinge 2 0 6 almost completely cover the micromirror The circuit under the array 103. And the spacer support frame 2] 0 will separate the mirror plate 04 from the path of the micromirror array 103, so go at a non-vertical angle to the mirror plate 04 and pass outside the 04 Light easily hits the wall of the spacer support frame 2 10 and under the micromirror array 103. As the light incident on the micromirror array 103 will reach Therefore, the SLM 100 can avoid the problems related to the collision of strong light. These problems include heating the circuit with incident light and charging circuit components with photons, both of which can cause circuit failure. Figure 12a is another aspect of the present invention. A view of the micromirror 202 of an embodiment, FIG. 1 2 b is a more detailed view of the corner 2 3 8 of the micromirror 2 02. The torque hinge 2 06 and the spacer support frame 2 spacer support wall in this embodiment Parallel. The bias between the mirror plate 204 and the corresponding electrode 126 causes the mirror plate 204 to selectively deflect toward the electrode. FIG. 1: The illustrated embodiment provides smaller than the 202 shown in FIGS. 2a and 2b with a diagonal hinge 206 The total range of angular motion, this range starts from the height of the phase wall. However, as in the embodiment shown in Figures 2a and 2b] the hinge 2 0 6 in the embodiment shown in 2 a and 1 2 b is at Below the upper surface of the mirror plate and concealed by the reflective surface 2 03, resulting in SL Μ with high optical efficiency, high contrast, low light diffraction and scattering, and reliable and effective performance. Figure 1 2 b is a micromirror A detailed perspective view of the corner of 2 0 2 and shows the mirror plate 2 04, the hinge 2 06, and the spacer frame 2 ] 0 of the support wall and reflective surface 2 0 3. Figure] 3 shows the lower side of the single 2 02, which includes the hinge 2 0 6, connector 2] 6 and. The radiation surface, because the lower electricity to the mirror plate will not be a small amount The impact circuit and the incident stereoscopic view I 0 are applied with the same mirror support as shown in 2a. The filling ratio of FIG. 204 and the cost of the spacer are supported by a micromirror stopper -20- 200525272 (17) 4 0 5 a. In other embodiments, the hinge 206 may be substantially parallel to one side of the mirror plate 204 and still be arranged to divide the mirror plate 204 into two sections 405a and 405b. Figures 14 and 15 provide perspective views of a micromirror array composed of multiple micromirrors 202 as shown in Figures 12a, 2b, and 13. Manufacturing of space light modulators
圖9 a係流程圖,顯示如何製造空間光調變器丨〇 〇的 一較佳實施例。圖9 b至9 m是更詳細顯示空間光調變器 1〇〇的較佳製造方法,圖16a至】6e與圖9e至9m是顯示 另一較佳製造方法。Fig. 9a is a flowchart showing a preferred embodiment of how to fabricate a spatial light modulator. Figures 9b to 9m show the preferred manufacturing method of the spatial light modulator 100 in more detail, and Figures 16a to 6e and Figures 9e to 9m show another preferred manufacturing method.
參考圖9a,產生掩罩以初始地部份製造微鏡202。此 掩罩1 0 00的較佳實施例是顯示於圖]0中並界定從第一基 底1 05的一側會被蝕刻以在微鏡陣列1 〇3的下側上形成穴 之區域9〇4,這些穴係界定間隔器支撐框210及支撐壁。 如圖10所示,掩罩1 000的區域1 004是光阻材料或例如 氧化矽或氮化矽等其它可以防止下方的第一基底1 05被蝕 刻之介電材料。圖〗0中所示的區域1 〇 〇 2是將被蝕刻以形 成穴之曝露基底]0 5的區域。未被蝕刻的區域1 〇 〇 4會維 持並形成間隔器支撐框2 ] 0中的間隔器支撐壁。 在一實施例中,在具有流速分別爲1 0 0 s c c m、5 0 seem、和10 sccm的SF6、HBr、以及氧氣之反應離子蝕 刻室中,蝕刻第一基底1 0 5。操作壓力在]〇至5 0 m托的 範圍,偏壓功率爲6 0 W,且源功率爲3 〇 0 w。在另一實施 例中,在流速分別爲]0 0 s c c m、5 0 s c c m、和1 〇 s c c. m之 -21 - 200525272 (18)Referring to FIG. 9a, a mask is generated to initially fabricate the micromirror 202. The preferred embodiment of this mask 100 is shown in FIG. 10 and defines a region 9 from which a side of the first substrate 105 will be etched to form a cavity on the lower side of the micromirror array 103. 4. These caves define a spacer support frame 210 and a support wall. As shown in FIG. 10, the area 1000 of the mask 1000 is a photoresist material or other dielectric material such as silicon oxide or silicon nitride that can prevent the underlying first substrate 105 from being etched. The area 1 2 shown in the figure 0 is the area of the exposed substrate to be etched to form a cavity] 0 5. The unetched area 1004 will maintain and form the spacer support wall in the spacer support frame 2] 0. In one embodiment, the first substrate 105 is etched in a reactive ion etching chamber having SF6, HBr, and oxygen having flow rates of 100 sccm, 50 seem, and 10 sccm, respectively. The operating pressure is in the range of 0 to 50 m Torr, the bias power is 60 W, and the source power is 300 W. In another embodiment, the flow rates are -21-200525272 at 0 0 s c c m, 50 0 s c c m, and 10 s c c. M, respectively (18)
Ch、HBr、及氧氣之反應離子蝕刻室中,蝕刻第一基底 1〇5第一基底1〇5。在這些實施例中,當穴約爲34微米 深時’蝕刻製程停止。使用例如原地光學干擾儀技術等原 地深度監視、或是依蝕刻速率計時,以量測此深度。In the reactive ion etching chamber of Ch, HBr, and oxygen, the first substrate 105 and the first substrate 105 are etched. In these embodiments, the ' etch process is stopped when the cavities are approximately 34 microns deep. This depth can be measured using in-situ depth monitoring, such as in-situ optical jammer technology, or timed at the etch rate.
在另一實施例中,以各向異性反應離子蝕刻製程,在 晶圓中形成穴。晶圓係置於反應室中。分別以]〇〇 sccm、 50 seem、及20 seem的總流速,將SF6、HBr、及氧氣導 入反應室中。在50m托的壓力下,使用50W的偏壓功率 設定及150W的源功率約5分鐘。接著,以壓力lm托之 20 seem背側氦氣流,冷卻晶圓。在一較佳實施例中,當 穴約爲3 -4微米深時,停止蝕刻製程。使用例如原地光學 千擾儀技術等原地深度監視、或是依蝕刻速率計時,以量 測此深度。In another embodiment, a cavity is formed in the wafer by an anisotropic reactive ion etching process. The wafer system is placed in a reaction chamber. SF6, HBr, and oxygen were introduced into the reaction chamber at a total flow rate of 50 sccm, 50 seem, and 20 seem, respectively. Under a pressure of 50m Torr, a bias power setting of 50W and a source power of 150W are used for about 5 minutes. Next, the wafer was cooled with a helium gas flow at 20 seem on the back side of the pressure lm torr. In a preferred embodiment, the etching process is stopped when the cavities are about 3-4 microns deep. This depth is measured using in-situ depth monitoring, such as in-situ optical scrambler technology, or timed at the etch rate.
可以使用例如微影術等標準的技術,以在第一基底 105上產生掩罩。如同先前所述般,在一較佳實施例中, 微鏡2 0 2是由例如單晶矽等單一材料形成。如此,在一較 佳實施例中,第一基底1 0 5是單晶矽的晶圓。注意,用於 多個SLM 1 00中的典型多個微鏡陣列]〇3係製於單一晶 圓上,稍後再分割、產生微鏡陣列1 03之製成的結構,典 型上大於CM 0 S電路中所使用的特徵,以致於其相當容易 使用製造C Μ 0 S電路之習知技術以形成微鏡陣列〗〇 3結 構。 圖9 b係剖面視圖,顯示製造前的第一基底1 〇 5。基 底1 0 5起初包含具有預定厚度的裝置層]6 ] 5、絕緣氧化 -22- 200525272 (19) 物層]6 ] 0及操作基底]6 〇 5。裝置層]6〗5位於基底1 〇 5 的第一側上且操作基底1 6 0 5位於基底]0 5的第二側上。 在較佳實施例中,裝置層1 6 1 5係由單晶矽材料製成並具 有約2 · 0微米至約3 . 0微米之間的厚度。使用此技藝中習 知之任何標準的絕緣體上砂(S Ο I )製程,製造如圖9 b所 不的基底105,或是向例如Soitec公司、Shinetsu公司、 或Silicon Genesis公司等矽晶圓供應商購買基底1 〇5。A standard technique such as lithography can be used to create a mask on the first substrate 105. As described previously, in a preferred embodiment, the micromirror 202 is formed of a single material such as single crystal silicon. As such, in a preferred embodiment, the first substrate 105 is a single crystal silicon wafer. Note that typical multiple micromirror arrays used in multiple SLM 100s are fabricated on a single wafer and later divided to produce a micromirror array 103 structure that is typically larger than CM 0 The features used in the S circuit are such that it is quite easy to form the micromirror array using a conventional technique for manufacturing a C M 0 S circuit. Fig. 9b is a cross-sectional view showing the first substrate 105 before manufacturing. The substrate 105 initially includes a device layer having a predetermined thickness] 6] 5. Insulation oxidation -22-200525272 (19) Physical layer] 6] 0 and operation substrate] 6. The device layer] 6 is located on the first side of the substrate 105 and the operation substrate 16 is located on the second side of the substrate 5. In a preferred embodiment, the device layer 16 15 is made of a single crystal silicon material and has a thickness between about 2.0 microns and about 3.0 microns. Use any standard insulator sanding (S Ο I) process known in the art to manufacture the substrate 105 as shown in Figure 9b, or to a silicon wafer supplier such as Soitec, Shinetsu, or Silicon Genesis Purchase substrate 1 05.
參考圖9b,淺穴198會被蝕刻成爲第一基底1〇5的 第二側上的裝置層】6 1 5。蝕刻細節說明於上述段落中。 蝕刻深度幾乎爲止動件4 0 5 a和4 0 5 b (要形成)的端部與 第二基底(如下所述般’在第二基底接合至第一基底之 後)之間的距離1 97。此深度的距離]97決定後續蝕刻步 驟中最終製造之止動件405a和405b的長度。如圖9c及 9 d所示,較佳地使用微影技術,從第一基底1 〇 5的裝置 層1 6 ] 5蝕刻出止動件4 0 5 a及4 0 5 b。再度地,蝕刻細節 說明於上述段落中。 圖16a-16e係顯示製造具有穴之第一基底]05之另一 方法。圖16a係顯不製造前的第一基底]05之剖面視圖。 類似圖9b中的第一基底105,圖16a中的第一基底105 起先包含具有預定厚度的裝置層1 6 ] 5、絕緣氧化物層 ]610及操作基底1605。裝置層]6]5位於基底1〇5的第一 側上,操作基底1 6 0 5位於基底]0 5的第二側上。使用此 技藝中習知之任何標準的絕緣體上矽(S 01 )製程,製造 此第一基底]0 5,或是向上述公司購買基底1 〇 5。在較佳 - 23- 200525272 (20) 實施例中,裝置層]6】5是由單晶矽材料製成,且如圖 16e所示,裝置層]6]5的頂部i6l5a具有預定厚度,較 佳地在0·2微米至〇·4微米之間。裝置層的此頂部1615a 的厚度最終爲近似最後製成的鏡板204之厚度。 參考圖16b,在取得(製造或購買)具有層]6]0及 1615的第—基底1〇5以及先前段落中所述的基底16〇5之 後,在第一基底1 〇 5的裝置層1 6】5上沈積例如氧化矽等 介電材料1 6 2 0。 接著使用此技藝中習知之標準的微影及蝕刻技術,蝕 刻介電材料1 62 0以在將設置間隔器支撐框210的支撐壁 的預定位置處產生開口 ;! 6 2 5及} 6 2 6。如圖丨6 c所示,經 過融刻的介電材料1 6 2 0產生掩罩及開口 1 6 2 5和1 6 2 6以 用於後續製程步驟。 圖1 6 c中所示的較佳實施例中,使用磊晶生長製程, 以衣置層1 6 1 5中的單晶矽材料作爲磊晶生長的「種 子」’在介電材料;! 6 2 〇的開口 1 6 2 5和1 6 2 6中生長單晶 矽材料卓晶矽材料162?和MW。典型上,開口丨Μ?和 ]6 2 8中生長的材料是與裝置層]6】$ (或種子)相同的材 料並具有與裝置餍1 6 1 5相同的晶體結構。在圖I 6c中所 示的材料中’所生長之單晶矽材料1 6 2 7和1 6 2 8最終將變 成微鏡陣列].03的間隔器支撑框21〇。 取1麦移除介電材料]6 2 0,造成圖]6 e中所示的結 構 〇夺'士田,购 η ΜΠ ^ ° 6 e中的結構未具有止動件4 0 5 a或4 0 5 b除 夕f ,辞· 一其睹 ^ )具有同於圖9 d中所示的第一基底1 〇 5 -24- 200525272 (21) 之結構。但是,給予上述說明,習於此技藝者將知道如何 將止動件4 0 5 a和4 0 5 b加至圖1 6 e中所示的結構。舉例而 言,這些止動件4 0 5 a和4 0 5 b可以如同間隔器支撐框2 1 0 的支撐壁般被融刻及嘉晶地生長。如此,圖1 6 a至]6 e提 供另一方法,以在第一基底105中製造穴,且對第一基底Referring to FIG. 9b, the shallow hole 198 will be etched into a device layer on the second side of the first substrate 105] 6 1 5. Details of the etching are described in the above paragraph. The etching depth is almost so far as the distance between the ends of the movers 4 5 a and 4 5 b (to be formed) and the second substrate (after the second substrate is bonded to the first substrate, as described below). The distance of this depth] 97 determines the length of the stoppers 405a and 405b that are finally manufactured in the subsequent etching step. As shown in FIGS. 9c and 9d, the lithography technique is preferably used to etch the stoppers 4 5 a and 4 5 b from the device layer 16] 5 of the first substrate 105. Again, the details of the etching are described in the above paragraph. Figures 16a-16e show another method of manufacturing a first substrate with holes] 05. FIG. 16a is a cross-sectional view of the first substrate before manufacturing. Similar to the first substrate 105 in FIG. 9b, the first substrate 105 in FIG. 16a initially includes a device layer 16] 5 having a predetermined thickness, an insulating oxide layer] 610, and an operation substrate 1605. The device layer] 6] 5 is located on the first side of the substrate 105, and the operation substrate 1605 is located on the second side of the substrate 105. Use any standard silicon-on-insulator (S 01) process known in the art to make this first substrate], or purchase a substrate from the above company. In the preferred-23- 200525272 (20) embodiment, the device layer] 6] 5 is made of a single crystal silicon material, and as shown in FIG. 16e, the device layer] 6] 5 has a predetermined thickness i6l5a on the top, It is preferably between 0.2 micron and 0.4 micron. The thickness of this top portion 1615a of the device layer is finally approximately the thickness of the mirror plate 204 finally made. Referring to FIG. 16b, after obtaining (manufacturing or purchasing) the first substrate 105 having layers] 6] 0 and 1615 and the substrate 1605 described in the previous paragraph, the device layer 1 of the first substrate 105 6] 5 A dielectric material such as silicon oxide 1 6 2 0 is deposited thereon. Then using the standard lithography and etching techniques known in this art, the dielectric material 1 62 0 is etched to create an opening at a predetermined position where the support wall of the spacer support frame 210 will be provided;! 6 2 5 and} 6 2 6 . As shown in Figure 6c, the mask and openings 1625 and 1626 are produced by the melted dielectric material 1620 for subsequent processing steps. In the preferred embodiment shown in FIG. 16c, the epitaxial growth process is used, and the single crystal silicon material in the coating layer 1615 is used as the “seed” dielectric material for epitaxial growth; 6 A single crystal silicon material, a polycrystalline silicon material, 162 μm and MW were grown in the openings of 20, 1625 and 1626. Typically, the materials grown in the openings M1 and M6 are the same materials as the device layer] 6 (or seeds) and have the same crystal structure as the device M1 6 1 5. Among the materials shown in Fig. Ic, the single crystal silicon materials 16'7 'and 1628's grown will eventually become micromirror arrays]. 03's spacer support frame 21o. Take 1 m to remove the dielectric material] 6 2 0, resulting in the structure shown in Fig. 6 e. O 夺 Shi Tian, purchase η ΜΠ ^ ° 6 e without the stopper 4 0 5 a or 4 0 5 b New Year's Eve f, to see it ^) has the same structure as the first substrate 105 -24-200525272 (21) shown in Figure 9d. However, given the above description, those skilled in the art will know how to add the stoppers 4 5 a and 4 5 b to the structure shown in FIG. 16 e. For example, the stoppers 4 5 a and 4 5 b can be melted and grown like the support walls of the spacer support frame 2 1 0. As such, FIGS. 16a to 6e provide another method for fabricating a cavity in the first substrate 105, and for the first substrate
1 0 5的裝置層1 6 1 5的頂部1 6 1 5 a的厚度具有精密控制。 完成圖9e至9m中所示的步驟,將製成隱藏式鉸鏈高塡 充比反射式空間光調變器1 〇〇。The thickness of the top of the device layer 1 6 1 5 1 6 1 5 a is precisely controlled. By completing the steps shown in Figs. 9e to 9m, a hidden hinge with a high fill-to-reflection ratio reflective spatial light modulator 100 will be fabricated.
回至圖9a,與第一基底105中的穴製造分開,如圖 9 a及9 e所示般,在第二基底1 0 7的第一側7 0 3上形成 (9 0 6 ) —些或所有電極1 2 6、尋址及控制電路} 〇 6。第二 基底1 0 7可以是例如石英等透明材料、或是其它材料。假 使第二基底爲石英時,電晶體可以由相對於晶體矽之多晶 矽製成。使用標準的 CMOS製造技術,較佳地形成 (906)電路。舉例而言,在一實施例中,由製造906於 第二基底1 0 7上形成的控制電路]0 6包含記憶胞陣列、列 尋址電路、及行資料載入電路。有很多不同的方法用以製 造執行尋址功能的電路。一般所知的D R A Μ、S R A Μ、及 佇鎖裝置均執行尋址功能。由於鏡板2 04以半導體尺度而 言是相當大的(舉例而言,鏡板204可以具有2 2 5平方微 米的面積),所以,可以在微鏡202之下製造複雜的電 路。可能的電路包含但不限於儲存時間順序像素資訊的儲 存緩衝器、藉由不同電壓位準以驅動電極]2 6而補償鏡板 2 04至電極1 26分離距離之可能的非均性之電路、以及, -25 - 200525272 (22) 執行脈衝寬度調變轉換的電路。Returning to FIG. 9a, separate from the hole manufacturing in the first substrate 105, as shown in FIGS. 9a and 9e, (9 0 6) is formed on the first side 7 0 3 of the second substrate 10 7 Or all electrodes 1 2 6. Addressing and control circuit} 〇6. The second substrate 107 may be a transparent material such as quartz, or other materials. If the second substrate is quartz, the transistor may be made of polycrystalline silicon relative to crystalline silicon. (906) circuits are preferably formed using standard CMOS manufacturing techniques. For example, in one embodiment, the control circuit formed on the second substrate 107 by the manufacturing 906] includes a memory cell array, a column addressing circuit, and a row data loading circuit. There are many different ways to make circuits that perform addressing functions. The generally known DRAM, SRAM, and shackle devices all perform an addressing function. Since the mirror plate 204 is quite large on a semiconductor scale (for example, the mirror plate 204 may have an area of 225 square micrometers), a complex circuit can be manufactured under the micromirror 202. Possible circuits include, but are not limited to, a storage buffer that stores time-sequential pixel information, a circuit that compensates for possible non-uniformity of the separation distance between the mirror plate 2 04 and the electrode 1 26 by different voltage levels] 2 6 , -25-200525272 (22) Circuit for performing pulse width modulation conversion.
此控制電路1 0 6會由例如氧化矽或氮化矽等鈍化層所 遮蓋。接著,沈積金屬化層。將此金屬化層圖型化及蝕刻 以界定電極1 2 6、以及在一實施例中界定偏壓/重設匯流 排。在製造期間配置電極1 2 6,以致於一或更多電極1 2 6 對應於每一微鏡2 02。關於第一基底105,典型上多個 SLM 100中要使用的多組電路會形成於稍後要分離的第二 基底1 07上。The control circuit 106 is covered by a passivation layer such as silicon oxide or silicon nitride. Next, a metallization layer is deposited. This metallization layer is patterned and etched to define electrodes 1 2 6 and, in one embodiment, a bias / reset bus. The electrodes 1 2 6 are arranged during manufacturing so that one or more electrodes 1 2 6 correspond to each micromirror 202. Regarding the first substrate 105, a plurality of sets of circuits to be used in a plurality of SLMs 100 are typically formed on a second substrate 107 to be separated later.
如圖9a及9e所示般,圖9d或圖16e中所示的第一 基底105接著接合至第二基底1〇7。如圖9f所示,第一 基底1 0 5在相對於第二基底1 〇 7的側上具有頂層9 0 5。具 有穴及止動件4 0 5 a和4 0 5 b之第一基底1 〇 5的側會被接合 (9 1 0 )至具有電極1 2 6的第二基底之側。基底1 〇 5和 107會對齊,以致於第二基底107上的電極是處於適當位 置以控制微鏡陣列1 0 3中的微鏡2 0 2的偏轉。在一實施例 中’使用雙聚焦顯微鏡,將第一基底1 05上的圖案與第二 基底107上的圖案對齊,以將二基底]〇5和1〇7光學地對· 齊,以及,藉由例如陽極或共晶接合等低溫接合方法,將 二基底1 0 5和1 0 7接合9 ] 0。在較佳實施例中,此接合 9 1 0發生於任合低於攝氏4 0 0度之溫度下,包含室溫。舉 例而言’可以使用熱塑或介電旋轉玻璃接合材料,以致於 基底]0 5和1 0 7可以熱機械地接合。接合9 1 〇確保第—基 底〗05與第二基底]07之間良好的機械黏著,以及確保此 黏著可於室溫下發生。圖9 e是剖面視圖,顯示接合在— -26 - 200525272 (23) 起的第一基底]05及第二基底]07。第二基底的製造906 有很多可能的替代實施例。As shown in FIGS. 9a and 9e, the first substrate 105 shown in FIG. 9d or 16e is then bonded to the second substrate 107. As shown in FIG. 9f, the first substrate 105 has a top layer 95 on the side opposite to the second substrate 107. The side of the first substrate 105 having the holes and stops 4 0 5 a and 4 5 b will be joined (9 1 0) to the side of the second substrate having the electrodes 1 2 6. The substrates 105 and 107 are aligned so that the electrodes on the second substrate 107 are in a proper position to control the deflection of the micromirrors 203 in the micromirror array 103. In one embodiment, 'using a bifocal microscope, align the pattern on the first substrate 105 with the pattern on the second substrate 107 to align the two substrates] 05 and 107, and, The two substrates 105 and 107 are bonded by a low temperature bonding method such as anode or eutectic bonding. In a preferred embodiment, this joint 9 10 occurs at any temperature below 400 degrees Celsius, including room temperature. For example, 'a thermoplastic or dielectric rotating glass bonding material can be used, so that the substrate] and 5 can be bonded thermo-mechanically. Bonding 9 1 0 ensures good mechanical adhesion between the first substrate 05 and the second substrate] 07, and also ensures that this adhesion can occur at room temperature. Fig. 9e is a cross-sectional view showing the first substrate] 05 and the second substrate] 07 joined at -26-200525272 (23). There are many possible alternative embodiments of the fabrication 906 of the second substrate.
在將第一基底105與第二基底107接合(910)在一 起之後,第一基底105的頂層905會如圖9f及9a所示般 被薄化(9 1 2 )至預定的所需厚度。首先,典型地藉由硏 磨及/或蝕刻,以移除圖9 f或圖1 6 e中所示的操作基底 1 6 0 5,接著,使用此技藝中任何習知的氧化物剝除技術, 剝除氧化物層1 6 1 0。氧化物層1 6 1 0作爲薄化步驟9 1 2之 停止標誌並設置於第一基底之內以產生具有所需厚度的薄 化第一基底1 0 5。薄化製程牽涉到硏磨及/或蝕刻,較佳地 是例如濕蝕刻或電漿蝕刻等矽回蝕製程。結果是第一基底 1 05的上表面2 0 5最終將形成如圖3、7a、8及9m所示的 鏡板之上表面 2 0 5。在較佳實施例中,所造成的第一基底 105的最終厚度是數微米。 接著,使用二步驟蝕刻處理,蝕刻(91 3 )鉸鏈After joining (910) the first substrate 105 and the second substrate 107 together, the top layer 905 of the first substrate 105 is thinned (9 1 2) to a predetermined required thickness as shown in FIGS. 9f and 9a. First, typically by honing and / or etching to remove the operating substrate 1660 shown in FIG. 9f or FIG. 16e, and then using any conventional oxide stripping technique known in the art , Stripping the oxide layer 16 1 0. The oxide layer 1 6 1 0 is used as a stop sign of the thinning step 9 1 2 and is disposed inside the first substrate to produce a thinned first substrate 105 having a desired thickness. The thinning process involves honing and / or etching, preferably a silicon etch-back process such as wet etching or plasma etching. As a result, the upper surface 2 05 of the first substrate 105 will eventually form the upper surface 2 0 5 of the mirror plate as shown in Figs. 3, 7a, 8 and 9m. In the preferred embodiment, the final thickness of the resulting first substrate 105 is several microns. Next, using a two-step etching process, the (91 3) hinge is etched
2 06。首先,如圖9g所示,蝕刻第一基底I 05的上表面 2 〇 5以形成凹槽9 1 0。這確保要形成於凹槽9 ] 0中的鉸鏈 206實質上設於第一基底]05的上表面20 5之下,在製程 結束時,此上表面205會成爲鏡板204的上表面205。其 次,如圖9 h及9 a所示般,再度蝕刻第一基底]0 5以從第 一基底]0 5的鏡板部份9 ] 5實質地釋放鉸鏈2 0 6。如圖 3、4 a、4 b、] 2 a、] 2 b及1 3中所不的實施例中所示般, 鉸鏈2 0 6的端部維持連接至間隔器支撐框2 1 0的間隔器支 撐壁。第一基底]〇5的鏡板部份9 ] 5將形成微鏡2 02的鏡 - 27- 200525272 (24) 板 204。 在一實施例中,在分別以100 Sccm、20 sccm、及5〇 seem之流速通入C】2、〇2、及&的解耦合電漿源室中, 蝕刻鉸鏈2 0 6。操作壓力在4至1 〇 m τ 〇 r r的範圍,偏壓功 率40W、及源功率1 5 00 W。使用例如原地光學千擾儀技 術等原地深度監視、或是依蝕刻速率計時,以量測深度。2 06. First, as shown in FIG. 9g, the upper surface 205 of the first substrate 105 is etched to form a groove 9110. This ensures that the hinge 206 to be formed in the groove 9] 0 is substantially disposed below the upper surface 205 of the first substrate] 05. At the end of the process, this upper surface 205 will become the upper surface 205 of the mirror plate 204. Secondly, as shown in FIGS. 9 h and 9 a, the first substrate 5 is etched again to substantially release the hinge 2 06 from the mirror plate portion 9] 5 of the first substrate 5. As shown in the examples shown in FIGS. 3, 4 a, 4 b,] 2 a,] 2 b, and 1 3, the ends of the hinges 206 remain connected to the spacer support frame 2 1 0 Support wall. First substrate] 05 mirror plate portion 9] 5 will form the mirror of the micromirror 202-27- 200525272 (24) plate 204. In one embodiment, the hinges 206 are etched into the decoupling plasma source chambers of C2, 02, and & at flow rates of 100 Sccm, 20 sccm, and 50 seem respectively. The operating pressure is in the range of 4 to 10 m τ 〇 r r, the bias power is 40 W, and the source power is 15 00 W. Depth is measured using in-situ depth monitoring, such as in-situ optical scrambler technology, or timing at the etch rate.
接著,將例如光阻等犧牲材料9 2 0沈積(9 1 4 )至第 一基底105上,如圖9i及9a所示,塡充鉸鏈206上及圍 繞其的間隙以及第一基底1 0 5的上表面2 0 5上的間隙,包 含鉸鏈2 0 6與第一基底1 〇 5的鏡板部份9 1 5之間的間隙。 光阻可以簡單地被旋轉塗敷於基底上。Next, a sacrifice material 9 2 0 such as photoresist is deposited (9 1 4) on the first substrate 105, as shown in FIGS. 9i and 9a, on the hinge 206 and the gap around it, and the first substrate 105 The gap on the upper surface 2 0 5 includes the gap between the hinge 2 06 and the mirror plate portion 9 1 5 of the first base 105. Photoresist can be simply spin-coated on a substrate.
如圖9 j及9 a所示般,接著,使用回蝕步驟、化學機 械處理(C Μ P )、或任何其它此技術中習知的製程,將具 有犧牲材料902的第一基底1〇5平坦化(915)。此處理 確保犧牲材料9 2 0僅餘留於鉸鏈上及圍繞鉸鏈,但不餘留 在第一基底105的上表面205上。注意,在平坦化步驟 中’由於從第一基底1 0 5的上表面移除犧牲材料9 2 0,所 以,移除是相當容易的。 如圖9 k及9 a所示般,在經過平坦化的表面上(包含 鏡板204的上表面205及由犧牲材料920遮蓋的鉸鏈206 之部份的上方部份),沈積反射表面2 0 3,以產生反射表 面2 0 3。如上所述般,反射表面2 〇 3的面積大於鏡板2 04 的上表面2 0 5之面積。反射表面較佳地爲鋁或此技藝中習 知之任何其它反射材料,較佳地具有 3 0 0 A或更薄的厚 -28- 200525272 (25) 度。反射表面203遮蓋第一基底]〇5的上表面205及較鏈 2〇6的部份之上方的區域。圖9k係剖面視圖,顯示沈積 的反射表面2 0 3。反射表面2 0 3的薄度確保其繼承鏡板 2〇4的上表面205之平坦、光滑特徵。 如圖9 1及9 a所示,反射表面2 0 3及鏡板部份9 1 5會 被蝕刻(9 ] 7 )以從第一基底105的鏡板部份9〗5釋放鏡 板2 04。較佳地,在相同室中執行反射表面2 03及鏡板部 份9 1 5的蝕刻。 在較佳實施例中,反射表面2 0 3係鋁材料,以及,在 分別以 4 0 s c c m、4 0 s c m m、及 1 〇 s c m m流速通入 C 12 ' BC1S、及N2氣體之解耦合電漿源室中,蝕刻(9〗7)反射 表面2 0 3。操作壓力爲1 0 m托,偏壓功率爲7 5 W,源功 率爲8 0 0 W。使用例如原地光學干擾儀技術等原地深度監 視、或是依蝕刻速率計時,以量測深度。在蝕刻(9 1 7 ) 銘的反射表面2 0 3之後,在較佳實施例中,接著,在分別 以 9 0 s c c m、5 5 s c m m、及 5 s c m m 流速通入 Η B r、C ] 2、 BC】3、及〇2氣體之解耦合電漿源室中,蝕刻(917 )在由 矽製成的下方鏡板部9 ] 5。操作壓力爲5 m托,偏壓功率 爲7 5 W,源功率爲5 0 0 W。使用例如原地光學干擾儀技術 等原地深度監視、或是依蝕刻速率計時,以量測深度。 在蝕刻反射表面2 03及鏡板部份9 1 5之後,釋放鏡板 2〇4 ;但是,鉸鏈206仍然由犧牲材料920固定於原位。 結果,鏡板204及微鏡整體上無法繞著鉸鏈2 06旋轉’確 保裝置在後續製程步驟中的存活能力。 -29- 200525272 (26)As shown in FIGS. 9 j and 9 a, the first substrate 105 having the sacrificial material 902 is then etched back using an etch-back step, chemical mechanical processing (CMP), or any other process known in the art. Flattening (915). This process ensures that the sacrificial material 9 2 0 remains only on and around the hinge, but not on the upper surface 205 of the first substrate 105. Note that in the planarization step, since the sacrificial material 9 2 0 is removed from the upper surface of the first substrate 105, the removal is quite easy. As shown in FIGS. 9k and 9a, a reflective surface is deposited on the flattened surface (including the upper surface 205 of the mirror plate 204 and the upper portion of the hinge 206 covered by the sacrificial material 920). To produce a reflective surface 2 0 3. As described above, the area of the reflective surface 203 is larger than the area of the upper surface 205 of the mirror plate 2 04. The reflective surface is preferably aluminum or any other reflective material known in the art, and preferably has a thickness of 300 A or thinner -28- 200525272 (25) degrees. The reflective surface 203 covers the upper surface 205 of the first substrate 5 and the area above the portion of the chain 206. Figure 9k is a cross-sectional view showing the deposited reflective surface 203. The thinness of the reflective surface 203 ensures that it inherits the flat, smooth features of the upper surface 205 of the mirror plate 204. As shown in FIGS. 9 1 and 9 a, the reflective surface 203 and the mirror plate portion 9 1 5 will be etched (9] 7) to release the mirror plate 20 04 from the mirror plate portion 9 1 5 of the first substrate 105. Preferably, the etching of the reflective surface 20 03 and the mirror plate portion 9 1 5 is performed in the same chamber. In a preferred embodiment, the reflective surface 203 is an aluminum material, and a decoupling plasma source of C 12 ′ BC1S and N 2 gas is introduced at a flow rate of 40 sccm, 40 scmm, and 10 scmm, respectively. In the chamber, the reflective surface is etched (9) to 7). The operating pressure is 10 m Torr, the bias power is 75 W, and the source power is 800 W. Use in-situ depth monitoring, such as in-situ optical jammer technology, or time the etch rate to measure depth. After the (9 1 7) reflective surface 2 0 3 is etched, in a preferred embodiment, Η B r, C are then introduced at a flow rate of 90 sccm, 5 5 scmm, and 5 scmm, respectively] 2. BC] In the decoupling plasma source chamber of 3, and 0 2 gas, the lower mirror plate portion 9] 5 made of silicon is etched (917). The operating pressure is 5 m Torr, the bias power is 75 W, and the source power is 500 W. Use in-situ depth monitoring, such as in-situ optical jammer technology, or timing at the etch rate to measure depth. After etching the reflective surface 20 03 and the mirror plate portion 9 15, the mirror plate 204 is released; however, the hinge 206 is still fixed in place by the sacrificial material 920. As a result, the mirror plate 204 and the micromirror as a whole cannot rotate around the hinge 206 'to ensure the viability of the device in subsequent process steps. -29- 200525272 (26)
微鏡2 0 2之製造的最後步驟是移除(9 1 8 )鉸鏈2 0 6 上及圍繞其的餘留犧牲材料9 2 0。注意,由於犧牲材料 9 2 0不是在鏡板2 0 4或鏡2 0 2之下,所以,相當容易移除 鉸鏈206上及圍繞其之餘留的犧牲材料92 0。由於與濕處 理會有相關的黏著問題,所以,例如電漿蝕刻等乾處理是 較佳的。在一實施例中,犧牲材料920是光阻材料,其係 於 〇2電漿室中被蝕刻移除。在犧牲材料 92 0被移除 (918 )之後,鉸鏈206會被釋放且鏡板2 04會自由地繞 著鉸鏈 2 0 6旋轉。藉由依循上述製造步驟,結果,鉸鏈 206實質地形成於鏡板204的上表面205之下且由沈積於 鏡板2 0 4的上表面2 0 3上及鉸鏈2 0 6的部份之上方的反射 表面2 0 3所隱蔽。The final step in the fabrication of the micromirror 2 0 2 is to remove (9 1 8) the remaining sacrificial material 9 2 0 on and around the hinge 2 0 6. Note that since the sacrificial material 9 2 0 is not under the mirror plate 204 or the mirror 202, it is relatively easy to remove the remaining sacrificial material 92 0 on and around the hinge 206. Due to the adhesion problems associated with wet processing, dry processing such as plasma etching is preferred. In one embodiment, the sacrificial material 920 is a photoresist material, which is removed by etching in a plasma chamber. After the sacrificial material 92 0 is removed (918), the hinge 206 is released and the mirror plate 20 04 is free to rotate about the hinge 20 6. By following the above manufacturing steps, as a result, the hinge 206 is substantially formed below the upper surface 205 of the mirror plate 204 and is reflected by the reflection on the upper surface 230 of the mirror plate 204 and above the portion of the hinge 206 The surface 2 0 3 is hidden.
在某些實施例中,以玻璃或其它透明材料件,保護微 鏡陣列1 03。在一實例中,在微鏡陣列1 03的製造期間, 在圍繞著製於第一基底1 〇 5上的每一微鏡陣列1 0 3的周邊 留下邊緣。爲了保護微鏡陣列103中的微鏡2 02,如圖9a 所示,玻璃或其它透明材料件會接合(9 ] 9 )至邊緣。此 透明材料保護微鏡2 02免於物體傷害。在一替代實施例 中,可以使用微影術以在玻璃板上的感光樹脂層中產生邊 緣陣列。然後,將環氧樹脂施加至邊緣的上邊緣,以及, 將玻璃板對齊於及附著至完成的反射式SLM I 00。 如上所述般,多個SLM ]00可以由二基底105和]〇? 製造。多個微鏡陣列]〇 3可以製於第一基底]〇 5中,且多 組電路可以製於或形成於第二荖底1 〇7中。製造多個 -30- 200525272 (27) S L Μ 1 0 0會增加空間光調變器]ο 〇的製程之效率。但是, 假使一旦製造多個SLM ] 00時,它們必須被分成個別的 S L Μ 1 0 0。有很多方式可以分離每一空間光調變器]〇 〇且 使其成爲可使用。在第一方法中,每一空間光調變器1 〇 〇 被切成晶粒而與結合的基底105和107上其餘的SLM 100 相分離(92 0 )。接著,使用標準的封裝技術,將每一分 離的空間光調變器100封裝(922 )。In some embodiments, the micromirror array 103 is protected by a piece of glass or other transparent material. In one example, during the fabrication of the micromirror array 103, an edge is left around the periphery of each micromirror array 103 made on the first substrate 105. In order to protect the micromirror 202 in the micromirror array 103, as shown in FIG. 9a, a piece of glass or other transparent material is bonded (9] 9) to the edge. This transparent material protects the micromirror 202 from object damage. In an alternative embodiment, lithography may be used to create an edge array in a photosensitive resin layer on a glass plate. Then, epoxy is applied to the upper edge of the edge, and the glass plate is aligned and attached to the finished reflective SLM I 00. As described above, a plurality of SLMs may be fabricated from the two substrates 105 and λ. A plurality of micromirror arrays] can be fabricated in the first substrate], and a plurality of sets of circuits can be fabricated or formed in the second substrate 107. Manufacturing multiple -30- 200525272 (27) S LM 1 0 0 will increase the efficiency of the space light modulator] ο 〇 process. However, if multiple SLMs are manufactured once, they must be divided into individual SLM 100s. There are many ways to separate each spatial light modulator] and make it usable. In the first method, each spatial light modulator 100 is cut into grains and separated from the remaining SLM 100 on the bonded substrates 105 and 107 (92 0). Next, each separated spatial light modulator 100 is packaged using standard packaging techniques (922).
在第二方法中,執行晶圓等級晶片規模之封裝以將每 一 SLM 100封裝於分別的穴中並在SLM 100被分離前形 成電導線。這又進一步保護反射式可偏轉元件及降低封裝 成本。在如圖9 a所不的此方法之一實施例中,第二基底 107的背側會與銲材凸塊接.合(924 )。接著,蝕刻 (926 )第二基底1〇7的背側,以將電路形成於第二基底 107上之製造期間所形成的金屬連接器曝露。接著,在金 屬連接器及銲料塊之間沈積(92 8 )導線以將二者電連 接。最後,多個SLM會以晶粒分離(93 0 )。 圖1 ]係形成於第二基底1 0 7上的電極1 2 6之一實施 例的立體視圖。在本實施例中,每一微鏡2 02具有對應的 電極1 2 6。在此所示的實施例中,電極]2 6係被製成高於 第二基底上的電路的其它部份。在較佳實施例中,電極 1 2 6設於與第二基底上的電路之其它部份相同水平。在另 一實施例中,電極1 2 6延伸至電路上方。在本發明的一實 施例中,電極1 2 6係配接於微鏡板之下的個別鋁墊。電極 的形狀係取決於微鏡2 02的實施例。舉例而言,在圖 -31 - 200525272 (28) 2 a、2 b及3所示的實施例中,較佳地有二電極〗2 6在鏡 202之下,每一電極126具有如圖7b所示之三角形。在 圖1 2 a、] 2 b及1 3中所示的實施例中,較佳地有單一的、 方形的電極126在鏡202之下。這些電極126係製於第二 基底107的表面上。在本實施例中電極126的大表面積會 造成下拉鏡板2 0 4至機械止動所需之相當低的尋址電壓, 因而造成微板204之全預角偏轉。In a second method, wafer-level wafer-scale packaging is performed to package each SLM 100 in a separate cavity and form electrical leads before the SLM 100 is separated. This further protects the reflective deflectable element and reduces packaging costs. In one embodiment of this method as shown in FIG. 9a, the back side of the second substrate 107 is connected to the solder bumps (924). Next, the back side of the second substrate 107 is etched (926) to expose the metal connector formed during the manufacturing of the circuit on the second substrate 107. Next, a wire is deposited (92 8) between the metal connector and the solder bump to electrically connect the two. Finally, multiple SLMs are separated by grains (93 0). Fig. 1 is a perspective view of an embodiment of an electrode 1 2 6 formed on a second substrate 107. In this embodiment, each micromirror 202 has a corresponding electrode 1 2 6. In the embodiment shown here, the electrodes] 2 6 are made higher than the other parts of the circuit on the second substrate. In a preferred embodiment, the electrodes 1 2 6 are disposed at the same level as the other parts of the circuit on the second substrate. In another embodiment, the electrodes 1 2 6 extend above the circuit. In one embodiment of the present invention, the electrodes 1 2 6 are connected to individual aluminum pads under the micromirror plate. The shape of the electrodes depends on the embodiment of the micromirror 202. For example, in the embodiment shown in Figures -31-200525272 (28) 2 a, 2 b, and 3, there are preferably two electrodes. 2 6 Under the mirror 202, each electrode 126 has a structure as shown in Figure 7b. The triangle shown. In the embodiments shown in Figs. 12a, 2b and 13 there is preferably a single, square electrode 126 under the mirror 202. These electrodes 126 are formed on the surface of the second substrate 107. In this embodiment, the large surface area of the electrode 126 will cause a relatively low addressing voltage required for the pull-down mirror plate 204 to the mechanical stop, thereby causing the full pre-angle deflection of the microplate 204.
選項z 在操作上,個別反射式微鏡2 02會被選擇性地偏轉並 用以在空間上調變入射至鏡202及由其反射之光。Option z In operation, the individual reflective micromirrors 202 are selectively deflected and used to spatially modulate the light incident on and reflected by the mirror 202.
圖7a及8係顯不延者圖2a中的虛線250所不之微鏡 2 02的剖面視圖。注意,此剖面視圖係偏移微鏡202的中 心對角線,藉以顯示鉸鏈2 0 6的輪廓。圖7 c係顯示延著 圖2a中的虛線2 5 0所示的微鏡2 02之不同剖面視圖。注 意,此剖面視圖是延著中心對角線,垂直於鉸鏈2 0 6。圖 7a、7c及8是顯示電極126上方的微鏡202。在操作上, 將電壓施加至微鏡2 0 2的一側上之電極]2 6以控制電極 ]2 6上方的鏡板2 04之對應部份的偏轉(圖8中的側 2 0 4 a )。如圖8所示,當電壓施加至電極]2 6時,鏡板 204a的一半會附著至電極]26,而鏡板2(Mb的另一半會 因鏡板2 04的結構及剛性而被移離電極1 26及第二基底 ]07。這會造成鏡板2〇4圍繞扭力彈簧鉸鏈2 0 6旋轉。當 電壓移離電極]2 6時,如圖7 a所示’鉸鏈2 0 6會造成鏡 -32- 200525272 (29) 板2 04彈回至其未經偏移的位置。或者,在具有如圖 2a、2b及3所示的對角較鏈206之實施例中,電壓可以 施加至鏡板204的另一側上的電極126,以使鏡202在相 反方向上偏轉。如此,撞擊鏡2 0 2之光會在藉由施加電壓 至電極126而受控之方向上反射。7a and 8 are cross-sectional views of the micromirror 202 shown by the dotted line 250 in FIG. 2a. Note that this cross-sectional view is offset from the center diagonal of the micromirror 202 to show the outline of the hinge 206. Fig. 7c shows different cross-sectional views of the micromirror 202 shown along the dotted line 250 in Fig. 2a. Note that this section view is diagonal to the center, perpendicular to the hinge 206. 7a, 7c and 8 are micromirrors 202 above the display electrode 126. FIG. In operation, a voltage is applied to the electrode on one side of the micromirror 2 0 2] 2 6 to control the electrode] 2 6 The deflection of the corresponding portion of the mirror plate 2 04 above the side 2 2 4 a in FIG. 8) . As shown in FIG. 8, when the voltage is applied to the electrode] 26, half of the mirror plate 204a will be attached to the electrode] 26, and the other half of the mirror plate 2 (Mb will be removed from the electrode 1 due to the structure and rigidity of the mirror plate 204). 26 and the second base] 07. This will cause the mirror plate 204 to rotate around the torsion spring hinge 2 06. When the voltage is moved away from the electrode] 26, as shown in Figure 7a, 'Hinge 2 0 6 will cause the mirror -32- 200525272 (29) Plate 2 04 bounces back to its undeflected position. Alternatively, in embodiments having a diagonal chain 206 as shown in Figures 2a, 2b, and 3, a voltage may be applied to the other The electrode 126 on one side deflects the mirror 202 in the opposite direction. In this way, the light striking the mirror 202 is reflected in a direction controlled by applying a voltage to the electrode 126.
一實施例如下述般操作。起先,鏡202如圖7a及7c 般未經偏轉。在此未偏移的狀態下,自光源歪斜地入射至 SLM 100之入射光會由平面鏡202反射。外離的、經過反 射的光會由例如光泵所接收。從未經偏轉的鏡2 0 2反射的 光不會被反射至視頻顯示器。 當電壓偏壓施加於鏡板2 0 4 a的半部與其下方的電極 】26之間時,鏡202會因靜電吸引而偏轉。在—實施例 中’當鏡板2 04 a如圖8所示般向下偏轉時,v e!較佳地爲An embodiment operates as follows. Initially, the mirror 202 is undeflected as in Figures 7a and 7c. In this unshifted state, incident light that is obliquely incident from the light source to the SLM 100 is reflected by the plane mirror 202. The outgoing, reflected light is received by, for example, an optical pump. The light reflected from the undeflected mirror 202 will not be reflected to the video display. When a voltage bias is applied between the half of the mirror plate 2 0 4a and the electrode below it] 26, the mirror 202 is deflected by electrostatic attraction. In the embodiment, when the mirror plate 2 04 a is deflected downward as shown in FIG. 8, v e! Is preferably
1 2伏特’ V b爲-1 0伏特,及V e 2爲〇伏特。同樣地(或相 反地),當微板2 04b向下偏轉時,Ve】較佳地爲〇伏特, v b爲-1 0伏特,及v e 2爲1 2伏特。由於鉸鏈2 0 6的設 計,鏡板2 0 4 a或2 0 4 b的一側(亦即,位於具有偏壓的電 極I 2 6的上方的側)會向下偏轉(朝向第二基底1 〇 7 ), 而鏡板2 0 4 b或2 0 4 a的另一側會移離第二基底】〇 7。注 意,在一較佳實施例中,實質上所有的彎曲發生於鉸鏈 2〇6中的而非鏡板2〇4。在一實施例中,藉由使鉸鏈寬度 2 2 2溥’以及連接鉸鏈2 0 6至僅位於二端上的支撐柱,而 達成此點。如上所述般,鏡板2〇4的偏轉受限於止動件 4 0 w或4 0 5 b。鏡板2 0 4的全部偏轉會使外離的反射光偏 ~ 33- 200525272 (30) 轉至成像光件及視頻顯示器。12 volts' V b is -10 volts, and Ve 2 is 0 volts. Similarly (or vice versa), when the microplate 204b is deflected downward, Ve] is preferably 0 volts, vb is -10 volts, and ve2 is 12 volts. Due to the design of the hinge 2 0 6, one side of the mirror plate 2 0 4 a or 2 0 4 b (that is, the side located above the electrode I 2 6 with a bias voltage) is deflected downward (toward the second base 1 0). 7), and the other side of the mirror plate 2 0 4 b or 2 0 4 a will move away from the second substrate]. Note that in a preferred embodiment, substantially all of the bending occurs in the hinge 206 instead of the mirror plate 204. In one embodiment, this is achieved by making the hinge width 2 2 2 溥 'and connecting the hinge 206 to a support post located only on the two ends. As described above, the deflection of the mirror plate 204 is limited by the stopper 40 w or 40 5 b. The total deflection of the mirror plate 2 0 4 will cause the external reflected light to be diverted ~ 33- 200525272 (30) to the imaging light and video display.
當鏡板204偏轉通過「快動」或「下拉」電壓時(在 一貫施例中幾乎爲1 2伏特或更低),鉸鏈2 〇 6之恢復的 機械力或扭力無法再平衡靜電力或扭力,且在其下具有靜 電力之鏡板204的一半204a或204b會快速朝向其下的電 極1 2 6以取得完全偏轉,於所需時僅受限於止動件4 〇 5 a 或405b。在如圖12a、12b及13所示之鉸鏈206平行於 間隔器支撐框2 1 0的支撐壁之實施例中,爲了將鏡板2 0 4 從其完全偏轉的位置釋放’電壓必須被關閉。在如圖 2 a、2 b及3所示之鉸鏈爲對角線的實施例中,爲了將鏡 板2 0 4從其完全偏轉的位置釋放,當其它電極正被致能時 電壓必須被關閉,且鏡2 02附著至另一側。When the mirror plate 204 is deflected through the "fast-moving" or "pull-down" voltage (almost 12 volts or lower in the conventional embodiment), the recovered mechanical force or torque of the hinge 206 cannot balance the electrostatic force or torque, And the half 204a or 204b of the mirror plate 204 having an electrostatic force under it will quickly move toward the electrode 1 2 6 under it to obtain complete deflection, which is limited only by the stopper 405 a or 405b when necessary. In the embodiment in which the hinge 206 shown in Figs. 12a, 12b, and 13 is parallel to the support wall of the spacer support frame 210, the voltage must be turned off in order to release the mirror plate 204 from its fully deflected position. In the embodiment where the hinges shown in Figs. 2a, 2b, and 3 are diagonal, in order to release the mirror plate 204 from its fully deflected position, the voltage must be turned off when other electrodes are being enabled, And the mirror 202 is attached to the other side.
微鏡202是機電雙穩態裝置。在釋放電壓與快動電壓 之間給予特定電壓,則取決於鏡2 0 2偏轉的歷史,鏡板 2 04會有二種可能的偏轉角度。因此,鏡2 02偏轉表現如 同佇鎖。由於鏡2 0 2的偏轉所需之機械力相對於偏轉角度 大致上爲線性的,所以,這些雙穩定性及佇鎖特性會存 在,而相反的靜電力是與鏡板2 04與電極1 2 6之間的距離 成反比。 由於鏡板2 04與電極126之間的靜電力取決於鏡板 2 04與電極I 26之間的總電壓差,所以,施加至鏡板204 的負電壓會降低施加至電極]2 6所需之正電壓而取得給定 的偏轉量。如此,施加電壓至鏡陣列1 03可以降低電極 1 2 6的電壓量値需求。此點是有的,舉例而言,在某些應 -34 - 200525272 (31) 用中,因爲5 V的切換能力在半導體工業中是更加通用且 成本上更有效,所以,需要使必須施加至電極1 2 6的最大 電壓保持在1 2 V以下。The micromirror 202 is an electromechanical bistable device. Given a specific voltage between the release voltage and the snap-action voltage, depending on the history of deflection of the mirror 202, the mirror plate 204 can have two possible deflection angles. Therefore, the mirror 202 deflection behaves like a shackle. Since the mechanical force required for the deflection of the mirror 2 02 is approximately linear with respect to the deflection angle, these bistable and shackle characteristics will exist, while the opposite electrostatic force is with the mirror plate 2 04 and the electrode 1 2 6 The distance between them is inversely proportional. Since the electrostatic force between the mirror plate 2 04 and the electrode 126 depends on the total voltage difference between the mirror plate 2 04 and the electrode I 26, the negative voltage applied to the mirror plate 204 will reduce the positive voltage required to the electrode] 2 6 And get a given amount of deflection. In this way, applying a voltage to the mirror array 103 can reduce the amount of voltage 値 required by the electrodes 126. This is true, for example, in some applications -34-200525272 (31), because the switching capability of 5 V is more versatile and cost effective in the semiconductor industry, it is necessary to make The maximum voltage of electrodes 1 2 6 remains below 12 V.
由於鏡2 02的最大偏轉是固定的,所以,假使SLM 1 〇 〇以超過快動電壓之電壓操作,則其可以以數位方式操 作。在如圖2a、2b及3所示之鉸鏈平行於間隔器支撐框Since the maximum deflection of the mirror 202 is fixed, if the SLM 100 is operated at a voltage exceeding the snap-action voltage, it can be operated digitally. The hinges shown in Figures 2a, 2b and 3 are parallel to the spacer support frame
2 1 0的支撐壁之實施例中,由於鏡板2 0 4會因電壓施加至 相關連的電極]2 6而完全向下偏轉,或是無電壓施加至相 關連的電極I 2 6時,允許鏡板2 0 4向上彈,所以,操作基 本上是數位的。在具有如圖1 2 a、1 2 b及1 3所示的鉸鏈 2 0 6對角線之實施例中,當使鏡板2 0 4的另一側上的其它 電極1 26致能時’鏡板204會因電壓施加至鏡板204的一 側上之相關連的電極1 2 6而完全向下偏轉至鏡板2 0 4的另 一側。造成鏡板2 04完全向下偏轉直到由停止鏡板204的 偏轉之實體元件停止爲止的電壓係稱爲「快動」或「下 拉」電壓。如此,爲了使鏡板204完全向下偏轉,將等於 或大於快動電壓之電壓施加至對應的電極1 2 6。在視頻顯 示應用中’當鏡板2〇4完全向下偏轉時,入射於鏡板2〇4 上的入射光會被反射至視頻顯示螢幕上對應的像素,且像 素會呈現明亮的。當鏡板2 04被允許向上彈時,光會以不 會撞擊視頻顯不螢幕之方式被偏轉,且像素呈現暗的。 在此數位操作期間,在相關連的鏡板2 04被完全偏轉 之後,無須在電極1 2 6上保持完全快動電壓。在「尋址階 段」期間,用在對應於應被完全偏轉的鏡板2 0 4之被選取 -35- 200525272 (32)In the embodiment of the supporting wall of 2 10, since the mirror plate 2 0 4 is completely deflected downward due to the voltage applied to the associated electrode] 2 6 or when no voltage is applied to the associated electrode I 2 6, it is allowed The mirror plate 2 0 4 pops up, so the operation is basically digital. In the embodiment having the diagonals of hinges 206 as shown in Figs. 12a, 1b and 13, when the other electrodes 126 on the other side of the mirror plate 204 are enabled, the mirror plate 204 is deflected down completely to the other side of the mirror plate 204 by the voltage applied to the associated electrode 1 2 6 on one side of the mirror plate 204. The voltage that causes the mirror plate 204 to be completely deflected downward until it is stopped by the solid element that stops the deflection of the mirror plate 204 is referred to as "quick action" or "pull down" voltage. In this way, in order to fully deflect the mirror plate 204 downward, a voltage equal to or greater than the snap-action voltage is applied to the corresponding electrode 1 2 6. In the video display application, when the mirror plate 204 is completely deflected downward, the incident light incident on the mirror plate 204 will be reflected to the corresponding pixels on the video display screen, and the pixels will appear bright. When the mirror plate 204 is allowed to pop up, the light will be deflected in such a way that it will not hit the video display screen, and the pixels will appear dark. During this digital operation, it is not necessary to maintain a full snap-action voltage on the electrodes 1 2 6 after the associated mirror plate 20 04 is fully deflected. During the "addressing phase", the selection of the mirror plate 2 0 4 which should be fully deflected -35- 200525272 (32)
電極1 26的電壓會被設定於偏轉鏡板2〇4所需的位準。在 所討論之鏡板2 0 4因電極]2 6上的電壓而被偏轉時,用以 將鏡板2〇4固持於偏轉位置所需之電壓會小於真正偏轉所 需的電壓。這是因爲被偏轉的鏡板2 0 4與尋址電極】2 6之 間的間隙比鏡板2 04在被偏轉的過程中時還小。因此,# 尋址階段之後的「固持階段」中,施加至所選取的電極 1 2 6之電壓會從其原先所需的位準縮減,卻不會實質·纟也景< 響鏡板204的偏轉狀態。具有較低固持階段之一優點係附 近的未被偏轉之鏡板2 04會遭受較小的靜電吸力,且它們 因而保持較接近零偏轉位置。這會改進偏轉鏡板2 0 4與未 偏轉的鏡板204之間的光學對比。 藉由適當選取尺寸(在一實施例中,鏡板2 04與電極The voltage of the electrodes 126 will be set to the required level of the deflection mirror plate 204. When the mirror plate 204 in question is deflected due to the voltage on the electrode] 26, the voltage required to hold the mirror plate 204 in the deflected position will be less than the voltage required for true deflection. This is because the gap between the deflected mirror plate 204 and the address electrode 26 is smaller than when the mirror plate 204 is deflected. Therefore, in the "holding phase" after the # addressing phase, the voltage applied to the selected electrode 1 2 6 will be reduced from its original required level, but it will not be substantial. Deflection. One of the advantages of having a lower holding stage is that nearby undeflected mirror plates 204 will experience less electrostatic attraction, and they therefore remain closer to a zero deflection position. This improves the optical contrast between the deflected mirror plate 204 and the undeflected mirror plate 204. By properly selecting the dimensions (in one embodiment, the mirror plate 204 and the electrode
1 2 6之間的支撐框2 1 0分離取決於鏡結構及偏轉角度需求 而爲1至5微米,且鉸鏈206厚度爲0.05至〇·45微米) 及材料(例如單晶矽(100 )),可以將反射式SLM 1〇〇 製成操作電壓僅爲數伏特。由單晶矽製成的扭力彈簧2 0 6 的剪力模數可以爲5 X 10 1G牛頓/半徑平方米。將鏡板2〇4 維持在適當電壓(負偏壓)而非接地,可以使電極I 2 6操 作以完全偏轉相關連的鏡板2 04之電壓更低。對於施加至 電極1 2 6之給定電壓,這會造成更大的偏轉角度。最大的 負偏壓是釋放電壓,所以,當尋址電壓降至零時,鏡板 2 04可以快動回至未偏轉的位置。 也能夠以更「類比」的方式,控制鏡板2 0 4的偏轉。 施加小於「快動電壓」之電壓以將鏡板2 0 4偏轉以及控制 -36- 200525272 (33) 入射光被反射的方向。 其它應用 除了視頻顯示器之外,空間光調變器1 0 〇在其它應用 中也是有用的。一種此應用是無掩罩微影術,其中,空間 光調變器1 00會導引光以使所沈積的光阻顯影。這將不需 掩罩而能以所需圖案使光阻正確地顯影。 雖然已參考多個實施例,特別地顯示及說明本發明, 但是,習於相關技藝者應瞭解,在不悖離本發明的精神及 範圍之下,可以在形式上及細節上作不同的改變。舉例而 言,鏡板2 0 4可以藉由靜電吸引以外的其它方法而偏轉。 替代地,可以使用磁、熱或壓電致動以偏轉鏡板2 04。 【圖式簡單說明】Support frame between 1 2 6 2 1 0 Separation is 1 to 5 microns depending on the mirror structure and deflection angle requirements, and the thickness of the hinge 206 is 0.05 to 0.45 microns) and materials (such as monocrystalline silicon (100)) , The reflective SLM 100 can be made with an operating voltage of only a few volts. The torsion spring 2 0 6 made of monocrystalline silicon can have a shear modulus of 5 X 10 1G Newton / radius square meter. Maintaining the mirror plate 204 at an appropriate voltage (negative bias) instead of ground, allows the electrode I 2 6 to operate to fully deflect the voltage of the associated mirror plate 204. For a given voltage applied to the electrodes 1 2 6 this results in a greater deflection angle. The maximum negative bias voltage is the release voltage, so when the address voltage drops to zero, the mirror plate 04 can quickly move back to the undeflected position. It is also possible to control the deflection of the mirror plate 204 in a more "analogous" manner. Apply a voltage less than the "quick-acting voltage" to deflect and control the mirror plate 204. -36- 200525272 (33) The direction in which the incident light is reflected. Other applications In addition to video displays, the spatial light modulator 100 is also useful in other applications. One such application is maskless lithography, where the spatial light modulator 100 directs light to develop the deposited photoresist. This will enable the photoresist to be developed correctly in a desired pattern without a mask. Although the present invention has been particularly shown and described with reference to various embodiments, those skilled in the relevant arts should understand that various changes in form and details can be made without departing from the spirit and scope of the present invention. . For example, the mirror plate 204 can be deflected by means other than electrostatic attraction. Alternatively, magnetic, thermal, or piezoelectric actuation may be used to deflect the mirror plate 204. [Schematic description]
圖]係說明根據本發明的一實施例之空間光調變器的 一般架構。 圖2 a係本發明的一實施例中單一微鏡之立體視圖。 圖2 b係圖2 a的微鏡之角落的立體視圖。 圖3係無反射表面之單一微鏡的立體視圖,顯示一實 施例中的微鏡陣列的鏡板之頂部及側邊。 圖4 a係本發明的一實施例中單一微鏡的底部及側 邊。 - 圖4 b係圖4 a的微鏡之角落的立體視圖。 圖5係立體視圖,顯示本發明的一實施例中微鏡的頂 -37 - 200525272 (34) 部及側邊。 圖6係立體視圖,顯示本發明的一實施例中微鏡陣列 的底部及側邊。 圖7 a係延著偏移對角剖面之圖2 a中所示的未經偏轉 的微鏡之剖面視圖。 圖7 b係在本發明的一實施例中形成於第二基底中的 鏡板下方的電極及著陸尖梢。 圖7 c係延著中心對角線剖面之圖2 a中所示的未經偏 轉的微鏡之剖面視圖。 圖8係顯示於圖2 a中的偏轉的微鏡之剖面視圖。 圖9 a係流程圖,顯示如何製造空間光調變器之較佳 實施例。 圖9b至9m係剖面圖,更詳細顯示空間光調變器的 製造。 圖]〇係顯示用於在第一基底中形成穴之掩罩的較佳 實施例。 圖]1係立體視圖,顯示形成於第二基底上的電極之 一實施例。 圖】2 a係本發明的另〜實施例中的微鏡的立體視圖。 圖]2b係圖]2a的微鏡之角落之立體視圖。 圖]3係I體視圖,顯示圖丨2 a中所示的實施例中微 鏡之底部及側面。 圖1 4係體視圖,顯示本發明的另一實施例中微鏡 陣列的頂部及側邊。 - 38- 200525272 (35) 圖]5係立體視圖,顯示圖1 4中所示的另一實施例中 微鏡陣列的底部及側邊。 圖16a至圖]6e係顯示在第一基底中製造穴之另一方 法。 【符號說明】 1 00 空 間 光 調 變 器 1 03 可 偏 轉 的 鏡 陣 列 1 04 電 極 陣 列 105 第 一 基 底 106 控 制 電 路 1 07 第 二 基 底 1 08 顯 示 控 制 1 1 0 線 記 憶 體 緩 衝 器 112 脈 衝 調 變 陣 列 114 微 控 制 器 116 光 控 制 電 路 1 1 8 快 閃 記 憶 體 120 視 頻 訊 號 122 繪 圖 訊 號 ]26 電 極 1 26a 電 極 12 6 b 極 】97 距 離Figure] illustrates the general architecture of a spatial light modulator according to an embodiment of the present invention. FIG. 2 a is a perspective view of a single micromirror according to an embodiment of the present invention. Fig. 2b is a perspective view of a corner of the micromirror of Fig. 2a. Figure 3 is a perspective view of a single micromirror without a reflective surface, showing the top and sides of the mirror plate of the micromirror array in an embodiment. Fig. 4a shows the bottom and sides of a single micromirror according to an embodiment of the present invention. -Figure 4b is a perspective view of the corner of the micromirror of Figure 4a. FIG. 5 is a perspective view showing a top portion and a side portion of a micromirror in the embodiment of the present invention. Fig. 6 is a perspective view showing the bottom and sides of a micromirror array according to an embodiment of the present invention. Fig. 7a is a cross-sectional view of an undeflected micromirror shown in Fig. 2a along an offset diagonal section. Fig. 7b shows an electrode and a land landing tip formed under the mirror plate in the second substrate according to an embodiment of the present invention. Fig. 7c is a cross-sectional view of the undeflected micromirror shown in Fig. 2a along the central diagonal section. Fig. 8 is a sectional view of the deflected micromirror shown in Fig. 2a. Fig. 9a is a flowchart showing a preferred embodiment of how to manufacture a spatial light modulator. Figures 9b to 9m are sectional views showing the manufacture of the spatial light modulator in more detail. Fig. 0 shows a preferred embodiment of a mask for forming a cavity in a first substrate. Fig. 1 is a perspective view showing an embodiment of an electrode formed on a second substrate. Fig. 2a is a perspective view of a micromirror in another embodiment of the present invention. Fig. 2b is a perspective view of the corner of the micromirror 2a. Fig. 3 is a body view showing the bottom and sides of the micromirror in the embodiment shown in Fig. 2a. Figure 14 is a body view showing the top and sides of a micromirror array in another embodiment of the present invention. -38- 200525272 (35) Figure] A 5 series perspective view showing the bottom and sides of the micromirror array in another embodiment shown in Figure 14. Fig. 16a to Fig. 6e show another method of making a cavity in the first substrate. [Symbol description] 1 00 spatial light modulator 1 03 deflectable mirror array 1 04 electrode array 105 first substrate 106 control circuit 1 07 second substrate 1 08 display control 1 1 0 line memory buffer 112 pulse modulation Array 114 Microcontroller 116 Light control circuit 1 1 8 Flash memory 120 Video signal 122 Graphic signal] 26 electrode 1 26a electrode 12 6 b pole] 97 distance
-39- 200525272 (36) 2 0 1 下 202 微 2 0 2 -1 〜202 203 反 204 鏡 2 04a 第 2 04b 第 205 上 206 鉸 2 0 6a 第 2 0 6b 第 2 1 0 間 2 12 間 2 16 連 222 寬 223 深 236 角 23 7 角 23 8 角 40 5 a 止 4 0 5 b 止 7 10a 著 7 10b 著 795 中 表面 鏡 -9 射表面 板 一側 二側 表面 鏈 一臂 一璧 隔器支撐框 隔器壁寬度 接器 度 度 落 落 落 動件 動件 陸尖端 陸尖端 心高度 微鏡-39- 200525272 (36) 2 0 1 down 202 micro 2 0 2 -1 to 202 203 reverse 204 mirror 2 04a first 2 04b second 205 upper 206 hinge 2 0 6a second 2 0 6b second 2 1 0 room 2 12 room 2 16 with 222 width 223 depth 236 angle 23 7 angle 23 8 angle 40 5 a to 4 0 5 b to 7 10a to 7 10b to 795 middle surface mirror -9 beam surface plate one side surface chain one arm one spacer Support frame divider wall width connector degree drop moving piece land tip land tip core height micromirror
-40- 200525272 (37) 796 中 797 中 905 頂 9 10 凹 9 15 鏡 920 犧 1000 掩 1002 10 04 區 1605 操 16 10 絕 16 15 裝 16 15a 頂 1620 介 1625 開 1626 開 162 7 口口 早 1628 C3 口 早 心高度 心高度 層 槽 板部份 牲材料 罩 域 域 作基底 緣氧化物層 置層 部 電材料 □ □ 晶矽材料 晶砂材料-40- 200525272 (37) 796 Medium 797 Medium 905 Top 9 10 Concave 9 15 Mirror 920 Sacrifice 1000 Cover 1002 10 04 Area 1605 Fuck 16 10 Must 16 15 Outfit 16 15a Top 1620 Refer 1625 Open 1626 Open 162 7 Mouth early 1628 C3 Mouth early heart height heart height trough plate part of the material cover area as the base edge oxide layer placement layer electrical material □ crystalline silicon material crystal sand material
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47540403P | 2003-06-02 | 2003-06-02 | |
US61096703A | 2003-06-30 | 2003-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200525272A true TW200525272A (en) | 2005-08-01 |
TWI356912B TWI356912B (en) | 2012-01-21 |
Family
ID=33514051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93115847A TWI356912B (en) | 2003-06-02 | 2004-06-02 | Fabrication of a high fill ratio reflective spatia |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1636629A4 (en) |
JP (1) | JP2006526806A (en) |
KR (1) | KR20060016800A (en) |
TW (1) | TWI356912B (en) |
WO (1) | WO2004109364A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7483198B2 (en) | 2003-02-12 | 2009-01-27 | Texas Instruments Incorporated | Micromirror device and method for making the same |
CN101084462B (en) * | 2003-10-27 | 2010-06-02 | 视频有限公司 | High-resolution spatial light modulation and method |
US7113322B2 (en) | 2004-06-23 | 2006-09-26 | Reflectivity, Inc | Micromirror having offset addressing electrode |
US7215459B2 (en) | 2004-08-25 | 2007-05-08 | Reflectivity, Inc. | Micromirror devices with in-plane deformable hinge |
US7119944B2 (en) | 2004-08-25 | 2006-10-10 | Reflectivity, Inc. | Micromirror device and method for making the same |
US7436572B2 (en) | 2004-08-25 | 2008-10-14 | Texas Instruments Incorporated | Micromirrors and hinge structures for micromirror arrays in projection displays |
US7019880B1 (en) | 2004-08-25 | 2006-03-28 | Reflectivity, Inc | Micromirrors and hinge structures for micromirror arrays in projection displays |
US6980349B1 (en) | 2004-08-25 | 2005-12-27 | Reflectivity, Inc | Micromirrors with novel mirror plates |
US7372617B2 (en) * | 2005-07-06 | 2008-05-13 | Peter Enoksson | Hidden hinge MEMS device |
JP5176387B2 (en) * | 2007-05-18 | 2013-04-03 | 大日本印刷株式会社 | Membrane structure manufacturing method |
US7859971B2 (en) | 2007-06-29 | 2010-12-28 | International Business Machines Corporation | Directory hologram forming an anchor location of a pattern of stored holograms |
KR100888076B1 (en) * | 2008-05-02 | 2009-03-11 | 이화여자대학교 산학협력단 | A method for manufacturing a micro-mirror using a self-aligned electrode |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5083857A (en) * | 1990-06-29 | 1992-01-28 | Texas Instruments Incorporated | Multi-level deformable mirror device |
US5583688A (en) * | 1993-12-21 | 1996-12-10 | Texas Instruments Incorporated | Multi-level digital micromirror device |
DE19757197A1 (en) * | 1997-12-22 | 1999-06-24 | Bosch Gmbh Robert | Manufacturing method for micromechanical device, esp. for resonant oscillating mirror device |
US6204085B1 (en) * | 1998-09-15 | 2001-03-20 | Texas Instruments Incorporated | Reduced deformation of micromechanical devices through thermal stabilization |
US6529310B1 (en) * | 1998-09-24 | 2003-03-04 | Reflectivity, Inc. | Deflectable spatial light modulator having superimposed hinge and deflectable element |
US20020013054A1 (en) * | 2000-05-12 | 2002-01-31 | Farmer, Ii Kenneth R. | Single crystal silicon micro-actuator/mirror and method therefor |
DE60043726D1 (en) * | 2000-08-09 | 2010-03-11 | St Microelectronics Srl | Microelectromechanical structure with different parts, which are mechanically connected to each other by a device for converting translational into rotational movements |
JP2002307396A (en) * | 2001-04-13 | 2002-10-23 | Olympus Optical Co Ltd | Actuator |
US20040004753A1 (en) * | 2002-06-19 | 2004-01-08 | Pan Shaoher X. | Architecture of a reflective spatial light modulator |
-
2004
- 2004-02-12 KR KR1020057023191A patent/KR20060016800A/en not_active Application Discontinuation
- 2004-02-12 EP EP04710687A patent/EP1636629A4/en not_active Withdrawn
- 2004-02-12 JP JP2006508742A patent/JP2006526806A/en active Pending
- 2004-02-12 WO PCT/US2004/004357 patent/WO2004109364A1/en active Application Filing
- 2004-06-02 TW TW93115847A patent/TWI356912B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2004109364A1 (en) | 2004-12-16 |
EP1636629A4 (en) | 2009-04-15 |
KR20060016800A (en) | 2006-02-22 |
JP2006526806A (en) | 2006-11-24 |
TWI356912B (en) | 2012-01-21 |
EP1636629A1 (en) | 2006-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7245416B2 (en) | Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge | |
TWI267667B (en) | Fabrication of a reflective spatial light modulator | |
US7092140B2 (en) | Architecture of a reflective spatial light modulator | |
US7280263B2 (en) | Reflective spatial light modulator | |
US7911678B2 (en) | Reflective spatial light modulator having dual layer electrodes and method of fabricating same | |
US20080192325A1 (en) | Method of fabricating reflective spatial light modulator having high contrast ratio | |
TW200525272A (en) | Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |