TW200524330A - Multiple antenna systems and methods using high-throughput space-frequency block codes - Google Patents

Multiple antenna systems and methods using high-throughput space-frequency block codes Download PDF

Info

Publication number
TW200524330A
TW200524330A TW093127726A TW93127726A TW200524330A TW 200524330 A TW200524330 A TW 200524330A TW 093127726 A TW093127726 A TW 093127726A TW 93127726 A TW93127726 A TW 93127726A TW 200524330 A TW200524330 A TW 200524330A
Authority
TW
Taiwan
Prior art keywords
symbol
group
encoded
symbols
carrier
Prior art date
Application number
TW093127726A
Other languages
Chinese (zh)
Other versions
TWI264891B (en
Inventor
Lei Shao
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/814,113 external-priority patent/US7315577B2/en
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW200524330A publication Critical patent/TW200524330A/en
Application granted granted Critical
Publication of TWI264891B publication Critical patent/TWI264891B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A multi-carrier transmitter uses high-throughput space-frequency block codes to map transmit symbols to a particular transmit antenna and a particular subcarrier of a multi-carrier communication channel.

Description

200524330 九、發明說明: 【發明所屬^技術領域】 本案依美國專利法35 U.S.C·第119(e)條請求2003年9月 15曰申請之美國臨時專利申請案第6〇/5〇3,〇92號的優先 5 權’該案之内容併供本案參考。 發明領域 本發明之實施例是關於無線通訊技術,且在一些實施 例中係關於多重載波通訊系統。 【先前^^标3 10 發明背景 為了提南無線通訊之資料率及/或流量,無線信號可在 —個以上的«頻道運用同—個頻率副載波使用一個以上 之發射天線被傳輸。這些系統有時被稱為多重輸入多重輸 出(ΜΙΜΟ)系統且可開發天線間之多路徑多樣性。慣常之 15聰0系統可使用迴旋編碼及/或維特比⑽邮編碼將該 等信號編碼,然而這些技術對天線隔離與天線衰減係數為 敏感的。 因而,其對提高無線通訊之資料率及/或流量之裝置與 方法有通用之需求。 20 【韻^明内溶1】 本發明係為一種多重載波發射器,包含:_預先編瑪 器’用以藉由將數個符號向量中每_符號向量乘以一複式 Z域矩陣來將數個符號向量編碼,而產生預先編碼符號向 里,—分割器,用以將該等預先編石馬符號向量分細為數個 200524330 群組,每一群組具有一個以上的預先編碼符號向量;以及一 空間頻率符號映射器,用以至少部分地根據該預先編碼後 之符號的群組與該預先編碼後之符號在該群組内的位置, 將該等預先編碼符號向量的預先編碼後之符號映射至一多 5 重載波通訊頻道的數個副載波之一與映射至數個空間頻道 ―― 〇 圖式簡單說明 此處所附的申請專利範圍被導向本發明之各種實施 例。然而,其詳細的描述在考慮相關附圖時呈現對本發明 10 之實施例的更完整了解,其中在所有圖中類似的元件編號 係指類似的項目,且: 第1圖為依照本發明一些實施例之多重載波發射器的 方塊圖; 第2圖顯示依照本發明一些實施例之預先編碼符號向 15 量; 第3圖顯示依照本發明一些實施例之空間頻率映射; 第4圖為依照本發明一些實施例之多重載波接收器的 方塊圖, 第5圖為依照本發明一些實施例之空間頻率符號傳輸 20 程序的流程圖;以及 第6圖為依照本發明一些實施例之符號接收與解碼程 序的流程圖。 I:實施方式3 較佳實施例之詳細說明 200524330 下列的描述與圖說明本發明之特定實施例,其足以使 热白本技蟄者將之實作。其他的實施例可納入結構的、邏 輯的黾氣的處理與其他變更。例子僅將可能變化典型化。 各別的元件與功能除非明白地被要求否則為選配性的,且 作業順序可改變。一些實施例的部位與特徵可被包括於其 他者或取代之。本發明之實施例的領域包容申請專利範圍 之完整範圍與這些申請專利範圍的現存等值事項。本發明 ^這類實施例為方便起見在此各別地或集合式地僅被稱為 本t月」’且若任何單一的本發明或發明性觀念有一個以 10 t ~ 二广 K際上被揭不,其不欲隨意地將本申請案之領域限制於 其中。 第1圖為依照本發明一些實施例之多重載波發射器的 方塊圖。多重載波發射器100可為無線通訊裝置的部分且可 在多重載波通訊頻道上傳輸多重載波通訊信號,如正交頻 15率分割多工(OFDM)通訊信號。 在一些貫施例中,多重載波發射器1〇〇將符號編碼用於 匕3個以上的空間頻道之多重載波通訊頻道上傳輸且 可使用4固以上的發射天線114。在一些實施例中,多重載 波發射器刚使用高流量空間頻率區塊碼且可不需使用迴 20 2或錯誤校正編碼,雖然本發明不受限於此層面。在一些 貝施例中’以夕重載波發射器使用高流量空間頻率區塊碼 可肖除對Viterbi解碼之需纟,雖然本發明不受限於此層 在二貝施例中,使用咼流量空間頻率區塊碼比使用 具有類似位元錯誤率與帶寬之迴旋石馬的系統可達成提高的 200524330 流量及/或提高的範圍。 在一些實施例中,多重載波發射器100可包含預先編碼 器106以藉由將符號向量105乘以複式領域之矩陣以產生預 先編碼符號向量107而將數個符號向量1〇6編碼。在一些實 5 施例中,多重載波發射器1〇〇可包含分割器108以將預先編 碼符號向量107分組為數個群組109。每一群組可包含一個 以上的作業107。在一些實施例中,多重載波發射器亦可包 含空間頻率符號映射器丨10以映射預先編碼符號向量1〇7之 每一預先編碼後之符號至多重載波通訊頻道的數個副載波 〇之一及至數個空間頻道之一。在一些實施例中,空間頻率 符號映射器110可至少根據該符號之群組與該符號在群組 内之位置以映射預先編碼符號向量107之每一預先編碼後 之符旒至多重載波通訊頻道的數個副載波之一及至數個空 間頻道之一,雖然本發明不受限於此層面。 15 在些貝施例中’空間頻率符號映射器110可至少根據 η亥付唬之群組與該符號在群組内之位置映射預先編碼後之 付唬至該等副載波之一與發射天線之一,雖然本發明不受 限於此層面。在這些實施例中,每一發射天線114可被配以 6玄等空間頻道之―,雖然本發明不受限於此層面。 20 . _ ^ 些貫施例中,多重載波發射器1〇〇可進一步包含符 5虎映射& 102以由一輸入串列位元流ι〇ι產生符號1〇3之一 2列仃旒机。在一些實施例中,映射器102可為正交振幅調 ==)付號映射器以產生QAM符號之-串列符號流,雖 …、本么明不党限於此層面。在一些實施例中,多重載波發 200524330 射器100可進-步包含串列對並列變換器刚以由串列符號 Μ產生數個並列符號向量105。每—符號向量1〇5可具有一 個以上的符號。在一些實施例中,並列符號向量他可為 Q AM符號向量。 ’~ 5 在些貫施例中,多重載波發射器100可包含逆快速傅 立葉變換(IFFT)電路112以產生信號113用於在空間頻道的 對應之一或在發射天線的對應之一上由空間頻率符號映射 裔110所提供之空間頻率映射後符號lu進行RF傳輪。在一 些貫施例中,信號113為用於傳輸之封包後的信號。在一些 10實施例中,電路可在1FFT電路112被包括於信號路徑内以添 加一循環字首(CP)至信號113以協助減少符號間之干擾,雖 然本發明不受限於此層面。在一些實施例中,每一發射天 線114可對應於該等空間頻道之一,雖然本發明不受限於此 層面。 15 在些貝加例中,預先編碼器106可為線性平方預先編 碼器且可分離地將每一並列符號向量1〇5預先編碼以產生 數個並列預先編碼符號向量1〇7。在一些實施例中,預先編 碼器106所使用之複式領域矩陣(如theta)可為具有實質上為 列式範德蒙德(Vandermonde)結構之正方複式領域矩陣,雖 20然本發明不受限於此層面。範德蒙德矩陣可指在拉格朗曰 (Lagrange)内插多項式之多項式配適與由分配之動量重建 統計分配中所產生之一種矩陣型式,雖然本發明不受限於 此層面。 在一些實施例中’預先編碼器1〇6可將Mxg個並列符號 200524330 向量105編碼’且每一並列符號向量1〇5可具有Μχκ個符 號。在這些實施例中’分割器108可將預先編碼符號向量1〇7 分組為並列付號向ϊ 105之G個群組109。每_群組1 〇9可星 有Μ個預先編碼符號向量107。在這些實施例中,μ,g與ΐς 5可被選擇為滿足Nc = MxKxG,其中Nc為多重載波通訊頻道 之資料副載波的數目。Μ,G,與K為小於1〇〇之正整數,雖 然本發明不受限於此層面。在一些實施例中,Μ可對鹿於 數個空間頻道及/或發射天線114。例如,當多重載波通气 頻道包含16個資料副載波且該發射器使用4個發射天線 10日^,Μ可為4、G可為2、及Κ可為2。被傳輸之符號總數可為 母一付號向里之付號數(即ΜχΚ)乘上向量數(即]yjxG),JL將 為64個符號。16個符號(即該等ι6個資料副載波的每一有一 個)可用每一IFFT電路112被調變及用發射天線114的對應 之一被傳輸。在一些實施例中,於各種事項中,κ與G可根 15 據副載波個數與天線個數被選擇。 第2圖顯示依照本發明一些實施例的預先編碼符號向 量。在一些實施例中,預先編碼符號向量2〇7之符號可被配 以一層之符號。預先編碼符號向量2〇7可對應於預先編碼符 號向量(第1圖),雖然本發明不受限於此層面。預先編碼符 20號向量207可被分組為二個以上的群組209。每一預先編碼 符號向量207可包含數個預先編碼後之符號2〇3。在—些實 施例中,G群組之每一個可有馗層。在一些實施例中,μ之 層數最多不比發射天線多二個。在這些實施例中,如空間 頻率符號映射器11〇(第1圖)之空間頻率符號映射器可將預 200524330 先編碼符號向量207之每一預先編碼後之符號2〇3根據該群 組與配於該符號之層映射至該等副載波之一與該等發射天 線之一。在這些實施例中,空間頻率符號映射器11〇(第1圖) 可映射MxKxG個符號至每一發射天線及/或空間頻道,並可 5以MxKxG個符號之倍數提供預先編碼後之符號至如IFFT 電路112(第1圖)之IFFT電路,被配以該等發射天線用於在該 等副載波上調變。第2圖顯示本發明之實施例,其就預先編 碼符號向量207之二群組(即群組1〇9)的每一個包括四層,其 中每一預先編碼符號向量207包含八個預先編碼後之符號 10 203。在此被顯示之例中,其可有多重載波通訊頻道之16個 資料副載波,雖然本發明不受限於此層面。 在一些實施例中,空間頻率符號映射器11〇(第1圖)可映 射至少該等層之一些預先編碼後之符號203至該等副載波 與該等發射天線,所根據者為該預先編碼後之符號之群組 15 與在該群組内之位置,雖然本發明不受限於此層面。在一 些實施例中,一第一群組之一多重載波預先編碼後之符號 可被映射至一第一副載波與一第一發射天線,及一第二群 組之一多重載波預先編碼後之符號可被映射至一第二副載 波與一第二發射天線等等。該特定的映射可在其他事項中 20被選擇以達成提高的多樣性。 第3圖顯示依照本發明一些實施例之空間頻率映射。預 先編碼後之符號303可根據預先編碼後之符號之層與群組 被映射至發射天線114(第1圖)之一或空間頻道302(以列被 顯示)之一與副載波304(以行被顯示)之一。在第3圖中,預 200524330 先編碼後之符號303可對應於預先編碼後之符號2〇3(第2圖) 且被顯示為Sijk,其中i代表第丨層,』代表群組數,及k代表第 k預先編碼後之符號。在顯示成具有16個資料副載波之例 中,第一群組之預先編碼後之符號3〇3可被映射至第一至第 5四副載波與第九至第十二副載波,而第二群組之預先編碼 後之符號303可被映射至第五至第八副載波與第十三至第 十六副載波。 在一些實施例中,一特定層之預先編碼後之符號3〇3 在此說明以對角式被映射。例如,就第一群組之符號而言, 10第一層之第一符號306可被映射至第一副載波與第一發射 天線、第一層之第二符號308可被映射至第二副載波與第二 發射天線、第一層之第三符號310可被映射至第三副載波與 第三發射天線、第一層之第四符號312可被映射至第四副載 波與第四發射天線;第一層之第五符號314可被映射至第九 15副載波與第一發射天線、第一層之第六符號316可被映射至 第十副載波與第二發射天線、第一層之第七符號318可被映 射至第十一副載波與第三發射天線、第一層之第八符號3 2 〇 可被映射至第十二副載波與第四發射天線。此映射可如第3 圖顯示地類似地被施用至其他層與其他群組。根據層與群 20組之其他映射可用空間頻率符號映射器110(第1圖)被實施。 參照第1圖,在一些實施例中,該等空間頻道可為被配 上相關(如頻率不為正父的)頻道。在运些貫施例中,每一空 間頻道間之非相關(如具有部分的正交性)可透過天線隔離 被達成。在一些實施例中,發射天線114於其間具有至少為 12 200524330 一傳輸頻率之一半波長的間隔。在一些實施例中,該間隔 可被選擇使得不同的天線進行非相關之頻道衰減。在一些 實施例中,多重載波發射器100所運用的高流量空間頻率區 塊碼不會對小的天線間隔或隔離敏感,且會對天線衰減為 5 強健的。在一些實施例中,該天線隔離相對於傳輸波長為 小的。在一些實施例中,空間頻道之非相關町透過光束成 形予以達成,雖然本發明不受限於此層面。 在一些實施例中,多重載波通訊頻遒可包含數個符號 調變副載波。在一些實施例中,數個符號調變副載波在其 10 他副載波實質上之一中心頻率具有空頻率以達成該多重載 波通訊頻道之副載波間的實質正交性。在一些實施例中, 該多重載波通訊頻道可為正交頻率分割多工(OFDM)通訊 頻道,包含有數個OFDM副載波,雖然本發明不受限於此 層面。 15 在一些實施例中,多重載波發射器100可運用一個以上 的空間上多樣的發射天線114來「分隔」該等頻道為一個以 上的空間頻道。在一些實施例中,每一發射天線可定義一 個空間傳輸頻道。在其他實施例中,多重載波發射器100可 運用光束成形技術以「分割」該頻道為空間頻道。在這些 20 實施例中,每一空間頻道可被用以在同一副載波上通訊分 離或獨立的資料流做為其他空間頻道,而允許不須提高頻 率帶寬地通訊額外的資料。空間頻道之使用可採取頻道的 多路徑特徵。在一些實施例中,該等空間頻道可為非正交 頻道’雖然本發明不受限於此層面。 13 200524330 ^在—些實施例中,串列對並列變換器104可在映射器 102刖之預先編碼器路徑中作業。依照本發明一些實施例, 夕重載波發射斋100之映射器1〇2可依照各別的副載波調變 指派將該等副載波符號調變。此可被稱為適應性位元載入 5 (ABL)。因之,一個以上的位元可在一副載波上被調變後之 符號呈現。各別副頻道之調變指派可根據此副載波之頻道 特徵或頻道狀況,雖然本發明不受限於此層面。在一些實 施例中,副載波調變指派的範圍可由每符號〇位元至每符號 10位元以上。 10 在一些實施例中,一多重載波符號可視為對各別副載 波調變後之符號的組合。由於每一符號調變後之副載波的 位元數為可變的且包含一多重載波頻道的副頻道數為可變 的,每一多重載波之符號數會大幅地變化。 在一些實施例中,一多重載波通訊頻道之頻譜可包含 15 5GHz頻譜或2.4GHz頻譜中的副載波。在這些實施例中,該 5GHz頻譜可包括約4.9至5.9GHz範圍之頻率,且該2.4GHz 頻譜可包括約2·3至2.5GHz範圍之頻率,雖然本發明不受限 於此層面,其原因係其他頻譜亦為相同適合的。 苐4圖為依照本發明一些實施例之一多重載波發射器 2〇 的方塊圖。多重載波接收器400可為無線通訊裝置之一部 分,且可在一多重載波通訊頻道上接收如OFDM通訊信號 之多重載波通訊信號。在一些實施例中,多重載波接收器 400可為通訊站之一部分,其亦可包含如多重載波發射器 1〇〇(第1圖)之多重載波發射器,雖然其他的多重載波發射器 14 200524330 亦為合適的。 在一些實施例中’多重載波接收器400可在一個以上的 之空間頻道上的一多重載波通訊頻道接收信號且可使用一 個以上的接收天線402。在—些實施例中,多重載波接收器 5 400將已用高流量空間頻率區塊碼被編碼之信號加以解碼 且可不需使用迴旋或錯誤校正編碼,雖然本發明不受限於 此層面。在一些實施例中,高流量空間頻率區塊碼之使用 可消除對Viterbi解碼之需求,雖然本發明不受限於此層 面。在一些實施例中,提高的流量或增加的範圍可藉由在 10 一些實施例中,高流量空間頻率區塊碼之使用比起使用具 有類似位元錯誤率與帶寬之迴旋碼的系統被達成。在一些 實施例中,多重載波接收器400將在多重載波通訊頻道被接 收且使用迴覆式空值處理以成功地消除來自符號之層的干 擾之以高流量空間頻率區塊碼被編碼的信號加以解碼。 15 在一些實施例中,多重載波接收器400可包含解多工器 406以藉由組合被接收之符號向量405的對應之副載波頻率 成份來產生符號向量407之群組。每一群組之符號向量407 可具有由不同副載波被組合之付破成份。在一些實施例 中,符號向量407可被G群組(第4圖中顯示二群組)中的解多 20 工器406產生。在一些實施例中,每一符號向量407可具有 MxK個被編碼之符號的長度。在一些實施例中,解多工器 406可將列向量重新成形為行向量’以將由在所有接收天線 402上被接收之一些副載波的資訊收集及分組,雖然本發明 不受限於此層面。 15 200524330 多重載波接收器400亦可包含空值消除器4〇8被配以每 一群組之符號向量407以每一副載波之基準為根據被解碼 之付號向量420的相關群組之符號向量未實施空值消除。 多重載波接收器400亦可包含解碼器41〇被配以每一群 5組以將被空值消除之符號向量409加以解碼。在一些實施例 , 中,解碼器410可為一球形解碼器以將相關的群組之符號層 球式地解碼及用一複式領域矩陣(此可被稱為theta)乘以解 碼器410之一輸出(一次一個解碼器)。以此方式下,解碼器 410可為空值消除器408再產生預先編碼符號向量42〇(如再 春 10產生現行的層),使得空值消除器408可消除來自符號向量 407的現行層之歸因至所有層均被解碼為止。在一些實施例 中,空值可為每一副載波被完成一次,而消除可就次迴 覆被進行至所有的層均被解碼為止,雖然本發明不受限於 此層面。在一些實施例中,解碼器41〇可在一球形限界内實 15施最大可能性(maximum likelihood,ML)偵測,而不像是窮 舉ML偵測。在一些實施例中,解碼器41〇可為多重載波通 訊頻道之每一副載波產生經解碼之QAM符號向量411。 · 在一些實施例中,空值消除器408可空出符號使得第土 層仍可具有來自第一層至第i-1層的干擾,且就特定的副載 20波頻率貫質上不會有來自一符號向量内第i+Ι層至第的 干擾’雖然本發明不受限於此層面。在一些實施例中,介 值消除器408亦可在根據符號向量420空出後消除在符號向 量407中之一些元素。此可連續地被實施至所有層均被解碼 為止。在一些實施例中,此可為迴覆式的過程。例如,在 16 200524330 第一次迴覆之際,沒有東西可被消除,使得被饋送回來之 解碼後的符號向量420可為〇。 在一些實施例中,多重載波接收器400亦可包含FFT電 路以將透過接收天線402所接收之多重載波通訊頻道的副 5 載波解調變以產生與每一接收天線相關之被接收的符號向 量405。被接收的符號向量405(即來自每一天線402)可包栝 來自多重載波通訊頻道每一副載波之符號成份。在一些實 施例中,接收天線402之數目可大於或等於在傳輸該多重載 波通訊信號中所使用的發射天線或空間頻道之數目,雖然 10 本發明不受限於此層面。 在一些實施例中,多重載波接收器400亦可包括符號解 映射器412為每一群組將符號向量in解碼以產生數個位元 之並列集合413。符號解映射器412可為QAM符號解映射 器,雖然本發明不受限於此層面。在一些實施例中,多重 15 載波接收器400亦可含並列對串列變換器414以由該等數個 位元之並列集合413產生串列位元流415。 在一些實施例中,可於FFT電路404前之信號路徑中包 括用以去除被發射器所添加之循環字首(CP)而有助於減少 符號間干擾的電路(未被畫出),雖然本發明之範圍不受限於 20此層面。 多重載波發射器1〇〇(第1圖)及/或多重載波接收器400 可為個人數位助理(PDA)、具有無線通訊能力之膝上或可攜 $式笔、網路平板電腦、無線電話、無線手機、哞叫器、 即時訊息裝置、數位相機、可無線接收及/或傳輸資訊之存 17 200524330 取點或其他裝置的一部分。在一些實施例中,多重載波發 射器100(第1圖)可傳輸及多重載波接收器400可接收無線電 頻率(RF)通訊,所遵照的為如包括用於無線區域網路 (WLAN)之 IEEE802.11(a)、802.11(b)、802.11(g/h)及 / 或 5 802·11⑻及用於無線都會區域網路(WMAN)之802· 16標準 的電機電子工程師協會(IEEE)標準之特定通訊標準,雖然 發射器100(第1圖)及/或接收器4〇〇亦適合於依照其他的技 術來傳輸及/或接收通訊,包括數位視訊廣播地球(DVB_T) 廣播標準與高效能無線電區域網路(HiperLAN)標準。 1〇 雖然本發明一些實施例以802.1 lx施作(如802.11a、 8〇2.11g、802.11 HT等)之釋例性内容被討論,本申請專利 範圍不受限於如此。本發明一些實施例可被施作為使用多 重載波無線通訊頻道(如正交頻率分割多工(〇FDM)、離散 多重音調調變(DMT)等)之任何無線系統的部分,例如可在 15無線個人區域網路(WPAN)、無線區域網路(WLAN)、無線 都會區域網路(WMAN)、無線廣域網路(WWAN)、細胞網 路、第三代(3G)網路、第四代(4G)網路、通用行動電話系 統(UMTS)與類似的通訊系統内無限制地被使用。 在一些實施例中,每一發射天線114(第丨圖)與每一接收 2〇天線402可包含方向性或全方向性的天線,例如包括雙極天 線單極天線、迴圈天線、微條帶天線與適於接收及/或傳 輸RF信號之其他型式的天線。 在一些實施例中,多重載波發射器100(第丨圖)及/或多 重載波接收器400可為單一多重載波通訊站之一部分。雖然 200524330 多重載波發射器1〇〇(第1圖)及/或多重載波接收器400被顯 示為一個以上的無線通訊裝置的一部分,多重載波發射器 1〇〇(第1圖)及/或多重載波接收器400幾乎可為任何無線或 有限通訊裝置的一部分,包括通用目的處理或計算系統。 5 在一些實施例中,多重載波發射器1〇〇(第1圖)及/或多重載 波接收器400可為電池供電裝置的一部分。在一些實施例 中’當發射器100(第1圖)與接收器400為一通訊站的一部分 時’傳輸與接收天線可被共用,雖然本發明不受限於此層 面。 10 15 20 雖然多重載波發射器1〇〇(第1圖)及/或多重載波接收器 400被顯不為具有數個分離的功能元件,一個以上的功能元 件可被組合且可用軟體組配元件之組合被施作,如包括數 位信號處理器(DSP)之處理元件、及/或其他硬體元件。例 如,所顯示之元件可包含一個以上的微處理器、Dsp、特 疋應用積體電路(ASIC)與用於實施至少此處所描述之功能 的各種硬體與邏輯電路之組合。 丨末非百特別指200524330 IX. Description of the invention: [Technical field to which the invention belongs] This case requested US Provisional Patent Application No. 60/503, which was filed on September 15, 2003, in accordance with 35 USC · Article 119 (e) of the US Patent Law. The No. 92 right of priority 5 is the content of this case and is for reference in this case. FIELD OF THE INVENTION Embodiments of the present invention relate to wireless communication technology, and in some embodiments, to a multi-carrier communication system. [Previously ^^ 3 10 Background of the Invention In order to improve the data rate and / or traffic of wireless communication in the South, wireless signals can be transmitted on more than one «channel using the same frequency subcarrier using more than one transmitting antenna. These systems are sometimes referred to as multiple-input multiple-output (MIMO) systems and can exploit multipath diversity between antennas. Conventional 15 Satoshi systems can encode these signals using convolutional encoding and / or Viterbi postal encoding, however, these techniques are sensitive to antenna isolation and antenna attenuation coefficients. Therefore, there is a general need for devices and methods for improving the data rate and / or traffic of wireless communications. 20 [Yun ^ Ming Nai Rong 1] The present invention is a multi-carrier transmitter, which includes: a _pre-mapping device to multiply each _symbol vector in a number of symbol vectors by a complex Z-domain matrix. Several symbol vectors are coded to generate pre-coded symbol inward-segmenters to divide the pre-coded stone horse symbol vectors into 20052005330 groups, each group having more than one pre-coded symbol vector; And a spatial frequency symbol mapper for at least partially pre-coding the pre-coded symbol vectors based on the pre-coded symbol group and the position of the pre-coded symbol within the group. Symbols are mapped to one of the multiple subcarriers of a multiple 5-carrier communication channel and are mapped to a number of spatial channels-The figure briefly illustrates that the scope of the patent application attached here is directed to various embodiments of the present invention. However, its detailed description presents a more complete understanding of the embodiment of the present invention 10 when considering the related drawings, wherein similar element numbers in all the drawings refer to similar items, and: FIG. 1 shows some implementations according to the present invention A block diagram of an example multi-carrier transmitter; FIG. 2 shows a pre-coded symbol direction according to some embodiments of the present invention; FIG. 3 shows a spatial frequency mapping according to some embodiments of the present invention; FIG. 5 is a block diagram of a multi-carrier receiver according to some embodiments. FIG. 5 is a flowchart of a procedure for spatial frequency symbol transmission 20 according to some embodiments of the present invention; and FIG. 6 is a symbol receiving and decoding process according to some embodiments of the present invention. Flowchart. I: Embodiment 3 Detailed description of the preferred embodiment 200524330 The following description and drawings illustrate a specific embodiment of the present invention, which is enough for a person skilled in the art to implement it. Other embodiments may incorporate structural, logical radon handling and other changes. The examples only typify possible changes. Individual components and functions are optional unless explicitly required, and work sequences can be changed. The locations and features of some embodiments may be included in or replaced by others. The field of embodiments of the present invention encompasses the full scope of patent applications and the existing equivalents of those patent applications. The embodiments of the present invention are referred to as “this month” individually or collectively for the sake of convenience ”and if any single invention or inventive concept has a time range of 10 t to 2 km It is not disclosed above, and it does not want to arbitrarily limit the field of this application to it. FIG. 1 is a block diagram of a multi-carrier transmitter according to some embodiments of the present invention. The multi-carrier transmitter 100 can be part of a wireless communication device and can transmit multi-carrier communication signals on a multi-carrier communication channel, such as an orthogonal frequency 15-frequency division multiplexed (OFDM) communication signal. In some embodiments, the multi-carrier transmitter 100 uses symbol coding for transmission on a multi-carrier communication channel with more than 3 spatial channels and can use more than 4 transmitting antennas 114. In some embodiments, the multiple carrier transmitter has just used a high-traffic space frequency block code and may not need to use back-to-202 or error correction coding, although the invention is not limited to this level. In some embodiments, the use of high-traffic space frequency block codes with heavy carrier transmitters can eliminate the need for Viterbi decoding, although the present invention is not limited to this layer. In the two-beam embodiment, the use of high-traffic traffic The space frequency block code ratio can achieve an increased 200524330 traffic and / or an increased range using a system with a similar bit error rate and bandwidth of a rock horse. In some embodiments, the multi-carrier transmitter 100 may include a pre-encoder 106 to encode a number of symbol vectors 106 by multiplying a symbol vector 105 by a matrix of complex fields to generate a pre-encoded symbol vector 107. In some embodiments, the multi-carrier transmitter 100 may include a divider 108 to group the pre-encoded symbol vector 107 into groups 109. Each group can contain more than one assignment 107. In some embodiments, the multi-carrier transmitter may also include a space frequency symbol mapper 10 to map each pre-encoded symbol of the pre-encoded symbol vector 107 to one of several sub-carriers of the multi-carrier communication channel. And to one of several space channels. In some embodiments, the spatial frequency symbol mapper 110 may map each pre-encoded symbol of the pre-encoded symbol vector 107 to the multi-carrier communication channel based on at least the group of the symbol and the position of the symbol within the group. One of several subcarriers and one to several spatial channels, although the present invention is not limited to this aspect. 15 In some examples, the 'spatial frequency symbol mapper 110 may map at least one group of the subcarriers and the transmitting antenna after precoding according to at least the group and the position of the symbol within the group. One, although the invention is not limited to this level. In these embodiments, each transmitting antenna 114 may be equipped with a spatial channel such as 6 channels, although the present invention is not limited to this level. 20. _ ^ In some embodiments, the multi-carrier transmitter 100 may further include the symbol 5 tiger mapping & 102 to generate one of the two columns of the symbol 103 from an input string bit stream ιι. machine. In some embodiments, the mapper 102 may be a quadrature amplitude modulation ==) sign-number mapper to generate a -symbol stream of QAM symbols, although ... this is not limited to this level. In some embodiments, the multi-carrier transmitter 200524330 transmitter 100 may further include a tandem-to-parallel converter just to generate a plurality of parallel symbol vectors 105 from the serial symbol M. Each-symbol vector 105 can have more than one symbol. In some embodiments, the side-by-side symbol vector may be a Q AM symbol vector. '~ 5 In some embodiments, the multi-carrier transmitter 100 may include an inverse fast Fourier transform (IFFT) circuit 112 to generate a signal 113 for use on a corresponding one of the spatial channels or on a corresponding one of the transmitting antennas. After the spatial frequency mapping symbol lu provided by the frequency symbol mapping 110, RF transmission is performed. In some embodiments, the signal 113 is a signal after being packetized for transmission. In some 10 embodiments, the circuit may include a FFT circuit 112 in the signal path to add a cyclic prefix (CP) to the signal 113 to help reduce inter-symbol interference, although the present invention is not limited to this level. In some embodiments, each transmitting antenna 114 may correspond to one of the spatial channels, although the invention is not limited in this respect. 15 In some Bega examples, the pre-encoder 106 may be a linear square pre-encoder and may separately pre-encode each juxtaposed symbol vector 105 to generate a number of juxtaposed pre-encoded symbol vectors 107. In some embodiments, the complex domain matrix (such as theta) used by the pre-encoder 106 may be a square complex domain matrix having a substantially columnar Vandermonde structure, although the present invention is not limited. At this level. The van der monde matrix can refer to a matrix type produced in the polynomial fitting of Lagrange interpolation polynomials and the reconstruction of the statistical distribution by the momentum of the distribution, although the present invention is not limited to this level. In some embodiments, 'pre-encoder 106 can encode Mxg juxtaposed symbols 200524330 vector 105' and each juxtaposed symbol vector 105 can have Mxκ symbols. In these embodiments, the ' segmenter 108 may group the pre-encoded symbol vector 107 into G groups 109 of parallel numbers ϊ 105. There are M pre-encoded symbol vectors 107 per group. In these embodiments, μ, g, and ΐ 5 can be selected to satisfy Nc = MxKxG, where Nc is the number of data subcarriers of the multi-carrier communication channel. M, G, and K are positive integers less than 100, although the present invention is not limited to this level. In some embodiments, M may deer on several spatial channels and / or transmit antennas 114. For example, when the multi-carrier ventilation channel contains 16 data subcarriers and the transmitter uses 4 transmitting antennas for 10 days ^, M can be 4, G can be 2, and K can be 2. The total number of transmitted symbols can be the number of symbols from the mother's one to the inside (that is, MXK) times the number of vectors (that is, yjxG). JL will be 64 symbols. Sixteen symbols (i.e., one of each of the six data subcarriers) can be modulated with each IFFT circuit 112 and transmitted with a corresponding one of the transmit antennas 114. In some embodiments, among various matters, κ and G may be selected according to the number of subcarriers and the number of antennas. Figure 2 shows a pre-coded symbol vector according to some embodiments of the invention. In some embodiments, the symbols of the pre-encoded symbol vector 207 may be matched with a layer of symbols. The pre-encoded symbol vector 207 may correspond to the pre-encoded symbol vector (Figure 1), although the present invention is not limited to this level. The pre-encoded vector 20 207 may be grouped into two or more groups 209. Each pre-encoded symbol vector 207 may include a number of pre-encoded symbols 203. In some embodiments, each of the G groups may have a layer. In some embodiments, the number of layers of µ is not more than two more than the transmitting antenna. In these embodiments, a spatial frequency symbol mapper such as the spatial frequency symbol mapper 11 (Figure 1) may pre-code each pre-coded symbol 207 of the pre-200524330 pre-coded symbol vector 207 according to the group and The layer allocated to the symbol is mapped to one of the subcarriers and one of the transmitting antennas. In these embodiments, the spatial frequency symbol mapper 11 (Figure 1) can map MxKxG symbols to each transmitting antenna and / or spatial channel, and can provide pre-encoded symbols to multiples of MxKxG symbols to For example, the IFFT circuit of the IFFT circuit 112 (Figure 1) is equipped with the transmitting antennas for modulation on the subcarriers. FIG. 2 shows an embodiment of the present invention. Each of the two groups of pre-encoded symbol vectors 207 (ie, group 109) includes four layers, where each pre-encoded symbol vector 207 includes eight pre-encoded The symbol 10 203. In the example shown here, it may have 16 data subcarriers of a multi-carrier communication channel, although the invention is not limited to this level. In some embodiments, the spatial frequency symbol mapper 11 (Figure 1) may map at least some of the pre-encoded symbols 203 of the layers to the subcarriers and the transmitting antennas, based on the pre-encoding The following group of symbols 15 and the position within the group, although the present invention is not limited to this level. In some embodiments, a multi-carrier pre-coded symbol of a first group may be mapped to a first sub-carrier and a first transmitting antenna, and a multi-carrier pre-code of a second group The latter symbols can be mapped to a second subcarrier, a second transmitting antenna, and so on. This particular mapping may be chosen among other things 20 to achieve increased diversity. Figure 3 shows a spatial frequency mapping according to some embodiments of the invention. The pre-encoded symbols 303 can be mapped to one of the transmitting antennas 114 (Figure 1) or one of the spatial channels 302 (shown in columns) and the subcarriers 304 (in rows) according to the layers and groups of the pre-encoded symbols. Is displayed). In Figure 3, the pre-encoded symbol 303 may correspond to the pre-encoded symbol 203 (Fig. 2) and is displayed as Sijk, where i represents the first layer, and "" represents the number of groups, and k represents the k-th coded symbol. In the example shown with 16 data subcarriers, the pre-coded symbol 3 of the first group can be mapped to the first to fifth subcarriers and the ninth to twelfth subcarriers, and the first The pre-coded symbols 303 of the two groups can be mapped to the fifth to eighth subcarriers and the thirteenth to sixteenth subcarriers. In some embodiments, a pre-coded symbol 303 of a specific layer is described herein as being mapped diagonally. For example, in terms of the first group of symbols, the first symbol 306 of the first layer may be mapped to the first subcarrier and the first transmitting antenna, and the second symbol 308 of the first layer may be mapped to the second subcarrier. The carrier and the second transmitting antenna, the third symbol 310 of the first layer may be mapped to the third subcarrier and the third transmitting antenna, and the fourth symbol 312 of the first layer may be mapped to the fourth subcarrier and the fourth transmitting antenna. ; The fifth symbol 314 of the first layer can be mapped to the ninth 15 subcarriers and the first transmitting antenna, and the sixth symbol 316 of the first layer can be mapped to the tenth subcarrier and the second transmitting antenna, the first layer The seventh symbol 318 may be mapped to the eleventh subcarrier and the third transmitting antenna, and the eighth symbol 3 2 0 of the first layer may be mapped to the twelfth subcarrier and the fourth transmitting antenna. This mapping can be applied similarly to other layers and other groups as shown in Figure 3. The other mapping available spatial frequency symbol mappers 110 (FIG. 1) according to the layer and group 20 groups are implemented. Referring to Figure 1, in some embodiments, the spatial channels may be associated (e.g., frequencies other than a positive parent) channels. In these embodiments, non-correlation between each spatial channel (such as with partial orthogonality) can be achieved through antenna isolation. In some embodiments, the transmitting antenna 114 has an interval therebetween of at least one-half wavelength of a transmission frequency of 12 200524330. In some embodiments, this interval may be selected such that different antennas perform uncorrelated channel attenuation. In some embodiments, the high-traffic spatial frequency region block codes used by the multi-carrier transmitter 100 are not sensitive to small antenna spacing or isolation, and are 5 robust to antenna attenuation. In some embodiments, the antenna isolation is small relative to the transmission wavelength. In some embodiments, uncorrelated morphology of spatial channels is achieved by beamforming, although the invention is not limited in this respect. In some embodiments, the multi-carrier communication frequency may include several symbol modulated subcarriers. In some embodiments, the symbol modulated subcarriers have a null frequency at substantially one of the center frequencies of the other subcarriers to achieve substantial orthogonality among the subcarriers of the multiple carrier communication channel. In some embodiments, the multi-carrier communication channel may be an Orthogonal Frequency Division Multiplexing (OFDM) communication channel, which includes several OFDM subcarriers, although the present invention is not limited to this aspect. 15 In some embodiments, the multi-carrier transmitter 100 may use more than one spatially diverse transmitting antenna 114 to "separate" these channels into more than one spatial channel. In some embodiments, each transmitting antenna may define a spatial transmission channel. In other embodiments, the multi-carrier transmitter 100 may use beamforming technology to "divide" the channel into a spatial channel. In these 20 embodiments, each spatial channel can be used to communicate separate or independent data streams on the same sub-carrier as other spatial channels, allowing additional data to be communicated without increasing the frequency bandwidth. The use of space channels can take advantage of the multipath nature of the channels. In some embodiments, the spatial channels may be non-orthogonal channels', although the invention is not limited in this respect. 13 200524330 In some embodiments, the tandem-to-parallel converter 104 may operate in a pre-encoder path of the mapper 102 '. According to some embodiments of the present invention, the mapper 102 of the heavy carrier transmission module 100 may modulate the subcarrier symbols according to respective subcarrier modulation assignments. This can be called adaptive bit loading 5 (ABL). Therefore, more than one bit can be modulated by a symbol on a carrier. The modulation assignments of the individual sub-channels can be based on the channel characteristics or channel conditions of this sub-carrier, although the invention is not limited to this level. In some embodiments, the range of subcarrier modulation assignments may be from 0 bits per symbol to more than 10 bits per symbol. 10 In some embodiments, a multi-carrier symbol can be considered as a combination of symbols modulated for respective subcarriers. Since the number of bits of the sub-carrier after each symbol is variable and the number of sub-channels including a multi-carrier channel is variable, the number of symbols per multi-carrier will vary greatly. In some embodiments, the frequency spectrum of a multi-carrier communication channel may include subcarriers in the 15 5GHz spectrum or the 2.4GHz spectrum. In these embodiments, the 5GHz spectrum may include frequencies in the range of about 4.9 to 5.9GHz, and the 2.4GHz spectrum may include frequencies in the range of about 2.3 to 2.5GHz, although the invention is not limited to this level, the reason is Other spectrums are equally suitable. FIG. 4 is a block diagram of a multi-carrier transmitter 20 according to some embodiments of the present invention. The multi-carrier receiver 400 may be a part of a wireless communication device, and may receive a multi-carrier communication signal such as an OFDM communication signal on a multi-carrier communication channel. In some embodiments, the multi-carrier receiver 400 may be part of a communication station, which may also include a multi-carrier transmitter such as a multi-carrier transmitter 100 (Figure 1), although other multi-carrier transmitters 14 200524330 Also suitable. In some embodiments, the 'multi-carrier receiver 400 may receive signals on one multi-carrier communication channel on more than one spatial channel and may use more than one receiving antenna 402. In some embodiments, the multi-carrier receiver 5 400 decodes a signal that has been encoded with a high-traffic spatial frequency block code and may not require the use of convolution or error correction encoding, although the invention is not limited in this respect. In some embodiments, the use of high-traffic spatial frequency block codes can eliminate the need for Viterbi decoding, although the present invention is not limited to this layer. In some embodiments, increased traffic or increased range can be achieved by using high-traffic spatial frequency block codes in some embodiments, compared to systems using round codes with similar bit error rates and bandwidth. . In some embodiments, the multi-carrier receiver 400 will be received on a multi-carrier communication channel and use the reply null processing to successfully cancel the interference from the symbol layer. The signal encoded with the high traffic space frequency block code Decode it. 15 In some embodiments, the multicarrier receiver 400 may include a demultiplexer 406 to generate a group of symbol vectors 407 by combining the corresponding subcarrier frequency components of the received symbol vector 405. The symbol vector 407 of each group may have a burst component combined by different subcarriers. In some embodiments, the symbol vector 407 may be generated by a resolver 406 in the G group (two groups are shown in Figure 4). In some embodiments, each symbol vector 407 may have a length of MxK encoded symbols. In some embodiments, the demultiplexer 406 may reshape the column vector into a row vector to collect and group information of some subcarriers received on all receiving antennas 402, although the present invention is not limited to this level . 15 200524330 The multi-carrier receiver 400 may also include a null canceller 4 08 which is equipped with a symbol vector of each group 407 and the symbol of the relevant group of the decoded pay vector 420 based on each subcarrier basis The vector does not implement null elimination. The multi-carrier receiver 400 may also include a decoder 41. Each group is equipped with 5 groups to decode the nulled symbol vector 409. In some embodiments, the decoder 410 may be a spherical decoder to decode the symbol layers of related groups spherically and multiply a complex field matrix (this may be referred to as theta) by one of the decoders 410. Output (one decoder at a time). In this way, the decoder 410 can generate a pre-encoded symbol vector 42 for the null value canceller 408 (such as the current layer generated by Spring 10), so that the null value canceller 408 can eliminate the current layer from the symbol vector 407. Attribution until all layers are decoded. In some embodiments, the null value may be completed once for each subcarrier, and elimination may be performed on the next response until all layers are decoded, although the invention is not limited to this level. In some embodiments, the decoder 410 can perform maximum likelihood (ML) detection within a spherical limit, rather than exhaustive ML detection. In some embodiments, the decoder 410 may generate a decoded QAM symbol vector 411 for each subcarrier of the multi-carrier communication channel. · In some embodiments, the null canceller 408 can vacate the symbol so that the first soil layer can still have interference from the first layer to the i-1th layer, and will not be qualitatively affected by the frequency of 20 waves of a particular subcarrier. There is interference from the i + 1th layer to the 1st level within a symbol vector, although the present invention is not limited to this level. In some embodiments, the median canceller 408 may also eliminate some elements in the symbol vector 407 after being vacated according to the symbol vector 420. This can be implemented continuously until all layers are decoded. In some embodiments, this may be a repetitive process. For example, at the time of the first reply on 16 200524330, nothing can be eliminated, so that the decoded symbol vector 420 that is fed back can be zero. In some embodiments, the multi-carrier receiver 400 may also include an FFT circuit to demodulate the sub-5 carrier of the multi-carrier communication channel received through the receiving antenna 402 to generate a received symbol vector associated with each receiving antenna. 405. The received symbol vector 405 (ie, from each antenna 402) can contain the symbol components from each subcarrier of the multi-carrier communication channel. In some embodiments, the number of receiving antennas 402 may be greater than or equal to the number of transmitting antennas or space channels used in transmitting the multiple carrier communication signal, although the present invention is not limited in this aspect. In some embodiments, the multi-carrier receiver 400 may also include a symbol demapper 412 to decode the symbol vector in for each group to generate a parallel set 413 of bits. The symbol demapper 412 may be a QAM symbol demapper, although the invention is not limited in this respect. In some embodiments, the multiple 15-carrier receiver 400 may also include a parallel-to-serial converter 414 to generate a serial bit stream 415 from the parallel set 413 of bits. In some embodiments, the signal path before the FFT circuit 404 may include a circuit (not shown) to remove the cyclic prefix (CP) added by the transmitter to help reduce intersymbol interference, although The scope of the present invention is not limited to this level. The multi-carrier transmitter 100 (Figure 1) and / or the multi-carrier receiver 400 can be a personal digital assistant (PDA), a laptop with wireless communication capabilities or a portable pen, network tablet, wireless phone , Wireless phones, tweeters, instant messaging devices, digital cameras, storage that can receive and / or transmit information wirelessly 17 200524330 access points or other devices. In some embodiments, the multi-carrier transmitter 100 (FIG. 1) can transmit and the multi-carrier receiver 400 can receive radio frequency (RF) communications, such as including IEEE 802 for wireless local area network (WLAN) .11 (a), 802.11 (b), 802.11 (g / h) and / or 5 802 · 11⑻ and IEEE 802 · 16 standards for the Wireless Metropolitan Area Network (WMAN) Specific communication standards, although the transmitter 100 (picture 1) and / or receiver 400 are also suitable for transmitting and / or receiving communications in accordance with other technologies, including Digital Video Broadcasting Earth (DVB_T) broadcasting standards and high-performance radios Local area network (HiperLAN) standard. 10. Although some embodiments of the present invention are discussed with 802.1 lx implementations (such as 802.11a, 802.11g, 802.11 HT, etc.) as illustrative content, the scope of patents in this application is not limited to this. Some embodiments of the present invention can be implemented as part of any wireless system using multiple carrier wireless communication channels (such as orthogonal frequency division multiplexing (0FDM), discrete multiple tone modulation (DMT), etc.). Personal Area Network (WPAN), Wireless Local Area Network (WLAN), Wireless Metropolitan Area Network (WMAN), Wireless Wide Area Network (WWAN), Cellular Network, Third Generation (3G) Network, Fourth Generation (4G ) Internet, Universal Mobile Phone System (UMTS), and similar communication systems are used unlimitedly. In some embodiments, each transmitting antenna 114 (pictured) and each receiving 20 antenna 402 may include a directional or omnidirectional antenna, such as a dipole antenna, a monopole antenna, a loop antenna, and a microstrip. Antennas and other types of antennas suitable for receiving and / or transmitting RF signals. In some embodiments, the multi-carrier transmitter 100 (FIG. 1) and / or the multi-carrier receiver 400 may be part of a single multi-carrier communication station. Although 200524330 multi-carrier transmitter 100 (picture 1) and / or multi-carrier receiver 400 are shown as part of more than one wireless communication device, multi-carrier transmitter 100 (picture 1) and / or multi-carrier The carrier receiver 400 may be part of almost any wireless or limited communication device, including a general purpose processing or computing system. 5 In some embodiments, the multiple carrier transmitter 100 (FIG. 1) and / or the multiple carrier receiver 400 may be part of a battery-powered device. In some embodiments 'when the transmitter 100 (Fig. 1) and the receiver 400 are part of a communication station', the transmitting and receiving antennas may be shared, although the invention is not limited to this level. 10 15 20 Although the multi-carrier transmitter 100 (Figure 1) and / or the multi-carrier receiver 400 are not shown to have several separate functional elements, more than one functional element can be combined and the components can be assembled with software. Combinations are implemented, such as processing elements including digital signal processors (DSPs), and / or other hardware components. For example, the components shown may include a combination of more than one microprocessor, Dsp, special application integrated circuit (ASIC), and various hardware and logic circuits used to implement at least the functions described herein.丨 End non-hundred special

^ ^ 斯爽埋、計算、決定與綱不心 用。司可“-個以上的處理或計算系統或類似裝置之 =,其可操縱及轉換在m狀暫存器或記憶體 貫體(如電子)數量所呈現之資料為在該處理系統之暫 或記憶體内的實體(如電子)數量所類似呈現之資料或 此類資訊儲存、、 你田本^ 裝置者。進而言之,如此 的奸二十鼻裝置包括—個以上的處理元件與電腦可 (切驗電㈣N娜記W其組合) 19 200524330 合。 第5圖為依照本發明一些實施例之空間頻率符號傳輸 程序的流程圖。空間頻率符號傳輸程序5〇〇可用如多重載波 發射器100(第1圖)被實施,雖然其他的多重載波發射器亦為 5適合的。在一些實施例中,程序500可將符號編碼用於在包 含一個以上的空間頻道之多重載波通訊頻道上傳輸且可使 用一個以上的發射天線。 作業502包含由一輸入串列位元流產生一串列符號 流。在一些實施例中,作業5〇2可用如映射器1〇2(第之 3 一符號映射器被實施。 作業504包含由該串列符號流產生並列符號向量。每一 符號向量可具有一個以上的符號。在一些實施例中,作業 5〇4可用如串列對並列變換器1〇4(第丨圖)之串列對並列變換 為來貫施。 作業506包含藉由將母一符號向量乘以一複式領域矩 陣以產生預先編碼符號向量而將該等數個符號向量編碼。 在些貫施例中,作業5〇6包含用一線性正方預先編碼器將 °亥等數個並列符號向I之每一分離地預先編碼而將該等符 旒向量編碼以產生數個並列預先編碼符號向量。在一些實 )施例中,該複式領域矩陣可為具有實質上之列式範德蒙德 結構之正方複式領域矩陣,雖然本發明不受限於此層面。 在些貫施例中,作業506可用如預先編碼器1〇6(第之 一預先編碼器被實施。 作業5〇8包含將料縣編碼符號向量分㈣數個群 20 200524330 組。每一群組具有_個以上的預先編碼符號向量。在一此 實施例中,作業508可用如分割器1〇8(第1圖)之—分判哭被 實施。 的 作業510包含至少根據預先編碼後之符號之群組與該 5預先編碼後之符號在群組中之位置將預先編碼符號向量^ 預先編碼後之符號映射至該多重載波通訊頻道之數個副載 波之一與該等數個空間頻道之一。在一些實施例中,作業 510可包含映射該等預先編碼符號向量的預先編碼後之符 號至該多重載波通訊頻道的副載波之一與至數個發射天線 10之一。每一發射天線可對應於該等空間頻道之一,雖然本 發明不受限於此層面。在一些實施例中,作業51〇可用如空 間頻率付號映射器11 〇(第1圖)之空間頻率符號映射器被實 施0 作業512包含實施一逆快速傅立葉變換(IFFT)以產生 15調變後之信號用於在來自作業510所產生之空間頻率映射 後的符號之空間頻率的對應之一上的RF傳輸。 第6圖為依照本發明一些實施例之符號接收與解碼程 序的流程圖。符號接收與解碼程序600可用如多重載波接收 器400(第4圖)之多重載波接收器被實施,雖然其他的多重載 2〇 波接收為亦為合適的。程序600可被實施以將如多重載波發 射器100(第1圖)之一多重載波發射器所傳輸的信號解碼或 將程序500(第5圖)所產生之多重載波信號解碼,雖然本發明 不受限於此層面。 作業604包含將在數個接收天線上所接收之多重載波 21 200524330 通訊信號的副載波解調變以產生與每一接收天線相關之被 接收的符唬向^。在一些實施例中,該等被接收的符號向 里可包括來自該多重载波通訊頻道之每一副載波的符號向 里。在一些實施例中,作業6〇4可用如FFT電路4〇4(第4圖) 5之FFT電路來實施。 作業606包含藉由組合被接收的符號向量之對應的副 載波頻率成份來產生符號向量之群組。在一些實施例中, 作業606包含將該等符號向量重新成形及/或解多工。在一 些貫施例中,每一群組之符號向量可包含由不同副載波被 10組合之符號成份。在一些實施例中,作業606可用如解多工 态406(苐4圖)之一解多工器被實施。 作業608包含對相關群組之符號向量根據被解碼的符 號向量以每一副載波為基準實施空值消除以產生空值消除 後之符號向量。在一些實施例中,作業608可迴覆式地消除 15 來自連續層的符號向量之干擾。在一些實施例中,空值消 除器可消除來自符號向量407(第4圖)之干擾,使得第i層仍 可具有來自第一至第i-Ι層之干擾,且可實質上沒有來自第 第i+Ι層至第Μ層之干擾,雖然本發明不受限於此層面。 作業610包含藉由一次一層地將解碼後之輪出乘以一 2〇複式領域之矩陣以再產生符號向量用於實施空值消除而將 相關群組的符號層解碼。在一些實施例中’作業610可用如 解碼器410(第4圖)之解碼器被實施。在一些實施例中,作業 610包含球式解碼為該多重載波通訊頻道之每一副載波產 生解碼後之QAM符號向量,雖然本發明不受限於此層面。 22 200524330 作業612包含為每一群組將解碼後之符號向量解除映 射以產生數個位元之並列集合。作業6丨2可用如解除映射器 412(第4圖)之一符號解除映射器被實施。 忭系s甶歎個位元之並列集合產生一串列位元 /M。在一些貫施例中,作業614可用如並列對串列變換器 4M(第4圖)之一並列對串列變換器來實施。 雖然程序5〇〇與600之各別作業被顯示及被描述為分離 的作業,-個以上的各別作業可同時被實施,且該等作業 不需以所顯示之順序被實施。 10 15 20 a本發明之實施例可用硬體、韋刃體與軟體之-或組合被 ^作° ^發明之實施例亦可被施作為儲存於機器可讀取之^ ^ Si Shuangbu, calculations, decisions and outlines do not care. The company may "= more than one processing or computing system or similar device, which can manipulate and convert the data presented in the number of m-shaped registers or memory devices (such as electronics) as temporary or The number of entities (such as electronics) in the memory is similar to the data presented or the storage of such information, your Tadamoto ^ device. In addition, such a nasal device includes more than one processing element and a computer. (Examine the combination of the electrical and electronic components) 19 200524330. Figure 5 is a flowchart of a space frequency symbol transmission procedure according to some embodiments of the present invention. The space frequency symbol transmission procedure 500 can be used as a multi-carrier transmitter 100 (Figure 1) is implemented, although other multi-carrier transmitters are also suitable for 5. In some embodiments, the program 500 may use symbol coding for transmission on a multi-carrier communication channel containing more than one spatial channel and More than one transmitting antenna can be used. Job 502 includes generating a series of symbol streams from an input serial bit stream. In some embodiments, job 502 can be used as a mapper 102 (the third symbol). The number mapper is implemented. Job 504 includes generating a parallel symbol vector from the serial symbol stream. Each symbol vector can have more than one symbol. In some embodiments, job 504 can be used as a serial-to-parallel converter 1 The tandem-to-parallel transformation of 〇4 (Figure 丨) is performed. Assignment 506 includes encoding the plurality of symbol vectors by multiplying the mother-symbol vector by a complex domain matrix to generate a pre-encoded symbol vector. In some embodiments, homework 506 includes separately pre-coding a number of parallel symbols, such as °, with a linear square pre-encoder to each of I, and encoding the vector of such symbols 旒 to generate several parallel pre-codes. The symbol vector is encoded. In some embodiments, the complex domain matrix may be a square complex domain matrix with a substantially determinant Van dermond structure, although the present invention is not limited to this level. In operation 506, the first pre-encoder can be used as the pre-encoder 106 (the first pre-encoder is implemented. Assignment 508 includes dividing the county code symbol vector into several groups 20 200524330. Each group has more than _ of The symbol vector is encoded first. In this embodiment, the operation 508 can be implemented as a sub-cutter of the segmenter 108 (Fig. 1). The operation 510 includes at least a group of pre-encoded symbols and the 5 The position of the pre-encoded symbol in the group maps the pre-encoded symbol vector ^ The pre-encoded symbol is mapped to one of the subcarriers of the multi-carrier communication channel and one of the spatial channels. In some implementations For example, operation 510 may include mapping the pre-encoded symbols of the pre-encoded symbol vectors to one of the subcarriers of the multi-carrier communication channel and to one of the plurality of transmitting antennas 10. Each transmitting antenna may correspond to the One of the spatial channels, although the present invention is not limited to this level. In some embodiments, job 51 can be implemented with a space frequency symbol mapper such as space frequency number mapper 11 0 (Figure 1). Job 512 Includes the implementation of an inverse fast Fourier transform (IFFT) to generate a 15 modulated signal for RF on one of the spatial frequency correspondences of the spatial frequency mapped symbols generated from operation 510 Lose. FIG. 6 is a flowchart of a symbol receiving and decoding process according to some embodiments of the present invention. The symbol receiving and decoding procedure 600 may be implemented with a multi-carrier receiver such as the multi-carrier receiver 400 (Fig. 4), although other multi-carrier 20 wave reception is also suitable. The program 600 may be implemented to decode a signal transmitted by a multi-carrier transmitter such as one of the multi-carrier transmitters 100 (FIG. 1) or a multi-carrier signal generated by the program 500 (FIG. 5), although the present invention Not limited to this level. Assignment 604 includes demodulating the subcarriers of a multiple carrier 21 200524330 communication signal received on a plurality of receiving antennas to generate a received symbol ^ associated with each receiving antenna. In some embodiments, the received symbol inward may include the symbol inward of each sub-carrier from the multi-carrier communication channel. In some embodiments, the operation 604 may be implemented by an FFT circuit such as the FFT circuit 404 (FIG. 4) 5. Task 606 includes generating a group of symbol vectors by combining the corresponding subcarrier frequency components of the received symbol vector. In some embodiments, operation 606 includes reformulating and / or demultiplexing the symbol vectors. In some embodiments, the symbol vector of each group may include symbol components that are combined by different subcarriers. In some embodiments, job 606 may be performed using one of the demultiplexers such as demultiplexing mode 406 (Figure 4). Assignment 608 includes performing null value elimination on the symbol vector of the related group based on the decoded symbol vector on each subcarrier basis to generate the nulled symbol vector. In some embodiments, job 608 may iteratively eliminate 15 interference from symbol vectors from successive layers. In some embodiments, the null canceller can eliminate interference from the symbol vector 407 (FIG. 4), so that the i-th layer can still have interference from the first to i-I layers, and can be substantially free from the first Interference from layers i + 1 to M, although the present invention is not limited to this layer. Assignment 610 includes decoding the symbol layer of a related group by multiplying the decoded round-out by a matrix of a 20 complex field one layer at a time to regenerate a symbol vector for performing null elimination. In some embodiments, ' job 610 may be implemented with a decoder such as decoder 410 (FIG. 4). In some embodiments, job 610 includes ball decoding to generate a decoded QAM symbol vector for each sub-carrier of the multi-carrier communication channel, although the present invention is not limited to this level. 22 200524330 Assignment 612 includes demapping the decoded symbol vector for each group to generate a juxtaposed set of bits. Assignments 6 丨 2 can be implemented using one of the symbol demappers, such as demapper 412 (Figure 4). Does not mean that a parallel set of bits produces a string of bit / M. In some embodiments, task 614 may be implemented with one of the parallel-to-serial converters 4M (Figure 4). Although the individual jobs of procedures 500 and 600 are shown and described as separate jobs, more than one of the individual jobs may be performed simultaneously, and the jobs need not be performed in the order shown. 10 15 20 a The embodiment of the present invention can be used as a combination of hardware, blade body and software ^ as ° ^ The embodiment of the invention can also be used as a machine-readable storage

媒體的才曰令,其可被至少一處理器讀取及執行以實施此處 所描述之作金 ilk UCT ’、。機裔可讀取之媒體可包括任何機構用於以 電恥)可碩取之形式儲存或傳輸資訊。例如,機器可 碩取之媒體1 (RAM)、、 匕括唯讀記憶體氓〇馗)、隨機存取記憶體 電氣、光7儲存媒體、光學儲存媒體、快閃記憶體裝置、 ^聲音或其他形式之傳播信號(如載波、紅外線 b虎哺位信號等)及其他。 -摘要摘要說明符合37CRR·丨·72⑻節,該節要求 了解將能使讀者確定該技術揭示的性質與要旨。其以 而被提六曰被用以限制或解釋申請專利範圍之領域或意義 的在的詳細描述中,各種特徵為使本揭示流暢之目 、知例中偶然地被分組在—起。揭示之方法不被 23 200524330 解釋為反映一企圖,即該主題事項所聲明之實施例要求比 每一申請專利範圍所直接表示還要多的特點。而是如下列 申請專利範圍所反映者,本發明在少於單一揭示之實施例 所有的特點内成立。因而,下列的申請專利範圍在此被納 5 入詳細的描述内,而以每一請求項本身成立為一分離的較 佳實施例。 【圖式簡單說明】The media command can be read and executed by at least one processor to implement the gold ilk UCT ', described herein. Machine-readable media may include any organization that stores or transmits information in a form that is accessible to the computer. For example, the machine can access Media 1 (RAM), Read-Only Memory (RAM), Random Access Memory Electrical, Optical 7 Storage Media, Optical Storage Media, Flash Memory Device, Sound or Other forms of propagation signals (such as carrier waves, infrared buffalo feeding signals, etc.) and others. -Summary The summary description complies with section 37CRR. 72. This section requires an understanding that will enable the reader to determine the nature and gist of the technical disclosure. Therefore, it was mentioned that in the detailed description used to limit or explain the scope or significance of the scope of patent application, various features are occasionally grouped together for the purpose of smoothing the disclosure. The disclosed method is not interpreted by 23 200524330 as reflecting an attempt to claim that the embodiment stated in the subject matter requires more features than are directly indicated in the scope of each patent application. Rather, as reflected in the scope of the following patent applications, the present invention is established with less than all the features of a single disclosed embodiment. Therefore, the scope of the following patent applications is incorporated herein into the detailed description, and each claim is established as a separate and preferred embodiment. [Schematic description]

第1圖為依照本發明一些實施例之多重載波發射器的 方塊圖; 10 第2圖顯示依照本發明一些實施例之預先編碼符號向 量; 第3圖顯示依照本發明一些實施例之空間頻率映射; 第4圖為依照本發明一些實施例之多重載波接收器的 方塊圖, 15 第5圖為依照本發明一些實施例之空間頻率符號傳輸Fig. 1 is a block diagram of a multi-carrier transmitter according to some embodiments of the present invention; 10 Fig. 2 shows a pre-encoded symbol vector according to some embodiments of the present invention; Fig. 3 shows spatial frequency mapping according to some embodiments of the present invention 4 is a block diagram of a multiple carrier receiver according to some embodiments of the present invention, FIG. 5 is a space frequency symbol transmission according to some embodiments of the present invention

程序的流程圖;以及 第6圖為依照本發明一些實施例之符號接收與解碼程 序的流程圖。 【主要元件符號說明】 100···多重載波發射器 101···輸入串列位元流 102···映射器 103…符號 104…串列對並列變換器 105···符號向量 106…預先編碼器 107···預先編碼符號向量 108···分割器 109···群組 24 200524330 110·· 空間頻率符號映射器 111·· 空間頻率映射後之符號 112" 逆快速傅立葉變換電路 113" 信號 114·· 發射天線 203" 預先編碼後之符號 207·· 預先編碼符號向量 209·· 群組 302" 空間頻道 303·· 預先編碼後之符號 304·· 副載波 306" 符號 308" 符號 310" 符號 312·· 符號 314·· 符號 316·· 符號 318" 符號 320" 符號 400" 多重載波接收器 402" 接收器天線 404·· FFT電路 405" 符號向量 406" 解多工器 407" •符號向量 408" •空值消除器 409·· •符號向量 410·· •解碼器 412·· •解除映射器 413" •位元 414" •並列對串列變換器 415" •串列位元流 420·· •預先編碼符號向量 500" •空間頻率符號傳輸程序 502- •作業 504·. •作業 506" •作業 508" •作業 510" •作業 512- •作業 600" •符號接收與解碼程序 604·· •作業 606" •作業 608" •作業 610" •作業 612·· •作業 614.· •作業A flowchart of the procedure; and FIG. 6 is a flowchart of a symbol receiving and decoding procedure according to some embodiments of the present invention. [Description of Symbols of Main Components] 100 ... Multi-carrier transmitter 101 ... Input serial bit stream 102 ... Mapper 103 ... Symbol 104 ... Serial-to-parallel converter 105 ... Symbol vector 106 ... Encoder 107 ... Pre-encoded symbol vector 108 ... Divider 109 ... Group 24 200524330 110 ... Spatial frequency symbol mapper 111 ... Symbol after spatial frequency mapping 112 " Inverse Fast Fourier Transform Circuit 113 " Signal 114 ·· Transmitting antenna 203 " Precoded symbol 207 ·· Precoded symbol vector 209 ·· Group 302 " Space channel 303 ·· Precoded symbol 304 ·· Subcarrier 306 " Symbol 308 " Symbol 310 " Symbol 312 ·· Symbol 314 ·· Symbol 316 ·· Symbol 318 " Symbol 320 " Symbol 400 " Multiple Carrier Receiver 402 " Receiver Antenna 404 ·· FFT Circuit 405 " Symbol Vector 406 " Demultiplexer 407 " • Symbol Vector 408 " • Null Value Eliminator 409 ··· Symbol Vector 410 ··· Decoder 412 ··· Demapper 413 " • Bit 414 " • Parallel-to-serial converter 415 " • Serial bit stream 420 ·· • Pre-coded symbol vector 500 " • Space frequency symbol transmission program 502- • Job 504 ·. • Job 506 " • Assignment 508 " • Assignment 510 " • Assignment 512- • Assignment 600 " • Symbol receiving and decoding program 604 ··· Assignment 606 " • Assignment 608 " • Assignment 610 " • Assignment 612 ·· • Assignment 614. · • Assignment

2525

Claims (1)

200524330 十、申請專利範圍: 1. 一種多重載波發射器,包含: 一預先編碼器,用以藉由將數個符號向量中每一符 號向量乘以一複式領域矩陣來將該等數個符號向量編 5 碼,而產生多個預先編碼符號向量; 一分割器,用以將該等預先編碼符號向量分組為數 個群組,每一群組具有一個以上的預先編碼符號向量;以 及 一空間頻率符號映射器,用以至少部分地根據該預 10 先編碼後之符號的群組與該預先編碼後之符號在該群 組内的位置,將該等預先編碼符號向量的預先編碼後之 符號映射至一多重載波通訊頻道的數個副載波之一與 映射至數個空間頻道之一。 2. 如申請專利範圍第1項所述之發射器,進一步包含: 15 一符號映射器,用以由一輸入串列位元流產生一串 列符號流;以及 一串列對並列變換器,用以由該串列符號流產生數 個並列符號向量,每一該等符號向量具有一個以上的符 號。 20 3.如申請專利範圍第2項所述之發射器,進一步包含逆快 速傅立葉變換(IFFT)電路,用以從由空間頻率符號映射 器所提供的經空間頻率映射之符號,產生用於在該等空 間頻道中的一對應空間頻道上作射頻(R F)傳輸的信號。 4.如申請專利範圍第1項所述之發射器,其中該預先編碼 200524330 器為用以將每一該等數個並列符號向量分離地預先編 碼來產生數個並列預先編碼符號向量的一線性正方預 先編碼器。 5. 如申請專利範圍第4項所述之發射器,其中該複式領域 5 矩陣為實質上具有一種列式範德蒙德結構之一正方複式 領域矩陣。 6. 如申請專利範圍第1項所述之發射器,進一步包含數個 發射天線,每一發射天線對應於該等空間頻道之一。 7. 如申請專利範圍第6項所述之發射器,其中該預先編碼 10 器將MxG個數之並列符號向量編碼,每一並列符號向量 具有MxK個符號, 其中該分割器將該等預先編碼符號向量分組為G個 群組之並列符號向量,每一群組具有Μ個預先編碼符號 向量, 15 其中Μ、G與Κ為正整數, 其中MxKxG等於該多重載波通訊頻道之資料副載 波的個數;以及 其中Μ對應於該等發射天線之數目。 8. 如申請專利範圍第7項所述之發射器,其中該等預先編 20 碼符號向量之符號關聯於一層之符號,其中層之數目就 每一群組為Μ, 其中,該空間頻率符號映射器根據該群組與和該符 號關聯之該層,將該等預先編碼符號向量之每一預先編 碼符號映射至該等副載波之一與映射至該等發射天線 200524330 之一,以及 一中,"亥空間頻率符號映射器將MxKxG個符號映射 至每务射天線,並以該等MxKxG個符號之倍數提供映 射後之符號至和該等發射天線關聯之IFFT電路,以供針 對该%副載波作調變。 9·如申請專利範圍第7項所述之發射器,其中該空間頻率 付就映射器將該等符號層之至少一些符號,根據該符號 群組與在該群組内之位置,以循序的方式映射至該等副 載波與該等發射天線。 1〇 JQ » . ^ • °曱請專利範圍第1項所述之發射器,其中該多重載波 通訊頻道包含數個空間頻道,每一空間頻道和該等數個 發射天線之一關聯, 其中每一空間頻道與其他空間頻道運用相同的頻 率副載波, 15 其中該等發射天線於其間具有至少約為一傳輸頻 率的一半波長之間隔。 11·如申請專利範圍第1項所述之發射器,其中該多重載波 通訊頻道包含數個經符號調變之副載波,以及 其中每一經符號調變之副載波實質上在其他副載 20 波的一中心頻率具有一空值,以達成該多重載波通訊頻 道之該等副載波間的實質疋交性。 12·如申請專利範圍第丨項所述之發射器,其中該發射裔為 包含有該多重載波發射器與一個多重載波接收器的一 個多重載波通訊站之一部分,其中該多重載波接收器包 28 200524330 含: 一解多工器,用以藉由組合被接收之符號向量的對 應副載波頻率成份來產生符號向量之群組; 與每一群組之符號向量關聯之一空值消除器,用於 5 以每一副載波之基準根據被解碼之一符號向量為該相 關聯群組的符號向量實施空值消除,該空值消除器將產 生空值消除後之符號向量; 與每一群組關聯之一解碼器,用以將該相關聯群組 之符號的層解碼,並一次一層地將該解碼器之一輸出乘 10 以一複式領域矩陣,而為該空值消除器再產生符號向 量。 13. —種多重載波接收器,包含: 一解多工器,用以藉由組合被接收之符號向量的對 應副載波頻率成份來產生符號向量之群組; 15 與每一群組之符號向量關聯之一空值消除器,用於 以每一副載波之基準根據被解碼之一符號向量為該相 關聯群組的符號向量實施空值消除,該空值消除器將產 生空值消除後之符號向量; 與每一群組關聯之一解碼器,用以將該相關聯群組 20 之符號的層解碼,並一次一層地將該解碼器之一輸出乘 以一複式領域矩陣,而為該空值消除器再產生符號向 量° 14. 如申請專利範圍第13項所述之接收器,其中該空值消除 器迴覆式地消除來自連續層中之符號向量的干擾。 200524330 15·如申請專利範圍第13項所述之接收器,其中被該解多工 為產生之每一群組的符號向量包含由不同副載波組合 之付號成份,以及 其中該解碼器為一球形解碼器,並為該多重載波通 汛頻道之每一副載波產生經解碼之正交振幅調變符號 向量。 6·如申明專利範圍第13項所述之接收器,進一步包含: FFT電路,用以將在數個接收天線上接收之多重載 波通訊信號的被接收副載波解調,以產生與每一接收天 =關聯之轉被接收符號向量,該等被接收符號向量包 &來自遠多重載波通訊頻道之數個副載波的符號成份; ” 解映射器,用於為每一群組將解碼後之符號向量 解映射,以產生數個位元之並列集合;以及 —並列對串列變換L由該等數個位元之並列 集合產生一串列位元流。 17.t申請專利範圍第13項所述之接收器,其中該接收器為 =含該多重載波接收器與—個多重載波發射器的一個 二重载波通訊站之—部分,其中該多重載波發射器包 20 —預先編碼器’用以藉由將數個符號向量中每一符 Γ1 乘以一複式領域矩陣來將該等數個符號向量編 馬,而產生預先編碼符號向量; 30 200524330 及 -空間頻率符號映射器 , 分也根據該預 先編碼後之付號的群細與該預先編碼後 組内的位置,將該等預先編碼符 ^ ^群 ^付唬向1的預先編碼 符號映射至-夕重載波通訊頻道的數個副载波之_與 映射至數個空間頻道之一。 /、 18·—種通訊站,包含: 數個天線;以及 一多重載波發射器,用於以* 10 15 20 符號編碼,以供在-多重載、、皮 、品塊碼將多個 夕垔戟波通訊頻道上傳輸, 其中該等空間頻率區塊 發射天線與至該多重載波通訊料數個 先編碼後之符號。 、 /的夕個預 a如申請專利範圍第18項所述之通訊站,其 發射器包含: 夕重载波 二贱編碼器,用以藉由將數個符號向量 从 :;向複式領域矩陣來將該等數個符號向量:: 馬而產生多個預先編碼符號向量; 里、扁 刀。’用以將該等預先編碼符號向量八 =組,每-群組具有-個以上的預先編 先編:::頻_映射器’用以至少部分地根據該預 =後之付號的群組與該預先編碼後之符號在該: 立置,將該等預先編碼符號向量的預先編石馬後之 31 200524330 符號映射至該多重載波通訊頻道的數個副載波之一與 映射至數個空間頻道之一。 20. 如申請專利範圍第18項所述之通訊站,進一步包含一多 重載波接收器,用以將在該多重載波通訊頻道上所接收 5 的用該空間頻率區塊碼被編碼之信號,使用一迴覆的空 值處理程序加以解碼,而連續地消除來自符號之層的干 擾。 21. 如申請專利範圍第20項所述之通訊站,其中該多重載波 接收器包含: 10 一解多工器,用以藉由組合被接收之符號向量的對 應副載波頻率成份來產生符號向量之群組; 與每一群組之符號向量關聯之一空值消除器,用於 以每一副載波之基準根據被解碼之一符號向量為該相 關聯群組的符號向量實施空值消除,該空值消除器將產 15 生空值消除後之符號向量; 與每一群組關聯之一解碼器,用以將該相關聯群組 之符號的層解碼,並一次一層地將該解碼器之一輸出乘 以一複式領域矩陣,而為該空值消除器再產生符號向 量° 20 22. —種用於在多重載波通訊頻道上發送之方法,包含: 藉由將數個符號向量中每一符號向量乘以一複式 領域矩陣來將該等數個符號向量編碼,而產生預先編碼 符號向量; 將該等預先編碼符號向量分組為數個群組’每一群 200524330 組具有一個以上的預先編碼符號向量;以及 至少部分地根據該預先編碼後之符號的群組與該 預先編碼後之符號在該群組内的位置,將該等預先編碼 符號向量的預先編碼後之符號映射至一多重載波通訊 頻道的數個副載波之一與映射至數個空間頻道之一。 23. 如申請專利範圍第22項所述之方法,進一步包含: 由一輸入串列位元流產生一串列符號流;以及 由該串列符號流產生並列的該等數個符號向量,每 一該等符號向量具有一個以上的符號。 10200524330 10. Scope of patent application: 1. A multi-carrier transmitter including: a pre-encoder for multiplying each symbol vector in a plurality of symbol vectors by a complex domain matrix to obtain the plurality of symbol vectors Encode 5 codes to generate multiple pre-encoded symbol vectors; a divider to group the pre-encoded symbol vectors into several groups, each group having more than one pre-encoded symbol vector; and a spatial frequency symbol A mapper for mapping the pre-encoded symbols of the pre-encoded symbol vector to, at least in part, the group of pre-encoded symbols and the position of the pre-encoded symbols in the group One of a plurality of sub-carriers of a multi-carrier communication channel is mapped to one of a plurality of spatial channels. 2. The transmitter according to item 1 of the scope of patent application, further comprising: 15 a symbol mapper for generating a series of symbol streams from an input serial bit stream; and a serial-to-parallel converter, It is used to generate several parallel symbol vectors from the tandem symbol stream, and each of these symbol vectors has more than one symbol. 20 3. The transmitter according to item 2 of the scope of patent application, further comprising an inverse fast Fourier transform (IFFT) circuit for generating spatial frequency mapped symbols provided by the spatial frequency symbol mapper for use in A signal transmitted by radio frequency (RF) on a corresponding space channel among the space channels. 4. The transmitter according to item 1 of the scope of patent application, wherein the precoding 200524330 is a linear method for separately precoding each of the plurality of parallel symbol vectors to generate a plurality of parallel precoding symbol vectors. Square pre-encoder. 5. The transmitter as described in item 4 of the scope of the patent application, wherein the complex domain 5 matrix is a square complex domain matrix having substantially a columnar van dermond structure. 6. The transmitter according to item 1 of the scope of patent application, further comprising a plurality of transmitting antennas, each transmitting antenna corresponding to one of the spatial channels. 7. The transmitter as described in item 6 of the scope of patent application, wherein the pre-encoding unit 10 encodes a number of parallel symbol vectors of MxG numbers, and each parallel symbol vector has MxK symbols, wherein the segmenter encodes these The symbol vector is grouped into parallel symbol vectors of G groups, each group having M pre-encoded symbol vectors, 15 where M, G, and K are positive integers, where MxKxG is equal to the number of data subcarriers of the multi-carrier communication channel And where M corresponds to the number of these transmitting antennas. 8. The transmitter as described in item 7 of the scope of the patent application, wherein the symbols of the pre-coded 20-code symbol vector are associated with the symbols of one layer, where the number of layers is M for each group, where the spatial frequency symbol The mapper maps each precoded symbol of the precoded symbol vector to one of the subcarriers and one of the transmit antennas 200524330 according to the group and the layer associated with the symbol, and a medium The " Hai space frequency symbol mapper maps MxKxG symbols to each transmitting antenna, and provides the mapped symbols in multiples of the MxKxG symbols to the IFFT circuit associated with the transmitting antennas for the purpose of The subcarrier is modulated. 9. The transmitter according to item 7 in the scope of the patent application, wherein the spatial frequency pay mapper maps at least some symbols of the symbol layers according to the symbol group and the position within the group in order. Mode is mapped to the subcarriers and the transmitting antennas. 1〇JQ ». ^ • ° Please refer to the transmitter described in item 1 of the patent scope, wherein the multi-carrier communication channel includes a plurality of space channels, and each space channel is associated with one of the plurality of transmitting antennas, where each A space channel uses the same frequency subcarriers as other space channels, 15 wherein the transmitting antennas have a spacing therebetween of at least about half a wavelength of a transmission frequency. 11. The transmitter according to item 1 of the scope of the patent application, wherein the multi-carrier communication channel includes several symbol-modulated subcarriers, and each of the symbol-modulated subcarriers is substantially 20 waves in other subcarriers. A center frequency of has a null value in order to achieve substantial intersection between the subcarriers of the multi-carrier communication channel. 12. The transmitter according to item 丨 of the patent application scope, wherein the transmitting source is part of a multi-carrier communication station including the multi-carrier transmitter and a multi-carrier receiver, wherein the multi-carrier receiver package 28 200524330 includes: a demultiplexer for generating groups of symbol vectors by combining the corresponding subcarrier frequency components of the received symbol vector; a null value canceller associated with the symbol vectors of each group for 5 Carry out null value elimination for the symbol vector of the associated group based on one of the decoded symbol vectors on the basis of each subcarrier, and the null value canceller will generate a nullified symbol vector; associated with each group A decoder for decoding the layer of symbols of the associated group, multiplying one of the decoder outputs by 10 by a complex field matrix one layer at a time, and generating a symbol vector for the null canceller. 13. A multiple carrier receiver comprising: a demultiplexer for generating groups of symbol vectors by combining the corresponding subcarrier frequency components of the received symbol vector; 15 and a symbol vector for each group An associated null value canceller is used to perform null value elimination for the symbol vector of the associated group based on a symbol vector being decoded on the basis of each subcarrier, and the null value canceller will generate a null value eliminated symbol Vector; a decoder associated with each group for decoding the layer of symbols of the associated group 20 and multiplying one of the decoder outputs by a complex field matrix one layer at a time, which is the empty The value canceller reproduces the symbol vector ° 14. The receiver as described in claim 13 of the patent application scope, wherein the null value canceler repeatedly eliminates interference from the symbol vector in the continuous layer. 200524330 15. The receiver as described in item 13 of the scope of patent application, wherein the symbol vector of each group generated by the demultiplexing includes a sign component composed of different subcarrier combinations, and wherein the decoder is a A spherical decoder and generates a decoded quadrature amplitude modulation symbol vector for each subcarrier of the multi-carrier flood channel. 6. The receiver according to item 13 of the declared patent scope, further comprising: an FFT circuit for demodulating the received subcarriers of the multi-carrier communication signals received on the plurality of receiving antennas, so as to generate signals for each receiving Day = associated transfer received symbol vector, these received symbol vector packets & symbol components from several subcarriers of the far multi-carrier communication channel; "demapper" is used to decode the decoded The symbol vector is demapped to generate a juxtaposed set of several bits; and-the parallel-to-serial transformation L generates a series of bit streams from the juxtaposed set of these several bits. 17.t patent application scope item 13 The receiver, wherein the receiver is a part of a dual-carrier communication station including the multi-carrier receiver and a multi-carrier transmitter, wherein the multi-carrier transmitter package 20 is a pre-encoder. To precode the symbol vector by multiplying each of the symbol vector Γ1 by a complex domain matrix to generate the precoded symbol vector; 30 200524330 and -spatial frequency The number mapper also maps the pre-encoded symbols ^ ^ group ^ to the pre-encoded symbols of 1 according to the group detail of the pre-encoded pay number and the position within the pre-encoded group. A number of sub-carriers of a carrier communication channel and one of them mapped to one of several spatial channels. / 、 18 · —A communication station includes: several antennas; and a multi-carrier transmitter for * 10 15 20 Symbol encoding for transmission on multiple communication channels of multi-carrier, leather, and block codes, where the spatial frequency block transmitting antennas and a number of the multi-carrier communication materials are encoded first The communication station as described in item 18 of the scope of patent application, the transmitter includes: a heavy carrier two-bit encoder, which is used to transfer several symbol vectors from: to the complex The domain matrix is used to generate the plurality of pre-coded symbol vectors: horses to generate multiple pre-coded symbol vectors; ri and flat knives. 'Uses the pre-coded symbol vectors of eight = groups, each-group has more than- Pre-edit ::: frequency_mapper ' Based at least in part on the group of pre-posted numbers and the pre-encoded symbols at the: stand, map the pre-encoded 31 200524330 symbols of the pre-encoded symbol vectors to the multi-carrier One of the sub-carriers of the communication channel and one of the sub-carriers mapped to the spatial channel. 20. The communication station as described in item 18 of the scope of the patent application, further comprising a multi-carrier receiver for transmitting signals on the multi-carrier. The signals received on the communication channel 5 encoded with the spatial frequency block code are decoded using a reply null value processing program, and the interference from the symbol layer is continuously eliminated. The communication station according to the above item, wherein the multi-carrier receiver comprises: 10 a demultiplexer for generating a group of symbol vectors by combining corresponding subcarrier frequency components of the received symbol vector; and each group A null value canceller associated with the symbol vector of the group is used to implement the null value elimination for the symbol vector of the associated group based on the decoded symbol vector on the basis of each subcarrier. The null value canceller will generate 15 null value-eliminated symbol vectors; a decoder associated with each group is used to decode the layer of symbols of the associated group and decode the layer one layer at a time One of the multiplier outputs is multiplied by a complex field matrix, and a symbol vector is generated for the null canceller ° 20 22. A method for transmitting on a multi-carrier communication channel, including: Each symbol vector is multiplied by a complex domain matrix to encode the plurality of symbol vectors to generate pre-encoded symbol vectors; the pre-encoded symbol vectors are grouped into groups. Each group 200524330 has more than one pre-encoded group. A symbol vector; and mapping at least in part the group of pre-encoded symbols and the position of the pre-encoded symbol within the group, mapping the pre-encoded symbols of the pre-encoded symbol vector to a multiple One of the sub-carriers of the carrier communication channel and one of the sub-carriers mapped to the spatial channel. 23. The method according to item 22 of the scope of patent application, further comprising: generating a series of symbol streams from an input serial bit stream; and generating the plurality of symbol vectors juxtaposed from the serial symbol stream, each One such symbol vector has more than one symbol. 10 24. 如申請專利範圍第23項所述之方法,進一步包含實施逆 快速傅立葉變換(IFFT),以從由該等預先編碼後之符號 的映射動作所產生的經空間頻率映射之符號,產生用於 在該等空間頻道中的一對應空間頻道上作射頻(rf)傳 輸的信號。 15 20 25=申請補_f22項所述之方法,其巾朗碼動作包 含二-線性正方減編碼器來把該等符號向量編碼,以 將每-該等數個並列符號向量分離地預先塢碼,來產生 數個並列預先編碼符號向量。 26.如申物_第25項所述之方法,其中該複式領域矩 陣為貝貝上具有一種列式範德蒙德結構之 領域矩陣。24. The method as described in item 23 of the scope of patent application, further comprising implementing an inverse fast Fourier transform (IFFT) to generate a spatial frequency mapped symbol from the mapping action of the pre-encoded symbol mapping operation to generate an Radio frequency (rf) transmitted signals on a corresponding space channel among the space channels. 15 20 25 = Apply for the method described in item _f22, whose long-code operation includes a two-linear square-subtraction encoder to encode these symbol vectors, so as to separate each of the several parallel symbol vectors in advance. Code to generate several parallel pre-coded symbol vectors. 26. The method of claim 25, wherein the complex domain matrix is a domain matrix having a columnar van dermond structure on Bebe. 正方複式 27·^申請^範圍第22項所述之方法,其中⑽射動作包 含將該等預先編碼符號向量的預先編碼後之符號映射 至4夕重載波通訊頻道的副載波之一與映射至數個發 33 200524330 射天線之一,其中每一發射天線對應於該等空間頻道之 —一 〇 28.如申請專利範圍第27項戶斤述之方法’其中該編碼動作將 MxG個數之並列符號向耋編碼,每一並列符號向量具有 5 MxK個符號, 其中該分組動作包含將或專預先編碼符號向量分 組為G個群組之並列符號向量’每一群組具有μ個預先 編碼符號向量, 其中Μ、G與Κ為正整數’ 10 其中MxKxG等於該多重載波通訊頻道之資料副載 波的個數;以及 其中Μ對應於該等發射天線之數目。 29·如申請專利範圍第28項所述之方法,其中該等預先編碼 符號向量之符號關聯於/層之符號,其中層之數目就每 15 一群組為Μ, 其中,該映射動作包含根據該群組與和該符號關聯 之該層將該等預先編碼符號向量之每一預先編瑪後之 符號映射至該等副載波之一與映射至該等發射天線之 一;以及 20 其中,該映射動作更包含將MxKxG個符號映射至 每一發射天線,並以該等]MxKxG個符號之倍數提供映 射後之符號以供針對該等副載波作調變。 30·如申請專利範圍第28項所述之方法,其中該映射動作包 含將該等符號層之至少一些符號,根據該符號群組與在 200524330 該群組内之位置,以循序的方式映射至該等副載波與該 等發射天線。 31.如申請專利範圍第22項所述之方法,其中該多重載波通 訊頻道包含數個空間頻道,每一空間頻道關聯於該等數 5 個發射天線之一, 其中每一空間頻道運用與其他空間頻道相同的頻 率副載波, 其中該等發射天線於其間具有至少約為一傳輸頻 率的一半波長之間隔。 10 32.如申請專利範圍第22項所述之方法,其中該多重載波通 訊頻道包含數個經符號調變之副載波,以及 其中每一經符號調變之副載波實質上在其他副載 波的一中心頻率具有一空值,以達成該多重載波通訊頻 道之該等副載波間的實質正交性。 15 33. —種用於在多重載波通訊頻道上接收之方法,包含: 藉由組合被接收之符號向量的對應副載波頻率成 份來產生符號向量之群組; 以每一副載波之基準根據被解碼之一符號向量,為 一相關聯群組的符號向量實施空值消除,以產生空值消 20 除後之符號向量;以及 一次一層地將一解碼器輸出乘以一複式領域矩陣 以將該相關群組之符號的層解碼,而再產生用於實施空 值消除之符號向量。 34.如申請專利範圍第33項所述之方法,其中該實施空值消 35 200524330 除之動作包含迴覆式地消除來自連續層中之符號向量 的干擾。 35. 如申請專利範圍第33項所述之方法,其中每一群組的符 號向量包含由不同副載波組合之符號成份,以及 5 其中該解碼動作包含進行球形解碼,俾為該多重載 波通訊頻道之每一副載波產生經解碼之正交振幅調變 符號向量。 36. 如申請專利範圍第35項所述之方法,進一步包含: 將在數個接收天線上接收之多重載波通訊信號的 10 被接收副載波解調,以產生和每一接收天線關聯之該等 被接收符號向量,該等被接收符號向量包含來自該多重 載波通訊頻道之數個副載波的符號成份; 為每一群組將解碼後之符號向量解除映射,以產生 數個位元之並列集合;以及 15 由該等數個位元之並列集合產生一串列位元流。 37. —種系統,包含: 一個或多個實質全向性發射天線; 耦合於該等發射天線的一個多重載波發射器,該多 重載波發射器包含: 20 一預先編碼器,用以藉由將數個符號向量中每一符 號向量乘以一複式領域矩陣來將該等數個符號向量編 碼,而產生多個預先編碼符號向量; 一分割器,用以將該等預先編碼符號向量分組為數 個群組,每一群組具有一個以上的預先編碼符號向量;以 200524330 及 一空間頻率符號映射器,用以至少部分地根據該預 先編碼後之符號的群組與該預先編碼後之符號在該群 組内的位置,將該等預先編碼符號向量的預先編碼後之 5 符號映射至一多重載波通訊頻道的數個副載波之一與 映射至數個空間頻道之一。 38. 如申請專利範圍第37項所述之系統,其中該發射器進一 步包含: 一符號映射器,用以由一輸入串列位元流產生一串 10 列符號流;以及 一串列對並列變換器,用以由該串列符號流產生數 個並列符號向量,每一該等符號向量具有一個以上的符 號。 39. 如申請專利範圍第38項所述之系統,其中該發射器進一 15 步包含逆快速傅立葉變換(IFFT)電路,用以從由空間頻 率符號映射器所提供的經空間頻率映射之符號,產生用 於在該等空間頻道中的一對應空間頻道上作射頻(R F) 傳輸的信號。 40. —種機器可讀取之媒體,其提供的指令在由一個或多個 20 處理器執行時致使該等處理器實施包含下列動作的作 業: 藉由將數個符號向量中每一符號向量乘以一複式 領域矩陣來將該等數個符號向量編碼,而產生多個預先 編碼符號向量; 200524330 將該等預L馬符號向量分組為數個群組,每—群 組具有一個以上的預先編碼符號向量;以及 5 10 15 >、卩刀地根據該預先編碼後之符號的群組與該 預先編碼紅付號在該雜㈣位置,將料預先編碼 符號向量的預先編碼後之符號映射至一多重載波通訊 頻道的數個副載波之一與映射至數個空間頻道之一。The method described in item 22 of the square complex 27 · ^ application ^ scope, wherein the projectile action includes mapping the pre-encoded symbols of the pre-encoded symbol vector to one of the sub-carriers of the 4th heavy-carrier communication channel and mapping to One of several transmitting antennas, 20052005330, each transmitting antenna corresponding to one of these spatial channels-1028. As described in the 27th method of the patent application 'where the encoding action will be juxtaposed the number of MxG The symbol is coded to 耋, each side-by-side symbol vector has 5 MxK symbols, where the grouping action includes grouping or exclusively pre-encoding the symbol vector into G groups of side-by-side symbol vectors' each group has μ pre-encoded symbol vectors Where M, G, and K are positive integers' 10 where MxKxG is equal to the number of data subcarriers of the multi-carrier communication channel; and where M corresponds to the number of the transmitting antennas. 29. The method as described in item 28 of the scope of patent application, wherein the symbols of the pre-encoded symbol vectors are associated with the symbols of / layers, where the number of layers is M every 15 groups, where the mapping action includes according to The group and the layer associated with the symbol map each pre-coded symbol of the pre-encoded symbol vectors to one of the subcarriers and to one of the transmitting antennas; and 20 wherein, the The mapping action further includes mapping MxKxG symbols to each transmitting antenna, and providing the mapped symbols at multiples of the MxKxG symbols for modulation on the subcarriers. 30. The method as described in item 28 of the scope of patent application, wherein the mapping action includes sequentially mapping at least some symbols of the symbol layers to the symbol group and the position within the group of 200524330 to The subcarriers and the transmitting antennas. 31. The method according to item 22 of the scope of patent application, wherein the multi-carrier communication channel includes a plurality of space channels, and each space channel is associated with one of the five transmitting antennas, wherein each space channel is used in conjunction with other Space channels have the same frequency subcarriers, wherein the transmitting antennas have a spacing therebetween of at least about half a wavelength of a transmission frequency. 10 32. The method according to item 22 of the scope of patent application, wherein the multi-carrier communication channel includes a plurality of symbol-modulated subcarriers, and each of the symbol-modulated subcarriers is substantially one of the other subcarriers. The center frequency has a null value to achieve substantial orthogonality between the subcarriers of the multi-carrier communication channel. 15 33. — A method for receiving on a multi-carrier communication channel, comprising: generating a group of symbol vectors by combining the corresponding subcarrier frequency components of the received symbol vector; Decode a symbol vector, perform null elimination on the symbol vector of an associated group to generate a null-divided symbol vector; and multiply a decoder output by a complex domain matrix one layer at a time The layers of the symbols of the related group are decoded, and a symbol vector is generated for implementing null elimination. 34. The method as described in item 33 of the scope of the patent application, wherein the action of performing null elimination 35 200524330 division includes repetitively eliminating interference from symbol vectors in successive layers. 35. The method as described in item 33 of the scope of patent application, wherein the symbol vector of each group includes symbol components composed of different subcarrier combinations, and 5 wherein the decoding action includes performing spherical decoding, and is the multi-carrier communication channel Each of these subcarriers produces a decoded quadrature amplitude modulation symbol vector. 36. The method as described in item 35 of the scope of patent application, further comprising: demodulating 10 of the multi-carrier communication signals received on the plurality of receiving antennas by the receiving subcarriers to generate these associated with each receiving antenna Received symbol vectors containing the symbol components of the multiple subcarriers from the multi-carrier communication channel; unmapped the decoded symbol vector for each group to generate a side-by-side set of bits ; And 15 generates a series of bit streams from a juxtaposed set of these bits. 37. A system comprising: one or more substantially omnidirectional transmitting antennas; a multi-carrier transmitter coupled to the transmitting antennas, the multi-carrier transmitter comprising: 20 a pre-encoder for Each symbol vector in the plurality of symbol vectors is multiplied by a complex domain matrix to encode the plurality of symbol vectors to generate a plurality of pre-encoded symbol vectors; a divider is used to group the pre-encoded symbol vectors into a plurality of Groups, each group having more than one pre-encoded symbol vector; 200524330 and a spatial frequency symbol mapper for at least partly based on the group of pre-encoded symbols and the pre-encoded symbols in the group The position within the group is mapped to the pre-encoded 5 symbols of the pre-encoded symbol vector to one of several subcarriers of a multi-carrier communication channel and to one of several spatial channels. 38. The system described in claim 37, wherein the transmitter further comprises: a symbol mapper for generating a series of 10 columns of symbol streams from an input serial bit stream; and a series of parallel pairs A converter for generating a plurality of parallel symbol vectors from the serial symbol stream, each of which has more than one symbol. 39. The system described in claim 38, wherein the transmitter further comprises an inverse fast Fourier transform (IFFT) circuit for spatially frequency mapped symbols provided by the spatial frequency symbol mapper, A signal is generated for radio frequency (RF) transmission on a corresponding one of the spatial channels. 40. A machine-readable medium that, when executed by one or more 20 processors, causes the processors to perform operations that include the following actions: Multiply a complex domain matrix to encode these several symbol vectors to generate multiple pre-encoded symbol vectors; 200524330 group the pre-L-horse symbol vectors into several groups, each of which has more than one pre-encoded Symbol vector; and 5 10 15 > map the pre-encoded symbol of the pre-encoded symbol vector to the miscellaneous position according to the group of the pre-encoded symbol and the pre-encoded red number. One of a plurality of sub-carriers of a multi-carrier communication channel is mapped to one of a plurality of spatial channels. 41·如申請專利範圍第4G項所述之機器可讀取之媒體,其中 該等指令進-步在由一個或多個該等處理器執行時致 使該等處理器實施更包含下列動作的作業·· 由一輸入串列位元流產生—串列符號流;以及 由該串列符號流產生數個並列符號向量,每一該等 符號向量具有一個以上的符號。 42.如申請專利範圍第例所述之機器可讀取 該等指令進一步在由一個或多個該等處理器執行時致 使該等處理器實施更包含下列動作的作業.執/亏41. The machine-readable medium as described in item 4G of the scope of patent application, wherein the instructions further, when executed by one or more of the processors, cause the processors to perform operations that further include the following actions ·· Generated from an input serial bit stream—a serial symbol stream; and a plurality of parallel symbol vectors from the serial symbol stream, each of which has more than one symbol. 42.The machine can read the instructions as described in the first example of the scope of the patent application.These instructions, when executed by one or more of the processors, cause the processors to perform operations that further include the following actions. 傅立葉變換(耐),以從由該等預先編媽符號== 作所產生的經空間頻率映射之符號, ^ 間頻道中的-對應空間頻道上作射頻心專空 20 38Fourier transform (resistant) to the spatially frequency mapped symbols generated from the pre-programmed symbols ==, in the ^ channel-corresponding to the spatial channel for RF cardio 20 38
TW093127726A 2003-09-15 2004-09-14 Multiple antenna systems and methods using high-throughput space-frequency block codes TWI264891B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50309203P 2003-09-15 2003-09-15
US10/814,113 US7315577B2 (en) 2003-09-15 2004-03-30 Multiple antenna systems and method using high-throughput space-frequency block codes

Publications (2)

Publication Number Publication Date
TW200524330A true TW200524330A (en) 2005-07-16
TWI264891B TWI264891B (en) 2006-10-21

Family

ID=34278912

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093127726A TWI264891B (en) 2003-09-15 2004-09-14 Multiple antenna systems and methods using high-throughput space-frequency block codes

Country Status (4)

Country Link
EP (1) EP1665616A2 (en)
JP (1) JP4459960B2 (en)
TW (1) TWI264891B (en)
WO (1) WO2005029758A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571154B (en) * 2014-07-02 2017-02-11 電信科學技術研究院 A method, system and device for data transmission

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440510B2 (en) 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
US7315577B2 (en) 2003-09-15 2008-01-01 Intel Corporation Multiple antenna systems and method using high-throughput space-frequency block codes
MY154510A (en) 2004-08-12 2015-06-30 Interdigital Tech Corp Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
EP2030341B1 (en) * 2006-05-23 2017-03-29 LG Electronics Inc. Apparatus for processing received signal, method thereof, and method for selecting mapping rule
KR101356508B1 (en) 2006-11-06 2014-01-29 엘지전자 주식회사 A method of data transmission in wireless communication system
WO2009016573A2 (en) * 2007-07-27 2009-02-05 Koninklijke Philips Electronics, N.V. System and method of transmitting and receiving mimo-ofdm signals
JP5370476B2 (en) 2009-03-26 2013-12-18 富士通株式会社 Multi-antenna communication apparatus and multi-antenna communication method
CN103329103B (en) * 2010-10-27 2017-04-05 希捷科技有限公司 Using the method and apparatus of the self adaptation ECC technology for the data storage based on flash memory
US10925009B2 (en) * 2019-05-27 2021-02-16 Apple Inc. Dynamic processing resource allocation across multiple carriers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2302289C (en) * 1996-08-29 2005-11-08 Gregory G. Raleigh Spatio-temporal processing for communication
US6731668B2 (en) * 2001-01-05 2004-05-04 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input—multiple output channels
US6801790B2 (en) * 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US7190734B2 (en) * 2001-05-25 2007-03-13 Regents Of The University Of Minnesota Space-time coded transmissions within a wireless communication network
GB0115937D0 (en) * 2001-06-29 2001-08-22 Koninkl Philips Electronics Nv Radio communication system
JP2003032226A (en) * 2001-07-17 2003-01-31 Matsushita Electric Ind Co Ltd Radio communication apparatus and method therefor
CA2434123C (en) * 2001-11-10 2007-06-12 Samsung Electronics Co., Ltd. Stfbc coding/decoding apparatus and method in an ofdm mobile communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571154B (en) * 2014-07-02 2017-02-11 電信科學技術研究院 A method, system and device for data transmission
US10454636B2 (en) 2014-07-02 2019-10-22 China Academy Of Telecommunications Technology Method, system and device for data transmission

Also Published As

Publication number Publication date
JP4459960B2 (en) 2010-04-28
WO2005029758A2 (en) 2005-03-31
WO2005029758A3 (en) 2005-08-04
EP1665616A2 (en) 2006-06-07
JP2007506303A (en) 2007-03-15
TWI264891B (en) 2006-10-21

Similar Documents

Publication Publication Date Title
US7315577B2 (en) Multiple antenna systems and method using high-throughput space-frequency block codes
US10763924B2 (en) Wireless communication system, wireless communication device, and wireless communication method
JP4396993B2 (en) Multi-carrier transmitter, multi-carrier receiver, and method for transmitting multiple spatial signal streams
CN1849769B (en) Multiple antenna systems and methods using high-throughput space-frequency block codes
US7822135B2 (en) MIMO transmitter and method for transmitting an OFDM symbol in accordance with an IEEE 802.11 communication standard over a plurality of spatial channels
KR100945963B1 (en) Training symbol format for mimo ofdm systems
CN1757213B (en) Multicarrier transmission using a plurality of symbol lengths
TWI337028B (en) Broadband multicarrier transmitter with subchannel frequency diversity for transmitting a plurality of spatial streams
CN101582873B (en) Multi-mode terminal in a wireless mimo system with spatial multiplexing
KR101052368B1 (en) Communication method, mobile station and base station in wireless communication system
JP2010507930A (en) Quasi-orthogonal space-time block encoder, decoder and method for space-time encoding and decoding of orthogonal frequency division multiplexed signals in a multiple-input multiple-output system
TWI691176B (en) Apparatuses and methods for adaptive spatial diversity in a mimo-based system
US10411944B2 (en) Transmission method, transmission device, reception method, and reception device
TW200524330A (en) Multiple antenna systems and methods using high-throughput space-frequency block codes
WO2018171622A1 (en) Data transmission method and device, and data receiving method and device
TW200935792A (en) Robust cyclic delay diversity scheme

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees