TW200935792A - Robust cyclic delay diversity scheme - Google Patents

Robust cyclic delay diversity scheme

Info

Publication number
TW200935792A
TW200935792A TW097139771A TW97139771A TW200935792A TW 200935792 A TW200935792 A TW 200935792A TW 097139771 A TW097139771 A TW 097139771A TW 97139771 A TW97139771 A TW 97139771A TW 200935792 A TW200935792 A TW 200935792A
Authority
TW
Taiwan
Prior art keywords
transmitter
signal
branch
processor
transfer
Prior art date
Application number
TW097139771A
Other languages
Chinese (zh)
Inventor
Semih Serbetli
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200935792A publication Critical patent/TW200935792A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

The invention relates to a transmitter, a transmission system, a transmission method and a computer program product enabling a robust Cyclic Delay Diversity (CDD) scheme for transmissions such as-but not restricted to-wireless transmissions. The robust CDD scheme can be achieved by inserting an artificial multipath channel in a transmitter chain before an actual transmission.

Description

200935792 九、發明說明: 【發明所屬之技術領域】 本發明大體上係關於可啟用一用於一種諸如(但不限於) 無線傳送的傳送之強固循環延遲分集(CDD)架構的一種傳 送器、一種傳送系統、一種傳送方法及一種電腦程式產 品° 【先前技術】 無線傳送系統如今幾乎無所不在。舉例來說,被界定於 例如基於IEEE 802.11之標準中的無線區域網路(WLAN)、 蜂巢網路及廣播系統在如今被廣泛使用。對於如此之無線 傳送系統來說,可用通道之輸送量的增加係一個主要問 題。藉由利用正交分頻多工(〇FDM),可獲得一更高的輸 送量。在OFDM中,給定的系統帶寬被劃分為許多正交子 通道,其亦稱為子載波。替代經由一個(非常寬的)通道連 續傳送資料符號的係多個資料符號被並列傳送。這導致更 〇 長的符號長度,使得符號間干擾(ISI)之衝擊可被明顯減 少,因此不需要附加手段,例如昂貴的均衡化。 一種在輸送量及可靠性上進一步提高無線傳送系統之性 能的潛力在於多天線傳送技術。如此之技術被用於例如多 輸入多輸出(ΜΙΜΟ)天線系統中。這些系統在各個傳送器 及接收器處利用多個天線。該傳送器及該接收器之間可同 時建立複數個通道。其結果係輸送量可被提高而誤碼率 (BER)可被降低。ΜΙΜ〇技術將被包含於例如未來的wlan 標準IEEE 802.11η、未來的基於IEEE 8〇216之微波存取全 134798.doc 200935792 求互通(WiMAX)標準及未來的蜂巢網路標準中。 CDD被提議用於多天線傳送系統中以提高—傳送之強固 性’即改善該傳送之可靠性。CDD提供一種簡練之方法, 該方法在向後相容的同時提供傳送分集。cdd之理念為藉 由從不同天線同時傳送—時域信號之循環延遲版本而提高 頻率選擇性並因此提高頻率分集。在根本上,其將該等天 線之空間選擇性(分集)轉換為頻率選擇性(分集卜該等延 遲以一種循環方式完成以便不延長該通道及超過一用於確 保獨特傳送不干擾另一傳送的保護區間(GI)。CDD可藉由 利用通道編碼提高頻率選擇性。其已被包含於压邱 802.1 In當前的草案中並具有被包含於例如被界定於下一 代WLAN標準、WiMAX標準、蜂巢網路標準及廣播標準的 多天線無線系統中。 2006年八月之《IEEE無線通信會刊》第5卷第2〇92_21〇〇 頁中G. Bauch,J_ S. Malik所著的《在正交分頻多重存取 中具有位元交錯編碼調變的循環延遲分集》揭示在一包括 一 OFDM傳送器及一 OFDM接收器之〇FDM系統中的CDD。 如此之OFDM傳送器及接收器將被描述於下。 圖5為在編碼OFDM中一使用CDD之OFDM傳送器的方塊 圖。該傳送器包括一前向錯誤校正(FEC)編碼器50、一交 錯器5 1 (方塊"II")、一正父振幅調變(qam)/移相鍵控(PSK) 映射器52(方塊"QAM/PSK")、一反向快速傅立葉逆變換 (IFFT)轉換器53(方塊"IFFT")、ητ個傳送分支541至54ητ、 ητ-1個循環位移器552到55ητ(方塊"δ2”到"Δητ”)、叶個⑴加 134798.doc 200935792 法器561到56ητ(方塊"GI")及ητ個傳送天線571到57ητ。一 接收器之一接收天線58被顯示於圖5中。此外,X。、^、 Α及X3代表OFDM符號樣本,ht⑴代表一從該第i個傳送天 線57i到該接收天線58的通道,Δ!代表一被應用於該第i個 . 傳送天線57i的循環位移。 • 該FEC編碼器50、該交錯器51、該QAM/PSK映射器52及 該IFFT轉換器53被串聯連接。各個該等ητ個傳送分支541 到54ητ被連接至該IFFT轉換器53並包含一 GI加法器。該第 〇 二個到第ητ個傳送分支542至54ητ分別包括一放置於該GI 加法器之前的循環位移器。該第一轉換分支541不包含一 循環位移器,因為在不失一般性的假設下一被應用於該第 一傳送天線5 7 1的循環位移可被設定至零。各個該等傳 送天線571到57ητ被連接至該等ητ個傳送分支541到54ητ中 之一相應傳送分支。 一輸入資料流在該FEC編碼器5〇中編碼、被該交錯器51 Φ 交錯、被該QAM/PSK映射器52映射並被該IFFT轉換器53 從頻域轉換至時域。所獲得之一 OFDM信號在各個該等ητ 個傳送分支541到54ητ上被運送。在各個該等第二個到第 ητ個傳送分支542至541^中,各自的循環位移器循環地移 動在該傳送为支上運送的該各自的〇fdm信號之 號》該原始OFDM信號在該第一傳送分支541上被運送。各 個該等GI加法器561到5611丁將一叫循環字首(cp))加入在包 3 u各自的GI加法器之該傳送分支上運送的該信號 中。更具體地說’該等GI加法器⑹到心丁在〇FDM符號之 134798.doc 200935792 間插入一 GI。各個因加入GI所產生的OFDM信號經由一在 該各自的傳送天線及該接收天線58之間的通道傳送至該接 收天線58。 利用上述該傳送器,如圖5所示,各個傳送天線傳送該 相同的OFDM符號之一循環位移版本。以此方式,IEEE 802.1 1 η之當前草案所包含的一種先前被提議之CDD架構 被實施。 圖6為一種用於從如圖5所示之一傳送器接收信號的 OFDM接收器之方塊圖。該接收器包括一接收天線60、一 GI移除器61(被劃掉之方塊"GI”)、一快速傅立葉變換(FFT) 轉換器62(方塊"FFT")、一 QAM/PSK解映射器63、一解交 錯器64(方塊"ΙΓ1”)及一 FEC解碼器65。這些元件被串聯連 接。 經由從傳送天線到該接收天線60之通道被一如圖5所示 之傳送器傳送的OFDM信號被該接收器接收。該GI移除器 61從該等被接收之OFDM信號中移除GI。所得之信號被該 FFT轉換器62從該時域轉換為該頻域、被該QAM/PSK解映 射器63解映射、被該解交錯器64解交錯並被該FEC解碼器 6 5解碼。 諸如例如用圖5中顯示之該傳送器實施並被包含於 IEEE802.11n之當前草案中之CDD架構的先前被提議之 CDD架構係基於空間分集(選擇性)以增加該頻率選擇性。 對於OFDM多天線傳送系統來說,CDD可成為一種增加該 通道之該頻率選擇性及增加該系統之強固性的有效方式。 134798.doc 200935792 由於人工增加的通道長度,該通道變得更有頻率選擇性。 因此,錯誤更正碼可選擇更可靠之符號及該等強固性增 長。 ❹ ❹ 然而,如果一多天線傳送系統之環境非強散射及/或在 一傳送器及一接收器之間有視距(L〇s),即_較強的L〇s 成分,從不同的傳送天線至該(等)接收天線的該等通道將 高度地相互關聯。換言之,各個天線將經歷的該等通道將 被高度相互關聯,該空間分集(選擇性)將極大受限。在如 此之情況下,應用先前提議的(:1)〇架構使一子載波子集無 效,性能將比單個天線傳送系統更糟。在各個天線之一單 個LOS成分及該等通道相同的極端情況下,先前提議之該 ⑽架構將導致奇數子載波無效,同時使偶數子載波之通 道增益加倍。在此情況下,一半該等被傳送之資料符號丢 失’該通道編碼可能無法恢復這些丢失的資料符號。 圖7之圖表顯示一如圖5所顯示之〇聰傳送器、一如心 所顯示之OFDM接收器及一具有兩個傳送天線之咖情況 的-個組合通道頻率響應。橫軸代表一〇麵傳送的一此 子載波1中存在第0個到第(Ns,子載波。縱軸代表一 通道傳輸功能之—值_丨。被假㈣係高度相關的從各 個傳送天線到該(等)接收天線的通道。一具有一較 射環境的LOS情況之一實例、 士油 耳列、—些傳送天線Nt=2及一 △s_=Ns/2之位移被顯示。使用一先前提議之cdd架構時 的該等兩個天線之該組合通道頻㈣應被顯^可從 表中推測的係剛=〇為奇數子栽波。意即該等子載波之 134798.doc 200935792 一子集完全無效。由於該CDD架構之該無效效應,這導致 性能下降。 理想的係在LOS或高度相關之天線情況中防止因在該等 天線之間的高度相關而導致的上述這種性能下降,同時保 持CDD在強散射環境中的該等優點^意即理想的係提供一 種可避免在LOS及/或較差之散射情況中之該性能下降同時 能維持強散射環境中之該被增加之頻率選擇性的強固CDD 架構。200935792 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to a transmitter, a type of a strong cyclic delay diversity (CDD) architecture that can be enabled for transmission such as, but not limited to, wireless transmission. Transmission system, a transmission method, and a computer program product. [Prior Art] The wireless transmission system is almost ubiquitous today. For example, wireless local area networks (WLANs), cellular networks, and broadcast systems, which are defined, for example, in the IEEE 802.11-based standard, are widely used today. For such wireless transmission systems, the increase in the throughput of available channels is a major problem. A higher transmission amount can be obtained by using orthogonal frequency division multiplexing (〇FDM). In OFDM, a given system bandwidth is divided into a number of orthogonal subchannels, which are also referred to as subcarriers. Instead of transmitting data symbols continuously over a (very wide) channel, multiple data symbols are transmitted side by side. This results in a longer symbol length, so that the impact of inter-symbol interference (ISI) can be significantly reduced, so no additional means, such as expensive equalization, is required. One potential for further improving the performance of wireless transmission systems in terms of throughput and reliability lies in multi-antenna transmission techniques. Such techniques are used in, for example, multiple input multiple output (ΜΙΜΟ) antenna systems. These systems utilize multiple antennas at each transmitter and receiver. A plurality of channels can be established simultaneously between the transmitter and the receiver. As a result, the throughput can be increased and the bit error rate (BER) can be lowered. The ΜΙΜ〇 technology will be included, for example, in the future wlan standard IEEE 802.11 η, the future IEEE 8 〇 216 based microwave access 134798.doc 200935792 interworking (WiMAX) standard and future cellular network standards. The CDD is proposed for use in a multi-antenna transmission system to improve the transmission robustness, i.e., to improve the reliability of the transmission. CDD provides a concise method that provides transmit diversity while being backward compatible. The idea of cdd is to increase frequency selectivity and thus improve frequency diversity by simultaneously transmitting a cyclically delayed version of the time domain signal from different antennas. Fundamentally, it converts the spatial selectivity (diversity) of the antennas to frequency selectivity (diversity). The delays are done in a round-robin fashion so as not to extend the channel and more than one to ensure that the unique transmission does not interfere with another transmission. Protection Interval (GI). CDD can improve frequency selectivity by using channel coding. It has been included in the current draft of Qiuqiu 802.1 In and has been included, for example, in the next generation WLAN standard, WiMAX standard, hive. In the multi-antenna wireless system of the network standard and the broadcasting standard. In August 2006, IEEE Wireless Communication Journal, Vol. 5, No. 2, pp. 92_21, G. Bauch, J_S. Malik, Cyclic Delay Diversity with Bit Interleaved Code Modulation in Cross-Wave Multiple Access, discloses a CDD in a FDM system including an OFDM transmitter and an OFDM receiver. Such an OFDM transmitter and receiver will be Figure 5 is a block diagram of an OFDM transmitter using CDD in coded OFDM. The transmitter includes a forward error correction (FEC) encoder 50, an interleaver 5 1 (square "II") ,One Positive-parent amplitude modulation (qam)/phase shift keying (PSK) mapper 52 (square "QAM/PSK"), an inverse fast Fourier transform (IFFT) converter 53 (square "IFFT"), Ητ transfer branches 541 to 54ητ, ητ-1 cyclic shifters 552 to 55ητ (squares "δ2" to "Δητ"), leaves (1) plus 134798.doc 200935792 561 to 56ητ (square "GI" And ητ transmit antennas 571 to 57ητ. One receiver one receiving antenna 58 is shown in Fig. 5. Further, X, , ^, Α and X3 represent OFDM symbol samples, and ht(1) represents a ith transmit antenna 57i to the channel of the receiving antenna 58, Δ! represents a cyclic shift applied to the ith. transmitting antenna 57i. • The FEC encoder 50, the interleaver 51, the QAM/PSK mapper 52, and the IFFT The converters 53 are connected in series. Each of the ητ transmission branches 541 to 54nτ is connected to the IFFT converter 53 and includes a GI adder. The second to nthth transmission branches 542 to 54nτ respectively include a placement a loop shifter before the GI adder. The first transition branch 541 does not contain a cyclic shifter, since the cyclic shift applied to the first transmitting antenna 517 can be set to zero without loss of generality. Each of the transmitting antennas 571 to 57nτ is connected to the ητ One of the transfer branches 541 to 54nτ transmits the branch accordingly. An input data stream is encoded in the FEC encoder 5, interleaved by the interleaver 51 Φ, mapped by the QAM/PSK mapper 52, and converted from the frequency domain to the time domain by the IFFT converter 53. One of the obtained OFDM signals is carried on each of the ητ transmission branches 541 to 54nτ. In each of the second to nthth transfer branches 542 to 541^, the respective cyclic shifters cyclically move the number of the respective 〇fdm signals carried on the transfer as a branch. The first transfer branch 541 is shipped. Each of the GI adders 561 through 5611 adds a called cyclic prefix (cp) to the signal carried on the transport branch of the respective GI adder of the packet 3u. More specifically, the GI adders (6) insert a GI between the 134798.doc 200935792 of the 〇FDM symbol. The OFDM signals generated by the respective GIs are transmitted to the receiving antenna 58 via a channel between the respective transmitting antennas and the receiving antenna 58. With the above transmitter, as shown in Fig. 5, each transmitting antenna transmits a cyclically shifted version of the same OFDM symbol. In this way, a previously proposed CDD architecture included in the current draft of IEEE 802.1 1 η is implemented. Figure 6 is a block diagram of an OFDM receiver for receiving signals from a transmitter as shown in Figure 5. The receiver includes a receiving antenna 60, a GI remover 61 (crossed square "GI"), a fast Fourier transform (FFT) converter 62 (square "FFT"), a QAM/PSK solution A mapper 63, a deinterleaver 64 (block "ΙΓ1"), and an FEC decoder 65. These components are connected in series. An OFDM signal transmitted by a transmitter as shown in Fig. 5 via a channel from the transmitting antenna to the receiving antenna 60 is received by the receiver. The GI remover 61 removes the GI from the received OFDM signals. The resulting signal is converted by the FFT converter 62 from the time domain to the frequency domain, demapped by the QAM/PSK demapper 63, deinterleaved by the deinterleaver 64, and decoded by the FEC decoder 65. The previously proposed CDD architecture, such as the CDD architecture implemented, for example, with the transmitter shown in Figure 5 and included in the current draft of IEEE 802.11n, is based on spatial diversity (selectivity) to increase the frequency selectivity. For OFDM multi-antenna transmission systems, CDD can be an effective way to increase the frequency selectivity of the channel and increase the robustness of the system. 134798.doc 200935792 The channel becomes more frequency selective due to the artificially increased channel length. Therefore, the error correction code can select a more reliable symbol and such a strong increase. ❹ ❹ However, if the environment of a multi-antenna transmission system is not strongly scattered and/or there is a line of sight (L〇s) between a transmitter and a receiver, ie, the stronger L〇s component, from different The channels that transmit antennas to the (etc.) receive antennas will be highly correlated. In other words, the channels that each antenna will experience will be highly correlated, and the spatial diversity (selectivity) will be greatly limited. In this case, applying the previously proposed (:1) architecture makes a subset of subcarriers ineffective and performance will be worse than a single antenna transmission system. In the extreme case where a single LOS component of each antenna and the same channel are identical, the previously proposed (10) architecture will result in invalidation of odd subcarriers while doubling the channel gain of even subcarriers. In this case, half of the transmitted data symbols are lost. 'The channel code may not recover these missing data symbols. The graph of Figure 7 shows a combined channel frequency response of a 传送Cong transmitter as shown in Figure 5, an OFDM receiver as shown and a coffee channel with two transmitting antennas. The horizontal axis represents the 0th to the (Ns, subcarriers) in a subcarrier 1 transmitted by a buffer. The vertical axis represents the value of a channel transmission function. The value is _丨. The false (four) is highly correlated from each transmitting antenna. To the channel of the receiving antenna, an example of a LOS condition with a relatively radio environment, a Shigger column, a transmission antenna Nt=2, and a Δs_=Ns/2 displacement are displayed. The combined channel frequency (4) of the two antennas in the previously proposed cDD architecture should be shown to be an odd number of subcarriers from the table. This means that the subcarriers are 134798.doc 200935792 The subset is completely ineffective. This results in a performance degradation due to this invalid effect of the CDD architecture. Ideally to prevent such performance degradation due to the high correlation between the antennas in LOS or highly correlated antenna situations. While maintaining the advantages of CDD in a strong scattering environment, it is desirable to provide a frequency that avoids this degradation in LOS and/or poor scattering while maintaining the increased frequency in a strong scattering environment. Selective strong CDD shelf .

【發明内容】 本發明之一目的係提供一種強固的CDD架構,其能緩解 先前提議之CDD架構的至少一些上述缺點。 此目的藉由一種如技術方案1的傳送器及一種如技術方 案19的傳送方法而實現。 在本發明之一第一態樣中,一傳送器包括複數個分別被 配置一運送—信號的傳送分支、至少一個被配置以藉由一 分別的多路通道之方式進行處理的處理器、至少一個被運 =料數個傳送分支中之一個傳送分支上的信號及複數 =刀別配置以輸出—被—相應傳送分支提供之信號的輸 本發明之一第二態樣中, 據該第-態樣的傳送器及至少一個接收器 在本發明之一笛_SUMMARY OF THE INVENTION One object of the present invention is to provide a robust CDD architecture that mitigates at least some of the above disadvantages of the previously proposed CDD architecture. This object is achieved by a transmitter as in the first aspect and a transmission method as in the technical scheme 19. In a first aspect of the present invention, a transmitter includes a plurality of transmission branches each configured with a transport-signal, and at least one processor configured to be processed by a separate multi-channel, at least In a second aspect of the invention, a signal on a transmission branch of a plurality of transmission branches and a complex number = knife configuration to output a signal provided by the corresponding transmission branch, according to the first a transmitter and at least one receiver in the present invention _

送分支上運送Hi—傳送方法包括在複數個' 少一個;藉由一分別的多徑通道之方式處理 在該複數個傳送分支中的至少-個傳送分支上I 134798.doc 200935792 的信號及輸出—被—相應的傳送分支提供的信號。 〇在本發明之-第四態樣中’ -用於-電腦的電腦程式產 口口包括軟體代碼部分’當該產品運行於一電腦上時,該等 軟體代碼部分用於執行一根據本發明之該第三態樣的方法 - 之該等步驟。 . β亥等第一到第四態樣可增加該空間分集(空間選擇性)。 其結果係被應用之該CDD架構將導致一甚至在L〇s及較差 ❹ t射環境中的頻率選擇通道。因此,對於任何環境來說傳 送都係強固的,並且因為CDD而不會遭受在L〇s及較差散 射環境中的問題。因此一強固的(:1)]〇架構可被提供。 其他有利之修改將被界定於該等請求項中。 本發明的這些及其他態樣將因描述於後之實施例而變得 明顯’並且被該等實施例說明。 【實施方式】 本發明之一第一實施例將被描述於下。圖1為一根據該 ❹ 第一實施例使用一CDD架構具有多徑通道的示例性傳送器 之一方塊圖。該傳送器可為一使用編碼〇fe>M的ofdm傳 送器。其可包括一編碼器例如一 FEC編碼器1〇、一交錯器 11(方塊"Π")、一映射器12例如一 QAM/PSK映射器(方塊 "QAM/PSK")、一轉換器例如一 IFFT轉換器ι3(方塊 "IFFT")、ητ個傳送分支⑷至14ητ、ητ]個循環位移器ι52 至 15ητ(方塊 ”Δ2"到'’ΔηΤ,,)、nHgiGi加法器 161到 16 ητ(方塊 "GI”)、ητ個充當處理器(處理機構)的(人工)多徑通道(分接 式延遲線滤波器或分接式延遲線)171至17ητ(方塊"w! (t)到 134798.doc •11- 200935792 、ηΤ⑴")及恥個充當輸出的傳送天線181到18ητ。一接收器 之一不例性接收天線〗9被顯示於圖〗中。此外,%、孓、 毛及&代表資料符號樣本,ht⑴代表一從該第丨個傳送天線 18i到該接收天線19的通道,Δι代表一被應用於該第丨個傳 • 送天線18i的循環位移。 • 該FEC編碼器10可對一輸入資料流編碼並輸出一結果。 該交錯器11可交錯-被該FEC編碼器1〇提供的輸入並輸出 ❹ 一結果。該QAM/pSK映射器12可映射一被該交錯器u提供 的輸入並輸出一結果。該IFFT轉換器13可將一被該 QAM/PSK映射器12提供的輸入從頻域轉換為時域並輸出 一結果。一被轉換器13提供之信號可被運送於各個 該等ητ個傳送分支141至14ητ上。在各個該等第二個到第恥 個傳送分支142到14ητ中,該個別的循環位移器可循環地 移動被運送於該傳送分支上的該個別信號的資料符號◊該 第一傳送分支141不包含一循環位移器,因為一被應用於 〇 該第一輸出丨81的循環位移在不失一般性的情況下可被 設定至零。因此,該原始信號可在該第一傳送分支141上 運送而不執行一循環位移。 該第i個GI加法器16i可將一 GI(CP)加入至一被運送於該 第1個傳送分支14i上且被該第i個循環位移器15丨提供或被 該IFFT轉換器13提供的信號中,而不致如在該第一傳送分 支141的情況下發生一循環位移。更具體地說,各個⑴加 法器161至16ητ可將一 GI插入於該個別之信號的資料符號 之間。一結果可被輸出。各個該等處理器! 7丨到丨7ητ可處 134798.doc •12- 200935792 理一被該相應GI加法器提供的時域信號。更具體 別的該時域信號可用個別的人工多徑" 線性卷積。因此,各個該等 ”,延遲線) 牛71到Ρητ可被認為係— 器二㈣(Ai)多㈣道(分接式延遲線)的線性卷積 一。換5之,-被運送於—心個傳送分支⑷上的信號之The method of transporting the Hi-transmission on the branch is comprised of a plurality of 'one less; processing the signal and output of the I 134798.doc 200935792 on at least one of the plurality of transmission branches by means of a separate multipath channel - The signal provided by the corresponding transmission branch. In the fourth aspect of the present invention, the computer program port for the computer includes a software code portion. When the product is run on a computer, the software code portion is used to execute a software according to the present invention. The third aspect of the method - these steps. The first to fourth aspects, such as βH, can increase the spatial diversity (spatial selectivity). The result is that the CDD architecture to be applied will result in a frequency selective channel even in L〇s and poor ❹t-shooting environments. Therefore, the transmission is robust to any environment and does not suffer from problems in L〇s and poorly scattered environments due to CDD. Therefore a strong (:1)] architecture can be provided. Other advantageous modifications will be defined in the request items. These and other aspects of the invention will be apparent from the embodiments described hereinafter and illustrated by the embodiments. [Embodiment] A first embodiment of the present invention will be described below. 1 is a block diagram of an exemplary transmitter having a multipath channel using a CDD architecture in accordance with the first embodiment of the present invention. The transmitter can be an ofdm transmitter using the code &fe>M. It may include an encoder such as an FEC encoder 1 , an interleaver 11 (block "Π"), a mapper 12 such as a QAM/PSK mapper (square "QAM/PSK"), a converter For example, an IFFT converter ι3 (square "IFFT"), ητ transfer branches (4) to 14ητ, ητ] cyclic shifters ι52 to 15ητ (squares Δ2" to ''ΔηΤ,), nHgiGi adders 161 to 16 Ητ (squares "GI"), ητ (manual) multipath channels (tap-type delay line filters or tapped delay lines) acting as processors (processing mechanisms) 171 to 17ητ (square "w! ( t) to 134798.doc •11- 200935792, ηΤ(1)") and shame transmitting antennas 181 to 18ητ serving as outputs. One of the receivers, an exemplary receive antenna, is shown in Figure 〖. Further, %, 孓, 毛, and & represent data symbol samples, ht(1) represents a channel from the second transmitting antenna 18i to the receiving antenna 19, and Δι represents a signal applied to the second transmitting antenna 18i. Cyclic displacement. • The FEC encoder 10 can encode an input data stream and output a result. The interleaver 11 can interleave the input provided by the FEC encoder 1 and output a result. The QAM/pSK mapper 12 maps an input provided by the interleaver u and outputs a result. The IFFT converter 13 converts an input provided by the QAM/PSK mapper 12 from the frequency domain to the time domain and outputs a result. A signal provided by converter 13 can be carried on each of said ητ transfer branches 141 to 14nτ. In each of the second to shame transfer branches 142 to 14nτ, the individual cyclic shifter can cyclically move a data symbol of the individual signal carried on the transfer branch, the first transfer branch 141 not A cyclic shifter is included because a cyclic shift applied to the first output 丨 81 can be set to zero without loss of generality. Therefore, the original signal can be carried on the first transfer branch 141 without performing a cyclic shift. The ith GI adder 16i may add a GI (CP) to a one of the first transfer branches 14i that is carried by the i-th cyclic shifter 15 or provided by the IFFT converter 13. In the signal, a cyclic shift does not occur as in the case of the first transfer branch 141. More specifically, each of the (1) adders 161 to 16nτ can insert a GI between the data symbols of the individual signals. A result can be output. Each of these processors! 7丨 to 丨7ητ can be used 134798.doc •12- 200935792 The time domain signal provided by the corresponding GI adder. More specifically, this time domain signal can be used with individual artificial multipath " linear convolution. Therefore, each of these ", delay lines" ox 71 to Ρητ can be considered as a linear convolution of the two (four) (Ai) multiple (four) tracks (tap-type delay lines). For 5, - is carried - The signal on the heart transfer branch (4)

❹ 刪號可在一第一步驟中被循環移動,如用先前提議之 CDD架構者。在傳送之前的一第二步驟中,因該循環移動 所產生的該信號可用-心(短)人工多徑通道(分接式延遲 線仙與隨機或偽隨機權重’即%⑴進行線性卷積,一妹 果可被提供至該傳送器之該個輸出⑻。在該心個㈣ W為-傳送天線的情況下,被供應之該信號可經由一在 該第i個傳送天線18i及該接收天線19之間的通道傳送至該 接收天線19。 圖2為一用於一根據該第一實施例之傳送器之一第丨個傳 送分支的一個示例性人工多徑通道(分接式延遲線)之構造 的方塊圖。如圖2所示,一如圖}*的方塊"Wi(t)"(其中 1 = 1、2、…、ητ)可等於一包括L-1個延遲器2〇2至2〇L、L個 乘法器211到21L及一加法器22的分接延遲線。一輸入信號 可經由所有延遲器202到20L傳送。在各個延遲器之後,一 被此延遲器及所有之前的延遲器延遲之信號可被分接並提 供至一個別的乘法器。意即在該第一延遲器2〇2之後,一 被該第一延遲器202延遲的信號可被分接並提供至該第二 乘法器212,在該第二延遲器203之後,一被該第一延遲器 202及該第二延遲器203延遲的信號可被分接並提供至該第 134798.doc -13- 200935792 三乘法器213 ,依此類推。在該第(L-1)個延遲器20L之 後,一被該等所有L-1個延遲器延遲的信號可被提供至該 第L個乘法器21L。此外,在該第一延遲器202之前,一信 號可被分接並提供至該第一個乘法器211,其中此信號未 • 被延遲’因為在此情況中前面並沒有延遲器。各個乘法器 . 21】(其中j = 1、2、…、L)可將被提供至該乘法器的該信號 乘以一隨機或偽隨機權重Wij並輸出一結果。得自所有乘法 器211至21L的結果可被提供至加法器22。該加法器22可將 該等乘法器211至21L提供的輸入相加,並輸出一結果作 號。此信號為具有多個增益的該輸入信號之多個延遲版本 之一總和。 根據該第一實施例,一人工多徑通道(分接式延遲線)可 在一實際傳送之前與該傳送器鏈路中的CDD—同插入各個 傳送分支中。被應用至各個輸出的該分接式延遲線可互不 相同。因此’該傳送器之各個輸出可提供有一不同的人工 φ 通道。所以’各個輸出可經受一不同的短通道,導致較低 相關的通道頻率響應。由於該等通道頻率響應為較低相 關,被應用於該傳送器中的該CDD架構將不會像先前提議 之CDD架構般頻繁地使子載波無效,同時一較高的頻率選 擇性仍可被維持《利用此架構,應用至該等輸出的CDD在 LOS情況中將不會有一無效效應,同時cdd在強散射環境 中的優點可被保持。 利用該第一實施例,該人工多徑通道(分接式延遲線)可 在該GI(CP)插入之後應用。因此,其將延長該通道。所以 134798.doc •14· 200935792 該分接式延遲線之長度可被選擇為較短,以便不超過該以 長度。 本發明之一第二實施例將被描述於下。圖3為一根據一 第二實施例使用一 CDD架構具有多徑通道的示例性傳送器 之一方塊圖。該傳送器可為一使用編碼OFDM的OFDM傳 . 送器。其可包括一 FEC編碼器30、一交錯器31(方塊"II")、 一映射器32例如一 QAM/PSK映射器(方塊"QAM/PSK")、一 IFFT轉換器33(方塊"IFFT")、ητ個傳送分支341至34ητ、 〇 ητ-1個循環位移器352至35ητ(方塊"Δ/到”ΔηΤ")、ητ個具有 (人工)多徑通道(分接式延遲線濾波器或分接式延遲線)之 充當處理器(處理機構)的循環(環形)卷積器371至37ητ(方塊 Wi(t)到"wnT(t)")、ητ個 GI力π 法器 361 到 36ητ(方塊"GI")及 ητ個充當輸出的傳送天線3 8 1到3 8ητ。一接收器之一示例 性接收天線3 9被顯示於圖3令。此外,、&、文2及Χ3代 表資料符號樣本,ht⑴代表一從該第i個傳送天線38i到該接 ❿ 收天線39的通道,代表一被應用於該第i個傳送天線38i 的循環位移。 該FEC編碼器3〇可對一輸入資料流編碼並輸出一結果。 該交錯器31可交錯一被該FEC編碼器3〇提供的輸入並輸出 •一結果。該QAM/PSK映射器32可映射一被該交錯器31提 供的輸入並輸出一結果。該IFFT轉換器33可將一被該 QAM/PSK映射器32提供的輸入從頻域轉換為時域並輸出 一結果。一被該11?1^轉換器33提供之信號可被運送於各個 該等ητ個傳送分支341至34ητ上。在各個該等第二個到第財 134798.doc -15- 200935792 移動被運ί=34ηΓ,該分别的循環位移器可猶環地 送分支上的該分別信號的資料符號。該 :第ί: 包含一循環位移器,因為-被應用於 二c的循環位移△,在不失一般性的情況下可被 因此’該原始信號可在該第一傳送分支341上 運送而不執行一循環位移。 ❹ ❹ 该第1個處理器37i可處理一被運送於該第;個傳送分 %上並被該第i個循環位移器⑸提供或在該第—傳送八之 341^情況下被該請轉換器33提供沒有__循環位移:時 域仏號。更具體地說,該各自的時域信號可用該各自的人 工多徑通道(分接式延遲線)循環(環形)卷積。一結果可被 輸出。換言之’一被運送於一第丨個傳送分支⑽上的作號 之資料符號可在-第-步驟中被循環移動,如用先前提議 之CDD架構。在該GI插入及該傳送之前的一個第二步驟 中,因該循環位移所產生的該信號可用一第丨個人工多徑 通道(分接式延遲線)與隨機或偽隨機權重即其中 wi=[WilWi2Wi3".WiL])循環(環形)卷積。一具有該人工多徑 通道(分接式延料)%=[^ Wi,2 Wi,3 .. '⑽财塊符號 向量 > 名,《,…,‘]之循環(環形)卷積(cc)的輸出將係 nj - Z^^W,· („_m)mod ^, 0 < « < iV - 1 m=0 A 七,〜 .. 該第i個CH加法器36i可將-Gl(cp)加入至一被該&個處 理器37i提供的信號中。更具體地說,各個m加法器加到 36ητ可在該各自的信號之資料符號間插入一 〇1。一結果可 134798.doc -16· 200935792 被提供至該傳送器之該第i個輸出38i。在該心個輸出阳 為一傳送天線的情況下,被提供之該信號可經由一在該第 i個傳送天線38i及該接收天線39之間的通道傳送至該:收 天線3 9。 . 根據該第二實施例,一人工多徑通道(分接式延遲線)可 • 在一實際傳送之前與該傳送器鏈路中的CDD—同插入各個 傳送分支中。被應用至各個輸出的該分接式延遲線可互不 〇 相同。因此,該傳送器之各個輸出可提供有一不同的人工 通道。所以,各個輸出可經受一不同的短通道,導致較低 相關的通道頻率響應《由於該等通道頻率響應為較低相 關,被應用於該傳送器中的該CDD架構將不會像先前提議 之CDD架構般頻繁地使子載波無效,同時一較高的頻率選 擇性仍可被維持。利用此架構,應用至該等輸出的cdd在 LOS情況中將不會有一無效效應,同時(:〇〇在強散射環境 中的優點可被保持。 Φ 利用該第二實施例,該人工多徑通道(分接式延遲線)可 在該GI(CP)插入之前被應用。因此,該循環(環形)卷積而 .非該線性卷積可被實施。此架構將具有一與CDD相似的效 果。此外,其完全不會影響ISI問題,因此該分接式延遲 •線之長度可被選擇而不需考慮該GI長度。意即該分接式延 遲線之長度與該第一實施例相比可更長,同時仍可避免 ISI效應。 被描述於上並被顯示於圖1及圖3中的該等配置僅為根據 該第一及第二實施例之傳送器的實例。該等配置僅具有說 134798.doc •17- 200935792 明及示例性而非限制性。舉例來說,即使圖丨及圖3顯示各 個傳送分支包含一個處理器,更少的處理器或甚至僅僅一 個處理器對於提供強固方面的有利效果來說便已足夠。此 外,若干被配置以處理多個傳送分支上之多個信號的處理 器可被使用。另外,數量比圖i及圖3所顯示更少的保護區 間加法器及/或循環位移器係可行的。此外,即使在圖 圖3中只顯示一個接收天線,多個接收天線係可行的。意删 The deletion number can be cyclically moved in a first step, such as with the previously proposed CDD architecture. In a second step prior to transmission, the signal generated by the cyclic shift can be linearly convolved with a heart-to-heart (short) artificial multipath channel (tap-type delay line with random or pseudo-random weights, ie %(1)). a sister fruit can be provided to the output (8) of the transmitter. In the case where the heart (four) W is a transmitting antenna, the signal supplied can be received via the ith transmitting antenna 18i and the receiving A channel between the antennas 19 is transmitted to the receiving antenna 19. Fig. 2 is an exemplary artificial multipath channel (tap-type delay line) for a second transmission branch of a transmitter according to the first embodiment. Block diagram of the structure. As shown in Figure 2, a block like "*" Wi(t)" (where 1 = 1, 2, ..., ητ) can be equal to one including L-1 delays 2〇2 to 2〇L, L multipliers 211 to 21L and a tap delay line of an adder 22. An input signal can be transmitted via all of the delays 202 to 20L. After each delay, a delay is used And all previous delay delay signals can be tapped and provided to a different multiplier. After the first delay 2 〇 2, a signal delayed by the first delay 202 can be tapped and supplied to the second multiplier 212, after the second delay 203, by the first delay The signal delayed by 202 and the second delay 203 can be tapped and supplied to the 134798.doc -13 - 200935792 three multiplier 213, and so on. After the (L-1)th delay 20L, A signal delayed by all of the L-1 delays can be supplied to the Lth multiplier 21L. Further, before the first delay 202, a signal can be tapped and provided to the first Multiplier 211, where this signal is not delayed 'because there is no delay in front of this case. Each multiplier. 21] (where j = 1, 2, ..., L) can be supplied to the multiplier The signal is multiplied by a random or pseudo-random weight Wij and a result is output. The results from all of the multipliers 211 to 21L can be provided to the adder 22. The adder 22 can input the inputs provided by the multipliers 211 to 21L. Add and output a result number. This signal is the number of input signals with multiple gains. According to this first embodiment, an artificial multipath channel (tap-type delay line) can be inserted into each of the transmission branches together with the CDD in the transmitter link before an actual transmission. The tapped delay lines applied to the respective outputs can be different from each other. Therefore, the individual outputs of the transmitter can be provided with a different artificial φ channel. Therefore, each output can withstand a different short channel, resulting in a lower correlation. Channel frequency response. Since the channel frequency response is less correlated, the CDD architecture applied to the transmitter will not invalidate the subcarriers as frequently as the previously proposed CDD architecture, while a higher frequency selection Sex can still be maintained. With this architecture, the CDD applied to these outputs will have no invalid effect in the LOS case, and the advantages of cDD in a strong scattering environment can be maintained. With this first embodiment, the artificial multipath channel (tap-type delay line) can be applied after the GI (CP) insertion. Therefore, it will extend the channel. Therefore, 134798.doc •14· 200935792 The length of the tapped delay line can be chosen to be shorter so as not to exceed the length. A second embodiment of the present invention will be described below. 3 is a block diagram of an exemplary transmitter having a multipath channel using a CDD architecture in accordance with a second embodiment. The transmitter can be an OFDM transmitter using coded OFDM. It may include an FEC encoder 30, an interleaver 31 (square "II"), a mapper 32 such as a QAM/PSK mapper (square "QAM/PSK"), an IFFT converter 33 (square &quot ;IFFT"), ητ transfer branches 341 to 34ητ, 〇ητ-1 cyclic shifters 352 to 35ητ (square "Δ/to"ΔηΤ"), ητ have (manual) multipath channels (tap delay A loop (circular) convolver 371 to 37ητ (block Wi(t) to "wnT(t)"), ητ GI force acting as a processor (processing mechanism) of a line filter or a tapped delay line) The π-methods 361 to 36ητ (squares "GI") and ητ transmit antennas 3 8 1 to 3 8ητ serving as outputs. One of the receivers, an exemplary receiving antenna 39, is shown in Fig. 3. In addition, &; texts 2 and 3 represent data symbol samples, and ht(1) represents a channel from the i-th transmitting antenna 38i to the receiving antenna 39, representing a cyclic shift applied to the i-th transmitting antenna 38i. The encoder 3 can encode an input data stream and output a result. The interleaver 31 can be interleaved by the FEC. The encoder provides an input and outputs a result. The QAM/PSK mapper 32 maps an input provided by the interleaver 31 and outputs a result. The IFFT converter 33 can map a QAM/PSK. The input provided by the unit 32 is converted from the frequency domain to the time domain and outputs a result. A signal provided by the 11?1 converter 33 can be carried on each of the ητ transmission branches 341 to 34ητ. The second to the first 134798.doc -15- 200935792 movement is transported ί=34ηΓ, the respective cyclic shifter can send the data symbols of the respective signals on the branch. The: ί: contains a cyclic displacement Since - is applied to the cyclic displacement Δ of the two c, the original signal can be carried on the first transfer branch 341 without performing a cyclic shift without loss of generality. ❹ ❹ A processor 37i can process a message that is carried on the first transmission component % and is provided by the ith cycle shifter (5) or is provided by the request converter 33 in the case of the first transmission bit 341^ __cyclic displacement: time domain apostrophe. More specifically, the respective The domain signals can be cyclically (circular) convolved with the respective artificial multipath channels (tap-type delay lines). A result can be output. In other words, a data symbol that is carried on a second transmission branch (10) Can be cyclically moved in the -step, as in the previously proposed CDD architecture. In the second step prior to the GI insertion and the transmission, the signal generated by the cyclic shift can be used by a third person. The path channel (tap-type delay line) is convolved with a random or pseudo-random weight, ie wi=[WilWi2Wi3".WiL]) loop (ring). A circular (circular) convolution with the artificial multipath channel (tap extension) %=[^ Wi,2 Wi,3 .. '(10) block symbol vector> name, ",...,'] The output of cc) will be nj - Z^^W, · („_m)mod ^, 0 < « < iV - 1 m=0 A VII, ~ .. The ith CH adder 36i can be - Gl(cp) is added to a signal provided by the & processor 37i. More specifically, each m adder is added to 36nτ to insert a 〇1 between the data symbols of the respective signals. 134798.doc -16· 200935792 is provided to the ith output 38i of the transmitter. Where the output yang is a transmit antenna, the signal is provided via a ith transmit antenna A channel between the 38i and the receiving antenna 39 is transmitted to the receiving antenna 39. According to the second embodiment, an artificial multipath channel (tap-type delay line) can be used with the transmitter before an actual transmission. The CDD in the link is inserted into each of the transfer branches. The tapped delay lines applied to the respective outputs can be different from each other. Therefore, the respective outputs of the transmitter A different artificial channel is provided. Therefore, each output can withstand a different short channel, resulting in a lower correlation channel frequency response "The CDD architecture applied to the transmitter due to the lower correlation of the channel frequency response. The subcarriers will not be inactive as frequently as the previously proposed CDD architecture, while a higher frequency selectivity can still be maintained. With this architecture, the cdd applied to these outputs will not be invalid in the LOS case. The effect, at the same time (: the advantage of 〇〇 in a strong scattering environment can be maintained. Φ With this second embodiment, the artificial multipath channel (tap-type delay line) can be applied before the GI (CP) insertion. Therefore, the loop (circular) convolution. Non-linear convolution can be implemented. This architecture will have a similar effect to CDD. In addition, it does not affect the ISI problem at all, so the tap delay The length can be selected without regard to the length of the GI. This means that the length of the tapped delay line can be longer compared to the first embodiment, while still avoiding the ISI effect. It is described above and is shown in The configurations in Figures 1 and 3 are merely examples of the transmitters according to the first and second embodiments. The configurations are only 134798.doc • 17-200935792 and are exemplary and not limiting. In this case, even though Figure 3 and Figure 3 show that each transfer branch contains one processor, fewer processors or even just one processor is sufficient to provide a robust advantage. In addition, several are configured to handle multiple Processors that transmit multiple signals on the branch can be used. Additionally, fewer guard interval adders and/or cyclic shifters are possible than shown in Figures i and 3. Further, even if only one receiving antenna is shown in Fig. 3, a plurality of receiving antennas are possible. meaning

❹ 即-包括-根據該第一或第二實施例之傳送器的傳送系統 可為例如—乡輸入單輸出(MISO)系統或一MIMO系統。另 外’非QAM/PSK映射器的其他映射器可被使帛。舉例來 說,一幅移鍵控(ASK)映射器可被使用。其他諸如用該交 錯(方塊"II")分配的修改亦係可想像的。 根據第一及第二實施例之上述該等CDD架構可被用於 OFDM或具有CP的單載波系統中。它們亦可被使用於其他 類型的可啟用多輸人傳送例如系統執行MIM〇或聰〇技術 的傳送系統中。 -根據該第-及第二實施例的傳送器可為一包括至少一 個傳送器及至少一個接收器之傳送系統的一部分。一接收 器可例如被配置如圓6所顯示之該接收器,其中該接收器 可包括-如圖6的單輸人或接收天線或多輸人或接收天 線。 各個該傳送H及接收器可例如為—岐或可攜式終端裝 置。舉例來說,各個該傳送器及該接收器可為-WLAN或 使用者設備例如-數據機、―資料卡等用於啟用存取一 134798.doc •18· 200935792 WLAN及具有如此之數據機、資料卡等或一 門遷存取 WLAN之能力的固定電腦或筆記型電腦的一存取點。其他 實例有一蜂巢網路之一基地台或廣播台及諸如—行動電話 或一固定或可攜式電視機之使用者設備。該傳送系統可例 • 如為一 WLAN、一蜂巢網路或一廣播系統。 • 該第一及第二實施例之上述功能可用一種傳送方法實 施。在電腦程式產品運行於電腦時,如此方法之各步驟可 ❹ 被一用於一電腦之電腦程式產品的軟體代碼部分執行。 圖4顯示一根據該第一及第二實施例之示例性傳送方法 的基本步驟之流程圖。在步驟31中信號被運送於複數個傳 送分支上。在步驟S2中至少一個被運送於該複數個運送分 支中之至少一個運送分支上的信號藉由一各自的多徑通道 之方式處理。在步驟S3中一被一相應傳送分支提供之信號 被輸出。 利用根據該第一及第二實施例的該咖架構,該空間分 〇 集(空間選擇性)可被提高。目此,被使用的該等CDD架構 將導致-甚至在L0S及較差之散射環境中的頻率選擇性通 冑°所以’對於任何環境來說傳送都㈣固的,並且因為 CDD^不會遭受在L〇s及較差散射環境中的任何問題。 、被提議之根據該第-及第二實施例的該等強固CDD架構 尤其可被用於頻率下降/較少頻率選擇性之通道。它們可 :夺先前被提議之CDD架構亦能達到的上升頻率選擇性, 避免如此之架構在高度相關通道中的無效效應並大幅增加 該通道長度。 134798.doc -19· 200935792 利用根據該第一及第二實施例之該等CDD架構,無需關 於該通道之資訊。此外,信號不需被處理於該空間域中。 亦無需波束形成。此外’可應用之該CDD長度沒有最大限 制。可能只有對該分接延遲線之分接數量的最大限制以便 避免1SI效應。即使如此之分接數量限制亦不存在於該第 實施例中,因為一 cc而非一線性卷積被應用於此實施 例中。❹ That is, the transmission system of the transmitter according to the first or second embodiment may be, for example, a Home Input Single Output (MISO) system or a MIMO system. In addition, other mappers other than the non-QAM/PSK mapper can be deprecated. For example, an ASK mapper can be used. Other modifications such as those assigned by the error (square "II") are also conceivable. The above CDD architectures according to the first and second embodiments can be used in OFDM or a single carrier system with CP. They can also be used in other types of transmission systems that enable multi-input transmission, such as system execution MIM or smart technology. The transmitter according to the first and second embodiments may be part of a transmission system comprising at least one transmitter and at least one receiver. A receiver can be configured, for example, as shown by circle 6, wherein the receiver can include a single input or receive antenna or multiple input or receive antennas as in Fig. 6. Each of the transport H and receiver can be, for example, a 岐 or a portable terminal device. For example, each of the transmitters and the receivers may be a WLAN or user equipment such as a data machine, a data card, etc. for enabling access to a 134798.doc • 18· 200935792 WLAN and having such a data machine, An access point for a fixed computer or laptop that has the ability to access a WLAN, such as a data card. Other examples include a base station or broadcast station of a cellular network and user equipment such as a mobile phone or a fixed or portable television. The transmission system can be, for example, a WLAN, a cellular network or a broadcast system. The above functions of the first and second embodiments can be implemented by a transmission method. When the computer program product runs on the computer, the steps of the method can be performed by a software code portion of a computer program product for a computer. Figure 4 is a flow chart showing the basic steps of an exemplary transfer method in accordance with the first and second embodiments. In step 31 the signal is carried on a plurality of transport branches. At least one of the signals carried on at least one of the plurality of transport branches in step S2 is processed by a respective multipath channel. A signal supplied by a corresponding transfer branch is output in step S3. With the coffee architecture according to the first and second embodiments, the spatial diversity (spatial selectivity) can be improved. Therefore, the CDD architecture used will result in - even frequency selective 胄 in L0S and poor scattering environments, so 'transmission is solid for any environment, and because CDD^ will not suffer L〇s and any problems in the poor scattering environment. The robust CDD architectures proposed in accordance with the first and second embodiments are particularly useful for channels with reduced frequency/less frequency selectivity. They can: take advantage of the rising frequency selectivity that can be achieved with the previously proposed CDD architecture, avoiding the ineffective effects of such architectures in highly correlated channels and significantly increasing the length of the channel. 134798.doc -19· 200935792 With the CDD architectures according to the first and second embodiments, there is no need for information about the channel. Furthermore, the signal does not need to be processed in this spatial domain. There is also no need for beamforming. In addition, there is no maximum limit to the length of the CDD that can be applied. There may be only a maximum limit on the number of taps on the tap delay line to avoid the 1SI effect. Even such a tap limit does not exist in this first embodiment because a cc instead of a linear convolution is applied to this embodiment.

上述該等第一及第二實施例為(:£>1)架構提供替代構造。 與用於多天線傳送系統中例如包含於IEEE 8〇2 Un之當前 草案中之CDD架構的先前提議之CDD架構相比,它們能夠 避免在LQS及/或較差散射環境中性能下降,同時提高在強 散射環境t的頻率選擇性。 本發明可料所❹輸人傳送^料純傳送系統 例如基於未來IEEE 8G2.Un標準的wlan、ΜΜΑΧ系統、 蜂巢網路及例如數位電視(DTV)的廣播系統,特別係實施 =10或職)技術的τ—代無線系統及標準來說 尤其引人關注。 此=然本發明在該等圖式及前述中被詳細描述及顯示,這 二顯不及描述僅具有說明或示例性而非限制性。本發明不 限於該專被揭示之實施例。 基於對該等圖式、本說明及隨铁 練者可理解並做ώ %1# 咕,之瞭解,技術熟 ”括實施例的修改。在請求項中,詞 包括並不排除其他元件❹驟, 數個元件或步驟…單個處 广複 开他皁兀可實現多個列 I34798.doc •20· 200935792 出於該等請求項中 屬請求項令的^ 目的功能°被列出於彼此不同的附The first and second embodiments described above provide alternative constructions for the (:£>1) architecture. Compared to the previously proposed CDD architecture for multi-antenna transmission systems, such as the CDD architecture included in the current draft of IEEE 8〇2 Un, they are able to avoid performance degradation in LQS and/or poor scattering environments, while improving The frequency selectivity of the strong scattering environment t. The invention can be used to transmit a pure transmission system such as a wlan, a ΜΜΑΧ system, a cellular network and a broadcasting system such as a digital television (DTV) based on the future IEEE 8G2.Un standard, in particular, the implementation of the system is 10 or The technical τ-generation wireless system and standards are particularly interesting. The invention is described and illustrated in detail in the drawings and the foregoing description. The invention is not limited to the specifically disclosed embodiments. Based on the description of the drawings, the description and the trainee understandable and ώ%1# 咕, the technical familiarity includes the modification of the embodiment. In the request item, the words include other components that are not excluded. , a number of components or steps... a single reopening of his saponins can achieve multiple columns I34798.doc •20· 200935792 The functions of the request items in these claims are listed in different Attached

At . . ^ Μ方法之事實並不代表這些方法之一組合 不能被使用來獾剎 , β —電腦程式可被儲存/分佈於一適當 跺體上,例如—斑 供的光學儲存媒體體一同或作為其他硬體之部分提 你… 媒體或—固態媒體,亦可以其他形式分佈, 項中^網際網路或其他有線或無線通信f、統。該等請求 項:的料參切b缝理解為㈣錢的限制。 ❹ 總而言之,本發明係關於可啟用一用於一種諸如(但不 限於)無線傳送的傳送之強固循環延遲分集(CDD)架構的-=送器 種傳送系統、一種傳送方法及一種電腦程式 該強固的CDD架構可藉由在一實際傳送前將一人工 多徑通道插入一傳送器鏈路中而實現。 【圖式簡單說明】 本發明係根據參考附圖的實施例來說明,其中: 圖1為一根據一第一實施例使用一 CDD架構具有多徑通 道的示例性傳送器之一方塊圖; 圖2為一用於一根據該第一實施例之傳送器之—第丨個傳 送分支的一個示例性多徑通道之構造的方塊圖; 圖3為一根據一第二實施例使用一 cdd架構具有多徑通 道的示例性傳送器之一方塊圖; 圖4為一根據該第一及第二實施例之一示例性傳送方法 之基本步驟的流程圖; 圖5為一使用編碼OFDM中之CDD的OFDM傳送器之一方 塊圖; 134798.doc -21 - 200935792 圖6為一 OFDM接收器之一方塊圖;及 圖7為一在具有兩個天線的LOS情況下一組合通道頻率 響應之一圖表。 【主要元件符號說明】The fact that the method of Μ does not mean that one of these methods cannot be used to brake, the β-computer program can be stored/distributed on a suitable body, for example, the optical storage medium body of the spot or As part of other hardware, you can... Media or - Solid media, can also be distributed in other forms, in the Internet or other wired or wireless communications. These request items: the material involved in the b-sew is understood as (4) the limit of money. In summary, the present invention relates to a -= transmitter delivery system, a transmission method, and a computer program that can enable a strong cyclic delay diversity (CDD) architecture for transmission such as, but not limited to, wireless transmission. The CDD architecture can be implemented by inserting a manual multipath channel into a transmitter link prior to actual transmission. BRIEF DESCRIPTION OF THE DRAWINGS The present invention is described with respect to embodiments with reference to the accompanying drawings in which: FIG. 1 is a block diagram of an exemplary transmitter having a multi-path channel using a CDD architecture in accordance with a first embodiment; 2 is a block diagram of a configuration of an exemplary multipath channel for a second transmission branch of a transmitter according to the first embodiment; FIG. 3 is a block diagram of a cDD architecture according to a second embodiment. A block diagram of an exemplary transmitter of a multipath channel; FIG. 4 is a flow chart of the basic steps of an exemplary transmission method according to one of the first and second embodiments; FIG. 5 is a diagram of using CDD in coded OFDM A block diagram of an OFDM transmitter; 134798.doc -21 - 200935792 Figure 6 is a block diagram of an OFDM receiver; and Figure 7 is a graph of a combined channel frequency response for a LOS with two antennas. [Main component symbol description]

10 F Ε C編碼 11 交錯器 12 映射器 13 IFFT轉換器 14 η,χ 傳送分支 1 5ητ 循環位移器 16ητ GI加法器 1 7ητ 處理器 1 8 Πχ 傳送天線 19 接收天線 20L 延遲器 21L 乘法器 22 加法器 30 FEC編碼器 31 交錯器 32 映射器 33 IFFT轉換器 34ηχ 傳送分支 3 5ητ 循環位移器 3 6ητ GI加法器 134798.doc -22· 20093579210 F Ε C code 11 interleaver 12 mapper 13 IFFT converter 14 η, 传送 transfer branch 1 5ητ cyclic shifter 16ητ GI adder 1 7ητ processor 1 8 传送 transmit antenna 19 receive antenna 20L delay 21L multiplier 22 addition 30 FEC encoder 31 interleaver 32 mapper 33 IFFT converter 34ηχ transmission branch 3 5ητ cyclic shifter 3 6ητ GI adder 134798.doc -22· 200935792

37ητ 處理器 3 8ητ 傳送天線 39 接收天線 50 FEC編碼器 51 交錯器 52 映射器 53 IFFT轉換器 54ητ 傳送分支 55ητ 循環位移器 56ητ GI加法器 58 接收天線 60 接收天線 61 GI移除器 62 FFT轉換器 63 解映射器 64 解交錯器 65 FEC解碼器 141 傳送分支 142 傳送分支 152 循環位移器 161 GI加法器 162 GI加法器 171 處理器 172 處理器 134798.doc -23- 200935792 ❹ ❹ 134798.doc 181 傳送天線 182 傳送天線 202 延遲器 203 延遲器 211 乘法器 212 乘法器 341 傳送分支 342 傳送分支 352 循環位移器 361 GI加法器 362 GI加法器 371 處理器 372 處理器 381 傳送天線 382 傳送天線 541 傳送分支 542 傳送分支 552 循環位移器 561 GI加法器 562 GI加法器 571 傳送天線 572 傳送天線 573 傳送天線 S1 運送 ioc -24- 200935792 S2 處理 S3 輸出 ❹37ητ processor 3 8ητ transmitting antenna 39 receiving antenna 50 FEC encoder 51 interleaver 52 mapper 53 IFFT converter 54ητ transmitting branch 55ητ cyclic shifter 56ητ GI adder 58 receiving antenna 60 receiving antenna 61 GI remover 62 FFT converter 63 Demapper 64 Deinterleaver 65 FEC Decoder 141 Transfer Branch 142 Transfer Branch 152 Loop Displacer 161 GI Adder 162 GI Adder 171 Processor 172 Processor 134798.doc -23- 200935792 ❹ 134 134798.doc 181 Transfer Antenna 182 Transmit Antenna 202 Delay 203 Delay 211 Multiplier 212 Multiplier 341 Transfer Branch 342 Transfer Branch 352 Cycle Displacer 361 GI Adder 362 GI Adder 371 Processor 372 Processor 381 Transfer Antenna 382 Transmit Antenna 541 Transfer Branch 542 Transfer branch 552 Cycle shifter 561 GI adder 562 GI adder 571 Transfer antenna 572 Transfer antenna 573 Transfer antenna S1 Transport ioc -24- 200935792 S2 Process S3 output❹

134798.doc -25-134798.doc -25-

Claims (1)

200935792 、申請專利範圍: 1. ❹ 一種傳送器,其包括: 複數個被分別配置以運送一信號的傳送分支(141、 142、...、14ητ ; 341、342、...、34n丁); 至少—個被配置以便藉由一分別的多徑通道之方式處 理至少一個被運送於該複數個傳送分支中之至少一個傳 送分支上之信號的處理器(171、m、…17ητ;371、 372、..·37ητ);及 複數個分別被配置以輸出一被一相應傳送分支提供之 信號的輸出(181、182、…、18ητ ; 381、382、…、 3 8Πχ) 〇 2. 如請求項1之傳送器,其中該各自的多徑通道為一人工 多徑通道。 3. 如凊求項1之傳送器,其中該各自的多徑通道為一分接 式延遲線。 4. ❹ 如請求項3之傳送器,其中該分接式延遲線包括: 複數個在該延遲線内分別被配置以延遲一信號的延遲 器(202 、 203 、…、20L); 複數個分別被配置以便在該複數個延遲器之一第一延 遲器之前或在該複數個延遲器之該等第一個到第(L-1)個 延遲器中的一個延遲器之後用一權重(wn、wi2、...、 WiL)與一從該延遲線分接之信號相乘的乘法器(211、 212 、…、21L);及 一被配置以便將被該複數個乘法器提供之若干信號相 134798.doc 200935792 加的加法器(22)。 其中該權重為一隨機或偽隨機權 5·如請求項4之傳送器 6. 7. 如請求項丨之傳 — 得送益,其中該至少一個處理器被放置於 少-個傳送分支之中。 一求項1之傳送11 ’其中該傳送H包括與各傳送分支 才策夕的虑^ go * 益’各個處理器被放置於一相應的傳送分 支中。200935792, the scope of patent application: 1. 传送 A transmitter comprising: a plurality of transmission branches (141, 142, ..., 14nτ; 341, 342, ..., 34n) respectively configured to carry a signal At least one processor configured to process at least one signal carried on at least one of the plurality of transfer branches by means of a respective multipath channel (171, m, ..., 17nτ; 371, 372, . . . 37nτ); and a plurality of outputs (181, 182, ..., 18nτ; 381, 382, ..., 3 8Πχ; 3812.) respectively configured to output a signal provided by a corresponding transfer branch. The transmitter of item 1, wherein the respective multipath channels are an artificial multipath channel. 3. The transmitter of claim 1, wherein the respective multipath channel is a tapped delay line. 4. The transmitter of claim 3, wherein the tapped delay line comprises: a plurality of delays (202, 203, ..., 20L) respectively configured to delay a signal within the delay line; Configuring to use a weight (wn) after one of the plurality of delays or after one of the first to (L-1)th delays of the plurality of delays , wi2, ..., WiL) multipliers (211, 212, ..., 21L) multiplied by a signal tapped from the delay line; and a plurality of signals configured to be provided by the plurality of multipliers Add 134798.doc 200935792 Adder (22). Wherein the weight is a random or pseudo-random weight 5. The transmitter of request item 4 is 7. 7. If the request item is transmitted, the benefit is generated, wherein the at least one processor is placed in the less-transfer branch . A transfer of claim 1 11 'where the transfer H includes a separate branch with each transfer branch is placed in a corresponding transfer branch. 8.如請求項1之傳送器,其進-步包括: ^個被配置以循環移動該至少一個信號之若干資 料:號的#環位移器(152、…、15ητ; 352、…、35ητ), 班其中該至少一個處理器被配置以處理被該至少一個循 環位移器移動的該等資料符號。 9·如w求項8之傳送器,其中該傳送器在該複數個傳送分 支之除—第一傳送分支之外的每個傳送分支中包括一循 裒位移器,且各個循環位移器被放置於一相應的傳送分 支中。 10. 如請求項1之傳送器,其進一步包括: 从至少-個放置於該至少—個處理器之前並被配置以將 若干保護區間加入到該至少一個信號中的保護區間 器(161、162、...、16ητ)。 11. 如請求項10的傳送器’其中該至少—個處理器為—被配 置以便用該各自的多徑通道線性卷積一被該至少一個保 護區間加法器提供之信號的線性卷積器。 134798.doc -2 · 200935792 •如請求項α傳送器,其中該至少—個處理器為一被配 置以便用該各自的多徑通道循環卷積該至少—個信號的 循環卷積器。 13.如請求項12之傳送器,其進一步包括: . 1少—個放置於該至少—個處理器之後並被配置以將 若干保護區間加人一姑劫 25; ,1、 _ . 被該至/ 一個處理器提供之信號中 的保護區間加法器(361、362、...、36ητ)β ❹14_如請求項1()或13之傳送器,其中該傳送器包括與各傳送 刀支樣多的保護區間加法器,各個保護區間加法器被 放置於一相應的傳送分支中。 15.如請求項1之傳送器,其進一步包括: 一被配置以對一輸入資料流編碼的編碼器(10 ; 30); -被配置以交錯一被該編碼器提供之信號的交錯器 (11 ; 31); -被配置以映射一被該交錯器提供之信號的映射器 φ (12 ; 32);及 -被配置以將—被該映射器提供之信號從頻域轉換為 . 時域並提供—結果信號至該複數個傳送分支之各個傳送 分支的轉換器(13 ; 33)。 _ 16. 一種傳送系統,其包括: 至少一個如請求項丨的傳送器;及 至少一個接收器。 17.如請求項16之系統,其中續$小加油 该至;一個傳送器及該至少— 個接收器為一無線網路之至少一部分。 134798.doc 200935792 18. 如請求項16之系統,其中該系統被配置以執行若干多輸 入多輸出傳送。 ; 19. 一種傳送方法,其包括: 14ητ ; 341 在複數個傳送分支〇41、142、... 342、...、34ητ)上運送(S1)信號; 藉由-分別的多徑通道之方式處理(s 2 )至少—個被運 送於該複數個傳送分支ψ 號;及 刀又中之至少一個傳送分支上的信 ❹ 輸出(S3)—被一相應傳送分支提供的信號。 2〇_ 一種用於一電腦的電腦程式產品,其包括用於在該產。 運行於該電腦上時執行〜 產°" 的右干軟體代碼部分。 驟 ❹ 134798.doc8. The transmitter of claim 1 further comprising: a number of data configured to cyclically move the at least one signal: a #ring shifter (152, ..., 15nτ; 352, ..., 35nτ) And wherein the at least one processor is configured to process the data symbols moved by the at least one cyclic shifter. 9. The transmitter of claim 8, wherein the transmitter includes a circular shifter in each of the plurality of transfer branches except the first transfer branch, and each of the cyclic shifters is placed In a corresponding transfer branch. 10. The transmitter of claim 1, further comprising: a guard interval (161, 162) from at least one placed before the at least one processor and configured to add a number of guard intervals to the at least one signal ,...,16ητ). 11. A linear convolver as claimed in claim 10, wherein the at least one processor is configured to linearly convolve a signal provided by the at least one guard interval adder with the respective multipath channel. 134798.doc -2 · 200935792 • A request item alpha transmitter, wherein the at least one processor is a circular convolver configured to cyclically convolve the at least one signal with the respective multipath channel. 13. The transmitter of claim 12, further comprising: - 1 less - placed after the at least one processor and configured to add a number of guard intervals to one; 25, 1, _. To a guard interval adder (361, 362, ..., 36nτ) β ❹ 14_ in the signal provided by a processor, such as the transmitter of claim 1 () or 13, wherein the transmitter includes and each transport knife A plurality of guard interval adders, each guard interval adder is placed in a corresponding transfer branch. 15. The transmitter of claim 1, further comprising: an encoder (10; 30) configured to encode an input data stream; - an interleaver configured to interleave a signal provided by the encoder ( 11 ; 31); - a mapper φ (12; 32) configured to map a signal provided by the interleaver; and - configured to convert - the signal provided by the mapper from a frequency domain to a time domain And providing a converter (13; 33) for the resulting signal to the respective transmit branches of the plurality of transmit branches. A transmission system comprising: at least one transmitter such as a request item; and at least one receiver. 17. The system of claim 16, wherein the continuation of the device is at least a portion of the wireless network. 134798.doc 200935792 18. The system of claim 16, wherein the system is configured to perform a number of multiple input multiple output transfers. 19. A method of transmitting, comprising: 14ητ; 341 carrying a (S1) signal over a plurality of transmission branches 41, 142, ... 342, ..., 34ητ); by means of - separate multipath channels The mode processing (s 2 ) is carried at least one of the plurality of transport branch symbols; and the signal output (S3) on at least one of the transport branches is a signal provided by a corresponding transmit branch. 2〇_ A computer program product for a computer that is included in the production. Execute the right-hand software code section of the production °" when running on this computer. ❹ 134798.doc
TW097139771A 2007-10-19 2008-10-16 Robust cyclic delay diversity scheme TW200935792A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07118833 2007-10-19

Publications (1)

Publication Number Publication Date
TW200935792A true TW200935792A (en) 2009-08-16

Family

ID=40567870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097139771A TW200935792A (en) 2007-10-19 2008-10-16 Robust cyclic delay diversity scheme

Country Status (2)

Country Link
TW (1) TW200935792A (en)
WO (1) WO2009050636A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595525B1 (en) * 2010-12-21 2016-02-26 한국전자통신연구원 Apparatus and method for frequency selectiveness in satellite communication
KR101706629B1 (en) * 2016-01-25 2017-02-16 주식회사 이노와이어리스 power calibration method for MIMO-OFDM transmitter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050118031A (en) * 2004-06-12 2005-12-15 삼성전자주식회사 Apparatus and method for efficient transmission broadcasting channel utilizing cyclic delay diversity
US7813448B2 (en) * 2005-10-31 2010-10-12 Broadcom Corporation Cyclic delay diversity in a wireless system

Also Published As

Publication number Publication date
WO2009050636A3 (en) 2009-10-15
WO2009050636A2 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
TWI276317B (en) Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
KR101298307B1 (en) Method and apparatus for implementing space time processing with unequal modulation and coding schemes
RU2439834C2 (en) Signal generation using phase-shift based precoding
US7315577B2 (en) Multiple antenna systems and method using high-throughput space-frequency block codes
CA2727089C (en) Transmit diversity using low code rate spatial multiplexing
JP7355774B2 (en) Transmission device and transmission method
EP1714454A1 (en) Multicarrier receivers and methods for separating transmitted signals in a multiple antenna system
JP6513806B2 (en) Data transmission method, transmitting side device, and receiving side device
JP2011520403A (en) Spread spectrum coding of data bursts
EP1442545A1 (en) Stfbc coding/decoding apparatus and method in an ofdm mobile communication system
TWI360352B (en) Shift space-time coding for digital video broadcas
CN107251500A (en) It is a kind of to reduce method, device, equipment and the system of peak-to-average force ratio
JP7260570B2 (en) Receiving device, receiving method, and integrated circuit
WO2009083978A2 (en) Method, device and system of wireless communication
WO2007111198A1 (en) Transmission method and transmission device
KR102326630B1 (en) Transmitting device, transmitting method and integrated circuit
JP4459960B2 (en) Multi-antenna system and method using high-throughput space-frequency block codes
JP2017225117A (en) Control signal encoder, control signal decoder, transmitter, receiver, transmission system, transmission method and reception method
TW200935792A (en) Robust cyclic delay diversity scheme
US9166855B2 (en) MIMO communication method, MIMO transmitting device, and MIMO receiving device
Kamatham et al. Implementation of 2x2 MIMO-OFDM System using Universal Software Radio Peripherals