TW200523293A - Polyesterdiol, polyurethane obtained by this method, spandexfilament, acryl group polymer containing novel dialkylamino group, polyurethane composition and spandex - Google Patents

Polyesterdiol, polyurethane obtained by this method, spandexfilament, acryl group polymer containing novel dialkylamino group, polyurethane composition and spandex Download PDF

Info

Publication number
TW200523293A
TW200523293A TW94102538A TW94102538A TW200523293A TW 200523293 A TW200523293 A TW 200523293A TW 94102538 A TW94102538 A TW 94102538A TW 94102538 A TW94102538 A TW 94102538A TW 200523293 A TW200523293 A TW 200523293A
Authority
TW
Taiwan
Prior art keywords
polyurethane
diol
polyester
acid
present
Prior art date
Application number
TW94102538A
Other languages
Chinese (zh)
Inventor
Endo Toshio
Miho Takuya
Original Assignee
Daicel Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chem filed Critical Daicel Chem
Publication of TW200523293A publication Critical patent/TW200523293A/en

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The first to third phases of this invention provide an excellent spandexfilament with elastic recovery, high tension and hydrate-tolerance, a polyurethane containing spandexfilament thereof, and a polyesterdiol obtained by specific diol of spandexfilament thereof. Moreover, the forth phase of this invention provides a polyesterpolyol which contains at least a polyol including UV-receiving group or a polyol with denatured lactone and constituted ingredient units of polyol formed by other polyols and adipic acid, a washing-tolerance polyurethane obtained by this method, and a spandexfilement formed by polyurethane thereof. Besides, the fifth phase of this invention provides a spandexpolymer with high solubility in DMAc solution and protecting degeneration and color-change, additives of spandexpolymer used in by improved forever-streching character including high molecular weight of tert-amino group, and forever-stretching character improved polyurathane composition and spandex composition. Furthermore, the sixth phase of this invention provides an excellent polyurethane with soft touch, excellent hydrated-tolerance, wrinkle-tolerance and viscosity, especially used in artificial leathers.

Description

200523293 m * 九、發明說明: 【發明所屬之技術領域】 本發明之第1及第2係有關一種彈性回復力、高張力、 及耐加水分解性優異的斯潘德克斯纖維(聚胺甲酸酯彈性纖 維)、具有該物之聚胺甲酸酯、以及由具有其之特定二醇所 得的聚酯二醇。 本發明之第3係有關一種耐加水分解性優異的斯潘得克 斯纖維及具有其之新穎的聚胺甲酸酯。 本發明之第4係有關一種耐候性優異的聚胺甲酸酯。 更詳言之,即使另具有洗濯性時耐候性幾乎不會降低的 (耐洗濯性)性質之聚胺甲酸酯、即由該聚胺甲酸酯所成的 斯潘德克斯纖維。 本發明之第5係有關一種作爲聚胺甲酸酯用高分子狀胺 安定劑之有用的含二烷胺基之丙烯腈系共聚物。更詳言之, 本發明尤其是有關聚胺甲酸酯/斯潘德克斯纖維及作爲薄膜 用之該胺安定劑的改良。而且,於第5中,所使用的「斯 潘德克斯」係指至少含有85重量%段狀聚胺甲酸酯所合成 的長鏈狀彈性體之組成物。 本發明之第6係提供一種具有柔軟質感、且具有優異的 耐加水分解性、耐皺摺性、黏接性,尤其是可作爲人工皮 革之優異聚胺甲酸酯。 【先前技術】 本發明之第1及第2有關之具有線狀構造之聚胺甲酸 酯’係使具有羥基之長鏈二醇與有機異氰酸酯及稱爲鏈延 200523293 鳞 h 長劑之較低分子量且具有2個活性氫之二醇或二胺等反應 所得者。對提高如此所得的聚胺甲酸酯之彈性回復力、耐 加水分解性而言有各種的提案。於日本特開昭5 8 - 5 92 1 2號 公報中記載,使用聚乙二醇己二酸酯聚酯之聚胺甲酸酯, 雖具有優異的彈性回復力,惟耐加水分解性不佳。而且,1,4 -丁二醇己二酸酯聚酯雖具有某種程度的耐加水分解性,惟 該聚胺甲酸酯缺乏彈性回復力。另外,由聚己內酯聚醇所 成的聚胺甲酸酯之耐加水分解性、耐候性、耐熱性雖優異, 惟彈性回復力不佳。上述特開昭5 8 - 5 9 2 1 2號公報中記載, 解決聚己內酯系聚胺甲酸酯之缺點的方法,係使用新戊醇 與己二酸藉由脫水酯化反應所合成的聚酯聚醇與ε -己內酯 藉由酯交換反應所得的特定聚己內酯聚酯聚醇之技術。此 外,於特開平1 1 - 1 822號公報中揭示,使用作爲構成聚酯 聚醇之2 -正-2-乙基-1,3 -丙二醇、2,2 -二乙基-1,3 -丙二醇 等、耐鹼加水分解性優異的聚胺甲酸酯彈性纖維。 另外,有關本發明之第2係於特開昭6 3 - 9 7 6 1 7號公報 中記載,由聚(2 ,2 -二甲基-1,3 -丙烷十二烷二醇酯)所製造 對蛀蟲之耐性增強的斯潘德克斯纖維等。 然而,上述之特開昭6 3 - 9 7 6 1 7號公報中記載的聚胺甲酸 酯之彈性回復力、耐加水分解性並不充分,企求使此等更 爲提高的聚胺甲酸酯。另外,於特開平1 1 - 1 8 2 2號公報中 之聚胺甲酸酯彈性纖維係爲耐加水分解性優異者,惟企求 更能改善彈性回復力、強度等。而且,特開昭6 3 - 97 6 1 7號 200523293 公報中記載的斯潘德克斯纖維企求更爲提高其強度。 本發明第3有關之具有線狀構造之聚胺甲酸酯,係使在 兩末端具有羥基之長鏈二醇與有機異氰酸酯及稱爲鏈延長 劑的較低分子量之具有2個活性氫的二醇或二胺等反應所 得者。 對提高如此所得的聚胺甲酸酯之性能而言有各種提案。 例如特開平1 1 - 1 822號公報中揭示,使用作爲聚酯聚醇之 聚醇成分的2 -正-丁基-2-乙基-1,3 -丙二醇、2,2 -二乙基-1,3 -丙二醇等、耐鹼加水分解性優異的聚胺甲酸酯彈性纖 維。 另外,於特開昭6 3 - 9 76 1 7號公報中記載,由聚(2,2-二 甲基-1,3 -丙烷十二烷二醇酯)所製造的對蛀蟲之耐性增強 的斯潘德克斯纖維等。 然而,特開平1 1 - 1 822號公報中之聚胺甲酸酯彈性纖維, 雖爲一定程度的附加水分解性優異者,惟企求其更爲改善。 特開昭6 3 - 9 7 6 1 7號公報中記載之斯潘德克斯纖維亦相同。 本發明之第4有關的具有線狀構造之聚胺甲酸酯,係使 在兩末端具有羥基之長鏈二醇與有機異氰酸酯及稱爲鏈延 長劑的較低分子量之具有2個活性氫的二醇或二胺等反應 所得者。 如此所得的聚胺甲酸酯可使用於各種用途,例如熱塑性 彈性體、硬質或軟質胺甲酸酯泡沬、黏接劑 '人工皮革、 合成皮革、塗料、彈性纖維。(斯潘德克斯纖維)等。聚胺 200523293 % 身 甲酸酯雖具有原有的耐候性(含耐光性)、較佳耐久性’惟 爲另具有耐候性時可使用習知之紫外線吸收劑例如2 - ( 2 ’ -羥基- 5,-甲基苯基)苯并三唑、5 -氯- 2- (2、羥基- 3·,5'-二 -第3 -丁基苯基)苯并三唑等之苯并三唑類或2,4 -羥基苯并 苯酚、2 -羥基-4-辛基氧苯并苯酚等之苯并苯酚等。 然而,此等習知之紫外線吸收劑由於爲低沸點化合物, 故將此等添加於聚胺甲酸酯中會產生各種問題。例如,添 加多量紫外線吸收劑時,會引起相分離而降低聚胺甲酸酯 B 之白色性或機械強度。反之,使紫外線吸收劑之添加量爲 極少量時,無法提高到令人滿足的聚胺甲酸酯之耐光性的 程度。而且,由於紫外線吸收劑於聚胺甲酸酯加工、成形 時會揮散或熱分解、或滲出於成形品表面,致使經過長時 間後不具安定的耐光性。此外,使斯潘德克斯纖維製品重 複洗濯時,紫外線吸收劑會自製品脫離,導致其效果降低 的情形。 此處之對象不僅限於聚胺甲酸酯,爲解決上述之缺點時, 試行使上述紫外線吸收劑具有乙烯基等聚合性雙鍵之基, 使該物聚合、高分子量化,且改善與各種樹脂之相溶性, 並防止紫外線吸收劑之揮散、熱分解、滲出等(特開昭6 0 -3841 1號公報、特開昭62 - 1 8 1 3 60號公報、特開平3 - 28 1 6 8 5 號公報)。 然而’此等之紫外線吸收劑聚合物有下述之缺點,殘留 有需要改善的地方。換言之,熱塑性聚胺甲酸酯樹脂等熱 -9- 200523293200523293 m * IX. Description of the invention: [Technical field to which the invention belongs] The first and second series of the present invention relate to a spandex fiber (polyurethane) having excellent elastic restoring force, high tension, and excellent hydrolysis resistance. Elastic fiber), a polyurethane having the same, and a polyester diol obtained from a specific diol having the same. The third series of the present invention relates to a Spandex fiber having excellent hydrolytic resistance and a novel polyurethane having the same. The fourth system of the present invention relates to a polyurethane having excellent weather resistance. In more detail, even if it has another (washing-resistant) property which is hardly reduced in weather resistance when it is washed, it is a spandex fiber made of the polyurethane. The fifth series of the present invention relates to a dialkylamino group-containing acrylonitrile-based copolymer useful as a polymer-like amine stabilizer for polyurethane. More specifically, the present invention relates in particular to the improvement of polyurethane / spandex fibers and the amine stabilizer used as a film. In the fifth, "Spandex" is used to refer to a composition containing a long-chain elastomer composed of at least 85% by weight of a segmented polyurethane. The sixth system of the present invention provides an excellent polyurethane which has a soft texture and excellent hydrolysis resistance, wrinkle resistance, and adhesion, and is particularly useful as an artificial leather. [Prior art] Polyurethanes having a linear structure according to the first and second aspects of the present invention are relatively low in long-chain diols with hydroxyl groups, organic isocyanates, and chain extenders known as chain extension 200523293. It is obtained by the reaction of diol or diamine with a molecular weight and two active hydrogens. Various proposals have been made for improving the elastic restoring power and hydrolytic resistance of the polyurethane thus obtained. It is described in Japanese Patent Laid-Open No. 5 8-5 92 1 2 that a polyurethane using polyethylene glycol adipate polyester has excellent elastic restoring power, but has poor hydrolytic resistance. . Furthermore, although 1,4-butanediol adipate polyester has a certain degree of resistance to hydrolysis, the polyurethane lacks elastic restoring power. In addition, a polyurethane formed from a polycaprolactone polyol is excellent in hydrolytic resistance, weather resistance, and heat resistance, but has poor elastic restoring power. The above-mentioned Japanese Patent Application Laid-Open No. 5 8-5 9 2 1 2 describes that a method for solving the shortcomings of polycaprolactone-based polyurethane is synthesized by dehydration esterification reaction using neopentyl alcohol and adipic acid. Of polyesterpolyol with ε-caprolactone through transesterification. In addition, Japanese Patent Application Laid-Open No. 1 1-1 822 discloses the use of 2-n-2-ethyl-1,3-propanediol and 2,2-diethyl-1,3-as a polyester polyol. Polyurethane elastic fibers, such as propylene glycol, which are excellent in alkali hydrolysis resistance. The second aspect of the present invention is described in Japanese Patent Application Laid-Open No. 6 3-9 7 6 1 7 and is made of poly (2,2-dimethyl-1,3-propanedodecanediol ester). Creates Spendex fibers with increased resistance to tapeworms. However, the elastic restoring power and hydrolytic resistance of the polyurethane described in the above-mentioned Japanese Patent Application Laid-Open No. 6 3-9 7 6 1 7 are not sufficient, and there is a demand to further improve these polyurethanes. ester. In addition, the polyurethane elastic fibers disclosed in Japanese Patent Application Laid-Open Nos. 1 1 to 8 2 2 are those having excellent hydrolytic resistance, but the aim is to further improve elastic restoring power and strength. In addition, the Spandex fibers described in JP-A-Sho 6 3-97 6 1 7 200523293 are intended to further increase the strength. The polyurethane having a linear structure according to the third aspect of the present invention is a long-chain diol having a hydroxyl group at both ends, an organic isocyanate, and a low-molecular-weight two-chain active chain called a chain extender Alcohol or diamine. Various proposals have been made for improving the properties of the polyurethane thus obtained. For example, Japanese Patent Application Laid-Open No. 1 1-1 822 discloses the use of 2-n-butyl-2-ethyl-1,3-propanediol and 2,2-diethyl- Polyurethane elastic fibers, such as 1,3-propylene glycol, which are excellent in alkali hydrolysis resistance. In addition, Japanese Unexamined Patent Publication No. 6 3-9 76 17 discloses that poly (2,2-dimethyl-1,3-propanedodecanediol) has enhanced resistance to tapeworms. Spandex fibers and so on. However, the polyurethane elastic fibers disclosed in Japanese Unexamined Patent Publication No. 1 1-1 822 are excellent in additional hydrodegradability to a certain degree, but they are desired to be further improved. The same applies to the Spandex fibers described in JP-A-Sho 6 3-9 7 6 1 7. The polyurethane having a linear structure according to the fourth aspect of the present invention is a long-chain diol having hydroxyl groups at both ends, an organic isocyanate, and a low-molecular-weight two-chain active agent called a chain extender. Diol or diamine. The polyurethane thus obtained can be used in various applications, such as thermoplastic elastomers, hard or soft urethane foams, adhesives' artificial leather, synthetic leather, coatings, and elastic fibers. (Spandex fibers) and so on. Polyamine 200523293% Body formate has the original weather resistance (including light resistance) and better durability. However, when it has another weather resistance, it can use conventional UV absorbers such as 2-(2 '-hydroxyl-5 Benzotriazoles such as, -methylphenyl) benzotriazole, 5-chloro-2- (2, hydroxy-3 ·, 5'-di-third-butylphenyl) benzotriazole, etc. Or benzophenol such as 2,4-hydroxybenzophenol and 2-hydroxy-4-octyloxybenzophenol. However, since these conventional ultraviolet absorbers are low boiling point compounds, the addition of these to polyurethanes causes various problems. For example, adding a large amount of UV absorber will cause phase separation and reduce the whiteness or mechanical strength of polyurethane B. On the other hand, when the amount of the ultraviolet absorber added is extremely small, the light resistance of the polyurethane cannot be improved to a satisfactory level. In addition, the ultraviolet absorbent is volatilized or thermally decomposed during the processing and molding of the polyurethane, or penetrates out of the surface of the molded product, so that it does not have stable light resistance after a long period of time. In addition, when the spandex fiber product is repeatedly washed, the ultraviolet absorbent may be detached from the product, resulting in a decrease in its effect. The object here is not limited to polyurethane. In order to solve the above-mentioned shortcomings, try to use the above-mentioned ultraviolet absorber with a polymerizable double bond base such as vinyl group to polymerize and quantify the substance, and improve the resin with various resins. It is compatible with UV light absorbent, and prevents the volatilization, thermal decomposition, and exudation of ultraviolet absorbers (Japanese Patent Application Laid-Open No. 6 0-3841, Japanese Patent Application Laid-Open No. 62-1 8 1 3 60, Japanese Patent Application Laid-open No. 3-28 1 6 8 5). However, these ultraviolet absorbent polymers have the following disadvantages, and there is a need for improvement. In other words, the heat of thermoplastic polyurethane resin is -9- 200523293

« I 塑性樹脂具有極高的機械強度,且廣泛地使用於各種成形 用材料,惟可塑性聚胺甲酸酯樹脂會因鹼成分而分解,而 有降低其機械強度的缺點,故企求改善耐鹼性或耐溶劑性 等之耐藥品性。 而且,於特開平1 0 - 2 6 5 5 5 7號公報中記載有以具紫外線 吸收劑之聚醇爲原料的內酯改性聚醇。惟沒有記載有關使 用以此爲聚胺甲酸酯之原料所成的聚酯聚醇之構成成分。 本發明之第5有關段狀聚胺甲酸酯係爲已知,係使高分 ® 子量二醇(最多爲聚醚醇或聚酯醇)與有機異氰酸酯反應以 形成異氰酸酯末端聚合物,使其與二胺或二醇反應、藉由 連鏈延長予以製造。 「纖維」一詞係包含短纖維或連續纖維。 漢德(譯音)(hunt)之美國專利第3,428,711號揭示,爲 使段狀聚胺甲酸酯安定化時使用高分子量3級胺烷基丙烯 酸酯及甲基丙烯酸酯,且發現斯潘德克斯纖維具很大的商 φ 業用途。漢德揭示很多的此種添加劑。漢德揭示的較佳安 定劑係爲具立體障害的異丙胺基乙基甲基丙烯酸酯(以下稱 爲"DIPAM")及正-癸基甲基丙烯酸酯(以下稱爲"dm")之共聚 物。該共聚物(以下稱爲〃聚(DIPAM/DM)")係提供比不類似 立體障害之胺具有更佳的暴露於氯之惡化耐性的斯潘德克 斯聚合物。 習知含高分子量立體障害3級胺基之添加劑,在防止斯 潘德克斯聚合物之惡化及變色上極爲有用,惟此等添加劑 -10- 200523293 會引起製造上之問題及/或使由斯潘德克斯聚合物製造纖 維之性質產生不良情形的問題。例如,藉由使用聚(D I P AM / DM )添加劑,自斯潘德克斯聚合物溶液使纖維乾式紡紗 時,會引起各種問題。二甲基乙烯醯胺(以下稱爲"DMAc”) 係爲製造斯潘德克斯聚合物溶液時所使用的最佳溶劑。聚 (DIPAM/ DM)、抗氧化劑及如顏料之其他添加劑,通常與DM Ac 一起形成漿料,然後於紡紗前與斯潘得克斯聚合物溶液混 合。然而,通常以室溫所製造的漿料由於高分子胺缺乏對 DM A c溶劑之溶解性,故會有相分離的情形。相分離係可能 因添加劑之凝聚、紡紗時之問題及/或紡紗溶液及因紡紗纖 維中的添加劑不均勻分布而引起。換言之,含聚(MPAM/DM) 或(D I PAM )添加劑之斯潘德克斯聚合物,由於在紡紗時期溶 劑溶解性會惡化故使製造工程產生不良的影響,且自新潘 德克斯纖維所製造的纖維之彈性會有某種缺點,即引起乾 式紡紗斯潘德克斯纖維不欲的彈性減少情形(即永久拉伸 (set))。 大部分之高分子量3級胺烷基(甲基)丙烯酸酯添加劑’ 無法避免有此等之一種或二種缺點。 另外,羅德恩(譯音)之特開平2 - 86 6 5 5號中,爲避免上 述之問題,或顯著減少上述之問題,爲提供斯潘德克斯聚 合物所使用的含高分子量立體障害3級胺之添加劑’提供 DIPAM與羥基丁基丙烯酸酯或乙基丙烯酸酯系共聚物。 然而,特開平2 - 8 6 6 5 5號記載的共聚物,保護因惡化及 -11 - 200523293 ι · 變色之斯潘德克斯聚合物,且使用習知含高分子量立體障 害3級胺基之添加劑時可抑制相關的彈性減少(即永久拉 伸(s e t ))情形,惟必須具充分的對DM A c溶劑之溶解性,否 則可能會有彈性減少的情形產生。 本發明之第6係有關製得以極細纖維爲主體的不織片板 狀物中加工施予各種高分子化合物的人工皮革,係爲已知。 此時之高分子化合物係爲得到作爲人工皮革之柔軟且具彈 性質感及耐久性、尺寸安定性等之物性時,大多使用的聚 ® 胺甲酸酯等碳性高分子化合物。然而,此等彈性高分子化 合物爲溶解於有機溶劑之溶液、可施予不織片板狀物且大 多爲濕式凝固。 另外,此時所使用的有機溶劑之引火性非常強,且大多 爲毒性高的物質,於爲防止火災或毒性危險之溶劑回收時 必須非常的注意。此外,溶劑亦極爲高價,自水之稀薄液 中回收須耗費很多的費用。由於此等之種種缺點,遂進行 φ 各種檢討使施予不織片板狀物之彈性高分子化合物由有機 溶劑型轉爲水系乳液,惟於目前使用水系乳液時仍無法得 到具有令人滿足的質感與物性之人工皮革。 一般而言’具有現狀構造的聚胺甲酸酯係可使兩末端具 有羥基之長鏈二醇與有機異氰酸酯及較低分子量具有2個 活性氫之稱爲鏈延長劑之二醇或二胺等反應,該聚胺甲酸 酯之技術背景係如本發明第1及第2之技術背景所記載 者。 • 12 - 200523293 【發明内容】 因此’本發明之第1及第2目的係提供彈性回復力、 強度、耐加水分解性更爲優異的斯潘德克斯纖維,具此之 聚胺甲酸酯,及具此之聚酯聚醇。 本發明人等發現可藉由使用由特定的支鏈脂肪族二醇、 ε -己內酯及己二酸所得的聚酯聚醇來解決上述課題,遂而 完成本發明之第1。 而且’本發明人等發現藉由使用支鏈脂肪族二醇、ε -己 ® 內酯及碳數1 0〜1 2之脂肪族二羧酸所得的聚酯聚醇作爲聚 胺甲酸酯之原料,可解決上述課題,遂而完成本發明之第2。 換言之’本發明之第1係(1 )提供一種至少含有以至少 一種選自2-正-丁基-2-乙基-1,3-丙二醇、2,2-二乙基-1,3-丙二醇及2,4_二乙基-1,5 -戊二醇所成群的二醇,ε-己內 酯及己二酸爲構成成分單位之聚酯二醇。 而且’(2)係提供上述(1)之聚酯二醇,其中平均分子量 •爲 500 〜5, 〇〇〇。 此外’(3 )係提供上述(1 )或(2 )之聚酯二醇,其中由至少 一種選自2 -正-丁基-2-乙基-1,3 -丙二醇、2,2 -二乙基-1,3-丙二醇及2, 4 -二乙基-1,5 -戊二醇的二醇與己二酸所成的聚 酯構成單位含量/ ε -己內酯之構成單位含量(重量比)爲 5/95 〜80 / 20 〇 另外’(4)係提供一種由(1 )〜(3 )中任一種聚酯聚醇與有 機二異氰酸酯所得的聚胺甲酸酯。 此外’(5 )係提供一種由(4 )聚胺甲酸酯所成的斯潘得克 -13 - 200523293 斯纖維。 本發明之第2係(1 )提供一種含有以支鏈脂肪族二醇、 ε -己內酯及碳數1 0〜1 2之脂肪族二羧酸爲構成成分單位 的聚酯二醇。 而且,(2 )係提供一種聚酯二醇,其中平均分子量爲500 〜5,0 0 0。 另外’(3 )係提供一種上述(1 )或(2 )之聚酯二醇,其中由 支鏈二醇與碳數1 0〜1 2之脂肪族二羧酸所成的聚酯構成單 ® 位含量/ ε -己內酯之構成單位含量(重量比)爲5/95〜 80/20 ° 此外,(4 )係提供一種由如上述(1 )〜(3 )中任一項之聚酯 二醇與有機異氰酸酯所得的聚胺甲酸酯。 另外’(5 )係提供一種由上述(4 )之聚胺甲酸酯所成的斯 潘德克斯纖維。 本發明之第3目的係提供耐加水分解性更爲優異的斯潘 φ 德克斯纖維、及予以此聚胺甲酸酯。 本發明人等發現藉由使用含特定二醇之聚酯聚醇作爲聚 胺甲酸酯之原料,可解決上述本發明之第3課題,遂而完 成本發明。 換言之,本發明之第3係(1)提供一種由使含有以2,4-二乙基-1,5 -戊二醇爲構成成分之聚酯二醇及有機二異氰酸 酯反應所得的聚胺甲酸酯。 而且’(2)係提供一種上述(1)之聚胺甲酸酯,其中聚酯 -14- 200523293 二醇之平均分子量爲500〜5, 000。 此外,(3 )係提供一種之由上述(1 )或(2 )之聚胺甲酸酯所 成的斯潘德克斯纖維。 本發明之第4目的係提供一種有關耐候性之耐洗濯性經 提高的斯潘德克斯纖維,及予以此之聚胺甲酸酯。 本發明人等發現藉由使用(A )由(A 1 )含有紫外線吸收基之 聚醇或(A 2 )其內酯改性聚醇及(A 3 )其他之聚醇所成的聚醇 成分爲構成成分之聚酯聚醇作爲聚胺甲酸酯之原料,可解 B 決上述課題,遂兩完成本發明。 換言之,本發明之第4係提供(1)至少含有(A1)含有紫 外線吸收基之聚醇或(A2 )其內酯改性聚醇及(A3 )其他之聚 醇所成的(A)聚醇成分與(B)己二酸爲構成成分單位之(X)聚 酯聚醇與(γ )有機二異氰酸酯所得的聚胺甲酸酯。 而且’(2)係提供如上述(1)之聚胺甲酸酯,其中(A1)含 有紫外線吸收基之聚醇係爲式(1 )所示之化合物。«I Plastic resins have extremely high mechanical strength and are widely used in various molding materials. However, plastic polyurethane resins decompose due to alkali components and have the disadvantage of reducing their mechanical strength. Therefore, they are seeking to improve alkali resistance. Chemical resistance and solvent resistance. Furthermore, Japanese Unexamined Patent Publication No. 10-2 6 5 5 5 7 describes a lactone-modified polyol using a polyol having an ultraviolet absorber as a raw material. However, there is no description about the constituents of polyester polyols made from the polyurethane raw materials. The fifth segmented polyurethane of the present invention is known, which is a reaction of a high molecular weight diol (up to polyether alcohol or polyester alcohol) with an organic isocyanate to form an isocyanate-terminated polymer such that It is produced by reacting with a diamine or a diol by chain extension. The term "fiber" includes short fibers or continuous fibers. Hunt's US Patent No. 3,428,711 discloses that in order to stabilize segmented polyurethanes, high molecular weight tertiary amine alkyl acrylates and methacrylates are used, and spandex fibers are found It has great commercial use. Hande reveals many of these additives. The preferred stabilizers disclosed by Hand are sterically hindered isopropylaminoethyl methacrylate (hereinafter referred to as " DIPAM ") and n-decyl methacrylate (hereinafter referred to as " dm ") Of copolymers. This copolymer (hereinafter referred to as "DIPAM / DM" ") is a Spandex polymer that provides better resistance to deterioration from exposure to chlorine than amines that do not resemble steric hindrance. It is known that additives containing high molecular weight 3rd-order amine-based amines are extremely useful in preventing the deterioration and discoloration of Spandex polymers. However, these additives-10- 200523293 may cause manufacturing problems and / or cause Spandek The nature of the fibers produced by styrenic polymers poses a problem. For example, by using a poly (DIP AM / DM) additive, fibers can be dry-spun from a Spindex polymer solution, which causes various problems. Dimethylvinylamine (hereinafter referred to as " DMAc ") is the best solvent used in the production of Spandex polymer solutions. Poly (DIPAM / DM), antioxidants, and other additives such as pigments are often used in conjunction with DM Ac forms a slurry together, and then mixes it with the Spindex polymer solution before spinning. However, the slurry usually made at room temperature will suffer from the lack of solubility of the polymer amine in the DM A c solvent. There is a case of phase separation. Phase separation may be caused by agglomeration of additives, spinning problems and / or spinning solutions, and uneven distribution of additives in spinning fibers. In other words, poly (MPAM / DM) -containing or (DI PAM) additive of the Spendex polymer, because the solubility of the solvent will deteriorate during the spinning period, which will adversely affect the manufacturing process, and the elasticity of the fibers made from the new Pendex fiber will have some disadvantages, that is, Causes undesired reduction in elasticity of dry-spinned Spindex fibers (ie, permanent set). Most high molecular weight grade 3 amine alkyl (meth) acrylate additives are unavoidable. One or two disadvantages. In addition, in Rhoden JP-A No. 2-86 6 55, in order to avoid the above-mentioned problems, or to significantly reduce the above-mentioned problems, the high molecular weight content used to provide the spandex polymer is provided. Additives for sterically hindered tertiary amines' provide DIPAM and hydroxybutyl acrylate or ethacrylate-based copolymers. However, the copolymers described in JP-A No. 2-8 8 6 5 5 have deterioration in protection factors and -11-200523293 ι · The color-changing Spandex polymer, and the use of conventional additives with high molecular weight stereo-barrier grade 3 amine groups can inhibit the related reduction in elasticity (ie, permanent set (set)), but it must have sufficient resistance to DM A c solvent solubility, otherwise there may be a reduction in elasticity. The sixth series of the present invention is related to the production of artificial leather with ultra-fine fibers as the main body processed and applied to various polymer compounds, It is known that the polymer compounds used in this case are polyamines that are mostly used to obtain the properties of soft, elastic texture, durability, and dimensional stability as artificial leather. Carbon-based polymer compounds such as esters. However, these elastic polymer compounds are solutions dissolved in organic solvents, and can be applied to non-woven sheets and plates, and most of them are wet-set. In addition, the organic solvents used at this time are Very pyrophoric, and most of them are highly toxic substances. It is necessary to pay great attention when recovering solvents to prevent fire or toxic hazards. In addition, the solvents are also very expensive, and it takes a lot of cost to recover them from thin water. These various shortcomings have led to various reviews to change the elastic polymer compound applied to the non-woven sheet from an organic solvent type to an aqueous emulsion. However, when the aqueous emulsion is currently used, a satisfactory texture cannot be obtained. Artificial leather with physical properties. Generally speaking, the "urethane system with the current structure" can make long-chain diols and organic isocyanates with hydroxyl groups at both ends and diols or diamines called chain extenders with lower active molecular weights and 2 active hydrogens. The technical background of the polyurethane is as described in the technical background of the first and second aspects of the present invention. • 12-200523293 [Summary of the Invention] Therefore, 'the first and second objects of the present invention are to provide a spandex fiber which is more excellent in elastic restoring force, strength, and hydrolytic resistance, and a polyurethane having the same, and With this polyester polyol. The inventors have found that the above-mentioned problems can be solved by using a polyester polyol obtained from a specific branched chain aliphatic diol, ε-caprolactone, and adipic acid, and the first aspect of the present invention has been completed. Furthermore, the present inventors have discovered that polyester polyols obtained by using branched chain aliphatic diols, ε-caprolactone, and aliphatic dicarboxylic acids with carbon numbers of 10 to 12 are used as polyurethanes. The raw materials can solve the above-mentioned problems and complete the second aspect of the present invention. In other words, the first system (1) of the present invention provides at least one selected from the group consisting of 2-n-butyl-2-ethyl-1,3-propanediol and 2,2-diethyl-1,3- Polyester diols consisting of propylene glycol and 2,4-diethyl-1,5-pentanediol, and ε-caprolactone and adipic acid as constituent units. In addition, '(2) is a polyester diol as described in (1) above, in which the average molecular weight is 500 to 5,000. In addition, '(3) is a polyester diol provided by (1) or (2) above, wherein at least one kind is selected from 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-di Ethyl-1,3-propanediol, 2,4-diethyl-1,5-pentanediol diol and adipic acid polyester content unit content / ε-caprolactone content unit content ( The weight ratio is 5/95 to 80/20. In addition, (4) provides a polyurethane obtained from any one of the polyester polyols (1) to (3) and an organic diisocyanate. In addition, (5) provides a spandex-13-13200523293 fiber made of (4) polyurethane. The second system (1) of the present invention provides a polyester diol containing a branched chain aliphatic diol, ε-caprolactone, and an aliphatic dicarboxylic acid having a carbon number of 10 to 12 as a constituent unit. Furthermore, (2) provides a polyester diol in which the average molecular weight is 500 to 5,000. In addition, (3) is a polyester diol as described in (1) or (2) above, in which a polyester composed of a branched diol and an aliphatic dicarboxylic acid having a carbon number of 10 to 12 constitutes a single® Site content / ε-caprolactone's constituent unit content (weight ratio) is 5/95 to 80/20 ° In addition, (4) provides a polyester composed of any one of (1) to (3) above Polyurethanes obtained from diols and organic isocyanates. In addition, (5) provides a spandex fiber made of the polyurethane of (4). A third object of the present invention is to provide a Span φ Dex fiber which is more excellent in hydrolytic resistance, and to provide the polyurethane. The present inventors have found that the use of a polyester polyol containing a specific diol as a raw material for the polyurethane can solve the above-mentioned third problem of the present invention and complete the invention. In other words, the third system (1) of the present invention provides a polyamine obtained by reacting a polyester diol containing 2,4-diethyl-1,5-pentanediol as a constituent and an organic diisocyanate. Acid ester. Furthermore, '(2) provides a polyurethane according to (1) above, wherein the average molecular weight of the polyester-14-200523293 diol is 500 to 5,000. In addition, (3) provides a spandex fiber made of the polyurethane of (1) or (2) above. A fourth object of the present invention is to provide a spandex fiber having improved wash resistance with respect to weather resistance, and a polyurethane to be used therefor. The inventors have found that by using (A) a polyol component composed of (A 1) a UV-absorbing group-containing polyol or (A 2) a lactone-modified polyol and (A 3) other polyols As a constituent of the polyester polyol as a raw material of polyurethane, the above-mentioned problem can be solved by solution B, and then the present invention is completed. In other words, the fourth system of the present invention provides (1) (A) a polyalcohol formed by at least (A1) a polyalcohol containing an ultraviolet absorbing group or (A2) a lactone-modified polyalcohol and (A3) other polyalcohols. An alcohol component and (B) adipic acid are polyurethanes obtained by (X) polyester polyol and (γ) organic diisocyanate as constituent units. Further, the '(2) is a polyurethane as described in the above (1), wherein the polyol (A1) containing an ultraviolet absorbing group is a compound represented by the formula (1).

此外’(3 )係提供如上述(丨)或(2 )之聚胺甲酸酯,其中內 酯爲£ -己內酯。 另外’(4 )係提供如上述(丨)〜(3 )之聚胺甲酸酯,其中聚 -15- 200523293 酯聚醇之平均分子量爲500〜5,000。 而且,(5 )係提供如上述(1 )〜(4 )之聚胺甲酸酯,其中由 (A )聚醇成分與己二酸所成的聚酯構成單位含量/內酯之構 成單位含量(重量比)爲5/95〜80/20。 此外,(6 )係提供如上述(1 )〜(5 )之聚胺甲酸酯,其中, 聚醇之構成單位含量的莫耳比{ ( A 1 ) + ( A2 ) } / { (A1 ) + (A2) + (A3) }爲 0.01〜10。 另外,本發明之(7 )係提供一種如上述(1 )〜(6 )項中任一 π 項之聚胺甲酸酯所成的斯潘德克斯纖維。 本發明之第5目的係提供一種具有較高的對DMAc溶劑 之溶解性、保護因惡化及變色之斯潘德克斯聚合物、並可 更爲改善與使用習知高分子量立體障礙含3級胺之添加劑 有關的彈性減少(永久拉伸(s e t ))情形、可真正應用的斯潘 德克斯聚合物中所使用的高分子量含3級胺之添加劑,含 有該添加劑之聚胺甲酸酯組成物以及斯潘得克斯組成物。 φ 本發明人等爲解決上述課題,再三深入硏究的結果,發 現以二院胺基乙基(甲基)丙烯酸酯及具有特定構造之反應 性單體爲必須共聚物成分所形成的新穎含3級胺之丙烯腈 系共聚物,其對DM A c溶劑之溶解性較高,確定其效果而克 服上述問題,遂而完成本發明之第5。 換言之’本發明之第5中(1)係提供一種含有二烷胺基 之丙稀腈系共聚物,其特徵爲以下述一般式(1)所示的(甲 基)丙燦酸二烷胺基乙酯及一般式(2 )所示之反應性單體爲 -16- 200523293 * ί 必須共聚物成分所形成者。 CH2 = CRC00CH2CH2NR°R° ( 1 ) (其中’R係表示氫或甲基;R◦係表示碳原子數1〜4之 烷基) CH2=CRCOOCH2CH2〇[-c (=0) (CR1R2) x - 〇-] η · Η (2) (其中,R係表示氫或甲基;X個…及…係各表示獨立 的氫或碳原子數爲1〜12之烷基;η個開環內酯鏈可爲相 _ 同或不同者;X係表示4〜7之整數;η之平均値爲1〜5) 而且’(2)係提供一種含有如上述(1)之含二烷胺基之丙 烯腈系共聚物之聚胺甲酸酯。 此外,(3 )係提供如上述(2 )之聚胺甲酸酯組成物,其中 該含二烷胺基之丙烯腈系共聚物的含有量爲0.5〜1〇重量 % 〇 另外’(4 )係提供一種斯潘德克斯組成物,其特徵爲含有 如上述(1 )之發明的含二烷胺基之丙烯腈系共聚物。 • 而且’(5 )係提供如上述(4 )之斯潘德克斯組成物,其中 該含二烷胺基之丙烯腈系共聚物的含有量爲0.5〜1〇重量 %。 本發明之第6目的係提供一種彈性回復力、強度、耐加 水分解性更爲優異的、即具有耐加水分解性、耐皺摺性、 黏接性等優異特性以及令人滿足的質感之人工皮革的聚胺 甲酸酯。 本發明人等爲解決上述本發明第6課題,經過再三深入 -17- 200523293 ^ 9 硏究的結果,遂而完成本發明。 換言之’本發明之第6中(1 )係提供一種聚酯二醇,其 导寸徵爲含有至少以碳數9〜1 2之脂肪族二殘酸、脂肪族二 醇及ε -己內酯爲構成成分單位。 而且’(2 )係提供一種如上述(1 )之聚酯二醇,其中平均 分子量爲500〜5, 000。 此外’(3 )係提供一種如上述(1 )或(2 )之聚酯二醇,其中 由脂肪族二醇與碳數9〜1 2之脂肪族二羧酸所成的聚酯構 ® 成單位含量/ ε -己內酯之構成單位含量(重量比)爲5/95〜 80/20 ° 另外’(4 )係提供一種由如上述(1 )〜(3 )中任一聚酯二醇 與有機二異氰酸酯所得的聚胺甲酸酯。 而且,(5 )係提供一種人工皮革用的如上述(4 )之聚胺甲 酸酯。 爲實施發明之最佳形態 φ 於下述中順序說明第1之發明及第2之發明的實施形 態。 說明有關第1之發明。 本發明所使用的二醇,係爲特定的二醇即至少一種選自2 -正-丁基-2-乙基-1,3 -丙二醇、2,2 -二乙基-1,3 -丙二醇及 2, 4 -二乙基- l,5 -戊二醇所成群之二醇。此等可單獨使用, 亦可2種以上混合使用。而且,在不損害本發明效果之範 圍內,亦可倂用此等以外之二醇化合物。該二醇化合物例 -18- 200523293 > * 如乙二醇、丙二醇、1 , 4 - 丁二醇、1 , 6 -己二醇、新戊醇、2 -甲基-1,3 -丙二醇、3 -甲基-1,5 -戊二醇、1,8 -壬二醇、二 乙二醇、二丙二醇、丨,扣環己烷二甲醇等。 本發明聚酯聚醇之酸成分係使用己二酸,惟在不損害本 發明效果之範圍內亦可使用其他的酸成分,例如戊二酸、 辛二酸、壬二酸、癸二酸、十二烷二酸、1,11-十一烷二羧 酸、對苯甲酸、異苯甲酸、5 -磺基鈉異苯甲酸等脂肪族或 芳香族二羧酸等。此等之其他酸成分可以單獨或2種以上 ® 之混合物與己二酸倂用。而且,原料之酸成分亦可以酯衍 生物或酸酐之形態使用。 本發明中構成聚酯聚醇的其他成分爲ε -己內酯,惟在不 損害本發明效果之範圍內亦可使用其他的內酯,例如單甲 基-ε -己內酯、三甲基-ε -己內酯等之甲基化ε -己內酯、 r - 丁內酯、5 -戊內酯等之ε -己內酯之副成分。 本發明聚酯聚醇的製法,沒有特別的限制,可使用習知 φ 的方法。例如,以於特開昭5 8 - 5 9 2 1 2號公報中所記載的方 法爲基準予以製造。換言之,可藉由使上述二醇、ε-己內 酯及己二酸混合加熱,且進行脫水酯化反應與開環反應、 酯交換反應予以製造(一次加熱法),或使藉由二醇與己二 酸進行脫水酯化反應所得的聚酯聚醇另在多元醇中與ε -己 內酯進行開環反應以合成的聚己內酯聚醇,通常與聚己內 酯二醇混合後,藉由兩者之酯交換反應予以製造。另外, 可藉由在分子量小的聚酯聚醇中使ε -己內酯進行開環聚合 -19- 200523293 a > 予以製造。於此等之中,以一次加熱法較爲簡便,爲所企 求。 此等反應就防止著色而言及就防止ε -己內酯之解聚合反 應而言,以在130〜240°C下進行較佳,更佳者爲140〜230 V。 此等反應通常對全部單聚物而言觸媒之使用量爲0.05〜 1000重量ppm,較佳者爲0.1〜100重量ppm。觸媒可使用 四丁基鈦酸酯、四丙基鈦酸酯等之有機鈦化含物,二丁基 ® 錫月桂酸酯、辛酸錫、二丁基錫氧化物、氯化錫、溴化錫、 碘化錫等之錫化合物。反應係在使氮氣等惰性氣體流通下 進行,就防止所得目的物之著色而言爲所企求。 本發明之聚酯聚醇的構成單位含量係使用由至少一種選 自2-正-丁基-2-乙基-1,3-丙二醇、2,2-二乙基-1,3-丙二 醇及2, 4 -二乙基-1,5 -戊二醇所成群之二醇與己二酸所成的 聚酯構成單位含量/ ε -己內酯之構成單位含量(重量比)爲 φ 5/95〜80 / 20,即爲使用在該範圍內之比例的各原料。使用 聚ε -己內酯時亦相同。如此所得的聚酯二醇之平均分子量 爲500〜5, 000、較佳者爲1,500〜4, 000。若爲5, 000以上 之分子量時,會增加軟段的結晶性,且不易得到具有令人 滿足物性之斯潘德克斯纖維。平均分子量可藉由羥基價(j I S Κ 1 5 5 7 )予以測定。 製造由上述所得的聚酯二醇與有機異氰酸酯所成的聚胺 甲酸酯。聚胺甲酸酯之製法爲習知的方法,例如特開昭58_ -20- 200523293 5 92 1 2號公報、特開平1 1 - 1 822號公報等記載的方法,可以 此等方法爲基準。換言之,有使聚酯二醇、作爲鏈延長劑 之低分子量二醇或二胺等、以及有機二異氰酸酯一起在有 溶劑下或無溶劑下反應的一次反應法,或使聚酯二醇與有 機二異氰酸酯預先反應製得預聚物後、再使低分子二醇在 有溶劑下或無溶劑下反應的預聚物法等。就成本而言以在 無溶劑下製造的熔融聚合法較佳。此時原料之配合率係爲 有機異氰酸酯之NC0基/聚酯二醇與低分子二醇之全部〇H 基=0.5〜1.5、較佳者爲0.8〜1.2。上述溶劑例如有甲苯、 二甲苯、醋酸乙酯、醋酸丁酯、甲基乙酮、二甲基甲酶胺、 四氫呋喃等。 本發明所使用的有機二異氰酸酯例如有2,4 -二異氰酸甲 苯酯、2,6 -二異氰酸甲苯酯、對-二異氰酸亞苯酯、4,4,_ 二異氰酸二苯基甲烷酯、間-二異氰酸亞苯酯、二異氰酸六 亞甲酯、二異氰酸四亞甲酯、2,仁二異氰酸萘酯、4,4,_二 鲁 異氰酸一亞苯酯、對·二異氰酸二甲苯酯、間-二異氰酸二 甲苯酯、4,4,-二異氰酸二環己烷酯、4,4、二異氰酸二環 己基甲烷酯、二異氰酸異佛爾酮等。此等可單獨或2種以 上倂用。 上述作爲鏈延長劑之低分子二醇可使用本發明所使用的 二醇、或可與此倂用之上述二醇化合物。作爲鏈延長劑之 二胺可使用乙二胺、聯胺、異佛爾酮二胺、甲基亞苯基二 胺、4,4 ’ -二胺基二苯基甲烷、二胺基二苯基碼、3,3,_二 -21 - 200523293 ^ m 氯_4,4^二胺基苯基甲烷等。 藉由上述方法所得的聚胺甲酸酯可使用於一般使用聚胺 甲酸酯的各種用途,例如有熱塑性彈性體、硬質或軟質胺 甲酸酯泡沬、黏接劑、人工皮革、合成皮革、塗料等,尤 其以使用於斯潘德克斯纖維較佳。 由本發明之聚胺甲酸酯製得斯潘德克斯纖維之紡紗方法 係爲已知的方法,即乾式紡紗法、濕式紡紗法、熔融紡紗 法等。於此等之中,就成本而言以熔融紡紗法爲宜。而且, B 於紡紗後使彈性纖維藉由熱處理以製得具有更高物性者。 本發明之斯潘德克斯纖維中,視其所需可添加苯酚衍生 物等抗氧化劑、經取代的苯并三唑等紫外線吸收劑、高級 脂肪酸金屬鹽或聚矽氧烷化合物等防止黏接劑等。 本發明所提供之斯潘德克斯纖維具有優異的彈性回復 力、強度、耐水分解性,故斯潘德克斯纖維可以爲一般的 使用形態、即以耐龍、棉等之交編、交織形態予以使用。 _ 尤其是使用棉作爲對象原料時,經由交編或交織後之後加 工、即在酸或驗之氣氛下以高溫處理的精練、漂白、絲光 加工等之工程,仍可發揮良好的耐加水分解性。 於下述中說明有關第2發明之實施形態。 本發明所使用的支鏈脂肪族二醇,例如有1,2 -丙二醇、 1,3 -丁二醇、2 -甲基-1,3 -丙二醇、新戊醇、3 -甲基-1,5-戊二醇、2 -正-丁基-2-乙基-1,3 -丁二醇、2,2 -二甲基-1,3-丙二醇、2,2 -二乙基-1,3 -丙二醇、2,4 -二乙基-1,5 -戊二 -22- 3 9 2 32. 5 00 2· 醇 己 醇 辛 不此 在的 , 分 且成 而副 。 之 用醇 使二 合爲 混作 上用 以 使 族 肪 脂 之 鏈 支 無 爲 物 合 化 \一8一一 種 2 可醇二 , 二丙 酌該 CO 圍 。 1, 用範物、 使之合醇 獨果化二 單效醇乙 可明二有 等發之如 此本外例 。 害以, 等損等醇 醇 可 亦 醇0-二 1 壬數 8碳 1,的 、 分 醇成 二酸 己之 6-醇 1,二 、 酯 醇聚 二明 丁發 4-本 1,爲 、 作 醇 ο 羧 等二 醇族 二肪 乙旨 酸,例如癸二酸、十二烷二酸、1,1 1 -十一烷二羧酸等。其 中,以癸二酸、十二烷二酸較佳。 而且,在不損害本發明效果之範圍內,可使用其他的酸 成分例如可使用戊二酸、辛二酸、壬二酸、癸二酸、十二 烷二酸、1,1 1 -十一烷二羧酸、對苯甲酸、異苯甲酸、5 -磺 基鈉異苯甲酸等脂肪族或芳香族二羧酸等。此等之其他酸 成分可以單獨或2種以上之混合物與碳數10〜12之脂肪 族二羧酸一起使用。而且,原料之酸成分亦可以酯衍生物 或酸酐之形態使用。 本發明構成聚酯二醇之其他成分係爲與第1發明相同的 ε -己內酯,惟亦可以使用與本發明之第1發明相同的其 他內酯作爲副成分。 本發明聚酯二醇的製法係可採用與本發明之第1所記載 者相同的方法。 本發明聚酯二醇的構成單位含量係由支鏈二醇與碳數1 〇 〜1 2之脂肪族二羧酸所成的聚酯構成單位含量/ ε -己內酯 之構成單位含量(重量比)爲5/95〜80/20,以20/80〜80/20 -23- 200523293 k m 較佳,即使用在該範圍比例的各原料。使用聚ε -己內酯時 亦相同。如此所得的聚酯二醇之平均分子量爲5 0 0〜5,0 0 0 ’ 較佳者爲1,500〜4, 000。若爲5,000以上之分子量時’軟 段之結晶性增加,且不易得到具有令人滿足的物性之斯潘 德克斯纖維。平均分子量係可藉由羥基價(〗I S Κ 1 5 5 7 )予以 測定。 由上述所得的聚酯二醇與有機異氰酸酯所成的聚胺甲酸 酯之製法、所使用的有機異氰酸酯係如本發明之第1所記 •載。 作爲鏈延長劑之低分子二醇可使用本發明所使用的支鏈 脂肪族二醇、或與此等倂用之上述無支鏈的二醇化合物。 作爲鏈延長劑之二胺係爲與本發明之第1例示者相同。 有關本發明之第1聚胺甲酸酯之用途、斯潘德克斯纖維 之記載,於本發明之第2中亦相同。 於下述中說明第3發明之實施形態。 • 本發明所使用的二醇係使用2,4 -二乙基-1,5 ·戊二醇。 然而,該二醇與其他的二醇例如亦可倂用1種以上之乙 二醇、丙二醇、2 -正-丁基-1,3 -丙二醇、2,2 -二乙基-1,3-丙二醇、1,4 -丁二醇、1,6 -己二醇、辛二醇、2 -甲基-1,3-丙二醇、3 -甲基-1,5 -戊二醇、1,8 -壬二醇、二乙二醇、二 丙二醇、1,4 -環己烷二甲醇等。此時,就本發明之效果而 言,以使用5莫耳%以上2,4 -二乙基-1,5 -戊二醇較佳,更 佳者爲1 0莫耳%以上,此外就經濟性而言,較佳者爲80莫 -24- 200523293 耳%以下,更佳者爲70莫耳%以下。 本發明之聚酯二醇的酸成分,沒有特別的限制,例如戊 二酸、辛二酸、壬二酸、癸二酸、十二烷二酸、l,n_十一 烷二羧酸、對苯甲酸、異苯甲酸、5 -磺基鈉異苯甲酸等脂 肪族或芳香族二羧酸等。此等酸成分可單獨使用或2種以 上混合使用。而且,原料之酸成分可以酯衍生物或酸酐之 形態使用。於此等之中以己二酸較佳。 本發明聚酯二醇的製法沒有特別的限制,可使用習知的 ® 方法。反應通常對全部單聚物而言係使用0.05〜1 000重 量ppm觸媒、較佳者0.1〜1〇〇重量ppm。觸媒可使用四丁 基鈦酸酯、四丙基鈦酸酯等之有機鈦化合物,二丁基錫月 桂酸酯、辛酸錫、二丁基錫氧化物、氯化錫、溴化錫、碘 化錫等之錫化合物。反應係在使氮氣等惰性氣體流通下進 行,就防止所得目的物之著色而言爲所企求。 上述聚酯二醇之平均分子量爲500〜5, 000、較佳者爲 φ 1,500〜4, 000。若爲5,000以上之分子量時,軟段之結晶 性增加,且不易得到具有令人滿足的物性之斯潘德克斯纖 維。平均分子量係可藉由羥基價(J I S K 1 5 5 7 )予以測定。 由上述所得的聚酯二醇與有機異氰酸酯所成的聚胺甲酸 酯之製法、所使用的有機異氰酸酯係如本發明之第1所記 載。 作爲鏈延長劑之低分子二醇係可使用本發明所使用的支 鏈脂肪族二醇、或與此等倂用之上述無支鏈的二醇化合物。 -25- 200523293 作爲鍵延長劑之—^ fe係爲與本發明之第1例示者相同。 有關本發明之第1聚胺甲酸酯之用途、斯潘德克斯纖維 之記載,於本發明之第3中亦相同。 於下述中說明第4發明之實施形態。 本發明所使用的(A 1 )含有紫外線吸收基之聚醇沒有別的 限制,例如有下述式(1 )所示的具有2個醇性經基之二醇。 此係爲雙(3 - ( 2H -苯并三唑-2 -基)-4 -羥基-苯乙醇)甲烷。 該二醇可使用合成物或市售品。In addition, '(3) provides a polyurethane as described in (丨) or (2) above, wherein the lactone is £ -caprolactone. In addition, (4) provides the polyurethanes as described in (丨) to (3) above, wherein the average molecular weight of the poly-15-200523293 ester polyol is 500 to 5,000. Furthermore, (5) provides the polyurethane as described in (1) to (4) above, wherein the content of the unit of the polyester composed of the (A) polyol component and adipic acid / the content of the unit of the lactone is provided. (Weight ratio) is 5/95 ~ 80/20. In addition, (6) provides the polyurethane as described in (1) to (5) above, in which the molar ratio of the constituent unit content of the polyol is {(A 1) + (A2)} / {(A1) + (A2) + (A3)} is 0.01 to 10. In addition, (7) of the present invention provides a spandex fiber made of a polyurethane as described in any one of (1) to (6) above. The fifth object of the present invention is to provide a Spandex polymer which has high solubility in DMAc solvents, protection from deterioration and discoloration, and can further improve and use a conventional high molecular weight steric obstacle containing a tertiary amine. Additive-reduced elasticity (permanent stretch (set)), high molecular weight tertiary amine-containing additives used in real-world Spandex polymers, polyurethane compositions containing the additives, and polyurethanes Pentex composition. φ In order to solve the above-mentioned problems, the inventors have made intensive investigations and found that a novel compound formed by using diaminoamino ethyl (meth) acrylate and a reactive monomer having a specific structure as an essential copolymer component The tertiary amine acrylonitrile copolymer has high solubility in DMA c solvent, and its effect is determined to overcome the above problems, and the fifth aspect of the present invention is completed. In other words, the fifth aspect of the present invention (1) is to provide a dialkylamino group-containing acrylonitrile-based copolymer, which is characterized by (meth) propionate dialkylamine represented by the following general formula (1): Ethyl ester and the reactive monomer represented by the general formula (2) are -16-200523293 * ί must be formed by copolymer components. CH2 = CRC00CH2CH2NR ° R ° (1) (where 'R represents hydrogen or methyl; R◦ represents alkyl having 1 to 4 carbon atoms) CH2 = CRCOOCH2CH2〇 [-c (= 0) (CR1R2) x- 〇-] η · Η (2) (where R represents hydrogen or methyl; X ... and ... each represents independent hydrogen or an alkyl group having 1 to 12 carbon atoms; η ring-opening lactone chains It can be the same or different; X is an integer of 4 to 7; the average 値 of η is 1 to 5) and '(2) provides a dialkylamino group-containing acrylonitrile as described in (1) above. Polyurethane based copolymer. In addition, (3) provides the polyurethane composition as described in (2) above, wherein the content of the dialkylamino group-containing acrylonitrile-based copolymer is 0.5 to 10% by weight. In addition, (4) A Spandex composition is provided, which is characterized by containing a dialkylamino group-containing acrylonitrile copolymer according to the invention (1) above. • '(5) provides the spandex composition as described in (4) above, wherein the content of the dialkylamino group-containing acrylonitrile copolymer is 0.5 to 10% by weight. A sixth object of the present invention is to provide an artificial body having more excellent elastic restoring force, strength, and hydrolytic resistance, that is, artificial characteristics having excellent hydrolytic resistance, wrinkle resistance, and adhesiveness, and a satisfactory texture. Polyurethane for leather. In order to solve the above-mentioned sixth problem of the present invention, the present inventors have repeatedly researched -17-200523293 ^ 9 as a result of research, and thus completed the present invention. In other words, the sixth aspect (1) of the present invention provides a polyester diol, which is characterized by containing an aliphatic diresidual acid having at least 9 to 12 carbon atoms, an aliphatic diol, and ε-caprolactone. Is a constituent unit. Furthermore, '(2) provides a polyester diol as described in (1) above, wherein the average molecular weight is 500 to 5,000. In addition, ((3)) provides a polyester diol as described in (1) or (2) above, in which the polyester diol is composed of an aliphatic diol and an aliphatic dicarboxylic acid having 9 to 12 carbon atoms. Unit content / ε-caprolactone's constituent unit content (weight ratio) is 5/95 ~ 80/20 ° In addition, '(4) is to provide a polyester diol as described in any one of (1) to (3) above Polyurethane obtained with organic diisocyanate. Furthermore, (5) provides a polyurethane for artificial leather as described in (4) above. The best mode for carrying out the invention φ The following describes the embodiment of the first invention and the second invention in the following order. The first invention will be described. The diol used in the present invention is a specific diol, that is, at least one kind selected from 2-n-butyl-2-ethyl-1,3-propanediol and 2,2-diethyl-1,3-propanediol And 2,4-diethyl-1,5-pentanediol group of diols. These can be used alone or in combination of two or more. Further, as long as the effects of the present invention are not impaired, glycol compounds other than these may be used. Examples of this diol compound-18-200523293 > * such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl alcohol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 1,8-nonanediol, diethylene glycol, dipropylene glycol, cyclohexanedimethanol, and the like. The acid component of the polyester polyol of the present invention uses adipic acid, but other acid components such as glutaric acid, suberic acid, azelaic acid, sebacic acid, Aliphatic or aromatic dicarboxylic acids such as dodecanedioic acid, 1,11-undecane dicarboxylic acid, p-benzoic acid, isobenzoic acid, and 5-sulfosodium isobenzoic acid. These other acid ingredients can be used alone or as a mixture of 2 or more ® with adipic acid. Moreover, the acid component of the raw material may be used in the form of an ester derivative or an acid anhydride. The other component constituting the polyester polyol in the present invention is ε-caprolactone, but other lactones such as monomethyl-ε-caprolactone and trimethyl can be used within a range that does not impair the effect of the present invention. -ε-Caprolactone and other methylated ε-caprolactone, r-butyrolactone, 5-valerolactone and other auxiliary components of ε-caprolactone. The method for producing the polyester polyol of the present invention is not particularly limited, and a conventional method φ can be used. For example, it is manufactured based on the method described in Japanese Patent Application Laid-Open No. 5 8-5 9 2 12. In other words, it can be produced by mixing and heating the diol, ε-caprolactone, and adipic acid, and performing a dehydration esterification reaction, a ring-opening reaction, and a transesterification reaction (one-time heating method), or by using a diol The polyester polyol obtained by dehydration and esterification reaction with adipic acid is a polycaprolactone polyol synthesized by ring-opening reaction with ε-caprolactone in a polyhydric alcohol, usually mixed with polycaprolactone diol Manufactured by transesterification of the two. In addition, it can be produced by ring-opening polymerization of ε-caprolactone in a polyester polyol having a small molecular weight -19-200523293 a >. Among these, the one-time heating method is relatively simple and desirable. These reactions are preferably performed at 130 to 240 ° C, and more preferably 140 to 230 V, in terms of preventing coloring and preventing the depolymerization reaction of ε-caprolactone. For these reactions, the catalyst is usually used in an amount of 0.05 to 1000 ppm by weight, preferably 0.1 to 100 ppm by weight, for all the monomers. The catalyst can use organic titanated compounds such as tetrabutyl titanate, tetrapropyl titanate, dibutyl tin laurate, tin octoate, dibutyl tin oxide, tin chloride, tin bromide, Tin compounds such as tin iodide. The reaction is carried out by flowing an inert gas such as nitrogen, and it is desirable to prevent the color of the obtained target substance. The content of the constituent unit of the polyester polyol of the present invention is determined by using at least one member selected from the group consisting of 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, and Polyester constituent unit content of diols grouped by 2, 4-diethyl-1,5-pentanediol and adipic acid / ε-caprolactone constituent unit content (weight ratio) is φ 5 / 95 ~ 80/20, that is, the use of each raw material in the ratio in this range. The same applies when polyε-caprolactone is used. The polyester diol thus obtained has an average molecular weight of 500 to 5,000, preferably 1,500 to 4,000. When the molecular weight is 5,000 or more, the soft segment crystallinity is increased, and it is difficult to obtain a Spandex fiber having satisfactory physical properties. The average molecular weight can be measured by the hydroxyl value (j I S KK 1 5 5 7). A polyurethane formed from the polyester diol obtained above and an organic isocyanate is produced. The method for producing polyurethane is a known method, for example, the methods described in Japanese Patent Application Laid-Open No. 58-20-20-200523293 5 92 1 2 and Japanese Patent Application Laid-Open No. 1-1 822, and the like may be used as a reference. In other words, there is a primary reaction method in which a polyester diol, a low molecular weight diol or diamine as a chain extender, and an organic diisocyanate are reacted together with or without a solvent, or a polyester diol and organic A prepolymer method in which a diisocyanate is reacted in advance to obtain a prepolymer, and then a low-molecular-weight diol is reacted with or without a solvent. In terms of cost, a melt polymerization method produced without a solvent is preferred. At this time, the blending ratio of the raw materials is all the OH groups of the NC0 group of the organic isocyanate / polyester diol and the low molecular weight diol = 0.5 to 1.5, and preferably 0.8 to 1.2. Examples of the solvent include toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, dimethyl formase amine, and tetrahydrofuran. Examples of the organic diisocyanate used in the present invention include 2,4-diisocyanotoluene, 2,6-diisocyanotoluene, p-diisocyanophenylene, 4,4, -diisocyanate Acid diphenylmethane, m-diphenylene cyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, 2, naphthalene diisocyanate, 4,4, _ Monophenylene diisocyanate, xylylene diisocyanate, xylylene diisocyanate, dicyclohexane diisocyanate, 4,4,2-diisocyanate Dicyclohexylmethane isocyanate, isophorone diisocyanate, etc. These can be used alone or in combination of two or more. As the above-mentioned low-molecular-weight diol as a chain extender, the diol used in the present invention or the above-mentioned diol compound usable therewith can be used. As the diamine of the chain extender, ethylenediamine, hydrazine, isophoronediamine, methylphenylenediamine, 4,4'-diaminodiphenylmethane, and diaminodiphenyl can be used. Code, 3,3, _di-21-200523293 ^ m Chloro-4,4 ^ diaminophenylmethane, etc. The polyurethane obtained by the above method can be used in various applications where polyurethane is generally used, such as thermoplastic elastomers, hard or soft urethane foams, adhesives, artificial leather, synthetic leather , Coatings, etc., especially for Spandex fibers. The spinning method for producing the spandex fiber from the polyurethane of the present invention is a known method, that is, a dry spinning method, a wet spinning method, a melt spinning method, and the like. Among these, melt spinning is preferable in terms of cost. In addition, after spinning B, the elastic fibers are heat-treated to obtain those having higher physical properties. To the Spandex fiber of the present invention, an antioxidant such as a phenol derivative, a UV absorber such as a substituted benzotriazole, an anti-adhesive such as a higher fatty acid metal salt or a polysiloxane compound may be added as necessary. . The Spandex fiber provided by the present invention has excellent elastic restoring power, strength, and resistance to water decomposition. Therefore, the Spandex fiber can be used in a general use form, that is, in the form of interlacing and interweaving of nylon, cotton and the like. _ Especially when using cotton as the target raw material, the process of scouring, bleaching, mercerizing, etc., which are processed after cross-knitting or interlacing, that is, high-temperature processing in an acidic or aerobic atmosphere, can still exert good resistance to hydrolysis. . An embodiment of the second invention will be described below. The branched chain aliphatic diols used in the present invention include, for example, 1,2-propanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, neopentyl alcohol, and 3-methyl-1, 5-pentanediol, 2-n-butyl-2-ethyl-1,3-butanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1, 3-propanediol, 2,4-diethyl-1,5-pentane-22- 3 9 2 32. 5 00 2 · Alcohol hexanol is not present, and it is divided into two parts. The alcohol is used to mix dioxin for mixed use so that the chain branch of the aliphatic fat is not compounded. 一一 一一 2cohol bis, dipropyl should be in the range of CO. 1. Use the substance and make it mellow. The single effect alcohol. The single-effect alcohol B can be used. This is the case of this example. As a consequence, iso-alcohols such as alcohols can also be alcohols 0-di-1, nonyl 8-carbon 1, and 6-alcohols 1,2-diesters, di-di-butyl amines 4-benzyl 1, which are ester alcohols. It is used as a glycol diol difatty acid such as carboxylic acid, such as sebacic acid, dodecanedioic acid, 1,11-undecanedicarboxylic acid, and the like. Among them, sebacic acid and dodecanedioic acid are preferred. Further, as long as the effect of the present invention is not impaired, other acid components can be used. For example, glutaric acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 1,1 1-11 can be used. Aliphatic or aromatic dicarboxylic acids such as alkane dicarboxylic acid, p-benzoic acid, isobenzoic acid, and 5-sulfosodium isobenzoic acid. These other acid components can be used alone or as a mixture of two or more kinds with aliphatic dicarboxylic acids having 10 to 12 carbon atoms. The acid component of the raw material may be used in the form of an ester derivative or an acid anhydride. The other components constituting the polyester diol of the present invention are the same ε-caprolactone as in the first invention, but other lactones similar to the first invention of the present invention may be used as auxiliary components. The polyester diol of the present invention can be produced by the same method as described in the first aspect of the present invention. The content of the constituent unit of the polyester diol of the present invention is the content of the constituent unit of the polyester formed from the branched diol and the aliphatic dicarboxylic acid having a carbon number of 10 to 12 / ε-the content of the constituent unit of caprolactone (weight Ratio) is 5/95 ~ 80/20, preferably 20/80 ~ 80/20 -23- 200523293 km, that is, each raw material in this range ratio is used. The same applies when poly? -Caprolactone is used. The average molecular weight of the polyester diol thus obtained is 5,000 to 5,000, and more preferably 1,500 to 4,000. When the molecular weight is 5,000 or more, the crystallinity of the 'soft segment increases, and it is difficult to obtain a spandex fiber having satisfactory physical properties. The average molecular weight can be measured by the valence of hydroxyl (I S KK 1 5 5 7). The method for producing a polyurethane formed from the polyester diol and the organic isocyanate obtained above, and the organic isocyanate used are as described in the first aspect of the present invention. As the low-molecular-weight diol used as a chain extender, a branched aliphatic diol used in the present invention or the above-mentioned unbranched diol compound used therefor can be used. The diamine system as the chain extender is the same as the first exemplifier of the present invention. The application of the first polyurethane of the present invention and the description of the spandex fiber are also the same in the second aspect of the present invention. An embodiment of the third invention will be described below. • The diol used in the present invention is 2,4-diethyl-1,5-pentanediol. However, this diol and other diols may use, for example, one or more kinds of ethylene glycol, propylene glycol, 2-n-butyl-1,3-propanediol, and 2,2-diethyl-1,3- Propylene glycol, 1,4-butanediol, 1,6-hexanediol, octanediol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 1,8- Nonanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol, and the like. At this time, in terms of the effect of the present invention, it is preferable to use 2,4-diethyl-1,5-pentanediol at 5 mol% or more, and more preferably 10 mol% or more. In terms of performance, the preferred range is 80 mol% to 24, 205,293,293% or less, and the more preferred range is 70 mol% or less. The acid component of the polyester diol of the present invention is not particularly limited, such as glutaric acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 1, n-undecanedicarboxylic acid, Aliphatic or aromatic dicarboxylic acids such as p-benzoic acid, isobenzoic acid, and 5-sulfosodium isobenzoic acid. These acid components can be used alone or in combination of two or more. The acid component of the raw material can be used in the form of an ester derivative or an acid anhydride. Among these, adipic acid is preferred. The production method of the polyester diol of the present invention is not particularly limited, and a conventional ® method can be used. The reaction usually uses a catalyst of 0.05 to 1,000 ppm by weight, preferably 0.1 to 100 ppm by weight for all the monomers. As the catalyst, organic titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, and the like, dibutyltin laurate, tin octoate, dibutyltin oxide, tin chloride, tin bromide, and tin iodide can be used. Tin compounds. The reaction is carried out by circulating an inert gas such as nitrogen, and it is desirable to prevent the coloration of the obtained target substance. The above-mentioned polyester diol has an average molecular weight of 500 to 5,000, preferably φ 1,500 to 4,000. When the molecular weight is 5,000 or more, the crystallinity of the soft segment increases, and it is difficult to obtain a spandex fiber having satisfactory physical properties. The average molecular weight can be measured by a hydroxyl value (J I S K 1 5 5 7). The method for producing a polyurethane formed from the polyester diol and the organic isocyanate obtained above, and the organic isocyanate used are as described in the first aspect of the present invention. As the low-molecular-weight diol system as a chain extender, a branched aliphatic diol used in the present invention or the above-mentioned unbranched diol compound used therefor can be used. -25- 200523293 As the bond elongating agent, ^ fe is the same as the first exemplifier of the present invention. The use of the first polyurethane of the present invention and the description of the spandex fiber are also the same in the third aspect of the present invention. An embodiment of the fourth invention will be described below. The polyol (A 1) containing an ultraviolet absorbing group used in the present invention is not particularly limited, and examples thereof include a diol having two alcoholic warp groups represented by the following formula (1). This system is bis (3- (2H-benzotriazol-2-yl) -4-hydroxy-phenylethanol) methane. The diol may be a synthetic product or a commercially available product.

此外,內酯改性之聚醇沒有特別的限制,例如有式(2 )所 鲁示的二醇化合物。而且,於製造下述聚酯聚醇時,(A2 )內 酯改性的聚醇可單獨使用,亦可與(A 1 )聚醇〜起使用。 -26- 200523293In addition, the lactone-modified polyol is not particularly limited, and examples thereof include a diol compound represented by the formula (2). In the production of the polyester polyol described below, the (A2) lactone-modified polyol may be used alone or in combination with the (A1) polyol. -26- 200523293

(R1〜R2係表示Η、碳數1〜10之院基;η及η’係表示4 〜8之整數;m 及m’係表示1〜20) 式(2 )所示之紫外線吸收性化合物的製法係在上述式(1 ) 所示之二醇中使下述式(3)所示之內酯類進行開環加成聚合 所得者。 R1(R1 to R2 represent fluorene and a carbon number of 1 to 10; η and η 'represent integers of 4 to 8; m and m' represent 1 to 20) The ultraviolet-absorbing compound represented by formula (2) The production method is obtained by subjecting a lactone represented by the following formula (3) to ring-opening addition polymerization in a diol represented by the above formula (1). R1

φ ^ (3) (R1〜R2係表示Η、碳數1〜10之烷基;N係表示4〜8 之整數) 上述式(3 )所示之內酯類例如有ε -己內酯、三甲基-ε -己內酯、單甲基-ε-己內酯、7-丁內酯、(5-戊內酯等。 其中以ε -己內酯較佳。 在上述式(1)所示之二醇中使上述式(3)所示之內酯類進 行開環加成聚合時所使用的觸媒,例如有四丁基鈦酸酯、 -27- 200523293 m * 四丙基鈦酸酯等之有機鈦化合物,二丁基錫月桂酸酯、辛 酸錫、二丁基錫氧化物、氯化錫、溴化錫、碘化錫等之錫 化合物。 觸媒之使用量對加入的原料而言爲0 . 1〜lOOOOppm、較佳 者爲1〜5000ppm。若觸媒之使用量小於O.lppm時,內醋之 開環反應顯著變慢,係爲不經濟。反之,若大於lOOOOppm 時開環反應時間提早,使用所得的化合物之合成樹脂的耐 久性、耐水性等物性不佳,故不爲企求。 ® 反應溫度爲90〜240°C、較佳者100〜220°C。若反應溫 度小於90 °C時,內酯類之開環反應顯著變慢,係爲不經濟。 反之,若爲240 °C以上時由於開環加成聚合的聚內酯產生解 聚合反應,皆不爲企求。而且,反應中以在氮氣氣體等之 惰性氣體之氣氛下合成,可使製品之色相等具有良好的結 果。如此合成本發明之紫外線吸收劑。此等之詳細說明係 如特開平1 0 - 2 6 5 5 5 7號公報記載。 φ 其他之(A3)聚二醇例如有乙二醇、1,2 -丙二醇、1,3 -丁 二醇、2 -甲基-1,3 -丙二醇、新戊醇、1,4 -丁二醇、1,6 -己 二醇、2 -甲基-1,3-丙二醇、3 -甲基-1,5·戊二醇、1,8 -壬 二醇、二乙二醇、二丙二醇、1,4 -環己烷二甲醇、2-正-丁 基-2-乙基-1,3 -丁二醇、2,2 -二甲基-1,3 -丙二醇、及2,4-二乙基-1,5 -戊二醇、1,2 -己二醇、1,2 -辛二醇等。此等可 單獨使用,亦可2種以上混合使用。 本發明聚酯聚醇之酸成分係使用己二酸,其他之酸成分 -28- 200523293 可使用與第1發明之相同記載者,且使用所記載的形態。 本發明聚酯聚醇之製法沒有特別的限制,可使用習知的 方法。反應通常對全部單聚物而言使用0 . 05〜100Oppm(重 量)觸媒、較佳者爲〇 · 1〜1 OOppm。觸媒可使用四丁基鈦酸 酯、四丙基鈦酸酯等之有機鈦化合物,二丁基錫月桂酸酯、 辛酸錫、二丁基錫氧化物、氯化錫、溴化錫、碘化錫等之 錫化合物。反應就所得目的物之防止著色等而言,以在使 氮氣等之惰性氣體流通下進行較佳。 ® 上述聚酯聚醇之平均分子量爲500〜5, 000、較佳者爲 1,500〜4,000。若爲5, 000以上之分子量時,軟段之結晶 性增加且不易製得具有令人滿足的物性之斯潘德克斯纖 維。平均分子量係藉由羥基價(J IS K 1 557 )予以測定。 本發明聚酯聚醇的構成單位含量,係由(A)聚醇成分與己 二酸所成的聚酯構成單位含量/內酯之構成單位含量(重量 比)爲5/95〜80 / 20、即使用在該範圍之比例的各原料。 φ 有關上述所得的由聚酯二醇與有機異氰酸酯製造聚胺甲 酸酯的方法中,所使用的有機異氰酸酯如本發明之第1所 記載者。 作爲鏈延長劑之低分子二醇,可使用本發明使用的其他 聚醇之上述的二醇化合物。作爲鏈延長劑之二胺係與本發 明之第1例示相同者。 藉由上述方法所得的聚胺甲酸酯之用途,係爲使用於本 發明之第1所記載的用途,尤其是以耐洗濯性而言,使用 -29- 200523293 於斯潘德克斯纖維較佳。 於本發明之第4中由聚胺甲酸酯製得斯潘德克斯纖維的 紡紗方法,係直接使用本發明之第1所記載者。 本發明所提供的斯潘德克斯纖維具有優異耐候性之耐洗 濯性,斯潘德克斯纖維之一般的使用形態、即以耐龍與棉 等之交編、交織的形態使用。尤其是使用棉爲對象原料時, 交編或交織後之後加工、即在酸或鹼之氣氛下即使經由以 高溫處理的精練、漂白、絲光處理等之工程,仍具有良好 ® 的耐候性、且作爲製品使用時即使重複洗濯,幾乎不會有 耐候性降低的情形。 於下述中說明第5發明之實施形態。 本發明中所使用的高分子狀3級胺化合物,係爲二烷胺 基乙基(甲基)丙烯酸酯之共聚物。更詳言之,係使用下述 一般式(1)所示的二烷基乙基(甲基)丙烯酸酯作爲共單聚 物。 φ CH2 = CRCOOCH2CH2NR°R° (1) (其中,R係表示氫或甲基;R。係表示碳數1〜4之烷基) 具體的單體種類係使用二異丙胺基乙基甲基丙烯酸酯 (DIPANM)、二甲胺基乙基甲基丙烯酸酯(DMAM)、二乙胺基 乙基甲基丙烯酸酯(DEAM)、二甲胺基乙基丙烯酸酯(DEAA) 等。該單體中最適合使用的單體爲DIPAM。 該單體的使用量通常爲共聚物之60〜90重量%。較佳者 爲70〜80重量%。 -30- 200523293 • » 另外,本發明所使用的與上述二烷胺基乙基(甲基)丙烯 酸酯形成共聚合物之共單聚物係爲下述一般式(2 )所示的反 應性單體。 CH2 = CRC〇〇CH2CH2〇[ -c(=0) (CRiR2)〆。- ]n-H (2) (其中,R係表示氫或甲基;x個!^1及R2係各表示氫或 碳數1〜12之烷基;n個開環內酯鏈可互爲相同或不同。X 爲4〜7之整數;η之平均値爲丨〜5) _ 若η之平均値大於5時,所得共聚物之溶劑溶解性、 聚胺甲酸酯樹脂、與斯潘德克斯組成物之相溶性等會產生 問題。 該反應性單體之製法係藉由下述一般式(3 )所示的內酯與 乙二醇之單丙烯酸酯或單甲基丙烯酸酯反應所成。 r~Cc(=:〇)(cR1R2) ___ ( 3 ) (其中’ X個R1及R2係表示獨立的氫或碳數1〜12之烷 基;X係爲4〜7 ) 上述式(3)所示的內酯類係爲ε -己內酯、二甲基-ε -己 內酉曰單甲基己內酯、丁內酯、(5_戊內酯等。其 中以£ _己內酯、4 -甲基-ε -己內酯、3 -甲基-ε -己內酯較 佳。 更具體的製造方法係在約200ppm以下(較佳者爲100ppm -31 - 200523293 以下)之觸媒存在下,使內酯與乙二醇之單丙烯酸酯或單甲 基丙烯酸酯反應予以進行。 本發明所使用的觸媒係爲1種或2種之有機金屬化合 物及其他金屬化合物、例如氯化錫、溴化錫、碘化錫、二 丁基錫氧化物等之錫化合物、或氯化鐵、及其他路易斯酸 以及質子酸等。較佳的觸媒爲氯化錫、鈦酸錫、二丁基錫 二月桂酸鹽、及其他的錫化合物;鈦酸四異丙酯及鈦酸四 丁酯之鈦酸酯等。 ® 該反應係在約1 0 0〜1 4 0 °C (較佳者爲約1 1 0〜1 3 0 °C )之溫 度下進行。該反應可在大氣壓下進行,或在高壓或較低壓 下進行。該反應係以在使氧濃度調整爲4%〜8%之氣氛下進 行’可控制乙二醇之單丙烯酸酯或單甲基丙烯酸酯之聚合 較佳。反應時間約爲2〜3 0小時,較佳者約爲3〜2 0小時。 本反應係在爲阻止乙二醇之單丙烯酸酯或單甲基丙烯酸 酯雙鍵聚合之適當抑制劑存下進行。此等之抑制劑例如有 ^ 氫醌之單甲醚、苯醌、甲基氫醌、2,5 -二-第3 - 丁基醌、氫 醌、及該業界習知之其他的一般游離基抑制劑。抑制劑之 使用量係爲lOOOppm以下、較佳者爲800ppm以下、更佳者 爲600ppm以下。 較佳的具體例係爲本發明的方法,在氮氣之惰性氣體中 使內酯分散且使內酯加入反應器中,再使其加熱至反應溫 度(約爲100〜140 °C )予以進行。使用的內酯先加入反應器 中’例如使用如分子篩之慣用的作用劑予以乾燥。到達反 -32- 200523293 應溫度時或之後,使惰性氣體之分散變成使氧濃度調整爲4% 〜8 %之氣氛混合物。亦可使用其他的各種方法。例如使系 內之氧濃度調整爲4%〜8%之氣氛混合物在短時間內、即爲 在約5〜1 0分鐘內分散,再使分散中斷,且經過全體反應 後反應器之氣相空間仍充滿的該氣體混合物。或使該惰性 氣體之分散停止,使經反應的全體混合物仍充滿於系內。 或通過系內以使氣體混合物分散,另外,在反應之間另使 用惰性氣體以使氣相空間充滿。視其所需亦可組合此等方 •法予以使用。 乙二醇之單丙烯酸酯或單甲基丙烯酸酯係使觸媒與抑制 劑混合,再使該混合物加入經加熱的內酯中。別法亦可先 加熱再使抑制劑加入內酯中。另外,於加熱後加入乙二醇 之單丙烯酸酯或單甲基丙烯酸酯,或最初使全部的反應劑 加入反應器中再進行反應。於加入內酯、丙烯酸酯或甲基 丙烯酸酯、觸媒及抑制劑的方式中,可使用各種的變法。 φ 最終的反應混合物係保持於反應溫度爲約2〜3 0小時。 而且,例如在不含活性氫或可聚合的乙烯性不飽和基之 適當溶劑存在下進行本方法。此等溶劑例如有酮、酯、醚、 芳香族及脂肪族碳氫化合物等、或此等之混合物。較佳的 溶劑係爲溶膠乙酸酯之酯類。 較佳者爲本說明書所記載的方法,對1〜1 2莫耳之內酯 而言以1莫耳丙烯酸酯或甲基丙烯酸酯的比例使ε ·己內 酯、4 -甲基-ε -己內酯或3 -甲基-ε -己內酯及此等之混合 -33- 200523293 物與乙二醇之單丙烯酸酯或甲基丙烯酸酯反應。此等組成 物可以爲固體或液體,最佳的組成物爲液體。 最佳的組成物係對1〜5莫耳之ε -己內酯、4 -甲基-ε -己內酯或3 -甲基-ε -己內酯及此等之混合物而言爲1莫耳 乙二醇之單丙烯酸酯或單甲基丙烯酸酯之比例,使ε -己內 酯、4 -甲基-ε -己內酯或3 -甲基-ε -己內酯及此等混合物 與乙二醇之單丙烯酸酯或甲基丙烯酸酯反應予以製造。 使該反應混合物回收,直接在沒有精製下使用。視其所 ® 需,該反應混合物可以真空汽提法等慣用方法予以精製。 上述之本發明共聚物之製法係如羅德恩(譯音)之特開平 2 - 86 6 5 5號所記載,採用藉由一般的游離基溶劑聚合予以製 造的方法。 此等之共聚物的具體詳細製造方法係爲本發明之實施例 所記載。 本發明之共聚物,就對溶劑之溶解性、與聚胺甲酸酯或 φ 斯潘德克斯之相溶性而言平均分子量爲2000〜2000000、較 佳者爲5000〜500000,重量平均分子量爲4000〜4000000、 較佳者爲10000〜1 000000。 本發明之共聚物於聚胺甲酸酯/斯潘德克斯纖維中最爲有 用。本發明係提供含有含二烷胺基之丙烯腈系共聚物的經 改良聚胺甲酸酯組成物及斯潘德克斯組成物。本發明含添 加劑之聚胺甲酸酯及斯潘德克斯組成物,不僅對惡化及變 色而言具有良好的耐性,且與習知之含高分子量3級胺添 -34- 200523293 加劑的相同聚合物相比,呈現優異的加工性與永久拉伸特 本發明經改良的斯潘德克斯聚合物組成物係由以段化的 聚胺甲酸酯例如聚醚、聚酯、聚酯聚醚等爲基準予以製造。 該斯潘德克斯聚合物係爲已知,其中以美國專利第 2,929,804號、第 3,097,192號、第 3,428,711 號公報、第 3, 533, 290號公報及第3, 555, 115號公報揭示的方法製造。 本發明之組成物係於以聚醚爲基準之斯潘德克斯中最爲有 本發明之聚胺甲酸酯組成物與斯潘德克斯組成物,係使 在兩末端具有羥基之聚醇及/或聚酯與有機異氰酸酯及較 低分子量之具2個活性氫之鏈延長劑的二醇、二胺等,在 所需的觸媒存在下反應所得者。 聚醇例如乙二醇、1,2 -丙二醇、1,3 - 丁二醇、2 -甲基-1,3 -丙二醇、新戊醇、1,4 -丁二醇、1,6 -己二醇、3 -甲基-1,5-戊二醇、1,8-壬二醇、二乙二醇、二丙二醇、1,4-環己烷 二甲醇、2 -正-丁基-2-乙基-1,3 -丙二醇、2,2 -二乙基-1,3-丙二醇及2,4·二乙基-1,5 -戊二醇、1,2 -己二醇、1,2 -醇、 於此等之中加成有氧化乙烯、氧化丙烯、氧化丁烯等之聚 醇、此等經改性物等。此等可各單獨使用或2種以上混合 使用。 聚酯聚醇之酸成分係使用己二酸,亦可倂用其他的酸成 分例如戊二酸、辛二酸、壬二酸、癸二酸、十二烷二酸、1,11- -35- 200523293 • » ~1--院二殘酸、對苯甲酸、異苯甲酸、5 -磺基鈉異苯甲酸 等脂肪族或芳香族二羧酸等。而且,此等之其他的酸成分 可使用單獨或2種以上混合物。而且,原料之酸成分亦可 以酯衍生物或酸酐之形態使用。 有機二異氰酸酯係如本發明之第1所記載。 上述作爲鏈延長劑之低分子二醇係可使用上述之二醇化 合物。作爲鏈延長劑之二胺係與本發明之第1例示相同。 本發明中保護斯潘德克斯聚合物的有用添加劑之量,通 ® 常可使用斯潘德克斯聚合物之0.5重量%〜10重量%的多量 廣泛範圍。較佳者係添加劑之濃度爲2〜6重量%。若小於 〇 · 5重量%時效果不足,而若大於10重量%時不具斯潘德克 斯纖維之特性,故不爲企求。 本發明中使二烷胺基(甲基)丙烯酸酯共聚物添加劑添加 於斯潘德克斯聚合物的方法,可使用一般的方法。例如使 添加劑之溶劑與在爲調製斯潘德克斯之紡紗溶劑時所使用 φ 者相同的溶劑中予以調製。該溶劑係在使聚合物形成製品 例如纖維或薄膜前,添加於溶液中。 本發明共聚物之添加係爲漢德(譯音)之美國專利第 3,428 , 7 1 1號所揭式的添加法之一般形式者,可參考該揭 示。 本發明斯潘德克斯聚合物組成物可含有視其目的之各種 添加劑。此等之添加劑中,亦可存在有顏料或除光澤劑(例 如二氧化鈦)、防黏接劑或平滑劑(例如硬酯酸鎂及硬酯酸 -36- 200523293 » Μ 錦)、白色提高劑(例如群青)、塡充劑(例如滑石)。 此外,除纖維及薄膜之有用用途外,本發明含二烷胺基(甲 基)丙儀酸酯共聚物之聚胺甲酸酯亦可應用於例如人工皮革 之用途等。 於下述中說明第6發明之實施形態。 本發明所使用的脂肪族二醇除本發明之第2所例示之支 鏈脂肪族二醇外,例如有作爲本發明第2之二醇的副成分 所例示的不具支鏈的脂肪族二醇。此等可單獨使用,或2種 •以上混合使用。 本發明中對聚酯聚醇而言之酸成分係爲碳數9〜12之脂 肪族二竣酸,例如壬二酸、癸二酸、十二烷二酸、1,η· 丨兀一酸等。其中,以壬二酸、癸二酸、十二院二酸較 佳。 而且,在不損害本發明效果之範圍酌,其他的酸成分可 使用戊二酸、辛二酸、壬二酸、癸二酸、十二烷二酸、 φ 十一烷二羧酸、對苯甲酸、異苯甲酸、5-磺基鈉異苯甲酸 等脂肪族或芳香族二羧酸等。此等其他的酸成分可單獨使 用’或以2種以上之混合物與碳數9〜丨2之脂肪族二羧酸 一起使用。而且,原料之酸成分亦可以酯衍生物或酸酐之 形態使用。 本發明構成聚酯聚醇的其他成分係與本發明之第1相同 的ε -己內酯,亦可使用與本發明之第1相同的其他內酯 作爲副成分。 -37- 200523293 本發明聚酯聚醇的製法係可採用與本發明之第1所記載 相同者。 本發明之聚酯聚醇構成單位含量,係使用由脂肪族二醇 與碳數9〜1 2之脂肪族二羧酸所成的聚酯構成單位含量/ ε -己內酯之構成單位含量(重量比)爲5/95〜80 / 20 (較佳者 爲20/80〜80/20),即使用在該範圍內之比例的各原料。使 用聚ε -己內酯時亦相同。如此所得的聚酯二醇之平均分子 量爲500〜5,000、較佳者爲1,500〜4, 000。若爲5, 000以 ® 上之分子量時,會增加軟段的結晶性,且不易得到具有令 人滿足的物性之斯潘德克斯纖維。平均分子量可藉由羥基 價(J IS Κ 1 5 5 7 )予以測定。 上述所得的由聚酯二醇與有機異氰酸酯所成的聚胺甲酸 酯之製法、所使用的有機異氰酸酯係如本發明第1所記載。 上述作爲鏈延長劑之低分子二醇可使用本發明之支鏈脂 肪族二醇、或可與其倂用的上述之不具支鏈的二醇化合物。 φ 作爲鏈延長劑之二胺與本發明之第1例示相同。 藉由上述方法所得的聚胺甲酸酯可使用於一般聚胺甲酸 酯所使用的各種用途,例如熱塑性彈性體、硬質或軟質胺 甲酸酯泡沬、黏接劑、斯潘德克斯纖維、合成皮革、塗料 等,惟以使用於人工皮革較佳。 而且,本發明中使用於人工皮革之聚胺甲酸酯之形態, 係可使用溶劑系胺甲酸酯或水系胺甲酸酯等,以下對該兩 者加以說明。 -38- 200523293 本發明中所使用的溶劑系聚胺甲酸酯,較佳者係於丨00% 拉伸時之係數爲1 5〜1 50cm2之範圍、更佳者爲1 5〜 70kg/cm2。若100%拉伸時之係數小於i5kg/cm2時,所得片 板之耐久性不佳且於海成分之萃取除去工程時縱拉伸激 烈,致使工業上生產不易。而若1 〇〇 %拉伸時之係數大於 15 0kg/cm2時,不易得到具有本發明目的之高密度化、低反 發性、良好質感之人工皮革。 由於本發明所使用的聚胺甲酸酯含浸於布帛中,可使用 作爲溶液。此時之較佳溶劑例如有二甲基甲醯胺、二甲基 乙醯胺、二噁烷、四氫呋喃等。 於本發明中含浸的聚胺甲酸酯以非溶劑凝固,即必須使 用濕式凝固方法。沒有以非溶劑進行凝固時,使用含浸、 乾燥以除去溶劑的方法,換言之,進行乾式凝固法者之質 感非常硬,且無法得到低反發感,故不爲企求。使聚胺甲 酸酯濕式凝固時之凝固浴的液體,例如水或水與上述溶劑 之混合溶液爲其代表例。另外,萃取除去極細纖維發生型 纖維之基體成分所使用的溶劑,例如有苯、甲苯、二甲苯 等芳香族碳氫化合物,三氯乙烯、四氯乙烯、四氯化碳等 鹵素化碳氫化合物等。 本發明所使用的聚胺甲酸酯中可添加習知的聚胺甲酸酯 中所使用的各種添加劑,例如磷系化合物、含鹵素之化合 物等難燃劑、抗氧化劑、紫外線吸收劑、顏料、染料、可 塑劑等。惟在萃取基體樹脂成分的工程中會同時被萃取者’ -39- 200523293 即使添加仍無法發揮其效果。 關於本發明所使用的布帛,沒有特別限制,可使用不織 布或編織布。其中以經3次元絡合的不織布爲宜。構成布 帛之纖維係以可以溶劑萃取除去的熱塑性樹脂作爲基體樹 脂成分,且以纖維形成性熱塑性樹脂爲島成分之具海島構 造的極細纖維發生型纖維。島成分所使用的樹脂例如有聚 醯胺樹脂或聚酯樹脂,而且,可以溶劑萃取的基體成分所 使用的熱塑性樹脂,例如聚烯烴、聚苯乙烯、改性的聚乙φ ^ (3) (R1 to R2 represent fluorene and an alkyl group having 1 to 10 carbon atoms; N represents an integer of 4 to 8) The lactones represented by the above formula (3) include ε-caprolactone, Trimethyl-ε-caprolactone, monomethyl-ε-caprolactone, 7-butyrolactone, (5-valerolactone, etc. Among them, ε-caprolactone is preferred. In the above formula (1) Among the diols shown, the catalyst used in the ring-opening addition polymerization of the lactones represented by the above formula (3) includes, for example, tetrabutyl titanate, -27- 200523293 m * tetrapropyl titanium Organic titanium compounds such as acid esters, tin compounds such as dibutyltin laurate, tin octoate, dibutyltin oxide, tin chloride, tin bromide, tin iodide, etc. The amount of catalyst used is for the raw materials added 0.1 to 1000 ppm, preferably 1 to 5000 ppm. If the amount of catalyst used is less than 0.1 ppm, the ring-opening reaction of internal vinegar is significantly slower, which is uneconomical. On the other hand, if it is greater than 1,000 ppm, the ring-opening reaction is not economical. The time is early, and the synthetic resin using the obtained compound has poor physical properties such as durability and water resistance, so it is not desirable. ® The reaction temperature is 90 ~ 240 ° C, preferably 100 ~ 220 ° C. When the temperature is less than 90 ° C, the ring-opening reaction of lactones becomes significantly slower, which is uneconomical. On the other hand, if it is above 240 ° C, the depolymerization reaction due to the ring-opening addition polymerization of polylactone is not effective. In addition, in the reaction, synthesis under the atmosphere of an inert gas such as nitrogen gas can make the color of the product equal and have good results. The ultraviolet absorbent of the present invention is thus synthesized. The detailed description of these is as in JP-A-10 -2 6 5 5 5 7. φ Other (A3) polyglycols include ethylene glycol, 1,2-propylene glycol, 1,3-butanediol, and 2-methyl-1,3-propanediol , Neopentyl alcohol, 1,4-butanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 1,8-nonane Diethylene glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol, 2-n-butyl-2-ethyl-1,3-butanediol, 2,2-dimethyl-1 , 3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,2-hexanediol, 1,2-octanediol, etc. These can be used alone or in combination of two or more. Mixed use. The acid component of the polyester polyol of the present invention is adipic acid. Other acid components-28- 200523293 can be used in the same manner as described in the first invention, and in the form described. The method for producing the polyester polyol of the present invention is not particularly limited, and conventional methods can be used. For monomers, 0.05 to 100 ppm (weight) catalyst is used, preferably 0.1 to 100 ppm. The catalyst can be organic titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, etc. , Dibutyltin laurate, tin octoate, dibutyltin oxide, tin chloride, tin bromide, tin iodide and other tin compounds. For the purpose of preventing the coloration of the obtained object, the reaction is preferably carried out by flowing an inert gas such as nitrogen. ® The average molecular weight of the above-mentioned polyester polyols is 500 to 5,000, preferably 1,500 to 4,000. When the molecular weight is 5,000 or more, the soft segment has increased crystallinity and it is not easy to obtain a spandex fiber having satisfactory physical properties. The average molecular weight is measured by a hydroxyl value (J IS K 1 557). The content of the constituent unit of the polyester polyol of the present invention refers to the content of the polyester constituent unit formed by the (A) polyol component and adipic acid / the content of the constituent unit of the lactone (weight ratio) is 5/95 to 80/20 That is, each raw material is used at a ratio in this range. φ In the method for producing a polyurethane from a polyester diol and an organic isocyanate obtained as described above, the organic isocyanate used is the one described in the first aspect of the present invention. As the low-molecular-weight diol of the chain extender, the above-mentioned diol compounds of other polyols used in the present invention can be used. The diamine as the chain extender is the same as the first example of the present invention. The use of the polyurethane obtained by the above method is the use described in the first aspect of the present invention. In particular, in terms of washing resistance, it is preferable to use -29-200523293 for Spandex fibers. In the fourth method of the present invention, a spinning method for producing a spandex fiber from polyurethane is directly used in the first method of the present invention. The Spandex fiber provided by the present invention has excellent weather resistance and washing resistance. The general use form of the Spandex fiber, that is, the form of interlacing and interweaving of nylon and cotton is used. In particular, when cotton is used as the raw material, it is processed after cross-knitting or interlacing, that is, in an acidic or alkaline atmosphere, it has good weather resistance even if it is subjected to high-temperature scouring, bleaching, and mercerizing processes, and When it is used as a product, the weather resistance is hardly reduced even if it is repeatedly washed. An embodiment of the fifth invention will be described below. The polymer-like tertiary amine compound used in the present invention is a copolymer of a dialkylaminoethyl (meth) acrylate. More specifically, a dialkylethyl (meth) acrylate represented by the following general formula (1) is used as a copolymer. φ CH2 = CRCOOCH2CH2NR ° R ° (1) (where R represents hydrogen or methyl; R. represents alkyl having 1 to 4 carbon atoms) The specific type of monomer is diisopropylaminoethyl methacrylic acid Esters (DIPANM), dimethylaminoethyl methacrylate (DMAM), diethylaminoethyl methacrylate (DEAM), dimethylaminoethyl acrylate (DEAA), and the like. The most suitable monomer among these monomers is DIPAM. The amount of the monomer used is usually 60 to 90% by weight of the copolymer. It is preferably 70 to 80% by weight. -30- 200523293 • »In addition, the co-monomer that forms a copolymer with the dialkylaminoethyl (meth) acrylate used in the present invention has a reactivity represented by the following general formula (2) monomer. CH2 = CRC〇CH2CH2〇 [-c (= 0) (CRiR2) 〆. -] nH (2) (wherein R is hydrogen or methyl; x number! ^ 1 and R2 are each hydrogen or alkyl group having 1 to 12 carbon atoms; n ring-opening lactone chains may be the same as each other or Different. X is an integer of 4 ~ 7; the average 値 of η is 丨 ~ 5) _ If the average 値 of η is greater than 5, the solvent solubility of the obtained copolymer, the polyurethane resin, and the spandex composition The compatibility and other problems can cause problems. This reactive monomer is produced by reacting a lactone represented by the following general formula (3) with a monoacrylate or a monomethacrylate of ethylene glycol. r ~ Cc (=: 〇) (cR1R2) ___ (3) (where 'X R1 and R2 are independent hydrogen or an alkyl group having 1 to 12 carbon atoms; X is 4 to 7) The above formula (3) The lactones shown are ε-caprolactone, dimethyl-ε-caprolactone, monomethyl caprolactone, butyrolactone, (5-valerolactone, etc., among which £ _caprolactone , 4-methyl-ε-caprolactone and 3-methyl-ε-caprolactone are more preferred. A more specific manufacturing method is a catalyst having a content of about 200 ppm or less (preferably 100 ppm -31-200523293 or less). In the presence, the lactone is reacted with the monoacrylate or monomethacrylate of ethylene glycol. The catalyst used in the present invention is one or two kinds of organometallic compounds and other metal compounds such as chlorinated Tin compounds such as tin, tin bromide, tin iodide, dibutyltin oxide, or iron chloride, and other Lewis acids and protonic acids, etc. The preferred catalysts are tin chloride, tin titanate, and dibutyltin di Laurate, and other tin compounds; tetraisopropyl titanate and titanate of tetrabutyl titanate, etc. ® The reaction is at about 100 to 140 ° C (preferably about 1 1 0 ~ 1 3 0 ° C). The reaction can be carried out at atmospheric pressure, or under high or low pressure. The reaction is performed in an atmosphere where the oxygen concentration is adjusted to 4% to 8%. The polymerization of alcohol monoacrylate or monomethacrylate is preferred. The reaction time is about 2 to 30 hours, more preferably about 3 to 20 hours. This reaction is based on monoacrylate to prevent ethylene glycol. Or a suitable inhibitor of the polymerization of the double bond of the monomethacrylate is carried out. Such inhibitors are, for example, monomethyl ether of hydroquinone, benzoquinone, methylhydroquinone, 2,5-di-third-butane Quinone, hydroquinone, and other general free radical inhibitors known in the industry. The amount of inhibitor used is 1,000 ppm or less, preferably 800 ppm or less, and more preferably 600 ppm or less. The preferred specific examples are In the method of the present invention, the lactone is dispersed in an inert gas of nitrogen and the lactone is added to the reactor, and then the lactone is heated to a reaction temperature (about 100 to 140 ° C) to be performed. The lactone used is first added to the reaction The container is dried, for example, using a conventional agent such as a molecular sieve. DA-32-200523293 When or after the temperature is changed, the dispersion of the inert gas is changed to an atmosphere mixture whose oxygen concentration is adjusted to 4% to 8%. Other various methods can also be used. For example, the oxygen concentration in the system is adjusted to 4 % ~ 8% of the atmosphere mixture is dispersed within a short period of time, that is, within about 5 to 10 minutes, and then the dispersion is interrupted, and the gas phase space of the reactor is still full after the entire reaction. Dispersion of the inert gas is stopped, so that the entire reaction mixture is still filled in the system. Alternatively, the gas mixture is dispersed through the system, and an inert gas is used between the reactions to fill the gas phase space. These methods can also be combined as needed. The monoacrylate or monomethacrylate of ethylene glycol mixes the catalyst with the inhibitor, and the mixture is added to the heated lactone. Other methods can also be heated before the inhibitor is added to the lactone. In addition, after heating, a monoacrylate or a monomethacrylate of ethylene glycol is added, or all of the reactants are initially charged into the reactor and then reacted. Various methods can be used for adding lactone, acrylate or methacrylate, catalyst and inhibitor. φ The final reaction mixture is kept at the reaction temperature for about 2 to 30 hours. Further, the method is performed, for example, in the presence of a suitable solvent containing no active hydrogen or a polymerizable ethylenically unsaturated group. Such solvents include, for example, ketones, esters, ethers, aromatic and aliphatic hydrocarbons, and the like, or mixtures thereof. Preferred solvents are sol acetate esters. The method described in this specification is preferred. For 1 to 12 moles of lactone, ε · caprolactone and 4-methyl-ε-are used at a ratio of 1 mole acrylate or methacrylate. Caprolactone or 3-methyl-ε-caprolactone and mixtures thereof -33-200523293 react with the monoacrylate or methacrylate of ethylene glycol. These compositions may be solid or liquid, with the most preferred composition being a liquid. The most preferred composition is 1 to 5 moles of ε-caprolactone, 4-methyl-ε-caprolactone or 3-methyl-ε-caprolactone and mixtures thereof The ratio of monoacrylate or monomethacrylate of erythrylene glycol is such that ε-caprolactone, 4-methyl-ε-caprolactone or 3-methyl-ε-caprolactone and these mixtures with Monoethylene glycol or methacrylic acid ester of ethylene glycol is produced by reaction. The reaction mixture was recovered and used without purification. If desired, the reaction mixture can be refined by conventional methods such as vacuum stripping. The above-mentioned method for producing the copolymer of the present invention is described in Japanese Patent Application Laid-Open No. 2-86 6 55 of Rhoden, and is produced by a general radical solvent polymerization. The specific detailed production methods of these copolymers are described in the examples of the present invention. The copolymer of the present invention has an average molecular weight of 2,000 to 2,000,000, preferably 5,000 to 500,000, and a weight average molecular weight of 4,000 to 5,000 in terms of solubility in solvents and compatibility with polyurethane or φ spandex. 4000000, preferably 10000 ~ 1 000000. The copolymers of the present invention are most useful in polyurethane / spandex fibers. The present invention provides an improved polyurethane composition and a spandex composition containing an acrylonitrile copolymer containing a dialkylamino group. The additive-containing polyurethane and spandex composition not only has good resistance to deterioration and discoloration, but also is the same polymer as the conventionally known high molecular weight tertiary amine additive-34-200523293 additive. In comparison, it exhibits excellent processability and permanent stretching. The improved Spendex polymer composition of the present invention is based on segmented polyurethanes such as polyether, polyester, polyester polyether, etc. Make it. This Spandex polymer is known, and the methods disclosed in U.S. Patent Nos. 2,929,804, 3,097,192, 3,428,711, 3,533,290, and 3,555,115 are disclosed. Manufacturing. The composition of the present invention is the polyurethane composition and the spandex composition of the present invention, which is the most widely used spandex based on polyether. It is a polyol having hydroxyl groups at both ends and / or Polyester, organic isocyanate, and lower molecular weight chain extender with two active hydrogen diols, diamines, etc., are obtained in the presence of the required catalyst. Polyols such as ethylene glycol, 1,2-propanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, neopentyl alcohol, 1,4-butanediol, 1,6-hexanediethylene glycol Alcohol, 3-methyl-1,5-pentanediol, 1,8-nonanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol, 2-n-butyl-2- Ethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol and 2,4 · diethyl-1,5-pentanediol, 1,2-hexanediol, 1,2 -Alcohol, Polyols such as ethylene oxide, propylene oxide, butylene oxide, and the like, and modified products thereof. These can be used singly or in combination of two or more kinds. The acid component of the polyester polyol is adipic acid. Other acid components such as glutaric acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, and 1,11-35 can also be used. -200523293 • »~ 1--Industrial di-residual acid, p-benzoic acid, isobenzoic acid, 5-sulfo sodium isobenzoic acid and other aliphatic or aromatic dicarboxylic acids. These other acid components may be used alone or as a mixture of two or more. The acid component of the raw material may be used in the form of an ester derivative or an acid anhydride. The organic diisocyanate is as described in the first aspect of the present invention. As the low-molecular-weight diol system as the chain extender, the diol compound described above can be used. The diamine system as a chain extender is the same as the first example of the present invention. The amount of useful additives for protecting the Spendex polymer in the present invention can generally be used in a wide range of 0.5% to 10% by weight of the Spendex polymer. Preferably, the concentration of the additive is 2 to 6% by weight. If it is less than 0.5% by weight, the effect is insufficient, and if it is more than 10% by weight, it does not have the characteristics of Spandex fibers, so it is not desirable. In the present invention, a method for adding a dialkylamino (meth) acrylate copolymer additive to a Spandex polymer can be a general method. For example, the solvent of the additive is prepared in the same solvent as that used when preparing the spinning solvent for Spindex. The solvent is added to the solution before the polymer is formed into a product such as a fiber or a film. The addition of the copolymer of the present invention is a general form of the addition method disclosed by Hande (US Patent No. 3,428,711), and can refer to the disclosure. The spandex polymer composition of the present invention may contain various additives depending on the purpose. Among these additives, pigments or delustering agents (such as titanium dioxide), anti-blocking agents or smoothing agents (such as magnesium stearate and stearic acid-36-200523293 »Μ brocade), white enhancers ( Such as ultramarine), tinctures (such as talc). In addition to the useful uses of fibers and films, the polyurethanes containing the dialkylamino (methyl) propionate copolymers of the present invention can also be used in applications such as artificial leather. An embodiment of the sixth invention will be described below. In addition to the branched aliphatic diols exemplified in the second aspect of the present invention, the aliphatic diols used in the present invention include, for example, non-branched aliphatic diols exemplified as secondary components of the second diol of the present invention . These can be used alone or in combination of two or more. In the present invention, the acid component of the polyester polyol is an aliphatic dicarboxylic acid having a carbon number of 9 to 12, such as azelaic acid, sebacic acid, dodecanedioic acid, and 1, η · 丨 monocarboxylic acid. Wait. Among them, azelaic acid, sebacic acid and dodecanedioic acid are preferred. In addition, as long as the effect of the present invention is not impaired, glutaric acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, φ undecanedicarboxylic acid, and p-benzene can be used as other acid components. Aliphatic or aromatic dicarboxylic acids such as formic acid, isobenzoic acid and 5-sulfo sodium isobenzoic acid. These other acid components may be used singly or in a mixture of two or more kinds with an aliphatic dicarboxylic acid having 9 to 2 carbon atoms. The acid component of the raw material may be used in the form of an ester derivative or an acid anhydride. The other components constituting the polyester polyol of the present invention are the same ε-caprolactone as in the first aspect of the present invention, and other lactones similar to the first aspect of the present invention may be used as auxiliary components. -37- 200523293 The method for producing the polyester polyol of the present invention may be the same as that described in the first aspect of the present invention. The content of the polyester polyol constituting unit of the present invention is a content of a polyester constituting unit using an aliphatic diol and an aliphatic dicarboxylic acid having a carbon number of 9 to 12 / ε-caprolactone constituting unit content ( The weight ratio is 5/95 to 80/20 (preferably 20/80 to 80/20), that is, each raw material is used in a proportion within this range. The same applies when poly? -Caprolactone is used. The polyester diol thus obtained has an average molecular weight of 500 to 5,000, preferably 1,500 to 4,000. When the molecular weight is 5,000 or more, the soft segment crystallinity is increased, and it is difficult to obtain a spandex fiber having satisfactory physical properties. The average molecular weight can be measured by a hydroxyl value (J IS KK 1 5 5 7). The production method of the polyurethane obtained from the polyester diol and the organic isocyanate obtained above and the organic isocyanate used are as described in the first aspect of the present invention. As the above-mentioned low-molecular-weight diol as a chain extender, the branched aliphatic diol of the present invention or the above-mentioned unbranched diol compound which can be used therewith can be used. The diamine as the chain extender is the same as the first example of the present invention. The polyurethane obtained by the above method can be used in various applications for general polyurethanes, such as thermoplastic elastomers, hard or soft urethane foams, adhesives, spandex fibers, Synthetic leather, paint, etc., but used in artificial leather is preferred. In addition, in the form of the polyurethane used in the present invention for the artificial leather, a solvent-based urethane or a water-based urethane can be used, and both of them will be described below. -38- 200523293 The solvent-based polyurethane used in the present invention is preferably a compound with a coefficient of 15% to 150cm2 when stretched to 00%, and more preferably 15 to 70kg / cm2 . If the coefficient at 100% stretching is less than i5kg / cm2, the durability of the obtained sheet is not good and the vertical stretching is intense during the extraction and removal process of the sea ingredients, making industrial production difficult. On the other hand, if the coefficient at 1000% is greater than 150 kg / cm2, it is difficult to obtain an artificial leather with high density, low reflectivity, and good texture, which is the object of the present invention. Since the polyurethane used in the present invention is impregnated in the fabric, it can be used as a solution. Preferred solvents at this time include, for example, dimethylformamide, dimethylacetamide, dioxane, and tetrahydrofuran. The polyurethane impregnated in the present invention is coagulated with a non-solvent, that is, a wet coagulation method must be used. In the case of non-solvent coagulation, a method of impregnation and drying to remove the solvent is used. In other words, the dry coagulation method has a very hard texture and cannot obtain a low anti-hair feeling, so it is not desirable. A typical example is a liquid in a coagulation bath when the polyurethane is wet-set, such as water or a mixed solution of water and the above-mentioned solvent. In addition, the solvent used for extracting and removing the matrix component of the ultrafine fiber-generating fibers includes, for example, aromatic hydrocarbons such as benzene, toluene, and xylene, and halogenated hydrocarbons such as trichloroethylene, tetrachloroethylene, and carbon tetrachloride. Wait. Various additives used in conventional polyurethanes can be added to the polyurethane used in the present invention, such as flame retardants such as phosphorus compounds, halogen-containing compounds, antioxidants, ultraviolet absorbers, and pigments. , Dyes, plasticizers, etc. However, in the process of extracting the resin component of the matrix, it will be extracted at the same time. '-39- 200523293 Even if it is added, its effect cannot be exhibited. The cloth used in the present invention is not particularly limited, and a non-woven cloth or a woven cloth can be used. Among them, a three-dimensionally complexed non-woven fabric is preferred. The fibers constituting the fabric are ultrafine fiber-generating fibers having an island structure using a thermoplastic resin that can be removed by solvent extraction as a matrix resin component and a fiber-forming thermoplastic resin as an island component. The resin used for the island component is, for example, polyamide resin or polyester resin, and the thermoplastic resin used for the solvent-extractable base component is, for example, polyolefin, polystyrene, or modified polyethylene.

更詳言之,本發明所使用的島成分樹脂之具體例,如6 -耐龍、6,6 -耐龍、6,1 0 -耐龍、1 2 -耐龍、具其他芳香族基 之可紡紗性聚醯胺、聚對苯甲酸乙烯酯、聚對苯甲酸丁烯 酯、經磺基異苯甲酸改性的聚對苯甲酸乙烯酯、經磺基異 苯甲酸改性的聚對苯甲酸丁烯酯等之樹脂。另外,構成基 體數成分之聚合物係爲與島成分對溶劑之溶解性不同且與 島成分之親和性少者,在紡紗條件下具有較島成分樹脂較 小熔融黏度之樹脂,例如有聚乙烯、聚丙烯、乙烯·丙烯共 聚物、乙烯-醋酸乙烯酯共聚物、乙烯-丙烯酸酯共聚物、 乙烯-α-烯烴共聚物、聚苯乙烯、苯乙烯-異戊烯共聚物、 苯乙烯-異戊烯共聚物之加氫物、苯乙烯-丁二烯共聚物、 苯乙烯-丁二烯共聚物之加氫物、改性聚乙二醇、改性聚酯 等。 由島成分與基體成分樹脂所成的纖維之製法,例如有使 -40- 200523293 島成分樹脂與基體成分樹脂以所定的混合比混合且以同一 ί谷解系溶解以形成混合系予以紡紗的方法,或各以不同的 溶解系溶解且以紡紗機針頭部使兩聚合物同流接合-分割、 數次重複以形成混合系予以紡紗的方法,或各以不同的溶 解系溶解且以紡紗機模具部分規定纖維形狀以使兩聚合物 同流合一予以紡紗的方法。纖維中所佔有的島成分樹脂的 比例以4 0〜8 0重量%較佳,纖維截面中極細纖維成分之條 I 數爲5條以上,尤以50〜10000條較佳。如此紡紗的極細 纖維發生型纖維,視其所需可經由拉伸、熱固定等一般的 纖維處理工程,纖維度爲2〜1 5旦尼爾、極細纖維成分的 平均纖度爲〇·2旦尼爾以下、較佳者爲〇.1旦尼爾以下、 0.001旦尼爾以上之纖維。 使如此所得的極細纖維發生型纖維以切斷予以解纖,且 通過網子以形成無規波或交叉絲,使所得的纖維波積層成 所企求的重量及厚度。然後,使纖維波藉由習知的方法施 φ 予針孔、水噴、氣噴等之絡合處理以形成纖維絡合不織布。 當然,亦可以使極細纖維發生型纖維藉由一般的方法形成 紡績絲,而成多絲紗後作爲編織物。此外,亦可以爲積層 不織布與編織布者。 纖維基材爲得優異的充實感與良好的質感時,以於聚胺 甲酸酯含浸前具有0.2〜〇.5g/cm3之密度較佳、更佳者爲 0 . 25〜0 . 40g/cm3。若纖維基材之密度小於0 . 2g/cm3時,所 得片板之面平滑性不佳。而若密度大於0 . 5g/cm3時,所得 -41 - 200523293 參 , 片板因本發明目的之高密度化而無法得到充實感及良好的 質感。 本發明人工皮革的片板係由極細纖維之束狀物所成的布 帛與在其內部空間中存在有聚胺甲酸酯所成,惟該聚胺甲 酸酯以存在於極細纖維束與極細纖維束之間,且在極細纖 維束間實質上不存在者較佳。在極細纖維束內部實質上不 存在有聚胺甲酸酯時,由於不藉由聚胺甲酸酯來固定極細 纖維,故所得的片板富有充實感,且由於所得的片板中纖 B 維與聚胺甲酸酯充分地脫模,故不具有類似橡膠之反發感、 可得柔軟的質感。 本發明之片板係以片板中聚胺甲酸酯比例爲1 5〜60重量 %較佳、更佳者爲2 5〜5 0重量%。若聚胺甲酸酯比例小於1 5 重量%時,表面強度等物性之經時變化變大,以手接觸時有 霹里啪拉的感覺、類似紙張的感覺。若聚胺甲酸酯比例大 於60重量%時,所得片板之表面平滑性不佳,質感變硬。 p 藉由上述方法所得的聚胺甲酸酯含浸布帛上藉由噴霧或 照相凹版塗覆等塗覆樹脂以形成表面層,或藉由在脫模紙 上所形成的樹脂層與該布帛一體化的方法等製得附有銀面 之天然皮革調片板。而且,使聚甲酸酯含浸於布帛之表面 藉由砂紙等進行磨砂處理,可製得絨面調片板。 另外,使用本發明特定聚酯聚醇所製造的聚胺甲酸酯乳 液應用於人工皮革時,與施有藉由二鹼酸與醇類縮合反應 所得聚酯聚醇予以製造的聚胺甲酸酯乳液之人工皮革相比 -42- 200523293 瘺 · 時,其耐加水分解性經改良;而與施有使用聚氧化烷二醇 類或氧化亞烷基加成物類之聚醚聚醇所製造的聚胺甲酸酯 乳液的人工皮革相比時,具有優異的耐加水分解性、耐熱 性。而且,施有使用本發明特定聚酯二醇所製造的聚胺甲 酸酯乳液之人工皮革時,具有柔軟的質感。總之,使用本 發明特定之聚酯二醇時,可得任一物性皆令人滿足、非常 優異的人工皮革。 【實施方式】 ® 於下述中藉由實施例等更具體地說明本發明之第1〜第 5,惟本發明不受此等所限制。而且,實施例與比較例之「部」 係指「重量份」。 於下述中爲本發明之第1的實施例。 實施例及比較例所使用的化合物皆爲簡稱。簡稱與化合 物之關係如表1 - 1所示。此外,於下述之例中藉由下述之 方法來測定強度保持率、200%應力及200%應力保持率。 φ ( 1 )強度保持率:{鹼處理後之破裂應力(表中之「處理強 度」)/破裂應力(表中之「強度」)} X100 ( 2 ) 200%應力:200%伸長時之應力 ( 3 ) 200%應力保持率:(鹼處理後之200%應力/200%應力)X100 -43- 200523293More specifically, specific examples of the island component resins used in the present invention include 6-Nylon, 6,6-Nylon, 6,1 0-Nylon, 1 2 -Nylon, and other aromatic groups. Spinnable polyamide, poly (p-phenylene benzoate), poly (butylene terephthalate), sulfoisobenzoic acid-modified poly (p-phenylene benzoate), sulfoisobenzoic acid-modified poly (p-phenylene) Resin such as butene benzoate. In addition, the polymer constituting the number of components of the matrix is a resin that has a different solubility from the island component in the solvent and has less affinity with the island component, and has a lower melt viscosity than the island component resin under spinning conditions. Ethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer, ethylene-α-olefin copolymer, polystyrene, styrene-isoprene copolymer, styrene- Hydrogenates of isoprene copolymers, styrene-butadiene copolymers, hydrogenations of styrene-butadiene copolymers, modified polyethylene glycols, modified polyesters, etc. A method for producing a fiber made of an island component and a matrix component resin is, for example, mixing -40-200523293 island component resin and a matrix component resin at a predetermined mixing ratio and dissolving them in the same gluten solution system to form a mixed system for spinning. Method, or a method of dissolving each with a different dissolving system and joining two polymers in the same direction with a spinner needle head, splitting, and repeating several times to form a mixed system for spinning, or dissolving with a different dissolving system and using The spinning machine mold part specifies the shape of the fiber so that the two polymers are combined into one to spin. The proportion of the island component resin in the fiber is preferably 40 to 80% by weight, and the number of ultrafine fiber components in the cross section of the fiber is 5 or more, and more preferably 50 to 10,000. The ultra-fine fiber-generating fibers spun in this way can be subjected to general fiber treatment processes such as drawing and heat-fixing as required, and the fiber fineness is 2 to 15 denier, and the average fineness of the ultrafine fiber component is 0.2 denier. Fibers having a density of less than or equal to 0.1 denier and more preferably 0.001 or more denier. The ultrafine fiber-forming fibers obtained in this manner are cut and defibered, and then passed through a net to form random waves or intersecting filaments, and the resulting fiber waves are laminated to a desired weight and thickness. Then, the fiber wave is subjected to a complexing treatment of φ with a pinhole, water spray, air spray, or the like by a conventional method to form a fiber-entangled nonwoven fabric. Of course, it is also possible to use ultra-fine fiber-generating fibers to form spin yarns by a general method, and to form multi-filament yarns as knitted fabrics. Alternatively, it may be a laminated non-woven fabric or a woven fabric. When the fibrous substrate has excellent fullness and good texture, it is better to have a density of 0.2 to 0.5 g / cm3 before the polyurethane impregnation, and the more preferable is 0.25 to 0.40 g / cm3. . If the density of the fibrous substrate is less than 0.2 g / cm3, the surface smoothness of the obtained sheet is not good. If the density is greater than 0.5 g / cm3, the obtained -41-200523293 ginseng can not obtain a full feeling and good texture due to the high density of the object of the present invention. The sheet of the artificial leather of the present invention is made of a cloth made of bundles of ultrafine fibers and a polyurethane is present in its internal space, but the polyurethane is present in the bundle of ultrafine fibers and extremely fine It is preferable that the fiber bundles are not substantially present between the ultrafine fiber bundles. When there is substantially no polyurethane in the ultrafine fiber bundle, since the ultrafine fibers are not fixed by the polyurethane, the obtained sheet is rich in solidity, and the obtained sheet has a fiber B dimension. It fully releases from polyurethane, so it does not have a rubber-like anti-hairy feeling, and a soft texture can be obtained. In the sheet of the present invention, the ratio of polyurethane in the sheet is preferably 15 to 60% by weight, and more preferably 25 to 50% by weight. When the proportion of polyurethane is less than 15% by weight, the change in physical properties such as surface strength over time becomes large, and there is a feeling of cracking and paper-like feeling when touched by hand. When the polyurethane ratio is more than 60% by weight, the surface of the obtained sheet is not smooth enough and the texture becomes hard. p The polyurethane-impregnated cloth obtained by the above method is coated with a resin by spraying or gravure coating to form a surface layer, or the resin layer formed on the release paper is integrated with the cloth. Methods, etc., to obtain a natural leather panel with silver surface. Furthermore, the surface of the cloth is impregnated with polyurethane, and the mat is treated with sandpaper or the like to obtain a suede sheet. In addition, when a polyurethane emulsion produced using the specific polyester polyol of the present invention is applied to artificial leather, it is applied with a polyurethane produced by a polyester polyol obtained by a condensation reaction of a dibasic acid and an alcohol. Compared with artificial leather of ester emulsion, it has improved hydrolytic resistance when compared to -42- 200523293 fistula. It is made with polyether polyols using polyalkylene oxide glycols or oxyalkylene adducts. Compared with the artificial leather of polyurethane emulsion, it has excellent hydrolytic resistance and heat resistance. Furthermore, the artificial leather having a polyurethane emulsion produced using the specific polyester diol of the present invention has a soft texture. In short, when using the specific polyester diol of the present invention, it is possible to obtain a very excellent artificial leather with satisfactory physical properties. [Embodiment] ® In the following, examples 1 to 5 of the present invention will be described more specifically by examples and the like, but the present invention is not limited by these. In addition, the "part" of an Example and a comparative example means "weight part." The following is a first embodiment of the present invention. The compounds used in the examples and comparative examples are abbreviated. The relationship between the abbreviation and the compound is shown in Table 1-1. In the following examples, the strength retention rate, 200% stress, and 200% stress retention rate were measured by the following methods. φ (1) Strength retention rate: {breaking stress after alkali treatment ("treatment strength" in the table) / breaking stress ("strength" in the table)} X100 (2) 200% stress: stress at 200% elongation (3) 200% stress retention rate: (200% stress / 200% stress after alkali treatment) X100 -43- 200523293

表1-1 簡稱 化合物 BEPD 2 - n - 丁基-2 -乙基-1,3 -丙二醇 DEPD 2,2-二乙基-13-丙二醇 D B N D 2,4 -二乙基-1,5 -戊二 _ A A 己二酸 CL £ -己内酯 N P G 新戊醇 BD 1 , 4 - 丁二醇 HD 1,6 ~ 己二酉·? M PD 3 -甲基-1 , 5 -戊二醇 而且,所得的聚胺甲酸酯彈性纖維之耐鹼加水分解性評 估係在下述之鹼氣氛下進行。 (聚胺甲酸酯彈性纖維之耐鹼加水分解性) 使聚胺甲酸酯纖維在60g/L之氫氧化鈉水溶液中、98°C 下、定長下、浸漬30分鐘,評估其聚胺甲酸酯纖維之強度 保持率及200%應力保持率。 -44 - 200523293 (實施例1 -1〜1 -1 0 ) 使101份表1 - 2所示組成之經80 °C加熱熔融的平均分子 量2 0 0 0之聚酯聚醇、3 9份經4 5 °C加熱熔融的MDI ( 4 , 4、二 苯基甲烷二異氰酸酯)及9 . 5份BD,各藉由定量幫浦連續供 應給二軸押出機,且在24〇°C下進行連續熔融聚合,使所生 成的聚胺甲酸酯成單絲狀押出於水中,切斷成粒料狀。使 該粒料在80t、氮氣氣流下乾燥24小時。 使該粒料以單軸押出機之紡紗機、紡紗溫度2 1 7 °C、紡紗 ® 速度600m/分予以紡紗,製得40旦尼爾、單絲之聚胺甲酸 酯彈性纖維。使用該聚胺甲酸酯纖維,評估各種物性及耐 鹼加水分解性。結果如表1 - 3所示。任何時候皆呈現良好 的絲物性及耐鹼加水分解性。 (比較例1 - 1〜1 - 7 ) 除使用如表1-3所示的由至少一種選自2 -正-丁基-2-乙 基-1,3 -丙二醇、2,2 -二乙基-1,3 -丙二醇及2, 4 -二乙基-φ 1,3 -戊二醇所成群的二醇與己二酸所成的聚酯構成單位含 量/ ε -己內酯之構成單位含量(重量比)爲5/95〜80/20之 聚酯聚醇外,以與實施例相同的方法製得聚胺甲酸酯彈性 纖維,評估絲物性及耐鹼加水分解性。結果如表卜3所示。 -45- 200523293 二醇之成分比(莫耳%) PE(wt°/〇) CL(wt°/〇) BEPD DEPD DEND NPG ED BD HD 二醇/AA CL 實施例1-1 100 40 60 實施例1·2 100 40 60 實施例i-3 100 40 60 實施例14 100 20 80 實施例卜5 100 60 4ίΓ 實施例1-6 100 80 20 實施例1-7 50 50 40 60 實施例1-8 50 50 40 60 實施例ί-9 50 50 40 60 實施例i-l〇 50 50 40 60 比較例Μ 30 70 100 0 比較例1-2 50 50 100 0 比較例1-3 100 40 60 比較例Μ 100 100 0 比較例1-5 100 100 0 比較例Κ 0 100 比較例卜7 100 95 5 表中PE(wt%)係表示由各種二醇成分與二羧酸所得的聚酯構成單位, CL係表示e -己內酯構成單位之重量比例。 -46- 200523293 表1-3 強度 m 伸度 (%) 200%應力 (g/d) 鹼 處理強f (g/d) 保持率 (%) 200%應、力 (g/d) 保持率 (%) 實施例卜1 1.56 510 036 1.45 93 0.33 92 實施例 1.54 514 036 ]·46 95 0.34 94 實施例卜3 1,58 518 036 L50 95 0.34 94 實施例 L65 504 039 135 82 032 82 實施例1-5 1.50 528 . 034 138 92 0.31 90 實施例κ 1.40 547 0.32 1.37 98 031 96 實施例1-7 1.41 513 033 1·27 — 90 0,29 89 實施例1-8 L48 521 0.32 1.30 88 . 0.28 86 實施例1-9 1.52 」 524 0-34 1.35 89 0,29 86 實施例Μ0 1.58 512 0.36 1.45 92 032 88 比較例1_1 L28 460 0.32 L10 86 0.26 82 比較例1-2 L19 512 0.28 0.98 82 0.23 82 比較例W L52 518 0,35 0,99 65 0,22 63 比較例14 0.75 320 0,12 0·56 75 0,09 72 比較例1_5 1.76 405 0.44 0.97 55 0.23 53 比較例Ρ6 1.79 1 402 0.47 0.98 55 0.25 53 比較例1”7 L29 458 0.33 1.10 85 0.27 81 由表1-3可知,使用由至少一種選自2 -正-丁基-2-乙基_ 1,3 -丙二醇、2,2 -二乙基-1,3 -丙二醇及2,4 -二乙基-1,5-戊二醇所成群的二醇與己二酸所成的聚酯構成單位含量/ ε -己內酯之構成單位含量(重量比)爲5/95〜80/20之聚酯 聚醇的實施例1 - 1〜1 - 1 0之聚胺甲酸酯彈性纖維,與比較 例相比時,鹼加水分解後具顯著的強度及200%伸長時無應 力降低情形,可得令人滿足的絲物性。 於下述中藉由實施例具體地說明本發明之第2。 而且,實施例及比較例所使用的化合物皆使用簡稱。簡 -47- 200523293 0 · 1戶斤$ ” °強度保持率、200%應力 N . 7係與本發明之第1相同。 表2-1 簡稱 ^^ 化合物 BEPD ^__ 2 - n - 丁基〜2 ▽者. &〜1,3 ~丙二醇 MPD 3 -甲基~ 1,5 '!戈二醇 DEND 2,4~ —乙碁 r 1,卜戊二醇 A A 己二酸 DA ----- 癸二酸 DD A ---------- 十二烷二酸 CL ε -己内酯 BD 1,4 - 丁二醇 HD 1 > 6 -己二酉享Table 1-1 Abbreviated compound BEPD 2-n-butyl-2-ethyl-1,3-propanediol DEPD 2,2-diethyl-13-propanediol DBND 2,4-diethyl-1,5-pentyl Di_ AA Adipic acid CL £ -caprolactone NPG neopentyl alcohol BD 1, 4-butanediol HD 1,6 ~ adipic acid ·? M PD 3 -methyl-1,5-pentanediol. The evaluation of the alkali hydrolysis resistance of the obtained polyurethane elastic fibers was performed in the following alkaline atmosphere. (Alkali Hydrolysis Resistance of Polyurethane Elastic Fibers) Polyurethane fibers were immersed in a 60 g / L sodium hydroxide aqueous solution at 98 ° C for a fixed length for 30 minutes to evaluate the polyamine The strength retention rate of formate fiber and 200% stress retention rate. -44-200523293 (Examples 1 -1 to 1 -10) 101 parts of polyester polyol having an average molecular weight of 2 0 0 with a composition shown in Table 1-2 heated and melted at 80 ° C, 39 parts of warp The molten MDI (4, 4, diphenylmethane diisocyanate) and 9.5 parts of BD heated at 45 ° C were continuously supplied to the biaxial extruder by a dosing pump, and were continuously performed at 24 ° C. The polymer was melt-polymerized, and the produced polyurethane was extruded into a monofilament form and then cut into pellets. The pellets were dried under a nitrogen gas flow of 80 t for 24 hours. The pellets were spun on a spinning machine with a uniaxial extruder at a spinning temperature of 2 17 ° C and a spinning speed of 600 m / min to obtain a polyurethane elasticity of 40 denier and monofilament. fiber. Using this polyurethane fiber, various physical properties and alkali hydrolytic resistance were evaluated. The results are shown in Tables 1-3. At all times, it has good silk properties and alkali hydrolysis resistance. (Comparative Examples 1-1 to 1-7) Except using at least one member selected from the group consisting of 2-n-butyl-2-ethyl-1,3-propanediol and 2,2-diethylene as shown in Table 1-3. Of -1,3-propanediol and 2,4-diethyl-φ 1,3-pentanediol and the composition of the polyester constituting adipic acid and the content of the polyester / ε-caprolactone Polyurethane elastic fibers were prepared in the same manner as in Examples except for polyester polyols having a unit content (weight ratio) of 5/95 to 80/20, and silk properties and alkali hydrolytic resistance were evaluated. The results are shown in Table 3. -45- 200523293 Composition ratio of diol (mol%) PE (wt ° / 〇) CL (wt ° / 〇) BEPD DEPD DEND NPG ED BD HD glycol / AA CL Example 1-1 100 40 60 Example 1 · 2 100 40 60 Example i-3 100 40 60 Example 14 100 20 80 Example 5 100 60 4Γ Example 1-6 100 80 20 Example 1-7 50 50 40 60 Example 1-8 50 50 40 60 Example 9-50 50 40 60 Example 1050 50 40 60 Comparative Example M 30 70 100 0 Comparative Example 1-2 50 50 100 0 Comparative Example 1-3 100 40 60 Comparative Example M 100 100 0 Comparative Example 1-5 100 100 0 Comparative Example K 0 100 Comparative Example 7 100 95 5 In the table, PE (wt%) represents a polyester unit obtained from various diol components and a dicarboxylic acid, and CL represents e- The weight ratio of the caprolactone constituent units. -46- 200523293 Table 1-3 Strength m Elongation (%) 200% Stress (g / d) Alkali treatment strength f (g / d) Retention rate (%) 200% Stress and force (g / d) Retention rate ( %) Example 1 1.56 510 036 1.45 93 0.33 92 Example 1.54 514 036] · 46 95 0.34 94 Example 3 3, 58 518 036 L50 95 0.34 94 Example L65 504 039 135 82 032 82 Example 1- 5 1.50 528. 034 138 92 0.31 90 Example κ 1.40 547 0.32 1.37 98 031 96 Example 1-7 1.41 513 033 1 · 27 — 90 0,29 89 Example 1-8 L48 521 0.32 1.30 88 .0.28 86 Implementation Example 1-9 1.52 '' 524 0-34 1.35 89 0,29 86 Example M0 1.58 512 0.36 1.45 92 032 88 Comparative Example 1_1 L28 460 0.32 L10 86 0.26 82 Comparative Example 1-2 L19 512 0.28 0.98 82 0.23 82 Comparative Example W L52 518 0,35 0,99 65 65,22 63 Comparative example 14 0.75 320 0,12 0 · 56 75 0,09 72 Comparative example 1_5 1.76 405 0.44 0.97 55 0.23 53 Comparative example P6 1.79 1 402 0.47 0.98 55 0.25 53 Comparative Example 1 "7 L29 458 0.33 1.10 85 0.27 81 As can be seen from Table 1-3, at least one selected from 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-diethyl -1,3-propanediol and 2,4-diethyl The content of the polyester constituting a group of diols formed from a group of 1,5-pentanediol and adipic acid / the content of the constituting unit (weight ratio) of ε-caprolactone is 5/95 to 80/20 Polyurethane elastic fibers of Examples 1-1 to 1-10 of polyester polyols, compared with the comparative examples, have significant strength after alkaline hydrolysis and no stress reduction at 200% elongation. Satisfactory silk properties. The second embodiment of the present invention will be specifically described in the following examples. In addition, the compounds used in the examples and comparative examples are abbreviated. Jan-47-200523293 0 · 1 household catty The strength retention rate and 200% stress N. 7 are the same as the first of the present invention. Table 2-1 Abbreviations ^^ Compound BEPD ^ __ 2-n-butyl ~ 2 ▽. &Amp; ~ 1, 3 ~ propylene glycol MPD 3-methyl ~ 1, 5 '! Gediol DEND 2, 4 ~ — Acetyl-r 1, pentadiol AA Adipic acid DA ----- Sebacic acid DD A ---------- Dodecanedioic acid CL ε -caprolactone BD 1,4- Butanediol HD 1 > 6-hexane

稱與化合物之關係如表2 -及200%應力保持率之測定 而且’所得的聚胺甲酸酯彈性纖維之耐鹼加水分解性之 評估與本發明之第1相同。 (實施例2 - 1〜2 - 1 0 ) 使101份表2-2所示組成之經80°C加熱熔融的平均分子 -48- 200523293 量2000之聚酯聚醇、39份經45 °C加熱熔融的MDI (4, 4、二 苯基甲烷二異氰酸酯)及9 . 5份BD,各藉由定量幫浦連續供 應給二軸押出機,且在240°C下進行連續熔融聚合,使所生 成的聚胺甲酸醋成單絲狀押出於水中,切斷成粒料狀。使 該粒料在8 0 °C、氮氣氣流下乾燥2 4小時。 使該粒料以單軸押出機之紡紗機、紡紗溫度2 1 7 t、紡紗 速度600m/分予以紡紗,製得40旦尼爾、單絲之聚胺甲酸 酯彈性纖維。使用該聚胺甲酸酯纖維,評估各種物性耐鹼 加水分解性。結果如表2 - 3所示。任何時候皆呈現良好的 絲物性及耐鹼加水分解性。 (比較例2 - 1〜2 - 7 ) 除使用如表2 - 2所示的由支鏈二醇與碳數1 〇〜1 2之脂肪 族二羧酸所成的聚酯構成單位含量/ ε -己內酯之構成單位 含量(重量比)爲5/95〜80 / 20之聚酯聚醇外,以與實施例 相同的方法製得聚胺甲酸酯彈性纖維,評估絲物性及耐鹼 加水分解性。結果如表2 - 3所示。 -49- 200523293 表2-2 酸成分 PE(wt%) CL(wt%) BEPD MPD DEND BD HD 二醇ΜΑ CL 實施例2-1 100 DA 40 60 實施例2-2 100 DA 40 60 實施例2-3 100 DA 40 60 實施例 100 DA 20 80 實施例2-5 100 DA 60 40 實施例2-6 100 DA 80 20 實施例孓7 100 * DDA 40 60 實施例2-8 50 50 DA 40 60 實施例厶9 50 50 DA 40 60 實施例2-10 50 50 DDA 40 60 比較例2-1 30 70 ΑΑ 100 0 比較例2-2 50 50 ΑΑ 100 0 比較例2-3 100 100 ΑΑ 40 60 比較例24 100 ΑΑ 100 0 比較例2·5 100 ΑΑ 100 0 比較例厶6 ΑΑ 0 100 比較例2-7 100 ΑΑ 95* 5 表中PE(wt%)係表示由各種二醇成分與二羧酸所得的聚酯構成單位, CL係表示心己內酯構成單位之重量比例。 -50- 200523293 表2-3 強度 _ 伸度 (%) 200%應力 m 鹼 處理強度 m 保持率 (%) 200%藤力 (g/d) 保持率 (%) 實施例2-1 L55 508 036 1.43 92 0.33 91 實施例万2 1.52 513 036 1.^11 93 0.33 92 實施例2-3 1.51 516 036 1,4—0 93 0.33 92 實施例24 L61 502 039 1,43 89 0.34 87 實施例2-5 1.48 519 0.34 135 91 0.30 89 實施例2_6 1.42 526 0.32 132 93 030 93 實施例2-7 1.48 527 0.33 1.36 92 030 91 實施例孓8 1Α2 530 0.32 1.26 89 01 88 實施例孓9 1.52 516 034 1·32 87 0.30 88 — 實施例2-10 1.48 508 0.36 1.35 91 0.31 85 比較例2-1 1,28 460 0.32 1.10 86 0.26 82 比較例2-2 L19 512 0.28 0.98 82 0.23 82 比較例2-3 1.52 518 0.35 0·99 65 0.22 63 比較例24 0.75 320 0.12 0,56 75 0.09 72 比較例2-5 1.76 . 405 0.44 0.97 55 0,23 53. 比較例2-6 L79 402 0.47 0,98 55 0.25 53 比較例2-7 1.29 458 0.33 1,10 85 0.27 81 由表2 - 3可知,使用由支鏈二醇與碳數1 0〜1 2之脂肪族 二羧酸所成的聚酯構成單位含量/ ε -己內酯之構成單位含 量(重量比)爲5/95〜80/20之聚酯聚醇的實施例2-1〜2-1〇 之聚胺甲酸酯彈性纖維,與比較例比較時,鹼加水分解後 具顯著的強度及200%伸長時無應力降低情形,可得令人滿 足的絲物性。 於下述中藉由實施例具體地說明本發明之第3。 而且,實施例及比較例所使用的化合物皆使用簡稱。 簡稱與化合物之關係如表3 _丨所示。強度保持率、200% -51 - 200523293 應力及2 0 0 %應力保ί寸率之測疋方法與本發明之第1相同 表3-1The relationship between the compound and the compound is shown in Table 2 and the measurement of the 200% stress retention rate. The evaluation of the alkali hydrolytic resistance of the obtained polyurethane elastic fiber is the same as that of the first invention. (Example 2-1 to 2-10) 101 parts of the composition shown in Table 2-2 were melted by heating at 80 ° C. The average molecular weight was -48- 200523293 polyester polyol with an amount of 2000 and 39 parts at 45 ° C. The melted MDI (4, 4, diphenylmethane diisocyanate) and 9.5 parts of BD were each continuously supplied to a biaxial extruder by a dosing pump, and continuous melt polymerization was performed at 240 ° C, so that The produced polyurethane was extruded into water in a monofilament shape and cut into pellets. The pellets were dried at 80 ° C under a stream of nitrogen for 24 hours. The pellets were spun on a spinning machine of a uniaxial extruder at a spinning temperature of 2 17 t and a spinning speed of 600 m / min to obtain 40 denier, monofilament polyurethane elastic fibers. Using this polyurethane fiber, various physical properties and resistance to alkali hydrolysis were evaluated. The results are shown in Table 2-3. At all times, it exhibits good silk properties and alkali hydrolysis resistance. (Comparative Examples 2-1 to 2-7) Except the use of a polyester constituting unit content of a branched diol and an aliphatic dicarboxylic acid having a carbon number of 10 to 12 as shown in Table 2-2 / ε -Polyurethane elastic fibers were prepared in the same manner as in the examples except for polyester polyols with a content (weight ratio) of caprolactone of 5/95 to 80/20, and silk properties and alkali resistance were evaluated. Water-decomposable. The results are shown in Table 2-3. -49- 200523293 Table 2-2 Acid component PE (wt%) CL (wt%) BEPD MPD DEND BD HD Diol MH CL Example 2-1 100 DA 40 60 Example 2-2 100 DA 40 60 Example 2 -3 100 DA 40 60 Example 100 DA 20 80 Example 2-5 100 DA 60 40 Example 2-6 100 DA 80 20 Example 7 7 100 * DDA 40 60 Example 2-8 50 50 DA 40 60 Implementation Example 9 9 50 50 DA 40 60 Example 2-10 50 50 DDA 40 60 Comparative Example 2-1 30 70 ΑΑ 100 0 Comparative Example 2-2 50 50 ΑΑ 100 0 Comparative Example 2-3 100 100 ΑΑ 40 60 Comparative Example 24 100 ΑΑ 100 0 Comparative Example 2.5 5 ΑΑ 100 0 Comparative Example 6 ΑΑ 0 100 Comparative Example 2-7 100 ΑΑ 95 * 5 In the table, PE (wt%) indicates that it is obtained from various diol components and dicarboxylic acids. The polyester constituting unit, CL represents the weight ratio of the constituent unit of caprolactone. -50- 200523293 Table 2-3 Strength _ Elongation (%) 200% Stress m Alkali treatment strength m Retention rate (%) 200% Rattan force (g / d) Retention rate (%) Example 2-1 L55 508 036 1.43 92 0.33 91 Example 2 1.52 513 036 1. ^ 11 93 0.33 92 Example 2-3 1.51 516 036 1,4--0 93 0.33 92 Example 24 L61 502 039 1,43 89 0.34 87 Example 2- 5 1.48 519 0.34 135 91 0.30 89 Example 2-6 1.42 526 0.32 132 93 030 93 Example 2-7 1.48 527 0.33 1.36 92 030 91 Example 8 1A2 530 0.32 1.26 89 01 88 Example 9 9 1.52 516 034 1 · 32 87 0.30 88 — Example 2-10 1.48 508 0.36 1.35 91 0.31 85 Comparative Example 2-1 1,28 460 0.32 1.10 86 0.26 82 Comparative Example 2-2 L19 512 0.28 0.98 82 0.23 82 Comparative Example 2-3 1.52 518 0.35 0 · 99 65 0.22 63 Comparative Example 24 0.75 320 0.12 0,56 75 0.09 72 Comparative Example 2-5 1.76. 405 0.44 0.97 55 0,23 53. Comparative Example 2-6 L79 402 0.47 0,98 55 0.25 53 Compare Example 2-7 1.29 458 0.33 1,10 85 0.27 81 As can be seen from Table 2-3, the content of the unit constituting the polyester using a branched chain diol and an aliphatic dicarboxylic acid having a carbon number of 10 to 12 is ε Of caprolactone The polyurethane elastic fibers of Examples 2-1 to 2-10 of the polyester polyols having a unit content (weight ratio) of 5/95 to 80/20 were compared with the comparative examples. With significant strength and no stress reduction at 200% elongation, satisfactory silk properties can be obtained. The third embodiment of the present invention will be specifically described in the following examples. The compounds used in the examples and comparative examples are abbreviated. The relationship between the abbreviation and the compound is shown in Table 3. The method of measuring the strength retention rate, 200% -51-200523293 stress and 200% stress protection ratio is the same as the first method of the present invention. Table 3-1

簡稱 ---- ^^ 化台物 BEPD 21-丁基-2-乙基〜13_丙二醇 DEPD 〜 ---- 2,2-二乙基-1,3~丙二_ DEND 2,4 -二乙基-1,5 -戊二酉享 A A 己二酸 CL 占-己内酯 N P G 新戊醇 B D 1,4-丁二醇 HD 1,6 -己二醇, Μ P D 3-甲基-1,5-戊二酵 而且,所得的聚胺甲酸酯彈性纖維之耐鹼加水分解性之 評估與本發明之第1相同。 (實施例3-1〜3-7) 使1 〇 1份表3 - 2所示組成之經8 0 °C加熱熔融的平均分子 -52- 200523293 量2 0 0 0之聚酯聚醇、3 9份經4 5 °C加熱熔融的MD I ( 4,4,-二 苯基甲烷二異氰酸酯)及9 5份BD,各藉由定量幫浦連續供 應給二軸押出機,且在2 4 0 °C下進行連續熔融聚合,使所生 成的聚胺甲酸酯成單絲狀押出於水中,切斷成粒料狀。使 該粒料在80°C、氮氣氣流下乾燥24小時。 使該粒料以單軸押出機之紡紗機、紡紗溫度2 1 7 °C、紡紗 速度60 0m/分予以紡紗,製得40旦尼爾、單絲之聚胺甲酸 酯彈性纖維。使用該聚胺甲酸酯纖維,評估各種物性及耐 ® 鹼加水分解性。結果如表3 - 3所示。任何時候皆呈現良好 的絲物性及耐鹼加水分解性。 (比較例3 - 1〜3 - 7 ) 除使用如表3 - 2所示的不含2 , 4 -二乙基· 1,5 -戊二醇之聚 酯聚醇外,以與實施例相同的方法製得聚胺甲酸酯彈性纖 維,評估絲物性及耐鹼加水分解性。結果如表3 - 3所示。Abbreviation ---- ^^ BEPD 21-butyl-2-ethyl ~ 13_propanediol DEPD ~ ---- 2,2-diethyl-1,3 ~ propane_DEND 2,4- Diethyl-1,5-glutarylene, AA, adipic acid, CL, caprolactone, NPG, neopentyl alcohol, BD, 1,4-butanediol, HD, 1,6-hexanediol, M PD 3-methyl- 1,5-Glutaric acid Further, the evaluation of alkali hydrolysis resistance of the obtained polyurethane elastic fiber was the same as that of the first aspect of the present invention. (Examples 3-1 to 3-7) The average molecular weight of the composition shown in Table 3-2, which was melted at 80 ° C, was 101 parts -52- 200523293, and the polyester polyol having the amount of 2 0 0, 3 Nine parts of MD I (4,4, -diphenylmethane diisocyanate) and 95 parts of BD heated and melted at 45 ° C were continuously supplied to the biaxial extruder by a dosing pump, and the temperature was 2 4 0 Continuous melt polymerization was performed at ° C, and the generated polyurethane was extruded into water in a monofilament shape, and cut into pellets. The pellets were dried at 80 ° C under a stream of nitrogen for 24 hours. The pellets were spun on a spinning machine of a uniaxial extruder, with a spinning temperature of 21 ° C and a spinning speed of 60 0 m / min, to obtain a polyurethane elasticity of 40 denier and monofilament. fiber. Using this polyurethane fiber, various physical properties and resistance to alkali hydrolysis were evaluated. The results are shown in Table 3-3. At all times, it has good silk properties and alkali hydrolysis resistance. (Comparative Examples 3-1 to 3-7) The same as the Example except that the polyester polyols without 2,4-diethyl · 1,5-pentanediol as shown in Table 3-2 were used. The polyurethane elastic fibers were prepared by the method described above, and the silk physical properties and alkali hydrolytic resistance were evaluated. The results are shown in Table 3-3.

-53- 200523293 表3-2-53- 200523293 Table 3-2

二醇之成分比(莫耳% ) BEPD DEM) D B N D NPG ED BD HD 實施例3 - 1 10 90 實施例3 - 2 3 0 70 實施例3 - 3 50 50 實施例3 - 4 7 0 30 實施例3 - 5 3 0 4 0 30 篱施例3 - 6 30 4 0 30 實施例3 - 7 50 30 40 3 0 比較例3 - 1 30 70 比較例3 - 2 50 50 比較例3 - 3 100 比較例3 - 4 10 0 比較例3 - S 1 0 0 比較例3 - 6 100 比較例3 - ? 100 -54- 200523293Composition ratio of diol (mol%) BEPD DEM) DBND NPG ED BD HD Examples 3-1 10 90 Examples 3-2 3 0 70 Examples 3-3 50 50 Examples 3-4 7 0 30 Examples 3-5 3 0 4 0 30 Example 3-6 30 4 0 30 Example 3-7 50 30 40 3 0 Comparative Example 3-1 30 70 Comparative Example 3-2 50 50 Comparative Example 3-3 100 Comparative Example 3-4 10 0 Comparative Example 3-S 1 0 0 Comparative Example 3-6 100 Comparative Example 3-? 100 -54- 200523293

w I 表3-3 強度(g/d) 伸度(%) 200% 應 力_ 鹼 _ — 處理強度 (g/d) 保持率 (%) 200% 應 力_ 保持率 (%) 一 實施例3-1 1.65 504 039 L35 82 0.32 82 一 實施例3-2 1.50 528 0.34 1.38 92 _ 0·31 90 一 實施例3_3 1.40 547 0.32 1·37 98 0.31 96 一 實施例34 1Λ1 513 033 1.27 90 0.29 89 實施例3-5 1,56 510 0.36 1.45 93 033 92 一 實施例3-6 1.54 514 0.36 1,46 95 034 94 _ 實施例3-7 1.58 513 0.36 1.50 96 034 94 一 比較例3-1 1.28 460 0.32 UO 86 0*26 82 一 比較例3-2 L19 512 0.28 0.98 82 0,23 82 比較例3-3 1.52 518 0.35 0.99 65 0.22 63 一 比較例34 0.75 320 0.12 0.56 75 0.09 72 一 比較例3-5 1,76 405 0.44 0.97 55 0.23 53 一 t匕較例3-6 1.79 402 0.47 0.98 55 0-25 53 比較例3-7 L29 468 0.33 L10 85 0.27 81 由表3-3可知,使用到構成該聚酯二醇之二醇成分而言’ 含有10〜70莫耳%之聚酯二醇的實施例3-1〜3_7之聚胺甲 φ 酸酯彈性纖維,與比較例相比時,鹼加水分解後具顯著的 強度及2 0 0%伸長時無應力降低情形,可得令人滿足的絲物 性。 於下述中藉由實施例具體地說明本發明之第4。 (合成例4 - 1 ) 在備有冷卻管、氮氣導入管、溫度計及攪拌器之玻璃製 燒瓶中加入129 · 39雙(3 - ( 2H-苯并三唑-2-基)-4·羥基-苯 乙醇)甲院(商品名「MBEP」、大塚化學(股)製)、170.3g ε -55- 200523293 -己內酯、50ppm單-正-丁基錫脂肪酸鹽(商品名「SCAT_24」、 三共有機合成(股)製)。使反應溫度保持於1 5(rc下6小時 後以氣體色層分析法測定反應液中ε —己內酯濃度爲〇 . 4 3 % 時終止反應。可得該反應物之酸價(1112]^〇11/2)爲丨.8、黏 度爲2 645CP/60°C、以GPC分析之數平均分子量(ΜΝ)爲 1391、重量平均分子量(_)爲1688、mw/MN=1.213之室溫 液狀物。 (合成例4 - 2 ) ® 使用與合成例4-1相同的裝置,且加入93.79雙(3-(2H-苯并三唑-2 -基)-4 -羥基-苯乙醇)甲烷(商品名「MBEp」、大 塚化學(股)製)、206.3g ε -己內酯、50ppm單-正-丁基錫 脂肪酸鹽(商品名「SCAT-24」、三共有機合成(股)製)。使 反應溫度保持於1 50°C下6小時後以氣體色層分析法測定 反應液中ε -己內酯濃度爲〇 . 5 5%時終止反應。 可得該反應物之酸價(mgKOH/g)爲2.5、黏度爲987CP/60 I °C、以GPC分析之數平均分子量(MN)爲2017、重量平均分 子量(MW)爲2465 ' MW/MN= 1.222之室溫固狀化合物。 (實施例4 - 1 ) 自合成例4 - 1或4 - 2所得的ε -己內酯改性的聚醇與己二 酸,或自合成例所使用的ΜΒΕΡ與己二酸,各製造聚酯聚醇, 且此使等之聚酯聚醇與加熱熔融的MD I ( 4,4 ·-二苯基甲烷二 異氰酸酯)及BD( 1,4-丁二醇)各藉由定量幫浦連續供應給二 軸押出機進行連續熔融聚合,使所生成的聚胺甲酸酯成單 -56- 200523293 絲狀押出於水中,切斷成粒料狀。使該粒料在8 0 °C、氮氣 氣流下乾燥24小時。使該粒料以單軸押出機之紡紗機、紡 紗溫度217°C、紡紗速度600m/分予以紡紗,製得40旦尼 爾、單絲之聚胺甲酸酯彈性纖維。該聚胺甲酸酯纖維由於 構成分子中具有紫外線吸收基,故與添加有紫外線吸收劑 之斯潘德克斯纖維相比,具有優異的耐候性之耐洗濯性。 以下實施例爲本發明之第5之具體說明。 試驗法 ® 藉由下述方法測定本發明之共聚物的各種性質及參數。 (1 )溶劑溶解性之評估 製造如實施例5 - 1〜5 - 6及比較例5 - 1〜5 - 2所示之聚合 物溶液,且觀察使該溶液冷卻至室溫(2 5 °C )時之外觀,白 濁時爲不佳、透明溶液時爲佳。 (2 )試驗試料之製造 爲評估作爲斯潘德克斯聚合物用添加劑之適合性,調製 馨含有添加劑之聚合物的薄膜試料。 作成薄膜試料時,以實質上實施例5 - 1所記載的方法製 造聚合物溶液。然後,使該聚合物溶液與2 0 g含有所企求 量之試驗添加劑的N,N -二甲基乙烯醯胺溶劑完全混合。再 使含有添加劑之聚合物溶液靜置3 〇分鐘。 然後’使用具有寬〇 · 5丨cm之蓋子的刮刀,使薄膜鑄模於 「買拉(Mylar)」聚酯片板上。使ν,Ν -二甲基乙烯醯胺溶液 鑄模’製得尺寸大小約爲2 〇 . 3 c m / 8 . 9 c m之試驗試料。使該 •57- 200523293 鑄模的薄膜空氣乾燥24小時後,使試驗試料自「買拉」片 板剝離。 製造薄膜試料後,使該試料浸於水浴中。爲製造水性洗 濯浴時,使試料浸於8 0〜8 5 t之含8 g「迪優波羅魯(譯 音)(Duponol )」陰離子表面活性劑(E.丨·杜邦公司製之二乙 醇胺月桂基水楊酸酯)、5 g㈥咯3·酸四尿鈉及1 · 5 g乙二胺 四乙酸之2公升8 0〜8 5 〇C水浴中1小時。使試料自浴中 取出後’洗淨除去痕跡量之浴添加劑,重複洗淨直至無法 自水中檢測出來而成乾淨的水。 實施例5 - 1 二烷胺基乙基(甲基)丙烯酸酯與ε -己內酯之乙二醇的單 甲基丙嫌酸酯之共聚物(共聚物丨)的製造在備有攪拌機、溫 度計、滴入漏斗及氮氣供應裝置之3〇〇cc四口分開的雙燒 瓶’首先使燒瓶內充分以氮氣取代,且添加259二甲基乙 烯醯胺(DM A c ),使燒瓶內之溫度在8 5它下予以一定加熱。 然後,使下述重量之諸成分以均勻的速度、於4小時內滴 入燒瓶中。 2,2-偶氣雙-2-甲基丁勝(六31^^):0.6752 二異丙基胺基乙基甲基丙烯酸酯(DIPAM):45g 黑晶胞FM2D(乙二醇之單甲基丙烯酸酯的ε -己內酯加成 物:賴西魯(譯音)化學工業公司製):1 5 g 二甲基乙烯醯胺(DMAC): 15.4g 使4小時之滴入反應終止,再在85t下進行熟成反應1小 -58- 200523293 時後,將0 . 6 7 5 g A B N - E加入燒瓶中。然後,在8 5 °C下進行 反應3小時。內容物之固成分濃度(N . V .)爲5 7 . 1 %時,使 聚合物以凝膠滲透色層分析法(GPC )進行分子量之測定,可 得下述結果。 而且,爲對DMAc之溶解度的評估,在室溫(25°C )下觀 察外觀時,可知所得的溶液透明且溶解性佳。 平均分子量Μη: 13700 重量平均分子量Mw: 46100 ^分子量分散Mw/Mn : 3.36 實施例5 - 2〜5 - 6 二烷胺基乙基(甲基)丙烯酸酯與ε -己內酯之乙二醇的單 甲基丙烯酸酯系共聚物(共聚物2〜6)的製造除使用表5-1 所示的滴入溶液組成外,進行與實施例5 - 1相同的操作, 製得共聚物2〜6。而且,所得溶液之固成分濃度、GPC分 析之結果(無法測定者係因曲折率與溶劑過於接近,故無法 $ 檢測出來)及對DM A c之溶解性如表5 - 1所示。 比較例5 - 1〜5 - 2 不具ε -己內酯之乙二醇的單甲基丙烯酸酯爲構成成分之 二烷胺基乙基(甲基)丙烯酸酯系共聚物(比較共聚物1〜2) 之製造。 除使用表5 - 1所示的滴入溶液組成外,進行與實施例5 - 1 相同的操作,製得比較共聚物1〜2。而且,所得的溶液之 固成分濃度、GPC分析之結果及對DMAc之溶解性如表5-1 -59- 200523293 所示。 實施例5-7〜5-12、比較例5-3〜5-4 含有二烷胺基乙基(甲基)丙烯酸酯與ε -己內酯之乙二醇 的單甲基丙烯酸酯之共聚物(共聚物1〜6 )添加劑之斯潘德 克斯薄膜的加熱、固化效率之評估使段化的聚胺甲酸酯之 Ν,Ν-二甲基乙烯醯胺溶液以美國專利第3 , 428,71 1號所記 載的一般法(例如實施例I I之最初文及實施例〗之記述) 予以製造。 # 使ρ,ρ’-亞甲基二苯基二異氰酸酯及聚四亞甲醚醇(分子 量約爲1 800 )以莫耳比1 . 63充分混合以調製混合物,在約 80〜90 °C之溫度下保持90〜100分鐘製造異氰酸酯末端之 聚醚(即具有NCO含量2 · 4%之末端處理的醇),且冷卻至60 °C,與N,N-二甲基乙烯醯胺混合成固體約45%之溶液。然 後,激烈混合並使經末端處理的醇在約7 5。(:之溫度下2〜3 分鐘,使二乙胺及莫耳比90/10之乙二胺及1,3 -環己二胺 0 鏈延長劑反應。二胺鏈延長劑與二乙胺之莫耳比爲6 . 3,二 胺鏈延長劑與經末端處理的醇中之未反應的段化聚胺甲酸 酯溶液含有固體約36%,在40°C下具有約2100泊之黏度。 使各種添加劑分散於二甲基乙烯醯胺溶劑中,再與聚合物 之溶液完全混合,調製最終薄膜中實施例5 - 1〜5 - 6所得的 共聚物1〜6之固成分爲2%、氧化鋅3%、「賽亞羅茲庫新」 (譯音)1790之立體障害的苯酚性抗氧化劑(2, 4,6 -參(2, 6-二甲基-4-第3-丁基-3-羥基苯甲基)異氰酸酯)ι. 5%、聚矽 -60- 200523293 氧烷油0 · 0 1 %之濃度的溶液、此處全部濃度係爲以斯潘德克 斯聚合物之重量爲基準者。 使如此所調製的溶液之薄膜鑄模,然後於試驗前以已知 的水性溶劑洗淨。測定加熱、固化效率,結果倂記於表5 - 1。w I Table 3-3 Strength (g / d) Elongation (%) 200% Stress _ Alkali _ — Treatment strength (g / d) Retention rate (%) 200% Stress _ Retention rate (%) One Example 3- 1 1.65 504 039 L35 82 0.32 82 one example 3-2 1.50 528 0.34 1.38 92 _ 0 · 31 90 one example 3_3 1.40 547 0.32 1.37 98 0.31 96 one example 34 1 Λ1 513 033 1.27 90 0.29 89 example 3-5 1,56 510 0.36 1.45 93 033 92 one example 3-6 1.54 514 0.36 1,46 95 034 94 _ example 3-7 1.58 513 0.36 1.50 96 034 94 one comparative example 3-1 1.28 460 0.32 UO 86 0 * 26 82 A comparative example 3-2 L19 512 0.28 0.98 82 0,23 82 Comparative example 3-3 1.52 518 0.35 0.99 65 0.22 63 A comparative example 34 0.75 320 0.12 0.56 75 0.09 72 A comparative example 3-5 1 , 76 405 0.44 0.97 55 0.23 53 Comparative Example 3-6 1.79 402 0.47 0.98 55 0-25 53 Comparative Example 3-7 L29 468 0.33 L10 85 0.27 81 As can be seen from Table 3-3, the polyester is used to form the polyester. For the diol component of the diol, the polyurethane elastic fibers of Examples 3-1 to 3-7 containing 10 to 70 mol% of the polyester diol were compared with the comparative example. With significant strength And there is no stress reduction at 200% elongation, and satisfactory silk properties can be obtained. The fourth embodiment of the present invention will be specifically described in the following examples. (Synthesis Example 4-1) A glass flask equipped with a cooling tube, a nitrogen introduction tube, a thermometer, and a stirrer was charged with 129 · 39 bis (3-(2H-benzotriazol-2-yl) -4 · hydroxyl -Phenylethanol) A Institute (trade name "MBEP", manufactured by Otsuka Chemical Co., Ltd.), 170.3g ε -55- 200523293 -caprolactone, 50ppm mono-n-butyltin fatty acid salt (trade name "SCAT_24", Sankyo Mechanical synthesis (stock) system). The reaction temperature was maintained at 15 ° C (6 hours after rc), and the reaction was terminated when the ε-caprolactone concentration in the reaction solution was determined to be 0.43% by gas chromatography. The acid value of the reactant was obtained (1112) ^ 〇11 / 2) is 丨 .8, the viscosity is 2 645CP / 60 ° C, the number average molecular weight (MN) by GPC analysis is 1391, the weight average molecular weight (_) is 1688, mw / MN = 1.213 room temperature (Synthesis Example 4-2) ® Using the same apparatus as in Synthesis Example 4-1, and adding 93.79 bis (3- (2H-benzotriazol-2-yl) -4-hydroxy-phenylethanol) Methane (trade name "MBEp", manufactured by Otsuka Chemical Co., Ltd.), 206.3 g ε-caprolactone, 50 ppm mono-n-butyltin fatty acid salt (trade name "SCAT-24", manufactured by Sankyo Organic Synthesis Co., Ltd.) After the reaction temperature was maintained at 150 ° C for 6 hours, the reaction was terminated when the ε-caprolactone concentration in the reaction solution was determined to be 0.55% by gas chromatography. The acid value (mgKOH) of the reactant was obtained / g) A room temperature solid compound with a viscosity of 2.5, a viscosity of 987CP / 60 I ° C, a GPC analysis of a number average molecular weight (MN) of 2017, and a weight average molecular weight (MW) of 2465 'MW / MN = 1.222. Example 4-1) ε-caprolactone-modified polyol and adipic acid obtained from Synthesis Example 4-1 or 4-2, or MBEP and adipic acid used in Synthesis Example, each producing a polyester Polyol, and the polyester polyester and the melted MD I (4,4 · -diphenylmethane diisocyanate) and BD (1,4-butanediol) are continuously supplied by quantitative pumps. The biaxial extruder was continuously melted and polymerized, and the generated polyurethane was mono-56- 200523293. The filament was extruded into water and cut into pellets. The pellets were allowed to stand at 80 ° C under a stream of nitrogen. The pellets were dried for 24 hours. The pellets were spun with a spinning machine of a uniaxial extruder, a spinning temperature of 217 ° C, and a spinning speed of 600 m / min to obtain 40 denier and monofilament polyurethane. Ester elastic fiber. Since the polyurethane fiber has an ultraviolet absorbing group in the constituent molecule, the polyurethane fiber has superior weather resistance and washing resistance as compared to a spandex fiber with an ultraviolet absorber. The following examples are based on this. Detailed description of the fifth invention. Test Method ® The following methods are used to determine various properties and parameters of the copolymer of the present invention. (1) Evaluation of Solvent Solubility The polymer solutions shown in Examples 5-1 to 5-6 and Comparative Examples 5-1 to 5-2 were produced, and the solution was cooled to room temperature (2 5 °) by observation. C) Appearance at the time of white turbidity is poor, transparent solution is better. (2) Production of test sample To evaluate the suitability of the polymer additive for Spandex, a thin film sample of polymer containing the additive was prepared. When a thin film sample was prepared, a polymer solution was prepared by substantially the method described in Example 5-1. Then, the polymer solution was completely mixed with 20 g of a N, N-dimethylvinylamine solvent containing a desired amount of a test additive. The polymer solution containing the additive was allowed to stand for 30 minutes. Then, using a spatula with a lid having a width of 0.5 cm, the film was cast on a "Mylar" polyester sheet. A ν, N-dimethylvinylamine solution was cast into a mold ' to obtain a test sample having a size of about 20.3 cm / 8.9 cm. After the film of this • 57-200523293 mold was air-dried for 24 hours, the test sample was peeled from the "buy and pull" sheet. After the thin film sample was produced, the sample was immersed in a water bath. To make an aqueous bath, the sample was immersed in 80 to 8 5 t of 8 g "Duponol (Duponol)" anionic surfactant (diethanolamine laurel manufactured by DuPont Co., Ltd. Salicylic acid ester), 5 g of pyrrolyl 3 · sodium tetrauric acid and 1.5 g of ethylenediaminetetraacetic acid in a 2 liter 80-85 ° C water bath for 1 hour. After the sample was taken out of the bath, the bath additive was washed to remove trace amounts, and the washing was repeated until it could not be detected from the water and became clean water. Example 5-1 Production of a copolymer (copolymer) of a dialkylaminoethyl (meth) acrylate and a monomethylpropionate of ethylene glycol of ε-caprolactone A 300cc four-necked double flask with a thermometer, a dropping funnel, and a nitrogen supply device. First, the flask was sufficiently replaced with nitrogen, and 259 dimethyl vinylamidine (DM A c) was added to increase the temperature in the flask. It is heated at a temperature of 8-5. Then, the following weight components were dropped into the flask at a uniform rate over 4 hours. 2,2-Aromatic bis-2-methylbutane (six 31 ^^): 0.6752 diisopropylaminoethyl methacrylate (DIPAM): 45g black cell FM2D (monomethyl glycol Ε-caprolactone adduct of methacrylic acid ester: manufactured by Laixilu Chemical Co., Ltd.): 15 g of dimethylvinylamine (DMAC): 15.4 g. The dropwise reaction was stopped for 4 hours, and then After the ripening reaction was performed at 85t for 1 h-58-200523293 hours, 0.65 g of ABN-E was added to the flask. Then, the reaction was carried out at 85 ° C for 3 hours. When the solid content concentration (N.V.) of the content is 57.1%, the molecular weight of the polymer is measured by gel permeation chromatography (GPC), and the following results can be obtained. Furthermore, in order to evaluate the solubility of DMAc, when the appearance was observed at room temperature (25 ° C), it was found that the resulting solution was transparent and had good solubility. Average molecular weight Mη: 13700 Weight average molecular weight Mw: 46100 ^ Molecular weight dispersion Mw / Mn: 3.36 Example 5-2 ~ 5-6 Ethylene glycol of dialkylaminoethyl (meth) acrylate and ε-caprolactone The production of the monomethacrylate copolymer (copolymers 2 to 6) was performed in the same manner as in Example 5-1 except that the dropping solution composition shown in Table 5-1 was used, to obtain copolymer 2 to 6. In addition, the solid content concentration of the obtained solution, the results of GPC analysis (for those who cannot be measured are because the tortuosity is too close to the solvent, so it cannot be detected), and the solubility in DMAC is shown in Table 5-1. Comparative Examples 5-1 to 5-2 Dialkylaminoethyl (meth) acrylate copolymers (comparative copolymers 1 to 1) without mono-methacrylate of ethylene glycol without ε-caprolactone 2) Manufacturing. Except having used the dripping solution composition shown in Table 5-1, the same operation as Example 5-1 was performed, and the comparative copolymers 1-2 were obtained. The solid content concentration of the obtained solution, the results of GPC analysis, and the solubility in DMAc are shown in Tables 5-1-5-200523293. Examples 5-7 to 5-12, Comparative Examples 5-3 to 5-4 Copolymerization of Dimethyaminoethyl (meth) acrylate and Ethyl-caprolactone-containing ethylene glycol monomethacrylate Evaluation of the heating and curing efficiency of the Spendex film as an additive (copolymers 1 to 6), making the segmented polyurethane N, N-dimethylvinylamine solution according to US Patent No. 3,428, 71 The general method described in No. 1 (for example, the first text of the embodiment II and the description of the embodiment) is manufactured. # Make ρ, ρ'-methylene diphenyl diisocyanate and polytetramethylene ether alcohol (molecular weight of about 1 800) sufficiently mix at a molar ratio of 1. 63 to prepare a mixture at about 80 to 90 ° C. Maintain 90 to 100 minutes at temperature to produce isocyanate-terminated polyethers (ie, end-treated alcohols with an NCO content of 2.4%), cool to 60 ° C, and mix with N, N-dimethylvinylamine to form solid About 45% solution. Then, mix vigorously and bring the end-treated alcohol to about 75. (: At a temperature of 2 to 3 minutes, react diethylamine and ethylenediamine with a molar ratio of 90/10 and 1,3-cyclohexanediamine 0 chain extender. Diamine chain extender and diethylamine The molar ratio is 6.3. The unreacted segmented polyurethane solution of the diamine chain extender and the end-treated alcohol contains about 36% solids and has a viscosity of about 2100 poise at 40 ° C. Disperse various additives in dimethylvinylamine solvent, and then completely mix with the polymer solution to prepare the final film with the solid content of the copolymers 1 to 6 obtained in Examples 5-1 to 5-6 to 2%, 3% zinc oxide, sterically hindered phenolic antioxidant (2, 4, 6-ginseng (2, 6-dimethyl-4- 3rd-butyl-) 3-Hydroxybenzyl) isocyanate) 5%. Polysilicon-60- 200523293 Oxane oil 0 · 0 1% concentration solution, all concentrations here are based on the weight of the Spendex polymer The film mold of the solution prepared in this way was washed with a known aqueous solvent before the test. The heating and curing efficiency was measured. The results are shown in Table 5-1.

-61 - 200523293 d »-61-200523293 d »

表5-1 實施例 比較例 5-1 5·2 5-3 5-4 5-5 5-6 5-1 5-2 初期拉伸 DMAc 25 25 25 25 25 25 25 25 滴下組成 DMAc 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15,4 'ABN-E 0,675 0.675 0300 0,675 0.675 . 0.675 0.675 0.675 DIPAM 45 45 45 45 45 DEAM 45 DMAM 45 DMAA 45 PCI/FM2D 15 7.5 15 15 15 15 n-decyl~MA 15 lauryl-MA 7.5 15 後添加 ABN-E 0.675 0.675 • ; 0.675 0.675 0.675 ‘0.675 0,675 0.675 N,Y(%) 57.1 58.3 57.8 56.9 59.7 58.2 57.7 58.8 Mn 13700 12500 14000 THF系 GPC無法 測定 THF系 GPC無法 測定 THF系 GPC無法 測定 14500 12700 Mw 46100 33800 246000 32700 29800 Mw/Mn 3.36 2.70 17.6 2.26 234 實施例 比較例 5-7 5-8 5-9 5-10 5-11 5-12 5-3 5-4 DMAc之溶解性 佳 佳 佳 佳 佳 佳 不佳 不佳 HSE(70%以上爲 佳) 82 80 85 78 76 75 80 81 DIPAM :二異丙基胺基乙基甲基丙烯酸酯 DMAc :二甲基乙醯胺 DEAM :二乙基胺基乙基甲基丙烯酸酯 DMAM :二甲基胺基乙基甲基丙烯酸酯 DMAA :二甲基胺基乙基丙烯酸酯 HSE :熱固化效率 任一試驗皆具有良好的結果。由上述實施例之結果可知’ 在斯潘德克斯中添加有本發明二烷胺基乙基(甲基)丙烯酸 酯與ε -己內酯之乙二醇的單甲基丙烯酸酯系共聚物添加劑 -62- 200523293 時,具有良好的溶劑溶解性及對加熱、固化效率具有利的 效果。 產業上之利用價値 由上述實施例之結果可知,藉由本發明之第1、第2、第 3可製得具優異的耐鹼加水分解性,另具有高張力之聚肢 甲酸酯彈性纖維,放在產業界中極具利用價値。 由上述可知,藉由本發明之第4可製得具有優異耐候性 及優異耐洗濯性之聚胺甲酸酯性纖維,故在產業界中極具 ®利用價値。 本發明之第5的新穎含有二烷胺基之丙烯腈系共聚物, 對DMAc溶劑之溶解性較高,保護因惡化及變色之聚胺甲酸 酯及斯潘德克斯聚合物,且含有該共聚物之聚胺甲酸酯組 成物及斯潘德克斯組成物可改善有關使用習知含高分子量 立體障害3級胺基之添加劑時產生彈性減少的情形,具有 良好的永久拉伸特性。 φ 本發明之第6的使用藉由使用特定聚酯二醇所製造的聚 胺甲酸酯,可得優異的人工皮革。 【圖式簡單說明】 紐 【主要元件符號說明】 Μ -63-Table 5-1 Examples Comparative Examples 5-1 5 · 2 5-3 5-4 5-5 5-6 5-1 5-2 Initial stretching DMAc 25 25 25 25 25 25 25 25 Drop composition DMAc 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15,4 'ABN-E 0,675 0.675 0300 0,675 0.675. 0.675 0.675 0.675 DIPAM 45 45 45 45 45 DEAM 45 DMAM 45 DMAA 45 PCI / FM2D 15 7.5 15 15 15 15 n-decyl ~ MA 15 lauryl-MA 7.5 15 After adding ABN-E 0.675 0.675 •; 0.675 0.675 0.675 '0.675 0,675 0.675 N, Y (%) 57.1 58.3 57.8 56.9 59.7 58.2 57.7 58.8 Mn 13700 12500 14000 THF-based GPC cannot be measured THF-based GPC cannot be measured 14500 12700 Mw 46100 33800 246000 32700 29800 Mw / Mn 3.36 2.70 17.6 2.26 234 Examples Comparative Examples 5-7 5-8 5-9 5-10 5-11 5-12 5-3 5-4 DMAc has good solubility Jia Jia Jia Jia Jia Poor Poor HSE (more than 70% is good) 82 80 85 78 76 75 80 81 DIPAM: Diisopropylaminoethyl methacrylate DMAc: Dimethylacetamide DEAM: Di Ethylaminoethyl methacrylate DMM: dimethylaminoethyl methacrylate DMAA : Dimethylamino ethyl acrylate HSE: Thermal curing efficiency Good results in either test. From the results of the above examples, it is known that a monomethacrylate-based copolymer additive in which the dialkylaminoethyl (meth) acrylate of the present invention and the ethylene glycol of ε-caprolactone is added to Spandex- 62-200523293, it has good solvent solubility and beneficial effects on heating and curing efficiency. According to the results of the above examples, it can be known from the results of the above embodiments that the first, second, and third inventions can be used to produce polyacrylic elastic fibers with excellent alkali hydrolytic resistance and high tension. It is extremely expensive in the industry. From the above, it can be seen that the fourth aspect of the present invention makes it possible to obtain polyurethane fibers having excellent weather resistance and excellent washing resistance. Therefore, they are extremely useful in the industry. The fifth novel acrylonitrile copolymer containing a dialkylamino group of the present invention has high solubility in DMAc solvents, and protects polyurethane and spandex polymers that are deteriorated and discolored, and contains the copolymer. Polyurethane composition and spandex composition of materials can improve the situation of reduced elasticity when using conventional additives with high molecular weight three-dimensional steric grade 3 amine groups, and have good permanent tensile properties. φ In the sixth use of the present invention, an excellent artificial leather can be obtained by using a polyurethane produced by using a specific polyester diol. [Schematic description] New button [Description of main component symbols] Μ -63-

Claims (1)

200523293 十、申請專利範圍: 1·一種聚酯二醇,其特徵爲選自2 -正-丁基-2-乙基-1,3-丙二醇、2, 2 -二乙基-1,3·丙二醇及2, 4 -二乙基-1,5-戊二醇中至少一種之二醇,ε -己內酯及己二酸爲構成 成分單位,其中由選自2 -正-丁基-2-乙基-1,3 -丙二 醇、2,2 -二乙基- l,3 -丙二醇及2, 4 -二乙基-1,5 -戊二 醇中至少一種之二醇與己二酸所成的聚酯構成單位含 量/ ε -己內酯之構成單位含量(重量比)爲5/95〜 80/20 ° ® 2 .如申請專利範圍第1項之聚酯二醇,其中平均分子量 爲 5 00 〜5,000。 3 . —種聚胺甲酸酯,其特徵爲由如申請專利範圍第1或2 項之聚酯二醇與有機二異氰酸酯所得者。 4 . 一種斯潘德克斯纖維,其特徵爲如申請專利範圍第3 項之聚胺甲酸酯所成者。 5.—種聚酯二醇,其特徵爲含有以支鏈脂肪族二醇、ε -己內酯及碳數10〜12之脂肪族二羧酸爲構成成分單 • 位。 6 .如申請專利範圍第5項之聚酯二醇,其中平均分子量 爲 500 〜5 ,000。 7 .如申請專利範圍第5或6項之聚酯二醇,其中由支 鏈二醇與碳數10〜12之脂肪族二羧酸所成的聚酯構成 單位含量/ ε -己內酯之構成單位含量(重量比)爲5/95 〜80/20 〇 8 . —種聚胺甲酸酯,其特徵爲如申請專利範圍第5或6 項之聚酯二醇與有機異氰酸酯所得者。 -64- 200523293 9 . 一種斯潘德克斯纖維,其特徵爲如申請專利範圍第8項 之聚胺甲酸酯所成者。 10.—種聚胺甲酸酯’其特徵爲含有2, 4 -二乙基-1,5 -戊 二醇爲構成成分之聚酯二醇及有機二異氰酸酯反應所 得者。 1 1 .如申請專利範圍第1 〇項之聚胺甲酸酯,其中聚酯二 醇之平均分子量爲500〜5,000。 1 2 . —種斯潘德克斯纖維,其特徵爲由如申請專利範圍第 1 0或1 1項之聚胺甲酸酯所成者。 13.—種含有二烷基胺基之丙烯腈系共聚物,其特徵爲以 下述一般式(1)所示的(甲基)丙烯酸二烷基胺基乙酯及 一般式(2 )所示之反應性單體爲必須共聚物成分所形成 者, CH2= CRCOOCH2CH2NR0R0 ( 1 ) (其中,R係表示氫或甲基;R°係表示碳原子數1〜 4之烷基) CH2 = CRC00CH2CH20[ - C(=0) (CR^Mx-O - ]n-H (2) (其中,R係表示氫或甲基;x個R1及R2係各表示 獨立的氫或碳原子數爲1〜12之烷基;η個開環內酯 鏈可爲相同或不同者;X係表示4〜7之整數;η之平 均値爲1〜5 )。 1 4 . 一種聚胺甲酸酯組成物,其特徵爲含有如申請專利範 圍第13項之含有二烷基胺基之丙烯膪系共聚物。 1 5 .如申請專利範圍第1 4項之聚胺甲酸酯組成物’其中 該含二烷基胺基之丙烯腈系共聚物的含量爲0.5〜1〇 重量%。 -65- 200523293 1 6 . —種斯潘德克斯組成物,其特徵爲含有如申請專利範 圍第13項之含二烷基胺基之丙烯腈系共聚物。 1 7 .如申請專利範圍第1 6項之斯潘德克斯組成物,其中 該含二烷基胺基之丙烯腈系共聚物的含有量爲0.5〜10 重量%。200523293 10. Scope of patent application: 1. A polyester diol characterized by being selected from 2-n-butyl-2-ethyl-1,3-propanediol and 2, 2-diethyl-1,3 · A diol of at least one of propylene glycol and 2,4-diethyl-1,5-pentanediol, and ε-caprolactone and adipic acid are constituent units, and selected from 2-n-butyl-2 Diol and adipic acid of at least one of -ethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol and 2,4-diethyl-1,5-pentanediol The content of the polyester constituting unit / ε-caprolactone (weight ratio) is 5/95 to 80/20 ° ® 2. For example, the polyester diol of item 1 of the patent application scope, wherein the average molecular weight is 5 00 to 5,000. 3. A polyurethane, which is characterized by being obtained from a polyester diol and an organic diisocyanate such as those in the scope of claims 1 or 2. 4. A spandex fiber characterized by being formed from a polyurethane as described in item 3 of the patent application. 5. A polyester diol characterized by containing a branched aliphatic diol, ε-caprolactone, and an aliphatic dicarboxylic acid having 10 to 12 carbons as constituent units. 6. The polyester diol according to item 5 of the patent application, wherein the average molecular weight is 500 to 5,000. 7. The polyester diol as claimed in item 5 or 6 of the patent application scope, wherein the polyester unit composed of a branched diol and an aliphatic dicarboxylic acid having 10 to 12 carbons has a unit content of ε-caprolactone The content of the constituent unit (weight ratio) is 5/95 to 80/20 〇.-A kind of polyurethane, which is characterized by the polyester diol and the organic isocyanate obtained from the patent application No. 5 or 6. -64- 200523293 9. A spandex fiber, which is characterized by being made of polyurethane as described in item 8 of the patent application. 10. A polyurethane 'characterized in that a polyester diol containing 2,4-diethyl-1,5-pentanediol as a constituent and an organic diisocyanate are obtained by a reaction. 1 1. The polyurethane according to item 10 of the patent application range, wherein the average molecular weight of the polyester diol is 500 to 5,000. 1 2. A kind of Spandex fiber, which is characterized by being made of a polyurethane such as item 10 or 11 of the scope of patent application. 13. An acrylonitrile-based copolymer containing a dialkylamino group, which is characterized by a dialkylaminoethyl (meth) acrylate represented by the following general formula (1) and a general formula (2) The reactive monomer is formed by the necessary copolymer components. CH2 = CRCOOCH2CH2NR0R0 (1) (where R is hydrogen or methyl; R ° is alkyl with 1 to 4 carbon atoms) CH2 = CRC00CH2CH20 [- C (= 0) (CR ^ Mx-O-] nH (2) (where R represents hydrogen or methyl; x R1 and R2 each represent independent hydrogen or an alkyl group having 1 to 12 carbon atoms Η ring-opening lactone chains may be the same or different; X represents an integer of 4 to 7; the average 値 of η is 1 to 5). 1 4. A polyurethane composition characterized by containing For example, a propylene fluorene-based copolymer containing a dialkylamine group in the scope of application for item 13. 15. A polyurethane composition in the scope of the application for scope of application for item 14 in which the dialkylamine group-containing The content of the acrylonitrile-based copolymer is 0.5 to 10% by weight. -65- 200523293 1 6. A kind of Spandex composition, which is characterized by containing Acrylonitrile-based copolymers containing dialkylamino groups. 17. The Spandex composition according to item 16 of the patent application scope, wherein the content of the acrylonitrile-based copolymers containing dialkylamino groups is 0.5. ~ 10% by weight. -66- 200523293 七、指定代表圖: (一) 本案指定代表圖為:第(無)圖。 (二) 本代表圖之元件符號簡單說明: 無 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:-66- 200523293 VII. Designated Representative Map: (1) The designated representative map in this case is: (none) map. (2) Brief description of the component symbols in this representative figure: None 8. If there is a chemical formula in this case, please disclose the chemical formula that can best show the characteristics of the invention:
TW94102538A 1999-08-18 2000-08-16 Polyesterdiol, polyurethane obtained by this method, spandexfilament, acryl group polymer containing novel dialkylamino group, polyurethane composition and spandex TW200523293A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231307A JP2001055424A (en) 1999-08-18 1999-08-18 New acrylic-based copolymer containing dialkylamino group, polyurethane composition and spandex(r) composition

Publications (1)

Publication Number Publication Date
TW200523293A true TW200523293A (en) 2005-07-16

Family

ID=16921582

Family Applications (2)

Application Number Title Priority Date Filing Date
TW89116516A TWI271412B (en) 1999-08-18 2000-08-16 Polyurethane and obtained by this spandex filament
TW94102538A TW200523293A (en) 1999-08-18 2000-08-16 Polyesterdiol, polyurethane obtained by this method, spandexfilament, acryl group polymer containing novel dialkylamino group, polyurethane composition and spandex

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW89116516A TWI271412B (en) 1999-08-18 2000-08-16 Polyurethane and obtained by this spandex filament

Country Status (2)

Country Link
JP (1) JP2001055424A (en)
TW (2) TWI271412B (en)

Also Published As

Publication number Publication date
TWI271412B (en) 2007-01-21
JP2001055424A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
CN1322022C (en) Polyester diol,acrylic-based copolymer, polyurethane composition and spandex composition
JP4132244B2 (en) Polyurethane elastic fiber comprising thermoplastic polyurethane and method for producing the same
US8759467B2 (en) Polyester polyol, polyurethane, obtained using the same, process for production thereof, and molded polyurethane
JP6616685B2 (en) Water-dispersed polycarbonate-based polyurethane resin composition, fiber product treated with the same, and method for producing water-dispersed polycarbonate-based polyurethane resin composition
TWI806107B (en) Polyether polyols, polyester elastomers and polyurethanes
JP2021025038A (en) Polyether polycarbonate diol, and method of producing the same
TW201136969A (en) Polyurethane elastic yarn and production method thereof
JP6031331B2 (en) Polyurethane elastic fiber and method for producing the same
JP4343351B2 (en) Polyurethane fiber
KR20120103623A (en) Improved elastomeric compositions
CN115197395B (en) Aqueous polyurethane for impregnating microfiber leather, and preparation method and application thereof
JP2021038278A (en) Polyurethane for synthetic leather
JP2006307351A (en) Polyurethane elastic fiber
JPH07316922A (en) Elastic yarn made of polyurethane and its production
JP2011105809A (en) Method for producing polyester polyol having polysiloxane skeleton
TW200523293A (en) Polyesterdiol, polyurethane obtained by this method, spandexfilament, acryl group polymer containing novel dialkylamino group, polyurethane composition and spandex
JP4112963B2 (en) Polyurethane and elastic fiber comprising the same
JP2021152139A (en) Polyurethane for elastic fiber and polyurethane elastic fiber using the same
WO1996030427A1 (en) Elastic fibers, process for producing the same, and polyester elastomer to be used therein
JP4665640B2 (en) Leather-like sheet
JPH01239172A (en) Polyester uniform
JP2000144532A (en) Production of water absorbing polyurethane yarn
JP2007039844A (en) Leather-like sheet
JP4481328B2 (en) Thermoplastic polyurethane
JP2001214330A (en) Method for producing water-absorbing polyurethane yarn