TW200426408A - Multifunction light guiding apparatus for flat-panel displays - Google Patents

Multifunction light guiding apparatus for flat-panel displays Download PDF

Info

Publication number
TW200426408A
TW200426408A TW92113702A TW92113702A TW200426408A TW 200426408 A TW200426408 A TW 200426408A TW 92113702 A TW92113702 A TW 92113702A TW 92113702 A TW92113702 A TW 92113702A TW 200426408 A TW200426408 A TW 200426408A
Authority
TW
Taiwan
Prior art keywords
light
array
optical
patent application
scope
Prior art date
Application number
TW92113702A
Other languages
Chinese (zh)
Inventor
Chih-Kung Lee
Ching-Heng Tang
Liamg-Bin Yu
Ching-Hua Lee
Yuh-Luen Juh
Chen Chia-Yi
Chia Lung Lin
Wen Hsin Hsiao
Original Assignee
Advancewave Technology Inc
Light Optpelectronics Ltd S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advancewave Technology Inc, Light Optpelectronics Ltd S filed Critical Advancewave Technology Inc
Priority to TW92113702A priority Critical patent/TW200426408A/en
Publication of TW200426408A publication Critical patent/TW200426408A/en

Links

Landscapes

  • Planar Illumination Modules (AREA)

Abstract

A multifunction light guiding apparatus for providing light spreading, smearing and/or collimating for flat-panel displays is disclosed. Generally speaking, an LCD backlight module for LCD display or LCD TV at least has a light source, a light guiding apparatus, and a reflector layer. The segmental light source generates the illumination, and the light guiding apparatus spreads the illumination uniformly across the display area of the LCD panel. The multifunction light guiding apparatus is comprised of a two-dimensional matrix of lens units arrayed in a moire pattern resulting from the superposition of two arrays of one-dimensional optical elements twisted at an angle. The two-dimensional matrix of lens units could be designed to have a changing lens distribution density in order to form uniformly spreading the illumination across the display area of the LCD panel. An alternate but similar light guiding apparatus for smearing the high luminance of LED units in an LED-based display is also disclosed.

Description

五、發明說明 200426408 【發明領域】 本發明大致相關於一種多功能導光元件,特別是有關於具有二維 矩陣光學舰單元(optical lens units)的—種導光藉。本發明可顧 於平板型顯示器,為具有整合之光散佈、模糊化與準直功能的一種導 光元件。 【技術背景】 隨著技術進展以及價格的下跌,各種類型的平板型顯示器 (flat-paneldisplays)已變得越來越普遍。在數種技術之中,液晶顯示器 (LCD,liquid crystal display),部份由於電腦普及之故,已成為最為普 遍的平板型顯示器。在LCD之中,其必要的平面光源(surface Ught source)係由一般稱為背光模組(backlight module)的一個背面照明組件 提供的。一個背光模組必須要能夠在LCD的整個顯示區域内放射出 均勻的照明光。 LCD顯示裝置的輕薄的造形特性使得背光模組走向側裝長段式 光源。通常是使用一段適當長度,小尺寸,且有發光效率的冷陰極螢 光燈管(CCFL,cold-cathode fluorescent lamp)作為光源,再利用導光板 將光導出形成平面光源。不過,此種側裝光源照射的安排方式卻有其 自身的問題。首先,侧面偏置的照射光源需要適當地將光源散佈到整 第9頁 200426408 個的平板顯示區域内。光的散佈需要以均勻的方式進行,以便在整個 顯示區域内達成大致常定的光照射強度,或者符合於人眼特性的某種 特定的照明強度分佈形狀。其次則是光傳導方向偏轉的問題。受限於 液晶模組可控制之入射光源方向有限,因此在導光的過程之中必須要 有適當的準直(collimation)才能球保光源照射的效率。 由於光源進入導光板的入射角極大,因此絕大多數的光在導光板 内呈現全反射,通常利用一種散射油墨在導光板背面製作具光反射性 的點狀塗覆破壞光全反射將光導出導光板,此外這些這些散色油墨點 狀塗覆在導光板背後所形成疏密的圖案亦可用來調整平面光源之光 強分佈的一種作法。此些塗覆點的分佈散置,必須要能夠在其距光源 之距離,與面板的整個顯示區域内塗覆點密度,兩者之間建立一個特 定關係。如此便可以容許在整個面板顯示區域内達成所需要的整體照 射均勻度。反射性塗覆點的密度分佈係為建立此種必要關係時可加以 調整的參數。若無此等調整,LCD的平板型顯示區域中較靠近光源 的部份便會比較遠處具有更大的光強。 在LCD面板背光模組的例子之中,反射性的點狀塗覆,雖然易 於製作且成本不高,但若塗覆點的個別反射未經適當的模糊化,便會 有視覺上的問題產生。LCD面板通常被用來顯示諸如内含諸多高解 析度細節的電腦應用程式晝面資訊。此類面板因此通常是在近距離内 第ίο頁 200426408 看。若LCD面板背後的亮點未經適當模糊化,便會對觀看者造成顯示 資訊的干掩 其他的顯不器或照射裝置之中亦存在有同樣的光點(或,通常是 較亮的小面積區域)變動光強的問題。如LCD電視、應用發光二極體之照 明系統,隨著發光二極體(LED,light-emitting diodes)逐漸被應用於諸 如父通號4及>1車尾燈組件等用途中,安置於整個矩陣中的每一個 LED的光點亦必須要予以模糊化。此外,當使用LED來製作顯示裝置 時,LED像素單元的相對較高發光亮度,即使在較遠距離之外,對 於人眼仍有明顯的個別分辨慶因此,在家用及個人化的以LED為基 礎的顯示裝置之中,LED顯示像素的模糊化便成為必要的處理。 為了要在LCD面板導光板的照射表面上達成模糊化以及排除亮 點,必須要使用擴散片(diffbser film)傳統上LCD背光模組所使用的 擴散片主要有兩種,一種是利用化學鑛膜方式在其表面上形成適當的 粗糙度製作。另一種方法則是利用毛玻璃干涉製作出全像擴散片。此類 獲致表面模糊性的方法係將相鄰的光亮點振幅減弱模糊化而達到人 眼不能分辨的程度,因此擴散片之光效率並不高,開口率(aperture ratio)係為集光有效表面區域的一個百分比量度值,由於習知擴散片 易用振幅減弱之方式達成模糊化光點之作用,故其量測光效率之開口 率不高。V. Description of the invention 200426408 [Field of the invention] The present invention is generally related to a multifunctional light guide element, and more particularly to a light guide with a two-dimensional matrix optical lens unit. The invention can take into account the flat panel display, and is a light guide element with integrated light spreading, blurring and collimating functions. [Technical Background] As technology advances and prices drop, various types of flat-panel displays have become more and more common. Among several technologies, liquid crystal displays (LCDs) have become the most common flat-panel displays due in part to the popularity of computers. In LCDs, the necessary surface light source (surface Ught source) is provided by a backlight module generally called a backlight module. A backlight module must be able to emit uniform illumination light over the entire display area of the LCD. The thin and light forming characteristics of LCD display devices make the backlight module move to a side-mounted long-range light source. Generally, a cold-cathode fluorescent lamp (CCFL) with a suitable length, small size, and luminous efficiency is used as a light source, and then a light guide plate is used to guide the light to form a flat light source. However, this arrangement of side-mounted light sources has its own problems. First, the side-biased illumination light source needs to properly spread the light source over the entire flat display area of 200426408. The light distribution needs to be performed in a uniform manner in order to achieve a roughly constant light irradiation intensity throughout the display area, or a specific illumination intensity distribution shape that conforms to the characteristics of the human eye. The second problem is the deflection of the light transmission direction. Limited by the direction of the incident light source that the LCD module can control, it is necessary to have proper collimation in order to ensure the efficiency of the light source irradiation. Because the incident angle of the light source into the light guide plate is extremely large, most of the light is totally reflected in the light guide plate. Generally, a scattering ink is used to make a light reflective dot coating on the back of the light guide plate to destroy the total reflection of light and lead the light out. The light guide plate, and the dense pattern formed by dot coating these scattered inks behind the light guide plate can also be used to adjust the light intensity distribution of a plane light source. The distribution of these coating points must be able to establish a specific relationship between the distance from the light source and the coating point density in the entire display area of the panel. This allows the required overall illumination uniformity to be achieved over the entire panel display area. The density distribution of reflective coating spots is a parameter that can be adjusted when establishing this necessary relationship. Without these adjustments, the portion of the flat panel display area of the LCD that is closer to the light source will have a greater light intensity than far away. In the example of the LCD panel backlight module, although reflective dot coating is easy to manufacture and not expensive, if the individual reflection of the coating points is not properly blurred, there will be visual problems. . LCD panels are often used to display day-to-day information such as computer applications with many high-resolution details. Such panels are therefore usually viewed at close range. If the bright spots behind the LCD panel are not properly blurred, it will cause the viewer to display the information. Other displays or illumination devices also have the same light spots (or, usually, a relatively small area). Area). For example, LCD TVs, lighting systems using light-emitting diodes, with light-emitting diodes (LEDs) are gradually being used in applications such as parent number 4 and> 1 rear light components, and are placed throughout The light point of each LED in the matrix must also be blurred. In addition, when LEDs are used to make display devices, the relatively high luminous brightness of LED pixel units, even at long distances, still has a clear individual discrimination for the human eye. Therefore, LEDs are used in homes and personalization as In basic display devices, blurring of LED display pixels becomes a necessary process. In order to achieve blurring and eliminate bright spots on the illuminated surface of the LCD panel light guide plate, it is necessary to use a diffuser film. Traditionally, there are two types of diffuser films used in LCD backlight modules. One is to use a chemical mineral film method. Proper roughness is formed on the surface. Another method is to use frosted glass interference to make a holographic diffuser. This method of obtaining surface blurring is to weaken the amplitude of adjacent bright spots and blur them to the extent that the human eye cannot distinguish them. Therefore, the light efficiency of the diffuser is not high, and the aperture ratio is an effective light-collecting surface. As a percentage measurement value of the area, since the conventional diffusion sheet is easy to achieve the effect of blurring the light spot by means of amplitude reduction, its aperture ratio for measuring light efficiency is not high.

200426408 此外,液晶模組會要求其光源入射角度約在+/-17度的角度範圍 之内,方能達成液晶面板色彩及光強等控制,一般來說背光模組會再 加入亮度加強膜(Brightness Enhancement Film; BEF)以將散射出的光 重新導向準直於液晶模組可接受之角度内。 習知技術之背光模組之中使用了目的在於達成不同且分離功能 性的不同作法。例如,在典型的習知LCD背光模組之中,導光導光 板被使用來將側置光源散佈到整個顯示區域内,擴散性質的點狀塗覆 則進一步有助於達成光照分佈的均勻化,而亮度加強膜則準直面板的 光照角度。通常,不同且分離的光學構造層被重疊在一起,以便形成 可以提供LCD面板背光模組所有功能的一個系統。 【發明摘要】 因此,需要有一種導光元件,其可以在LCD背光模組中引導自 光源散出的光,並提供光擴散時之良好平均明進絲照射之均句 性。 另亦需有-種導光元件,其可以在LCD背光模組中提供光源照 射之更有效模糊化以使影像更為平滑。 另亦需有-種導光元件,其可以在LCD背光模組中提供光源照 射之更佳準直以增進光源之效率。 ^^需有—種導光元件,其可以在單-個光學構造之中提供lcd 第12頁 · 2〇〇4264〇8 背光模組的多重功能性以減低製造成本 另亦需有-種導光元件,其可以在LED照明裝置中提供更有效 模糊化以使影像更為平滑。 本發明因此祕可為背光模組提供光散佈、_化鮮直之一種 多功能導光元件。該多功能導光元件包含有排列於一疊紋圖形之中的 透鏡單元所形成的二維轉,該二維轉侧於導光元件兩面上的兩 組-維光學元件_以—扭角度互相重疊所形成。神提供可為使用 LED顯示像素之顯示器提供模糊化之一種導光元件。 【較佳實施例之詳細說明】 圖3為-透視圖’其中顯示本發明一較佳實施例之多功能導光元 件。圖中所顯示的部份係為通常被製作成平面或彎曲形狀薄層的導光 元件,鱗光元件除具導光祕之外,尚可翻化鮮直背光光源。 可應用於在LCD顯示器的背光模組中作為具有紐用途之導光板導 光元件,亦可製作成曲面造型,在車輛尾燈組件的作為咖模糊化 用途之導光罩。 諸如圖3所顯示之本發明較佳實施例,本發明之多功能導光元件 的兩面各具有—組—維光學元件_,同後輯將制的依據本 發明利用重疊兩組-維光學元件陣列所製造的光學裝置可具有一些 ㈣統件維鱗树陣列形成 第13頁" "--- 200426408 一位二維微透鏡矩陣於導光元件中,經由特殊設計,該些透鏡單元 (lens unit)可具有模糊化與準直背光之功能,使該導光元件為一多功能 導光元件。此外,由於本發明多功能導光元件的整個二維微透鏡矩陣 中的母一個組成透鏡單元(lens unit)百分之百開口率之故,裝置的整體 光損之最小化是可以達成的。控制本發明之多功能導光元件模糊化或 成像用途的設計參數包含有陣列中一維延伸柱形光學元件的剖面形 狀’重疊陣列之間的間隔及相董他轉角度,以及陣列中光學元件的間 距及延伸指向曲線等。 為了說明本發明之多功能導光元件,圖丨及2中清楚界定了本發 明範維光學元件之_。圖i為―透視圖,其中顯示隨著大 致曲線型延伸指向曲線而展開的片形構造内的一維光學元件121, 122 ’…及129之一陣列120。同樣的,圖2之透視圖中顯示隨著直 線型延伸指向曲線而展開的平面構造内的一維光學元件261,262,… 及269之一陣列260。 如圖1所示,數個具相同或相似剖面形狀之一維延伸柱形光學 元件121 ’ 122 ’…及129形成-組陣歹12〇。順著圖中的三度空間座 標系統’ -維光學元件121,122,…及129所形成的的-維陣列12〇 係依單-個維度而於Y方向上延伸,其_維延伸柱形光學元件之剖 面形狀110可表示為X軸方向之函數,且其光路徑雜計於z方向 第14頁 200426408 上。透鏡的大小’或_維延伸_光學元件的長軸⑺方向上的底寬 114是可以變動的。如元件122前端的剖面形狀底寬ιΐ7係大於遠端 底寬118。 如此,圖1及2中之陣列120及26〇本身係分別各為χ方向上 的-維構造,而其各自之_維延伸_光學元件121,122,··及⑶ 與26卜262,…及269亦皆各具單一維度的本質。如圖所示,每一 個-維延雜形光學播,料γ額的妹上之鍵,皆各自擁 有固定的纖面形狀。在本發明之揭示細之巾,此些—維光學元件 陣列的伸展方向,被稱為是陣列的延伸指向曲線。如此,陣列26〇的 延伸指向曲線251是為-直線,而陣列12〇的延伸指向曲線⑴則 為曲線。 本發明之多魏導光元件,其_諸如圖丨與2中的兩組之—維 光學元件陣列形成於導光元件之兩面上所構成的構造,導光元件之厚 度為一設計參數,可決定之多功能導光元件之光學性質,如圖3之導 光元件300的厚度390。 諸如圖1及2中所顯示的一維光學元件的陣列可被用來建構具有 所需光學性質的導光元件。圖3之透視圖顯示依據本發明一較佳實施 例之多功能導光元件之一部份。 圖3中所顯示之實施例包含有與圖1中所顯示者相似的一對兩個200426408 In addition, the liquid crystal module will require its light source incident angle to be within the range of +/- 17 degrees, in order to achieve the LCD panel color and light intensity control. Generally speaking, the backlight module will add a brightness enhancement film ( Brightness Enhancement Film (BEF) to redirect the scattered light to an angle acceptable to the liquid crystal module. The conventional backlight module uses different methods for achieving different functions and separating functions. For example, in a typical conventional LCD backlight module, a light guide light guide plate is used to spread the side light sources throughout the display area, and the diffusive dot coating further helps to achieve uniform light distribution. The brightness enhancement film collimates the light angle of the panel. Usually, different and separated optical construction layers are superimposed together to form a system that can provide all the functions of an LCD panel backlight module. [Abstract] Therefore, there is a need for a light guide element that can guide light emitted from a light source in an LCD backlight module, and provide a good average uniformity of light exposure when light is diffused. There is also a need for a light guide element which can provide more effective blurring of the light source illumination in the LCD backlight module to make the image smoother. There is also a need for a light guide element that can provide better collimation of the light source in the LCD backlight module to improve the efficiency of the light source. ^^ A light guide element is needed, which can provide LCD in a single optical structure. Page 12 · 2264264 08 Multiple functions of the backlight module to reduce manufacturing costs. A light guide element is also required. Light element that can provide more effective blurring in LED lighting devices to make the image smoother. Therefore, the present invention can provide a multi-functional light guide element for light scattering and straightening for the backlight module. The multifunctional light guide element includes a two-dimensional rotation formed by lens units arranged in a stack pattern, and the two-dimensional rotation is on two sides of the light guide element. Overlap is formed. God provides a light guide element that can provide blurring to displays that use LEDs to display pixels. [Detailed description of the preferred embodiment] Fig. 3 is a-perspective view 'showing a multifunctional light guide element according to a preferred embodiment of the present invention. The part shown in the figure is a light guide element that is usually made into a flat or curved thin layer. In addition to the light guide secretion, the scale element can also be converted into a straight backlight source. It can be used in the backlight module of LCD display as a light guide plate light guide element with a button purpose, can also be made into a curved shape, and used as a light guide cover for blurring the purpose of a vehicle tail light assembly. A preferred embodiment of the present invention, such as that shown in FIG. 3, has two sides of each of the multifunctional light guide elements of the present invention—groups—dimensional optical elements—. The optical device manufactured by the array may have some system components. The dimensional scale tree array is formed. Page 13 " " --- 200426408 A two-dimensional micro-lens matrix in the light guide element. Through special design, these lens units ( lens unit) can have functions of blurring and collimating the backlight, making the light guide element a multifunctional light guide element. In addition, since the mother lens in the entire two-dimensional microlens matrix of the multifunctional light guide element of the present invention constitutes a 100% aperture ratio, the overall light loss of the device can be minimized. The design parameters for controlling the blurring or imaging use of the multifunctional light guide element of the present invention include the cross-sectional shape of the one-dimensionally extended cylindrical optical element in the array, the interval between overlapping arrays and the relative rotation angle, and the optical element in the array. The distance and extension point curve. In order to illustrate the multi-functional light guide element of the present invention, Figures 1 and 2 clearly define _ of the Fan-dimensional optical element of the present invention. Fig. I is a perspective view showing an array 120 of one-dimensional optical elements 121, 122 '... and 129 in a sheet structure that expands with a substantially curved extension pointing curve. Similarly, the perspective view of FIG. 2 shows an array 260 of one-dimensional optical elements 261, 262, ..., and 269 in a planar structure that unfolds as a linear extension of a pointing curve. As shown in FIG. 1, a plurality of one-dimensionally extended cylindrical optical elements 121 ', 122', ..., and 129 having the same or similar cross-sectional shapes form an array 歹 12. Following the three-dimensional space coordinate system in the figure'-dimensional optical elements 121, 122, ..., and 129, the -dimensional array 12o extends in the Y direction according to a single dimension, and its _dimensionally extends cylinder The cross-sectional shape 110 of the optical element can be expressed as a function of the X-axis direction, and its light path is miscellaneous on the z direction on page 14, 200426408. The size of the lens' or the "dimensional extension" of the optical element in the long axis 底 direction of the base width 114 can be changed. For example, the cross-sectional base width of the front end of the element 122 is larger than the distal base width 118. In this way, the arrays 120 and 260 in Figs. 1 and 2 are respectively -dimensional structures in the χ direction, and their respective _dimensional extension_optical elements 121, 122, ..., and ⑶ and 26, 262, ... And 269 also have the essence of a single dimension. As shown in the figure, each of the -dimensionally-extended heterogeneous optical broadcasts has a fixed fiber shape on the key of the γ-size sister. In the thin towel disclosed in the present invention, the extension direction of these one-dimensional optical element arrays is referred to as the array's extension pointing curve. In this way, the extension pointing curve 251 of the array 26 is a straight line, and the extension pointing curve ⑴ of the array 120 is a curve. The multi-wei light-guiding element of the present invention has a structure in which two-dimensional optical element arrays such as those shown in FIGS. 丨 and 2 are formed on both sides of the light-guiding element. The thickness of the light-guiding element is a design parameter. The optical properties of the multifunctional light guide element are determined as shown in the thickness 390 of the light guide element 300 of FIG. 3. Arrays of one-dimensional optical elements such as those shown in Figures 1 and 2 can be used to construct light-guiding elements with desired optical properties. Fig. 3 is a perspective view showing a part of a multifunctional light guide element according to a preferred embodiment of the present invention. The embodiment shown in FIG. 3 includes a pair of two similar to those shown in FIG. 1.

200426408 能導光元件3()() ^兩陣列32〇Ι^ί 具有曲線型延伸指向曲線。例如,頂層陣列32〇的曲線型延伸指向曲 線311顯示了一個事實,即圖中大致朝向左右方向展開的每一個一 維光學το件32卜322,…及333,其右側的剖面形狀(圖】中之11〇) 乃疋大於其左側者。相類似的,在底層陣列36q之中,其光學元件 36卜362,...及371之遠端之剖面形狀尺寸乃是大於其近端者。 圖式之中,兩陣列中之一陣列(32〇)係以一個銳角扭轉角度而被 重疊於另-陣列(360)之上。此可以由延伸指向曲線331及351之間 的相對交又角度觀察出來。此銳角扭轉角度在多功能導光元件的整個 區域内隨者位置而有所不同。例如,約在頂層陣列32〇的光學元件 327及328與底層陣列之元件364及365的交又處的扭轉角%會稍不 同於扭轉角φ2·。 圖4顯示本發明—多魏導光元种之-雜基核學單元於 矩陣中之位置。此種矩陣内位置之配置係為兩或更多一維光學元件之 陣歹J以個扭轉角度相重疊的直接結果。兩個諸如圖】及2所顯示 之-維光學元件陣列的重疊,會在任何兩個元件(各來自相對一陣列) 的交叉之處形成單元光學微透鏡。總體料崎有缝單元的整體位 置排列即形成了 一般稱為疊紋(m〇ire pattem)的圖形。 例如’參考圖4,頂層陣列320中的一維光學元件324與底層陣 第16頁 200426408 列360的三個元件367,368及369分別以扭轉角φ交叉,並形成了三 個單元的透鏡。圖中係以圓圈來表示此三個透鏡單元447,445及 442。特定而言,分別來自陣列32〇及36〇的任何兩元件奶,似, 325,327,328及369,其間的每一個交叉點44卜442,·.·及448, 即實質代表了一個因交叉所形成的光學單元的光學中心點。矩陣内成 群的透鏡單元變成了對於人眼而言有組織的線條,所有此些線條的組 合即成為整體的疊紋圖形。例如,圖4之中以圓圈444,445及446 所分別代表的透鏡單元中心點,即排列而構成了整個疊紋圖形之中的 顯眼線條401。相較之下,由透鏡中心點442及4你所構成的另一線 條402,於人眼則幾乎不可見。 圖5顯示兩個各具有直線型指向曲線及固定間距的兩個一維光 學元件陣列520及56〇的重疊構造所形成之多功能導光元件·。由 於兩陣列520及560皆具有直線型延伸指向曲線511及551,以及光 學元件的si定’,轉狀重疊卿成的親單元541的大矩陣所 顯現的疊紋圖形,即屬一種相對較有規則的的疊紋。例如,諸如5〇ι 的明顯線條會比502及503等更為顯眼。 同樣的,圖6顯示分別各具有直線型及曲線型指向曲線6ιι及 651且分別具有固定及變動間距的兩個一維光學元件陣列⑽及_ 的重疊構造所形成的另一個多功能導光元件6〇〇。不過,其中的一個200426408 The light guide element 3 () () ^ two arrays 32〇1 ^ ί has a curved extended pointing curve. For example, the curved extension pointing curve 311 of the top-level array 32 ° shows the fact that each one-dimensional optical το piece 32, 322, ..., and 333, which expands approximately in the left and right directions in the figure, has a cross-sectional shape on the right side (Figure) 11 of the middle) is larger than its left. Similarly, in the underlying array 36q, the cross-sectional shape and dimensions of the distal ends of the optical elements 36b, 362, ..., and 371 are larger than those of the proximal end. In the figure, one of the two arrays (32) is superimposed on the other-array (360) at an acute twist angle. This can be seen from the relative intersection between the extended pointing curves 331 and 351. This acute angle twist angle varies with the position of the multifunctional light guide element over the entire area. For example, the twist angle% at the intersection between the optical elements 327 and 328 of the top array 32 and the elements 364 and 365 of the bottom array will be slightly different from the twist angle φ2 ·. Fig. 4 shows the position of the heterobasic nuclear unit of the present invention, the multi-guide light element species, in the matrix. The arrangement of the positions in this matrix is a direct result of the array of two or more one-dimensional optical elements 歹 J overlapping at a twist angle. The overlap of two one-dimensional optical element arrays such as those shown in Fig. 2 and 2 will form a unit optical microlens at the intersection of any two elements (each from an opposite array). The overall arrangement of the stitching units of the overall material saki forms a pattern commonly referred to as moire pattern. For example, referring to Fig. 4, the one-dimensional optical element 324 in the top layer array 320 and the three elements 367, 368, and 369 in the column 360 of the bottom array page 16 200426408 intersect at a twist angle φ and form a three-unit lens. The three lens units 447, 445, and 442 are indicated by circles in the figure. In particular, any two-element milk from the arrays 32 and 36 respectively, like, 325, 327, 328, and 369, and each intersection between them is 44, 442, ..., and 448, which essentially represents a factor. The optical center point of the optical unit formed by crossing. The group of lens units in the matrix becomes organized lines for the human eye, and the combination of all these lines becomes the overall moire pattern. For example, the center points of the lens units represented by circles 444, 445, and 446 in FIG. 4 are arranged to form the conspicuous lines 401 in the entire moire pattern. In contrast, the other line 402 formed by the lens center points 442 and 4 is almost invisible to the human eye. Fig. 5 shows a multifunctional light guide element formed by two overlapping structures of two one-dimensional optical element arrays 520 and 560 each having a straight pointing curve and a fixed pitch. Since the two arrays 520 and 560 both have linear extending pointing curves 511 and 551, and the si-definition of the optical element, the moire pattern appearing on the large matrix of the pro-cells 541 that overlap and overlap is a relatively relatively Regular moire. For example, obvious lines such as 50m are more prominent than 502 and 503. Similarly, FIG. 6 shows another multi-functional light guide element formed by the overlapping structure of two one-dimensional optical element arrays ⑽ and _, each having a linear and curved pointing curve 6 ι and 651, respectively, and having fixed and variable pitches, respectively. 600. However, one of them

200426408 陣列,611,具有變動的元件間距。如圖所示,頂層陣列62〇中的元 件之間的間距要比底層的為密。其重疊即形成了具有諸如6〇1的彎曲 線條的疊紋。在此光學系統之中,如圖所示,線條6〇1在整個疊紋圖 开>之中要比諸如602及603的直線線條來得顯眼。200426408 array, 611, with variable component pitch. As shown in the figure, the space between the elements in the top layer array 62 is closer than that in the bottom layer. The overlap forms a moire with curved lines such as 601. In this optical system, as shown in the figure, the line 601 is more conspicuous than the straight lines such as 602 and 603 in the entire moire pattern.

如此’在諸如圖5及6中所顯示的,一維光學元件陣列的重疊構 造之中’兩組成陣列(圖5中之陣列520及560,及圖6中之陣列620 及660)中的所有元件之交叉點(54卜641)即組成一個疊紋圖形。此種 疊紋可以具有適合於所需要光學用途的圖形性質,不論是模糊化或成 像用途的需求。 圖7為一透視圖,顯示本發明多功能導光元件之一基本光學單 元,其兩組成陣列之間的扭轉角度為一個小角度。此透視圖中詳細顯 示本發明之多功能導光元件的一個基本光學單元,其每一個頂及底半 構造的一維性質。特定而言,圖中之基本光元單元7〇9包含了頂半構 造725及底半構造765。圖8顯示圖7中之光學單元709沿著光路徑 之投影形狀。投影形狀780具有一個平行四邊形的基本構形。此可由 投影形狀780輪廓的銳角φ及其互補鈍角θ轉彎看出。 圖8 ’同樣地,顯示圖7中之光學單元7〇9的基層79〇。此基層 係為夾在頂陣列的一維元件725及底陣列的765之間的一薄層透鏡介 質。基層790可由不同於頂及底陣列元件材質的光學介質所構成。真 第18頁 200426408Thus, in the "overlapping structure of a one-dimensional optical element array such as shown in Figs. 5 and 6," all of the two constituent arrays (arrays 520 and 560 in Fig. 5 and arrays 620 and 660 in Fig. 6) The intersection of the components (54, 641) constitutes a moire pattern. Such moire may have graphic properties suitable for the required optical application, whether it is a need for blurring or imaging. Fig. 7 is a perspective view showing a basic optical unit of one of the multifunctional light guide elements of the present invention, and the twist angle between the two constituent arrays thereof is a small angle. This perspective view shows in detail the one-dimensional nature of each of the top and bottom half structures of a basic optical unit of the multifunctional light guide element of the present invention. Specifically, the basic light element unit 709 in the figure includes a top half structure 725 and a bottom half structure 765. FIG. 8 shows the projected shape of the optical unit 709 in FIG. 7 along the light path. The projected shape 780 has a basic configuration of a parallelogram. This can be seen by the sharp angle φ of the contour of the projected shape 780 and its complementary obtuse angle θ turn. FIG. 8 'shows the base layer 79 of the optical unit 709 in FIG. 7 similarly. This base layer is a thin layer of lens medium sandwiched between one-dimensional elements 725 of the top array and 765 of the bottom array. The base layer 790 may be made of an optical medium different from the material of the top and bottom array elements. True Page 18 200426408

第19頁 200426408Page 19 200426408

元件半徑R2醉圓。又再蚊兩辨構造各細其互細對的平坦 底部1117及1157相接合而互相重疊在一起,而兩者的長轴ιιΐ2及 1152則以一個角度φ相對扭轉。 在頂陣列半構造725的長轴垂直於X軸並與γ軸對正的一個座 標系統之中來考量系統709。半構造725的底717與Ζ軸垂直對正。 此外,令底陣列半構造765亦在其自身的一個座標系統之中 以相似的方式對正,如圖7中所顯示的情形。如此,頂及底半構造 725及765便可以分別在其各自之χ-ζ及X,-Z平面内以下式表示 x2+z2=Rx2 + z2 = R2 傅氏光學(Fourier optics)理論之中的並轴及薄透鏡模型(paraxial and thin lens model)容許以下列方式來逼近系統的光學轉換函數:Element radius R2 is drunk. The flat bottoms 1117 and 1157 of the two mosquito discriminating structures are joined and overlapped with each other, and the long axes 2 and 1152 of the two are relatively twisted at an angle φ. Consider system 709 in a coordinate system whose long axis is perpendicular to the X axis and aligned with the γ axis. The bottom 717 of the half structure 725 is perpendicular to the Z axis. In addition, the base array half-structure 765 is also aligned in a similar manner in one of its own coordinate systems, as shown in FIG. 7. In this way, the top and bottom half structures 725 and 765 can be expressed in the respective χ-ζ and X, -Z planes as follows: x2 + z2 = Rx2 + z2 = R2 in Fourier optics theory The paraxial and thin lens model allows the system's optical transfer function to be approximated in the following ways:

.x2 .a2x2 l- —l- ,b2y2 .labxy .x2 , y2 l-γ -l-1 ^fx ry ^fy.x2 .a2x2 l- —l-, b2y2 .labxy .x2, y2 l-γ -l-1 ^ fx ry ^ fy

第20頁 200426408 其中'"Ά 及Ω分別為頂及底半構造1125及1165的焦距, 而Α則為入射光的波長。參數人及/”分別為透鏡單元膽在χ_ζ及 Υ-Ζ平面内的等效焦距。 根據元件在座標祕之_對正情形,會有 β = cos妒及厶= sinp的 關係式存在據此,參數/x,y;及人,亦即,在轉移後的座標系統 内的透鏡焦距’其係為光料統岐為直絲示的光學性質,便可以 利用下列方式而與原始的树特性關聯起來: 以及 Λ /ι/2 Λ + /i cos2 φ ⑷ fy A sin2 φ ⑶ fm Λ sin2^> ⑹ 注意到參數人 的一個量測值。 係為結果所形成的透鏡單元709由45。方向觀察時 若將圖11 中x式(3)所描述之光學系統與下式所描述,並具有焦 心的一個傳統球面透鏡互概較 …、、 第21頁 200426408 .Χ2+Υ2 ⑺ f f 則X-Z及Y_Z平面内的焦距之分式尤及人便可以容許透鏡單元 1109在解析上被當作近似之橢球透鏡(ellipsoidal iens)來考慮。 以Zemike多項式為基礎所進行的光學像差之理論分析,可以容 f f 許檢視項人及’’並將之作為”astigmatism @0。及焦距”之像差加以 定義。如此,圖11中之透鏡單元1109之中所存在的有效傾斜像差之 9 f 程度,便可利用尤及Λ之間的差異來決定。 上列式(7)中之最後一個等號右侧之項之相位項,在由直交 (Cartesian)座標系統轉換至極座標系統(χ々卩小)之後,即變成 印sin2、其中〇一smM/A/2)。依據多項式的理論 ,此係對應 於’’astigmatism @0。及焦距"之像差。 依據上述,圖11中之透鏡單元11〇9内即可以找到兩種基本類型 的光學像差。利用適當地調整包括頂及底半構造1125及1165之透鏡 參數,以及扭轉角度φ等的參數,便可以操控此兩種基本類型的光學 像差,以令透鏡單元1109具有所需要的光學性質。例如,若扭轉角 度φ被設定為90。,並令,則透鏡單元蘭即成為一種近似之 球面鏡’可適於成像之用途。另一方面,若扭轉角度權設定為45。, 且底半構造1165的焦距β顯著地相對較小,則鏡單元謂的整體 像差即變嚴重,而系統便可適用於模糊化的驗 第22頁 在此可以彳日出’兩個或更多陣狀間的相對扭轉角度,構成了操 工本發明光學系統没計時的一個有用而有趣的參數。如同前述,9〇。 的扭轉角可錢構出_整她_透鏡元,其各可以展現出極類似於 球面透鏡的光學性質。另_方面,在零度扭轉角度的極端情況之中, 其結果形成了 _種特殊的系統,此種祕亦應被認定是屬本發明之揭 不範鳴。特定而言,考量-種光學系統,其兩個完全-樣的-維光學 一牛之陣歹j中之元件具有半圓形的透鏡鏡面形狀。令此兩陣列以零扭 轉角度重疊’且兩陣列之個別元件之透鏡鏡面形狀沿著系統的光路徑 而互相對正。這樣的—個光料統便可以展現出—種可令光源準直的 特殊而有用的性質。 圖10顯示分別各具有直線1011及曲線1051之指向曲線,且其 兩延伸指向曲線間之扭轉角度係大致互相直交的另兩組一維光學元 件陣列的重疊構造。其絲所侃的本發狀乡魏導光元件麵 在其兩組成陣列之間具有大致直交的扭轉角度,如圖中所示兩延伸指 向曲線1011及1051之間的交叉情形。 圖11顯示適於補償LCD之側向光源以使光均勻化的兩個一維光 學元件陣列的另一種重疊構造。圖n中之重疊構造1100所形成之透 鏡單元的疊紋形成了與圖10中類似的圖形。不過,重疊構造1100之 疊紋圖形’其透鏡單元之水平密度由上朝下減少,其減小的程度高於 第23頁 200426408 圖10中之重疊HGGG。其縮減的速度被設定可以補償諸如一段長 度的CCFL因織於”構造之整織部邊緣秘成的亮度距離關 係。如此即可以建立織長段辆的均皱射。若猶微偏離平均的 照射以適合人眼的觀看特性’只要調整前述由上朝下的縮減速度即 可。 圖12為一透視圖,其中顯示基本光學單元整合於本發明具有曲 線型延伸指向曲線陣列的一多功能導光元件其主要平面型本體内之# /狀、’、田節® 12中所顯示之實施例係為由兩個陣列及挪,分 別具有彎曲延伸指向曲線311及如的一維光學元件所構成的一個 光學系統300的一個部份。 如同圖3中之裝置一樣的情況,圖中所顯現的部份,係為通常被 製作成平面或彎_狀薄層的多·料元件,其魏片形構造中的 一個大致矩形的部份。圖式之中,標示為單元3〇9的一個單一透鏡單_ 疋,其单7L邊界顯現出透鏡鏡面形狀的纖面構造。圖丨3顯示圖12 光千單元309沿著光路徑的投影形狀。圖中顯示透鏡單元 3〇9的㈣381在整個多功能導光元件部分300的投影380内的對應 位置。 在圖12之實施例之中,兩個組成陣列之一維光學元件皆具有變 、透鏡鏡面幵廣大小,而其結果形成了相對較複雜的透鏡單元的疊 第24頁 200426408 紋圖形。在此種形_«安排之中,兩辦列之間,以頂及底元件 之兩條長軸3U及352的交又角來量度的的相對扭轉角度,在多功能 導光元件膽健位置的獨而林_角度。此可由圖 中裝置300内不同位置的兩個$同扭轉角度听及仍看出。 如同前述’光學系統設計參數上的—組特定組合選擇,可以建構 諸如LCD顯示器的背光模、組之擴散板所需要的,具特定光模糊化功 能之多功能導光7G件。與前i4各實補巾所贿者類似的構造,可適 於建造具光模糊化魏之導光元件。不過,該賴造的光模糊化能 力,很容易地仍可以進-步予以加強。目18為―透視圖,其中顯示 圖3中之多功能導光兀件更具有可用於增進絲糊化性質的散佈局 部表面粗縫區域。 每一個局部區域的粗輪度,可以具有任何適合而方便製作形成的 表面特性。其可為通過整個局部區域的二維隨機粗糙度,如1485, 1486及1487 顯示的情形。或者,其亦可為諸如粗链區域1488的 一維表面粗糙區。此種一維表面粗糙性質,事實上可被視為係利用光 學元件1422之透鏡表面形狀延長而形成的,其中該透鏡之形狀在其 透鏡鏡面形狀的整個伸展範圍的一部份之内具有隨機性質的一維粗 縫區域。 每一個局部表面粗糙區域之大小及形狀可依需要而調整。注意到 第25頁 200426408 圖14只是被使用來解釋此些局部表面粗糙區域如何可以被散佈於一 導光元件的表面上。與圖中所顯示者不同的,具不同大小形狀及散佈 圖形的更多粗糙區域是可行的。此外,此些局部表面粗糙區域的所在 位置並不限定於系統的單一表面上,如同圖14中所顯示的情況。反 對表面上的粗糖區域亦是可容許的。 本發明一多功能導光元件表面上此些局部表面粗糙區域之出 現’可有助於增進被設計來只提供光模糊化能力系統的模糊化能力。 對於諸如以高亮度LED為基礎的照明及視頻顯示裝置,其led光源 模糊化之用途而言,此種增進乃是特別有其優點。 總言之,當被利用作為可將具有局部亮點的照射光源予以模糊化 的平均化擴散器之用途時,本發明之多功能導光元件即屬於包含了基 本光學單元的二維矩陣的一種裝置。微光學透鏡之整體矩陣系統之中 的每一個單元,皆係經上下兩面的兩組一維光學元件陣列的結合而產 生出來的,其中的每一個一維光學元件皆是--維延伸柱形透鏡,其 具有特定之剖面形狀,且此剖面形狀依單—維度長軸方向延伸而形成 柱狀體。前料狀結合轉到多瓣列絲扭轉的肖度互相重疊, 且因此重疊而產生出光學透鏡單元的一種排列圖形,即一般所知之疊 紋圖形。所有透鏡單元所排列形成的整體圖形,可以將原始並不平均 的一個照射辆予以模離及平均化。光源之照練面上的局部亮點Page 20 200426408 where "" Ά and Ω are the focal lengths of the top and bottom half structures 1125 and 1165, respectively, and A is the wavelength of the incident light. The parameters "and /" are the equivalent focal lengths of the lens unit in the χ_ζ and Υ-Z planes. According to the _alignment of the element's coordinates, there will be β = cos jealousy and 厶 = sinp. , Parameter / x, y; and people, that is, the focal length of the lens in the coordinate system after the transfer, which is the optical property of the optical system and the straight line, can be used in the following ways to compare with the original tree characteristics Correlation: And Λ / ι / 2 Λ + / i cos2 φ ⑷ fy A sin2 φ ⑶ fm Λ sin2 ^ > ⑹ Notice a measured value of the parameter person. The lens unit 709 formed by the result is 45. If you look at the direction, if you compare the optical system described by the formula (3) in Figure 11 with the following traditional spherical lens with a focal point ..., 200421408 on page 21, X2 + Υ2 ⑺ ff, then XZ The fractional formula of the focal length in the Y_Z plane is especially allowable for the lens unit 1109 to be considered analytically as an ellipsoidal iens. Theoretical analysis of optical aberrations based on the Zemike polynomial , You can allow ff to view items and `` and make it "Astigmatism @ 0. And focal length ”aberrations are defined. In this way, the degree of 9 f of the effective tilt aberration existing in the lens unit 1109 in FIG. 11 can be determined by using the difference between especially Λ. The above formula (7 The phase term of the term to the right of the last equal sign in), after being transformed from the Cartesian coordinate system to the polar coordinate system (χ々 卩 small), becomes the sin2, where 0-smM / A / 2). According to the theory of polynomials, this is the aberration corresponding to "astigmatism @ 0." And the focal length ". According to the above, two basic types of optical aberrations can be found in the lens unit 1109 in Figure 11. Use the appropriate By adjusting the lens parameters including the top and bottom half structures 1125 and 1165, and the twist angle φ, these two basic types of optical aberrations can be manipulated to give the lens unit 1109 the required optical properties. For example, If the twist angle φ is set to 90 °, and ordered, the lens unit blue becomes an approximate spherical lens' suitable for imaging purposes. On the other hand, if the twist angle weight is set to 45., and the bottom half structure of 1165 Focal length β If the ground is relatively small, the overall aberration of the mirror unit becomes serious, and the system can be applied to the blurring test. Page 22 Here you can see the relative twist angle between two or more arrays, It constitutes a useful and interesting parameter for operating the optical system of the present invention without timing. As mentioned above, the twist angle of 90 ° can be used to construct the _set_ lens element, each of which can exhibit optical properties very similar to spherical lenses On the other hand, in the extreme case of zero-degree torsion angle, the result is a special system. This kind of secret should also be considered as an exception of the present invention. In particular, consider-a kind of optical System, the elements in its two complete-like-dimensional optics-niu arrays have a semi-circular lens mirror shape. Let the two arrays overlap at a zero twist angle and the lens mirror shapes of the individual elements of the two arrays Align each other along the light path of the system. In this way, a light system can show a special and useful property that can collimate the light source. Figure 10 shows the pointing curves with straight lines 1011 and 1051, respectively. , And The twist angle between the two extending pointing curves is the overlapping structure of the other two groups of one-dimensional optical element arrays that are approximately orthogonal to each other. Twisting angle, as shown in the figure, where the two extension pointing curves 1011 and 1051 intersect. Figure 11 shows another overlapping structure of two one-dimensional optical element arrays suitable for compensating the lateral light source of the LCD to make the light uniform. The overlapping pattern of the lens unit formed by the overlapping structure 1100 in FIG. N forms a pattern similar to that in FIG. 10. However, the overlapping pattern of the overlapping structure 1100 'has a horizontal density of the lens unit that decreases from top to bottom, which reduces The degree of smallness is higher than the overlapping HGGG in Figure 10 on page 23 200426408. The speed of its reduction can be set to compensate for the brightness distance relationship such as the length of a CCFL that is woven on the edge of the weaving section of the "structure." This can establish the average wrinkle of the long section of the car. Viewing characteristics suitable for the human eye's just need to adjust the aforementioned reduction speed from top to bottom. Fig. 12 is a perspective view showing a basic optical unit integrated into a multifunctional light guide element with a curved extended pointing curve array of the present invention The embodiment shown in its main flat body # / 状, ', Tianjie ® 12 is a one-dimensional optical element composed of two arrays and a moving curve with a curved extension pointing curve 311 and such as A part of the optical system 300. As in the case of the device in FIG. 3, the part shown in the figure is a multi-element that is usually made into a flat or curved thin layer, and its Wei plate structure A roughly rectangular part in the picture. In the figure, a single lens unit _ 疋, which is marked as unit 3009, has a 7L boundary showing a fibrous structure with a lens mirror shape. Figure 3 shows Figure 1 2 The projection shape of the light unit 309 along the light path. The figure shows the corresponding position of the lens unit 309's ㈣381 in the projection 380 of the entire multifunctional light guide element portion 300. In the embodiment of FIG. 12, two The one-dimensional optical elements that make up the array all have variable and wide lens mirror surfaces, and the result is a relatively complex lens unit with a 200424408 pattern on the 24th page. In this type of arrangement, the two offices The relative twist angle measured between the intersection angles of the two long axes 3U and 352 of the top and bottom elements between the rows is the unique angle of the multifunctional light guide element. This can be installed in the figure The two torsion angles at different positions within 300 can still be heard. As with the above-mentioned 'optical system design parameters'-a specific combination of group selection, it can be used to construct backlight modules such as LCD monitors, and diffusers required by the group. Multi-function light guide 7G with specific light blurring function. Similar structure to those of the previous i4, can be suitable for the construction of light guide elements with light blurring Wei. However, this light blurring Ability to easily It can still be further strengthened. Heading 18 is a perspective view, which shows that the multifunctional light-guiding element shown in FIG. 3 has a rough seam area on the surface of the scattered part which can be used to enhance the silky property. The coarseness of each local area Roundness can have any suitable and convenient surface properties. It can be a two-dimensional random roughness through the entire local area, as shown in 1485, 1486, and 1487. Alternatively, it can also be a thick chain area such as 1488 One-dimensional surface roughness. In fact, this one-dimensional surface roughness can be regarded as formed by extending the shape of the lens surface of the optical element 1422, wherein the shape of the lens is in the entire extension range of the lens mirror shape. One-dimensional rough seam area with random properties within a part. The size and shape of each local surface rough area can be adjusted as needed. Note that page 25 200426408 Figure 14 is just used to explain how these local surface roughness areas can be spread on the surface of a light guide element. Unlike what is shown in the figure, more rough areas with different sized shapes and scattered patterns are possible. In addition, the location of these local surface rough areas is not limited to a single surface of the system, as shown in FIG. 14. Opposite areas of coarse sugar on the surface are also tolerable. The appearance of these local surface roughness areas on the surface of a multifunctional light guide element according to the present invention can help to improve the blurring ability of a system designed to provide only the light blurring ability system. This enhancement is particularly advantageous for applications such as high-brightness LED-based lighting and video display devices where the LED light source is blurred. In summary, when used as an averaging diffuser that can blur an illuminating light source with local bright spots, the multifunctional light guide element of the present invention belongs to a device containing a two-dimensional matrix of basic optical units. . Each unit in the overall matrix system of the micro-optical lens is produced by the combination of two sets of one-dimensional optical element arrays on the upper and lower sides. Each one-dimensional optical element is a one-dimensionally extended cylinder. The lens has a specific cross-sectional shape, and the cross-sectional shape extends in the direction of the long axis of the single-dimension to form a columnar body. The twists of the twists of the multi-lobed filaments are overlapped with each other in the shape of a preform, and as a result, an arrangement pattern of the optical lens unit is generated, that is, a generally known pattern. The overall pattern formed by all the lens units can be separated and averaged from the original non-averaged irradiation vehicle. Local highlights on the training surface of the light source

第26頁 200426408Page 26 200426408

因此即被糊掉’到達人眼無法覺察的程度^ ' I 此外,由於兩組-維光元件陣列的重叠所形成的所有透鏡單元皆 各自擁有百分之百的開口率’因此,光損在本發明所建構之光學系統 之中可以達到最低。除了因製作材質本身之因素以外,本發明之光學 裝置實質上是屬一種零光損的系統。 不過,另外有-麵素,亦對本發明光學系統最佳光學效率之達 成有直接助益。亦即,依據本發_軸容峨構之光學魏乃是屬泰 於相位疊紋光學裝置(phase moir6 optical devices)的特殊類型。 本發明之光學系統被稱為具有相位疊紋性質,係基於當光通過系 統的光傳導介質時’系統之内的光只牵涉到相位移動的事實。通過本 發明系統之光學單元時,細傳導只φ涉單純的反射及折射—即只牵 涉相位。其間並無可以導致灰階現象的振幅上的損失。另一方面,「疊 紋」在此係指其與一般常見疊紋之關聯。依據本發明,至少兩個以上 _ 的一維光學元件的相互扭轉重疊以便「形成」一個光學系統,而其結 果所形成的透鏡單元所排列於其中的二維矩陣,本身即展現出一般稱 為疊紋的圖形。當與振幅疊紋光學裝置(amplitude moire optical devices) 互相比較時,本發明之光學系統中並不出現灰階現象來造成會導致整 體光學效率減損的光能耗損。 依據本發明,混合之相位振幅疊紋光學系統的建造是可以作到 第27頁 200426408 的。圖15之透視圖中即顯示依據本發明之一種相位振幅混合疊紋光 學系統。圖中,依據本發明之系統1500具有兩個擁有相似剖面形狀 一維延伸柱形光學元件的陣列。陣列之中光學元件的剖面形狀之特點 在於其一段隨機或是預定的粗糙造形。由光學的觀點來看,圓弧部分 的剖面形狀主要是用於入射光束之相位的調整,此係一個相位元件的 必要特性。另一方面,具隨機或預定粗糙度的剖面形狀段落,則可以 衫響入射光束的振幅。因此,如圖所示,頂陣列的每一個元件1522, 1523及1534即各具有一段伸展的長條,其實質的平面上有粗糙表面 1586 ’雖然圖中並未直接顯現出來。此些粗縫表面的長條係與圖14 中所描述者類似,並係用以提供光模糊化的作用。在光學系統15〇〇 表面上的此些粗糙表面區域,與圓弧剖面形狀的單純相位段落相較之 下,是為振幅調整之段落。 圖16之橫截面圖顯示本發明一於LCD背光模組中之應用例。如 圖所示,背光模組1600包含有一片多功能導光元件疆,一反射層 1603 ’以及-光源16〇2。光源16〇2可為延伸於多功能導光元件腦 邊緣的整個長度,並緊靠該邊緣的一段CCFL。 1601係為-種多功能導光元件,其上下兩面各包含有兩個前述 -維光學元件陣列。例如,採用如圖u之重疊構造議之姐圖形 的光學系統即可_。此種_的—片多魏導光元件匪,其頂 第28頁 200426408 陣列的一維光學元件1620係被重疊於另一陣列ι66〇之上,其間爽有 一基層1690。基層1690可以被製作得具有實質的厚度,以作為光源 1602的光散佈層。離開陣列1660之底表面的照射光被反射層16〇3 反射回到板1601之中,並通過頂陣列1620而離開板16〇1。 有了顯現出與圖11中之疊紋相似光學特性的一種疊紋,多功能 導光元件1601便可以將光源1602所產生的照射光均勻地散佈開來。 整片板1601中的每一個透鏡元(lenslet)之透鏡鏡面形狀便可予以調 整,以達成光之準直,並供提升背光效率。 圖17之橫截面圖顯示本發明另一較於LCD背光模組中之應用 例。兩系統之間的差異係在於背反射的提供。在圖16的系統之中, 反射係利用直接製作於底陣列1760表面上的一層反射性塗覆17〇3而 達成的。 圖18之橫截面圖顯示依據本發明一較佳實施例之一 Lcd均勻 化’模糊化及準直層之構造。圖中所示之系統18〇〇係使用平板型態, 具有背面反射層1803的一片分離的光導1804。光學系統1801之主 要功能係提供光散佈時的均勻化及準直。 如此,圖16及17中之系統1600及1700皆可以作為一個整合 的背光模組,其包含可以提供LCD背光模組所需要的多重功能的單 一光學構造。圖18中之系統1800亦有其用處,其光學構造18〇1可 第29頁 200426408 以排除掉對於反射點狀塗覆之散佈或其他相似方式的需求即可以達 成照射的均勻化。 圖19之橫截面圖顯示本發明另於LED顯示器上之應用例。系統 1900扭用與圖is中之18〇1類似的多功能導光板19〇1,以提供可將 顯示器ι91〇中之LED像素元件1911,1912及1913所產生的高 亮度照射模糊化的主要功能。為滿足此種用途,可以形成較平均之疊 紋圖形的兩組一維光學元件之陣列應為較佳,例如類似圖5所顯示 者。這是由於裝置1910中所使用的是平均分佈於整個顯示範圍中的 相同亮度的LED顯示像素。 雖然本發明已配合圖式以較佳實施例揭示如上,然其並非用以限 定本發明。任何熟習此技藝者,在不脫離本發明之精神和範圍之情況 下,當可進行此類更動與變化,因此本發明之保護範圍當以後附之申 請專利範圍所界定者為準。 第30頁 200426408 【圖式之簡要說明】 本發明之其他目的、特徵及優點將配合所附圖式,利用較佳但非 限定本明範疇之實施例進行詳細說明。圖式之中: 維 圖1為一透視圖,其中顯示具有大致曲線型延伸指向曲線的一 光學元件陣列; 圖2為一透視圖,其中顯示具有直線型延伸指向曲線的一維光學 元件陣列; 圖3為一透視圖,其中顯示依據本發明一較佳實施例之導光元件 之一部份; 圖4顯不本發明之多魏導光元件巾之—部份基本光學單元處 於矩陣中之位置; 圖5顯示兩鱗具有直線型延伸指向曲線及固賴距的兩個一 維光學元件陣列的重疊構造; 圖6顯示分別各具有直線型及曲線型指向曲線且分別具有固定 及變動間距的兩個-維光學元件陣列的重疊構造; 圖7為-透視圖’其中顯示本個—導光元件之—基本光學單 元’其兩組成陣列之_扭轉角為銳角; 圖8』不® 7中之光學單元沿著光雜的投影形狀; 圖9為一透視圖,其中顯示基本絲單元整合於本發明多功能導 第31頁 光7L件其主要平面型本體内之形狀細節,以及其特定光學單元沿著光 路徑的投影形狀; 圖10顯示分別各具有直線型及曲線型指向曲線之兩組_維光學 元件陣列以大致互相直交的角度重疊; 圖11顯示適關償LCD之姐絲缝光均勻化的兩組一維光 學元件陣難疊所形成之特殊^力轉光元件構造; 圖12為-透視圖,其中顯示基本光學單元整合於本發明具有曲 線型延伸指向曲線_的—導光元件其主要平面型本_之形狀細 節; 圖I3顯不圖I2中之特定光學單元沿著光路徑的投影形狀; 圖14為-透視圖,其中顯示圖3中之導光元件更具有散佈之局 部表面粗糖區域; 圖15為透視圖,其中顯示依據本發明之一相位振幅混合疊紋 光學系統; 圖16之橫#1面圖顯示依據本發明一較佳實施例之一 lcd背光模 組之構造; 圖17之橫截面圖顯示讎本發明另—較佳實施例之一㈣背光 模組之構造; 圖18之橫截面圖顯示依據本發明一較佳實施例之一 LCD均句 第32頁 200426408 化,模糊化及準直層之構造;與 圖19之橫截面圖顯示依據本發明一較佳實施例之一 LED顯示器 之模糊層之構造。Therefore, it is blurred to the extent that it cannot be perceived by the human eye ^ 'I In addition, since all lens units formed by the overlap of the two-dimensional optical element arrays each have a 100% aperture ratio', the light loss is in the present invention. The lowest optical system can be constructed. Except for the factors of making the material itself, the optical device of the present invention is essentially a zero light loss system. However, in addition, the -plane element also directly contributes to the achievement of the optimal optical efficiency of the optical system of the present invention. That is, the optical device according to the present invention is a special type of phase moir6 optical devices. The optical system of the present invention is said to have a phase moire property, which is based on the fact that the light within the system involves only a phase shift when light passes through the light-transmitting medium of the system. When passing through the optical unit of the system of the present invention, fine conduction involves only simple reflection and refraction-that is, only phase. There is no loss in amplitude that can cause grayscale phenomena. On the other hand, "moire" refers here to its association with the common moire. According to the present invention, at least two or more one-dimensional optical elements are twisted and overlapped with each other so as to "form" an optical system, and the two-dimensional matrix in which the formed lens units are arranged, exhibits itself generally called Mottled graphics. When compared with amplitude moire optical devices, the gray scale phenomenon does not occur in the optical system of the present invention to cause the loss of light energy that would cause the overall optical efficiency to decrease. According to the present invention, the construction of a hybrid phase amplitude moire optical system can be made to page 27, 200426408. Fig. 15 is a perspective view showing a phase amplitude mixed moire optical system according to the present invention. In the figure, a system 1500 according to the present invention has two arrays of one-dimensionally extended cylindrical optical elements having similar cross-sectional shapes. The cross-sectional shape of the optical elements in the array is characterized by a random or predetermined rough shape. From an optical point of view, the cross-sectional shape of the arc portion is mainly used to adjust the phase of the incident beam, which is a necessary characteristic of a phase element. On the other hand, a section with a random or predetermined roughness can shape the amplitude of the incident beam. Therefore, as shown in the figure, each of the elements 1522, 1523, and 1534 of the top array each has a stretch of elongated strips, which have a rough surface 1586 'on the substantially planar surface, although not directly shown in the figure. The strips of the rough surface are similar to those described in FIG. 14 and are used to provide the effect of light blurring. These rough surface areas on the surface of the optical system 150 are compared with the phase-only section of the circular cross-sectional shape, and are the sections for amplitude adjustment. FIG. 16 is a cross-sectional view showing an application example of the present invention in an LCD backlight module. As shown in the figure, the backlight module 1600 includes a multi-functional light guide element, a reflective layer 1603 ', and a light source 1602. The light source 1602 may be the entire length of the brain edge of the multifunctional light guide element, and a section of CCFL immediately adjacent to the edge. The 1601 series is a multi-functional light-guiding element, and the upper and lower sides each contain two of the aforementioned one-dimensional optical element arrays. For example, an optical system that uses the overlapping structure of the sister figure as shown in Fig. U may be used. This kind of multi-weiwei light guide element band, its top page 28 200426408 one-dimensional optical element 1620 of the array is superimposed on the other array ι66〇, with a base layer 1690 in between. The base layer 1690 may be made to have a substantial thickness as a light spreading layer of the light source 1602. The illumination light leaving the bottom surface of the array 1660 is reflected back to the plate 1601 by the reflective layer 1603, and leaves the plate 1601 through the top array 1620. With a moire that exhibits similar optical characteristics to the moire in FIG. 11, the multifunctional light guide element 1601 can evenly distribute the irradiation light generated by the light source 1602. The lens shape of each lenslet in the entire plate 1601 can be adjusted to achieve light collimation and improve backlight efficiency. FIG. 17 is a cross-sectional view showing another application example of the present invention compared to an LCD backlight module. The difference between the two systems is the provision of back reflections. In the system of FIG. 16, the reflection is achieved by using a layer of reflective coating 1703 formed directly on the surface of the bottom array 1760. Fig. 18 is a cross-sectional view showing the structure of an Lcd homogenization 'blurring and collimation layer according to a preferred embodiment of the present invention. The system 1800 shown in the figure uses a flat plate type, and a piece of separated light guide 1804 with a back reflecting layer 1803. The main function of the optical system 1801 is to provide uniformity and collimation during light dispersion. In this way, the systems 1600 and 1700 in FIGS. 16 and 17 can be used as an integrated backlight module, which includes a single optical structure that can provide the multiple functions required by the LCD backlight module. The system 1800 in FIG. 18 also has its uses. Its optical structure 1801 can be used to eliminate the need for reflective spot-like spreading or other similar methods to achieve uniform illumination. FIG. 19 is a cross-sectional view showing another application example of the present invention to an LED display. The system 1900 uses a multifunctional light guide plate 1901 similar to the one in FIG. 18 to provide the main function of blurring the high-brightness illumination generated by the LED pixel elements 1911, 1912, and 1913 in the display 910. . In order to satisfy this application, an array of two groups of one-dimensional optical elements that can form a more average moire pattern should be better, for example, similar to that shown in FIG. This is because LED display pixels of the same brightness evenly distributed throughout the display range are used in the device 1910. Although the present invention has been disclosed above with reference to the preferred embodiments, it is not intended to limit the present invention. Anyone skilled in this art can make such changes and changes without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be defined by the scope of the attached patents. Page 30 200426408 [Brief description of the drawings] Other objects, features, and advantages of the present invention will be described in detail with reference to the accompanying drawings using preferred but non-limiting embodiments of the present invention. Among the drawings: Fig. 1 is a perspective view showing an optical element array having a substantially curved extended pointing curve; Fig. 2 is a perspective view showing a one-dimensional optical element array having a linear extended pointing curve; Fig. 3 is a perspective view showing a part of a light guide element according to a preferred embodiment of the present invention; Fig. 4 shows a part of the multi-wei light guide element of the present invention-part of the basic optical units are in a matrix Position; Figure 5 shows the overlapping structure of two one-dimensional optical element arrays with two linear scaled directing curves and fixed distances on two scales; Figure 6 shows Overlapping structure of two-dimensional optical element arrays; Figure 7 is a-perspective view 'which shows this-the light guide element-the basic optical unit' of the two component arrays-the twist angle is an acute angle; The projection shape of the optical unit along the light beam; Figure 9 is a perspective view showing the basic wire unit integrated in the light 7L piece of the multifunctional guide according to the present invention, its main planar body shape Details, and the projection shape of its specific optical unit along the light path; Figure 10 shows two sets of _dimensional optical element arrays each with straight and curved pointing curves that overlap at approximately orthogonal angles; Figure 11 shows suitable compensation The special light-transmitting element structure formed by the two-dimensional one-dimensional optical element array of the LCD sister silk uniform light is difficult to stack; Curve _-details of the shape of the main planar model of the light guide element; Figure I3 shows the projected shape of the specific optical unit along the light path in Figure I2; Figure 14 is a perspective view showing the guide in Figure 3 The light element further has a scattered coarse sugar region on the surface; FIG. 15 is a perspective view showing a phase-amplitude mixed moire optical system according to the present invention; FIG. 16 is a cross-sectional view of FIG. Structure of an LCD backlight module; FIG. 17 is a cross-sectional view showing the structure of a backlight module according to another embodiment of the present invention; FIG. 18 is a cross-sectional view showing a structure of a backlight module according to the present invention; One embodiment of an LCD are good sentences page 32200426408, Obscured structure and the alignment layer; fuzzy structure of one layer of the LED display of the present invention according to a preferred embodiment of the cross-sectional view of the display 19.

第33頁Page 33

Claims (1)

200426408 六、申請專利範圍 本案所提發明之多功能導光元件,其理念已如前所陳述,但 是不論如何的變化及更改’皆不脫下列申請專利範圍之本質及精神。 L -多魏導光元件’其上下兩面各具有第-與第二__維光學 元件陣列: 第-陣列之-維光學元件,該第一陣列包含有複數個的延伸柱形 光學元件,馳光學元件仙鄰平舰辟纽直餘雜光學元件 之長軸的一第一延伸指向曲線方向散佈開來; 第二陣列之一維光學元件,該第二陣列包含有複數個的延伸柱形 光學元件,絲元件谢目鄰平行並沿敎致直·健光學元件 之長軸的-第二延伸指向曲線方向散佈開來;該第二陣列係與該第一 陣列相重疊,兩陣狀延伸指向曲線大致方向係以—聽扭轉偏離; 且兩陣列之重疊擴展出-層具複數個透鏡單元之二維矩陣光學效應。 2·申請專利範圍項1所述之多功能導光元件,其中該些一維光 學疋件陣列巾之至少-陣列具有區域性表面_部分之分佈。 3·申請專繼_ 2所述之多功能導光元件,其中該些區域性 表面粗檢部分之分佈職之設計係符合於當料統件被—光源照 射時,可產生一預定光分佈型態。 4.申請專利範圍項i所述之多魏導光元件,其中該些200426408 VI. Scope of patent application The concept of the multifunctional light-guiding element of the invention mentioned in this case has been stated as above, but no matter how it is changed or modified, it does not depart from the essence and spirit of the scope of patent application below. The L-Duowei light-guiding element has an array of first- and second-dimensional optical elements on each of the upper and lower sides thereof: the first-dimensional optical element of the first array, the first array including a plurality of extended cylindrical optical elements. Optical elements: A first extension of the long axis of the Xianlin Pingjian Straight Miscellaneous Optical Element is directed in a curved direction; a second array of one-dimensional optical elements, the second array includes a plurality of extended cylindrical optics Element, the silk element is parallel to each other and is spread along the direction of the second extension of the long axis of the chirped and healthy optical element; the second array is overlapped with the first array, and the two arrays are extended to point The approximate direction of the curve is deflected by the hearing twist; and the overlap of the two arrays expands out a two-dimensional matrix optical effect of a layer with a plurality of lens units. 2. The multifunctional light-guiding element according to item 1 of the scope of patent application, wherein at least one of the one-dimensional optical mask array towels has a distribution of a regional surface_part. 3. Apply for the multi-functional light-guiding element described in _2, in which the design of the distribution of these regional surface rough inspection parts is designed to meet a predetermined light distribution pattern when the material system is illuminated by a light source. state. 4. Many of the light guide elements described in item i of the patent application scope, wherein these 200426408 之至少一陣列之該些一維延伸枉形光學元件之剖面形狀係為凸形。 5·申請專利範圍項1所述之多功能導光元件,其中該些陣列中 之至少一陣列之該些一維延伸枉形光學元件之剖面形狀係為凹形。 6·申請專利範圍項1所述之多功能導光元件,其中所述第一陣 列與第二陣列間之扭轉角度係為一銳角。 7·申請專利範圍項1所述之多功能導光元件,其中所述第一陣 列與第二P車列間之扭轉角度實質係為一直角。 8·申請專利範圍項1所述之多功能導光元件,係可用於背光模 組之中。 9·申請專利範圍項丨所述之多功能導光元件,係可用於液晶榮 幕♦光模、、a之巾,作為導光板引導光源成—均句平面背光。 1〇·申請專利範圍項1所述之多功能導光元件,係可用於液晶電 視背光模組之巾,作為導光板引導光源成-均句平面背光。 1〇·申睛專利範圍項1所述之多功能導光元件,係可用於發光 二極體背光她之中,將光源成—均勻平面背光。 ---- 第35頁The cross-sectional shape of the one-dimensionally extended 枉 -shaped optical elements of at least one array of 200426408 is convex. 5. The multifunctional light-guiding element according to claim 1 in the patent application scope, wherein the cross-sectional shape of the one-dimensionally extended 枉 -shaped optical elements of at least one of the arrays is concave. 6. The multifunctional light-guiding element according to item 1 of the scope of patent application, wherein the twist angle between the first array and the second array is an acute angle. 7. The multifunctional light-guiding element according to item 1 of the scope of patent application, wherein the twist angle between the first array and the second P train is substantially a right angle. 8. The multifunctional light guide element described in the scope of patent application item 1 can be used in a backlight module. 9. The multi-functional light guide element described in the patent application item 丨 can be used in LCD screens, light modules, and a, as a light guide plate to guide the light source into a uniform flat backlight. 10. The multi-functional light-guiding element described in the scope of patent application No. 1 is a towel that can be used in LCD TV backlight modules as a light-guide plate to guide the light source into a uniform backlight. 10. The multi-functional light-guiding element described in Shen Jing's patent scope item 1 can be used in a light-emitting diode backlight, and the light source is a uniform planar backlight. ---- page 35
TW92113702A 2003-05-21 2003-05-21 Multifunction light guiding apparatus for flat-panel displays TW200426408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92113702A TW200426408A (en) 2003-05-21 2003-05-21 Multifunction light guiding apparatus for flat-panel displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92113702A TW200426408A (en) 2003-05-21 2003-05-21 Multifunction light guiding apparatus for flat-panel displays

Publications (1)

Publication Number Publication Date
TW200426408A true TW200426408A (en) 2004-12-01

Family

ID=52341332

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92113702A TW200426408A (en) 2003-05-21 2003-05-21 Multifunction light guiding apparatus for flat-panel displays

Country Status (1)

Country Link
TW (1) TW200426408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386693B (en) * 2008-03-11 2013-02-21 Young Lighting Technology Inc Light guide plate and backlight module
US8493315B2 (en) 2007-09-05 2013-07-23 Osram Opto Semiconductors Gmbh Display assembly and method for driving a display unit of a display assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493315B2 (en) 2007-09-05 2013-07-23 Osram Opto Semiconductors Gmbh Display assembly and method for driving a display unit of a display assembly
TWI386693B (en) * 2008-03-11 2013-02-21 Young Lighting Technology Inc Light guide plate and backlight module

Similar Documents

Publication Publication Date Title
US20210072595A1 (en) Directional illumination apparatus and privacy display
KR100215998B1 (en) Back light device for display
JP4293300B2 (en) Illumination device and display device including the same
KR102617760B1 (en) Directional backlight
US8317386B2 (en) Laser-lit planar illumination device and LCD using such device
CN102057319B (en) Hollow backlight with tilted light source
CN101861544B (en) Liquid crystal display
JP6403216B2 (en) Suppression of crosstalk in directional backlight
JP6793261B2 (en) Multi-view backlight with color-adjusted emission pattern
US20070110386A1 (en) Device having combined diffusing, collimating, and color mixing light control function
US10180575B2 (en) Image display apparatus
CN212255879U (en) Display device, head-up display and motor vehicle
US20020063914A1 (en) Holographic diffusers
US20120106193A1 (en) Backlight assembly and display apparatus having the same
US20220404540A1 (en) Illumination apparatus
CN101878437A (en) Light management films, back light units, and related structures
WO2013022109A1 (en) Backlight
JP2011090217A (en) Lighting device
JP2014202835A (en) Illumination device and image display device
JP2022533657A (en) Head-up display systems, active emissive image sources, head-up displays and automobiles
JP2018083593A (en) Display device
EP1793263A1 (en) Light intensity and/or colour distribution correcting element for an illumination system whose function is correlated to the incident light distribution
TW586022B (en) Moire lens
JP4356095B1 (en) Liquid crystal display device and lighting device
JP2022545685A (en) Directional lighting and privacy displays