TW200426127A - Reaction-sintering process for BaTi4O9 and Ba2Ti9O20 ceramics - Google Patents

Reaction-sintering process for BaTi4O9 and Ba2Ti9O20 ceramics Download PDF

Info

Publication number
TW200426127A
TW200426127A TW93123752A TW93123752A TW200426127A TW 200426127 A TW200426127 A TW 200426127A TW 93123752 A TW93123752 A TW 93123752A TW 93123752 A TW93123752 A TW 93123752A TW 200426127 A TW200426127 A TW 200426127A
Authority
TW
Taiwan
Prior art keywords
ceramics
ba2ti9o20
bati4o9
reaction
ions
Prior art date
Application number
TW93123752A
Other languages
Chinese (zh)
Inventor
Yi-Cheng Liou
Original Assignee
Yi-Cheng Liou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yi-Cheng Liou filed Critical Yi-Cheng Liou
Priority to TW93123752A priority Critical patent/TW200426127A/en
Publication of TW200426127A publication Critical patent/TW200426127A/en

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

A calcination stage or a high-energy milling is needed before sintering the BaTi4O9 and Ba2Ti9O20 ceramics via traditional oxide route or mechanochemical process. While in this reaction-sintering process, the calcining stage or the high-energy milling was bypassed and a mixture of raw material powders for BaTi4O9 and Ba2Ti9O20 ceramics were pressed and sintered directly. This process is simpler than the traditional oxide route or the mechanochemical process.

Description

200426127 九、發明說明: 【發明所屬之技術領域】 電子陶瓷粉末製程之燒結技術 【先前技術】 1 ·傳統氧化物固態反應技術: 將全部原料粉末混合後一次锻燒,經粉碎搗磨後再成 型並燒結成陶瓷。 2·機械化學技術: 將全部原料粉末混合後以強力球磨方式使氧化物反 應’經成型後燒結成陶瓷。 【發明内容】 ft fa和Ti離子之原料粉末混合後,未經锻燒或強 力球磨而直接壓模成型並燒結即可產生BaTi4〇Q盥 Ba2Ti9〇2Q 陶瓷體。 ” 【實施方式】 製程說明如下·· 1·=分末秤重··將高純度原料粉末BaC〇3與Ti〇2依照 aTi4〇9與Ba2Ti902G計量秤重配製。 q 錘球為助磨介質,加入丙酮後球磨6-12小時。 ,:將球磨後之混合液置入烘乾箱,進行烘乾。200426127 IX. Description of the invention: [Technical field to which the invention belongs] Sintering technology of electronic ceramic powder manufacturing process [Previous technology] 1 · Traditional oxide solid state reaction technology: Mix all raw material powders for one time calcination, crush and pulverize and then shape And sintered into ceramics. 2. Mechanochemical technology: After all the raw material powders are mixed, the oxides are reacted by a powerful ball milling method, and then sintered to form ceramics. [Summary of the Invention] After mixing the raw material powders of ft fa and Ti ions, direct compression molding and sintering without calcination or powerful ball milling can produce BaTi4QQ and Ba2Ti9〇2Q ceramic bodies. [Embodiment] The description of the manufacturing process is as follows: 1 · = determined weighing ·· High-purity raw material powders BaC〇3 and Ti〇2 are prepared according to aTi4〇9 and Ba2Ti902G. Q The hammer ball is a grinding aid medium, After adding acetone, ball milling for 6-12 hours.: Put the ball milled mixture into a drying box and dry.

2· ^磨混合··將秤好的原料粉末,倒入球磨壺中,以 :將哿乾後塊狀粉末使用搗磨機搗磨。 •益核·以單軸雙向加壓的方式壓赤亩您 ,/1 溫度、溫升 【圖式簡單說明】 8 200426127 圖二 Ba2Ti9〇2〇 經(A)1280°C、(B)1300〇C 盥(C>n30or $結2小時後之SEM照片,顯示可得緻密陶变晶2. Milling and mixing ... Pour the weighed raw material powder into a ball mill pot to grind the block-shaped powder after it has been dried. • Benefit core · Pressing Chimu in a single-axis bidirectional pressurizing method, / 1 temperature, temperature rise [Simplified description of the figure] 8 200426127 Figure 2 Ba2Ti9〇2〇 Warped by (A) 1280 ° C, (B) 1300. SEM (C > n30or $ 2 hours after the SEM photo shows that dense ceramic crystals are available

99

Claims (1)

200426127 十、申請專利範圍·· 1· 一種製气^與Ba2Ti9〇2G陶瓷之製程技術, 其特徵為,將含Ba離子和Ti離子之原料粉末經稱重、 ί磨ίίΐ3乾及搗磨後未經任何锻燒反應或強力球 磨而直接在成型後加熱燒結成陶瓷體。 • H請專利範圍第丨項之製程技術,其中該Ba離 可〗皮Sr、Ca等二價金屬離子部份取代,丁丨金屬離 子可被Zr等四價金屬離子部份取代。200426127 10. Scope of patent application ... 1. A process technology for making gas ^ and Ba2Ti9〇2G ceramics, which is characterized in that the raw powder containing Ba ions and Ti ions is weighed, ground, dried, and ground. After any calcination reaction or strong ball milling, the ceramic body is heated and sintered directly after forming. • Please request the process technology in the scope of patent No. 丨, in which the Ba ion can be partially replaced by divalent metal ions such as Sr, Ca, and the metal ion can be replaced by tetravalent metal ions such as Zr.
TW93123752A 2004-08-05 2004-08-05 Reaction-sintering process for BaTi4O9 and Ba2Ti9O20 ceramics TW200426127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93123752A TW200426127A (en) 2004-08-05 2004-08-05 Reaction-sintering process for BaTi4O9 and Ba2Ti9O20 ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93123752A TW200426127A (en) 2004-08-05 2004-08-05 Reaction-sintering process for BaTi4O9 and Ba2Ti9O20 ceramics

Publications (1)

Publication Number Publication Date
TW200426127A true TW200426127A (en) 2004-12-01

Family

ID=52341305

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93123752A TW200426127A (en) 2004-08-05 2004-08-05 Reaction-sintering process for BaTi4O9 and Ba2Ti9O20 ceramics

Country Status (1)

Country Link
TW (1) TW200426127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484160A (en) * 2018-06-25 2018-09-04 苏州博恩希普新材料科技有限公司 Nine barium phthalate base microwave dielectric ceramic materials of one kind and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484160A (en) * 2018-06-25 2018-09-04 苏州博恩希普新材料科技有限公司 Nine barium phthalate base microwave dielectric ceramic materials of one kind and preparation method

Similar Documents

Publication Publication Date Title
JP7077552B2 (en) Zirconia sintered body and its manufacturing method
JPS6054976A (en) Silicon nitride sintered body and manufacture
JPS6140621B2 (en)
JP2019535630A (en) Translucent nanocrystalline glass ceramic
JP5065245B2 (en) Manufacturing method of member
WO2021215419A1 (en) Sintered body and method for producing same
CN104418608B (en) The easy fired method of carborundum porous ceramics
JPH10194824A (en) Zirconia-containing alumina sintered compact
TW200426127A (en) Reaction-sintering process for BaTi4O9 and Ba2Ti9O20 ceramics
CN102030535A (en) Preparation method of zirconium-nitride enhanced aluminum-oxynitride composite ceramic material
JP6502495B2 (en) Ceramic powder with controlled size distribution
KR20120084446A (en) Manufacturing method of mullite
JP7548448B2 (en) Powder composition, calcined body, sintered body, and method for producing same
JPH0283265A (en) Production of silicon nitride
Haldar et al. Properties of zirconia–mullite composites prepared from beach sand sillimanite
Lu et al. Porous TiN ceramics fabricated by carbothermal reduction method
Osińska et al. Application of the sol-gel method at the fabrication of PLZT: Yb3+ ceramics
JP2012171845A (en) Silicon nitride-based sintered compact
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP2011195429A (en) β-EUCRYPTITE CERAMIC HAVING ZERO EXPANSION COEFFICIENT, HIGH STRENGTH AND LOW DIELECTRIC CONSTANT
Nagashima et al. Fabrication of Al2O3/ZrO2 micro/nano-composite prepared by high energy ball milling
TW200426125A (en) Reaction-sintering process for ABO3 perovskite ceramics
Pivinskii et al. Preparation and some properties of sintered aluminosilicate ceramic based on HCBS. Part I
TW200426126A (en) Reaction-sintering process for complex perovskite A(B'B")O3 ceramics
TW200415137A (en) Reaction-sintering process for AB2O6 ceramics