TW200425278A - Relaxed film layer structure and manufacturing method thereof - Google Patents

Relaxed film layer structure and manufacturing method thereof Download PDF

Info

Publication number
TW200425278A
TW200425278A TW92112105A TW92112105A TW200425278A TW 200425278 A TW200425278 A TW 200425278A TW 92112105 A TW92112105 A TW 92112105A TW 92112105 A TW92112105 A TW 92112105A TW 200425278 A TW200425278 A TW 200425278A
Authority
TW
Taiwan
Prior art keywords
film layer
layer
thin film
item
patent application
Prior art date
Application number
TW92112105A
Other languages
Chinese (zh)
Other versions
TWI317145B (en
Inventor
Chun-Chieh Lin
Yee-Chia Yeo
Chien-Chao Huang
Chao-Hsiung Wang
Chen-Ming Hu
Tien Chih Chang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92112105A priority Critical patent/TW200425278A/en
Publication of TW200425278A publication Critical patent/TW200425278A/en
Application granted granted Critical
Publication of TWI317145B publication Critical patent/TWI317145B/zh

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Bipolar Transistors (AREA)

Abstract

This invention provides a manufacturing method of the relaxed film layer structure, which comprises providing a silicon-on-insulator (SOI) substrate, then, performing an ion implantation process onto the substrate to form a defect region in the silicon layer and finally growing a relaxed film layer on the silicon layer. This invention further provides a relaxed film layer structure, which comprises an SOI substrate, a defect region formed in the silicon layer by an ion implantation process onto the substrate, and a relaxed film layer formed on the silicon layer.

Description

200425278200425278

五、發明說明(1) 發明所屬之技術領域: 本發明係有關於一種半導體結構,特別是有關於一種 具有鬆弛的薄膜層結構及其製造方法。 先前技術: 隨著閘極元件尺寸的縮小化,要使金氧半場效電晶體 (M0SFET)元件能在低操作電壓下,具有高趨動電流和高速 的效能是相常困難的。因此,許多人在努力尋求改善金氧 半%效電晶體元件之效能的方法。 利用應變引發的能帶結構變型來增加載子的遷移率, 以增加場效電晶體的趨動電流,可改善場效電晶體元件之 效能,且此種方法已被應用於各種元件中。當石夕M〇SFET元 件之通道處於拉伸應變的情況時,可增加電子及電洞的遷 移率。 傳統之應變石夕層之製造,如第1圖所示,是在鬆弛的 石夕錯偽(pseudo)基底12上磊晶成長一應變矽薄膜層14,石夕 鍺偽基底12是形成在石夕基底1〇上。具有高品質之應變石夕層 14及鬆弛的矽鍺層12是增進應變矽M〇SFET元件效能之重要 因素。而南缺陷16(如差排(dislocation)、叠差 (stacking fault)、雙晶(twin)等)密度則會降低載子的 f 遷移率。 高品質之鬆弛的矽鍺層可藉由形成一厚的具有濃度梯 度之石夕鍺緩衝層來獲得(Rim K. ET AL.,,,Fab r i cat i on and analysis of deep submicron strained-SiV. Description of the invention (1) The technical field to which the invention belongs: The present invention relates to a semiconductor structure, and more particularly to a thin film layer structure with slack and a method for manufacturing the same. Prior art: With the reduction in the size of gate elements, it is often difficult to make metal-oxide-semiconductor field-effect transistor (MOSFET) devices with high actuation current and high-speed performance at low operating voltages. Therefore, many people are trying to find a way to improve the performance of metal-oxygen half-efficiency transistor elements. Strain-induced band structure modification is used to increase carrier mobility to increase the field current transistor's actuating current, which can improve the performance of field effect transistor devices, and this method has been applied to various devices. When the channel of Shixi MoSFET element is under tensile strain, the migration rate of electrons and holes can be increased. The traditional manufacturing of a strained stone layer, as shown in FIG. 1, epitaxially grows a strained silicon thin film layer 14 on a loose stone substrate 12 which is formed on the stone. Evening on the substrate 10. The high-quality strained silicon layer 14 and the relaxed silicon germanium layer 12 are important factors for improving the performance of the strained silicon MOSFET device. The southern defect 16 (such as dislocation, stacking fault, twin, etc.) density will reduce the carrier's f mobility. A high-quality, relaxed SiGe layer can be obtained by forming a thick SiGe buffer layer with a concentration gradient (Rim K. ET AL. ,, Fab r i cat i on and analysis of deep submicron strained-Si

200425278 五、發明說明(2) η-M0SFETs”,IEEE Trans. Elect.Dev·,vol· 47,ηο·7, PP.1 406,Jul.2000·),如第2Α圖所示,鬆弛的矽(卜χ)鍺⑴層 20是形成在矽(1_y)鍺(y)緩衝層22上,基中y = 0 —X。矽m 鍺(y)緩衝層22是形成在矽基底24上。然而,利用此種厚的 矽鍺緩衝層會有以下的缺點,首先,此種矽鍺緩衝層之厚 度約在1至數微米厚,大量製造之成本高且產量太少。再 者,差排密度依然很高,約在1E4至lE7cm_2之間。 另一形成高品質之鬆弛的矽鍺層方法,係使用一絕緣 層上有矽層(S01)之基底,而矽鍺層是形成在絕緣層上之 一薄石夕層(Z· Yang et al, "In situ relaxed SiGe epitaxial layers with low threading dislocation densities grown on compliant SOI substrate1 丨,J·200425278 V. Description of the invention (2) η-M0SFETs ", IEEE Trans. Elect. Dev ·, vol · 47, ηο · 7, PP. 1 406, Jul. 2000 ·), as shown in Figure 2A, slack silicon (Bx) The germanium-rhenium layer 20 is formed on a silicon (1-y) germanium (y) buffer layer 22, where y = 0-X. The silicon m germanium (y) buffer layer 22 is formed on a silicon substrate 24. However The use of such a thick silicon germanium buffer layer has the following disadvantages. First, the thickness of this silicon germanium buffer layer is about 1 to several microns thick, and the cost of mass production is too high and the yield is too small. Furthermore, the difference in row density It is still very high, between 1E4 and lE7cm_2. Another method for forming a high-quality relaxed SiGe layer is to use a substrate with a silicon layer (S01) on the insulating layer, and the silicon germanium layer is formed on the insulating layer One thin stone evening layer (Z · Yang et al, " In situ relaxed SiGe epitaxial layers with low threading dislocation densities grown on compliant SOI substrate1 丨, J ·

Vacuum Science Technology B, vol· 16, no· 3, pp· 1 4 89, 1 998·)。如第2B圖所示,鬆弛的矽(1 x)鍺⑴層3〇是形 成在絕緣層上有矽層(SO I)之基底上,基中標號3 2為石夕 層、標號34為絕緣層、標號36為矽基底。由於石夕(ι χ錯層 30之厚度增加’大部分的應變是由矽鍺⑴層3〇轉移到底 下之矽層3 2。因此,在矽層3 2内之應變高到足以形成差排 3 8鬆弛應變。而應用此方法是須要使用一非常薄的石夕層以 獲得鬆弛的矽鍺層,再者,差排增殖之作用方法是自 石夕錄(x〕/S0I介面是SOI基底,並非朝向蟲晶層。因此, 與在石夕基底上形成具有濃度梯度之石夕錯緩衝層相較 此 法對於後續所形成之蠢晶層之表面可達到且古4 心丹,較少差排密 度之目的。然而,此方法所形成之磊晶層所具有之差^ ^Vacuum Science Technology B, vol · 16, no · 3, pp · 1 4 89, 1 998 ·). As shown in FIG. 2B, a relaxed silicon (1 x) germanium-rhenium layer 30 is formed on a substrate with a silicon layer (SO I) on an insulating layer. The reference numeral 32 in the base is a stone evening layer and the reference numeral 34 is insulation. The layer and reference numeral 36 are silicon substrates. As the thickness of Shi Xi (ι χ misalignment layer 30 increases, most of the strain is transferred from the silicon germanium hafnium layer 30 to the underlying silicon layer 32. Therefore, the strain in the silicon layer 32 is high enough to form a differential row 3 8 relaxation strain. The application of this method requires the use of a very thin Shi Xi layer to obtain a relaxed SiGe layer, and the effect of differential row proliferation is from the Shi Xilu (x) / S0I interface is an SOI substrate , It is not facing the worm crystal layer. Therefore, compared with the formation of a shixi co-buffer layer with a concentration gradient on the shixi substrate, this method can reach the surface of the subsequently formed stupid crystal layer, and it is less bad. The purpose of row density. However, the difference between the epitaxial layer formed by this method ^ ^

200425278200425278

度約1E6 cur2,而要名士蓋灿^ 仍然不夠低。此差排进度之遙晶層上製造元件 層,=針ί 了 ί:!具有極低之差排密度之鬆弛的蟲晶 層,極待針對一述問題謀求改善之道。 發明内容: 有鑑於此,本發明之目 層結構及其製造方法,藉由 梯度之緩衝層,或成長濃度 得差排增殖之方向是朝向基 如此即可獲得鬆弛的薄膜層 為達成上述目的,本發 結構的製造方法,首先提供 底。其次,在上述矽層内形 層上成長一鬆弛的薄膜層。 的在提供一種具有鬆弛的薄膜 形成缺陷區,或成長具有濃度 漸增之衝層堆疊層結構,而使 底’並非朝向鬆弛的薄膜層, 〇 明提出一種具有鬆弛的薄膜層 一絕緣層上有矽層(SOI )之基 成一缺陷區。最後,於上述矽 本發明另提出一種具有鬆弛的薄膜層結構,包括··一 絕4層上有矽層(so I )之基底;一缺陷區,其係藉由對上 述基底^行一離子植入程序而形成於上述矽層内;以及一 鬆弛的薄膜層,形成於上述矽層上。 本發明方法之優點為可獲得比傳統方法極低之差排密 度之鬆弛的薄膜層,且大量製造之成本低,產能增加。 ▲為讓本發明之上述目的、特徵W和優點能更明顯易 懂’下文特舉較佳實施例,並配合所附圖式,作詳細說明 如下:The degree is about 1E6 cur2, and it is still not low enough to make a famous person Gai Chan ^. The component layer is manufactured on the remote crystal layer of this poorly-arranged progress. =: The wormhole layer with a very low differential-row density is waiting for improvement. Summary of the invention: In view of this, the objective layer structure of the present invention and the manufacturing method thereof, by using a gradient buffer layer or a growth concentration with a poor row growth direction, are directed toward the base so that a relaxed thin film layer can be obtained, The manufacturing method of the present structure first provides a bottom. Next, a relaxed thin film layer is grown on the inner layer of the silicon layer. In order to provide a thin film layer with a slack to form a defect region, or grow a stacked layer structure with a gradually increasing concentration, so that the bottom layer is not oriented toward the slack film layer, ming proposes a thin film layer with a slack on an insulating layer. The base of the silicon layer (SOI) forms a defect area. Finally, in the above-mentioned silicon, the present invention further proposes a structure with a thin film layer, including a substrate with a silicon layer (so I) on top of four layers, and a defect region which is formed by ionizing the substrate. An implantation process is formed in the silicon layer; and a relaxed thin film layer is formed on the silicon layer. The advantages of the method of the present invention are that it is possible to obtain a slack thin film layer with a very low differential density compared with the conventional method, and the cost of mass production is low, and the productivity is increased. ▲ In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible ', the preferred embodiments will be described below in detail with the accompanying drawings as follows:

200425278 五、發明說明(4) 實施方法: 實施例1 本發明提供一種具有鬆弛的薄膜層結構及其製造方 法。 具有鬆他的薄膜層結構可藉由后述說明的方法來製 $ ’首先請參照第3A圖,在一半導體基底1〇〇上形成一埋 有=緣層1 〇 2及一半導體層丨〇 4,本實施例類以一絕緣層一 矽層(sillcon-on 一 insulat〇r,s〇I)之晶圓為例,用以 啟始材料,可利用植入氧(SIM0X)或是SmartCut®技術 凡,到隔離,但並不以此為限制。半導體層(s〇i層)1〇4 一 般疋厚度小於1 〇 〇 〇 A的矽材料。埋藏絕緣層丨〇 2 一般是由 氧化矽所構成。 之後,請參照第3B圖,對基底丨00施行一離子植入程 序以在_層1〇4内形成-缺陷區1G6。上述離子植人程序所 離子可以為硼、磷及砷、氬、A、氦、氮、氧、銦 寻離子。 接著,請參照第3C圖,在矽層1〇4上成長—鬆弛的薄 膜層1〇8。鬆弛的薄膜層108之晶格常數不同於矽層ι〇4之 晶格常數。成長鬆弛的薄膜層丨08之方法例如使 tί 1擇性磊晶法、化學氣相沈積磊晶法或化學氣相 薄膜層108可以是元'素、混合物或⑽ 牛導體例如是矽鍺、矽鍺碳、銦鍺砷、鍺砷、鋁鍺砷、鍺 碳或銦鍺碳層。由於具有不同晶格常數之各薄犋層間在鬆 0503-7589TWF(Nl) ; TSMC200M524 ; ycchen.ptd 200425278 五、發明說明(5) ^:ϋ相作用,在鬆弛狀態具有較大晶格之半導體薄 簿:ϊ,卢應變情況之下,❿具有較小晶格常數之半導體 於壓縮應變情況之下,進而形成-具有應變平 愚ΐ妹播此,在矽層1 04及鬆弛的薄膜層1 08所組成之堆 ’若•弛的薄膜層108 <晶格常數大於矽層1〇4之 曰曰^ ,則鬆弛的薄膜層1 08係處於雙軸壓縮應變情況 2下=石夕層1 04係處於雙軸拉伸應變情況之下,反之亦 Φ ‘薄膜H步/於石夕層1〇4内形成缺陷區106,因此於鬆他的 100、饮非έ長時所產生之差排增殖之方向是朝向基底 ΓιοΙ向鬆他的薄膜層1G8 ’如此即可獲得鬆他的薄 ,可於鬆弛的薄膜層108上成長一應變矽層11()。 =’可於應變矽層110上製造一般 電裝置、雙極性電晶體、金氧半場效電 九一極體(未顯示)。 x 所干本ΪΪΞΐ出一種具有鬆弛的薄膜層結構,如第3C圖 2不此具有鬆弛的薄膜層結構包括以上次元件。第一元 Ιΐί:絕緣層上有石夕層之基底100。絕緣層上有石夕層之 ί=;半么體基底m上形成一埋藏絕緣層102及-半 上貫施例則以一絕緣層一有石夕層之晶圓為 Ξ。層)104 一般是厚度小於250 Α的矽材 料。里藏絕緣層1 〇 2 —般是由氧化石夕所構成。 -離牛!為一缺陷區106 ’其係藉由對基底m施行 離子植入程序而形成於石夕層1()4内。上述離子植入程序200425278 V. Description of the invention (4) Implementation method: Example 1 The present invention provides a thin film layer structure with a slack and a manufacturing method thereof. The structure of the thin film layer can be made by the method described later. First, referring to FIG. 3A, a buried = edge layer 102 and a semiconductor layer are formed on a semiconductor substrate 100. 4. In this embodiment, a wafer with an insulation layer and a silicon layer (sillcon-on-insulat (s0I)) is used as an example. The starting material can be implanted with oxygen (SIM0X) or SmartCut®. Technology, to isolation, but not as a limitation. The semiconductor layer (soi layer) 104 is generally a silicon material having a thickness of less than 1000 A. The buried insulating layer is generally composed of silicon oxide. After that, referring to FIG. 3B, an ion implantation process is performed on the substrate 00 to form a -defective region 1G6 in the layer 104. The ions used in the above-mentioned ion implantation procedure can be boron, phosphorus and arsenic, argon, A, helium, nitrogen, oxygen, and indium. Next, referring to FIG. 3C, a thin film layer 108 is grown on the silicon layer 104. The lattice constant of the relaxed thin film layer 108 is different from the lattice constant of the silicon layer 107. The method of growing a thin film layer 08 such as selective selective epitaxy, chemical vapor deposition epitaxy, or chemical vapor film layer 108 may be a element, a mixture, or a yam conductor such as silicon germanium, silicon A layer of germanium carbon, indium germanium arsenic, germanium arsenic, aluminum germanium arsenic, germanium carbon, or indium germanium carbon. Due to the thin lattices with different lattice constants between the loose 0503-7589TWF (Nl); TSMC200M524; ycchen.ptd 200425278 V. Description of the invention (5) ^: The semiconductor phase with a large lattice in the relaxed state Book: ϊ, under the strain of Lu, ❿ semiconductors with smaller lattice constants are formed under compressive strain, and then formed-with strain flatness, this is in the silicon layer 1 04 and the relaxed thin film layer 1 08 The formed stack 'If the relaxed film layer 108 < lattice constant is greater than that of the silicon layer 104, the relaxed film layer 108 is under biaxial compressive strain condition 2 = Shixi layer 1 04 It is under the condition of biaxial tensile strain, and vice versa. Φ 'film H step / defective zone 106 is formed in Shixi layer 104, so the difference of row and proliferation caused by Songta 100 and drinking is not long. The direction is toward the substrate ΓιοΙ to loosen the thin film layer 1G8 ', so that a thin thin film can be obtained, and a strained silicon layer 11 () can be grown on the relaxed thin film layer 108. = ’Can be used to fabricate general electrical devices, bipolar transistors, and metal-oxide half-field-effect transistors on the strained silicon layer 110 (not shown). The dried substance has a thin film layer structure. As shown in FIG. 3C, the thin film layer structure including the above components is not included. The first element Ιΐί: a substrate 100 having a stone layer on an insulating layer. The insulating layer has a stone layer on it; a semi-solid substrate m forms a buried insulating layer 102 and the semi-permanent embodiment uses an insulating layer and a wafer with a stone layer as a base. Layer) 104 is typically a silicon material having a thickness of less than 250 A. Li Zang insulation layer 102 is generally composed of stone oxide. -Li Niu! A defect region 106 'is formed in the stone evening layer 1 () 4 by performing an ion implantation procedure on the substrate m. The above ion implantation procedure

734 200425278 五、發明說明(6) ' 所使用之離子可以為蝴、填及神離子。 第二元件係為一鬆弛的薄膜層1 0 8,形成於矽層1 〇 4 上:係使用實施例i之方法及材料成長於矽層丨〇4上,鬆弛 的薄膜層1 0 8之晶格常數不同於矽層丨〇 4之晶格常數。 此具有鬆他的薄膜層結構尚包括以下次元件,一應變 石夕層110成長於鬆弛的薄膜層丨08上。積體電路元件、微機 電裝置、雙極性電晶體、金氧半場效電晶體或發光二極體 (未顯示)’製造於應變矽層110上。 本發明之實施例1藉由於矽層1 0 4内形成缺陷區1 0 6, f得於鬆弛的薄膜層丨〇8成長時所產生之差排增殖之方向 是朝向基底1〇〇,並非朝向鬆弛的薄膜層1〇8,如此即可獲 得鬆弛的薄膜層1〇8。 實施例2 具有鬆弛的薄膜層結構可藉由后述說明的方法來製 作,請參照第4圖,在一半導體基底20〇上形成一埋藏絕緣 層2 0 2及一半導體層2 〇 4,本實施例則以一絕緣層上有矽層 (S1 1 1COn~on—insulator,SOI)之晶圓為例,用以做為啟始 材料可利用植入氧(SI Μ 0 X)或是S m a r t c C u t ®技術來得到 隔離,但並不以此為限制。半導體層(SOI層)204 —般是厚j 度小於250 A的矽材料。埋藏絕緣層2〇2 一般是由氧化矽 構成。 t , 其次,於珍層2〇4上成長一具有濃度梯度之A(1_y)B(y)緩 衝層206,其中y = 〇 —X,A(1-y)B(y)緩衝層20 6之厚度為介於〇.734 200425278 V. Description of the invention (6) 'The ions used can be butterfly, filling and god ions. The second element is a relaxed thin film layer 108 formed on the silicon layer 104. It is grown on the silicon layer using the method and material of Example i, and the relaxed thin film layer 108 is crystallized. The lattice constant is different from the lattice constant of the silicon layer. This thin film layer structure also includes the following sub-elements. A strained stone layer 110 is grown on the relaxed thin film layer 08. Integrated circuit elements, microcomputers, bipolar transistors, metal-oxide-semiconductor field-effect transistors, or light-emitting diodes (not shown) 'are fabricated on the strained silicon layer 110. In the first embodiment of the present invention, since a defect region 10 6 is formed in the silicon layer 104, f is obtained from a relaxed thin film layer. The growth direction of the differential row generated during growth is toward the substrate 100, not toward the substrate 100. The slack film layer 108 is obtained, so that a slack film layer 108 can be obtained. Embodiment 2 A structure of a thin film layer having a slack can be produced by a method described later. Referring to FIG. 4, a buried insulating layer 202 and a semiconductor layer 204 are formed on a semiconductor substrate 200. In the embodiment, a wafer with a silicon layer (S1 1 1 COn ~ on-insulator, SOI) on the insulating layer is taken as an example. As a starting material, implanted oxygen (SI M 0 X) or Smartc can be used. Cut ® technology is used to obtain isolation, but it is not limited to this. The semiconductor layer (SOI layer) 204 is generally a silicon material with a thickness of less than 250 A. The buried insulating layer 20 is generally composed of silicon oxide. t, Secondly, an A (1-y) B (y) buffer layer 206 with a concentration gradient is grown on the Jane layer 204, where y = 0-X, and the A (1-y) B (y) buffer layer 20 6 The thickness is between 0.

200425278 五、發明說明(7) 〇1至0.5微米之間。A原子可以是石夕、鍺、碳、銦神或銘 原子,而B原子可以是鍺、石炭、銦、石申或銘原子。成長 緩衝層206之方法例如使用分子束磊晶法、選擇性 磊晶法、化學氣相沈積磊晶法或化學氣相沈積法。 接著’於A(1_y)B(y)緩衝層206上成長一 α(ιχ)β(χ)鬆弛的 薄膜層208鬆弛的薄膜層2〇8之厚度為介於〇〇1 至1微米之間。成長鬆弛的薄膜層2〇8之方法例如使 用:子束磊晶法、選擇性磊晶法、化學氣相沈積磊晶法或 化學氣相沈積法。200425278 V. Description of the invention (7) 〇1 to 0.5 microns. A atom can be Shi Xi, germanium, carbon, indium or Ming atom, and B atom can be germanium, carbon, indium, Shi Shen or Ming atom. The method of growing the buffer layer 206 is, for example, a molecular beam epitaxy method, a selective epitaxy method, a chemical vapor deposition epitaxy method, or a chemical vapor deposition method. Next, an α (ιχ) β (χ) relaxed film layer 208 is grown on the A (1_y) B (y) buffer layer 206. The thickness of the relaxed film layer 208 is between 0.01 and 1 micron. . The method for growing the relaxed thin film layer 208 is, for example, a sub-beam epitaxy method, a selective epitaxy method, a chemical vapor deposition epitaxy method, or a chemical vapor deposition method.

然後,可於⑴鬆弛的薄膜層2〇8上成長一應變矽 層 2 1 0。 y最後,可於應變矽層2 1 0上造一般的積體電路元件、 微機電裝置、雙極性電晶體、金氧半場效電晶體或發光二 極體(未顯示)。 本發明尚提出一種具有鬆弛的薄膜層結構,如第4圖 所示、,此具有鬆弛的薄膜層結構包括以下次元件。第一元 件係為一絕緣層上有矽層之基底2〇〇。絕緣層上有矽層之 基底是在一半導體基底200上形成一埋藏絕緣層2〇2及一半 導體層204,本實施例則以一絕緣層上有矽層之晶圓為 例。半導體層(SOI層)204 —般是厚度小於250人的矽材 料。埋藏絕緣層202 —般是由氧化矽所構成。 第二元件係為一具有濃度梯度之A(1_y)B⑺緩衝層2〇6, 八長於矽層204上,其y = 〇—x,A(iy)B(y)緩衝層2〇6之厚度為 ”於· 01至〇· 5微米之間。A〇 緩衝層2〇6係使用實施例Then, a strained silicon layer 210 can be grown on the sacrificial film layer 208. Finally, general integrated circuit elements, micro-electromechanical devices, bipolar transistors, metal-oxide-semiconductor field-effect transistors, or light-emitting diodes (not shown) can be fabricated on the strained silicon layer 210. The present invention also proposes a thin film layer structure having slack, as shown in FIG. 4. The thin film layer structure having slack includes the following sub-elements. The first element is a substrate 200 having a silicon layer on an insulating layer. The substrate with a silicon layer on the insulating layer is a buried insulating layer 200 and a semiconducting layer 204 formed on a semiconductor substrate 200. In this embodiment, a wafer with a silicon layer on an insulating layer is taken as an example. The semiconductor layer (SOI layer) 204 is generally a silicon material with a thickness of less than 250 people. The buried insulating layer 202 is generally composed of silicon oxide. The second element is an A (1_y) B⑺ buffer layer 206 with a concentration gradient, which is longer than the silicon layer 204, where y = 0-x, and the thickness of the A (iy) B (y) buffer layer 206. Is between "01 and 0.5 micrometers. A0 buffer layer 206 is an example of use.

200425278 五、發明說明(8) *------ 2之方法及材料成長於矽層2〇4上,A原子可以是矽、鍺、 石反、銦、砷或鋁原子,而B原子可以是鍺、碳、銦、 鋁原子。 % 第二兀件係為一A+yB⑴鬆弛的薄膜層2〇8,成長於 α(η)β(3〇緩衝層206上,Ao—wB⑴鬆弛的薄膜層208之厚度為 介於0· 01至1微米之間。A(! xAw鬆弛的薄膜層2〇8係使用實 施例2之方法及材料成長於‘ y)B(y)緩衝層2〇6上。 此具有鬆弛的薄膜層結構尚包括以下次元件,一應變 矽層210成長於鬆弛的薄膜層2〇8上。積體電路元件、微機 電裝置_、雙極性電晶體、金氧半場效電晶體或發光二極體 (未顯示),製造於應變矽層2 1 0上。 ,本發明之實施例2藉由成長具有濃度梯度之A(1_y)B(y)緩 衝層20 6以阻止差排朝向怒弛的薄膜層208之方 向增殖。 實施例3 具有鬆他的薄膜層結構可藉由后述說明的方法來製 作,請參照第5圖,在一半導體基底3〇〇上形成一埋藏絕緣 層302及一半導體層3〇4,本實施例則以一絕緣層上有矽1 (si 1 icon-on-insulat〇r,s〇I)之晶圓為例,用以做為啟^ 材料’可利用植入氧(SIM〇x)或是SmartCUT®技術來得到& 離,但並不以此為限制。半導體層(SOI層)304 —般是厚度 小於250 A的矽材料。埋藏絕緣層2〇2 一般是由氧化矽所才^ 成200425278 V. Description of the invention (8) * ------ 2 The method and materials are grown on the silicon layer 204, the A atom can be silicon, germanium, stone, indium, arsenic or aluminum atom, and the B atom It can be germanium, carbon, indium, aluminum atoms. % The second element is an A + yB⑴ relaxed film layer 208, grown on the α (η) β (30 buffer layer 206, and the thickness of the Ao-wB⑴ relaxed film layer 208 is between 0.01 and 0.01. To 1 micron. A (! XAw relaxed film layer 208 was grown on the 'y) B (y) buffer layer 206 using the method and material of Example 2. The structure of this thin film layer is still Including the following sub-elements, a strained silicon layer 210 is grown on a relaxed thin-film layer 208. Integrated circuit elements, micro-electromechanical devices, bipolar transistors, metal-oxide-semiconductor field-effect transistors or light-emitting diodes ), Manufactured on the strained silicon layer 210. In the second embodiment of the present invention, the A (1_y) B (y) buffer layer 20 6 with a concentration gradient is grown to prevent the difference in the orientation of the thin film layer 208. Directional proliferation. Example 3 A thin film layer structure having a looseness can be produced by a method described later, please refer to FIG. 5 to form a buried insulating layer 302 and a semiconductor layer 3 on a semiconductor substrate 300. 4. In this embodiment, a wafer with silicon 1 (si 1 icon-on-insulat〇r, so) on an insulating layer is used as an example as a starting material. The implanted oxygen (SIM0x) or SmartCUT® technology can be used to obtain & ion, but it is not limited to this. The semiconductor layer (SOI layer) 304 is generally a silicon material with a thickness less than 250 A. Buried insulation layer 2〇2 is generally made of silicon oxide ^

200425278 五、發明說明(9) 其次,於矽層304上成長一 A(卜Z)B⑴緩衝層306,A原子 可以是矽、鍺、碳、銦、砷或鋁原子,而B原子可以是 錄、碳、銦、砷或鋁原子。成長A(i y)B(y)緩衝層2〇6之方法 例如使用分子束磊晶法、選擇性磊晶法、化學氣相沈積磊 晶法或化學氣相沈積法。 接著’於A(1_Z)B⑴緩衝層30 6上成長一An_u)B⑷緩衝層 308 ’其中u>z。成長A(1_u)B(u)緩衝308之方法例如使用分子 束蠢晶法、選擇性磊晶法要化學氣相沈積磊晶法或化學氣 相沈積法。 然後’於A(1_U)B(U)緩衝層308上成長一A(1_W)B⑷緩衝層 310 ’其中w>u。成長A(1_W)B(W)緩衝310之方法例如使用分子 束磊晶法、選擇性磊晶法、化學氣相沈積磊晶法或化學氣 相沈積法。 其次,於緩衝層310上成長一A(1_y)B(y)緩衝層 312,其中y>w。成長緩衝312之方法例如使用分子 束蠢晶法、選擇性磊晶法、化學氣相沈積磊晶法或化學氣 相沈積法。 接著’於A(1_y)B(y)緩衝層312上成長一a(1_x)b⑴鬆弛的 薄膜層3 1 4 ’成長B⑴鬆弛的薄膜層3 1 4之方法例如使 用分子束蠢晶法、選擇性蠢晶法、化學氣相沈積磊晶法或 化學氣相沈積法。200425278 V. Description of the invention (9) Secondly, an A (bu Z) B⑴ buffer layer 306 is grown on the silicon layer 304. The A atom can be silicon, germanium, carbon, indium, arsenic or aluminum atom, and the B atom can be recorded. , Carbon, indium, arsenic, or aluminum atoms. The method of growing the A (i y) B (y) buffer layer 206 is, for example, a molecular beam epitaxy method, a selective epitaxy method, a chemical vapor deposition epitaxy method, or a chemical vapor deposition method. Next, "An (u) B" buffer layer 308 is grown on the A (1_Z) B "buffer layer 306, where u > z. The method for growing the A (1_u) B (u) buffer 308 is, for example, a molecular beam stupid method, a selective epitaxy method, a chemical vapor deposition epitaxy method, or a chemical gas phase deposition method. Then, "A (1_W) B" buffer layer 310 is grown on the A (1_U) B (U) buffer layer 308, where w > u. The method of growing the A (1_W) B (W) buffer 310 is, for example, a molecular beam epitaxy method, a selective epitaxy method, a chemical vapor deposition epitaxy method, or a chemical vapor deposition method. Next, an A (1_y) B (y) buffer layer 312 is grown on the buffer layer 310, where y > w. The method of the growth buffer 312 is, for example, a molecular beam stupid method, a selective epitaxy method, a chemical vapor deposition epitaxy method, or a chemical vapor deposition method. Next, a method of growing an a (1_x) b⑴relaxed thin film layer 3 1 4 on the A (1_y) B (y) buffer layer 312 is to grow a B⑴relaxed thin film layer 3 1 4 such as using a molecular beam stupid crystal method, selection Stupid crystal method, chemical vapor deposition epitaxy method or chemical vapor deposition method.

然後,可於A (1-χ) B(x) 層316 鬆弛的薄膜層3丨4上成長一應變矽 最後’可於應變石夕層316上製造一般的積體電路元Then, a strained silicon can be grown on the loose film layer 3 丨 4 of the A (1-χ) B (x) layer 316. Finally, a general integrated circuit element can be fabricated on the strained stone layer 316

0503-7589TWF(Nl) ; TSMC2001-1524 ; ycchen.ptd 第13頁 200425278 五、發明說明(10) "" 件、微機電裝置、雙極性電晶體、金氧半場效電晶體或發 光二極體(未顯示)。 < 本發明尚提出一種具有鬆弛的薄膜層結構,如第5圖 所示’此具有鬆弛的薄膜層結構包括以下次元件。第一元 件係為一絕緣層上有矽層之基底3〇 〇。絕緣層上有矽層之 基底是在一半導體基底300上形成一埋藏絕緣層302及一半 導體層304,本實施例則以一絕緣層上有矽層之晶圓為 例。半導體層(SOI層)304 —般是厚度小於250 A的矽材 料。埋藏絕緣層3 〇 2 —般是由氧化矽所構成。 第二元件係為一Απ—z)B⑴緩衝層306,成長於矽層3〇4 上’ Απ-^Β^緩衝層306係使用實施例3之方法及材料成長於 層3 0 4上’ Α原子可以是石夕、鍺、碳、銦、砂或紹原子, 而B原子可以是鍺、碳 '銦、砷或鋁原子。 衝層3第06三广V系ί 一 Vu)B⑷緩衝層308 ’成長於 上’ 緩衝層3〇8係使用實施例3之方法及姑 料來成長。 何 衝層3第0 8四上疋V糸t 一二(Μ、)緩衝層31° ’成長於、 料來成長 (1d (w)緩衝層31〇係使用實施例3之方法及材0503-7589TWF (Nl); TSMC2001-1524; ycchen.ptd Page 13 200425278 V. Description of the invention (10) " " " pieces, micro-electromechanical devices, bipolar transistors, metal oxide half field effect transistors or light emitting diodes Body (not shown). < The present invention also proposes a thin film layer structure having a slack, as shown in Fig. 5 'This thin film layer structure having a slack includes the following sub-elements. The first element is a substrate 300 having a silicon layer on an insulating layer. The substrate with a silicon layer on the insulating layer is a buried insulating layer 302 and a semi-conductive layer 304 formed on a semiconductor substrate 300. In this embodiment, a wafer with a silicon layer on the insulating layer is taken as an example. The semiconductor layer (SOI layer) 304 is typically a silicon material with a thickness of less than 250 A. The buried insulating layer 3 02 is generally composed of silicon oxide. The second element is an Απ—z) B⑴ buffer layer 306, which is grown on the silicon layer 304. Απ- ^ Β ^ The buffer layer 306 is grown on the layer 304 using the method and material of Example 3. Α The atom can be a stone, germanium, carbon, indium, sand or shaw atom, and the B atom can be a germanium, carbon'indium, arsenic or aluminum atom. The third layer 06, the Sanguang V system, a Vu) B buffer layer 308 'grown on' The buffer layer 308 was grown using the method of Example 3 and the data. He Chong 3rd, 0th, 8th, 4th, V 糸 t, two (M,) buffer layer 31 ° ′ grown on, expected to grow (1d (w) buffer layer 310 uses the method and material of Example 3

Α(1-χ) B(x) 第六元件係為一 八(11)1)緩衝層312上 鬆弛的薄膜層3 1 4,成長;^ 鬆弛的薄膜層3 1 4係使用實Α (1-χ) B (x) The sixth element system is one eight (11) 1) on the buffer layer 312 The slack film layer 3 1 4 grows; ^ The slack film layer 3 1 4 system uses solid

200425278 五、發明說明(11) 施例3之方法及材料成長於A(i y)B⑺緩衝層312上。 此具有鬆弛的薄膜層結構尚包括以下次元件,一應變 矽層316成長於鬆弛的薄膜層314上。積體電路元件、微機 電裝置、雙極性電晶體、金氧半場效電晶體或發光二極體 (未顯示),製造於應變矽層316上。 本發明之實施例3所成長之緩衝層數量是以5層緩衝層 來舉例說明’但對於任何熟習此項技述者而言,緩衝層數 量可以是兩層至數十層,都包括於發明之範圍,並無一定 之限制。 本發明之實施例3藉由成長濃度漸增之緩衝層堆疊層 結構,以阻止差排朝向鬆弛的薄膜層316之方向增 殖0 不限於實施例所引述 形成方法所置換,且 用之尺寸大小。 如上,然其並非用以 脫離本發明之精神和 發明之保護範圍當視 本發明中所應用之物質材料,並 者,其能由各種具恰當特性之物質和 本發明之結構空間亦不限於實施例引 雖然本發明已以較佳實施例揭露 限制本,任何熟習此項技藝者,在不 範圍内’當可做更動與潤飾,因此本 後附之申請專利範圍所界定者為準。200425278 V. Description of the invention (11) The method and material of Example 3 are grown on the A (i y) B⑺ buffer layer 312. The thin film layer structure with slack also includes the following sub-elements. A strained silicon layer 316 is grown on the slack film layer 314. Integrated circuit elements, microcomputers, bipolar transistors, metal-oxide-semiconductor field-effect transistors, or light-emitting diodes (not shown) are fabricated on the strained silicon layer 316. The number of buffer layers grown in Embodiment 3 of the present invention is illustrated by using five buffer layers. However, for any person skilled in the art, the number of buffer layers can be two to dozens of layers, which are all included in the invention. The scope is not limited. In the third embodiment of the present invention, the buffer layer stacking structure with a gradually increasing concentration is used to prevent the differential rows from growing toward the relaxed film layer 316. The size is not limited to the replacement by the formation method described in the embodiment. As above, however, it is not intended to depart from the spirit of the present invention and the scope of protection of the invention. The material materials used in the present invention should be considered, and it can be composed of various materials with appropriate characteristics and the structural space of the invention is not limited to implementation. Examples Although the present invention has disclosed the limited edition in the preferred embodiment, anyone skilled in the art is not allowed to make changes and retouching within the scope. Therefore, the scope of the patent application attached hereto shall prevail.

2UU425278 I 1丨晒酬_,丨丨丨丨 _ 圖式簡單說明 第1圖係顯示傳統之恳 第2A及2B圖係顯示具、W弛的薄膜層結構。 的笼:3:至3c圖係表示根據::d地的薄媒層結構。 的薄膜層結構的製程剖面圖本發月之實把例1之具有鬆弛 第4圖係表示根據太 層結構的製程剖面圖。明之實施例2之具有鬆他的薄膜 第5圖係表示根據本發恭 層結構的製程剖面圖。 貝匕列3之具有鬆弛的薄膜 符號說明: 100、200、300〜半導體基底; 1 0 2、2 0 2、3 0 2〜埋藏絕緣; 104、204、304〜石夕層; 1 0 6〜缺陷區; 108、208、314〜鬆弛的薄膜層; 110、210、316〜應變石夕層; 206、306、308、310、312〜緩衝層。 <1 0503-7589TWF(Nl) ; TSMC2001-1524 ; ycchen.ptd 第16頁2UU425278 I 1 丨 Photo _, 丨 丨 丨 丨 _ Brief description of the diagram Figure 1 shows the traditional enthusiasm Figures 2A and 2B show the thin film layer structure with W relaxation. The cage: 3: to 3c diagram shows the thin dielectric layer structure according to :: d. The cross-sectional view of the process of the thin film layer structure of this example is shown in Example 1 with slack. Figure 4 is a cross-sectional view of the process based on the super-layer structure. Fig. 5 is a cross-sectional view showing a process of a layer structure according to the present invention. Description of the thin film symbol with slack in Shell 3: 100, 200, 300 ~ semiconductor substrate; 10, 2 0, 3 0 2 ~ buried insulation; 104, 204, 304 ~ Shi Xi layer; 1 0 6 ~ Defective area; 108, 208, 314 ~ relaxed film layer; 110, 210, 316 ~ strain stone layer; 206, 306, 308, 310, 312 ~ buffer layer. < 1 0503-7589TWF (Nl); TSMC2001-1524; ycchen.ptd page 16

Claims (1)

200425278200425278 1. 一種具有鬆弛的薄膜層結構之製造方法,包 步驟: w卜列 提供一絕緣層上有矽層(S0I)之基底; 對該基底施行一離子植入程序以在該矽層内形一 陷區;以及 +缺 於該矽層上成長一鬆弛的薄膜層。 2 ·如申請專利範圍第1項所述之具有鬆弛的薄膜層奸 構之製造方法,其中該鬆弛的薄膜層之晶格常數不同於° 矽層之晶格常數。 、邊 3·如申請專利範圍第1項所述之具有鬆弛的薄膜層結 構之製造方法,其中該鬆弛的薄膜層是矽鍺、矽鍺碳" 鍺砷、鍺砷、鋁鍺砷、鍺碳或銦鍺碳層。 4·如申請專利範圍第1項所述之具有鬆弛的薄膜層結 構之製造方法,其中成長該鬆弛的薄膜層係使用分子束磊 晶法、選擇性磊晶法、化學氣相承積磊晶法或化學氣相$ 積法。 /b 5·如申請專利範圍第1項所述之具有鬆弛的薄膜層結 構之製造方法,其中,對該基底施行該離子植入程序^ 使用之離子是為侧、鱗及石申離子。1. A manufacturing method with a relaxed thin film layer structure, comprising the steps of: providing a substrate with a silicon layer (SOI) on an insulating layer; performing an ion implantation procedure on the substrate to form a silicon layer in the silicon layer; Depressions; and + a thin film layer is grown on the silicon layer. 2. The manufacturing method of a thin film layer structure as described in item 1 of the scope of the patent application, wherein the lattice constant of the relaxed film layer is different from the lattice constant of the silicon layer. 3, The method for manufacturing a thin film layer structure as described in item 1 of the scope of the patent application, wherein the relaxed film layer is silicon germanium, silicon germanium carbon " germanium arsenic, germanium arsenic, aluminum germanium arsenic, germanium Carbon or indium germanium carbon layer. 4. The manufacturing method of the thin film layer structure described in item 1 of the scope of patent application, wherein the growth of the thin film layer is performed by molecular beam epitaxy, selective epitaxy, and chemical vapor deposition epitaxy. Method or chemical vapor product. / b 5. The method for manufacturing a thin film layer structure as described in item 1 of the scope of the patent application, wherein the ion implantation procedure is performed on the substrate ^ The ions used are side, scale, and stone ions. 6 ·如申请專利範圍第1項戶斤述之具有鬆弛的薄膜層結 構之製造方法,更包括於該鬆弛的薄膜層上成長_應變矽 層。 7 ·如申請專利範圍第6項所述之具有鬆弛的薄膜層結 構之製造方法’更包括於變石夕層上製造積體電路元件、微6 · As described in the first patent application, the manufacturing method with a thin film layer structure further includes growing a strained silicon layer on the loose film layer. 7 · The method for manufacturing a thin film layer structure with a slack as described in item 6 of the scope of the patent application 'further includes manufacturing integrated circuit elements, Ί A/} 200425278 六、申請專利範圍 $電裝置、雙極性電晶體、金氧半場效電晶體或發光二極 8 · 種具有鬆他的薄膜層結構,包括: 一絕緣層上有矽層(SOI)之基底; ^ ^ Ϊ陷區,其係藉由對該基底施行—離子植入程序% 形成於該矽層内;以及 狂序而 一鬆弛的薄膜層,形成於該矽層上。 ^如申請專利範圍第8項所述之具有鬆弛的薄膜屉姓 構,其中該鬆他的薄膜層之晶格常數不同於該矽 曰曰、,。 常數。 日日格 工〇.如申請專利範圍第8項所述之具有鬆弛的薄 構,其中該鬆弛的薄膜層是矽鍺、矽鍺碳、銦鍺砷、、二〜 砷' 鋁鍺砷、鍺碳或銦鍺碳層。 構 11 ·如申請專利範圍第8項所述之具有鬆弛的薄骐層钟 其中成長該鬆弛的薄膜層係使用分子束磊晶法、^ 性蠢晶法、化學氣相沈積磊晶法或化學氣相沈積法。、释 Ϊ2·如申請專利範圍第8項所述之具有鬆弛的薄骐層处 構、,其中,對該基底施行該離子植入程序,所使用之ς: 是為硼、磷及砷離子。 13.如申請專利範圍第8項所述之具有鬆弛的薄骐層結 構,更包括一應變矽層,成長於該鬆弛的薄膜層上。 1 4·如申請專利範圍第丨3項所述之具有鬆弛的薄祺層 結構’更包括積體電路元件、微機電裝置、雙極性電晶Q 體、金氧半場效電晶體或發光二極體,製造於該應變矽層 0503-7589TW(Nl) ; TSMC2001 -1524 ; ycchen.ptd 第18頁 200425278 六、申請專利範圍 上。 1 5 · —種具有鬆弛的薄膜層結構之製造方法,包括下 列步驟: 提供一絕緣層上有石夕層(s〇I)之基底; 於該基底上成長一具有濃度梯度之A(1〜y)B(y)緩衝層,其 中y = 0—X ;以及 於6玄緩衝層上成長〆心卜^⑴%他的薄膜層。 1 6·如申請專利範圍第1 5項所述之具有鬆弛的薄膜層 結構之製造方法,其中該A(i y)B(y)煖衝層之厚度為介於〇· 〇1 至0 · 5微米之間。 1 7·如申請專利範圍第1 5項所述之具有鬆弛的薄骐層 結構之製造方法,其中該‘wk)鬆弛的薄祺層之声 介於0· 01至1微米之間。 X馬 18. 如申請專利範圍第15項所述之具有鬆弛的 結構之製造方法,其中該A原子是矽、鍺、碳、銦、击玲 鋁原子。 、’、钟或 19. 如申請專利範圍第15項所述之具有鬆弛的 結構之製造方法,其中該B原子是鍺、碳、銦、、層 子。 T或紐原 20·如申請專利範圍第15項所述之具有 結,之製造方法,其中成長該A(i y)B(y)緩衝層係使用,, 蠢晶法、選擇性蠢晶法、化學氣相沈積 :,束 沈積法。 石4化學氣相 21·如申請專利範圍第15項所述 <具有鬆弛的薄祺層Ί A /} 200425278 6. Application scope of patent $ Electric device, bipolar transistor, metal-oxide-semiconductor field-effect transistor or light-emitting diode 8 · A kind of thin film layer structure, including: a silicon layer on the insulation layer ( SOI) substrate; ^ ^ a depression area, which is formed in the silicon layer by performing an ion implantation procedure on the substrate; and a sequenced and relaxed film layer is formed on the silicon layer. ^ The structure of the thin film drawer with relaxation as described in item 8 of the scope of the patent application, wherein the lattice constant of the loose film layer is different from that of the silicon. constant. Rigri grid 0. The thin structure with relaxation as described in item 8 of the scope of patent application, wherein the relaxed thin film layer is silicon germanium, silicon germanium carbon, indium germanium arsenic, arsenic, aluminum arsenic, germanium Carbon or indium germanium carbon layer. Structure 11 · The thin layered layer clock with relaxation as described in item 8 of the scope of patent application, wherein the relaxed thin film layer is grown using a molecular beam epitaxy method, a stupid crystal method, a chemical vapor deposition epitaxy method, or a chemical Vapor deposition.释 2. As described in item 8 of the scope of the patent application, the thin osmium layer structure with slackness, wherein the ion implantation procedure is performed on the substrate, and the ions used are: boron, phosphorus, and arsenic ions. 13. The structure of the thin thin layer with relaxation as described in item 8 of the scope of patent application, further comprising a strained silicon layer, grown on the relaxed thin film layer. 1 4 · The thin layer structure with slack as described in item No. 丨 3 of the scope of application patents further includes integrated circuit elements, micro-electromechanical devices, bipolar transistor Q-body, metal-oxide half-field-effect transistor or light-emitting diode Body, manufactured on the strained silicon layer 0503-7589TW (Nl); TSMC2001 -1524; ycchen.ptd page 18 200425278 6. Application for patent scope. 1 ·· A method for manufacturing a thin film layer structure, including the following steps: providing a substrate with a stone layer (s0I) on an insulating layer; and growing an A (1 ~ y) a B (y) buffer layer, where y = 0-X; and growing a thin film layer on the 6-bit buffer layer. 16. The method for manufacturing a thin film layer structure as described in item 15 of the scope of the patent application, wherein the thickness of the A (iy) B (y) warm stamping layer is between 0 · 〇1 and 0 · 5 Between micrometers. 17. The method for manufacturing a thin slab layer structure with relaxation as described in item 15 of the scope of patent application, wherein the sound of the 'wk) slack layer is between 0.01 and 1 micron. X Ma 18. The manufacturing method with a relaxed structure as described in item 15 of the scope of patent application, wherein the A atom is a silicon, germanium, carbon, indium, or aluminum atom. , ', Bell, or 19. A manufacturing method having a relaxed structure as described in item 15 of the scope of patent application, wherein the B atom is germanium, carbon, indium, or a layer. T or Niuhara 20. The manufacturing method with a junction as described in item 15 of the scope of the patent application, in which the A (iy) B (y) buffer layer is grown, a stupid method, a selective stupid method, Chemical Vapor Deposition: Beam Deposition. Stone 4 Chemical Vapor Phase 21 As described in the patent application No. 15 < Thin layer with slack 0503-7589TWF(Nl) ; TSMC200M524 ; ycchen.ptd 第19頁 744 200425278 六、申請專利範圍 ,、、ti構之製ie方法,其中成長該Α(ι χ)β⑴鬆他 用分子束蟲晶法、選擇性蟲晶法、化學氣相沈:膜二 化學氣相沈積法。 22·如申請專利範圍第丨5項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該鬆弛的薄膜層上成 長一應變矽層。 23·如申請專利範圍第22項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該應變矽層上製造積體電路元 件、微機電裝置、雙極性電晶體、金氧半場效電晶體或發 光二極體。 2 4 · —種具有鬆弛的薄膜層結構之製造方法,下列步 驟: 提供一絕緣層上有矽層(SOI)之基底; 中0 間 於該基底上成長一具有濃度梯度之B⑺缓衝層,其 卜X ’該A(1_y)B(y)緩衝層之厚度為介於0.01至0.5微米之 以及 於该A(1_y)B(y)緩衝層上成長〆A(1-x)B(x)鬆弛的薄膜層’ 該A(1_X)B⑴鬆弛的薄膜層之厚度為介於0· 01至1微米之間。 2 5 ·如申請專利範圍第2 4項所述之具有鬆弛的薄膜層 結構之製造方法,其中該A原子是矽、鍺、碳、銦、砷或 鋁原子。 2 6 ·如申請專利範圍第2 4項所述之具有鬆弛的薄膜層 結構之製造方法,其中該B原子是鍺、碳、銦、砷或鋁原 子00503-7589TWF (Nl); TSMC200M524; ycchen.ptd Page 19 744 200425278 6. Application scope of patents, and ti structure method, in which the Α (ιχ) β acetonine is grown by molecular beam worm crystal method, Selective vermicular method, chemical vapor deposition: membrane two chemical vapor deposition method. 22. The method for manufacturing a thin film layer structure as described in item 5 of the patent application scope, further comprising forming a strained silicon layer on the relaxed thin film layer. 23. The method for manufacturing a thin film layer structure as described in item 22 of the scope of the patent application, further comprising manufacturing integrated circuit elements, micro-electromechanical devices, bipolar transistors, and metal-oxide-semiconductor half-effect transistors on the strained silicon layer. Crystal or light-emitting diode. 2 4 · A method for manufacturing a thin film layer structure with the following steps: providing a substrate with a silicon layer (SOI) on an insulating layer; and growing a B⑺ buffer layer with a concentration gradient on the substrate, In other words, the thickness of the A (1_y) B (y) buffer layer is between 0.01 and 0.5 micrometers and grown on the A (1_y) B (y) buffer layer. A (1-x) B (x ) Relaxed film layer 'The thickness of the A (1_X) B⑴ relaxed film layer is between 0.01 and 1 micrometer. 25. The method for manufacturing a thin film layer structure according to item 24 of the patent application, wherein the A atom is a silicon, germanium, carbon, indium, arsenic or aluminum atom. 2 6 · The method for manufacturing a thin film layer structure as described in item 24 of the patent application scope, wherein the B atom is a germanium, carbon, indium, arsenic or aluminum atom 0503-7589TW(Nl) ; TSMC2001-1524 : ycchen.ptd 第 20 買 200425278 六、申請專利範圍 27·如申請專利範圍第24項所述之具有鬆弛的薄膜層 結構之製造方法,其中成長該緩衝層係使用分子束 蠢晶法、選擇性磊晶法、化學氣相沈積遙晶法或化學氣相 沈積法。 28·如申請專利範圍第24項所述之具有鬆弛的薄膜層 結構之製造方法,其中成長該鬆弛的薄膜層係使 用分子束磊晶法、選擇性磊晶法、化學氣相沈積磊晶法或 化學氣相沈積法。 2 9·如申請專利範圍第24項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該鬆弛的薄膜層上成 長一應變石夕層。 3 0.如申請專利範圍第29項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該應變矽層上製造積體電路元 件、微機電裝置、雙極性電晶體、金氧半場效電晶體或發 光二極體。 3 1 · —種具有鬆弛的薄膜層結構,包括: 一絕緣層上有矽層之基底; 一具有濃度梯度之A(1_y)B(y)緩衝層,成長於該基底上, 其中y = 0 —X,該An y)B(y)緩衝層之厚度為介於〇〇1至〇.5微 米之間;以及 Au-χ) B(x) 該A(1 翡 鬆弛的薄膜層,成長於該A(1_y)B(y)緩衝層 鬆弛的薄膜層之厚度為介於Q 〇l至1微米之 間。 32·如申請專利範圍第31項所述之具有鬆弛的薄膜層0503-7589TW (Nl); TSMC2001-1524: ycchen.ptd 20th buy 200425278 6. Application patent scope 27. The method for manufacturing a thin film layer structure as described in item 24 of the patent application scope, wherein the buffer layer is grown The system uses molecular beam stupid crystal method, selective epitaxy method, chemical vapor deposition telecrystallization method or chemical vapor deposition method. 28. The method for manufacturing a relaxed thin film layer structure as described in item 24 of the scope of the patent application, wherein growing the relaxed thin film layer uses a molecular beam epitaxy method, a selective epitaxy method, and a chemical vapor deposition epitaxy method Or chemical vapor deposition. 29. The manufacturing method of a thin film layer structure as described in item 24 of the scope of patent application, further comprising forming a strained stone layer on the loose film layer. 30. The method for manufacturing a thin film layer structure as described in item 29 of the scope of the patent application, further comprising manufacturing integrated circuit elements, micro-electromechanical devices, bipolar transistors, and metal-oxygen half field effects on the strained silicon layer. Transistor or light emitting diode. 3 1 · A thin film layer structure including: a substrate with a silicon layer on an insulating layer; an A (1_y) B (y) buffer layer with a concentration gradient, grown on the substrate, where y = 0 —X, the thickness of the An y) B (y) buffer layer is between 0.001 and 0.5 micrometers; and Au-χ) B (x) the A (1 fluorene-relaxed thin film layer, grown on The thickness of the slack film layer of the A (1_y) B (y) buffer layer is between Q 01 and 1 micron. 32. The slack film layer according to item 31 of the scope of patent application 74& 200425278 六、申請專利範圍 '" 結構’其中該A原子是矽、鍺、碳、銦、砷或鋁原子。 3 3 ·如申請專利範圍第3丨項所述之具有鬆弛的薄膜層 結構,其中該B原子是鍺、碳、銦、砷或鋁原子。 3 4 ·如申請專利範固第31項所述之具有鬆弛的薄膜層 結構’其中成長該An_y)B(y)緩衝層係使用分子束磊晶法、選 擇性磊晶法、氣相沈積磊晶法或化學氣相沈積法。 3 5 ·如申請專利範圍第3 1項所述之具有鬆弛的薄膜層 結構,其中成長該A(1_X)B(X)鬆弛的薄膜層係使用分子束磊 晶法、選擇性蠢晶法、化學氣相沈積蠢晶法或化學氣相沈 積法。 秦 3 6 ·如申請專利範圍第3 1項所述之具有鬆弛的薄膜層 結構,更包括於該A(1_X)B(X)鬆弛的薄膜層上成長一應變矽 層。 3 7 ·如申請專利範圍第3 6項所述之具有鬆弛的薄膜層 結構,更包括於該應變矽層上製造積體電路元件、微機電 裝置、雙極性電晶體、金氧半場效電晶體或發光二極體。 38· —種具有鬆弛的薄膜層結構之製造方法,包括下 列步驟: 提供一絕緣層上有矽層(I)之基底; 於該基底上成長一 A(1_z)B⑴緩衡層; ❶ 於該Α(ι-Ζ)Β(Ζ)緩衝層上成長一A(1-y)B(y)緩衝層,基中 y〉z ;以及 ' 於该A(1_y)B(y)緩衝層上成長一 a(1-x)B(x)鬆弛的薄膜層’ 其中x>y。74 & 200425278 6. Scope of patent application '" Structure' wherein the A atom is a silicon, germanium, carbon, indium, arsenic or aluminum atom. 3 3 · The structure of the thin film layer having relaxation as described in item 3 of the patent application range, wherein the B atom is a germanium, carbon, indium, arsenic or aluminum atom. 3 4 · The thin film layer structure with relaxation described in item 31 of the patent application 'wherein the An_y) B (y) buffer layer is grown using molecular beam epitaxy, selective epitaxy, and vapor deposition epitaxy Crystal or chemical vapor deposition. 3 5 · The structure of the thin film layer with relaxation described in item 31 of the scope of patent application, wherein the growth of the A (1_X) B (X) relaxed film layer is performed using a molecular beam epitaxy method, a selective stupid crystal method, Chemical vapor deposition method or chemical vapor deposition method. Qin 36 · The thin film layer structure described in item 31 of the scope of patent application, further comprising growing a strained silicon layer on the A (1_X) B (X) relaxed film layer. 37. The thin film layer structure as described in item 36 of the scope of patent application, further including manufacturing integrated circuit elements, micro-electromechanical devices, bipolar transistors, and metal-oxide-semiconductor half-effect transistors on the strained silicon layer. Or light-emitting diode. 38 · A method for manufacturing a thin film layer structure, comprising the following steps: providing a substrate with a silicon layer (I) on an insulating layer; growing an A (1_z) B ⑴moderating layer on the substrate; A (1-y) B (y) buffer layer is grown on the Α (ι-Z) Β (Z) buffer layer, and y> z in the base; and 'grown on the A (1_y) B (y) buffer layer -A (1-x) B (x) relaxed film layer 'where x > y. 0503-7589TWF(Nl) ; TSMC200M524 ; ycchen.ptd 第22頁 7i7 200425278 六、申請專利範圍 39·如申請專利範圍第38項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該‘ ζ)β⑴緩衝層及該An_y)B(y) 緩衝層之間成長一A(i_w)b(w)緩衝層,其中y>w>z。 40·如申請專利範園第38項所述之具有鬆弛的薄膜層 結構之製造方法,其中該A原子是矽、鍺、碳、銦、砷或 18原子。 4 1 ·如申請專利範圍第3 8項所述之具有鬆弛的薄膜層 結構之製造方法,其中該β原子是鍺要碳、銦、砷或鋁原 子0 4 2 ·如申請專利範圍第3 8項所述之具有鬆弛的薄膜層 結構之製造方法,其中成長該Α(ι z)B(z〉緩衝層係使用分子束 蠢晶法、選擇性遙晶法、化學氣相沈積蟲晶法或化學氣相 沈積法。 4 3 ·如申請專利範圍第3 8項所述之具有鬆弛的薄膜層 結構之製造方法,其中成 長該緩衝層係使用分子束 磊晶法、選擇性磊晶法、化學氣相沈積磊晶法或化學氣相 沈積法。 44·如申請專利範圍第38項所述之具有鬆弛的薄膜層 結構之製造方法,其中成長該鬆弛的薄膜層,係 使用分子束磊晶法、選擇性蠢晶法、化學氣相沈積磊晶法 或化學氣相沈積法。 45.如申請專利範圍第38項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該鬆弛的薄膜層上成 長一應變>6夕層。0503-7589TWF (Nl); TSMC200M524; ycchen.ptd Page 22 7i7 200425278 6. Application for patent scope 39 · The manufacturing method with a loose film layer structure as described in item 38 of the scope of patent application, including the 'ζ An A (i_w) b (w) buffer layer is grown between the β⑴ buffer layer and the An_y) B (y) buffer layer, where y > w > z. 40. The method for manufacturing a thin film layer structure according to item 38 of the patent application park, wherein the A atom is silicon, germanium, carbon, indium, arsenic, or 18 atoms. 4 1 · The method for manufacturing a thin film layer structure as described in item 38 of the scope of the patent application, wherein the β atom is germanium, carbon, indium, arsenic or aluminum atom 0 4 2 · As the scope of patent application 3 8 The method for manufacturing a thin film layer structure according to the above item, wherein growing the A (ιz) B (z> buffer layer is performed using a molecular beam stupid crystal method, a selective telecrystal method, a chemical vapor deposition worm crystal method, or Chemical vapor deposition method 4 3 · The manufacturing method with a relaxed thin film layer structure as described in item 38 of the patent application scope, wherein the growth of the buffer layer is performed using a molecular beam epitaxy method, a selective epitaxy method, a chemical method Vapor deposition epitaxy or chemical vapor deposition. 44. The manufacturing method with a relaxed thin film layer structure as described in item 38 of the patent application scope, wherein the relaxed thin film layer is grown using a molecular beam epitaxy method , Selective stupid crystal method, chemical vapor deposition epitaxial method or chemical vapor deposition method. 45. The method for manufacturing a thin film layer structure as described in item 38 of the patent application scope, further including the relaxed film Grow a strain on the layer > 6 evening layer. 0503-7589TWF(Nl) ; TSMC200M524 : ycchen.ptd 2004252780503-7589TWF (Nl); TSMC200M524: ycchen.ptd 200425278 ^ 46·如申請專利範圍第45項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該應變矽層上製造積體電路元 件、微機電裝置、雙極性電晶體、金氧半場效電晶體或發 光二極體。 4 7 · —種具有鬆弛的薄膜層結構,包括·· 一絕緣層上有矽層之基底; 一ΑοαΒ⑴緩衝層,成長於該基底上; 一八⑴^⑴緩衝層,成長於該Απ-Ζ)Β(ζ)緩衝層上,基中 y>z ;以及 一Au-d"鬆弛的薄膜層,成長於該A(1_y)B(y)緩衝層 上,其中x>y。 4 8 ·如申請專利範圍第3 8項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該Α(ι z)B(z)緩衝層及該au y)B(y) 緩衝層之間成長一 a(1w)b(w)緩衝層,其中y>w>z。 4 9 ·如申請專利範圍第3 8項所述之具有鬆弛的薄膜層 結構之製造方法,其中該A原子是、鍺、碳、銦、砷或鋁 原子。^ 46. The method for manufacturing a slack thin film layer structure as described in item 45 of the scope of patent application, further comprising manufacturing integrated circuit elements, micro-electromechanical devices, bipolar transistors, and metal-oxygen half field effects on the strained silicon layer. Transistor or light emitting diode. A structure with a thin film layer including a substrate with a silicon layer on the insulating layer; an Ααα⑴ buffer layer growing on the substrate; and a ⑴ ^ ⑴ buffer layer growing on the Απ-Z ) On the B (ζ) buffer layer, y >z; and an Au-d " relaxed thin film layer are grown on the A (1_y) B (y) buffer layer, where x > y. 4 8 · The method for manufacturing a thin film layer structure as described in item 38 of the scope of patent application, further including the A (ι z) B (z) buffer layer and the au y) B (y) buffer layer An a (1w) b (w) buffer layer is grown between them, where y > w > z. 49. The method for manufacturing a thin film layer structure according to item 38 of the scope of patent application, wherein the A atom is a germanium, carbon, indium, arsenic or aluminum atom. 5 0 ·如申請專利範圍第3 8項所述之具有鬆弛的薄膜層 結構之製造方法,其中該B原子是、錄、被、銦、珅或紹 原子。 5 1 ·如申請專利範圍第38項所述之具有鬆弛的薄膜層 結構之製造方法,其中成長該緩衝層係使用分子束 磊晶法、選擇性磊晶法、化學氣相沈積蠢晶法或化學氣相 沈積法。50. The method for manufacturing a thin film layer structure as described in item 38 of the scope of the patent application, wherein the B atom is a, a, a, an indium, a europium, or a shaw atom. 5 1 · The manufacturing method with a relaxed thin film layer structure as described in item 38 of the scope of the patent application, wherein the growth of the buffer layer is performed using a molecular beam epitaxy method, a selective epitaxy method, a chemical vapor deposition method, or Chemical vapor deposition. 749 200425278 六、申請專利範圍 52·如申請專利範圍第38項所述之具有鬆弛的薄膜層 結構之製造方法,其中成長該緩衝層係使用分子束 磊晶法、選擇性磊晶法、化學氣相沈積蠢晶法或化學氣相 沈積法。 5 3 ·如申請專利範圍第3 8項所述之具有鬆弛的薄膜層 結構之製造方法,其中成長該鬆弛的薄膜層係使 用分子束磊晶法、選擇性磊晶法、化學氣相沈積磊晶法或 化學氣相沈積法。 54·如申請專利範圍第38項所述之具有鬆弛的薄膜層 結構之製造方法,更包括於該鬆弛的薄膜層上1 || 長一應變石夕層。 胃【 55.如申請專利範圍第54項所述之具有鬆弛的 結構之製造方法’更包括該應變矽層上製造積體電路、 件、微機電裝i、雙極性電晶體、金氧半場效電晶體:發749 200425278 6. Application patent scope 52. The manufacturing method with a relaxed thin film layer structure as described in item 38 of the patent application scope, wherein the growth of the buffer layer is performed using molecular beam epitaxy, selective epitaxy, and chemical gas. Phase deposition method or chemical vapor deposition method. 5 3 · The manufacturing method of a thin film layer structure as described in item 38 of the scope of the patent application, wherein the growth of the thin film layer is by molecular beam epitaxy, selective epitaxy, and chemical vapor deposition. Crystal or chemical vapor deposition. 54. The method for manufacturing a slack film layer structure as described in item 38 of the scope of the patent application, further comprising 1 || growing a strained stone layer on the slack film layer. Stomach [55. The manufacturing method with a relaxed structure as described in item 54 of the scope of the patent application 'further includes manufacturing integrated circuits, components, micro-electromechanical devices, bipolar transistors, and metal-oxygen half field effects on the strained silicon layer. Transistor: hair 0503-7589TW(Nl) : TSMC2001-1524 : ycchen.ptd 第25頁0503-7589TW (Nl): TSMC2001-1524: ycchen.ptd Page 25
TW92112105A 2003-05-02 2003-05-02 Relaxed film layer structure and manufacturing method thereof TW200425278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92112105A TW200425278A (en) 2003-05-02 2003-05-02 Relaxed film layer structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92112105A TW200425278A (en) 2003-05-02 2003-05-02 Relaxed film layer structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200425278A true TW200425278A (en) 2004-11-16
TWI317145B TWI317145B (en) 2009-11-11

Family

ID=45073325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92112105A TW200425278A (en) 2003-05-02 2003-05-02 Relaxed film layer structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200425278A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763328B2 (en) * 2018-10-04 2020-09-01 Globalfoundries Inc. Epitaxial semiconductor material grown with enhanced local isotropy

Also Published As

Publication number Publication date
TWI317145B (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP3970011B2 (en) Semiconductor device and manufacturing method thereof
KR100690421B1 (en) Strained si based layer made by uhv-cvd, and devices therein
JP4716733B2 (en) Method for forming strained silicon on insulator (SSOI)
JP4130652B2 (en) Semiconductor structure and manufacturing method thereof
TW588412B (en) Method for producing relaxed SiGe substrate
JP4678877B2 (en) Silicon devices on Si: C-OI and SGOI and manufacturing methods
CN100378918C (en) Insulating layer coating substrate for strain semiconductor and its making process
US9337026B2 (en) Graphene growth on a carbon-containing semiconductor layer
KR100521708B1 (en) Method for fabricating semiconductor substrate
US7029964B2 (en) Method of manufacturing a strained silicon on a SiGe on SOI substrate
US20060131606A1 (en) Lattice-mismatched semiconductor structures employing seed layers and related fabrication methods
TW200528590A (en) Structure of strain relaxed thin Si/Ge epitaxial layer and fabricating method thereof
JP2015503215A (en) Silicon carbide epitaxial growth method
TW200402880A (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
JP2004507084A (en) Manufacturing process of semiconductor products using graded epitaxial growth
CN101075585A (en) Semiconductor structure and manufacturing method thereof
JP2001257351A (en) Semiconductor device and its manufacturing method
JP2006524426A (en) Method and layer structure for producing strained layers on a substrate
US7338886B2 (en) Implantation-less approach to fabricating strained semiconductor on isolation wafers
CN100459042C (en) Method for forming a strained Si-channel in a MOFSET structure
JP2010165787A (en) Semiconductor device
JP4296726B2 (en) Manufacturing method of semiconductor substrate and manufacturing method of field effect transistor
JP2010141263A (en) Semiconductor device
TW200425278A (en) Relaxed film layer structure and manufacturing method thereof
JP2004342819A (en) Semiconductor substrate and its producing process

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent