TW200424543A - A method and apparatus for detecting on-die voltage variations - Google Patents

A method and apparatus for detecting on-die voltage variations Download PDF

Info

Publication number
TW200424543A
TW200424543A TW093103316A TW93103316A TW200424543A TW 200424543 A TW200424543 A TW 200424543A TW 093103316 A TW093103316 A TW 093103316A TW 93103316 A TW93103316 A TW 93103316A TW 200424543 A TW200424543 A TW 200424543A
Authority
TW
Taiwan
Prior art keywords
voltage
attenuation
coupled
detector
frequency
Prior art date
Application number
TW093103316A
Other languages
Chinese (zh)
Other versions
TWI247124B (en
Inventor
Nasser Kurd
Javed Barkatullah
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW200424543A publication Critical patent/TW200424543A/en
Application granted granted Critical
Publication of TWI247124B publication Critical patent/TWI247124B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16504Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed
    • G01R19/16519Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed using FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16552Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies in I.C. power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/27Testing of devices without physical removal from the circuit of which they form part, e.g. compensating for effects surrounding elements
    • G01R31/275Testing of devices without physical removal from the circuit of which they form part, e.g. compensating for effects surrounding elements for testing individual semiconductor components within integrated circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/08Clock generators with changeable or programmable clock frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

On-die voltage and/or frequency detectors. For one aspect, an adaptive frequency clock generation circuit includes a droop detector to detect a supply voltage level and to cause the frequency of an on-die clock signal to be adjusted accordingly.

Description

玖、發明說明: 【日月戶斤冷貝 背景 本發明貫施例係關於積體電路領域並且,尤其是,關 於檢測晶粒上溫度及/或電壓變化。 於咼頻率積體電路中,例如,微處理機,電壓及/或溫 度之變化可導致頻率惡化。目前,昂貴的資源可以被使用 以,例如,控制電壓變化而避免此類惡化。 I:發明内容3 一些實例中,為防止功能失效,電壓邊限被添加至供 應電壓使得對於最大供應電壓衰減,積體電路之操作頻率 仍然被保持。但是,這方法可能在大部份時間導致積體電发明, Description of the invention: [Sun, Moon, and Pound Cold Shell Background] The embodiments of the present invention relate to the field of integrated circuits and, in particular, to detecting changes in temperature and / or voltage on a die. In chirped frequency integrated circuits, such as microprocessors, changes in voltage and / or temperature can cause frequency degradation. Currently, expensive resources can be used, for example, to control voltage changes to avoid such deterioration. I: Summary of the Invention 3 In some examples, to prevent functional failure, a voltage margin is added to the supply voltage so that the maximum operating voltage is attenuated and the operating frequency of the integrated circuit is still maintained. However, this method may cause

路衣置彳木作之顯著功率增加,即使僅稀少地發生之電 減被補償。 I ^田,貝《电路裝置操作頻率持續增加時,衰減振幅同 二,包•之—比例持續增加。對於—些積體電路,复 供必需的電壓邊限以保護由於功率和成本限制: 、π- 6凡口月 ^ H明實施例利用範例而展示且不受限制於附圖 7二中相同之參考編號指示相似元件,並且其中. 塊圖第i圖是—實施例之適應式頻率時脈系统的高位 200424543 第2圖是可以被使用於第1圖之適應式頻率時脈系統中 的實施例之衰減(電壓)檢測器分解圖和方塊圖。 第3圖是可以被使用於第1圖之適應式頻率時脈系統中 的另一實施例之電壓檢測器分解圖和方塊圖。 5 第4圖是可以被被使用於第1圖之適應式頻率時脈產生 電路中的一實施例之衰減/電壓檢測器方塊圖。 第5圖是可以被使用於第4圖之衰減/電壓檢測器中的 實施例之數位類比至數位轉換器分解圖。 第6圖是更詳細地展示第4圖之衰減/電壓檢測器的分 10 解圖。 第7圖是展示第6圖衰減檢測器用以追蹤衰減歷史之另 一應用的方塊圖。 第8圖是可以被使用於,例如,衰減監視的另一實施例 之衰減檢測器分解圖和方塊圖。 15 第9圖是可以被使用以控制第8圖衰減檢測器中之環式 震盪器之反向電壓感應電路分解圖和方塊圖。 第10圖是可以被使用於,例如衰減監視之另一實施例 之衰減檢測器分解圖和方塊圖。 第11圖是可以被使用於一實施例中以追蹤衰減歷史之 20 電路製作方塊圖。 第12圖是使用一實施例之衰減及/或溫度檢測器的一 實施例之積體電路的高位準方塊圖。 第13圖是使用一實施例之一組或多組衰減監視電路的 一實施例之積體電路的高位準方塊圖。 6 200424543 第14圖是使用一實施例之衰減及/或溫度檢測器的一 實施例之系統方塊圖。 第15圖是一流程圖,其展示用以檢測晶粒上電壓衰減 及/或溫度變化之一實施例的方法。 第16圖是可以有利地被使用於第6圖之實施例中之充 電電晶體製作範例之分解圖。 【實施方式】 詳細之說明 用以數位地檢測積體電路晶粒上之電壓及/或溫度變 10化的方法和裝置被說明。下面的說明中,所說明之特定型 式的積體電路、電路組態、系統組態、等等僅為展示。但 是,應了解,其他的實施例亦可應用於其他型式的積體電 路、電路組態及/或系統組態中。 於一實施例中,檢測一溫度或者電壓位準之檢測器接 15 收一組大致固定之第一電壓並且反應於被檢測之第二電壓 的溫度或者位準而輸出-域碼錢。控制電路反應於該 數碼信號而決定-組時脈信號頻率。此檢測器可以被使 用’例如,於適應式頻率時脈產生電路中以決定輸出頻率, 例如參考下面第頂之說明。這些和其他實施例之進一步詳 細說明將在下面提供。 第1圖是依據-實施例之適應式 的高位準方塊圖。如下面更詳細之戈明丰日樣產生電路100 用以提供㈣《«或者其他㈣電路2料以被使 作所需的適應式時脈方法。 頻率操 20 200424543 適應式頻率時脈產生電路100包含一組同步時脈產生 為(相位鎖定迴路(PLL))l〇5、除N電路110、多工器(mux)115 以及電壓衰減(及/或溫度)檢測器12〇。操作中,pLL 1〇5在 輸入接收一組參考時脈信號(RefCLK)並且,配合產生回授 5日守脈信號(FBCLK)之除N電路11〇,提供具有第一頻率F1之 車父南頻率輸出時脈信號。應了解,除N電路110中之N值可 以是依據頻率F1對參考時脈信號RefCLK頻率之所需的多 組比率值之任何一組。 其他的時脈產生器(未展示出),單獨地或者配合時脈相 1〇除或者相乘電路(未展示出),以相似方式操作以產生具有不 同頻率,例如F2."Fn的時脈信號,如第i圖之展示。 同日守地’衰減檢測器120接收指示相關電壓位準,例 如’ Vcc及/或相關之溫度指示器之輸入信號。vcc輸入信號 可以彳文電壓供應被接收,而相關溫度之輸入信號可以從, 15例如,晶粒上溫度感知器被接收。依據被接收之輸入信號, 衰減檢測器120提供一組頻率數碼125或者其他的控制信號 以導致多工器115選擇地在輸出130輸出具有頻率F1…Fn之 其中一組的時脈信號OutCLK。被選擇之時脈信號〇utCLK 可以被使用於時脈核心電路,例如,於包含適應式頻率時 20脈電路100之主系統積體電路上。 依據包含’例如,輸出時脈信號OutCLK所需的特性之 因素範圍和製造主系統積體電路的處理程序,pLL 1〇5、除 N電路110以及多工器115各可以使用多種習知PL]L、除N及/ 或多工裔设计之任一種而被製作。 8 200424543 於一實施例中,第1圖之衰減檢測器120和多工器115可 以使用,例如,第2圖之衰減檢測器220和控制與多工電路 215而被製作。衰減檢測器220包含由串聯-耦合電阻器R1、 R2和R3所形成之分壓器22ι,各電阻器可以使用,例如, 5 n-型或者P-型金屬氧化物半導體(PMOS)電阻器被製作。被 使用的電阻器型式可以依據例如,分壓器所需的精確度、 可用的區域(面積)以及所需的複雜性等因素而被決定。其中 一組或多組電阻器Rl、R2及/或R3使用PMOS裝置被製作, PMOS裝置可以被估量尺寸大小以減少晶粒上變化效應。 10 於一實施例中,衰減檢測器220同時也包含引動裝置 222和比較器224、226與228,其可以使用多種習知的比較 裔設計之任何一種被製作以提供下面所說明之功能。 操作中,分壓器221從,例如,固定之類比電源供應23〇 而接收大致固定之參考電壓。該固定類比電源供應23〇也可 15以被使用作為一組供用於主系統積體電路晶片上的其他電 路之供應,例如一組或者多組PLL,以至於不需要提供衰減 檢測器220另外的電源供應。 當在引動裝置222之輸入被接收的引動信號為高位 時,引動裝置222被導通,因此,衰減檢測器221也被導通。 2〇 引動信號可以利用其他晶粒上電路(未展示出)被產生或者 可以從外部來源被接收。 比較器224、226和228各接收一組數位供應電壓vcc, 其同時也被提供至其他的周遭電路。於這實施例中,Vcc 是被衰減檢測器220所監視之電壓。反應於被引動之衰減檢 9 200424543 測器220,比較器224、226和228分別地比較Vcc與參考電壓 VI、V2和 V3 〇 於一實施例中,電路220可以被設計以至於 Vcc>V1>V2>V3。當Vcc衰減時,如果其下降至第一參考電 5 壓V1之下,則比較器224之輸出outi被確定。如果Vcc進一 步地衰減,以至於在第二參考電壓V2之下,則輸出信號〇m2 也被確定並且,如果Vcc衰減至第三參考電壓V3之下,則 輸出信號out3也被確定。 輸出信號outl、out2和out3被提供作為至控制和多工電 10 路215之選擇或者控制信號並且可以對應至檢測器220被使 用於適應式頻率時脈應用之實施例中的第1圖頻率數碼信 號。依據選擇信號outl、out2和out3值,多工器215選擇, 第2圖實施例範例中,如展示之具有頻率FI、F2、F3以及F4 之輸入信號的其中一組,以提供具有頻率Fout之輸出信號 15 OutCLK 〇具有頻率FI、F2、F3和F4之信號可以被產生,如 上述參考第1圖之說明。於這實施範例中,〇utCLK信號之 頻率可以依據表1而被選擇,例如: out3 out2 outl Fout 0 0 0 FI 0 0 1 F2 0 1 1 F3 1 1 1 F4 (表1) 參考電壓VI、V2和V3目標值和因此被選擇的電阻器 20 Rl、R2和R3值以及經由引動裝置222之電流是取決於電路 10 200424543 設計者所要求導致輸出時脈信號頻率被調整之目標行程 點。所需的行程點取決於,例如,供用於VCC之指定值、被 預期的電壓衰減、設計邊限以及熟習本技術者應了解的其 他技術方面的考慮等因素。 5 經由分壓器221之電流以及因此在分壓器221輸出之電 壓VI、V2和V3的振幅,利用經由引動裝置222之電流而被 決定。於一實施例中,為改變電壓V1、V2*V3,電流可以 數位地被規劃以依據電阻R1、R2和R3比率而調整電壓參考 值。電流可以利用有效地改變引動電晶體222之尺寸而被改 10變。這可利用,例如,各具有分別引動之併接NM〇s電晶 體以構成裝置222而被達成。電流利用熟習本技術者所習知 的一般技術方式操作那些致動中確定的一組或多組而被調 整。 於一實施例中,一組或多組參考電壓V1、V2&/4V3 15值可以在衣造之後利用調整一組或多組電阻R1、R2及/或R3 而刀別地或者另外地被操縱。例如,其中電阻器Rl、及 /或R3被製作作為PM0S電阻器,電阻值可利用簡單地將這 些PMOS衣置加上腳部(製作較小但併接之電晶體而取代一 組大電晶體)且連接或者不連接不同的腳部(僅經由金屬)而 20被調整以因此操縱實際的裝置尺寸以及電阻。 應了解’雖然三組參考電壓被使用於第2圖衰減檢測器 中,以在四組不同的信號頻率之間選擇,於另一實施例, -組不同的參考電壓數目可以被提供並且以相似方式被使 用以在不同的輸出信號頻率數目之間選擇。進一步地,雖 11 200424543 “、、▲方員比a源供應接收—組固定電壓的分壓器被使用以提 仏第2@之電路麥考電壓,其他的方法,例如,使用帶間隙 以產生參考電壓,可以被使用於其他的實施例中。 進一步地,雖然檢測器220檢測供應電壓Vcc之變化, 5具有相似組態之檢測器可另外地被使用以檢測溫度改變。 於此實施例中,與溫度相關的參考和可變化信號以相似方 式被比較以選擇一組輸出信號頻率。 第3圖展不,另一貫施例之電壓衰減檢測器320和相關 的多工器315可以被使用,例如,以提供第i圖檢測器12〇和 10多工器115。於第3圖展示之實施例中,衰減檢測器32〇包含 攸固疋電源供應330被供應一組固定供應電壓之第一延遲 元件鏈路322以及從數位電源供應接收一組供應電壓vcc之 第二延遲元件鏈路324。於這實施例中,供應電壓Vcc被衰 減檢測器320所監視並且固定電源供應,如上所述地,可以 15疋組類比電源供應,其被使用以供電給予相同積體電路 上的其他電路。一實施例之檢測器320也包含相位檢測器 332、334和336以及緩衝器338,其各可使用此類電路習知 的設計被製作,以提供此處說明的相關特點。 從固定供應330接收固定供應電壓之第一延遲元件鏈 20路322提供一組輸入信號(:尺之對於數位電源供應變化不敏 感的一組參考通道延遲Dref。對照地,經由第二延遲元件 鏈路324之延遲依據Vcc振幅而變化。 於一實施例中,於延遲元件鏈路324中間之分接頭提供 一組具有延遲D3之第一延遲信號,在延遲元件鏈路324中第 12 200424543 二延遲元件之後的分接頭提供一組具有延遲D2之第二延遲 "[口號並且鍵路324之輸出提供具有延遲di的第三延遲信 號。一實施例中之檢測器32〇可以被設計,以至於The significant power increase of the road clothes placed in the cypress is compensated even if the electricity reduction that occurs only rarely. When the operating frequency of the circuit device continues to increase, the attenuation amplitude is the same, and the ratio continues to increase. For some integrated circuits, the necessary voltage margins are provided to protect due to power and cost restrictions: π-6 where ^^ The embodiment is shown using examples and is not limited to the same as in Figure 7 The reference numbers indicate similar elements, and among them, the block diagram, figure i is-the high order of the adaptive frequency clock system of the embodiment 200424543. Figure 2 is an example of the adaptive frequency clock system that can be used in Figure 1 Exploded view and block diagram of the attenuation (voltage) detector. Fig. 3 is an exploded view and a block diagram of a voltage detector of another embodiment which can be used in the adaptive frequency clock system of Fig. 1. 5 Figure 4 is a block diagram of an embodiment of an attenuation / voltage detector that can be used in the adaptive frequency clock generation circuit of Figure 1. Figure 5 is an exploded view of a digital analog-to-digital converter of the embodiment that can be used in the attenuation / voltage detector of Figure 4. Figure 6 is a detailed diagram showing the attenuation / voltage detector of Figure 4 in more detail. Figure 7 is a block diagram showing another application of the attenuation detector of Figure 6 to track attenuation history. Fig. 8 is an exploded view and a block diagram of an attenuation detector which can be used, for example, in another embodiment of attenuation monitoring. 15 Figure 9 is an exploded and block diagram of the reverse voltage sensing circuit that can be used to control the ring oscillator in the attenuation detector of Figure 8. Fig. 10 is an exploded view and a block diagram of an attenuation detector which can be used in, for example, another embodiment of the attenuation monitoring. Figure 11 is a block diagram of a 20 circuit that can be used in an embodiment to track the attenuation history. Fig. 12 is a high-level block diagram of an integrated circuit of an embodiment using an attenuation and / or temperature detector of an embodiment. Fig. 13 is a high-level block diagram of an integrated circuit of an embodiment using one or more sets of attenuation monitoring circuits of an embodiment. 6 200424543 Figure 14 is a block diagram of a system using an embodiment of an attenuation and / or temperature detector. Fig. 15 is a flowchart showing a method for detecting one embodiment of voltage decay and / or temperature change on a die. Fig. 16 is an exploded view of an example of the fabrication of a charging transistor which can be advantageously used in the embodiment of Fig. 6. [Embodiment] Detailed description A method and an apparatus for digitally detecting a change in voltage and / or temperature on a chip of a integrated circuit are described. In the following description, the specific types of integrated circuits, circuit configurations, system configurations, etc. described are for illustration only. However, it should be understood that other embodiments may be applied to other types of integrated circuits, circuit configurations, and / or system configurations. In one embodiment, a detector that detects a temperature or voltage level receives a set of approximately first voltages and outputs a domain code money in response to the temperature or level of the detected second voltage. The control circuit determines the frequency of the group clock signal in response to the digital signal. This detector can be used, for example, in an adaptive frequency clock generation circuit to determine the output frequency. For example, refer to the description at the top of the following. Further detailed descriptions of these and other embodiments are provided below. FIG. 1 is a high-level block diagram of the adaptive type according to the embodiment. As described in more detail below, the Gemingfeng day sample generating circuit 100 is used to provide the "« or other "circuit materials to be used as the adaptive clock method required. Frequency operation 20 200424543 Adaptive frequency clock generation circuit 100 includes a set of synchronous clock generation (Phase Locked Loop (PLL)) 105, N division circuit 110, multiplexer (mux) 115, and voltage attenuation (and / Or temperature) detector 12o. In operation, pLL 105 receives a set of reference clock signals (RefCLK) at the input and cooperates with a divide-by-N circuit 11 which generates a feedback 5-day clock signal (FBCLK) to provide a car with a first frequency F1. Frequency output clock signal. It should be understood that the value of N in the divide-by-N circuit 110 may be any one of a plurality of sets of ratio values required according to the frequency F1 to the frequency of the reference clock signal RefCLK. Other clock generators (not shown), individually or in conjunction with a clock phase division of 10 or a multiplication circuit (not shown), operate in a similar manner to generate clocks with different frequencies, such as F2. &Quot; Fn Pulse signal, as shown in Figure i. The same-day ground-holding 'attenuation detector 120 receives input signals indicating related voltage levels, such as' Vcc and / or related temperature indicators. The vcc input signal can be received with a text voltage supply, and the temperature-dependent input signal can be received from, for example, a temperature sensor on the die. Based on the received input signal, the attenuation detector 120 provides a set of frequency digital 125 or other control signals to cause the multiplexer 115 to selectively output a clock signal OutCLK having a set of frequencies F1 ... Fn at the output 130. The selected clock signal OUTCLK can be used in a clock core circuit, for example, on a main system integrated circuit including an adaptive frequency clock 20 clock circuit 100. Depending on the range of factors including, for example, the characteristics required to output the clock signal OutCLK and the processing procedure for manufacturing the integrated circuit of the main system, pLL 105, the N-removing circuit 110, and the multiplexer 115 each can use a variety of conventional PLs] L, except for N and / or multi-worker designs. 8 200424543 In one embodiment, the attenuation detector 120 and the multiplexer 115 of FIG. 1 can be used. For example, the attenuation detector 220 and the control and multiplexing circuit 215 of FIG. 2 are manufactured. The attenuation detector 220 includes a voltage divider 22m formed by series-coupling resistors R1, R2, and R3. Each resistor can be used, for example, a 5 n-type or P-type metal oxide semiconductor (PMOS) resistor. Production. The type of resistor used can be determined based on factors such as the required accuracy of the voltage divider, the area (area) available, and the required complexity. One or more sets of resistors R1, R2, and / or R3 are fabricated using PMOS devices. The PMOS devices can be sized to reduce the effect of changes on the crystal grains. 10 In one embodiment, the attenuation detector 220 also includes an actuator 222 and comparators 224, 226, and 228, which can be made using any of a variety of conventional comparative designs to provide the functions described below. In operation, the voltage divider 221 receives a substantially fixed reference voltage from, for example, a fixed analog power supply 23. The fixed analog power supply 23 can also be used as a set of supplies for other circuits on the main system integrated circuit chip, such as one or more PLLs, so that it is not necessary to provide an attenuation detector 220. power supply. When the activation signal received at the input of the activation device 222 is high, the activation device 222 is turned on, and therefore, the attenuation detector 221 is also turned on. 20 The trigger signal can be generated using other on-die circuits (not shown) or can be received from an external source. Comparators 224, 226, and 228 each receive a set of digital supply voltages vcc, which are also provided to other surrounding circuits. In this embodiment, Vcc is the voltage monitored by the attenuation detector 220. In response to the induced attenuation test 9 200424543 detector 220, comparators 224, 226, and 228 respectively compare Vcc with reference voltages VI, V2, and V3. In one embodiment, circuit 220 may be designed so that Vcc > V1 > V2 > V3. When Vcc is attenuated, if it drops below the first reference voltage V1, the output outi of the comparator 224 is determined. If Vcc is further attenuated so that it is below the second reference voltage V2, the output signal 0m2 is also determined and if Vcc is attenuated below the third reference voltage V3, the output signal out3 is also determined. The output signals outl, out2, and out3 are provided as selection or control signals to the control and multiplexing circuit 10 215 and can correspond to the frequency digital figure 1 in the embodiment where the detector 220 is used for adaptive frequency clock applications. signal. According to the values of the selection signals outl, out2, and out3, the multiplexer 215 selects. In the example of the embodiment in FIG. 2, one of the input signals with frequencies FI, F2, F3, and F4 is shown to provide a signal with the frequency Fout Output signal 15 OutCLK. Signals with frequencies FI, F2, F3, and F4 can be generated, as described above with reference to Figure 1. In this example, the frequency of the OUTCLK signal can be selected according to Table 1, for example: out3 out2 outl Fout 0 0 0 FI 0 0 1 F2 0 1 1 F3 1 1 1 F4 (Table 1) Reference voltage VI, V2 The target value of V3 and the resistors 20 R1, R2, and R3 thus selected and the current through the actuator 222 are determined by the target stroke point required by the designer of circuit 10 200424543 to cause the frequency of the output clock signal to be adjusted. The required travel points depend on factors such as the specified value for VCC, the expected voltage attenuation, design margins, and other technical considerations that a person skilled in the art should understand. 5 The current through the voltage divider 221 and therefore the amplitudes of the voltages VI, V2 and V3 output at the voltage divider 221 are determined using the current through the actuator 222. In one embodiment, in order to change the voltages V1, V2 * V3, the current can be digitally planned to adjust the voltage reference value according to the ratio of the resistors R1, R2, and R3. The current can be changed by effectively changing the size of the driving transistor 222. This can be achieved using, for example, each having a parallel-connected NMOS electrical crystal which is separately activated to constitute the device 222. The current is adjusted by operating one or more of the groups identified in the actuation using general techniques known to those skilled in the art. In one embodiment, one or more sets of reference voltages V1, V2 & / 4V3 15 values can be manipulated separately or additionally by adjusting one or more sets of resistors R1, R2 and / or R3 after clothing is manufactured. . For example, where the resistors R1 and / or R3 are made as PM0S resistors, the resistance value can be simply added to these PMOS clothes with feet (make smaller but connected transistors instead of a group of large transistors) ) And with or without different feet (via metal only) 20 is adjusted to thus manipulate the actual device size and resistance. It should be understood that 'though three sets of reference voltages are used in the attenuation detector of Fig. 2 to choose between four different sets of signal frequencies, in another embodiment,-the number of different sets of reference voltages can be provided and similar The mode is used to choose between different numbers of output signal frequencies. Further, although 11 200424543 ",, ▲ square member than a source supply receiving-a set of fixed voltage divider is used to increase the 2 @ circuit McCao voltage, other methods, for example, using a gap to generate The reference voltage may be used in other embodiments. Further, although the detector 220 detects a change in the supply voltage Vcc, a detector with a similar configuration may be additionally used to detect a temperature change. In this embodiment The temperature-dependent reference and changeable signals are compared in a similar manner to select a set of output signal frequencies. Figure 3 shows that the voltage decay detector 320 and the related multiplexer 315 of another embodiment can be used. For example, to provide detector i and detector 10 and multiplexer 115 in Fig. 3. In the embodiment shown in Fig. 3, attenuation detector 32 includes a first power supply 330 which is supplied with a set of fixed supply voltages. The delay element link 322 and a second delay element link 324 that receives a set of supply voltages vcc from the digital power supply. In this embodiment, the supply voltage Vcc is monitored by the attenuation detector 320 and fixed. The fixed power supply, as described above, can be 15 groups of analog power supplies, which are used to supply power to other circuits on the same integrated circuit. The detector 320 of an embodiment also includes phase detectors 332, 334, and 336 and Buffers 338, each of which can be made using a known design of this type of circuit, to provide the relevant features described herein. The first delay element chain 20 receiving 322 from a fixed supply 330 provides a set of input signals ( : A set of reference channel delays Dref that are not sensitive to changes in digital power supply. In contrast, the delay through the second delay element link 324 varies according to the Vcc amplitude. In one embodiment, in the middle of the delay element link 324 The tap provides a set of first delay signals with a delay of D3, the 12th 200424543 in the delay element link 324 after the second delay element provides a set of second delays with a delay of D2 " [slogan and key 324 The output provides a third delayed signal with a delay di. The detector 32 in one embodiment may be designed so that

Dref>Dl>D2>D3 〇 5 操作中,輸入信號CK同時地被發射進入延遲通道322 和324。各相位檢測器332、334和336接著檢測參考延遲通 道322之輸出是否領先或者延遲其他延遲通道324的輸出並 且分別地提供一組對應的輸出信號outl、〇ut2或者〇ut3。例 如,如果Vcc衰減至延遲D1超出Dref之限度,則來自相位檢 10 測裔332之輸出# 5虎〇utl被確定。如果Vcc衰減以至於^一组 或者兩者延遲D2及/或03超出Dref,則對應的輸出信號out2 及/或out3被確定。 輸出信號outl、out2和out3被提供作為至多工和控制電 路315之選擇信號,其接收具有頻率Fi、p2、F3和F4之信號。 15 電路315之組態和操作可以是相似於上述之多工和控制電 路215,而一實施例之電路315則進一步地包含正反器(未展 示出)以在它們被確定之後從相位檢測器332、334和336取 樣輸出信號,以便在時脈信號轉移至低位狀態之前捕獲它 們的值。進一步地,於一實施例中,多工器315依據上述之 2〇 表1而選擇具有頻率Fout之輸出信號。 應了解,雖然電路320使用三組不同的延遲以在四組信 號頻率之間選擇,於另一實施例中,一不同數目的延遲可 以以相似方式被使用及/或信號頻率被選擇。 接著參看第4圖,其展示另一實施例之全面數位檢測器 13 200424543 420高位準方塊圖。於一實施例中’檢測器420可以被使用 以提供第1圖檢測器12〇給予一組適應式頻率時脈系統。於 另一實施例中,檢測器420可以被使用,例如,作為衰減歷 史電路之部份。如所展示,檢測器420包含環式震盈哭 5 (ROSC)422、頻率至電壓轉換器(FVC)424以及數位式類比 至數位轉換器(DADC)426。 在高位準時,環式震盪器422產生一組具有成比例於電 壓和溫度之頻率的輸出信號,其被提供至^^:: 424,如所展 示。頻率至電壓轉換器424接著產生一組輸出信號,其具有 10 成比例於從ROSC 422被接收之輸入信號頻率的電壓。於一 實施例中,R0SC 422和FVC 424—起操作之方式如同電壓/ 溫度放大器和位準移位器428,其放大電路上之電壓/溫度 效應並且置放產生之輸出信號電壓在一位準,其是大致地 在DADC 426能力中間範圍内,下面將更詳細地說明。 15 反應於從FVC 424接收輸出信號,DADC 426接著提供 一組成比例於溫度和電壓之輸出數碼信號,將參考第6圖而 更詳細地說明。於一實施例中,檢測器420之潛伏期是兩個 時脈週期,但可以是不同於其他的實施例。 20 第5圖是一實施例的分解圖,其更詳細展示全面數位气 類比至數位轉換器426。DADC 426包含η組串列地連接反才目 器之鏈路501,於這實施例中之η組鏈路各包含三組反相 器。此處,_列地連接反相器之η組鏈路各可以不同地被稱 為反相器感知器501。 第5圖展示之η組反相器感知器501各組被設計以j^有 14 200424543 如展示之Vthl至Vthn的一組不同切換臨限電壓Vth並且分 別地提供一組對應的輸出信號Voutl至Voutn。臨限電壓經 由仔細選擇之相對p和η電晶體裝置尺寸,如所習知的技術 和下面所展示之方程式,於感知器501的各反相器中被變 5 化。Dref > Dl > D2 > D3 05 In operation, the input signal CK is simultaneously transmitted into the delay channels 322 and 324. Each phase detector 332, 334, and 336 then detects whether the output of the reference delay channel 322 leads or delays the output of the other delay channels 324 and provides a corresponding set of output signals outl, ut2, or ut3, respectively. For example, if Vcc is attenuated until the delay D1 exceeds the limit of Dref, the output # 5 虎 〇utl from the phase detector 10 332 is determined. If Vcc is attenuated so that one or both delays D2 and / or 03 exceed Dref, the corresponding output signals out2 and / or out3 are determined. The output signals outl, out2, and out3 are provided as selection signals to the multiplexing and control circuit 315, which receive signals having frequencies Fi, p2, F3, and F4. 15 The configuration and operation of the circuit 315 may be similar to the multiplexing and control circuit 215 described above, while the circuit 315 of an embodiment further includes a flip-flop (not shown) to remove the phase detector after they are determined. 332, 334, and 336 sample the output signals to capture their value before the clock signal transitions to the low state. Further, in an embodiment, the multiplexer 315 selects an output signal having a frequency Fout according to the above 20 Table 1. It should be understood that although circuit 320 uses three different sets of delays to select between four sets of signal frequencies, in another embodiment, a different number of delays may be used in a similar manner and / or signal frequencies are selected. Referring next to Fig. 4, there is shown a high-level block diagram of a comprehensive digital detector 13 200424543 420 of another embodiment. In one embodiment, the 'detector 420 can be used to provide the detector 120 of Figure 1 to give a set of adaptive frequency clock systems. In another embodiment, the detector 420 may be used, for example, as part of an attenuation history circuit. As shown, the detector 420 includes a ring-shaped Vibration Cry 5 (ROSC) 422, a frequency-to-voltage converter (FVC) 424, and a digital analog-to-digital converter (DADC) 426. At high levels, the ring oscillator 422 generates a set of output signals having frequencies proportional to voltage and temperature, which are provided to ^^ :: 424, as shown. Frequency-to-voltage converter 424 then generates a set of output signals having a voltage that is 10 proportional to the frequency of the input signal received from ROSC 422. In one embodiment, the ROSC 422 and FVC 424 operate together like a voltage / temperature amplifier and a level shifter 428, which amplifies the voltage / temperature effect on the circuit and places the output signal voltage generated at one level. , Which is roughly in the middle of the DADC 426 capability, as explained in more detail below. 15 In response to receiving the output signal from FVC 424, DADC 426 then provides an output digital signal that is proportional to temperature and voltage, which will be described in more detail with reference to FIG. In one embodiment, the latency of the detector 420 is two clock cycles, but may be different from other embodiments. 20 FIG. 5 is an exploded view of an embodiment showing a full-scale digital gas analog-to-digital converter 426 in more detail. The DADC 426 includes n groups of links 501 connected in series to the anti-inverter. In this embodiment, the n groups of links each include three groups of inverters. Here, the n groups of links connected to the inverters in the column can be referred to as inverter inverters 501, respectively. Each of the n groups of inverter perceptron 501 shown in FIG. 5 is designed to have a set of 14 200424543 such as a set of different switching threshold voltages Vth from Vthl to Vthn and provide a corresponding set of output signals Voutl to Voutn. The threshold voltage is changed in each inverter of the sensor 501 through carefully selected relative p and n transistor device sizes, as is known in the art and the equations shown below.

。 μηε W βη =1-. μηε W βη = 1-

tox Ltox L

^ μηε W βρ = ---Γ^ μηε W βρ = --- Γ

tox Ltox L

VDD +VDD +

Vth =-Vth =-

其中μ電子遷移率(如所指示p或者η,ε是分別閘絕緣體之介 10 電係數,tox是氧化物厚度,W是分別的電晶體寬度,L是 分別的電晶體長度,Vth是切換臨限電壓,Vtn是NM0S電 晶體之臨限電壓並且Vtp是PM0S電晶體之臨限電壓。 為了減少或者使反相器感知器501之Vth的任何裝置影 響或者電壓變化影響最小化,一組穩定的電源供應,例如, 15 上述之固定電壓供應,可以被使用於DADC 426。進一步 地,用於各反相器之小心裝置尺寸估量也可以被實施以減 少習知方式的Vth變化。 通常提供DADC 426反相器感知器數目,以及DADC 426所需的切換臨限各取決於所需的精確度以及被監視之 20 信號變化的預期範圍。反相器感知器使用數目愈大,則精 15 200424543 確度愈高。因為Vin利用操作反相器感知器之切換臨限電 壓、增加反相感知器數目而被感應,各被調諧較好的切 換臨限’因此導致較高的解析度和檢測精確度。 第6圖是分解圖,其更詳細展示第4圖之檢測器42〇。如 5所展示,於一實施例中,ROSC 422包含或者具有一組被耦 合至除2電路602的輸出。頻率至電壓轉換器(Fvc)424包含 一組脈波產生為605、一組回授延遲通道61〇、一組p型充電 電晶體615、一組η型放電電晶體620以及一組rc通道,其 包含如第6圖展示地被耦合之電容器625、630和電阻器 10 635。於一實施例中,充電電晶體615具有一端點,其被耦 石以接收固疋電源供應電壓VFIXED,例如從一組類比電源供 應,如上述之其他參考實施例。 操作時,ROSC 422產生一組具有成比例於溫度和供用 於如上所述之ROSC 422的供應電壓之頻率的時脈信號。 15 R〇SC 422疋反應於溫度和電壓而變化,但是因為電壓變化 更快於溫度,ROSC 422主要地反應於電壓改變。這在被控 制的測試環境中尤其是正確的,其中溫度被測試設備所控 制。 時脈信號被除2電路602除以二以在線路64〇上提供一 20 組信號divCLK。當divCLK信號轉移至低位時,充電電晶體 615被引動,導致節點vin被充電。當充電電晶體被引動時 被達成的最後電壓Vin是成比例於I*T/C,其中I是充電電晶 體615電流,T是divCLK信號之時脈週期且C是節點Vin的總 計電容。 16 200424543 當divCLK信號轉移至高位時,充電電晶體不被引動。 Vin值決定上述之DADC 426輸出,其接著使用由脈波產生 |§ 605產生的脈波時脈信號pclk而被取樣以進入鎖定637。鎖 定輸出數碼代表一組電壓及/或溫度值並且可以被使用,例 5如,以調整如第1圖展示之適應式頻率時脈系統的信號頻 率,或者被儲存於衰減歷史暫存器中以指示一組電壓衰減 位準,如下面參考第7圖之說明。 繼續參考第6圖,延遲元件610提供一組pcl]^f號之延 遲版至放電電晶體620。反應於被引動,放電電晶體620將 10節點Vin放電以備用於接著之監視週期中。 熟習本技術者應了解,在節點Vin之電荷是控制充電和 放電之信號頻率之函數。於一實施例中,校正操作被執行 以辨識供電荷Vin從DADC 426導出一組輸出數碼之頻率, 其是大致地在DADC 426輸出能力的中間範圍,如下面更詳 15 細地說明。 於一些實施例中,充電電晶體615是一組可調整充電電 晶體以提供鎖定器之啟始設定。第16圖展示可以被使用於 一實施例中之充電電晶體615的製作範例。於這製作中,電 晶體615強度可利用增加被確定之引動信號eni " enn數目而 2〇 被增加。 上述之校正操作可以被進行,例如,在解除重置传號 之後的一些週期中。於一實施例中,校正過程如下所示· 1)電壓Vcc被感應且結果利用掃瞄出被DADC 426輸出之數 碼而被監視(例如,使用一組配合掃瞄鏈路之測試存取 17 200424543 (TAP)相關之接腳(未展示出));2)pM〇s裝置615之強度依據 被掃瞄出貧料利用增加或者減少被引動之PMOS電晶體數 目而被凋整,及3) 1和2被重複直至數碼是在中間範圍為止。 於其他的實施例中,雖然一組特定全面數位式類比至 5數位轉換器組態是如上所述,包含具有一些類比電路之類 比至數位轉換器之一組不同型式的類比至數位轉換器可以 替代地被使用。 第7圖是電路700之方塊圖,其可以使用第4_6圖衰減檢 測器以提供衰減歷史。電路700包含一組比較器7〇5和衰減 10歷史暫存器710和715。於一實施例中,衰減歷史暫存器71〇 可以被啟始化至所有為〇並且衰減歷史暫存器715可以被啟 始化至所有為1。 #作中’比較705從DADC 426接收被鎖定之數碼並 且比較它與被儲存於衰減歷史暫存器71〇和715中之值。如 15果數碼是大於被儲存於暫存器710中之值,則暫存器71〇被 更動至新的值。如果數碼是較小於被儲存於暫存器715中之 值,則暫存器715被更動至新的值。以此方式,最高和最低 電壓位準之歷史可被追蹤。應了解,供用於各種實施例之 衰減檢測器的其他應用皆在各種實施例範_之内。 20 第8圖是另一貫施例之衰減檢測器800的方塊圖。衰減 檢測器800可以被使用,例如,作為第只圖電路n〇〇之衰減 監視器。衣減檢測為800的其他應用皆在各種實施例範嘴之 内0 衰減檢測器800包含兩組環式震盪器R〇scl和 18 200424543 ROSC2 ’其中ROSC1(快速的)提供一組比R〇SC2(慢的)較高 的頻率"ί§ 5虎。衣減檢測800同時也包含一組計數哭805和 一組脈波產生器810。 爹看第8、9、10和11圖,操作時,快的環式震盪器R〇sci 5利用第8圖範例中被監視之電源供應Vcc而供應電力。第8 圖之慢的環式震盪器ROSC2可以三種方式之一種被製作: 1)以一低電壓敏感組態,其中閘和Rc(電阻_電容)兩電路被 使用以習知的方式而製作震盪器,2)以不(或者大致地不) 破感組怨,其疋藉由使用第1〇圖展示之固定匯流排時脈, 10或者藉著使用分別固定電源供應源,例如類比電源供應或 者不易感受電壓或者溫度變化之帶間隙(未展示出)而供應 R0SC2電力,或者3)藉著使用一反向敏感組態,如第9圖之 展示並且下面將更詳細地說明。其中慢的環式震盪器 R0SC2被製作之方式是取決於多種因素,其包含電路所需 15 的解析度。 於上述之低電壓-敏感和大致地無電壓敏感組態中,第 8圖之R0SC2可使用閘和rc兩電路以習知的方式被組態。 於反向-敏感組態中,參看第9圖,電路,例如電路9〇〇可以 被使用於一貫施例中以提供R〇SC2。電路9〇〇包含一組環式 2〇震盪器905,其僅僅使用閘電路(亦即無RC電路)被製作以至 於其對於電壓變化之敏感性被反向。電路9〇〇利用從電路 910被接收之電壓VCCR而被供應電力。 電路910包含一組p型偏壓電晶體915,其具有耦合以接 收由偏壓產生器920所提供之偏麼電壓的閘極以及耗合以 19 200424543 於這範例之Vcc接收被監視之電壓之一端點。偏壓產生器 920可以包含一組分壓器,其被耦合以從固定電源供應例如 類比電源供應或者帶間隙而接收一組大致被固定之電壓。 電路910進一步地包含被耦合於電流鏡組態和電阻器r中之 5 引動電晶體925和930、電晶體935和940。 電阻值R被選擇,以至於在標稱情況下之VCCR是較低 於VCC而使得ROSC2頻率較低於ROSC1頻率。該選擇是依 據方程式:VCCR=VCC-I2*R。例如,如果VCC=1.2V且12 被設計為0.5mA,且VCCR之目標是0.9V,則R被設計為600 10 歐姆。因為I2和1可被設計為相等,電晶體935和940可被設 計為有效地相等。偏壓電壓和電晶體915接著可選擇,以至 於於此範例中L等於0.5mA。如果選擇偏壓為VCC/2,則915 被估量大小以至於11是〇.5111八。Where μ electron mobility (as indicated by p or η, ε is the dielectric constant of the gate insulator, tox is the thickness of the oxide, W is the width of the respective transistor, L is the length of the respective transistor, and Vth is the switching threshold. Limiting voltage, Vtn is the threshold voltage of NMOS transistor and Vtp is the threshold voltage of PM0S transistor. In order to reduce or minimize any device influence or voltage change influence of Vth of inverter sensor 501, a set of stable Power supply, for example, the fixed voltage supply described above, can be used for DADC 426. Further, careful device size estimation for each inverter can be implemented to reduce Vth variations in conventional ways. DADC 426 is usually provided The number of inverter perceptrons and the switching threshold required by DADC 426 each depend on the required accuracy and the expected range of the 20 signal changes being monitored. The larger the number of inverter perceptrons used, the finer 15 200424543 accuracy The higher. Because Vin is sensed by operating the switching threshold voltage of the inverter sensor and increasing the number of inverter sensors, each has a better tuning threshold. This results in higher resolution and detection accuracy. Figure 6 is an exploded view showing detector 42 of Figure 4 in more detail. As shown in Figure 5, in one embodiment, ROSC 422 includes or has a set of Coupled to the output of the divide-by-2 circuit 602. The frequency-to-voltage converter (Fvc) 424 contains a set of pulse wave generation 605, a set of feedback delay channels 61, a set of p-type charge transistors 615, and a set of n-type discharges Transistor 620 and a set of rc channels, which include capacitors 625, 630 and resistors 10 635 coupled as shown in Figure 6. In one embodiment, the charging transistor 615 has an endpoint which is coupled to the stone to receive The fixed power supply voltage VFIXED, for example, is supplied from a set of analog power supplies, as in the other reference embodiments described above. In operation, ROSC 422 generates a set of frequencies that are proportional to the temperature and supply voltage for ROSC 422 as described above. 15 R〇SC 422 疋 changes in response to temperature and voltage, but because the voltage changes faster than temperature, ROSC 422 mainly responds to voltage changes. This is especially true in a controlled test environment, The medium temperature is controlled by the test equipment. The clock signal is divided by 2 and the circuit 602 is divided by two to provide a set of 20 signals divCLK on line 64. When the divCLK signal is shifted to the low position, the charging transistor 615 is activated, causing the node vin Is charged. The final voltage Vin reached when the charging transistor is activated is proportional to I * T / C, where I is the current of the charging transistor 615, T is the clock period of the divCLK signal and C is the total of the node Vin Capacitance. 16 200424543 When the divCLK signal is transferred high, the charging transistor is not activated. The Vin value determines the above-mentioned DADC 426 output, which is then sampled to enter lock 637 using the pulse wave clock signal pclk generated by the pulse wave generation | § 605. The locked output number represents a set of voltage and / or temperature values and can be used, for example, 5 to adjust the signal frequency of the adaptive frequency clock system as shown in Figure 1, or stored in the attenuation history register to Indicates a set of voltage attenuation levels, as described below with reference to FIG. 7. Continuing to refer to FIG. 6, the delay element 610 provides a set of delayed versions pcl] ^ f to the discharge transistor 620. In response to being activated, the discharge transistor 620 discharges 10-node Vin for use in subsequent monitoring cycles. Those skilled in the art should understand that the charge at the node Vin is a function of the frequency of the signal controlling charge and discharge. In one embodiment, a calibration operation is performed to identify the frequency of a set of output digits derived from the DADC 426 for the charge Vin, which is approximately in the middle range of the output capability of the DADC 426, as described in more detail below. In some embodiments, the charging transistor 615 is a set of adjustable charging transistors to provide the initial setting of the lock. FIG. 16 shows a manufacturing example of a charging transistor 615 that can be used in an embodiment. In this production, the intensity of the transistor 615 can be increased by increasing the number of determined trigger signals eni " enn and 20. The above-mentioned correction operation may be performed, for example, in some cycles after the reset signal is released. In one embodiment, the calibration process is as follows: 1) The voltage Vcc is sensed and the result is monitored by scanning out the digital output by the DADC 426 (for example, using a set of test accesses with scanning links 17 200424543 (TAP) related pins (not shown)); 2) The strength of the pM0s device 615 is trimmed based on the use of lean materials being scanned to increase or decrease the number of PMOS transistors driven, and 3) 1 And 2 are repeated until the number is in the middle range. In other embodiments, although a specific set of comprehensive digital to analog converters is configured as described above, a set of different types of analog to digital converters including an analog to digital converter with some analog circuits may be Used instead. Figure 7 is a block diagram of circuit 700, which can use the attenuation detector of Figures 4-6 to provide attenuation history. The circuit 700 includes a set of comparators 705 and attenuation 10 history registers 710 and 715. In one embodiment, the decay history register 71o may be initialized to all zeros and the decay history register 715 may be initialized to all ones. # 作 中 ’compare 705 receives the locked number from DADC 426 and compares it with the values stored in the attenuation history registers 71 and 715. If the 15-digit number is greater than the value stored in the register 710, the register 71 is changed to the new value. If the number is smaller than the value stored in the register 715, the register 715 is changed to the new value. In this way, the history of the highest and lowest voltage levels can be tracked. It should be understood that other applications of the attenuation detector for use in the various embodiments are within the scope of the various embodiments. 20 FIG. 8 is a block diagram of an attenuation detector 800 according to another embodiment. The attenuation detector 800 can be used, for example, as an attenuation monitor for the circuit of the first figure. Other applications of the clothing reduction detection 800 are within the scope of various embodiments. 0 The attenuation detector 800 includes two sets of ring oscillators Roscl and 18 200424543 ROSC2 'where ROSC1 (faster) provides a set of ratios more than RoSC2. (Slow) Higher frequency " ί 5 Tigers. The clothing reduction detection 800 also includes a set of counting cries 805 and a set of pulse wave generators 810. Daddy see Figures 8, 9, 10, and 11. In operation, the fast ring oscillator Rosci 5 uses the monitored power supply Vcc in the example in Figure 8 to supply power. The slow ring oscillator ROSC2 in Figure 8 can be made in one of three ways: 1) In a low-voltage sensitive configuration, the two circuits of the gate and Rc (resistance_capacitance) are used to make the oscillator in a conventional manner Device, 2) Do not (or roughly do not) break the sense of grievance, by using the fixed bus clock shown in Figure 10, or by using a fixed power supply, such as analog power supply or Supply ROSC2 power with a gap (not shown) that is not susceptible to voltage or temperature changes, or 3) by using a reverse-sensitive configuration, as shown in Figure 9 and described in more detail below. The way in which the slow ring oscillator R0SC2 is made depends on a number of factors, including the 15 resolution required by the circuit. In the above-mentioned low voltage-sensitive and substantially voltage-free configuration, ROSC2 of FIG. 8 can be configured in a conventional manner using two circuits, a gate and an rc. In a reverse-sensitive configuration, referring to Figure 9, a circuit, such as circuit 900, can be used in conventional embodiments to provide ROSC2. Circuit 900 includes a set of ring-shaped 20 oscillators 905, which are made using only a gate circuit (ie, no RC circuit) so that its sensitivity to voltage changes is reversed. The circuit 900 is supplied with power using the voltage VCCR received from the circuit 910. The circuit 910 includes a set of p-type bias transistors 915, which have a gate coupled to receive the bias voltage provided by the bias generator 920, and a Vcc receiving 19 200424543 in this example receives the monitored voltage. An endpoint. The bias generator 920 may include a set of voltage generators coupled to receive a set of approximately fixed voltages from a fixed power supply such as an analog power supply or a gap. The circuit 910 further includes 5 driving transistors 925 and 930, and transistors 935 and 940 coupled to a current mirror configuration and a resistor r. The resistance value R is selected so that the VCCR is lower than VCC in the nominal case so that the ROSC2 frequency is lower than the ROSC1 frequency. The choice is based on the equation: VCCR = VCC-I2 * R. For example, if VCC = 1.2V and 12 is designed as 0.5mA, and the target of VCCR is 0.9V, then R is designed as 600 10 ohms. Because I2 and 1 can be designed to be equal, transistors 935 and 940 can be designed to be effectively equal. The bias voltage and transistor 915 are then selectable so that in this example L is equal to 0.5 mA. If the bias voltage is selected as VCC / 2, then 915 is estimated so that 11 is 0.5111111.

操作中,如當Vcc值改變時,電晶體915閘極至源極電 15 壓Vgs改變,導致電流h改變。例如,當Vcc增加時,Vgs 增加導致電流h增加。由於電晶體935和94〇之電流鏡組態, 當Ιι增加時’電流I2同時也增加而導致跨越電阻器R之電壓 降增加。一組跨越電阻器r之較大電壓降導致一組至環式震 盈為905的較低VCCR。因為環式震盪器905頻率是成比例於 20電壓VCCR,當VCCR被降低時,來自環式震盪器905之輸 出信號頻率Fout因而也是被降低。vcc減少導致電壓VCCR 之互補反應並且因此,利用來自環式震盪器9〇5之輸出信號 頻率Fout亦然。 因此,如上所述,電路9〇〇提供一反向電壓敏感電路, 20 200424543 其中Vcc之增加導致VCCR之減少,並且因此,來自環式震 盪器905之輸出信號頻率減少。 繼續參考第8和11圖,快的環式震盪器ROSC1提供計數 器805時脈,而慢的環式震盪器ROSC2產生一組脈波同步重 5 置。慢的環式震盪器基本上定義來自快的環式震盛器之時 脈脈波數目被計數時的時間週期。在重置脈波之間被產生 的時脈脈波數目取決於Vcc值,被使用以供應RQSC1電力之 被監視的電壓而變化。 被選擇以供用於慢的環式震盪器r0SC2之特定製作是 10取決於包含監視電路所需的解析度之多種因素。例如,當 需一相對高的解析度時,設計者可以選擇提供反向電壓敏 感性之ROSC2的組態。 Ί續參考第8和11圖’剛好於重置前,成比例於來自快 的環式震盪器ROSC1之輸出信號頻率和來自慢的環式震盪 15 ^R〇SC2(或者固定匯流排時脈)之輸出信號頻率之間關係 的計數器805之輸出,利用鎖定器11〇5被鎖定並且被提供至 比較器1110。比較器1110可以如上述參考第?圖之操作以比 較被鎖定之數碼與先前被儲存於衰減歷史暫存器1115和 1120中之值。 20 於一實施例中,例如,衰減歷史暫存器1115可以被啟 始化至所有為i並且衰減歷史暫存器112〇可以被啟始化至 所有為0如果被鎖定之數碼是較低於被儲存於暫存器ms 中之值及/或較高於賴存於暫存器m时之值,則適當的 暫存杰被更動以儲存新的數碼。以此方式,衰減歷史暫存 21 讀存對應至在所給予的時間週期時之Vcc的最大和最小 值之數碼。 夕。第8和u圖之電路提供用於每一週期之輸 ^多數個此類電路可被交錯(未展示出)以至於—輸出可被 5提供於更快時脈信號之每-週期。 /夕第1—2圖是積體電路12〇〇之高位準方塊圖,於其上一組 或:、且貝苑例之一組或多組衰減檢測器1205可以被製作。 於第12圖展不之實施例,一組衰減檢測器,例如依據第2、 或者4圖其中之一的衰減檢測器被製作接近pa ,以 1〇至於適應式財控制可以如上所述地被提供。 第13圖是一實施例之積體電路1300的高位準方塊圖, ;”上夕數個衰減監視器電路1305,例如依據第7-11圖之 一組或多組衰減監視器電路可以被製作。於第13圖實施例 中,衰減監視器電路1305可以被製作在積體電路13〇〇附近 之各位置,其監視供用於特徵化、除錯及/或其他的目所需 的電壓衰減及/或溫度變化。 於一貫施例中,例如,與一組或多組衰減監視器電路 相關的衰減歷史暫存器被設計以儲存在所給予時間週期的 最大和最小電壓及/或溫度值。於一實施例中,衰減監視器 2〇電路1305以掃瞄鏈路組態被連接。接著,在測試、特徵化 或者除錯操作時,例如,被儲存於衰減歷史暫存器中之值 可以經由掃瞄鏈路被讀取出。其他用於讀取被儲存於衰減 歷史暫存器中之值的方法皆在各種實施例範疇之内。 第14圖是一實施例系統1400之高位準方塊圖,系統 22 200424543 1400包含經由匯流排141〇被耦合至一組或多組輸入/輸出 構件1415之處理器1405、一組或多組大量儲存裝置1425以 及一組或多組其他的系統構件142〇。於一實施例中,處理 器1405依據一組或多組實施例而包含一組或多組衰減檢測 5 為及/或衣減監視^§ 1430。於一些實施例中,'一組或多组衰 減檢測器可以被包含在系統14〇〇内之不同的積體電路上。 第15圖是一組高位準流程圖,其展示用於提供時脈信 號之一實施例的方法。在方塊1505,晶粒上檢測器檢測一 溫度和電壓位準並且在方塊1510提供相關於被檢測溫度的 10 數碼信號作為一組輸出。在方塊1515,控制電路反應於數 碼信號而決定時脈信號頻率。 應了解,於其他的實施例中,另外的動作可以被包含。 因此’於咼頻率時脈系統中數位地檢測電壓和溫度變 化之方法及裝置被說明。於上述說明中,本發明已利用參 15 考其特定實施範例被說明。應了解,本發明可有各種修改 和改變而不脫離本發明所附加之申請專利範圍的精神和範 疇。因此說明和圖形被認為只供展示而不是用於限制。 【圖式簡單說明3 第1圖是一實施例之適應式頻率時脈系統的高位準方 2〇 塊圖。 第2圖是可以被使用於第1圖之適應式頻率時脈系統中 的實施例之哀減(電壓)檢測器分解圖和方塊圖。 第3圖是可以被使用於第1圖之適應式頻率時脈系統中 的另一實施例之電壓檢測器分解圖和方塊圖。 23 200424543 第4圖是可以被被使用於第1圖之適應式頻率時脈產生 電路中的一實施例之衰減/電壓檢測器方塊圖。 第5圖是可以被使用於第4圖之衰減/電壓檢測器中的 實施例之數位類比至數位轉換器分解圖。 5 第6圖是更詳細地展示第4圖之衰減/電壓檢測器的分 解圖。 第7圖是展示第6圖衰減檢測器用以追蹤衰減歷史之另 一應用的方塊圖。 第8圖是可以被使用於,例如,衰減監視的另一實施例 10 之衰減檢測器分解圖和方塊圖。 第9圖是可以被使用以控制第8圖衰減檢測器中之環式 震盪器之反向電壓感應電路分解圖和方塊圖。 第10圖是可以被使用於,例如衰減監視之另一實施例 之衰減檢測器分解圖和方塊圖。 15 第11圖是可以被使用於一實施例中以追蹤衰減歷史之 電路製作方塊圖。 第12圖是使用一實施例之衰減及/或溫度檢測器的一 實施例之積體電路的高位準方塊圖。 第13圖是使用一實施例之一組或多組衰減監視電路的 20 一實施例之積體電路的高位準方塊圖。 第14圖是使用一實施例之衰減及/或溫度檢測器的一 實施例之系統方塊圖。 第15圖是一流程圖,其展示用以檢測晶粒上電壓衰減 及/或溫度變化之一實施例的方法。 24 200424543 第16圖疋可以有利地被使用於第6圖之實施例中之充 電電晶體製作範例之分解圖。 【圖式之主要元件代表符號表】 100…適應式頻率時脈產生電路 105…同步時脈產生器(相位鎖 定迴路(ΡΙΧΧ) 110···除Ν電路 115···多工器 120…電壓衰減(及/或溫度)檢 測器 125…頻率數碼 130···輸出時脈 215…控制與多工電路 221…分壓器 222…引動裝置 224…比較器 226···比較器 228…比較器 230…類比電源供應 315···多工器 320…電壓衰減檢測器 322…延遲元件 324…延遲元件 330···固定電_應 332···相位檢測器 334···相位檢測器 336···相位檢測器 420···檢測器 422·.·環式震盪器(ROSC) 424…頻率至電壓轉換器(FVC) 426…數位類比至數位轉換器 (DADC) 428…電壓/溫度放大器和位準 移位器 501···反相器感知器 602…除2電路 605…脈波產生器 610…延遲元件 615···ρ型充電電晶體 620···η型放電電晶體 625…電容器 630···電容器 635···電容器 640…線路 700…電路 25 200424543 705···比較器 1115…衰減歷史暫存器 710…衰減歷史暫存器 1120…衰減歷史暫存器 715…衰減歷史暫存器 1200…積體電路 800···衰減檢測器 1205…衰減檢測器 805…計數器 1210…PLL電路 810…脈波產生器 1300…積體電路 900…電路 1305…衰減監視器電路 905···環式震盪器 1400···系統 910···電路 1405···處理器 915…閘極 1410…匯流排 920…偏壓產生器 1415…輸入輸出裝置 925…電晶體 1420···系統構件 930···電晶體 1425…儲存裝置 935···電晶體 1430…衰減檢測器及/或衰減 940…電晶體 監視器 1100···比較器 1505-1515…時脈信號高位準 1105…鎖定器 流程圖步驟 1110···比較器 26In operation, for example, when the value of Vcc is changed, the voltage Vgs of the gate-source voltage of the transistor 915 is changed, which causes the current h to be changed. For example, when Vcc increases, the increase in Vgs causes the current h to increase. Due to the current mirror configuration of transistors 935 and 94, the current I2 also increases as Im increases, resulting in an increase in the voltage drop across resistor R. A larger set of voltage drops across resistor r results in a lower set of VCCRs with a ring-shaped shock of 905. Because the frequency of the ring oscillator 905 is proportional to the 20-voltage VCCR, when the VCCR is lowered, the frequency Fout of the output signal from the ring oscillator 905 is also reduced. The reduction in vcc results in a complementary reaction of the voltage VCCR and therefore, the output signal frequency Fout from the ring oscillator 905 is also used. Therefore, as mentioned above, the circuit 900 provides a reverse voltage sensitive circuit, 20 200424543, where an increase in Vcc causes a decrease in VCCR, and therefore, the frequency of the output signal from the ring oscillator 905 decreases. Continuing to refer to Figures 8 and 11, the fast ring oscillator ROSC1 provides the counter 805 clock, while the slow ring oscillator ROSC2 generates a set of pulse resets. A slow ring oscillator basically defines the time period when the number of pulse waves from the fast ring oscillator is counted. The number of clock pulses generated between reset pulses depends on the value of Vcc, and the monitored voltage used to supply RQSC1 power varies. The particular fabrication chosen for the slow ring oscillator r0SC2 is 10 depending on a number of factors including the resolution required by the monitoring circuit. For example, when a relatively high resolution is required, the designer can choose a configuration of ROSC2 that provides reverse voltage sensitivity. Continued to refer to Figures 8 and 11 'Just before reset, proportional to the frequency of the output signal from the fast ring oscillator ROSC1 and from the slow ring oscillator 15 ^ R〇SC2 (or fixed bus clock) The output of the counter 805 which is related to the frequency of the output signal is locked by the lock 1105 and provided to the comparator 1110. Comparator 1110 can be referenced as above? The operation of the map is to compare the locked number with the value previously stored in the attenuation history registers 1115 and 1120. 20 In an embodiment, for example, the attenuation history register 1115 may be initialized to all i and the attenuation history register 112 may be initialized to all 0 if the locked number is lower than The value stored in the register ms and / or higher than the value stored in the register m, then the appropriate register is modified to store the new number. In this way, the attenuation history is temporarily stored. 21 The numbers corresponding to the maximum and minimum values of Vcc at the given time period are stored. Xi. The circuits in Figures 8 and u provide inputs for each cycle. ^ Most of these circuits can be interleaved (not shown) so that the output can be provided by 5 for each cycle of the faster clock signal. Figures 1 and 2 are high-level block diagrams of the integrated circuit 1200. On the previous set or :, and one or more sets of attenuation detectors 1205 can be made. In the embodiment shown in Fig. 12, a set of attenuation detectors, for example, according to one of Figs. 2 or 4 is made close to pa, and the adaptive financial control can be adjusted as described above. provide. FIG. 13 is a high-level block diagram of the integrated circuit 1300 of an embodiment; “Several attenuation monitor circuits 1305 on the eve, for example, one or more groups of attenuation monitor circuits according to FIGS. 7-11 can be made. In the embodiment of FIG. 13, the attenuation monitor circuit 1305 can be made at various positions near the integrated circuit 1300, which monitors the voltage attenuation and required for characterization, debugging, and / or other purposes. / Or temperature change. In conventional embodiments, for example, an attenuation history register associated with one or more sets of attenuation monitor circuits is designed to store the maximum and minimum voltage and / or temperature values for a given time period. In one embodiment, the attenuation monitor 20 circuit 1305 is connected in a scan link configuration. Then, during a test, characterization, or debugging operation, for example, the value stored in the attenuation history register may be It is read out via the scanning link. Other methods for reading the values stored in the attenuation history register are within the scope of various embodiments. FIG. 14 is a high-level block of the system 1400 of an embodiment Figure, System 22 2004245 43 1400 includes a processor 1405 coupled to one or more sets of input / output components 1415, one or more sets of mass storage devices 1425, and one or more sets of other system components 1420 via a bus 1410. In one In an embodiment, the processor 1405 includes one or more sets of attenuation detection according to one or more sets of embodiments 5 and / or clothing monitoring ^ § 1430. In some embodiments, 'one or more sets of attenuation detection The device can be included on different integrated circuits within the system 1400. Figure 15 is a set of high level flowcharts showing one embodiment of a method for providing a clock signal. At block 1505, the die The upper detector detects a temperature and voltage level and provides 10 digital signals related to the detected temperature as a set of outputs at block 1510. At block 1515, the control circuit determines the clock signal frequency in response to the digital signals. It should be understood that In other embodiments, additional actions may be included. Therefore, a method and apparatus for digitally detecting voltage and temperature changes in a chirped frequency clock system are described. In the above description, the present invention has been beneficial Reference is made to a specific implementation example with reference to it. It should be understood that the present invention may be modified and changed without departing from the spirit and scope of the scope of the patent application attached to the present invention. Therefore, the descriptions and figures are to be considered for display only and not for Restrictions. [Schematic description 3 Figure 1 is a high-level square block diagram of an adaptive frequency clock system of an embodiment. Figure 2 is a diagram that can be used in the adaptive frequency clock system of Figure 1. Exploded view and block diagram of the reduced (voltage) detector of the embodiment. Figure 3 is an exploded view and block diagram of the voltage detector of another embodiment that can be used in the adaptive frequency clock system of Figure 1. 23 200424543 Figure 4 is a block diagram of an attenuation / voltage detector according to an embodiment that can be used in the adaptive frequency clock generation circuit of Figure 1. Figure 5 is an exploded view of a digital analog-to-digital converter of the embodiment that can be used in the attenuation / voltage detector of Figure 4. 5 Figure 6 is an exploded view showing the attenuation / voltage detector of Figure 4 in more detail. Figure 7 is a block diagram showing another application of the attenuation detector of Figure 6 to track attenuation history. Fig. 8 is an exploded view and a block diagram of an attenuation detector which can be used, for example, in another embodiment 10 of attenuation monitoring. Figure 9 is an exploded and block diagram of the reverse voltage sensing circuit that can be used to control the ring oscillator in the attenuation detector of Figure 8. Fig. 10 is an exploded view and a block diagram of an attenuation detector which can be used in, for example, another embodiment of the attenuation monitoring. 15 Figure 11 is a block diagram of a circuit that can be used in an embodiment to track the attenuation history. Fig. 12 is a high-level block diagram of an integrated circuit of an embodiment using an attenuation and / or temperature detector of an embodiment. FIG. 13 is a high-level block diagram of the integrated circuit of one embodiment using one or more sets of attenuation monitoring circuits according to one embodiment. Fig. 14 is a system block diagram of an embodiment using an embodiment of the attenuation and / or temperature detector. Fig. 15 is a flowchart showing a method for detecting one embodiment of voltage decay and / or temperature change on a die. 24 200424543 FIG. 16 is an exploded view of a manufacturing example of a charging transistor which can be advantageously used in the embodiment of FIG. 6. [Representative symbol table of main components of the figure] 100 ... Adaptive frequency clock generation circuit 105 ... Synchronous clock generator (Phase Locked Loop (PIXX) 110 ··· In addition to N circuit 115 ··· Multiplexer 120… Voltage Attenuation (and / or temperature) detector 125 ... frequency digital 130 ... output clock 215 ... control and multiplexing circuit 221 ... voltage divider 222 ... actuating device 224 ... comparator 226 ... comparator 228 ... comparator 230 ... analog power supply 315 ... multiplexer 320 ... voltage decay detector 322 ... delay element 324 ... delay element 330 ... fixed power_should 332 ... phase detector 334 ... phase detector 336 ... · Phase Detector 420 · · Detector 422 · · · Ring Oscillator (ROSC) 424 ... Frequency to Voltage Converter (FVC) 426 ... Digital Analog to Digital Converter (DADC) 428 ... Voltage / Temperature Amplifier and Level shifter 501 ... Inverter sensor 602 ... Division 2 circuit 605 ... Pulse wave generator 610 ... Delay element 615 ... P-type charge transistor 620 ... N-type discharge transistor 625 ... Capacitor 630 ... capacitor 635 ... capacitor 640 ... line 700 ... circuit 25 200424 543 705 ··· Comparer 1115 ... Falling history register 710 ... Falling history register 1120 ... Falling history register 715 ... Falling history register 1200 ... Integrated circuit 800 ... Fade detector 1205 ... Fade Detector 805 ... Counter 1210 ... PLL circuit 810 ... Pulse wave generator 1300 ... Integrated circuit 900 ... Circuit 1305 ... Attenuation monitor circuit 905 ... Ring oscillator 1400 ... System 910 ... Circuit 1405 ... Processor 915 ... gate 1410 ... bus 920 ... bias generator 1415 ... input / output device 925 ... transistor 1420 ... system component 930 ... transistor 1425 ... storage device 935 ... transistor 1430 ... Attenuation detector and / or attenuation 940 ... Transistor monitor 1100 ... Comparator 1505-1515 ... Clock signal high level 1105 ... Locker flowchart step 1110 ... Comparator 26

Claims (1)

200424543 拾、申請專利範圍: 1. 一種裝置,其包含: 一組檢測器,其接收一組第一大致固定之電壓並且 檢測一組第二電壓之位準,該檢測器反應於該第二電壓 5 之被檢測的位準而輸出一組數碼信號;以及 一組控制電路,其反應於該數碼信號而決定一組時 脈信號頻率。 2. 如申請專利範圍第1項之裝置,其中該檢測器包含 一組分壓器,其在第一端點接收來自一組大致固定 10 之電源供應之該第一大致固定之電壓且提供至少第一 和第二大致固定、被分割之參考電壓。 3. 如申請專利範圍第2項之裝置,其中該分壓器包含串列 地被耦合之三組電阻器以提供第一、第二、第三以及第 四大致固定、被分割之參考電壓。 15 4.如申請專利範圍第3項之裝置,其中該等第一、第二、 第三和第四電阻器之至少一組被組態而具有在該等大 致固定、被分割之參考電壓的至少一組變化之可調整電 阻。 5.如申請專利範圍第2項之裝置,其中該檢測器進一步地 20 包含 至少第一和第二比較器以比較該第二電壓之被檢 測的位準與各該等至少第一和第二大致固定、被分割之 參考電壓,該檢測器反應於該比較器之輸出而輸出該數 碼信號。 27 200424543 6. 如申請專利範圍第2項之裝置,其中該檢測器進一步地 包含 一組引動電晶體,其被耦合至該分壓器之一第二端 點,該引動電晶體是可調整而調整經由該分壓器之電 5 流。 7. 如申請專利範圍第1項之裝置,其中該檢測器包含 一組第一延遲通道,其從一組第一電源供應接收一 組第一大致固定供應電壓並且提供一組第一參考延遲, 一組可變化延遲通道,其接收將被檢測之電壓,以 10 及 至少第一和第二相位檢測器,其反應於沿著可變化 延遲通道的至少第一和第二延遲與第一參考延遲之比 較而輸出該數碼。 8. 如申請專利範圍第7項之裝置,其進一步地包含一組第 15 三相位檢測器,該第一、第二及第三相位檢測器反應於 沿著可變化延遲通道的第一、第二及第三延遲與該第一 參考延遲之比較而輸出該數碼。 9. 如申請專利範圍第8項之裝置,其中該控制電路包含一 組多工器,其反應於該數碼以選擇地決定反應於接收該 20 數碼之該時脈信號的頻率。 10. —種裝置,其包含: 一組第一環式震盪器,其提供一組第一振盪信號, 該第一環式震盪器接收一組第一供應電壓,該第一振盪 信號之頻率反應於該第一供應電壓中之變化而變化; 28 200424543 一組源頭,其提供一組第二振盪信號;以及 一組計數器,其被耦合以在第一輸入接收該第一振 盪信號並且在第二輸入接收接收該第二振盪信號,該計 數器反應於該等第一和第二振盪信號之相對頻率而輸 5 出一組數碼。 11.如申請專利範圍第10項之裝置,其中該計數器之一組輸 出被搞合至至少一組第一衰減歷史暫存器,該第一衰減 歷史暫存器儲存指示在第一時間週期時該第一供應電 壓之一組最大或最小電壓位準的一組數值。 10 12.如申請專利範圍第11項之裝置,其中該計數器之一組輸 出被耦合至第一和第二衰減歷史暫存器,該第一衰減歷 史暫存器儲存指示在該第一時間週期時該第一供應電 壓一組最大電壓位準的一組數值,該第二衰減歷史暫存 器儲存指示在該第一時間週期時該第一供應電壓一組 15 最小電壓位準的一組數值。 13. 如申請專利範圍第10項之裝置,其中該源頭包含 一組第二環式震盪器,該第二環式震盪器包含閘電 路和電阻電容元件。 14. 如申請專利範圍第10項之裝置,其中該源頭包含 20 一組時脈產生器,其對於在該第一供應電壓中之變 化是顯著地不敏感。 15. 如申請專利範圍第10項之裝置,其中該源頭包含 一組反向電壓敏感電路,其對於在該第一供應電壓 中之變化具有反向敏感性。 29 200424543 16. 如申請專利範圍第15項之裝置,其中該反向電壓敏感電 路包含 一組偏壓電晶體,其被耦合以在閘極接收一組大致 固定之偏壓電壓,該偏壓電晶體被耦合以在一端點接收 5 一組第一供應電壓; 一組電流鏡,其具有被耦合至該偏壓電晶體之一組 第一接腳以及被耦合至一組電阻器的一組第二接腳;以 及 一組輸出,其被耦合在該電阻器和該電流鏡之間, 10 在該輸出之一組電壓反應於該第一供應電壓之減少而 增加,在該輸出之該電壓反應於第一供應電壓之增加而 減少。 17. 如申請專利範圍第16項之裝置,其進一步地包含 一組環式震盪器,其被耦合至該輸出,來自該環式 15 震盪器之一組輸出信號之頻率反應於該輸出之電壓而 變化。 18. —種裝置,其包含: 一組衰減檢測器,其檢測一組第一供應電壓中之變 化,該衰減檢測器包含 20 一組環式震盪器,其具有被耦合以接收該第一供應 電壓之一組輸入, 一組頻率至電壓轉換器,其具有被耦合至該環式震 盪器一組輸出的一組輸入,以及 一組類比至數位轉換器,其具有被耦合至頻率至電 30 200424543 壓轉換器一組輸出的一組輸入以及提供一組數碼以指 示該第一供應電壓位準的一組輸出。 19. 如申請專利範圍第18項之裝置,其進一步地包含: 一組控制電路,其反應於該數碼以選擇地決定一組 5 輸出時脈信號之頻率。 20. 如申請專利範圍第18項之裝置,其進一步地包含: 至少一組第一衰減歷史暫存器,其耦合至該類比至 數位轉換器之輸出,該至少第一衰減歷史暫存器儲存一 組數值以指示在第一時間週期時該第一供應電壓之一 10 組最大或最小電壓位準。 21. 如申請專利範圍第20項之裝置,其進一步地包含 至少一組第二衰減歷史暫存器,其被耦合至該類比 至數位轉換器之輸出,該第一衰減歷史暫存器儲存一組 數值以指示在該第一時間週期時該第一供應電壓之最 15 大電壓位準,該第二衰減歷史暫存器儲存一組數值以指 示在該第一時間週期時該第一供應電壓之最小電壓位 準。 22. 如申請專利範圍第18項之裝置,其中該數位至類比轉換 器是完全數位之數位至類比轉換器,其至少包含具有不 20 同臨限電壓的第一和第二反相器感知器,該數碼依據被 切換之反相器感知器利用該類比至數位轉換器而被輸 出。 23. 如申請專利範圍第22項之裝置,其中頻率至電壓轉換器 包含 31 200424543 一組充電電晶體,其具有被耦合以接收一組大致固 定之供應電壓的一組端點、一組被耦合至該環式震盪器 之一輸出的閘極、以及經由電阻電容電路被耦合至該類 比至數位轉換器一組輸入節點的另一端點; 5 一組脈波產生器,其被耦合至該環式震盪器之一輸 出並且具有被耦合至一組延遲鏈路之一輸出; 一組放電電晶體,其具有被耦合至該延遲鏈路之輸 出的一組閘極以及經由電阻電容電路被耦合至該類比 至數位轉換器之輸入節點的一組端點。 10 24.如申請專利範圍第23項之裝置,其中該充電電晶體強度 是可變化以校準該頻率至電壓轉換器之輸出。 25. —種積體電路晶片,其包含: 一組第一時脈產生器,其產生具有一組第一頻率的 第一時脈信號; 15 至少一組第二時脈產生器,其產生具有一組第二頻 率的第二時脈信號; 一組衰減檢測器,其接收一組大致固定之第一供應 電壓並且檢測一組第二供應電壓或溫度之一的位準,該 衰減檢測器反應於該被檢測之位準而輸出一組頻率數 20 碼;以及 一組控制電路,其接收該頻率數碼並且依據該頻率 數碼而選擇地輸出至少第一和第二時脈信號之一組。 26. 如申請專利範圍第25項之積體電路晶片,其中 該衰減檢測器檢測該第二供應電壓之位準,並且其 32 200424543 中該衰減檢測器包含, 一組分壓器,其具有被耦合以接收該大致固定之第 一供應電壓的一組端點,該分壓器提供至少第一和第二 大致固定之參考電壓, 5 至少第一和第二比較器,其比較該第二供應電壓與 該至少第一和第二大致固定之參考電壓,而該頻率數碼 是依據於比較器之輸出。 27. 如申請專利範圍第25項之積體電路晶片,其中該衰減檢 測器進一步地包含 10 一組可變化的引動電晶體,該引動電晶體能夠被變 化以調整經由該分壓器之電流和該大致固定之參考電 壓位準。 28. 如申請專利範圍第25項之積體電路晶片,其中該衰減檢 測器包含: 15 一組第一參考延遲通道,其被耦合以接收該第一大 致固定之第一供應電壓,該參考延遲通道將一組輸入信 號延遲一參考延遲, 一組第二延遲通道,其被耦合以接收該第二供應電 壓,該第二延遲通道將該輸入信號延遲反應於該第二供 20 應電壓之改變而變化的一第一延遲,該第二延遲通道包 含至少在該第二延遲通道中之第一節點的一組第一分 接頭,該第一分接頭提供一組較小於該第一延遲之第二 延遲,以及 一組第一相位檢測器,其檢測在該參考延遲和該第 33 200424543 一延遲之間的一組相位差, 至少一組第二相位檢測器,其檢測在該參考延遲和 该第二延遲之間的一組相位差,而該數碼是依據於該相 位檢測器之輸出。 29·如申請專利範圍第25項之積體電路晶片,其中該衰減檢 測器包含 一組放大器和位準移位器,其提供反應於該第二供 應電壓之變化而變化的_組被放大且被位準移位之信 號,以及 一組類比至數位轉換器,其反應於接收該被放大且 被位準移位之信號而輸出該數碼。 3〇·如申請專利範圍第29項之積體電路晶片,其中該放大器 和位準移位器包含 一組環式震盪器,其提供一組具有反應於該第二供 應電壓之變化而變化頻率的振盤信號,以及 、、且頻率至電壓轉換II,其提供該被放大且被位準 移位之信號。 31. 如申請專利範圍第29項之積體電路晶片,其甲該類比至 數位轉換m組完缝蚊類比錢位轉換器。 32. 如申請專利範圍第31項之積體電路晶片,其中該類比至 數位轉換益包含至少兩組反相器感知器,各該反相器感 2器具有—組不同的臨限電麼,該反相器感知器之—組 輸出提供該頻率數碼。 33.如申請專利範圍第3〇項之積體電路晶片,其中該頻率至 34 200424543 電壓轉換器包含 一組充電電晶體,其被耦合以反應於被引動而將該 數位至類比轉換器的一組輸入節點充電, 一組放電電晶體,其被耦合以反應於一組放電信號 5 而將該輸入節點放電,以及 一組電阻電容電路,其被耦合在該充電電晶體和該 輸入節點之間。 34. 如申請專利範圍第33項之積體電路晶片,其中該充電電 晶體之一端點被耦合以接收該大致固定之第一供應電 10 壓。 35. 如申請專利範圍第33項之積體電路晶片,其中該充電電 晶體是可變化以調整在該輸入節點之一組電壓位準成 為大致地在該類比至數位轉換器之中間範圍。 36. —種積體電路,其包含: 15 至少第一和第二衰減檢測器電路,各該第一和第二 衰減檢測器電路接收一組被監視之電壓信號,以及 至少第一和第二衰減歷史暫存器,其被耦合至該分 別的衰減檢測器電路,各該第一和第二衰減歷史暫存器 儲存資料,該資料指示在一所給予的時間週期中利用該 20 分別的衰減檢測器電路而被檢測之一最小和一最大電 壓之一組。 37. 如申請專利範圍第36項之積體電路,其進一步地包含 至少第三和第四衰減歷史暫存器,以至於至少兩組 衰減歷史暫存器被耦合至各該第一和第二衰減檢測器 35 200424543 電t,該等衰減敎暫存器之-組儲存指示在該所給予 的t間仙中利用該分別的衰減檢測器電路被檢測之 '组最大電壓的資料,另外—組衰減財暫存器儲存指 不在她予的時間週期中利用該分別的衰減檢測哭 電路被檢測之-組最小電壓的資料。 38.如申料利範圍第36項之積體電路,其中至少-组該衰 減檢測器包含 ίο 組%、式震遷器,其被耗合以接收該被監視之電壓 信號且提供__触號,該顧㈣具纽應於該被 監視之電壓信號電壓位準變化而變化之頻率, 一組頻率至電壓轉換器’其提供-組被放大且被位 準移位之信號’該信號具有為該振餘親率之函 電壓,以及 15 組數位至類比轉換器,其依據該被放大且被位準 移位的信號之電壓位準而提供資料。 39·如申請專利範圍第36項之積體電路,其中至少-組該等 衰減檢測器包含 t 20 :組第—信號產生器,其產生'组第一振盪信號, ::且:二信號產生器’其產生-組第二振盈信號, 該弟-難信號具有—組頻率,該頻率對於在第二供库 電壓中之變化是比該第—振逢信號更敏感,以及 、·且。十數為,其接收該第—和第二振盈信號,該計 數:依據該第一和第二振盈信號之相對頻率而提供該 貧料。 36 200424543 40. 如申請專利範圍第39項之積體電路,其中該第二信號產 生器被耦合以接收該大致固定之第一供應電壓。 41. 如申請專利範圍第40項之積體電路,其中該第二信號產 生器對於在該第二供應電壓中之變化具有一反向敏感 5 性,以至於在該第二供應電壓之減少導致該第二振盪信 號頻率之增加並且反之亦然。 42. 如申請專利範圍第36項之積體電路,其進一步地包含掃 目苗鍵路電路^該掃臨鍵路電路引動貧料從該衣減歷史暫 存器被讀取。 10 43. —種電腦系統,其包含: 一組處理器,其包含至少一組被耦合以接收一組第 一大致固定之供應電壓的第一衰減檢測器,該第一衰減 檢測器檢測一組第二供應電壓之位準, 一組大量儲存裝置, 15 一組輸入裝置,以及 一組匯流排,其在該處理器、該輸入裝置及該大量 儲存裝置之間傳輸資訊。 44. 如申請專利範圍第43項之電腦系統,其中至少一組衰減 檢測器包含 20 一組分壓器,其提供至少第一和第二大致固定之參 考電壓,以及 至少第一和第二比較器,其比較該第二供應電壓與 該至少第一和第二固定參考電壓。 45. 如申請專利範圍第43項之電腦系統,其中至少一組衰減 37 200424543 檢測器包含 一組參考延遲通道,其具有一參考延遲, 一組可變化延遲通道,其具有一組反應於該第二供 應電壓而變化之第一延遲,以及 5 一組相位檢測器,其檢測在該參考延遲和至少該第 一延遲之間的一組相位差。 46. 如申請專利範圍第43項之電腦系統,其中該處理器進一 步地包含 至少一組第一衰減歷史暫存器,其具有被耦合至該 10 至少一組衰減檢測器一組輸出的一組輸入,該第一衰減 歷史暫存器儲存指示在所給予的時間週期時利用該衰 減檢測器被檢測之最大和最小電壓位準之一的資料。 47. —種方法,其包含: 使用接收一組大致固定之第一供應電壓位準的電 15 路而檢測一電壓和溫度之一的位準, 依據該被檢測之位準而提供一組數碼,並且 反應於該數碼而決定一組輸出時脈頻率。 48. 如申請專利範圍第47項之方法,其中之檢測包含 比較該電壓位準與大致固定之參考電壓以提供該 20 數碼。 49. 如申請專利範圍第47項之方法,其中之檢測包含 比較一組大致固定之參考延遲與反應於該電壓而 變化之至少一組第一延遲。 50. 如申請專利範圍第47項之方法,其中之檢測包含 38 200424543 產生一組振盪信號,其具有反應於電壓變化而變化 之頻率, 提供一組電壓信號,其具有一組反應於該振盪信號 頻率之電壓位準,並且 5 依據該電壓位準而提供該數碼。 39200424543 Patent application scope: 1. A device comprising: a set of detectors that receive a set of first approximately fixed voltages and detect a set of second voltage levels, the detectors responding to the second voltage 5 detected levels to output a set of digital signals; and a set of control circuits that determine a set of clock signal frequencies in response to the digital signals. 2. The device according to item 1 of the scope of patent application, wherein the detector comprises a group of voltage transformers, which receives the first substantially fixed voltage from a group of approximately 10 power supplies at a first end point and provides at least The first and second substantially fixed, divided reference voltages. 3. The device according to item 2 of the patent application, wherein the voltage divider comprises three sets of resistors coupled in series to provide the first, second, third, and fourth substantially fixed, divided reference voltages. 15 4. The device as claimed in claim 3, wherein at least one of the first, second, third and fourth resistors is configured to have a substantially fixed, divided reference voltage at the At least one set of variable adjustable resistors. 5. The device according to item 2 of the patent application, wherein the detector further comprises at least a first and a second comparator to compare the detected level of the second voltage with each of the at least first and second The substantially fixed, divided reference voltage, the detector outputs the digital signal in response to the output of the comparator. 27 200424543 6. The device according to item 2 of the patent application, wherein the detector further comprises a set of driving transistors which are coupled to a second terminal of the voltage divider. The driving transistors are adjustable and Adjust the current through the voltage divider. 7. The device of claim 1, wherein the detector includes a set of first delay channels that receives a set of first substantially fixed supply voltages from a set of first power supplies and provides a set of first reference delays, A set of variable delay channels that receive the voltage to be detected to 10 and at least first and second phase detectors that are responsive to at least first and second delays and first reference delays along the variable delay channel Compare and output the number. 8. The device according to item 7 of the patent application, further comprising a set of 15th three-phase detectors, the first, second and third phase detectors responding to the first, The second and third delays are compared with the first reference delay to output the number. 9. The device according to item 8 of the patent application, wherein the control circuit includes a group of multiplexers that are responsive to the digital to selectively determine the frequency of the clock signal that is responsive to receiving the 20 digital. 10. A device comprising: a set of first ring oscillators providing a set of first oscillation signals, the first ring oscillator receiving a set of first supply voltages, and a frequency response of the first oscillation signals Changes in the first supply voltage; 28 200424543 a set of sources that provides a set of second oscillating signals; and a set of counters that are coupled to receive the first oscillating signal at a first input and at a second input The input receives the second oscillating signal, and the counter outputs a set of numbers in response to the relative frequencies of the first and second oscillating signals. 11. The device as claimed in claim 10, wherein a group of outputs of the counter are coupled to at least one first attenuation history register, and the first attenuation history register stores an indication at a first time period. A set of values for a set of maximum or minimum voltage levels for the first supply voltage. 10 12. The device of claim 11 in which the output of one of the counters is coupled to the first and second decay history registers, and the first decay history register stores an indication during the first time period When the first supply voltage is a set of maximum voltage levels, the second attenuation history register stores a set of values indicating the first supply voltage is a set of 15 minimum voltage levels during the first time period . 13. The device of claim 10, wherein the source includes a set of second ring oscillators, and the second ring oscillators include a gate circuit and a resistance capacitor element. 14. The device as claimed in claim 10, wherein the source includes a set of 20 clock generators, which are significantly insensitive to changes in the first supply voltage. 15. The device of claim 10, wherein the source includes a set of reverse voltage sensitive circuits, which are reverse sensitive to changes in the first supply voltage. 29 200424543 16. The device according to item 15 of the patent application, wherein the reverse voltage sensitive circuit includes a set of bias transistors which are coupled to receive a set of substantially fixed bias voltages at the gate, the bias voltage The crystal is coupled to receive 5 sets of a first supply voltage at one end; a set of current mirrors having a set of first pins coupled to the bias transistor and a set of first pins coupled to a set of resistors Two pins; and a set of outputs, which are coupled between the resistor and the current mirror, 10 a set of voltages at the output increases in response to a decrease in the first supply voltage, and the voltages at the output react It decreases as the first supply voltage increases. 17. The device of claim 16 in the scope of patent application, further comprising a set of ring oscillators coupled to the output, the frequency of the output signals from one of the ring 15 oscillators is reflected in the voltage of the output And change. 18. An apparatus comprising: a set of attenuation detectors that detect changes in a set of first supply voltages, the attenuation detector comprising 20 sets of ring oscillators having a coupling to receive the first supply A set of voltage inputs, a set of frequency-to-voltage converters having a set of inputs coupled to a set of outputs of the ring oscillator, and an analog-to-digital converter having a frequency-to-electricity 30 coupling 200424543 A set of inputs for a set of outputs of the voltage converter and a set of outputs providing a set of numbers to indicate the first supply voltage level. 19. The device of claim 18, further comprising: a set of control circuits, which respond to the digital to selectively determine the frequency of a set of 5 output clock signals. 20. The device of claim 18, further comprising: at least one first attenuation history register coupled to the output of the analog-to-digital converter, the at least first attenuation history register storing A set of values to indicate one of 10 sets of maximum or minimum voltage levels of the first supply voltage during the first time period. 21. The device of claim 20, further comprising at least one set of second attenuation history registers, which are coupled to the output of the analog-to-digital converter, the first attenuation history registers storing a A set of values is used to indicate the maximum 15 voltage level of the first supply voltage during the first time period, and the second attenuation history register stores a set of values to indicate the first supply voltage during the first time period The minimum voltage level. 22. The device of claim 18, wherein the digital-to-analog converter is a fully digital digital-to-analog converter, which includes at least first and second inverter sensors with different threshold voltages The digital is output according to the switched inverter sensor using the analog-to-digital converter. 23. The device according to item 22 of the scope of patent application, wherein the frequency-to-voltage converter contains a set of 31 200424543 charging transistors having a set of terminals coupled to receive a set of approximately fixed supply voltages, and a set of coupled To the gate of one of the ring oscillators and to the other end of a set of input nodes of the analog-to-digital converter via a resistor-capacitor circuit; 5 a set of pulse generators coupled to the ring One of the output of the oscillator and has an output coupled to a group of delay links; a group of discharge transistors having a group of gates coupled to the output of the delay link and coupled to A set of endpoints for the input node of an analog-to-digital converter. 10 24. The device of claim 23, wherein the strength of the charging transistor is variable to calibrate the output of the frequency-to-voltage converter. 25. An integrated circuit chip, comprising: a set of first clock generators that generate a first clock signal having a set of first frequencies; 15 at least a set of second clock generators that generate a signal having A set of second clock signals at a second frequency; a set of attenuation detectors, which receive a set of approximately fixed first supply voltages and detect levels of one of a set of second supply voltages or temperatures, the attenuation detectors responding And outputting a set of frequency numbers of 20 yards at the detected level; and a set of control circuits that receive the frequency number and selectively output at least one of the first and second clock signals according to the frequency number. 26. For example, the integrated circuit chip of claim 25, wherein the attenuation detector detects the level of the second supply voltage, and the attenuation detector in 32 200424543 includes a component voltage regulator having a A set of endpoints coupled to receive the substantially fixed first supply voltage, the voltage divider providing at least first and second substantially fixed reference voltages, 5 at least first and second comparators that compare the second supply The voltage and the at least first and second substantially fixed reference voltages, and the frequency number is based on the output of the comparator. 27. For example, the integrated circuit chip of claim 25, wherein the attenuation detector further includes a set of 10 variable driving transistors, which can be changed to adjust the current and The substantially fixed reference voltage level. 28. The integrated circuit chip of claim 25, wherein the attenuation detector comprises: 15 a set of first reference delay channels coupled to receive the first substantially fixed first supply voltage, the reference delay The channel delays a set of input signals by a reference delay, and a set of second delay channels that are coupled to receive the second supply voltage. The second delay channel delays the input signal by a change in the second supply voltage. And a changed first delay, the second delay channel includes a set of first taps of at least the first node in the second delay channel, and the first tap provides a set of smaller than the first delay A second delay, and a set of first phase detectors that detect a set of phase differences between the reference delay and the 33rd 200424543 one delay, at least one set of second phase detectors that detect between the reference delay and A set of phase differences between the second delays, and the number is based on the output of the phase detector. 29. The integrated circuit chip of claim 25, wherein the attenuation detector includes a set of amplifiers and a level shifter, and the set of _ which is changed in response to a change in the second supply voltage is amplified and The level-shifted signal and a set of analog-to-digital converters output the digital signal in response to receiving the amplified and level-shifted signal. 30. The integrated circuit chip of claim 29, wherein the amplifier and the level shifter include a set of ring oscillators, which provide a set of frequencies that change in response to changes in the second supply voltage And the frequency-to-voltage conversion II, which provide the amplified and level-shifted signal. 31. For the integrated circuit chip of item 29 of the scope of patent application, the analog to digital conversion m group of mosquito analog money converter is completed. 32. If the integrated circuit chip of item 31 of the patent application scope, wherein the analog-to-digital conversion benefit includes at least two sets of inverter sensors, each of the inverter sensors has a different set of threshold power, One output of the inverter sensor provides the frequency digital. 33. The integrated circuit chip of claim 30 in the patent application range, wherein the frequency to 34 200424543 voltage converter includes a set of charging transistors which are coupled in response to being actuated to drive the digital-to-analog converter. A set of input nodes is charged, a set of discharge transistors are coupled to discharge the input node in response to a set of discharge signals 5 and a set of resistance capacitor circuits are coupled between the charge transistor and the input node . 34. The integrated circuit chip of claim 33, wherein one end of the charging transistor is coupled to receive the substantially fixed first supply voltage. 35. The integrated circuit chip of claim 33, wherein the charging transistor is variable to adjust a set of voltage levels at the input node to be approximately in the middle of the analog-to-digital converter. 36. A integrated circuit comprising: 15 at least first and second attenuation detector circuits, each of said first and second attenuation detector circuits receiving a set of monitored voltage signals, and at least first and second Attenuation history register, which is coupled to the respective attenuation detector circuit, each of the first and second attenuation history registers stores data indicating that the 20 respective attenuations are utilized in a given time period The detector circuit detects a set of a minimum and a maximum voltage. 37. If the integrated circuit of item 36 of the patent application scope further includes at least a third and a fourth attenuation history register, so that at least two sets of attenuation history registers are coupled to each of the first and second Attenuation detector 35 200424543 Electrical t, the-group of the attenuation 敎 registers stores data indicating the maximum voltage of the 'group' detected in the given t-sian using the respective attenuation detector circuit, and-the group The damping register temporarily stores the data of the set of minimum voltages that are not detected during the time period given by the respective decay detection circuit. 38. The integrated circuit of item 36 in the claim range, wherein at least-the set of the attenuation detector includes a set of%, type shakers, which are consumed to receive the monitored voltage signal and provide __touch No., the frequency at which the guillotine should change according to the voltage level of the monitored voltage signal, a set of frequency-to-voltage converters 'which provides-a set of signals that are amplified and shifted by level' It is the function voltage of the vibrating residual affinity, and 15 sets of digital-to-analog converters, which provide information according to the voltage level of the amplified and level-shifted signal. 39. The integrated circuit of item 36 in the scope of application for patent, wherein at least-groups of these attenuation detectors include t 20: group-signal generator, which generates' group of first oscillating signals, :::: two signal generation The generator generates a second set of vibration signals, and the second-difficult signal has a set frequency that is more sensitive to changes in the second supply voltage than the first vibration signal, and, and, and. The number of ten is that it receives the first and second vibration gain signals, and the count: provides the lean material according to the relative frequencies of the first and second vibration gain signals. 36 200424543 40. The integrated circuit of claim 39, wherein the second signal generator is coupled to receive the substantially fixed first supply voltage. 41. For example, the integrated circuit of item 40 of the patent application scope, wherein the second signal generator has a reverse sensitivity to a change in the second supply voltage, so that a decrease in the second supply voltage results in The frequency of the second oscillating signal increases and vice versa. 42. For example, the integrated circuit of item 36 of the scope of the patent application, which further includes a scan key circuit ^ The scan key circuit causes the lean material to be read from the clothing reduction history register. 10 43. A computer system comprising: a set of processors including at least a set of first attenuation detectors coupled to receive a set of first substantially fixed supply voltages, the first attenuation detector detecting a set The level of the second supply voltage, a set of mass storage devices, 15 sets of input devices, and a set of buses, which transmit information between the processor, the input device and the mass storage device. 44. The computer system as claimed in item 43 of the patent application, wherein at least one set of attenuation detectors includes 20 one-component voltage regulators that provide at least first and second substantially fixed reference voltages and at least first and second comparisons And comparing the second supply voltage with the at least first and second fixed reference voltages. 45. For example, the computer system of claim 43, wherein at least one set of attenuation 37 200424543 detector includes a set of reference delay channels, which has a reference delay, a set of variable delay channels, which has a set of responses to the Two first delays that vary with the supply voltage, and five sets of phase detectors that detect a set of phase differences between the reference delay and at least the first delay. 46. The computer system of claim 43, wherein the processor further comprises at least one set of first attenuation history registers having a set of outputs coupled to the output of the at least one set of attenuator detectors. Input, the first attenuation history register stores data indicating one of the maximum and minimum voltage levels detected by the attenuation detector at a given time period. 47. A method comprising: detecting a level of one of a voltage and a temperature using a circuit receiving 15 sets of a substantially fixed first supply voltage level, and providing a set of digital numbers based on the detected level And, in response to the number, a set of output clock frequencies is determined. 48. The method of claim 47, wherein the detecting includes comparing the voltage level with a substantially fixed reference voltage to provide the 20 digits. 49. The method of claim 47, wherein the detecting comprises comparing a set of approximately fixed reference delays with at least one first delay that changes in response to the voltage. 50. If the method of the 47th scope of the patent application, the detection method includes 38 200424543 generating a set of oscillating signals having a frequency that changes in response to a voltage change, providing a set of voltage signals having a set of responsive signals The voltage level of the frequency, and 5 provides the number according to the voltage level. 39
TW093103316A 2003-03-21 2004-02-12 Method, apparatus, integrated circuit, integrated circuit chip and computer system for detecting on-die voltage variations TWI247124B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/394,938 US6882238B2 (en) 2003-03-21 2003-03-21 Method and apparatus for detecting on-die voltage variations

Publications (2)

Publication Number Publication Date
TW200424543A true TW200424543A (en) 2004-11-16
TWI247124B TWI247124B (en) 2006-01-11

Family

ID=32988502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093103316A TWI247124B (en) 2003-03-21 2004-02-12 Method, apparatus, integrated circuit, integrated circuit chip and computer system for detecting on-die voltage variations

Country Status (5)

Country Link
US (2) US6882238B2 (en)
EP (1) EP1631890A2 (en)
KR (1) KR100819954B1 (en)
TW (1) TWI247124B (en)
WO (1) WO2004095240A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995169A (en) * 2014-04-25 2014-08-20 嘉兴泰鼎光电集成电路有限公司 Test circuit for testing voltages of internal nodes of chips
CN104136928A (en) * 2012-02-21 2014-11-05 高通股份有限公司 A circuit for detecting a voltage change using a time-to-digital converter
CN109477861A (en) * 2016-03-14 2019-03-15 安培计算有限责任公司 Self-reference on piece voltage declines detector
TWI723182B (en) * 2016-09-09 2021-04-01 南韓商三星電子股份有限公司 Apparatus, method of calibrating, method of manufacturing apparatus, and method of constructing an integrated circuit

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027944B2 (en) * 2003-06-30 2006-04-11 Nupower Semiconductor, Inc. Programmable calibration circuit for power supply current sensing and droop loss compensation
TWI227320B (en) * 2003-12-22 2005-02-01 Sunplus Technology Co Ltd Radio frequency temperature sensor and temperature calibrating method therefor
JP4279180B2 (en) * 2004-03-09 2009-06-17 Okiセミコンダクタ株式会社 Local oscillation circuit
US7071723B2 (en) * 2004-05-21 2006-07-04 Intel Corporation Mapping variations in local temperature and local power supply voltage that are present during operation of an integrated circuit
US7138816B2 (en) * 2004-10-26 2006-11-21 Intel Corporation On-die monitoring device power grid
US7330080B1 (en) 2004-11-04 2008-02-12 Transmeta Corporation Ring based impedance control of an output driver
US20060176096A1 (en) * 2005-02-10 2006-08-10 International Business Machines Corporation Power supply insensitive delay element
US7355435B2 (en) * 2005-02-10 2008-04-08 International Business Machines Corporation On-chip detection of power supply vulnerabilities
US7528619B2 (en) * 2005-06-30 2009-05-05 Intel Corporation 0th droop detector architecture and implementation
US7327150B2 (en) * 2005-10-11 2008-02-05 Intel Corporation Integrated circuit package resistance measurement
DE102006010906A1 (en) * 2005-12-30 2007-07-05 Robert Bosch Gmbh Ring oscillator arrangement for use in analog-digital converters and digital time measuring procedures, has oscillator rings in which one ring is connected with delay chains that are formed from another oscillator ring
JP5228447B2 (en) * 2006-11-07 2013-07-03 新日鐵住金株式会社 High Young's modulus steel plate and method for producing the same
US8615767B2 (en) * 2007-02-06 2013-12-24 International Business Machines Corporation Using IR drop data for instruction thread direction
US7895454B2 (en) 2007-02-06 2011-02-22 International Business Machines Corporation Instruction dependent dynamic voltage compensation
US7971035B2 (en) 2007-02-06 2011-06-28 International Business Machines Corporation Using temperature data for instruction thread direction
US7714635B2 (en) 2007-02-06 2010-05-11 International Business Machines Corporation Digital adaptive voltage supply
US8022685B2 (en) 2007-02-06 2011-09-20 International Business Machines Corporation Temperature dependent voltage source compensation
US7865750B2 (en) 2007-02-06 2011-01-04 International Business Machines Corporation Fan speed control from adaptive voltage supply
US7936153B2 (en) 2007-02-06 2011-05-03 International Business Machines Corporation On-chip adaptive voltage compensation
US7779235B2 (en) * 2007-02-06 2010-08-17 International Business Machines Corporation Using performance data for instruction thread direction
TWI331335B (en) * 2007-03-06 2010-10-01 Nanya Technology Corp Semiconductor device and the related semiconductor memory module and signal adjustment method
US7724078B2 (en) * 2007-03-22 2010-05-25 Intel Corporation Adjusting PLL/analog supply to track CPU core supply through a voltage regulator
KR100877106B1 (en) * 2007-06-27 2009-01-07 주식회사 하이닉스반도체 Temperature information output apparatus
US8185572B2 (en) * 2007-08-24 2012-05-22 International Business Machines Corporation Data correction circuit
US7797131B2 (en) * 2007-08-24 2010-09-14 International Business Machines Corporation On-chip frequency response measurement
US8005880B2 (en) * 2007-08-24 2011-08-23 International Business Machines Corporation Half width counting leading zero circuit
JP4417989B2 (en) * 2007-09-13 2010-02-17 Okiセミコンダクタ株式会社 Current source device, oscillator device, and pulse generator
US7710084B1 (en) 2008-03-19 2010-05-04 Fairchild Semiconductor Corporation Sample and hold technique for generating an average of sensed inductor current in voltage regulators
US7944248B2 (en) * 2008-04-17 2011-05-17 Altera Corporation Techniques for measuring voltages in a circuit
US7863875B1 (en) 2008-04-23 2011-01-04 Fairchild Semiconductor Corporation Non-linear control techniques for improving transient response to load current step change
US7764054B1 (en) 2008-05-21 2010-07-27 Fairchild Semiconductor Corporation Voltage regulator with current-mode dual-edge width modulation and non-linear control
US8386829B2 (en) 2009-06-17 2013-02-26 Macronix International Co., Ltd. Automatic internal trimming calibration method to compensate process variation
US8031017B2 (en) * 2009-06-26 2011-10-04 Intel Corporation Method and apparatus for determining within-die and across-die variation of analog circuits
US8368385B2 (en) * 2009-09-25 2013-02-05 Intel Corporation Methods and systems to detect voltage changes within integrated circuits
US8063622B2 (en) 2009-10-02 2011-11-22 Power Integrations, Inc. Method and apparatus for implementing slew rate control using bypass capacitor
US8013669B2 (en) * 2009-10-27 2011-09-06 Apple Inc. Dynamic power noise event counter
US8660097B2 (en) 2010-03-30 2014-02-25 Qualcomm Incorporated Methods and apparatus for service continuity in a communication network
US8631368B2 (en) 2010-03-30 2014-01-14 Qualcomm Incorporated Method and circuit to generate race condition test data at multiple supply voltages
US9483098B2 (en) * 2010-04-01 2016-11-01 Qualcomm Incorporated Circuits, systems and methods to detect and accommodate power supply voltage droop
CN102023671A (en) * 2010-09-10 2011-04-20 上海宏力半导体制造有限公司 Power supply configuration method and power supply configuration structure
US20120187991A1 (en) * 2011-01-25 2012-07-26 Advanced Micro Devices, Inc. Clock stretcher for voltage droop mitigation
US8847777B2 (en) 2011-03-25 2014-09-30 Apple Inc. Voltage supply droop detector
JP2013065372A (en) * 2011-09-16 2013-04-11 Elpida Memory Inc Semiconductor device and information processing system using the same
US20130144549A1 (en) * 2011-12-01 2013-06-06 Grigori Temkine Method for calibrating temperature sensors using reference voltages
KR101885857B1 (en) * 2012-01-04 2018-08-06 삼성전자주식회사 Temperature management unit, system on chip including the same and method of managing temperature in a system on chip
KR102041471B1 (en) * 2012-12-24 2019-11-07 에스케이하이닉스 주식회사 Semiconductor apparatus
GB2525864B (en) * 2014-05-06 2021-04-07 Advanced Risc Mach Ltd Clock frequency reduction for an electronic device
US9575095B2 (en) * 2014-08-13 2017-02-21 Qualcomm Incorporated Low power high resolution oscillator based voltage sensor
US9413344B2 (en) * 2014-09-08 2016-08-09 Qualcomm Incorporated Automatic calibration circuits for operational calibration of critical-path time delays in adaptive clock distribution systems, and related methods and systems
US9912325B2 (en) * 2015-04-10 2018-03-06 Drexel University Power supply voltage detection and power delivery circuit
KR102327339B1 (en) * 2015-05-06 2021-11-16 삼성전자주식회사 Integrated circuit and computing device having the same
US9634676B2 (en) * 2015-07-01 2017-04-25 Qualcomm Incorporated Circuits and methods providing clock frequency adjustment in response to supply voltage changes
TW201708835A (en) 2015-08-04 2017-03-01 財團法人工業技術研究院 System for monitoring an electronic circuit and a method for monitoring an electronic circuit
CN105628243B (en) * 2015-12-30 2018-04-20 清华大学深圳研究生院 A kind of resistor-type temperature sensing chip
US9825620B2 (en) 2016-01-21 2017-11-21 Apple Inc. Method and apparatus for digital undervoltage detection and control
US9915968B2 (en) 2016-04-19 2018-03-13 Qualcomm Incorporated Systems and methods for adaptive clock design
US9628089B1 (en) * 2016-06-24 2017-04-18 Qualcomm Incorporated Supply voltage tracking clock generator in adaptive clock distribution systems
EP3479185A4 (en) * 2016-07-01 2019-07-31 Chaoyang Semiconductor Jiangyin Technology Co., Ltd. Soc supply droop compensation
EP3270257B1 (en) * 2016-07-12 2019-02-27 Advanced Micro Devices, Inc. Clock adjustment for voltage droop
US10642336B2 (en) 2016-07-12 2020-05-05 Advanced Micro Devices, Inc. Clock adjustment for voltage droop
TWI610533B (en) * 2016-09-01 2018-01-01 晨星半導體股份有限公司 Frequency Adjusting Device and Method for Adjusting Frequency
US10382014B2 (en) * 2016-12-23 2019-08-13 Ati Technologies Ulc Adaptive oscillator for clock generation
US11962313B2 (en) 2016-12-23 2024-04-16 Advanced Micro Devices, Inc. Adaptive DCO VF curve slope control
US10303200B2 (en) * 2017-02-24 2019-05-28 Advanced Micro Devices, Inc. Clock divider device and methods thereof
US10162373B1 (en) 2017-02-28 2018-12-25 Ampere Computing Llc Variation immune on-die voltage droop detector
US10423182B2 (en) * 2017-04-04 2019-09-24 Intel Corporation Self-referenced droop detector circuitry
US10425089B2 (en) * 2017-12-21 2019-09-24 Advanced Micro Devices, Inc. Master/slave frequency locked loop
US10627883B2 (en) * 2018-02-28 2020-04-21 Advanced Micro Devices, Inc. Onboard monitoring of voltage levels and droop events
US11531385B2 (en) * 2018-09-17 2022-12-20 Samsung Electronics Co., Ltd. Voltage droop monitoring circuits, system-on chips and methods of operating the system-on chips
JP2020128947A (en) * 2019-02-12 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 Detector
US10848137B1 (en) 2019-05-08 2020-11-24 Ati Technologies Ulc Symmetrical balanced c-element
US10732701B1 (en) * 2019-06-24 2020-08-04 Mediatek Singapore Pte. Ltd. Method and apparatus of dual threshold clock control
US10707877B1 (en) * 2019-06-27 2020-07-07 Intel Corporation Method and apparatus for switched adaptive clocking
US10833653B1 (en) * 2019-09-23 2020-11-10 International Business Machines Corporation Voltage sensitive delay
US11281249B2 (en) 2019-09-23 2022-03-22 International Business Machines Corporation Voltage sensitive current circuit
US11204635B2 (en) 2019-09-23 2021-12-21 International Business Machines Corporation Droop detection using power supply sensitive delay
US11152920B2 (en) 2019-09-23 2021-10-19 International Business Machines Corporation Voltage starved passgate with IR drop
US11442082B2 (en) * 2019-12-23 2022-09-13 Graphcore Limited Droop detection
GB2590660B (en) * 2019-12-23 2022-01-05 Graphcore Ltd Reactive droop limiter
US11036253B1 (en) * 2020-09-30 2021-06-15 Microsoft Technology Licensing, Llc Dynamic scaling of system clock signal in response to detection of supply voltage droop
US11444625B2 (en) * 2020-11-24 2022-09-13 Arm Limited Clock phase-shifting techniques in physical layout design
US11249530B1 (en) 2020-11-25 2022-02-15 Qualcomm Incorporated Adaptive voltage controller
TWI774449B (en) * 2021-06-29 2022-08-11 瑞昱半導體股份有限公司 Processor
US11646740B2 (en) * 2021-07-02 2023-05-09 Arm Limited Circuits and methods to alter a phase speed of an output clock
US20230141595A1 (en) * 2021-11-08 2023-05-11 Advanced Micro Devices, Inc. Compensation methods for voltage and temperature (vt) drift of memory interfaces
US20230195191A1 (en) * 2021-12-22 2023-06-22 Advanced Micro Devices, Inc. Fast droop detection circuit
US11927612B1 (en) * 2022-04-07 2024-03-12 Marvell Asia Pte Ltd Digital droop detector
CN117409828A (en) * 2022-07-08 2024-01-16 长鑫存储技术有限公司 Memory, control device, clock processing method and electronic equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149386A (en) * 1976-11-12 1979-04-17 Westinghouse Electric Corp. System to control low pressure turbine temperatures
JPS5843632A (en) * 1981-09-01 1983-03-14 テクトロニツクス・インコ−ポレイテツド Phase fixing circuit
CA1208413A (en) * 1983-04-15 1986-07-29 Betty P.L. Wen Aluminium hydroxycarbonate gel
JPH0346654A (en) * 1989-07-14 1991-02-27 Fuji Photo Film Co Ltd Method for processing silver halide color photographic sensitive material
US5684434A (en) * 1995-10-30 1997-11-04 Cypress Semiconductor Erasable and programmable single chip clock generator
JPH09146654A (en) 1995-11-16 1997-06-06 Brother Ind Ltd Clock signal generator
US5889440A (en) 1997-01-15 1999-03-30 Programmable Microelectronics Corp. Adaptive frequency compensation technique
US5956289A (en) 1997-06-17 1999-09-21 Micron Technology, Inc. Clock signal from an adjustable oscillator for an integrated circuit
DE69802178T2 (en) * 1998-07-13 2006-08-10 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Frequency generating circuit
US6157265A (en) * 1998-10-30 2000-12-05 Fairchild Semiconductor Corporation Programmable multi-scheme clocking circuit
JP2002100967A (en) 2000-03-17 2002-04-05 Sony Corp Power supply voltage controller, semiconductor device and its drive method
US6348798B1 (en) * 2000-12-05 2002-02-19 Alpha Smart, Inc. Analog to digital voltage measuring device
US6804793B2 (en) 2001-03-16 2004-10-12 Hewlett-Packard Development Company, L.P. Manipulating an integrated circuit clock in response to early detection of an operation known to trigger an internal disturbance
US6883368B2 (en) * 2002-04-18 2005-04-26 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for characterizing the microwaviness of a disk surface
US6893153B2 (en) * 2002-06-28 2005-05-17 Hewlett-Packard Development Company, L.P. Temperature-indicating power adapter and electronic device that operates therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136928A (en) * 2012-02-21 2014-11-05 高通股份有限公司 A circuit for detecting a voltage change using a time-to-digital converter
CN104136928B (en) * 2012-02-21 2016-05-04 高通股份有限公司 Detect the circuit of voltage change for service time-digital quantizer
CN103995169A (en) * 2014-04-25 2014-08-20 嘉兴泰鼎光电集成电路有限公司 Test circuit for testing voltages of internal nodes of chips
CN103995169B (en) * 2014-04-25 2016-07-20 嘉兴泰鼎光电集成电路有限公司 The test circuit of inter-chip traces voltage
CN109477861A (en) * 2016-03-14 2019-03-15 安培计算有限责任公司 Self-reference on piece voltage declines detector
CN109477861B (en) * 2016-03-14 2022-03-25 安培计算有限责任公司 Self-reference on-chip voltage droop detector
TWI723182B (en) * 2016-09-09 2021-04-01 南韓商三星電子股份有限公司 Apparatus, method of calibrating, method of manufacturing apparatus, and method of constructing an integrated circuit

Also Published As

Publication number Publication date
WO2004095240A3 (en) 2005-06-02
EP1631890A2 (en) 2006-03-08
US7133751B2 (en) 2006-11-07
US20040183613A1 (en) 2004-09-23
WO2004095240A2 (en) 2004-11-04
US20050184764A1 (en) 2005-08-25
TWI247124B (en) 2006-01-11
US6882238B2 (en) 2005-04-19
KR100819954B1 (en) 2008-04-07
KR20050112109A (en) 2005-11-29

Similar Documents

Publication Publication Date Title
TW200424543A (en) A method and apparatus for detecting on-die voltage variations
US7884679B2 (en) Process, voltage, temperature compensated oscillator
US7619486B1 (en) Method for detecting and compensating for temperature effects
Hwang et al. A 0.008${\hbox {mm}}^{2} $500/spl mu/W 469 kS/s Frequency-to-Digital Converter Based CMOS Temperature Sensor With Process Variation Compensation
US6695475B2 (en) Temperature sensing circuit and method
US8749224B2 (en) Voltage detection circuit and method for controlling the same
US10594303B2 (en) Temperature sensor circuit and semiconductor device including the same
US8710913B2 (en) Circuit arrangement and method for operating a circuit arrangement
EP3557206B1 (en) Temperature sensor in an integrated circuit having offset cancellation
EP4252094A1 (en) Adaptive voltage controller
TWI289004B (en) A method and apparatus for precise signal interpolation
EP0999435A2 (en) Low voltage/low power temperature sensor
US10656023B2 (en) Temperature sensing device and temperature-voltage converter
KR101418045B1 (en) Temperature sensor and temperature sensing method
KR100950579B1 (en) Power-up generator in semiconductor integrated circuit
US11431292B2 (en) Crystal oscillator start-up circuit and method
US8564353B2 (en) Temperature sensitive device for generating a temperature-dependent output signal that is substantially independent of device manufacturing process
US7106116B2 (en) Pulse duty deterioration detection circuit
US11233503B2 (en) Temperature sensors and methods of use
US7944258B2 (en) Semiconductor integrated circuit including delay line of delay locked loop and method of controlling delay time using the same
US8618869B2 (en) Fast power-on bias circuit
US10656032B2 (en) Temperature sensor in an integrated circuit and method of calibrating the temperature sensor
JPH0599756A (en) Detector for temperature
US20080007313A1 (en) Digital clock generator
JP2930018B2 (en) Voltage conversion circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees