TW200421600A - Split gate flash memory cell and manufacturing method thereof - Google Patents
Split gate flash memory cell and manufacturing method thereof Download PDFInfo
- Publication number
- TW200421600A TW200421600A TW092107603A TW92107603A TW200421600A TW 200421600 A TW200421600 A TW 200421600A TW 092107603 A TW092107603 A TW 092107603A TW 92107603 A TW92107603 A TW 92107603A TW 200421600 A TW200421600 A TW 200421600A
- Authority
- TW
- Taiwan
- Prior art keywords
- gate
- layer
- stacked structure
- dielectric layer
- trench
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000000758 substrate Substances 0.000 claims abstract description 64
- 230000005641 tunneling Effects 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 48
- 239000004020 conductor Substances 0.000 claims description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 238000009825 accumulation Methods 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 238000001459 lithography Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 241001320695 Hermas Species 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical group [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Non-Volatile Memory (AREA)
Abstract
Description
200421600 五、發明說明(1) [發明所屬之技術領域] 本發明是有關於一種半導體元件,且特別是有關於 一種分離閘極快閃記憶胞及其製造方法。 [先前技術] 快閃記憶體元件由於具有可多次進行資料之存入、 讀取、抹除等動作,且存入之資料在斷電後也不會消失 之優點,所以已成為個人電腦和電子設備所廣泛採用的 一種非揮發性記憶體元件。 典型的快閃記憶體元件係以摻雜的多晶矽製作浮置 閘極(Floating Gate)與控制閘極(Control Gate)。而 且,浮置閘極與控制閘極之間以介電層相隔,而浮置閘 極與基底間係以穿隨氧化層(T u η n e 1 0 X i d e )相隔。當對 快閃記憶體進行寫入/抹除(W r i t e / E r a s e )資料之操作 時,係藉由於控制閘極與源極/汲極區施加偏壓,以使電 子注入浮置閘極或使電子從浮置閘極拉出。而在讀取快 閃記憶體中的資料時,係於控制閘極上施加一工作電 壓,此時浮置閘極的帶電狀態會影響其下通道(Channel ) 的開/關,而此通道之開/關即為判讀資料值「0」或 「1」之依據。 當上述快閃記憶體在進行資料之抹除時,由於從浮 置閘極排出的電子數量不易控制,故易使浮置閘極排出 過多電子而帶有正電荷,謂之過度抹除(Over-erase)。 當此過度抹除現象太過嚴重時,甚至會使浮置閘極下方 之通道在控制閘極未加工作電壓時,即持績呈導通狀200421600 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates to a semiconductor device, and more particularly to a split gate flash memory cell and a method for manufacturing the same. [Previous technology] Flash memory devices have become a personal computer and an advantage because they can store, read, and erase data multiple times, and the stored data will not disappear even after power is turned off. A non-volatile memory element widely used in electronic equipment. A typical flash memory device is made of doped polycrystalline silicon to make a floating gate and a control gate. Moreover, the floating gate and the control gate are separated by a dielectric layer, and the floating gate and the substrate are separated by a penetrating oxide layer (T u η n e 1 0 X i d e). When writing / erasing (Write / Erase) data to the flash memory, the control gate and source / drain regions are biased so that electrons are injected into the floating gate or Pull the electrons out of the floating gate. When reading the data in the flash memory, a working voltage is applied to the control gate. At this time, the charged state of the floating gate will affect the on / off of its lower channel (Channel), and the opening of this channel / Off is the basis for interpreting the data value "0" or "1". When the above flash memory is erasing data, because the number of electrons discharged from the floating gate is not easy to control, it is easy to cause the floating gate to discharge too many electrons with a positive charge, which is called excessive erasure. -erase). When this over-erase phenomenon is too serious, even the channel below the floating gate will be turned on when the control gate is not applied with operating voltage.
10847twf. ptd 第6頁 200421600 五、發明說明(2) 態,而導致資料之誤判。 為了解決元件過度抹除的問題,目前業界提出一種 分離閘極(S p 1 i t G a t e )快閃記憶體。第1圖所繪示為一種 習知之分離閘極快閃記憶胞之結構剖面圖。請參照第1 圖,此快閃記憶胞由基底1 0 0起,依序為穿隧介電層 1 0 2、浮置閘極1 0 4、閘間介電層1 0 6 ( I n t e r - g a t e D i e 1 e c t r i c )與選擇閘極1 0 8,其中選擇閘極1 0 8除位於浮 置閘極1 0 4上方之外,尚有一部分延伸至基底1 0 0上方, 且與基底1 0 0間以選擇閘極介電層1 1 0相隔。源極區1 1 2位 於浮置閘極1 0 4 —側之基底1 0 0中,汲極區1 1 4則位於延伸 至基底1 0 0之選擇閘極1 0 8 —側之基底1 0 0中。如此則當過 度抹除現象太過嚴重,而使浮置閘極1 0 4下方通道在選擇 閘極1 0 8未加工作電壓狀態下即持續打開時,選擇閘極 1 0 8下方的通道仍能保持關閉狀態,使得汲極區1 1 4與源 極區1 1 2無法導通’而能防止資料之誤判。 然而,由於分離閘極結構需要較大的分離閘極區域 而具有較大的記憶胞尺寸,因此其記憶胞尺寸較堆疊式 閘極結構之記憶胞尺寸大,而產生所謂無法增加元件集 積度之問題。 而且,隨著積體電路正以更高的集積度朝向小型化 的元件發展,記憶胞之尺寸可藉由減小記憶胞的閘極長 度方式來達成。但是,閘極長度變小會縮短了穿隧氧化 層下方的通道長度(Channel Length),於是在程式化此 記憶胞時,汲極區與源極區之間就容易發生不正常的電10847twf. Ptd Page 6 200421600 V. Description of the invention (2) State, resulting in misjudgment of information. In order to solve the problem of excessive erasure of components, the industry currently proposes a split gate (S p 1 i t G a t e) flash memory. Figure 1 shows a structural cross-sectional view of a conventional split-gate flash memory cell. Please refer to Fig. 1. This flash memory cell starts from the substrate 100, and is a tunneling dielectric layer 10 in sequence, a floating gate electrode 104, and an inter-gate dielectric layer 106 (I nter- gate Die 1 ectric) and selection gate 1 0 8, in addition to the selection gate 1 0 8 above the floating gate 1 0 4, there is still a portion extending above the substrate 1 0 0, and the substrate 1 0 The 0 gates are separated by a selected gate dielectric layer 110. The source region 1 1 2 is located on the substrate 1 0 0 on the side of the floating gate 1 0, and the drain region 1 1 4 is located on the selection gate 1 0 8 on the side that extends to the substrate 1 0 0 0 in. In this way, when the over-erase phenomenon is too serious, and the channel below the floating gate 1 0 4 is continuously opened without selecting the operating voltage of the gate 1 08, the channel below the selected gate 1 0 8 is still open. It can be kept in a closed state, so that the drain region 1 1 4 and the source region 1 1 2 cannot be conducted, and the misjudgment of data can be prevented. However, since the separated gate structure requires a larger separated gate area and a larger memory cell size, its memory cell size is larger than that of the stacked gate structure, which results in the so-called inability to increase the component accumulation. problem. Moreover, as integrated circuits are being developed towards smaller components with higher integration, the size of the memory cell can be achieved by reducing the gate length of the memory cell. However, a smaller gate length shortens the Channel Length under the tunneling oxide, so when this memory cell is programmed, abnormal electrical currents are easily generated between the drain and source regions.
10847twf. ptd 第7頁 200421600 五、發明說明(3) 性貫通(P u n c h T h r 〇 u g h ),如此將嚴重影響此記憶胞的電 性表現。 此外,上述快閃記憶胞在形成選擇閘極之步驟中, 由於選擇閘極有光罩對準之問題,因此造成延伸至基底 之選擇閘極下方之通道區無法正確的定義。亦即,在圖 案化選擇閘極時若產生誤對準之狀況,則共用源極區的 兩記憶胞的通道區長度不一致,於是就會造成記憶胞程 式化不對稱之問題,導致兩記憶胞特性不同。 [發明内容] 有鑑於此,本發明之一目的在於提供一種分離閘極 快閃記憶胞及其製造方法,可以避免在程式化時源極區 與汲極區產生擊穿(Punch through)現象,而提升記憶胞 效能。 本發明的目的再一目的是提供一種分離閘極快閃記 憶胞及其製造方法,利用自行對準的製程形成選擇閘 極,可以避免兩記憶胞的通道區長度不一致之問題,而 可以防止記憶胞程式化不對稱之問題,並提高記憶胞效 能。 本發明的又一目的是提供一種分離閘極快閃記憶胞 及其製造方法,選擇閘極製作於浮置閘極側壁並延伸至 基底中之溝渠側壁,因此可以縮小記憶胞之尺寸,並能 夠提高記憶體元件之積集度 本發明提供一種分離閘極快閃記憶胞,此分離閘極 快閃記憶胞是由基底、堆疊結構、第一閘間介電層、第10847twf. Ptd Page 7 200421600 V. Description of the invention (3) Sexual penetration (P n c h T h r 〇 u g h), this will seriously affect the electrical performance of this memory cell. In addition, in the step of forming the selection gate of the flash memory, the selection gate has a problem of alignment of the photomask, so that the channel region extending below the selection gate of the substrate cannot be correctly defined. That is, if a misalignment occurs when the gates are patterned, the channel area lengths of the two memory cells sharing the source region will be inconsistent, which will cause the problem of asymmetric programming of the memory cells, resulting in two memory cells. Different characteristics. [Summary of the Invention] In view of this, one object of the present invention is to provide a split gate flash memory cell and a manufacturing method thereof, which can avoid a punch through phenomenon in a source region and a drain region during programming, And improve memory cell performance. Another object of the present invention is to provide a flash memory cell with separated gates and a method for manufacturing the same. The self-aligned process is used to form a selection gate, which can avoid the problem of inconsistent length of the channel area of the two memory cells, and can prevent memory. Cell stylization asymmetry problem and improve memory cell performance. Another object of the present invention is to provide a separate gate flash memory cell and a method for manufacturing the same. The gate is selected to be fabricated on the side wall of the floating gate and extends to the side wall of the trench in the substrate. Therefore, the size of the memory cell can be reduced, and Increasing the accumulation degree of memory elements The present invention provides a split gate flash memory cell. The split gate flash memory cell is composed of a substrate, a stacked structure, a first inter-gate dielectric layer, a first
10847twf.ptd 第8頁 200421600 五、發明說明(4) 二閘間介電層、選擇閘極、選擇閘極介電層、源極區與 汲極區所構成。基底具有一溝渠。堆疊結構設置於基底 上,且此堆疊結構從基底起依序為穿隧介電層、浮置閘 極與頂蓋層。第一閘間介電層設置於堆疊結構之第一側 之側壁,且第一閘間介電層與溝渠之頂部相鄰。第二閘 間介電層設置於堆疊結構之第二側之側壁。選擇閘極設 置於堆疊結構之第一側與溝渠之側壁。選擇閘極介電層 設置於選擇閘極與基底之間。源極區設置於堆疊結構之 第二側的基底中。汲極區設置於選擇閘極一側之溝渠底 部° 本發明之分離閘極快閃記憶胞的選擇閘極係設置於 堆疊結構之第一側與溝渠之側壁,因此其通道區是設置 於溝渠側壁之基底中(垂直式通道區),而通道長度是由 溝渠深度來決定。於是,即使元件尺寸(閘極長度)縮 小,也可以藉由控制溝渠之深度準確的控制通道長度, 而可以避免在程式化時所造成之源極區與汲極區電性貫 通之問題,並可以增加元件集積度。 本發明另外提供一種分離閘極快閃記憶胞之製造方 法,此方法係提供已形成堆疊結構之基底,且堆疊結構 由基底起依序為穿隧介電層、浮置閘極與頂蓋層。接 著,於堆疊結構之第一側的基底中形成源極區後,於該 堆疊結構之側壁形成閘間介電層。然後,於堆疊結構之 第二側的基底中形成溝渠,並於溝渠之側壁與底部形成 選擇閘極介電層。於堆疊結構之第二側的側壁與溝渠之10847twf.ptd Page 8 200421600 V. Description of the invention (4) The inter-gate dielectric layer, the selection gate, the selection gate dielectric layer, the source region and the drain region are composed. The base has a trench. The stacked structure is disposed on the substrate, and the stacked structure is a tunneling dielectric layer, a floating gate electrode, and a cap layer in order from the substrate. The first inter-gate dielectric layer is disposed on a side wall of the first side of the stacked structure, and the first inter-gate dielectric layer is adjacent to the top of the trench. The second inter-gate dielectric layer is disposed on a sidewall of the second side of the stacked structure. The selection gate is placed on the first side of the stacked structure and the side wall of the trench. The selection gate dielectric layer is disposed between the selection gate and the substrate. The source region is disposed in a substrate on the second side of the stacked structure. The drain region is set at the bottom of the trench on the side of the selection gate. The selection gate of the split gate flash memory cell of the present invention is set on the first side of the stacked structure and the side wall of the trench, so its channel region is set on the trench. The base of the sidewall (vertical channel area), and the channel length is determined by the trench depth. Therefore, even if the component size (gate length) is reduced, the channel length can be accurately controlled by controlling the depth of the trench, which can avoid the problem of the electrical penetration of the source and drain regions during programming, and Can increase component integration. The invention further provides a method for manufacturing a gate flash memory cell. This method provides a substrate having a stacked structure, and the stacked structure is a tunneling dielectric layer, a floating gate electrode, and a cap layer in order from the substrate. . Next, after a source region is formed in the substrate on the first side of the stacked structure, an inter-gate dielectric layer is formed on a sidewall of the stacked structure. Then, a trench is formed in the substrate on the second side of the stacked structure, and a selective gate dielectric layer is formed on the sidewall and the bottom of the trench. On the side wall of the second side of the stacked structure and the trench
10847twf. ptd 第9頁 200421600 五、發明說明(5) 側壁形成選擇閘極後,於選擇閘極一側的溝渠底部形成 沒極區。 本發明之分離閘極快閃記憶胞之製造方法中,採用 自行對準之方式形成選擇閘極,由於沒有使用到微影技 術,因此可以增加製程裕度,並可以節省製程成本與製 程時間。而且,可以避免相鄰記憶胞之通道區不一致之 問題,並可以防止記憶胞程式化之不對稱,而提升記憶 體之可靠度。 而且,選擇閘極係形成於堆疊結構與溝渠之側壁 上,因此選擇閘極之通道區是設置於溝渠側壁之基底中 (垂直式通道區)。於是,即使元件尺寸(閘極長度)縮 小,藉由控制溝渠之深度準確的控制通道長度,而可以 避免在程式化時所造成之源極區與汲極區電性貫通之問 題,並可以增加元件集積度。 本發明另外提供一種分離閘極快閃記憶胞之製造方 法,此方法係提供已依序形成穿隧介電層、第一導體層 與罩幕層之基底。圖案化罩幕層以形成暴露部分第一導 體層之開口後,於暴露之第一導體層上形成頂蓋層。接 著,移除罩幕層,並以頂蓋層為罩幕,蝕刻第一導體 層、穿隧介電層而形成堆疊結構。於堆疊結構之第一側 的基底中形成源極區後,於堆疊結構之側壁形成閘間介 電層。然後,於堆疊結構之第二側的基底中形成溝渠, 並於溝渠之側壁與底部形成選擇閘極介電層與於基底上 形成第二導體層。接著,移除部分第二導體層以於堆疊10847twf. Ptd Page 9 200421600 V. Description of the invention (5) After the selection gate is formed on the side wall, an electrodeless area is formed at the bottom of the trench on the side of the selection gate. In the manufacturing method of the split gate flash memory cell of the present invention, the selective gate is formed by self-alignment. Since no lithography technology is used, the process margin can be increased, and the process cost and process time can be saved. Moreover, it can avoid the problem of inconsistent channel regions of adjacent memory cells, and can prevent the asymmetry of the programming of the memory cells, thereby improving the reliability of the memory. Moreover, the selection gate is formed on the sidewall of the stacked structure and the trench, so the channel region of the selection gate is provided in the substrate of the sidewall of the trench (vertical channel region). Therefore, even if the component size (gate length) is reduced, by controlling the depth of the trench to accurately control the channel length, the problem of electrical penetration of the source and drain regions during programming can be avoided, and the increase can be increased. Component accumulation. The present invention further provides a method for manufacturing a gate flash memory cell. This method provides a substrate on which a tunneling dielectric layer, a first conductor layer, and a mask layer have been sequentially formed. After the mask layer is patterned to form an opening of the exposed first conductor layer, a cap layer is formed on the exposed first conductor layer. Next, the mask layer is removed, and the top cap layer is used as the mask, and the first conductor layer and the tunnel dielectric layer are etched to form a stacked structure. After a source region is formed in the substrate on the first side of the stacked structure, an inter-gate dielectric layer is formed on a sidewall of the stacked structure. Then, a trench is formed in the substrate on the second side of the stacked structure, a selective gate dielectric layer is formed on the sidewall and the bottom of the trench, and a second conductor layer is formed on the substrate. Next, remove part of the second conductor layer for stacking
10847twf. ptd 第10頁 200421600 五、發明說明(6) 結構之第一側的側壁形成導體間隙壁與於堆疊結構之第 二側的側壁、溝渠之側壁形成選擇閘極。之後,於選擇 閘極一側的溝渠底部形成汲極區。 本發明之分離閘極快閃記憶胞之製造方法中,在移 除部分第二導體層以於堆疊結構之第一側的側壁形成導 體間隙壁與於堆疊結構之第二側的側壁、溝渠之側壁形 成選擇閘極之步驟之後與於選擇閘極一側的溝渠底部形 成汲極區之前,可進行一蝕刻步驟以移除導體間隙壁。 本發明之分離閘極快閃記憶胞之製造方法中,採用 自行對準之方式形成選擇閘極,由於沒有使用到微影技 術,因此可以增加製程裕度,並可以節省製程成本與製 程時間。而且,因為可以避免相鄰記憶胞之通道區不一 致之問題,所以可以防止記憶胞程式化之不對稱,而提 升記憶體之可靠度。 而且,選擇閘極係形成於堆疊結構與溝渠之側壁 上,因此選擇閘極之通道區是設置於溝渠側壁之基底中 (垂直式通道區)。於是,即使元件尺寸(閘極長度)縮 小,藉由控制溝渠之深度準確的控制通道長度,而可以 避免在程式化時所造成之源極區與汲極區電性貫通之問 題,並可以增加元件集積度。 為讓本發明之上述和其他目的、特徵、和優點能更 明顯易懂,下文特舉一較佳實施例,並配合所附圖式, 作詳細說明如下: [實施方式]10847twf. Ptd Page 10 200421600 V. Description of the invention (6) The side wall of the first side of the structure forms a conductor gap, and the side wall of the second side of the stacked structure and the side wall of the trench form a selection gate. Then, a drain region is formed at the bottom of the trench on the gate side. In the method for manufacturing a gate flash memory cell of the present invention, a portion of the second conductor layer is removed to form a conductor gap wall on a side wall of the first side of the stacked structure, and a side wall and a trench on the second side of the stacked structure. After the step of forming the gate on the sidewall and before the formation of the drain region on the bottom of the trench on the side of selecting the gate, an etching step may be performed to remove the conductor gap. In the manufacturing method of the split gate flash memory cell of the present invention, the selective gate is formed by self-alignment. Since no lithography technology is used, the process margin can be increased, and the process cost and process time can be saved. Moreover, because the problem of inconsistent channel regions between adjacent memory cells can be avoided, the asymmetry of the programming of the memory cells can be prevented, and the reliability of the memory can be improved. Moreover, the selection gate is formed on the sidewall of the stacked structure and the trench, so the channel region of the selection gate is provided in the substrate of the sidewall of the trench (vertical channel region). Therefore, even if the component size (gate length) is reduced, by controlling the depth of the trench to accurately control the channel length, the problem of electrical penetration of the source and drain regions during programming can be avoided, and the increase can be increased. Component accumulation. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below and described in detail with the accompanying drawings as follows: [Embodiment]
10847twf.ptd 第11頁 200421600 五、發明說明(7) 第2圖所繪示為本發明之分離閘極快閃記憶胞之結構 剖面圖。 請參照第2圖,本發明快閃記憶胞是由基底2 〇 〇、穿 隧介電層2 0 2、浮置閘極2 0 4、頂蓋層2 0 6、閘間介電層 2 0 8 a、閘間介電層2 〇 8 b、選擇閘極介電層2 1 0、選擇閘極 2 1 2、源極區2 1 4與汲極區2 1 6所構成。 基底2 0 0具有一溝渠2 1 8。浮置閘極2 0 4設置於基底 2 0 0上。穿隧介電層設置於浮置閘極2 0 4與基底2 0 0之間, 其材質例如是氧化矽。頂蓋層2 0 6設置於浮置閘極2 0 4 上,其材質例如是氧化石夕。穿隧介電層2 0 2、浮置閘極 2 0 4與頂蓋層2 0 6構成堆疊結構2 2 2。閘間介電層2 0 8 a設置 於堆疊結構2 2 0之一側之側壁上,且閘間介電層2 0 8 a與溝 渠2 1 8之頂部相鄰。閘間介電層2 〇 8 b設置於堆疊結構2 2 0 之另一側之側壁上。閘間介電層2 0 8 a與閘間介電層2 0 8 b 之材質例如是氧化矽/氮化石夕或氧化石夕/氮化石夕/氧化矽。 選擇閘極2 1 2設置於堆疊結構2 2 2、閘間介電層2 0 8 a與溝 渠2 1 8之側壁,其材質例如是摻雜多晶石夕。選擇閘極介電 層2 1 0設置於選擇閘極2 1 2與溝渠2 1 8之間。源極區2 1 4設 置於堆疊結構2 2 2之閘間介電層2 〇 8 b —側的基底2 0 0中。 汲極區2 1 Θ設置於選擇閘極2 1 2 一側之溝渠2 1 8底部。 在本發明之上述實施例中,選擇閘極2 1 2設置於頂蓋 層2 0 6、閘間介電層2〇8a與溝渠218之側壁’因此其通道 區220是設置於溝渠218側壁之基底2〇〇中(垂直式通道 區),而且通道區220長度是由溝渠218之深度來決定。於10847twf.ptd Page 11 200421600 V. Description of the invention (7) Figure 2 shows a sectional view of the structure of the split gate flash memory cell of the present invention. Please refer to FIG. 2. The flash memory cell of the present invention is composed of a substrate 200, a tunneling dielectric layer 2 0, a floating gate electrode 2 0 4, a cap layer 2 06, and an inter-gate dielectric layer 2 0. 8 a, inter-gate dielectric layer 2 0 8 b, selected gate dielectric layer 2 10, selected gate 2 1 2, source region 2 1 4 and drain region 2 1 16. The substrate 2 0 has a trench 2 1 8. The floating gate electrode 2 0 4 is disposed on the substrate 2 0 0. The tunneling dielectric layer is disposed between the floating gate 204 and the substrate 200, and the material thereof is, for example, silicon oxide. The top cover layer 2 0 6 is disposed on the floating gate electrode 2 0 4, and the material thereof is, for example, oxide stone. The tunneling dielectric layer 20, the floating gate electrode 204, and the cap layer 2 06 form a stacked structure 2 2 2. The inter-gate dielectric layer 208a is disposed on a side wall of one side of the stacked structure 220, and the inter-gate dielectric layer 208a is adjacent to the top of the trench 218. The inter-gate dielectric layer 2 0 8 b is disposed on a side wall of the other side of the stacked structure 2 2 0. The material of the inter-gate dielectric layer 208 a and the inter-gate dielectric layer 208 b is, for example, silicon oxide / nitride stone or stone oxide / nitride stone / silicon oxide. The selected gate electrode 2 1 2 is disposed on the stacked structure 2 2 2. The gate dielectric layer 2 8 a and the sidewall of the trench 2 1 8 are made of, for example, doped polycrystalline silicon. The selection gate dielectric layer 2 1 0 is disposed between the selection gate 2 1 2 and the trench 2 1 8. The source region 2 1 4 is disposed in the inter-gate dielectric layer 2 0 8 b of the stacked structure 2 2 2. The drain region 2 1 Θ is disposed at the bottom of the trench 2 1 8 on the selection gate 2 1 2 side. In the above embodiment of the present invention, the gate electrode 2 12 is selected to be disposed on the cap layer 206, the inter-gate dielectric layer 208a and the sidewall of the trench 218. Therefore, the channel region 220 is disposed on the sidewall of the trench 218. The substrate 200 (vertical channel region), and the length of the channel region 220 is determined by the depth of the trench 218. to
10847twf. ptd 第12頁 200421600 五、發明說明(8) 是,即使元件尺寸(閘極長度)縮小,也可以藉由控制溝 渠218之深度準確的控制通道長度,而可以避免在程式化 時所造成之源極區與汲極區電性貫通之問題。 而且,由於選擇閘極2 1 2設置於頂蓋層2 0 6、閘間介 電層2 0 8 a與溝渠2 1 8之側壁,因此可使記憶胞之尺寸縮 小,而可以增加元件集積度。 第3 A圖至第3 Η圖所繪示為本發明較佳實施例之一種 分離閘極快閃記憶胞的製造流程剖面圖,其係用以說明 本發明之快閃記憶體的製造方法。 首先,請參照第3 Α圖,提供一基底3 0 0,此基底3 0 0 例如是矽基底,此基底3 0 0已形成元件隔離結構(未圖 示),此元件隔離結構成條狀的佈局,並用以定義出主動 區。元件隔離結構之形成方法例如是區域氧化法(L 〇 c a 1 Oxidation,LOCOS)或淺溝渠隔離法(Shallow Trench Isolation,STI)。接著,在基底300上形成一層穿隧介 電層3 0 2,此穿隧介電層3 0 2之材質例如是氧化矽,穿隧 介電層3 0 2之形成方法例如是熱氧化法(T h e r m a 1 Oxidation) o 接著,於穿隧介電層302上形成一層導體層304,其 材質例如是摻雜的多晶矽,此導體層3 0 4之形成方法例如 是利用化學氣相沈積法形成一層未摻雜多晶矽層後,進 行離子植入步驟以形成之。 然後,於導體層304上形成一層罩幕層306,此罩幕 層3 0 6之材質例如是氮化矽,其形成方法例如是化學氣相10847twf. Ptd Page 12 200421600 V. Description of the invention (8) Yes, even if the component size (gate length) is reduced, the channel length can be accurately controlled by controlling the depth of the trench 218, which can be avoided during programming. The source and drain regions are electrically connected. In addition, since the gate electrode 2 12 is selected to be disposed on the side wall of the top cap layer 2 06, the inter-gate dielectric layer 2 8 a and the trench 2 18, the size of the memory cell can be reduced, and the component accumulation degree can be increased. . 3A to 3D are cross-sectional views showing a manufacturing process of a split gate flash memory cell according to a preferred embodiment of the present invention, and are used to explain the method of manufacturing the flash memory of the present invention. First, please refer to FIG. 3A, and provide a substrate 300. This substrate 300 is, for example, a silicon substrate. This substrate 300 has formed an element isolation structure (not shown), and the element isolation structure is in a stripe shape. Layout and used to define the active area. The formation method of the element isolation structure is, for example, a region oxidation method (LOC a 1 Oxidation, LOCOS) or a shallow trench isolation method (Shallow Trench Isolation, STI). Next, a tunnel dielectric layer 3 02 is formed on the substrate 300. The material of the tunnel dielectric layer 3 02 is, for example, silicon oxide, and the method of forming the tunnel dielectric layer 3 2 is, for example, a thermal oxidation method ( T herma 1 Oxidation) o Next, a conductor layer 304 is formed on the tunneling dielectric layer 302. The material is, for example, doped polycrystalline silicon. The formation method of the conductor layer 304 is, for example, chemical vapor deposition. After the undoped polycrystalline silicon layer, an ion implantation step is performed to form it. Then, a mask layer 306 is formed on the conductor layer 304. The material of the mask layer 306 is, for example, silicon nitride, and the formation method thereof is, for example, chemical vapor phase.
10847twf. ptd 第13頁 200421600 五、發明說明(9) 沈積法(Chemical Vapor Deposition ,CVD)。接著,圖 案化罩幕層306以於罩幕層306中形成多個暴露導體層3〇4 之開口 3 0 8。 接著,請參照第3 B圖,於開口 3 0 8所暴露之導體層 3 0 4上形成一層頂蓋層3 1 〇,此頂蓋層3 1 〇之材質例如是氧 化石夕’其形成方法例如是熱氧化法。頂蓋層3 1 〇形成之 後’移除罩幕層3 0 6。然後,以頂蓋層3 1 〇為自行對準 (Self-Alignment)罩幕,蝕刻導體層304、穿隧介電層 直到曝露出基底300,而形成導體層304a與穿隨介電 f302a。頂蓋層310、導體層3〇4a、穿隧介電層3〇2a構 隹疊結構31 2,且導體層3 04a係作為記憶胞之浮置閘極。 接著,請參照第3 C圖,於基底3 〇 〇上形成一圖幸杏 ^層3 1 4,此圖案化光阻層3 1 4暴露預定形成源極之區 X i 後,進行一離子植入步驟,於堆疊結構3 1 2 側之 基底3 0 〇中形成源極區3 1 6。 之 镬著,請參照第3D、圖,移除圖案化光阻層31 1結構3 1 2之側壁形成閘間介電層3丨8a與閘間 ; 1=。閘間介電層3183與閘間介電層31礼之材\^ 带Λ矽/氮化矽等,閘間介電層31 8a與閘間介電屑3〗 ^^法例如是先以熱氧化法形成一層氧化矽;",i之 &壓化學氣相沈積法形成一層氮化矽層後,-利 ‘性蝕刻步驟,移除部分氧化矽層與氮化矽層^:等 接著,請參照第3 E圖 於基底30 0上形成另-層圖案10847twf. Ptd page 13 200421600 V. Description of the invention (9) Chemical Vapor Deposition (CVD). Next, the mask layer 306 is patterned to form a plurality of openings 308 in the mask layer 306 that expose the conductive layer 304. Next, referring to FIG. 3B, a capping layer 3 1 0 is formed on the conductor layer 3 0 4 exposed by the opening 3 0 8. The material of the capping layer 3 1 0 is, for example, an oxide stone. For example, it is a thermal oxidation method. After the top cover layer 3 10 is formed, the cover layer 3 06 is removed. Then, using the top cap layer 3 10 as a self-alignment mask, the conductive layer 304 and the tunnel dielectric layer are etched until the substrate 300 is exposed to form a conductive layer 304a and a through dielectric f302a. The capping layer 310, the conductive layer 304a, and the tunneling dielectric layer 302a constitute a stacked structure 31 2, and the conductive layer 304 a serves as a floating gate of a memory cell. Next, referring to FIG. 3C, a pattern of apricot layer 3 1 4 is formed on the substrate 300. After the patterned photoresist layer 3 1 4 is exposed to a region X i that is intended to form a source, an ion implantation is performed. In the step, a source region 3 16 is formed in the substrate 300 on the 3 1 2 side of the stacked structure. In addition, please refer to FIG. 3D and the diagram, and remove the patterned photoresist layer 31 1 and the sidewalls of the structure 3 1 2 to form a gate dielectric layer 3 丨 8a and a gate; 1 =. The inter-gate dielectric layer 3183 and the inter-gate dielectric layer 31 are made of ^ silicon / silicon nitride, etc. The inter-gate dielectric layer 3 1 8a and the inter-gate dielectric chip 3 are used. Oxidation method to form a layer of silicon oxide; ", i of the & compressive chemical vapor deposition method to form a silicon nitride layer,-a favorable etching step, remove part of the silicon oxide layer and the silicon nitride layer ^: etc Please refer to FIG. 3E to form another layer pattern on the substrate 300.
第14頁 200421600 五、發明說明(ίο) 化光阻層3 2 0,此圖案化光阻層3 2 〇覆蓋住源極區3丨6。然 後,以圖案化光阻層3 2 〇與形成有閘間介電層3丨8 a、3丨8 b 之堆豐結構3 1 2為罩幕,進行姓刻步驟,而於堆疊結構 3 1 2形成有閘間介電層3 1 8 a —側之基底3 0 0中形成溝渠 3 2 2。 /、 接著,請參照第3 F圖,移除圖案化光阻層3 2 0後,於 溝渠322之側壁與底部形成一層介電層324。此介電層324 之材質例如是氧化矽,其形成方法例如是熱氧化法 (Thermal Oxidation)。當然,在源極區316上方也會形 成介電層326,而且在閘間介電層318a、3i8b表面也會形 ,一層薄的氧化矽層,而使閘間介電層3丨8 a、3丨8 b形成 氧化矽/氮化矽/氧化矽結構。 然後,於堆疊結構3 1 2之形成有閘間介電層3丨8a —側 的側壁與溝渠3 2 2之側壁形成導體層3 2 8。此導體層3 2 8係 作為分離閘極快閃記憶胞之選擇閘極。導體層3 2 8之形成 步驟例如是於基底3 〇 〇上形成一層導體材料層(未圖示)。 之後’進行一非等向性蝕刻製程,移除部分導體材料 層,以於堆疊結構3 1 2之形成有閘間介電層3丨8a —側的側 壁與溝渠3 2 2之側壁形成導體層3 2 8。在此步驟中,於堆 疊結構3 1 2之形成有閘間介電層3 1 8 b —側的側壁也會形成 導體間隙壁3 3 0。導體層3 2 8、導體間隙壁3 3 0之材質例如 是摻雜的多晶矽,其例如是利用化學氣相沈積法形成一 層未摻雜多晶石夕層後,進行離子植入步驟以形成之。 接著’請參照第3 G圖,於基底上形成一層圖案化光Page 14 200421600 V. Description of the invention (ίο) The photoresist layer 3 2 0, the patterned photoresist layer 3 2 0 covers the source region 3 丨 6. Then, the patterned photoresist layer 3 2 0 and the stack structure 3 1 2 with the inter-gate dielectric layers 3 丨 8 a, 3 丨 8 b are used as a mask, and the step of engraving is performed, and the stacked structure 3 1 2 A gate dielectric layer 3 1 8 a is formed on the side of the substrate 3 0 0 to form a trench 3 2 2. /. Next, referring to FIG. 3F, after removing the patterned photoresist layer 320, a dielectric layer 324 is formed on the sidewall and the bottom of the trench 322. The material of the dielectric layer 324 is, for example, silicon oxide, and a method of forming the dielectric layer 324 is, for example, thermal oxidation. Of course, a dielectric layer 326 will also be formed above the source region 316, and the surface of the inter-gate dielectric layers 318a, 3i8b will also form a thin silicon oxide layer, so that the inter-gate dielectric layer 3a, 8a, 3 丨 8 b to form a silicon oxide / silicon nitride / silicon oxide structure. Then, a conductive layer 3 2 8 is formed on the sidewall of the gate dielectric layer 3 丨 8a on the side of the stacked structure 3 1 2 and the trench 3 2 2. This conductor layer 3 2 8 serves as the gate of choice for separating the gate flash memory cells. The step of forming the conductive layer 3 2 8 is, for example, forming a conductive material layer (not shown) on the substrate 300. Afterwards, an anisotropic etching process is performed to remove a portion of the conductive material layer so that a gate dielectric layer 3 丨 8a on the side of the stacked structure 3 1 2 and a side wall of the trench 3 2 2 form a conductor layer. 3 2 8. In this step, a conductor gap 3 3 0 is also formed on the side wall of the inter-gate dielectric layer 3 1 8 b formed on the stacked structure 3 1 2. The material of the conductor layer 3 2 8 and the conductor spacer 3 3 0 is, for example, doped polycrystalline silicon, which is formed, for example, by using chemical vapor deposition to form an undoped polycrystalline silicon layer, and then performing an ion implantation step to form the layer. . Next ’Please refer to FIG. 3G to form a layer of patterned light on the substrate
10847twf. ptd 第15頁 200421600 五、發明說明(11) 阻層332 ,此圖案化光阻層332暴露源極區316上方之區 域。然後,進行一蝕刻步驟,移除導體間隙壁3 3 0。導體 間隙壁3 3 0之移除方法,例如是濕式蝕刻法或乾式蝕刻 法。在本實施例中,相鄰兩記憶胞之導體間隙壁3 3 0係彼 此電性連接,而容易造成相鄰兩記憶胞在操作時造成彼 此干擾,因此係需將導體間隙壁3 3 0移除。當然,若相鄰 兩記憶胞之導體間隙壁3 3 0彼此分離而沒有電性連接,則 可以省去移除導體間隙壁3 3 0之步驟。 接著,請參照第3 Η圖,移除圖案化光阻層3 3 2後,於 基底300上形成另一層圖案化光阻層(未圖示),此圖案化 光阻層暴露預定形成汲極之區域。然後進行一離子植入 步驟,而於導體層3 2 8 —側的溝渠3 2 2底部形成一汲極區 3 3 4。接著,再移除圖案化光阻層。後續完成分離閘極快 閃記憶體之製程為習知技藝者所周知,在此不再贅述。 在上述實施例中,選擇閘極(導體層3 2 8 )係形成於堆 疊結構3 1 2與溝渠3 2 2之側壁上,因此選擇閘極(導體層 328)之通道區是設置於溝渠322側壁之基底300中(垂直式 通道區)。於是,即使元件尺寸(閘極長度)縮小,也可以 藉由控制溝渠322之深度準確的控制通道長度,而可以避 免在程式化時所造成之源極區與汲極區電性貫通之問 題。 而且,由於選擇閘極(導體層3 2 8 )係形成於堆疊結構 3 1 2與溝渠3 2 2之側壁,因此可使記憶胞之尺寸縮小,而 可以增加元件集積度。10847twf. Ptd page 15 200421600 V. Description of the invention (11) A resist layer 332. This patterned photoresist layer 332 exposes a region above the source region 316. Then, an etching step is performed to remove the conductive spacer 3 3 0. The method for removing the conductive spacer 3 3 0 is, for example, a wet etching method or a dry etching method. In this embodiment, the conductive spacers 3 3 0 of two adjacent memory cells are electrically connected to each other, and it is easy to cause the adjacent two memory cells to interfere with each other during operation. Therefore, it is necessary to move the conductive spacers 3 3 0 except. Of course, if the conductive spacers 3 3 0 of two adjacent memory cells are separated from each other without being electrically connected, the step of removing the conductive spacers 3 3 0 can be omitted. Next, referring to the third figure, after removing the patterned photoresist layer 3 3 2, another patterned photoresist layer (not shown) is formed on the substrate 300, and the patterned photoresist layer is exposed to form a drain electrode. Area. Then, an ion implantation step is performed, and a drain region 3 3 4 is formed at the bottom of the trench 3 2 2 on the side of the conductive layer 3 2 8. Then, the patterned photoresist layer is removed. The subsequent completion of the process of separating the gate flash memory is well known to those skilled in the art, and will not be repeated here. In the above embodiment, the selection gate (conductor layer 3 2 8) is formed on the side wall of the stacked structure 3 1 2 and the trench 3 2 2. Therefore, the channel region of the selection gate (conductor layer 328) is provided in the trench 322. In the substrate 300 of the sidewall (vertical channel region). Therefore, even if the component size (gate length) is reduced, the channel length can be accurately controlled by controlling the depth of the trench 322, thereby avoiding the problem of electrical penetration of the source and drain regions during programming. In addition, since the selection gate (conductor layer 3 2 8) is formed on the side wall of the stacked structure 3 12 and the trench 3 2 2, the size of the memory cell can be reduced, and the degree of component accumulation can be increased.
10847twf. ptd 第16頁 200421600 五、發明說明(12) 此外,本發明係採用自行對準之方式形成選擇閘極 (導體層3 2 8 ),由於沒有使用到微影技術,因此可以增加 製程裕度,並可以節省製程成本與製程時間。 另外,本發明係採用自行對準之方式形成選擇閘極 (導體層3 2 8 ),而可以使得相鄰記憶胞之通道區具有相同 的長度,於是在操作此快閃記憶體時,因為共用源極區 的兩記憶胞的通道區長度相同,所以可以避免記憶胞程 式化不對稱之問題,而可以提升記憶體之可靠度。 雖然本發明已以一較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明 之精神和範圍内,當可作些許之更動與潤飾,因此本發 明之保護範圍當視後附之申請專利範圍所界定者為準。10847twf. Ptd Page 16 200421600 V. Description of the invention (12) In addition, the present invention uses a self-aligning method to form the selection gate (conductor layer 3 2 8). Since no lithography technology is used, the process margin can be increased Degrees, and can save process costs and process time. In addition, the present invention uses a self-aligning method to form a selection gate (conductor layer 3 2 8), so that the channel regions of adjacent memory cells have the same length. Therefore, when operating this flash memory, The channel regions of the two memory cells in the source region have the same length, so the problem of asymmetric programming of the memory cells can be avoided, and the reliability of the memory can be improved. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make some changes and retouch without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application.
10847twf. ptd 第17頁 200421600 圖式簡單說明 第1圖為繪示習知一種分離閘極快閃記憶胞之結構剖 面圖。 第2圖為繪示本發明之分離閘極快閃記憶胞之結構剖 面圖。 第3 A〜3 Η圖為繪示本發明之分離閘極快閃記憶胞之製 造流程剖面圖。 [圖式標記說明] 1 00 >200 >300 :基底 102 >202 、302 、3 0 2 a :穿 隧 介 電 層 104 、204 :浮置 閘極 106 、2 0 8a 、208b 、 31 8a、 31 8b • 閘間介電層 108 ^212 :選擇 閘極 110 ^210 、324 :選擇 閘極 介 電 層 112 、214 > 316 :源極 區 114 >216 、334 :汲極 區 206 ^310 :頂蓋 層 218 \ 322 =溝渠 220 :通道 區 304 、3 0 4a >328 :導體層 306 :罩幕 層 308 :開口 312 :堆疊 結構 314 \ 320 〜332 :圖案 化光 阻 層 326 :介電 層10847twf. Ptd Page 17 200421600 Brief Description of Drawings Figure 1 is a sectional view showing the structure of a conventional flash memory cell with separated gates. Fig. 2 is a sectional view showing a structure of a split gate flash memory cell according to the present invention. Figures 3A ~ 3 are cross-sectional views showing the manufacturing process of the split gate flash memory cell of the present invention. [Illustration of diagrammatic symbols] 1 00 > 200 > 300: substrate 102 > 202, 302, 3 0 2a: tunneling dielectric layer 104, 204: floating gate 106, 2 0a, 208b, 31 8a, 31 8b • Inter-gate dielectric layer 108 ^ 212: Select gate 110 ^ 210, 324: Select gate dielectric layer 112, 214 > 316: Source region 114 > 216, 334: Drain region 206 ^ 310: top cover layer 218 \ 322 = trench 220: channel area 304, 3 0 4a > 328: conductor layer 306: cover layer 308: opening 312: stacked structure 314 \ 320 ~ 332: patterned photoresist layer 326 : Dielectric layer
10847twf. ptd 第18頁 200421600 圖式簡單說明 3 3 0 :導體間隙壁 ΙΗϋΙΙ 第19頁 10847twf. ptd10847twf. Ptd Page 18 200421600 Simple illustration of the drawing 3 3 0: Conductor gap ΙΗϋΙΙ Page 19 10847twf. Ptd
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW092107603A TW577173B (en) | 2003-04-03 | 2003-04-03 | Split gate flash memory cell and manufacturing method thereof |
US10/709,309 US6821849B2 (en) | 2003-04-03 | 2004-04-28 | Split gate flash memory cell and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW092107603A TW577173B (en) | 2003-04-03 | 2003-04-03 | Split gate flash memory cell and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW577173B TW577173B (en) | 2004-02-21 |
TW200421600A true TW200421600A (en) | 2004-10-16 |
Family
ID=32847898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092107603A TW577173B (en) | 2003-04-03 | 2003-04-03 | Split gate flash memory cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW577173B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4794337B2 (en) | 2006-03-24 | 2011-10-19 | ルネサスエレクトロニクス株式会社 | Method of manufacturing split gate nonvolatile semiconductor memory device |
US20150255614A1 (en) * | 2014-03-05 | 2015-09-10 | Powerchip Technology Corporation | Split gate flash memory and manufacturing method thereof |
-
2003
- 2003-04-03 TW TW092107603A patent/TW577173B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW577173B (en) | 2004-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070228498A1 (en) | Semiconductor device and a method of manufacturing the same | |
US20070155087A1 (en) | Method of manufacturing split gate flash memory | |
US9397227B2 (en) | Split gate flash cell semiconductor device | |
US6821849B2 (en) | Split gate flash memory cell and manufacturing method thereof | |
JP2009088060A (en) | Nonvolatile semiconductor storage device and fabrication method therefor | |
CN107591449A (en) | Semiconductor devices and its manufacture method | |
TWI700819B (en) | Non-volatile memory and manufacturing method thereof | |
TW543195B (en) | Split-gate flash memory structure and method of manufacture | |
JP5106022B2 (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
TWI251337B (en) | Non-volatile memory cell and manufacturing method thereof | |
US7679126B2 (en) | Split gate type non-volatile memory device and method of manufacturing the same | |
KR100660283B1 (en) | Split gate type non-volatile memory device and method of fabricating the same | |
US11257830B2 (en) | Memory structure | |
TWI815380B (en) | Method of manufacturing non-volatile memory device | |
US6849514B2 (en) | Method of manufacturing SONOS flash memory device | |
US7220651B2 (en) | Transistor and method for manufacturing the same | |
TW577173B (en) | Split gate flash memory cell and manufacturing method thereof | |
JP5184851B2 (en) | Method for manufacturing nonvolatile semiconductor memory device | |
KR100642383B1 (en) | Flash memory device having improved erase efficiency and method of fabricating the same | |
US6943119B2 (en) | Flash process for stacking poly etching | |
TWI845109B (en) | Non-volatile memory device | |
TWI559459B (en) | Flash memory and manufacturing method thereof | |
JP2008205471A (en) | Nonvolatile memory device and methods of forming the same | |
TW202420953A (en) | Non-volatile memory device and method for manufacturing the same | |
CN116471842A (en) | Non-volatile memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |