TW200420931A - Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same - Google Patents

Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same Download PDF

Info

Publication number
TW200420931A
TW200420931A TW092108276A TW92108276A TW200420931A TW 200420931 A TW200420931 A TW 200420931A TW 092108276 A TW092108276 A TW 092108276A TW 92108276 A TW92108276 A TW 92108276A TW 200420931 A TW200420931 A TW 200420931A
Authority
TW
Taiwan
Prior art keywords
quasi
phase
grating
crystal
laser
Prior art date
Application number
TW092108276A
Other languages
Chinese (zh)
Other versions
TWI225948B (en
Inventor
Yen-Chieh Huang
Yen-Hung Chen
Chou-Cong Shi
Yen-Ying Lin
An-Chong Jiang
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW92108276A priority Critical patent/TWI225948B/en
Publication of TW200420931A publication Critical patent/TW200420931A/en
Application granted granted Critical
Publication of TWI225948B publication Critical patent/TWI225948B/en

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A single-fanout cascaded grating quasi-phase-matched nonlinear optical monolithic crystal and wavelength conversion and tunable laser system using the same are disclosed. The monolithic crystal includes a quasi-phase-matched single period grating having a first grating period along a first direction; and a quasi-phase-matched fanout grating having a second grating period along the first direction, wherein the second grating period is tunable along a second direction, the level of the second grating period continuously varies depending on the displacement of the crystal along the second direction, and the first direction is perpendicular to the first direction. By cascading the single period grating with the fanout grating, the wavelength conversion of the laser can be performed at a constant temperature or within a specific temperature range. When a laser system employs such monolithic crystal, although the single-fanout cascaded grating quasi-phase-matched nonlinear optical monolithic crystal is kept at a constant temperature, the most appropriate grating period can be selected continuously by moving the position of the crystal transversely (I.e. along the second direction). Whereby, the quasi-phase-matched conditions of two gratings are reached so as to achieve the purpose of converting the wavelength continuously. In addition, the wavelength of the laser can be converted in wider wavelength range by changing the temperature of the crystal and matching the single period grating with the grating period of the fanout grating.

Description

200420931 , ^ * 五、發明說明(l) 發明所屬之技術領域 本案係有關非線性光學單一晶體之光柵設計,特別 是關於准相位匹配(Q u a s i — P h a s e - M a t c h i n g ; Q P Μ )非線性 光學單一晶體(monolithic crystal)之線性與扇形串連 光栅設計及利用該晶體作為頻率轉換器(f r e q u e n c y converter)之雷射產生裝置。 先前技術 隨著雷射科技之快速演進,各式各樣的雷射已被廣 泛地應用於不同的領域。傳統上大部分雷射光是利用電 子或載子在不同能階間的躍遷而發射固定波長或頻率的 · 同調電磁輻射。以固態雷射為例,固態雷射由於系統簡 單輕巧,再加上近年光電材料科學的蓬勃發展,使各式 波長與功率的固態雷射持續被開發,而成為各類型雷射 中的主流。半導體雷射是其中最典型的例子。半導體雷 射因為體積小、操作耗電功率小、容易大量製造、成本 低廉而大受歡迎。但也因為半導體材料本身能階的限制 而只能產生某些特定的波長輸出,並且輸出功率偏低, 無法滿足許多須要高功率同調光源的應用,這些特性限 制了半導體雷射的應用領域。 然而,許多應用中都需要可調波長的雷射光源。例 如,在偵測環境微量氣體方面,因為不同氣體會有不同 〇 的吸收波長,可調波長的雷射加上光譜偵測系統可以應 用在多種微量氣體的倩測及分析。又例如,在全彩雷射200420931, ^ * V. Description of the invention (l) The technical field to which the invention belongs This invention relates to the design of gratings for single crystals of nonlinear optics, especially for quasi-phase matching (Q uasi — P hase-M atching; QP Μ) nonlinear optics Design of linear and fan-shaped series grating of monolithic crystal and laser generating device using the crystal as a frequency converter. Previous technologies With the rapid evolution of laser technology, various lasers have been widely used in different fields. Traditionally, most laser light emits a fixed wavelength or frequency by using the transition of electrons or carriers between different energy levels. • Coherent electromagnetic radiation. Taking solid-state lasers as an example, solid-state lasers have become the mainstream of all types of lasers due to the simple and lightweight system and the booming development of optoelectronic materials science in recent years. Semiconductor lasers are the most typical example. Semiconductor lasers are popular because of their small size, low power consumption for operation, easy mass production, and low cost. However, due to the limitation of the energy level of the semiconductor material, it can only produce some specific wavelength output, and the output power is low, which cannot meet many applications that require high-power coherent light sources. These characteristics limit the application of semiconductor lasers. However, many applications require laser sources with adjustable wavelengths. For example, in the detection of environmental trace gases, because different gases have different absorption wavelengths, lasers with adjustable wavelengths combined with a spectral detection system can be applied to the detection and analysis of multiple trace gases. Another example, in full-color lasers

第10頁 200420931 五、發明說明(2) 平面顯示器方面,每一像點(p i X e 1 )係由發出紅、綠、藍 三色波長的雷射光源選擇性地聚焦產生。雖然部分雷射 光源,如染料雷射(dye laser)、自由電子雷射(free-electron laser)與一些非線性晶體雷射,均可在一定程 度下調整其發射出雷射的波長,但是其波長可調範圍仍 不夠大,且價格昂貴、能量轉換效率低、操作不便。 在最近幾年,隨著非線性光學的快速發展,可調波 長雷射亦有長足的進步。較常使用的二階極化非線性光 學效應係藉由一個或二個入射雷射光源(在某些情形下、 如倍頻,該二入射光源可藉由同一雷射源而得)依同一路 徑地通過一非線性光學晶體而產生混頻作用,藉以發出 ‘ 一預期中的特殊波長雷射。其中,二階非線性光學效應 (second-order nonlinear optical effect)包括二階 諧頻產生(Second Harmonic Generation; SHG)、差頻產 生(Difference Frequency Generation; DFG)、和頻產 生(Sum Frequency Generation; SFG)以及光參數產生、 光參數放大和光參數振盪(〇ptical parametricPage 10 200420931 V. Description of the invention (2) In the flat display, each image point (piXe1) is generated by selective focusing of a laser light source that emits three wavelengths of red, green and blue. Although some laser light sources, such as dye lasers, free-electron lasers, and some nonlinear crystal lasers, can all adjust the wavelength of their laser emission to a certain extent, but their The wavelength tunable range is still not large enough, and it is expensive, has low energy conversion efficiency, and is inconvenient to operate. In recent years, with the rapid development of nonlinear optics, tunable-wavelength lasers have also made great progress. The more commonly used second-order polarized nonlinear optical effects are caused by one or two incident laser sources (in some cases, such as frequency doubling, the two incident sources can be obtained from the same laser source) following the same path Ground passes through a non-linear optical crystal to produce a mixing effect, thereby emitting 'an expected special wavelength laser. The second-order nonlinear optical effect includes second-order harmonic generation (SHG), difference frequency generation (DFG), and sum frequency generation (SFG), and Optical parameter generation, optical parameter amplification, and optical parameter oscillation

Generation, Amplification, Oscillation; OPG, OPA 0 P 0 )等。在二階非線性轉換的過程中,如果所發出的雷 射信號和其它二個雷射光信號在晶體中達到相位匹配 (phase-matching)時,所發出雷射的強度會因通過晶體Generation, Amplification, Oscillation; OPG, OPA 0 P 0) and so on. In the process of second-order nonlinear conversion, if the emitted laser signal and the other two laser light signals reach phase-matching in the crystal, the intensity of the emitted laser will pass through the crystal

的長度而累積增強。如果此r道兩私止 X不此一遏雷射光的相位不匹配, 所發出雷射的強度則益法括螬掛& ^ h、、、成倚躓增強。在非線性光學晶體 中,可使所欲發出的雷射作·获% ^ π & ^ ^ ^ 田町1口疏強度累積增強的距離稱為The cumulative increase in length. If the two channels X and X do not match the phase of the laser light, the intensity of the emitted laser will be strengthened in accordance with the law. In a non-linear optical crystal, the desired laser emission can be achieved. ^ Π & ^ ^^

200420931 五、發明說明(3) 一個同調長度(coherence length)。因此’在相位不匹 配的情形下,發出雷射的強度至多僅能經由單一同調長 度而累積,通常在這種情形下該同調長度只有數微米 (m m)的大小。故要使三信號達到相位匹配的情形,須巧 妙設計晶體的非線性光學特性,以使所欲產生的雷射強 度在非線性晶體中持續增長。由於溫度也可以改變晶體 的折射率,從而改變相位匹配的條件,因此改變非線性 晶體溫度是調整射出雷射波長的方法之一。 准相位匹配非線性雷射是最近為改良可調波長雷射 的效率而發展出來的。參見Fejer at el.發表的n Quasi-Phase-Matched Second Harmonic Generation: Tuning W and Tolerances, f, IEEE Journal of Quantum200420931 V. Description of the invention (3) A coherence length. Therefore, in the case of phase mismatch, the intensity of the emitted laser can only be accumulated at most through a single coherence length, and usually the homology length is only a few micrometers (m m) in this case. Therefore, in order to achieve the phase matching of the three signals, it is necessary to design the nonlinear optical characteristics of the crystal cleverly so that the laser intensity to be generated continuously increases in the nonlinear crystal. Since the temperature can also change the refractive index of the crystal, thereby changing the conditions of phase matching, changing the nonlinear crystal temperature is one of the methods to adjust the laser wavelength. Quasi-phase-matched nonlinear lasers have recently been developed to improve the efficiency of tunable wavelength lasers. See n Quasi-Phase-Matched Second Harmonic Generation: Tuning W and Tolerances, f, IEEE Journal of Quantum by Fejer at el.

Electronics, vol· 28, 1992 pp· 2631-2654 ,以及美 國專利第5, 036, 220 號、第5, 800, 767 號、第5, 714, 198 號、第5,838,702號專。准相位匹配(Quasi-phase matching; QPM)技術主要是在非線性光學晶體上製作週 期性晶格極化反轉來補償因色散效應而導致在晶體内作 頻率轉換交互作用的光波其相速度的差異,如此,將可 在此類晶體上達成以非臨界相位匹配(n 0 n c r丨t丨c a 1 phase-matching)方式於其光透明波長區間内作任何的波 長交互作用與轉換。以此准相位匹配的補償方式,將可 使交互作用的光波運用此晶體非線性係數張量中的最大 〇 元素而達成較高的非線性轉換效率。 在前述技術的架構中,晶體的二階非線性光學係數Electronics, vol. 28, 1992 pp. 2631-2654, and U.S. Patent Nos. 5,036,220, 5,800,767, 5,714,198, and 5,838,702. Quasi-phase matching (QPM) technology is mainly used to make periodic lattice polarization inversion on non-linear optical crystals to compensate for the phase velocity of light waves that interact with frequency conversion in the crystal due to dispersion effects. The difference is, in this way, any wavelength interaction and conversion can be achieved on such crystals in a non-critical phase-matching (n 0 ncr 丨 t 丨 ca 1 phase-matching) manner within its light-transparent wavelength range. With this quasi-phase matching compensation method, the interacting light waves can use the largest 0 element in the nonlinear coefficient tensor of the crystal to achieve a higher nonlinear conversion efficiency. In the framework of the aforementioned technology, the second-order nonlinear optical coefficient of the crystal

200420931 五、發明說明(4) 以每一同調長度為單位作週期性的變號,用以達到相位 匹配的目的(此即稱為准相位匹配),並有效產生另一頻 率的雷射光。因此吾人可利用准相位匹配技術選擇非線 性晶體中最大的非線性光學係數來達到最大的雷射能量 轉換效率。週期性變號通常是利用週期性地改變鐵電物 質(ferroelectric material)的自發極化(spontaneous polarization)方向而完成。除了幫浦雷射的波長與操作 溫度,交替極化區域的間隔週期決定發出雷射的波長。 當幫浦雷射波長及鐵電物質的光栅週期都被固定時,可 利用改變溫度來小幅調整發出雷射的波長。許多鐵電物 質(ferroelectric material)可以形成相當良好的准相· 位匹配非線性光學晶體,例如鈮酸鋰(Li Nb03)、钽酸鋰 (LiTa03)、鈮酸鉀(KNb03)、磷酸氧鈦鉀(KTi0P04;KTP)、 砷酸氧鈦铷(1?1)1[丨(^3〇4;1^八)、磷酸氧鈦铷(1^1^0?04)等 等。 第一圖(A)所示為一種習用之准相位匹配非線性光學 晶體1 0 1 ,該晶體1 0 1僅具有單一光柵週期,所以在該晶 體中只有一種非線性光學效應可以達成相位匹配。例如 Myers 等人發表之丨’Quasi-phase-matching 1· 064 //m-pumped optical parametric oscillator in bulk periodically poled LiNb03,MOPTICS LETTERS ¥〇1.2〇^〇.1,以11.1995,0?.52-54。第一圖(8)所示為〇 另一種習用之准相位匹配非線性光學晶體1 〇 2,該晶體 1 0 2係由不同光栅週期的二部分單晶組成,所以具有使兩200420931 V. Description of the invention (4) Periodically change the number with each homology length as a unit to achieve the purpose of phase matching (this is called quasi-phase matching) and effectively generate laser light at another frequency. Therefore, we can use the quasi-phase matching technology to select the largest nonlinear optical coefficient in the nonlinear crystal to achieve the maximum laser energy conversion efficiency. Periodically changing the number is usually accomplished by periodically changing the direction of the spontaneous polarization of the ferroelectric material. In addition to the wavelength and operating temperature of the pump laser, the interval period of the alternately polarized region determines the wavelength of the emitted laser. When the pump laser wavelength and the grating period of the ferroelectric material are fixed, the wavelength of the laser can be adjusted slightly by changing the temperature. Many ferroelectric materials can form fairly good quasi-phase · position-matching nonlinear optical crystals, such as lithium niobate (Li Nb03), lithium tantalate (LiTa03), potassium niobate (KNb03), potassium titanyl phosphate (KTi0P04; KTP), titanyl arsenate (1? 1) 1 [丨 (^ 3〇4; 1 ^ eight), titanyl osmium phosphate (1 ^ 1 ^ 0? 04), and so on. The first figure (A) shows a conventional quasi-phase-matching nonlinear optical crystal 1 0 1, which has only a single grating period, so there is only one kind of nonlinear optical effect in the crystal to achieve phase matching. For example, published by Myers et al. 'Quasi-phase-matching 1.064 / m-pumped optical parametric oscillator in bulk periodically poled LiNb03, MOPTICS LETTERS ¥ 〇1.2〇 ^ 〇.1, with 11.1995, 0? .52-54 . The first figure (8) shows 〇 Another conventional quasi-phase-matching nonlinear optical crystal 1 02, which is composed of two part single crystals with different grating periods.

第13頁 200420931 五、發明說明(5) 種非線性光學效應達成相位匹配的能力。例如Rosenberg 發表之丨丨2.5 - W continuous - wave, 629 - nm solid - state laser source", Optics Letters, Vo 1. 23 No. 1, February 1, 1998, pp· 207-209 ,以及美國專利第 5,768,302 號。 在於這類的准相位匹配(Quasi-Phase-Matching; Q Ρ Μ)非線性光學晶體中,晶體的非線性光學參數會於雷 射行進方向作週期性的變號。舉例而言,准相位匹配 (Q u a s i - P h a s e - M a t c h i n g ; Q Ρ Μ )技術使二階非線性轉換過 程符合下列之准相位匹配條件:Page 13 200420931 V. Description of the invention (5) The ability to achieve phase matching with 5 kinds of nonlinear optical effects. For example, Rosenberg published 2.5-W continuous-wave, 629-nm solid-state laser source ", Optics Letters, Vo 1. 23 No. 1, February 1, 1998, pp. 207-209, and US Patent No. 5,768,302. number. In this type of Quasi-Phase-Matching (QPM) nonlinear optical crystal, the nonlinear optical parameters of the crystal will be changed periodically in the direction of laser travel. For example, the quasi-phase matching (Q u a s i-P h a s e-M a t c h i n g; Q P M) technology enables the second-order nonlinear conversion process to meet the following quasi-phase matching conditions:

η3(Τ)/ λ3 - η2(Τ)/ λ2 - ni(T)/ = 1/ 八 同時符合量子光學中之能量守恆條件 1/ λ3 _ 1/ λ2 ~1/ λ X = 0 (2) 其中,Λ是准相位匹配非線性光學晶體之晶格反轉光栅週 期,又I,2,3是三混合波之真空波長,以及n!,2 JT)為以波長 為又u,3等三波分別在晶體内之折射率。由於折射率的值&視 物質及溫度而定,因此晶體溫度T將決定式(1 )中的折射 率的值。對一已知的光栅週期、及任意一個混頻波長,' 兩個聯立式(1, 2 )可以解出另外未知的兩個混合波的、皮 長。然而,單一晶體組成的二光柵在進行非線性光學響/ 應時由於係處於一相同之溫度,於調變晶體溫度時了 ^ 一准相位匹配光栅區產生之波長很難在相同溫度下同時 滿足第二准相位位匹配光栅區之准相位匹配條件。此夕I 當溫度稍有變化時’亦可能造成其中一光栅的相位不匹η3 (Τ) / λ3-η2 (Τ) / λ2-ni (T) / = 1 / Eight simultaneously meet the energy conservation conditions in quantum optics 1 / λ3 _ 1 / λ2 ~ 1 / λ X = 0 (2) where , Λ is the period of the lattice inversion grating of the quasi-phase-matched nonlinear optical crystal, and I, 2, 3 are the vacuum wavelengths of the three mixed waves, and n !, 2 JT) are the three waves with the wavelength u and 3, respectively Refractive index within the crystal. Since the value of the refractive index depends on the substance and the temperature, the crystal temperature T will determine the value of the refractive index in the formula (1). For a known grating period and any mixing wavelength, 'two simultaneous equations (1, 2) can solve the skin length of two other unknown mixed waves. However, the two gratings composed of a single crystal are at the same temperature when performing non-linear optical response / response. When the crystal temperature is adjusted, it is difficult to meet the wavelengths generated by the quasi-phase matching grating region at the same temperature. The second quasi-phase bit matches the quasi-phase matching condition of the grating region. At this moment, when the temperature changes slightly, it ’s possible that the phase of one of the gratings is not matched.

200420931 五、發明說明(6) 配。此困難不僅造成實際之雷射輸出結果與設計不符、 亦造成雷射波長的可調幅度有限,且無法於晶體固定溫 度下或一溫度範圍内提供可連續調變波長之雷射,因此 無法滿足實際需要。 職是之故,本發明鑑於習知技術的缺失,乃經悉心 試驗與研究,並一本鍥而不捨之精神,終創作出本案之 『單週期與扇形光柵串連之准相位匹配非線性光學單一 晶體及利用該晶體之波長可調雷射產生裝置』,揭露一 種實用、新穎且進步的雷射產生架構,允許於晶體固定 溫度或一温度範圍内做連續非線性頻率轉換與大幅度的 波長調整。 4 發明内容 本案的主要目的係為揭露一種單週期與扇形光柵串 連之准相位匹配非線性光學單一晶體,該晶體可以進行 雷射頻率轉換。 本案的次一目的係為提供一種非線性光學晶體,該 晶體可以在固定溫度或一溫度範圍下進行雷射頻率轉 換。 為達上述目的,本案提供一種准相位匹配非線性光 學單一晶體,其至少包括:一准相位匹配單一週期光柵 區,其沿一第一方向具有一第一光柵週期;以及一准相 位匹配扇形光栅區,其沿一第二方向具有一可調變之沿 ❹ 該第一方向之一第二光栅週期,且該第二光栅週期其週 期大小係隨著該第二方向的位移變化而連續變化。其200420931 V. Description of Invention (6) Matching. This difficulty not only causes the actual laser output results to be inconsistent with the design, but also results in a limited adjustable laser wavelength, and cannot provide a laser that can continuously adjust the wavelength at a fixed crystal temperature or within a temperature range. nessecery. Therefore, in view of the lack of known technology, the present invention has been carefully tested and researched, and has persevered in the spirit, and finally created the "single-period and fan-shaped grating series quasi-phase matching nonlinear optical single crystal in this case." And using the crystal's wavelength-tunable laser generation device ", a practical, novel and progressive laser generation architecture is disclosed, which allows continuous nonlinear frequency conversion and large-scale wavelength adjustment at a fixed temperature or a temperature range of the crystal. 4 Summary of the Invention The main purpose of this case is to disclose a quasi-phase-matching nonlinear optical single crystal with a single period and a fan-shaped grating series, which can perform laser frequency conversion. A secondary object of the present case is to provide a nonlinear optical crystal which can perform laser frequency conversion at a fixed temperature or a temperature range. To achieve the above object, the present invention provides a quasi-phase-matched nonlinear optical single crystal, which at least includes: a quasi-phase-matched single-period grating region having a first grating period in a first direction; and a quasi-phase-matched sector grating The region has a second grating period that is adjustable along a second direction and a first grating period in the first direction, and the period size of the second grating period is continuously changed as the displacement in the second direction changes. its

第15頁 200420931 五、發明說明(7) 中,該第二方向係垂直該第一方向。 本案的又一目的係提供一種使用上述准相位匹配單 一晶體之波長可調雷射產生裝置。該雷射產生裝置可以 利用該晶體於一固定溫度或一溫度範圍下連續選取該准 相位匹配扇形光柵區之一第二光柵週期進行雷射頻率轉 換,以提供波長連續可調之雷射。 為達上述目的,本案提供一種波長可調雷射產生裝 置,其至少包括:一准相位匹配非線性光學單一晶體,其 係具有一准相位匹配單一光栅區與一准相位匹配扇形光 柵區,其中該准相位匹配單一光柵區沿一第一方向具有 一第一光柵週期,而該准相位匹配扇形光栅區沿一第二 麵^ 方向具有一可調變之沿該第一方向之一第二光栅週期, 且該第二光柵週期其週期大小係隨著該第二方向的位移 變化而連續變化,其中該第二方向係垂直於該第一方 向;以及至少一雷射輸入光源,用以提供具有至少一波 長之第一雷射信號沿該第一方向射入該准相位匹配非線 性光學單一晶體。藉此,當該第一雷射信號射入該准相 位匹配非線性光學單一晶體後,晶體内部因應各個光栅 特性會產生至少二個非線性光學頻率或波長轉換效應, 以射出具有至少一個不同於輸入波長之第二雷射信號。 根據本案之構想’本案晶體中单週期光拇區和扇形 光柵區的排列順序並非固定,幫浦雷射光源可先射入單 週期光柵區再射入扇形光栅區,亦可先射入扇形光柵區 再射入單週期光柵區。當幫浦雷射光源射入第一光柵區Page 15 200420931 5. In the description of the invention (7), the second direction is perpendicular to the first direction. Another object of the present invention is to provide a wavelength-tunable laser generating device using the above-mentioned quasi-phase matching single crystal. The laser generating device can use the crystal to continuously select a second grating period of the quasi-phase matching sector grating region at a fixed temperature or a temperature range to perform laser frequency conversion to provide a laser whose wavelength is continuously adjustable. To achieve the above object, the present invention provides a wavelength-tunable laser generating device, which at least includes: a quasi-phase-matching nonlinear optical single crystal, which has a quasi-phase-matching single grating region and a quasi-phase-matching fan-shaped grating region, wherein The quasi-phase matching single grating region has a first grating period in a first direction, and the quasi-phase matching sector grating region has a second grating that is tunable along the first direction along a second surface ^ direction. Period, and the period size of the second grating period is continuously changed as the displacement of the second direction changes, wherein the second direction is perpendicular to the first direction; and at least one laser input light source is used to provide A first laser signal of at least one wavelength enters the quasi-phase-matching nonlinear optical single crystal along the first direction. Therefore, after the first laser signal is incident into the quasi-phase-matching nonlinear optical single crystal, at least two non-linear optical frequency or wavelength conversion effects are generated in the crystal according to the characteristics of each grating, so that the emission has at least one difference from The second laser signal at the input wavelength. According to the idea of this case, the arrangement order of the single-period optical thumb region and the fan-shaped grating region in the crystal of this case is not fixed. The pump laser light source can first enter the single-period grating region and then into the fan-shaped grating region, or it can also enter the fan-shaped grating first. The area is shot into the single-cycle grating area. When the pump laser light source enters the first grating region

第16頁 200420931 五、發明說明(8) 後,幫浦雷射的頻率會先作第一次轉換,當繼續射入第 二光柵區後,幫浦雷射的頻率又作第二次轉換。 根據本案之構想,該波長可調雷射產生裝置更包括 一溫控爐(temperature-controlling oven),用以改變 晶體的准相位特性以增大波長調變範圍。 根據本案之構想,該波長可調雷射產生裝置更可包 括一共振腔,該共振腔可為設置於非線性光學晶體兩側 之二反射鏡,或為直接鍍於非線性光學晶體兩端面之二 反射薄膜。 根據本案之構想,該雷射產生裝置更可包括一環狀 共振腔結構,該環狀共振腔結構包括至少兩個反射鏡, φ 其係位於該非線性光學晶體沿該第一方向之兩側,以及 至少兩個反射鏡,其係位於該非線性光學晶體之外側。 根據本案之構想,該雷射產生裝置更包括一聚焦透 鏡或光學透鏡系統,其係用以將該第一雷射信號聚焦並 導引其射入該非線性光學晶體。 本案得藉由下列圖示即詳細說明,俾使一更深入之 瞭解: 圖示簡單說明 第一圖(A):係為習知技術之單週期准相位匹配非線 性光學晶體。 Μ 第一圖(Β ):係為另一習知技術之縱向串接雙週期准 相位匹配非線性光學晶體。Page 16 200420931 V. Description of the invention (8), the frequency of the pump laser will be converted for the first time, and after the second grating area is continued, the frequency of the pump laser will be converted for the second time. According to the idea of the present case, the wavelength-tunable laser generating device further includes a temperature-controlling oven to change the quasi-phase characteristics of the crystal to increase the wavelength modulation range. According to the concept of the present case, the wavelength-tunable laser generating device may further include a resonant cavity, which may be two reflecting mirrors disposed on both sides of the non-linear optical crystal, or may be directly plated on both end surfaces of the non-linear optical crystal. Two reflective films. According to the idea of the present case, the laser generating device may further include a ring-shaped resonant cavity structure including at least two reflectors, φ are located on both sides of the nonlinear optical crystal along the first direction, And at least two mirrors, which are located outside the non-linear optical crystal. According to the concept of the present case, the laser generating device further includes a focusing lens or an optical lens system, which is used to focus the first laser signal and guide it to the non-linear optical crystal. This case can be explained in detail by the following diagrams, so as to make a deeper understanding: The diagrams are briefly explained. The first diagram (A): is a single-cycle quasi-phase-matched nonlinear optical crystal of conventional technology. Μ The first picture (B): It is a longitudinally connected double-period quasi-phase-matching nonlinear optical crystal of another conventional technique.

第17頁 200420931 五、發明說明(9) 第二圖:係為本案准相位匹配非線性光學單一晶體之 第一較佳實施例示意圖。 第三圖··係為本案准相位匹配非線性光學單一晶體之 另一較佳實施例示意圖。 第四圖:係為本案雷射產生裝置之第一較佳實施例示 意圖,其中該雷射產生裝置未使用共振反射鏡組。 第五圖··係為本案雷射產生裝置之第二較佳實施例示 意圖,其中該晶體兩側具有二共振反射鏡。 第六圖··係為本案雷射產生裝置之第三較佳實施例示 意圖,其中該晶體兩端面鍍有二光學薄膜。 第七圖:係為本案雷射產生裝置之第四較佳實施例示· 意圖。 圖示符號說明 1 〇 1 :單週期准相位匹配非線性光學晶體 1 0 2 :縱向串接雙週期非線性光學晶體 2 0 1 :串接早週及扇形光拇准相位匹配非線性光學單一 晶體 2 0 1 1 :早週光才冊區 2 0 1 2 :扇形光柵區 3 0 1 :幫浦雷射光源 3 0 2 :聚焦透鏡或光學透鏡系統 303, 304, 305, 306:串接單週及扇形光栅准相位匹配非 線性光學單一晶體Page 17 200420931 V. Description of the invention (9) The second figure: a schematic diagram of the first preferred embodiment of the quasi-phase-matched nonlinear optical single crystal of this case. The third figure is a schematic diagram of another preferred embodiment of the quasi-phase-matched nonlinear optical single crystal of the present invention. Fig. 4 is a schematic view of the first preferred embodiment of the laser generating device of the present invention, wherein the laser generating device does not use a resonance mirror group. The fifth figure is the schematic diagram of the second preferred embodiment of the laser generating device of the present invention, wherein two sides of the crystal are provided with two resonance mirrors. Fig. 6 is a schematic view of a third preferred embodiment of the laser generating device of the present invention, in which two optical films are plated on both ends of the crystal. The seventh figure: the fourth preferred embodiment of the laser generating device of this case. Explanation of symbols 1 〇1: Single-period quasi-phase-matching nonlinear optical crystal 1 02: Vertically cascaded bi-period-linear nonlinear optical crystal 2 0 1: Series-connected early-period and fan-shaped quasi-phase-matching nonlinear optical single crystal 2 0 1 1: Early light area 2 0 1 2: Sector grating area 3 0 1: Pump laser light source 3 0 2: Focusing lens or optical lens system 303, 304, 305, 306: Single cycle in series And sector grating quasi-phase matching nonlinear optical single crystal

第18頁 200420931 五、發明說明(ίο) 3031,3041,3051,3061:單週光柵區 3 0 3 2,3 0 4 2,3 0 5 2,3 0 6 2 :扇形光柵區 401,403,405,407:溫控爐 501,502:共振腔反射鏡 503,504:光學薄膜 505, 506:共振腔反射鏡 實施方法 壹·准相位匹配非線性光學單一晶體 第二圖所示為本案之准相位匹配非線性光學單一晶 體。該串接單週及扇形光栅准相位匹配非線性光學單一 晶體2 0 1較佳為單晶晶格極化反轉之鐵電物,例如鈮酸鋰 (LiNb03)、钽酸鋰(LiTa03)、鈮酸鉀(KNb03)、磷酸氧鈦鉀 (KTi0P04;KTP)、砷酸氧鈦伽(RbTiOAs04;RTA)、磷酸氧鈦 铷(RbTiOP〇4)或其他類似物等。於此實施例中,串接單 週及扇形光栅准相位匹配光學單一晶體2 0 1之光栅設計包 括兩部分-單週光栅區(single-period grating)2011與 扇形光栅區(fan-out grating)2012。該單週光栅區2011 沿第一方向具有一非線性光學特性,該第一方向即為光 柵週期方向與雷射進行方向。該扇形光栅區2 0 1 2沿第二 方向具有調變沿該第一方向之非線性光學特性,其中兮 第二方向係與該第一方向互相垂直。 當應用上述之非線性光學單一晶體2 0 1時,可藉由古周 變晶體2 0 1橫向(亦即該第二或y方向)之位置,以選擇扇。Page 18 200420931 V. Description of the invention 3031,3041,3051,3061: Single-cycle grating area 3 0 3 2, 3 0 4 2, 3 0 5 2, 3 0 6 2: Fan-shaped grating area 401, 403, 405, 407: Temperature-controlled furnaces 501, 502: Resonant cavity mirrors 503, 504: Optical films 505, 506: Resonant cavity mirror implementation method I. Quasi-phase matching nonlinear optical single crystal The second picture shows the quasi-phase matching nonlinear optical single in this case Crystal. The cascaded single-circle and sector-shaped grating quasi-phase-matched nonlinear optical single crystal 2 0 1 is preferably a ferroelectric with single-crystal lattice inversion, such as lithium niobate (LiNb03), lithium tantalate (LiTa03), Potassium niobate (KNb03), potassium titanyl phosphate (KTi0P04; KTP), titanyl arsenate (RbTiOAs04; RTA), titanyl osmium phosphate (RbTiOP04), or the like. In this embodiment, the grating design of the single-period and fan-shaped quasi-phase matching optical single crystal 201 connected in series includes two parts-a single-period grating 2011 and a fan-out grating. 2012. The single-circle grating region 2011 has a non-linear optical characteristic along a first direction, and the first direction is a grating periodic direction and a laser traveling direction. The fan-shaped grating region 2 0 1 2 has a non-linear optical characteristic that is modulated along the first direction, wherein the second direction is perpendicular to the first direction. When the above-mentioned non-linear optical single crystal 201 is used, the fan can be selected by the position of the paleoperipheral crystal 201 in the lateral direction (that is, the second or y direction).

第19頁 200420931 五、發明說明(11) 形光栅區2 0 1 2之最適光柵週期,使晶體2 0 1之非線性頻率 轉換最適化。此外,串接單週及扇形光柵准相位匹配光 學單一晶體2 0 1中之單週光栅區2 0 1 1和扇形光栅區2 〇 1 2排 列順序並非固定,可視應用而將單週光柵區2 〇 1 1排列於 扇形光柵區2 0 1 2之前(相對於幫浦雷射源),亦可將扇形 光柵區2 0 1 2排列於單週光柵區2 0 1 1之前(如第三圖所 示)。藉由上述之晶體光柵結構,當幫浦雷射光源(未圖 示)所發出之雷射射入第一光柵區(如第二圖之單週光栅 區2 0 1 1或第三圖之扇形光柵區2 〇 1 2 )後,幫浦雷射的頻率 會先作第一次轉換,當繼續射入第二光栅區(如第二圖之 扇形光柵區2012或第三圖之單週光柵區2011)後,幫浦雷嫌 射的頻率又作第二次轉換,因此可藉由此晶體而達到准 相位匹配雷射頻率轉換之目的。然而,必須注意的是, 本案晶體中的光柵設計可以具有其他的修飾與變化,並 不限於以上揭露的較佳實施例而已。 貳.利用單週期與扇形光栅串連之准相位匹配光學單一晶 體之波長可調雷射產生裝置及實施例 A·波長可調之二階二次諧振(SHG)加光參數產生(〇PG)雷 射:, <1 第四圖所示為本案雷射產生裝置的第一較佳實施 例。該雷射產生裝置主要包括一幫浦雷射光源3 0 1 、一聚 焦透鏡或光學透鏡系統3〇 2以及一串接單週及扇形光柵准Page 19 200420931 V. Description of the invention The optimum grating period of the (11) shaped grating region 2 0 1 2 is to optimize the nonlinear frequency conversion of the crystal 2 0 1. In addition, the single-cycle grating region 2 0 1 1 and the fan-shaped grating region 2 0 1 in the single-cycle and sector-shaped grating quasi-phase matching optical single crystal 2 01 are not connected in a fixed order. 〇1 1 is arranged before the fan grating area 2 0 1 2 (relative to the pump laser source), and the fan grating area 2 0 1 2 can also be arranged before the single-circle grating area 2 0 1 1 (as shown in the third figure). Show). With the above-mentioned crystal grating structure, when the laser emitted by the pump laser light source (not shown) enters the first grating region (such as the single-circle grating region of the second figure 2 0 1 1 or the fan shape of the third figure) After the grating area 2 0 1 2), the frequency of the pump laser will be converted for the first time. When it continues to enter the second grating area (such as the fan-shaped grating area 2012 of the second picture or the single-circle grating area of the third picture) After 2011), the frequency of the pumped laser was converted a second time, so the quasi-phase-matched laser frequency conversion can be achieved by this crystal. However, it must be noted that the grating design in the crystal of the present case may have other modifications and changes, and is not limited to the preferred embodiments disclosed above.贰. A wavelength-tunable laser generating device using a quasi-phase matching optical single crystal connected in series with a single period grating and a sector grating and the embodiment A · wavelength-tunable second-order secondary resonance (SHG) plus light parameter generation (〇PG) thunder ≪ 1 The fourth figure shows the first preferred embodiment of the laser generating device of the present invention. The laser generating device mainly includes a group of laser light sources 301, a focusing lens or optical lens system 302, and a series of single-circle and fan-shaped grating standards.

第20頁 200420931 五、發明說明(12) 相位匹配光學單一晶體3 〇 3。幫浦雷射光源3 〇 1係用以發 出一具有第一波長的輸入雷射信號以進入串接單週及扇 形光栅准相位匹配非線性光學單一晶體3 〇 3。聚焦透鏡或 光學透鏡系統3 0 2係用以將輸入雷射信號聚焦並導引其射 入正確位置。將幫浦雷射光源3 〇 1所產生之雷射信號射入 該串接單週及扇形光柵准相位匹配光學單一晶體3 〇 3後, 晶體3 0 3將進行前述之雷射頻率轉換,且將射出一預設波 長的雷射光束。於此實施例中,該串接單週及扇形光拇 准相位匹配光學單一晶體3 〇 3可設置於一溫控爐4 0 1中, 藉以改變及控制該晶體3 〇 3溫度。該溫控爐4 0 1係用以改 變晶體3 0 3的准相位特性,以利用溫度變化來輸出特定波1 長範圍之雷射光束。 於上述實施例中,串接單週及扇形光柵准相位匹配 光學非線性單一晶體3 0 3以經過週期性晶格極化反轉之鈮 酸 IS(periodically poled lithium nibobate; PPLN)為 較佳。其中,單一光柵區3031的長度可約為1-3cm,其光 柵週期(Λ )為6 · 6 7mm,可在1 0 0 °C利用二階二次諧振 (second-order SHG)將幫浦光源301所發出之1064-nm幫 浦雷射倍頻,以轉換為一 5 3 2 n m之雷射輸出至扇形光柵區 3032。另外,扇形光柵區3032的長度可約為4cm,其光栅 週期(Λ )於5mm之橫向(亦即該第二或y方向)寬度可連續禮_ 調變於ll-12mm之間。在lOOt:時當該532nm的雷射射入扇 Μ 形光柵區3 0 3 2時,扇形光栅區3 0 3 2將以可調變之光參數 產生過程(0PG)輸出波長範圍618nm至590nm之雷射。換言Page 20 200420931 V. Description of the invention (12) Phase matching optical single crystal 3 03. The pump laser light source 301 is used to emit an input laser signal having a first wavelength to enter a tandem single-cycle and fan-shaped grating quasi-phase-matched nonlinear optical single crystal 303. The focusing lens or optical lens system 3 2 is used to focus the input laser signal and guide it to the correct position. After the laser signal generated by the pump laser light source 3 〇1 is injected into the cascaded single-circle and sector-shaped grating quasi-phase matching optical single crystal 3 〇3, the crystal 303 will perform the aforementioned laser frequency conversion, and A laser beam of a predetermined wavelength will be emitted. In this embodiment, the series-connected single-circle and fan-shaped quasi-phase matching optical single crystal 3 03 can be set in a temperature-controlled furnace 4 01 to change and control the temperature of the crystal 3 03. The temperature control furnace 4 01 is used to change the quasi-phase characteristics of the crystal 3 03 so as to use the temperature change to output a laser beam of a specific range of 1 wave length. In the above embodiment, it is preferable to connect a single-cycle and sector-shaped grating quasi-phase-matched optically non-linear single crystal 303 with periodically poled lithium nibobate (PPLN) after periodic lattice polarization inversion. Among them, the length of a single grating region 3031 may be about 1-3 cm, and its grating period (Λ) is 6.67 mm, and the pump light source 301 may be driven by a second-order SHG at 100 ° C. The 1064-nm pump laser frequency multiplied is converted into a 5 3 2 nm laser and output to the sector grating region 3032. In addition, the length of the fan-shaped grating region 3032 may be about 4 cm, and the width of the grating period (Λ) of 5 mm in the lateral direction (that is, the second or y direction) may be continuously adjusted between 11 mm and 12 mm. At 100t: When the 532nm laser is incident into the fan M-shaped grating region 3 0 3 2, the fan-shaped grating region 3 0 3 2 will output a wavelength range from 618nm to 590nm with a tunable optical parameter generation process (0PG). Laser. In other words

第21頁 200420931 五、發明說明(13) 之,利用單週光柵區3 0 3 1於1 0 0 °C相位匹配所產生之 5 3 2 nm雷射,當該5 3 2 nm雷射於扇形光柵區3〇32橫向(亦即 沿該第二或y方向)地掃描1 1 — 1 2 m m之光柵週期時,扇形光 栅區3 0 3 2可藉由光參數產生(0PG)過程以於相同之溫度下 產生波長範圍618nm至590nm、波長連續可調之雷射光 束。藉此該雷射產生裝置可於晶體單一固定溫I下產生 連續可調波長之雷射。 & 另外,幫浦雷射光源301較佳者係為一摻鈥Q_開關雷 射(Nd3+ Q-sw itched laser),其發出波長為1〇64nm。由 於幫浦雷射的最高峰值功率可以超過十數千瓦 (ki lowatt)以上,所以幫浦雷射在經過單週光柵區3〇31 φ 可以經由一次簡諧振盪的非線性轉換機制將雷射能量幾 乎全部轉換為波長為5 3 2nm的雷射。此5 3 2 ηιη的雷射會繼 續通過扇形光柵區3 0 3 2 ’並在扇形光柵區3 〇 3 2中經由光 學參數過程產生雷射光。 B ·波長可調之光參數振盪(0 P 0 )加二階二次諧振(s H G )雷 射 在非線性雷射波長轉換過程中,為共振一個或多個 雷射信號以減少幫浦閾值(pumping thresh〇ld)並增強整 體雷射轉換效率’可如第五圖至第七圖實施例所示藉由 增加一共振腔而達成。 画 第五圖所示為本案雷射產生裝置的第二較佳實施 例。於此實施例中’雷·射產生裝置主要包括一幫浦雷射Page 21 200420931 V. Description of the invention (13), the 5 3 2 nm laser generated by phase matching of 3 0 3 1 at 100 ° C in a single-cycle grating region is used. When the 5 3 2 nm laser is in a sector shape When the grating region 3030 scans a grating period of 1 1-12 mm laterally (that is, along the second or y direction), the sector grating region 3 0 3 2 can be the same through the optical parameter generation (0PG) process. A laser beam with a wavelength in the range of 618nm to 590nm and a continuously adjustable wavelength is produced at a temperature. In this way, the laser generating device can generate a continuously adjustable wavelength laser at a single fixed temperature I of the crystal. & In addition, the pump laser light source 301 is preferably a Q-switched laser (Nd3 + Q-sw itched laser), whose emission wavelength is 10.64 nm. Since the highest peak power of pump lasers can exceed tens of kilowatts (ki lowatt), pump lasers pass through a single-cycle grating region of 3031 φ and can convert the laser energy through a simple resonance nonlinear conversion mechanism Almost all are converted into lasers with a wavelength of 5 3 2nm. This 5 3 2 ηη laser will continue to pass through the fan-shaped grating region 3 0 3 2 ′ and generate laser light in the fan-shaped grating region 30 2 2 through an optical parameter process. B. Wavelength-tunable optical parameter oscillation (0 P 0) plus second-order second-resonance (s HG) laser during the non-linear laser wavelength conversion process, which is used to resonate one or more laser signals to reduce the pump threshold ( Pumping thresh (ld) and enhancing the overall laser conversion efficiency can be achieved by adding a resonant cavity as shown in the fifth to seventh embodiments. The fifth drawing shows a second preferred embodiment of the laser generating device of the present invention. In this embodiment, the 'laser · radiation generating device mainly includes a group of lasers.

第22頁 200420931 五、發明說明(14) 光源3〇1、一聚焦透鏡或光學透鏡系統3〇2、一串接單週 及扇形光柵准相位匹配光學單一晶體3 〇 4,以及一共振腔 (由反射鏡5 0 1與5 0 2所組成)。該雷射產生裝置可於晶體 3 〇 4之溫度調變於3 〇 至丨5 〇間時,產生波長範圍介於 775nm至800nm間、波長連續可調之雷射光束。 於上述實施例中’幫浦雷射光源3 0 1係用以發出一具 有第一波長的輸入雷射信號以進入晶體3 0 4。聚焦透鏡或 光學透鏡系統3 0 2係用以將輸入雷射信號聚焦並導引其射 入正確位置。將幫浦雷射光源3 0 1所產生之雷射訊號射入 該准相位匹配光學單一晶體3 0 4後,晶體3 0 4將進行前述 之雷射頻率轉換,且將射出一預設波長範圍的雷射。晶 4 體3 0 4的兩側具有由二反射鏡501,5 0 2所組成之一共振 腔,用以循環一個或多個雷射信號以減少幫浦閥值 (pumping threshold)增強整體雷射轉換效率。另外,該 串接單週及扇形光柵准相位匹配光學單一晶體3 〇 4可設置 於一溫控爐4 0 3中,藉以改變及控制該晶體3 〇4溫度。該 溫控爐4 0 3係用以改變晶體3 0 4的准相位特性,以利用溫 度變化來調整輸出雷射的波長。 於上述實施例中,幫浦雷射光源3 0 1較佳者係為一摻 鈦Q-開關雷射(Nd3+ Q - switched laser),其發出波長為 1 0 6 4 n m。另外,串接單週及扇形光柵准相位匹配非線性 光學單一晶體3 0 4以經過週期性晶格極化反轉之鈮酸鋰 (periodically poled lithium nibobate; PPLN)為較 佳,且該晶體3 0 4係由兩部分光柵區所組成。該兩部分光Page 22 200420931 V. Description of the invention (14) Light source 301, a focusing lens or optical lens system 302, a series of single-circle and sector grating quasi-phase matching optical single crystal 304, and a resonant cavity ( Consists of mirrors 50 1 and 50 2). The laser generating device can generate a laser beam with a wavelength ranging between 775 nm and 800 nm and a continuously adjustable wavelength when the temperature of the crystal 300 is adjusted between 30 and 500. In the above embodiment, the 'pump laser light source 3 0 1 is used to emit an input laser signal having a first wavelength to enter the crystal 3 0 4. The focusing lens or optical lens system 3 2 is used to focus the input laser signal and guide it to the correct position. After the laser signal generated by the pump laser light source 3 0 1 is injected into the quasi-phase matching optical single crystal 3 0 4, the crystal 3 0 4 will perform the aforementioned laser frequency conversion and emit a preset wavelength range. Laser. Crystal 4 has a resonant cavity composed of two mirrors 501 and 50 2 on both sides of body 3 0 4 to circulate one or more laser signals to reduce the pumping threshold and enhance the overall laser. Conversion efficiency. In addition, the tandem single-circle and sector-shaped grating quasi-phase matching optical single crystal 304 can be set in a temperature-controlled furnace 403 to change and control the temperature of the crystal 304. The temperature control furnace 403 is used to change the quasi-phase characteristics of the crystal 304 so as to adjust the output laser wavelength by using the temperature change. In the above embodiment, the pump laser light source 3 0 1 is preferably a titanium-doped Q-switched laser (Nd3 + Q-switched laser) with an emission wavelength of 10 6 4 n m. In addition, cascaded single-period and sector-shaped grating quasi-phase-matched nonlinear optical single crystal 3 0 4 is preferably periodically poled lithium nibobate (PPLN) which undergoes periodic lattice polarization inversion, and the crystal 3 The 0 4 series consists of two parts of the grating area. The two parts of light

第23頁 200420931 五、發明說明(15) 柵區分別為光栅週期30mm之單週光栅區3〇41 ,以及光柵 ^期可於5mm之橫向(亦即該第二或y方向)寬度變化於19一 m m間之扇形光栅區3 〇 4 2。單週光柵區3 〇 4 1於此實施例 t係作為光參數振盪(0P0)過程之增益媒介,而扇形光柵 區3 0 4 2則作為第三階准相位匹配二次諧頻產生器(third — order QPM SHG)° '當晶體304溫度為30 °C時,單週光柵區3〇41(光柵週 期為3 0 m m之週期性晶格極化反轉銳酸链)共振腔中會以 1 55 Onm波長之光波振盪,稱為光學參數振盪。同樣在晶 f溫度為3 0 °C時,可橫向(亦即沿該第二或y方向)地調變 晶體3 0 4使得波長1 5 5 0 nm之光波掃描到扇形光柵區3 〇 4 2之 19mm光栅週期。光柵週期為19mm之扇形光栅區3 〇42將使 波長15 5 Onm之光波於30 °C下產生其倍頻光波,以產生波 長為775nm之雷射。為產生更多波長範圍且連續可調之雷 射’可將溫度調變至1 5 0。(:,於此情形下,單週光柵區 3 0 4 1中之准相位匹配條件將使光學參數振盪(〇p〇 )過程以 波長1 6 0 0 n m之光波振靈。藉由橫向(亦即沿該第二或y方 向)地調變串接單週及扇形光柵准相位匹配非線性光學單 一晶體3 0 4 ’可使得波長1 6 〇 〇 n in之光波掃描到扇形光栅區 3 0 4 2之19.8mm光柵週期。光柵週期為19 8mm之扇形光柵 區3042將使波長1600nm之光波於150°C下產生其倍頻光 波’以產生波長為800nm之雷射。藉此該雷射產生裝置便 可於晶體3 0 4之溫度調變於30 °C至150 °C間時,產生波長 範圍介於775nm至800ηπΓ間之波長連續可調雷射。Page 23 200420931 V. Description of the invention (15) The grating area is a single-circle grating area 3041 with a grating period of 30mm, and the grating period can be changed in width of 5mm in the lateral direction (that is, the second or y direction) to 19 Fan-shaped grating area 3 mm in one mm. The single-cycle grating region 3 0 4 1 is used as a gain medium for the optical parameter oscillation (0P0) process in this embodiment, and the fan-shaped grating region 3 0 4 2 is used as a third-order quasi-phase matching second harmonic generator (third — Order QPM SHG) ° 'When the temperature of the crystal 304 is 30 ° C, the resonant cavity of the single-circle grating region 3041 (the periodic lattice polarization inversion sharp acid chain with a grating period of 30 mm) will be 1 The optical wave oscillation of 55 Onm wavelength is called optical parameter oscillation. Similarly, when the temperature of the crystal f is 30 ° C, the crystal 3 0 4 can be modulated laterally (that is, along the second or y direction) so that a light wave with a wavelength of 1550 nm is scanned into the sector grating region 3 〇 2 2 19mm grating period. A fan-shaped grating region 3 042 with a grating period of 19 mm will cause a light wave with a wavelength of 15 5 Onm to generate its frequency-doubling light wave at 30 ° C to generate a laser with a wavelength of 775 nm. In order to generate more wavelength range and continuously adjustable laser ', the temperature can be adjusted to 150. (: In this case, the quasi-phase matching condition in the single-circle grating region 3 40 1 will cause the optical parameter oscillation (oop) process to vibrate with light waves with a wavelength of 16 0 nm. That is, along the second or y direction), the series-connected single-circle and sector-shaped grating quasi-phase-matched nonlinear optical single crystal 3 0 4 ′ can scan a light wave with a wavelength of 1 6 00 n in to the sector-shaped grating region 3 0 4 2 of the 19.8mm grating period. A fan-shaped grating region 3042 with a grating period of 19 8mm will cause a light wave with a wavelength of 1600nm to generate its frequency-doubling light wave at 150 ° C to generate a laser with a wavelength of 800nm. With this laser generating device When the temperature of the crystal 3 0 4 is adjusted between 30 ° C and 150 ° C, a laser with a continuously adjustable wavelength ranging from 775nm to 800ηπΓ can be generated.

第24頁 200420931 五、發明說明(16) 苐六圖所不為本案雷射產生糸統的弟二較佳實施 例。為了減少雷射產生裝置的大小,第五圖中的反射鏡 5 0 1, 5 0 2可被鍍於串接單週及扇形光栅准相位匹配非線 性光學單一晶體305兩端面的二光學薄膜503, 504取代。 當然,該光學薄膜503, 504的光譜反射率與曲率半徑可以 隨系統需求而改變。另外,於此實施例中,雷射產生裝 置之各組件如幫浦雷射光源3 0 1、一聚焦透鏡或光學透鏡 系統3 0 2、一串接單週及扇形光栅准相位匹配光學單一晶 體305(具單週光柵區3051與扇形光柵區3052)與溫控爐 4 0 5等之設計、原理及應用與第五圖所示之組件相似,因 此不再贅述。但應注意的是,若光學薄膜5 0 3, 5 0 4曲率半❿ 徑為無限大、形成兩面平面鏡,則本實施例通常較適用 於脈衝幫浦光源(pulsed pump source)。 第七圖所示為本案雷射產生裝置的第四較佳實施 例。於此實施例中,為了增加雷射產生裝置操作在單一 頻率之優點,可將第五圖中的反射鏡5 0 1, 5 0 2傾斜一特 定角度,並增加二共振腔反射鏡505,506以形成一 Bow -T i e環型共振腔結構而達成。於此實施例中,兩反射鏡 5 0 1,5 0 2係位於串接單週及扇形光柵准相位匹配光學單一 晶體3 0 6沿該第一方向之兩側,另兩個共振腔反射鏡 5 0 5,5 0 6則位於晶體3 0 6之外側。當然,於此實施例中, 雷射產生裝置之各組件如幫浦雷射光源3 0 1、一聚焦透鏡❶ 或光學透鏡系統3 0 2、一串接單週及扇形光柵准相位匹配 光學單一晶體3 0 6 (具單一光柵區3 0 6 1與扇形光柵區3〇 62)Page 24 200420931 V. Description of the Invention (16) The second picture is not the second preferred embodiment of the laser generation system in this case. In order to reduce the size of the laser generating device, the mirrors 501, 502 in the fifth figure can be plated on two optical films 503 on both ends of a single-period and fan-shaped grating quasi-phase-matching nonlinear optical single crystal 305 in series. , 504 replaced. Of course, the spectral reflectance and radius of curvature of the optical films 503, 504 can be changed according to the system requirements. In addition, in this embodiment, the components of the laser generating device, such as a pump laser light source 3 01, a focusing lens or an optical lens system 3 02, a series of single-circle and sector-shaped grating quasi-phase matching optical single crystal The design, principle, and application of 305 (with single-circle grating region 3051 and fan-shaped grating region 3052) and temperature-controlled furnace 405 are similar to the components shown in the fifth figure, so they are not described again. However, it should be noted that if the curvature radius of the optical film 503, 504 is infinite, and two plane mirrors are formed, this embodiment is generally more suitable for a pulsed pump source. The seventh figure shows a fourth preferred embodiment of the laser generating device of the present invention. In this embodiment, in order to increase the advantage of the laser generating device operating at a single frequency, the mirrors 5 0 1, 5 0 2 in the fifth figure may be tilted by a specific angle, and two resonant cavity mirrors 505, 506 may be added. This is achieved by forming a Bow-Tie ring resonator structure. In this embodiment, two mirrors 501, 502 are located on both sides of the tandem and sector grating quasi-phase matching optical single crystal 3 0 6 along the first direction, and two other cavity mirrors 5 0 5 and 5 0 6 are located outside the crystal 3 0 6. Of course, in this embodiment, the components of the laser generating device, such as pump laser light source 301, a focusing lens ❶ or an optical lens system 302, a series of single-cycle and sector-shaped grating quasi-phase matching optical single Crystal 3 0 6 (with single grating region 3 0 6 1 and sector grating region 3 062)

第25頁 200420931 五、發明說明(17) 與溫控爐4 0 7等之設計、原理及應用亦與第五圖所示之組 件相似,因此不再贅述。 縱上所述,本案之准相位匹配非線性光學單一晶體 (monolithic crystal)之光柵設計包括單週期光柵區與 扇形光栅區,其中扇形光柵區於其橫向(亦即沿該第二或 y方向)具有可調變之光柵週期。藉此,當應用該晶體於 雷射產生系統時,雖然整個准相位匹配非線性光學單一 晶體維持於一固定溫度,但可藉由橫向(亦即沿該第二或 X方向)移動該晶體而選擇一最適當之光栅週期,藉此可 同時滿足兩光柵區之准相位匹配條件,進而達到波長連 續可調之目的。另外,亦可藉由調變晶體溫度,以達到 Φ 更廣範圍之波長可調雷射。 本案得由熟悉本技術之人士任施匠思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。Page 25 200420931 V. Description of the invention (17) The design, principle and application of the temperature control furnace 407 are similar to the components shown in the fifth figure, so they will not be described again. As mentioned above, the grating design of the quasi-phase-matching nonlinear optical monolithic crystal in this case includes a single-period grating region and a sector grating region, where the sector grating region is in the lateral direction (that is, along the second or y direction). With adjustable grating period. Thus, when the crystal is applied to a laser generation system, although the entire quasi-phase-matching nonlinear optical single crystal is maintained at a fixed temperature, the crystal can be moved by moving the crystal laterally (that is, in the second or X direction). A most suitable grating period is selected so that the quasi-phase matching conditions of the two grating regions can be satisfied at the same time, and the purpose of continuously adjusting the wavelength can be achieved. In addition, you can adjust the crystal temperature to achieve a wider range of wavelength tunable lasers. This case may be modified by anyone who is familiar with the technology, but none of them can be protected as attached to the scope of patent application.

第26頁 200420931 圖式簡單說明 第一圖(A):係為習知技術之單週期准相位匹配非線性光 學晶體。 第一圖(B ):係為另一習知技術之縱向串接雙週期准相位 匹配非線性光學晶體。 第二圖:係為本案准相位匹配非線性光學單一晶體之第一 較佳實施例示意圖。 第三圖:係為本案准相位匹配非線性光學單一晶體之另一 較佳實施例示意圖。 第四圖:係為本案雷射產生裝置之第一較佳實施例示意 圖,其中該雷射產生裝置未使用共振反射鏡組。 第五圖:係為本案雷射產生裝置之第二較佳實施例示意 圖,其中該晶體兩側具有二共振反射鏡。 第六圖:係為本案雷射產生裝置之第三較佳實施例示意 圖,其中該晶體兩端面鍍有二光學薄膜。 第七圖:係為本案雷射產生裝置之第四較佳實施例示意 圖。Page 26 200420931 Brief description of the diagram The first diagram (A): is a single-cycle quasi-phase-matching nonlinear optical crystal of conventional technology. The first figure (B) is a longitudinally-connected double-period quasi-phase-matched nonlinear optical crystal of another conventional technique. The second figure is a schematic diagram of the first preferred embodiment of the quasi-phase-matching nonlinear optical single crystal of this case. The third figure is a schematic diagram of another preferred embodiment of the quasi-phase-matching nonlinear optical single crystal of this case. The fourth figure is a schematic diagram of the first preferred embodiment of the laser generating device in this case, wherein the laser generating device does not use a resonance mirror group. Fig. 5 is a schematic diagram of a second preferred embodiment of the laser generating device of the present invention, in which two sides of the crystal have two resonance mirrors. Fig. 6 is a schematic diagram of the third preferred embodiment of the laser generating device of the present invention, in which two ends of the crystal are plated with two optical films. Fig. 7 is a schematic diagram of a fourth preferred embodiment of the laser generating device of the present invention.

第27頁Page 27

Claims (1)

200420931 六、申請專利範圍 1 · 一種准相位匹配非線性光學單一晶體,其至少包括: 一准相位匹配單週期光栅區,其沿一第一方向具有 一第一光柵週期;以及 一准相位匹配扇形光柵區,其沿一第二方向具有一 可調變之沿該第一方向之一第二光柵週期,且該第二光 栅週期其週期大小係隨著該第二方向的位移變化而連續 變化, 其中,該第二方向係垂直該第一方向。 2 ·如申請專利範圍第1項所述之晶體,其中該准相位匹配 非線性光學單一晶體係為一可電性極化晶體。 3. 如申請專利範圍第2項所述之晶體,其中該可電性極化Φ 晶體為鐵電物質(ferroelectric material)。 4. 如申請專利範圍第3項所述之晶體,其中該鐵電物質係 選自銳酸鋰(LiNb03)、组酸鐘(LiTa03)、銳酸卸(KNb03)、 磷酸氧鈦鉀(KTi0P04; KTP)、砷酸氧鈦铷 (RbTi0As04; RTA)、磷酸氧鈦铷(RbTi0P04)或其他類似 物。 5 ·如申請專利範圍第1項所述之晶體,其中該准相位匹配 單週期光柵區可排列於該准相位匹配扇形光柵區之前或 後。 6. —種雷射產生裝置,至少包括: U 一准相位匹配非線性光學單一晶體,該晶體具有一胃1 准相位匹配單週期光栅區與一准相位匹配扇形光柵區, 其中該准相位匹配單一光柵區沿一第一方向具有一第一200420931 VI. Scope of patent application 1 · A quasi-phase-matching nonlinear optical single crystal at least includes: a quasi-phase-matching single-period grating region having a first grating period along a first direction; and a quasi-phase-matching sector The grating region has a second grating period tunable along a first direction along a second direction, and the period size of the second grating period is continuously changed as the displacement of the second direction changes. The second direction is perpendicular to the first direction. 2. The crystal according to item 1 of the scope of patent application, wherein the quasi-phase-matching nonlinear optical single crystal system is an electrically polarizable crystal. 3. The crystal according to item 2 of the scope of patent application, wherein the electrically polarizable Φ crystal is a ferroelectric material. 4. The crystal according to item 3 of the scope of the patent application, wherein the ferroelectric substance is selected from the group consisting of lithium sharp acid (LiNb03), group acid bell (LiTa03), sharp acid discharge (KNb03), potassium titanyl phosphate (KTi0P04; KTP), RtTi0As04 (RTA), RtTi0P04 or other similar. 5 · The crystal according to item 1 of the scope of patent application, wherein the quasi-phase matching single-period grating region can be arranged before or after the quasi-phase matching sector grating region. 6. A laser generating device, including at least: U a quasi-phase-matching nonlinear optical single crystal having a stomach-quasi-phase-matching single-period grating region and a quasi-phase-matching fan-shaped grating region, wherein the quasi-phase matching A single grating region has a first along a first direction 第28頁 200420931 六、申請專利範圍 光柵週期,該准相位匹配扇形光栅區沿一第二方向具有 一可調變之沿該第一方向之一第二光栅週期,且該第二 光栅週期其週期大小係隨著該第二方向的位移變化而連 續變化,其中該第二方向係垂直於該第一方向;以及 至少一雷射輸入光源,用以提供具有至少一波長之 第一雷射信號沿該第一方向射入該准相位匹配非線性光 學單一晶體; 藉此,當該第一雷射信號射入該准相位匹配非線性 光學單一晶體後,該晶體内部因應各個光栅特性產生至 少二個非線性光學頻率或波長轉換效應,以射出具有至 少一個不同於輸入波長之第二雷射信號。 7.如申請專利範圍第6項所述之雷射產生裝置,其中該雷 射產生裝置更包括一溫控爐,用以控制該准相位匹配非 線性光學單一晶體的溫度,並調制該等光栅之相位匹配 特性,俾以調變輸出雷射波長及增強輸出功率。 8 ·如申請專利範圍第6項所述之雷射產生裝置,其中該雷 射產生裝置更包括一共振腔,用以增加至少該第二雷射 信號的強度。 9.如申請專利範圍第8項所述之雷射產生裝置,其中該共 振腔係由位於該晶體兩側之一第一反射鏡與一第二反射 鏡組成。 1 0.如申請專利範圍第8項所述之雷射產生裝置,其中該 共振腔係由鍍於該晶體兩端面之二光學反射薄膜組成。 1 I如申請專利範圍第6項所述之雷射產生裝置,其中該Page 28 200420931 VI. Patent application scope grating period, the quasi-phase matching sector grating region has a second grating period that is tunable along the first direction along a second direction, and the second grating period has its period The magnitude is continuously changed as the displacement of the second direction changes, wherein the second direction is perpendicular to the first direction; and at least one laser input light source is used to provide a first laser signal edge having at least one wavelength. The first direction is incident on the quasi-phase-matching nonlinear optical single crystal; thereby, after the first laser signal is incident on the quasi-phase-matching nonlinear optical single crystal, at least two are generated inside the crystal according to the characteristics of each grating. A non-linear optical frequency or wavelength conversion effect to emit a second laser signal having at least one different wavelength from the input wavelength. 7. The laser generating device according to item 6 of the patent application scope, wherein the laser generating device further comprises a temperature-controlled furnace for controlling the temperature of the quasi-phase-matching nonlinear optical single crystal and modulating the gratings The phase matching characteristics can be used to modulate the output laser wavelength and enhance the output power. 8. The laser generating device according to item 6 of the patent application scope, wherein the laser generating device further comprises a resonant cavity for increasing the intensity of at least the second laser signal. 9. The laser generating device according to item 8 of the scope of the patent application, wherein the resonance cavity is composed of a first mirror and a second mirror located on both sides of the crystal. 10. The laser generating device according to item 8 of the scope of the patent application, wherein the resonant cavity is composed of two optically reflective films plated on both end surfaces of the crystal. 1 I The laser generating device according to item 6 of the scope of patent application, wherein the 第29頁 200420931 六、申請專利範圍 非線性光學頻率或波長轉換效應包括二次諧頻產生 (Second Harmonic Generation; SHG and THG),差頻 (Difference Frequency Generation; DFG),和頻(Sum Frequency Generation; SFG),光參數產生、光參數放 大、光參數振盪(0 p t i c a 1 P a r a m e t r i c G e n e r a t i ο η, Amplification,Oscillation; 0PG, OPA,0P0) 〇 1 2 ·如申請專利範圍第6項所述之雷射產生裝置,其中該 准相位匹配非線性光學單一晶體係為可電性極化晶體。 1 3 ·如申請專利範圍第1 2項所述之雷射產生裝置,其中該 可電性極化晶體為鐵電物質(ferroelectric material) ° 14·如申請專利範圍第13項所述之雷射產生裝置,其中該 鐵電物質係選自鈮酸鋰(LiNb03)、钽酸鋰(LiTa03)、鈮酸 鉀(KNb03)、磷酸氧鈦鉀(KTi0P04;KTP)、砷酸氧鈦铷 (RbTi0As04;RTA)、磷酸氧鈦铷(RbTiOPOJ或其他類似 物。 1 5 ·如申請專利範圍第6項所述之雷射產生裝置,其中該 准相位匹配單週期光栅區可排列於該准相位匹配扇形光 柵區之前或後。 16·如申請專利範圍第6項所述之雷射產生裝置,其中該 雷射產生裝置更包括一環型共振腔結構,用以增加至少 該第二個雷射信號的強度。 17·如申請專利範圍第16項所述之雷射產生裝置,其中該 環型共振腔結構包括至少兩個反射鏡,其係位於該晶體/Page 29 200420931 VI. Patent application scope Non-linear optical frequency or wavelength conversion effects include Second Harmonic Generation (SHG and THG), Difference Frequency Generation (DFG), and Sum Frequency Generation; SFG), optical parameter generation, optical parameter amplification, and optical parameter oscillation (0 ptica 1 Parametric Generati ο η, Amplification, Oscillation; 0PG, OPA, 0P0) 〇1 2 · Thunder as described in item 6 of the scope of patent application The radiation generating device, wherein the quasi-phase-matching nonlinear optical single crystal system is an electrically polarizable crystal. 1 3 · The laser generating device according to item 12 of the patent application scope, wherein the electrically polarizable crystal is a ferroelectric material ° 14 · The laser according to item 13 of the patent application scope A generating device, wherein the ferroelectric substance is selected from the group consisting of lithium niobate (LiNb03), lithium tantalate (LiTa03), potassium niobate (KNb03), potassium titanyl phosphate (KTi0P04; KTP), and titanyl arsenate (RbTi0As04; RTA), RtTiOPOJ, or the like. 1 5 · The laser generation device described in item 6 of the patent application scope, wherein the quasi-phase matching single-period grating region can be arranged in the quasi-phase matching sector grating Before or after the zone. 16. The laser generating device according to item 6 of the patent application scope, wherein the laser generating device further comprises a ring-shaped resonant cavity structure for increasing the intensity of at least the second laser signal. 17. The laser generating device according to item 16 in the scope of the patent application, wherein the ring-shaped resonant cavity structure includes at least two mirrors, which are located in the crystal / 第30頁 200420931Page 30 200420931 第31頁Page 31
TW92108276A 2003-04-10 2003-04-10 Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same TWI225948B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92108276A TWI225948B (en) 2003-04-10 2003-04-10 Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92108276A TWI225948B (en) 2003-04-10 2003-04-10 Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same

Publications (2)

Publication Number Publication Date
TW200420931A true TW200420931A (en) 2004-10-16
TWI225948B TWI225948B (en) 2005-01-01

Family

ID=35613491

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92108276A TWI225948B (en) 2003-04-10 2003-04-10 Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same

Country Status (1)

Country Link
TW (1) TWI225948B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788518A (en) * 2018-03-01 2020-10-16 布鲁工业科技公司 Optical parametric oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788518A (en) * 2018-03-01 2020-10-16 布鲁工业科技公司 Optical parametric oscillator
CN111788518B (en) * 2018-03-01 2023-02-17 布鲁工业科技公司 Optical parametric oscillator

Also Published As

Publication number Publication date
TWI225948B (en) 2005-01-01

Similar Documents

Publication Publication Date Title
Breunig et al. Continuous-wave optical parametric oscillators: recent developments and prospects
US20110043895A1 (en) Wavelength converting device, laser, and method to stabilize the wavelength conversion efficiency
WO2018062136A1 (en) Terahertz wave generating device, optical parametric amplifier, terahertz wave detector, and nonlinear optical element
JP2013526726A (en) Multi-wavelength optical system
US7173754B2 (en) Frequency conversion efficiency
US7339722B2 (en) Hybrid nonlinear optical conversion and optical parametric oscillation
JPH05333395A (en) Optical wavelength conversion device
Niu et al. Widely tunable, high-energy, mid-infrared (2.2–4.8 µm) laser based on a multi-grating MgO: PPLN optical parametric oscillator
TWI225948B (en) Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same
Kumbhakar et al. Nonlinear optical properties of Li 2 B 4 O 7 (LB4) crystal for the generation of tunable ultra-fast laser radiation by optical parametric amplification
EP3273299A1 (en) Dual frequency pumped optical parametric oscillator
JP2643735B2 (en) Wavelength conversion element
Sasaki et al. Surface-emitted terahertz-wave difference-frequency generation in periodically poled lithium niobate ridge-type waveguide
JP2718259B2 (en) Short wavelength laser light source
JP3076802U (en) Quasi-phase-matched nonlinear optical single crystal and solid-state laser generator using the same
JP2006114642A (en) Infrared coherent light source
JPH06265951A (en) Optical wavelength converter
Moore et al. Using multiple mutually incoherent fiber lasers to pump a coherent signal beam in an optical parametric oscillator
Avetisyan Cavity-enhanced terahertz region difference frequency generation in surface-emitting geometry
Chen et al. Continuously tunable terahertz parametric generation in KTP crystal with pulse-seed injection
Ho et al. On-chip highly efficient octave-spanning long-wavelength mid-infrared optical parametric generation with a 74% quantum efficiency
CN1327165A (en) Quasi-phase matching non-linear optical single block crystal and its laser producing device
CN114815437A (en) Optical frequency tripling system based on cascade second harmonic generation
Haidar et al. Difference-frequency mixing of output waves from a periodically poled lithium niobate optical parametric oscillator in a GaSe crystal
Mo et al. Widely-tunable Mid-infrared Optical Parametric Oscillation in High-Q Periodically Poled Lithium Tantalate Whispering Gallery Mode Resonators

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent