JP2006114642A - Infrared coherent light source - Google Patents
Infrared coherent light source Download PDFInfo
- Publication number
- JP2006114642A JP2006114642A JP2004299571A JP2004299571A JP2006114642A JP 2006114642 A JP2006114642 A JP 2006114642A JP 2004299571 A JP2004299571 A JP 2004299571A JP 2004299571 A JP2004299571 A JP 2004299571A JP 2006114642 A JP2006114642 A JP 2006114642A
- Authority
- JP
- Japan
- Prior art keywords
- difference frequency
- dfg
- frequency mixing
- light source
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
Description
本発明は、光出力かつ波長可変の赤外光源を実現するための技術である。より具体的には本発明は、擬似位相整合による共振器内差周波混合を用いて、高効率な中赤外光を発生する際に、波長可変の広帯域化における、擬似位相整合結晶の周期分極反転構造制御技術に関する。 The present invention is a technique for realizing an infrared light source having a light output and a variable wavelength. More specifically, the present invention relates to periodic polarization of a quasi-phase-matched crystal in a broad wavelength tunable band when generating high-efficiency mid-infrared light using inter-cavity difference frequency mixing by quasi-phase matching. The present invention relates to inversion structure control technology.
レーザーは発振材料を固体・気体・液体と広げることにより、その発振波長を真空紫外域から、紫外、可視、赤外をへて遠赤外域まで拡大し、現在、レーザーは可干渉性、高指向性、高集光性、単色性など、その優れた特長により通信・計測・医療などの幅広い分野で応用されている。特に、中赤外領域(3mm~30mm)と呼ばれる光の波長は、分子の振動に一致するため、医療・生体計測・環境計測などの応用が期待されている。この中赤外光を発生する光源としては、気体レーザーや固体レーザー等があるが、発振波長が固定であることが弱点である。そこで波長可変技術として非線形光学効果を用いる光パラメトリック発振(Optical
Parametric Oscillation:OPO)が注目される。
Lasers broaden the oscillation material into solids, gases, and liquids, expanding the oscillation wavelength from the vacuum ultraviolet region to the ultraviolet, visible, infrared, and far infrared regions. Currently, lasers are coherent and highly oriented. It has been applied in a wide range of fields such as communication, measurement, and medical care due to its excellent features such as lightness, high light concentration, and monochromaticity. In particular, since the wavelength of light called the mid-infrared region (3 mm to 30 mm) matches the vibration of molecules, it is expected to be applied to medical, biological and environmental measurements. As a light source for generating the mid-infrared light, there are a gas laser, a solid-state laser, and the like, but a weak point is that the oscillation wavelength is fixed. Therefore, optical parametric oscillation (Optical using non-linear optical effect as a wavelength tunable technology)
Parametric Oscillation (OPO) is noted.
ところが、パラメトリック過程においてSignalとIdlerの初期値がなければ効率良く発振しない。そこで、パラメトリック過程で得られた出力を共振器を組んでフィードバックさせることにより発振を行う。ここで、出力光に対して高反射のミラーにより共振器を組むことで、高効率に出力光が得られることが考えられるが、実際にはOPOの効率はManley-Rowe則とバックコンバージョンにより制限されてしまう。このことにより、OPOでは高強度のPumpによる高出力化に限界が生じる。
本発明は、上記課題を解決し、位相整合の温度幅を大幅に拡大し、波長可変性を持った高出力赤外光源を構築する事を可能とする。従来の高出力赤外レーザーでは波長可変性が得られず、また、従来の波長可変赤外光パラメトリック発振器では高出力化が難しいが、本発明により高出力化と波長可変性が同時に得られる。 The present invention solves the above-mentioned problems, greatly expands the temperature range of phase matching, and makes it possible to construct a high-power infrared light source having wavelength variability. Wavelength tunability cannot be obtained with conventional high-power infrared lasers, and high output and wavelength tunability can be obtained simultaneously with the present invention, although it is difficult to achieve high output with conventional wavelength-tunable infrared parametric oscillators.
本発明によれば、赤外コヒーレント光源において、パラメトリック発生部と差周波混合部を同一結晶中にモノリシックに作製した共振器内差周波混合部と、該結晶温度を同時に調整する温度調節部とを持つ事により、高出力化と波長可変性が同時に得られる事を特徴とする赤外コヒーレント光源が得られる。 According to the present invention, in the infrared coherent light source, the intra-cavity difference frequency mixing unit in which the parametric generation unit and the difference frequency mixing unit are monolithically produced in the same crystal, and the temperature adjustment unit that simultaneously adjusts the crystal temperature are provided. As a result, an infrared coherent light source characterized by high output and wavelength tunability can be obtained.
また、本発明によれば、前記パラメトリック発生部の分極反転周期ΛOPOと前記差周波混合部の分極反転周期ΛDFGとを、所望の高効率発振が得られる関係にて決定することにより高出力化と波長可変性が同時に得られる事を特徴とする赤外コヒーレント光源が得られる。 Further, according to the present invention, high output by determining by said a polarization inversion period lambda DFG of the difference frequency mixing section and the polarization inversion period lambda OPO parametric generator, desired high efficiency oscillation is obtained relationship And an infrared coherent light source characterized in that it is possible to obtain both wavelength conversion and wavelength tunability at the same time.
また、本発明によれば、前記所望の高効率発振が得られる関係を、パラメトリック発生部の分極反転周期ΛOPOをパラメータとした、差周波混合部でのシグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdと、擬似位相整合による波数の補償2π/ΛDFGの温度依存性より、所望の高効率発振が得られる関係にて温度領域で両曲線の差の絶対値が一定以下となるパラメトリック発生部の分極反転周期ΛOPOと差周波混合部の分極反転周期ΛDFGとを得るようにすることにより高出力化と波長可変性が同時に得られる事を特徴とする赤外コヒーレント光源が得られる。 Further, according to the present invention, the relationship in which the desired high-efficiency oscillation is obtained is obtained by using the signal inversion frequency Λ OPO of the parametric generation unit as a parameter, the signal wave λs, the idler wave λi, and the difference frequency in the difference frequency mixing unit. Due to the temperature dependence of λd phase shift Δk = ks-ki-kd and wave number compensation 2π / Λ DFG by quasi-phase matching, the difference between the two curves in the temperature region is related to the desired high-efficiency oscillation. High output and wavelength tunability can be obtained at the same time by obtaining the polarization inversion period Λ OPO of the parametric generation part where the absolute value is below a certain value and the polarization inversion period Λ DFG of the difference frequency mixing part. An infrared coherent light source is obtained.
また、本発明によれば、前記所望の高効率発振が得られる関係を、パラメトリック発生部の分極反転周期ΛOPOをパラメータとした、差周波混合部でのシグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdと、擬似位相整合による波数の補償2π/ΛDFGの各曲線を温度で微分した温度依存特性図より、各曲線の交点を得る温度において位相のずれ曲線Δk=ks-ki-kdと波数の補償曲線2π/ΛDFGの差がπ/Lとなる(ここでLは差周波混合部の結晶長)ようにすることにより高出力化と波長可変性が同時に得られる事を特徴とする赤外コヒーレント光源が得られる。 Further, according to the present invention, the relationship in which the desired high-efficiency oscillation is obtained is obtained by using the signal inversion frequency Λ OPO of the parametric generation unit as a parameter, the signal wave λs, the idler wave λi, and the difference frequency in the difference frequency mixing unit. The phase shift at the temperature at which the intersection of each curve is obtained from the temperature dependence characteristic diagram of each curve of λd phase shift Δk = ks-ki-kd and wave number compensation 2π / Λ DFG by pseudo phase matching with temperature High output and wavelength tunability by making the difference between the curve Δk = ks-ki-kd and the wave number compensation curve 2π / Λ DFG be π / L (where L is the crystal length of the difference frequency mixing section) Infrared coherent light sources characterized in that can be obtained simultaneously.
また、本発明によれば、前記共振器内差周波混合部に周期分極反転可能な非線形光学結晶を用いることにより高出力化と波長可変性が同時に得られる事を特徴とする赤外コヒーレント光源が得られる。さらに、具体的には、前記周期分極反転可能な非線形光学結晶を、CLN(溶融点一致
ニオブ酸リチウム)、MgOドープCLN (酸化マグネシウム添加 溶融点一致 ニオブ酸リチウム)、SLN(定比組成 ニオブ酸リチウム)、MgOドープSLN (酸化マグネシウム添加
定比組成 ニオブ酸リチウム)、CLT(溶融点一致 チタン酸リチウム)、SLN(定比組成 チタン酸リチウム)、MgOドープCLT (酸化マグネシウム添加 溶融点一致
チタン酸リチウム)、MgOドープSLT (酸化マグネシウム添加 定比組成 チタン酸リチウム)およびKLN (ニオブ酸ポタシウムリチウム)の内から選ぶことにより高出力化と波長可変性が同時に得られる事を特徴とする赤外コヒーレント光源が得られる。
Further, according to the present invention, there is provided an infrared coherent light source characterized in that high output and wavelength tunability can be obtained simultaneously by using a nonlinear optical crystal capable of periodically polarization reversal in the intracavity difference frequency mixing unit. can get. More specifically, the non-linear optical crystal capable of reversing the periodic polarization includes CLN (melting point coincidence lithium niobate), MgO-doped CLN (magnesium oxide added melting point coincidence lithium niobate), SLN (stoichiometric composition niobic acid). Lithium), MgO-doped SLN (magnesium oxide-added stoichiometric composition lithium niobate), CLT (melting point-matched lithium titanate), SLN (stoichiometric composition lithium titanate), MgO-doped CLT (magnesium oxide-added melting point-matched titanate) Lithium), MgO-doped SLT (magnesium oxide addition stoichiometric composition lithium titanate) and KLN (potassium lithium niobate) can be selected to achieve high output and wavelength tunability at the same time. A light source is obtained.
以下、本発明に関わる擬似位相整合デバイス設計方法について、図面を参照しながら具体的に説明する。 Hereinafter, a quasi phase matching device design method according to the present invention will be specifically described with reference to the drawings.
本発明は、擬似位相整合による共振器内差周波混合を用いて、高効率な中赤外光を発生する際に、波長可変と広帯域化が、擬似位相整合結晶の周期分極反転構造を制御することで実現できることを明らかにした。この結果、差周波混合による位相整合がラフな温度制御で実現できる。以下、本発明に係る周期分極反転構造周期のデザインによる位相整合について詳細に説明する。 The present invention controls the periodic polarization inversion structure of a quasi-phase-matched crystal when generating high-efficiency mid-infrared light using intra-cavity difference frequency mixing by quasi-phase matching. It was made clear that this can be achieved. As a result, phase matching by difference frequency mixing can be realized by rough temperature control. Hereinafter, the phase matching according to the design of the periodically poled structure according to the present invention will be described in detail.
図1は、本発明の根幹となる共振器内差周波混合部の原理を説明する図である。図1(a)は、共振器内差周波混合デバイスを模式的に示し、図1(b)は、共振器内差周波混合における非線形波長変換の関係をエネルギーダイアグラムで示している。共振器内差周波混合デバイスは、共振器内にパラメトリック発生部(OPO)と差周波混合部(ic‐DFG)を配置した構造であり、共振器はパラメトリック発生部で発生されるシグナル波λsに対して共振する。共振器内差周波混合デバイスにポンプ波λpを入射すると、ポンプ波λpからシグナル波λsとアイドラ波λiが発生される。 FIG. 1 is a diagram for explaining the principle of the intra-resonator difference frequency mixing unit that is the basis of the present invention. FIG. 1 (a) schematically shows an intra-resonator difference frequency mixing device, and FIG. 1 (b) shows an energy diagram of the relationship of nonlinear wavelength conversion in intra-resonator difference frequency mixing. The intra-resonator difference frequency mixing device has a structure in which a parametric generator (OPO) and a difference frequency mixer (ic-DFG) are arranged in the resonator, and the resonator generates a signal wave λs generated by the parametric generator. Resonate with it. When the pump wave λp is incident on the intracavity difference frequency mixing device, a signal wave λs and an idler wave λi are generated from the pump wave λp.
この時、ポンプ波λpの周波数wpとパラメトリック発生部で発生するシグナル波λsの周波数wsおよびアイドラ波λiの周波数wiの関係は(1)式で与えられる。
wp=ws+wi (1)
At this time, the relationship between the frequency wp of the pump wave λp, the frequency ws of the signal wave λs generated in the parametric generator, and the frequency wi of the idler wave λi is given by equation (1).
wp = ws + wi (1)
パラメトリック発生部で発生したシグナル波λsとアイドラ波λiを差周波混合部で結合させる事により、差周波λdが発生される。この時、シグナル波λsの周波数wsおよびアイドラ波λiの周波数wiと差周波λdの周波数wdの関係は(2)式で与えられる。
wd=ws-wi (2)
The difference frequency λd is generated by combining the signal wave λs and the idler wave λi generated by the parametric generation unit by the difference frequency mixing unit. At this time, the relationship between the frequency ws of the signal wave λs, the frequency wi of the idler wave λi, and the frequency wd of the difference frequency λd is given by equation (2).
wd = ws-wi (2)
共振器内差周波混合デバイスを擬似位相整合結晶を用いて構築する場合、パラメトリック発生部における位相整合条件は(3)式で与えられる。
ΔkOPO=kp-ks-ki-2π/ΛOPO (3)
(ΔkOPOはパラメトリック発生部における位相不整合、kpはポンプ波λpの波数、ksはシグナル波λsの波数、kiはアイドラ波λiの波数、ΛOPOはパラメトリック発生部に使用する擬似位相整合結晶の周期分極反転周期)
When the intracavity difference frequency mixing device is constructed using a quasi phase matching crystal, the phase matching condition in the parametric generator is given by equation (3).
Δk OPO = kp-ks-ki-2π / Λ OPO (3)
(Δk OPO is the phase mismatch in the parametric generator, kp is the wave number of the pump wave λp, ks is the wave number of the signal wave λs, ki is the wave number of the idler wave λi, Λ OPO is the quasi-phase matched crystal used in the parametric generator Periodic polarization reversal period)
同様に、差周波混合部における位相整合条件は(4)式で与えられる。
ΔkDFG=ks-ki-kd-2π/ΛDFG (4)
(ΔkDFGは差周波混合部における位相不整合、kdは差周波λdの波数、ΛDFGは差周波混合部に使用する擬似位相整合結晶の周期分極反転周期)
Similarly, the phase matching condition in the difference frequency mixing unit is given by equation (4).
Δk DFG = ks-ki-kd-2π / Λ DFG (4)
(Δk DFG is the phase mismatch in the difference frequency mixing section, kd is the wave number of the difference frequency λd, and Λ DFG is the periodic polarization inversion period of the quasi phase matching crystal used in the difference frequency mixing section)
図2は、パラメトリック発生部に周期分極反転ニオブ酸リチウム結晶(Periodically Poled Lithium Niobate: PPLN)を用い、ポンプ波λpとしてNd:YAGレーザーの基本波(1064
nm)を使用した時の、パラメトリック発生部で発生されるシグナル波λsとアイドラ波λiの波長を示す図である。
Figure 2 shows the use of a periodically poled lithium niobate crystal (PPLN) as the parametric generator, and the fundamental wave of the Nd: YAG laser (1064) as the pump wave λp.
nm) is a diagram showing the wavelengths of the signal wave λs and the idler wave λi generated in the parametric generator.
パラメトリック発生部における波長変換は(1)式と(3)式が同時に満たされたときに高効率で行われる。発生するシグナル波λsとアイドラ波λiの波長は、結晶の持つ波長分散と擬似位相整合による位相整合条件の補償分2π/ΛOPOによって決定される。結晶の持つ波長分散関係は温度の関数である事と、擬似位相整合結晶の熱膨張によりパラメトリック発生部の結晶の分極反転周期ΛOPOは温度とともに変化する事により、パラメトリック発生部で発生されるシグナル波λsとアイドラ波λiの波長は温度の関数となる。 Wavelength conversion in the parametric generator is performed with high efficiency when equations (1) and (3) are satisfied simultaneously. The wavelengths of the generated signal wave λs and idler wave λi are determined by the compensation 2π / Λ OPO of the phase matching condition by the chromatic dispersion and quasi phase matching of the crystal. The chromatic dispersion relationship of the crystal is a function of temperature, and the polarization inversion period Λ OPO of the crystal of the parametric generator changes with temperature due to the thermal expansion of the quasi-phase-matched crystal. The wavelengths of the wave λs and the idler wave λi are functions of temperature.
図3は、パラメトリック発生部にPPLNを用い、ポンプ波λpとしてNd:YAGレーザーの基本波(1064 nm)を使用した時の、差周波混合部で発生される差周波の波長λdとシグナル波の波長λsおよびアイドラ波λiの波長の関係を示す図である。差周波λdの波長は、パラメトリック発生部結晶の分極反転周期ΛOPOと動作温度を決定する事で、(2)式に従って一意に決定される。 Figure 3 shows the difference between the wavelength λd and the signal wave of the difference frequency generated by the difference frequency mixing unit when PPLN is used for the parametric generation unit and the fundamental wave (1064 nm) of the Nd: YAG laser is used as the pump wave λp. It is a figure which shows the wavelength relationship of wavelength (lambda) s and idler wave (lambda) i. Wavelength difference frequency λd is, by determining the polarization inversion period lambda OPO and the operating temperature of the parametric generator crystals, is uniquely determined according to equation (2).
図4は、ΛOPO=28.9mmとしてパラメトリック発生部と差周波混合部を同一結晶中にモノリシックに作製し、結晶温度を同時に調整した場合の(温度調整部は図1には不図示)、差周波混合部でのシグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdの温度依存性を示した図である。 Fig. 4 shows the case where the parametric generator and the difference frequency mixer are made monolithically in the same crystal with Λ OPO = 28.9 mm and the crystal temperature is adjusted simultaneously (the temperature adjuster is not shown in Fig. 1). FIG. 5 is a diagram showing the temperature dependence of a phase shift Δk = ks−ki−kd of a signal wave λs, an idler wave λi, and a difference frequency λd in a frequency mixing unit.
結晶をモノリシックに作製しパラメトリック発生部と差周波混合部を同時に温度制御する事で、機械的な結晶角度の調整や各々の温度を別々に制御する複雑さを避け、簡便で信頼度の高いデバイスを構築する事が可能となる。Δkの値はシグナル波λsとアイドラ波λiおよび差周波λdの3波の波長と結晶の持つ波長の分散関係で決まる。 A simple and reliable device avoiding the complexity of adjusting the crystal angle and controlling each temperature separately by manufacturing the crystal monolithically and simultaneously controlling the temperature of the parametric generator and the difference frequency mixer. Can be built. The value of Δk is determined by the dispersion relationship between the wavelength of the three waves of the signal wave λs, the idler wave λi, and the difference frequency λd and the wavelength of the crystal.
擬似位相整合による位相整合は、Δkの値を差周波混合部の結晶の分極反転周期ΛDFGの波数成分2π/ΛDFGで打ち消す事によって満たされる。50℃、100℃、150℃、200℃で位相整合を取る場合に必要な差周波混合部の結晶の分極反転周期ΛDFGは、ΛDFG=2π/Δkで求めることが出来る。この際、結晶の熱膨張による分極差周波混合部の結晶の反転周期の変化を考慮して差周波混合部の結晶の分極反転周期ΛDFGを決定する必要がある。 Phase matching by quasi phase matching is satisfied by canceling the value of Δk with the wave number component 2π / Λ DFG of the polarization inversion period Λ DFG of the crystal of the difference frequency mixing unit. The polarization inversion period Λ DFG of the crystal of the difference frequency mixing portion required for phase matching at 50 ° C., 100 ° C., 150 ° C., and 200 ° C. can be obtained by Λ DFG = 2π / Δk. At this time, it is necessary to determine the polarization inversion period Λ DFG of the crystal in the difference frequency mixing unit in consideration of the change in the inversion period of the crystal in the polarization difference frequency mixing unit due to the thermal expansion of the crystal.
図5は、パラメトリック発生部の分極反転周期ΛOPO=28.9mmとしてパラメトリック発生部と差周波混合部を同一結晶中にモノリシックに作製し、結晶温度を同時に調整した場合の、差周波混合部でのシグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdと擬似位相整合による波数の補償2π/ΛDFGの温度依存性を示した図である。2π/ΛDFGは、結晶の熱膨張のためわずかに傾きを持った曲線となり、この傾きは結晶の熱膨張の特性により決定される。 Fig. 5 shows the parametric generator's polarization inversion period Λ OPO = 28.9 mm, the parametric generator and the difference frequency mixing unit are monolithically fabricated in the same crystal, and the crystal temperature is adjusted simultaneously. is a graph showing the temperature dependency of the compensation 2 [pi / lambda DFG wavenumber by phase shift Δk = ks-ki-kd and quasi-phase matching of the signal wave λs and the idler wave λi and difference frequency .lambda.d. 2π / Λ DFG becomes a slightly inclined curve due to the thermal expansion of the crystal, and this inclination is determined by the thermal expansion characteristics of the crystal.
Δkと2π/ΛDFGの交点で、差周波混合部の位相整合条件ΔkDFG=ks-ki-kd-2π/ΛDFG=0となり、位相整合が満たされる。 At the intersection of .DELTA.k and 2 [pi / lambda DFG, the phase matching condition Δk DFG = ks-ki-kd -2π / Λ DFG = 0 next to the difference frequency mixing unit, the phase matching is satisfied.
図6(a)は、パラメトリック発生部の分極反転周期ΛOPO=28.9mmとしてパラメトリック発生部と差周波混合部を同一結晶中にモノリシックに作製し、結晶温度を同時に調整した場合の、差周波混合部での位相整合条件ΔkDFG=ks-ki-kd-2π/ΛDFGの温度依存性を示した図である。差周波混合部の結晶の分極反転周期ΛDFGの設計により、任意の温度で位相整合を満たす事が可能である。 Fig. 6 (a) shows the difference frequency mixing when the parametric generator and the difference frequency mixer are monolithically fabricated in the same crystal with the polarization inversion period Λ OPO = 28.9 mm of the parametric generator and the crystal temperature is adjusted simultaneously. FIG. 5 is a diagram showing the temperature dependence of a phase matching condition Δk DFG = ks-ki-kd-2π / Λ DFG in the section. The phase matching can be satisfied at an arbitrary temperature by designing the polarization inversion period Λ DFG of the crystal in the difference frequency mixing section.
図6(b)は、パラメトリック発生部の結晶の分極反転周期ΛOPO=28.9mmとして、(1)パラメトリック発生部と差周波混合部を同時に温度制御、(2)パラメトリック発生部の温度を固定して差周波混合部の温度を制御、(3)差周波混合部の温度を固定してパラメトリック発生部の温度を制御した各場合の位相整合条件ΔkDFG=ks-ki-kd-2π/ΛDFGの温度依存性を示した図である。パラメトリック発生部と差周波混合部を同時に温度制御する事により、位相整合の取れる温度幅が拡大している。 Fig. 6 (b) shows the crystal inversion period Λ OPO = 28.9mm of the parametric generator, (1) temperature control of the parametric generator and the difference frequency mixer at the same time, and (2) fixing the temperature of the parametric generator. (3) Phase matching condition Δk DFG = ks-ki-kd-2π / Λ DFG in each case where the temperature of the parametric generator is controlled by fixing the temperature of the difference frequency mixer It is the figure which showed the temperature dependence. By controlling the temperature of the parametric generator and the difference frequency mixer at the same time, the temperature range in which phase matching can be achieved is expanded.
図7は、パラメトリック発生部の分極反転周期ΛOPOを28.9mmから29.6mmと変化させ、更に結晶温度を同時に調整した場合の、差周波混合部でのシグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdと、擬似位相整合による波数の補償2π/ΛDFGの温度依存性を示した図である。シグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdは結晶の持つ波長の分散関係とパラメトリック発生部の分極反転周期ΛOPOの周期により、極小値を持つ曲線となる。一方、2π/ΛDFGは結晶の熱膨張のためわずかに傾きを持った曲線となるため、この2曲線は条件により交点を2点持つようになる。差周波混合部の位相整合条件ΔkDFG=ks-ki-kd-2π/ΛDFGは、この2曲線の差の絶対値が小さい時に満たされる。即ち、ΔkDFG=ks-ki-kd-2π/ΛDFGが広い範囲で小さなちとなるようにパラメトリック発生部の分極反転周期ΛOPOと差周波混合部の分極反転周期ΛDFGを設計すれば、広い温度域で位相整合を満たす赤外光源の構築が可能となる。 FIG. 7 shows the signal wave λs, idler wave λi, and difference frequency λd in the difference frequency mixing unit when the polarization inversion period Λ OPO of the parametric generator is changed from 28.9 mm to 29.6 mm and the crystal temperature is adjusted simultaneously. FIG. 6 is a graph showing the temperature dependence of the phase shift Δk = ks−ki-kd and the wave number compensation 2π / Λ DFG by pseudo phase matching. The phase shift Δk = ks-ki-kd of the signal wave λs, idler wave λi, and difference frequency λd is a curve with a minimum value depending on the dispersion relationship of the wavelength of the crystal and the period of the polarization inversion period Λ OPO of the parametric generator. Become. On the other hand, 2 [pi / lambda DFG is that a curved line having a slope slightly due to thermal expansion of the crystal, the two curves will have two points intersection by condition. The phase matching condition Δk DFG = ks-ki-kd-2π / Λ DFG of the difference frequency mixing unit is satisfied when the absolute value of the difference between the two curves is small. That is, if the polarization inversion period Λ OPO of the parametric generation unit and the polarization inversion period Λ DFG of the difference frequency mixing unit are designed so that Δk DFG = ks-ki-kd-2π / Λ DFG becomes small in a wide range, An infrared light source that satisfies phase matching in the temperature range can be constructed.
図8は、パラメトリック発生部の結晶の分極反転周期ΛOPOを28.9mmから29.6mmと変化させ結晶温度を同時に調整した場合の、差周波混合部でのシグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdおよび、擬似位相整合による波数の補償2π/ΛDFGの各曲線を温度で微分した図である。Δk=ks-ki-kdの温度微分曲線と2π/ΛDFGの温度微分曲線の交点により、Δk=ks-ki-kdと2π/ΛDFGの曲線の接点となる温度が求まる。 FIG. 8 shows the signal wave λs, idler wave λi, and difference frequency λd in the difference frequency mixing unit when the crystal inversion period Λ OPO is changed from 28.9 mm to 29.6 mm and the crystal temperature is adjusted simultaneously. FIG. 6 is a diagram obtained by differentiating each curve of the phase shift Δk = ks−ki-kd and the wave number compensation 2π / Λ DFG by pseudo phase matching with temperature. From the intersection of the Δk = ks-ki-kd temperature differential curve and the 2π / Λ DFG temperature differential curve, the temperature at which the Δk = ks-ki-kd and 2π / Λ DFG curve contact is obtained.
位相整合の取れる温度幅を最大にするためには、接点となる温度において位相のずれ曲線Δk=ks-ki-kdと波数の補償曲線2π/ΛDFGの差がp/Lとなれば、幾何学的に位相整合条件Δk=ks-ki-kd-2π/ΛDFGの値がp/L以下となる範囲が最大となる(ここでLは差周波混合部の結晶長)。この時、位相のずれ曲線Δk=ks-ki-kdは結晶の分散関係とパラメトリック発生部の結晶の分極反転周期ΛOPOにより決定される値であるが、曲線2π/ΛDFGは周波数混合部の結晶の分極反転周期ΛDFGによって調整可能であるため、上記の幾何学的関係を満たすパラメトリック発生部の結晶の分極反転周期ΛOPOと周波数混合部の結晶の分極反転周期ΛDFGの設計が可能となる。 In order to maximize the temperature range at which phase matching can be achieved , if the difference between the phase shift curve Δk = ks-ki-kd and the wave number compensation curve 2π / Λ DFG is p / L histological the range value of the phase matching condition Δk = ks-ki-kd- 2π / Λ DFG is equal to or less than p / L is maximized (crystal length where L is the difference frequency mixing unit). At this time, the phase shift curve Δk = ks-ki-kd is a value determined by the dispersion relation of the crystal and the polarization inversion period Λ OPO of the crystal of the parametric generation part, but the curve 2π / Λ DFG is the value of the frequency mixing part. Since it can be adjusted by the polarization inversion period Λ DFG of the crystal, it is possible to design the polarization inversion period Λ OPO of the crystal in the parametric generation part that satisfies the above geometric relationship and the polarization inversion period Λ DFG of the crystal in the frequency mixing part Become.
図9は、パラメトリック発生部の結晶の分極反転周期ΛOPOを29.5mmとした場合の、差周波混合部でのシグナル波λsとアイドラ波λiおよび差周波λdの位相のずれΔk=ks-ki-kdと、擬似位相整合による波数の補償2π/ΛDFGの温度依存性を示した図である。差周波混合部の結晶長を20mmとした場合、p/L=157m-1であり、Δk=ks-ki-kdと2π/ΛDFGの2曲線の接点となる温度において、この2曲線の差が157m-1となる周波数混合部の結晶の分極反転周期ΛDFGは33.75mmである。この時、9図に示すように2曲線の差が157m-1となるとなる温度範囲が最大となり、位相整合が満たされる温度幅が最大になる。 FIG. 9 shows a phase shift Δk = ks-ki− between the signal wave λs and the idler wave λi and the difference frequency λd in the difference frequency mixing portion when the polarization inversion period Λ OPO of the crystal of the parametric generation portion is 29.5 mm. FIG. 6 is a diagram showing the temperature dependence of kd and wave number compensation 2π / Λ DFG by pseudo phase matching. When the crystal length of the difference frequency mixing part is 20 mm, p / L = 157m -1 and the difference between the two curves at the temperature at which the two curves Δk = ks-ki-kd and 2π / Λ DFG meet. The inversion period Λ DFG of the crystal in the frequency mixing part where is 157 m −1 is 33.75 mm. At this time, as shown in FIG. 9, the temperature range in which the difference between the two curves becomes 157 m −1 becomes the maximum, and the temperature width that satisfies the phase matching becomes the maximum.
図10は、位相整合条件の温度依存性を示した図である。位相整合の満たされる温度幅が最大になるように最適化された設計と従来技術により設計した位相整合条件を比較すると、本技術により設計されたパラメトリック発生部の結晶の分極反転周期ならびに周波数混合部の結晶の分極反転周期を用いたものは、大幅に位相整合温度幅が拡大している。差周波混合部の結晶長を20mmとした場合のp/L=157m-1となる温度幅は、従来技術により設計した場合ではそれぞれ9℃、14℃、25℃であるのに対し、本技術による設計方法を用いた場合では137℃にも拡大する。この結果、共振器内差周波混合による赤外光の出力の増加と共に波長可変域を大幅に増大できる。
尚、本実施例の説明では、共振器内差周波混合部に周期分極反転ニオブ酸リチウム結晶(Periodically Poled Lithium Niobate: PPLN)を用いたが、これに限ることは無い。分極反転可能な非線形光学結晶であっても同様の効果を得ることができ、例えば、MgOドープCLN
(酸化マグネシウム添加 溶融点一致 ニオブ酸リチウム)、SLN(定比組成 ニオブ酸リチウム)、MgOドープSLN (酸化マグネシウム添加 定比組成 ニオブ酸リチウム)、CLT(溶融点一致
チタン酸リチウム)、SLN(定比組成 チタン酸リチウム)、MgOドープCLT (酸化マグネシウム添加 溶融点一致 チタン酸リチウム)、MgOドープSLT (酸化マグネシウム添加
定比組成 チタン酸リチウム)、KLN (ニオブ酸ポタシウムリチウム)であっても良い。
FIG. 10 is a diagram showing the temperature dependence of the phase matching condition. Comparing the phase-matching conditions designed by the prior art and the design optimized to maximize the phase matching temperature range, the polarization inversion period and frequency mixing section of the crystal of the parametric generator designed by this technology In the case of using the crystal inversion period, the phase matching temperature range is greatly expanded. The temperature range in which the p / L = 157m -1 in the case of a crystal length of difference frequency mixing section and 20 mm, respectively 9 ° C. in the case designed by the conventional art, 14 ° C., whereas it is 25 ° C., the technology In the case of using the design method according to, it will be expanded to 137 ℃. As a result, the wavelength tunable range can be greatly increased with an increase in the output of infrared light due to intracavity difference frequency mixing.
In the description of the present embodiment, a periodically poled lithium niobate crystal (PPLN) is used for the intra-cavity difference frequency mixing unit. However, the present invention is not limited to this. The same effect can be obtained even with non-linear optical crystals capable of polarization reversal, for example, MgO-doped CLN
(Magnesium oxide added melting point matched lithium niobate), SLN (stoichiometric lithium niobate), MgO doped SLN (magnesium oxide added stoichiometric lithium niobate), CLT (melting point matched lithium titanate), SLN (constant Specific composition lithium titanate), MgO doped CLT (magnesium oxide added melting point coincidence lithium titanate), MgO doped SLT (magnesium oxide added stoichiometric composition lithium titanate), KLN (potassium lithium niobate) may be used.
本発明により中赤外波長変換量子効率が100%を越える3ミクロン帯広帯域波長可変光源を実現する事で、歯科医療用光源、分光計測用光源、大気観測用光源といったプロダクツが予想される。 By realizing a 3-micron band broadband wavelength tunable light source with a mid-infrared wavelength conversion quantum efficiency exceeding 100% according to the present invention, products such as a dental medical light source, a spectroscopic light source, and an atmospheric observation light source are expected.
図1(b)は、共振器内差周波混合における非線形波長変換の関係をエネルギーダイアグラムで示したもの。
Claims (6)
(酸化マグネシウム添加 溶融点一致 ニオブ酸リチウム)、SLN(定比組成 ニオブ酸リチウム)、MgOドープSLN (酸化マグネシウム添加 定比組成 ニオブ酸リチウム)、CLT(溶融点一致
チタン酸リチウム)、SLN(定比組成 チタン酸リチウム)、MgOドープCLT (酸化マグネシウム添加 溶融点一致 チタン酸リチウム)、MgOドープSLT (酸化マグネシウム添加
定比組成 チタン酸リチウム)およびKLN (ニオブ酸ポタシウムリチウム)の内の一である事を特徴とする請求項5記載の赤外コヒーレント光源。
The non-linear optical crystal capable of reversing the periodic polarization is MgO-doped CLN
(Magnesium oxide added melting point matched lithium niobate), SLN (stoichiometric lithium niobate), MgO doped SLN (magnesium oxide added stoichiometric lithium niobate), CLT (melting point matched lithium titanate), SLN (constant Specific composition Lithium titanate), MgO-doped CLT (magnesium oxide added melting point coincidence lithium titanate), MgO-doped SLT (magnesium oxide-added stoichiometric composition lithium titanate) and KLN (potassium lithium niobate) The infrared coherent light source according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004299571A JP2006114642A (en) | 2004-10-14 | 2004-10-14 | Infrared coherent light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004299571A JP2006114642A (en) | 2004-10-14 | 2004-10-14 | Infrared coherent light source |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006114642A true JP2006114642A (en) | 2006-04-27 |
Family
ID=36382916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004299571A Pending JP2006114642A (en) | 2004-10-14 | 2004-10-14 | Infrared coherent light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006114642A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008009065A (en) * | 2006-06-28 | 2008-01-17 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength conversion light source |
KR20110010111A (en) * | 2008-05-15 | 2011-01-31 | 록히드 마틴 코포레이션 | Method and apparatus for generating mid-ir laser for ultrasound inspection |
WO2011017478A2 (en) * | 2009-08-06 | 2011-02-10 | Ramot At Tel-Aviv University Ltd. | Method and system for optical conversion |
JP2017215538A (en) * | 2016-06-01 | 2017-12-07 | 国立研究開発法人物質・材料研究機構 | Laser and laser ultrasonic flaw detection device using the same |
WO2022239058A1 (en) * | 2021-05-10 | 2022-11-17 | 日本電信電話株式会社 | Wavelength converting device |
-
2004
- 2004-10-14 JP JP2004299571A patent/JP2006114642A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008009065A (en) * | 2006-06-28 | 2008-01-17 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength conversion light source |
KR20110010111A (en) * | 2008-05-15 | 2011-01-31 | 록히드 마틴 코포레이션 | Method and apparatus for generating mid-ir laser for ultrasound inspection |
JP2011521230A (en) * | 2008-05-15 | 2011-07-21 | ロッキード・マーチン・コーポレーション | Method and apparatus for generating a mid-infrared laser for use in ultrasonic inspection |
TWI472758B (en) * | 2008-05-15 | 2015-02-11 | Lockheed Corp | Method and apparatus for generating mid-ir laser for ultrasound inspection |
KR101662334B1 (en) * | 2008-05-15 | 2016-10-04 | 록히드 마틴 코포레이션 | Method and apparatus for generating mid-ir laser for ultrasound inspection |
WO2011017478A2 (en) * | 2009-08-06 | 2011-02-10 | Ramot At Tel-Aviv University Ltd. | Method and system for optical conversion |
WO2011017478A3 (en) * | 2009-08-06 | 2011-06-16 | Ramot At Tel-Aviv University Ltd. | Method and system for optical conversion |
US20120134013A1 (en) * | 2009-08-06 | 2012-05-31 | Ady Arie | Method and system for optical conversion |
US8451529B2 (en) | 2009-08-06 | 2013-05-28 | Elbit Systems Electro-Optics Elop Ltd. | Method and system for optical conversion |
JP2017215538A (en) * | 2016-06-01 | 2017-12-07 | 国立研究開発法人物質・材料研究機構 | Laser and laser ultrasonic flaw detection device using the same |
WO2022239058A1 (en) * | 2021-05-10 | 2022-11-17 | 日本電信電話株式会社 | Wavelength converting device |
JP7510101B2 (en) | 2021-05-10 | 2024-07-03 | 日本電信電話株式会社 | Wavelength conversion device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846603B2 (en) | Nested optical parametric oscillator for fast frequency tuning | |
Strößner et al. | Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm | |
EP3004983B1 (en) | Tunable optical parametric oscillator | |
Niu et al. | Research progress on periodically poled lithium niobate for nonlinear frequency conversion | |
US8891160B2 (en) | Broadly and fast tunable optical parametric oscillator | |
JP2011520149A (en) | Wavelength conversion apparatus, laser and method for stabilizing wavelength conversion efficiency | |
Niu et al. | Widely tunable, high-energy, mid-infrared (2.2–4.8 µm) laser based on a multi-grating MgO: PPLN optical parametric oscillator | |
Henderson et al. | Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements | |
Lundeman et al. | High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser | |
JP2006114642A (en) | Infrared coherent light source | |
Henriksson et al. | Tandem PPKTP and ZGP OPO for mid-infrared generation | |
Koch et al. | Narrow-band, tunable 2 μm optical parametric oscillator based on MgO: PPLN at degeneracy with a volume Bragg grating output coupler | |
EP3273299A1 (en) | Dual frequency pumped optical parametric oscillator | |
Guo et al. | Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes | |
US7460570B2 (en) | Green coherent light generating device using even nonlinear crystals | |
Ikegami et al. | Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator | |
Zhang et al. | Widely tunable, high-repetition-rate, dual signal-wave optical parametric oscillator by using two periodically poled crystals | |
Shen et al. | Singly resonant optical parametric oscillator based on periodically poled MgO: LiNbO^ sub 3^ | |
Li et al. | Infrared OPO temperature tuning based on periodically-poled lithium niobate | |
Wang et al. | Tunable continuous-wave doubly resonant optical parametric oscillator by use of a semimonolithic KTP crystal | |
WO1994025896A1 (en) | A tunable optical oscillator | |
Ikegami et al. | Characteristics of continuous-wave double-resonant optical parametric oscillators as spectroscopic tools | |
Raybaut et al. | The Micro-OPO: an alternative for ultra-compact largely tuneable mid-infrared sources | |
JP2002232047A (en) | Wavelength variable laser device | |
Aadhi et al. | All periodically-poled crystals based source of tunable, continuous-wave, single-frequency, ultraviolet radiation |