TW200416194A - MENS scanning mirror with tunable natural frequency - Google Patents

MENS scanning mirror with tunable natural frequency Download PDF

Info

Publication number
TW200416194A
TW200416194A TW092131669A TW92131669A TW200416194A TW 200416194 A TW200416194 A TW 200416194A TW 092131669 A TW092131669 A TW 092131669A TW 92131669 A TW92131669 A TW 92131669A TW 200416194 A TW200416194 A TW 200416194A
Authority
TW
Taiwan
Prior art keywords
electrode
voltage
frequency
voltage source
scanning
Prior art date
Application number
TW092131669A
Other languages
Chinese (zh)
Other versions
TWI238143B (en
Inventor
Yee-Chung Fu
Ting-Tung Kuo
Original Assignee
Advanced Nano Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/302,413 external-priority patent/US7034370B2/en
Priority claimed from US10/302,387 external-priority patent/US6769616B2/en
Application filed by Advanced Nano Systems filed Critical Advanced Nano Systems
Publication of TW200416194A publication Critical patent/TW200416194A/en
Application granted granted Critical
Publication of TWI238143B publication Critical patent/TWI238143B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/357Electrostatic force

Abstract

In one embodiment of the invention, a MEMS structure includes a first electrode, a second electrode, and a mobile element. The first electrode is coupled to a first voltage source. The second electrode is coupled to a second voltage source. The mobile element includes a third electrode coupled to a third voltage source. A steady voltage difference between the first electrode and the third electrode is used to tune the natural frequency of the structure to a scanning frequency of an application. An oscillating voltage difference between the second electrode and the third electrode at the scanning frequency of the application is used to oscillate the mobile element. In one embodiment, the mobile unit is a mirror.

Description

200416194 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種微機電系統(MEMS),而更特定言之, 係關於微機電系統掃描鏡。 【先前技術】 已經有各種不同的微機電系統(MEMS)掃描鏡的靜電設 計。它們的應用包含條碼讀取機,雷射印表機,共焦顯微 鏡,光纖網路組件,投影機的投影顯示器,背投影電視 (TVs),穿戴式顯示器,與軍事雷射追蹤與導航系統。 MEMS掃描鏡通常是在其主要譜振(resonance)上驅動,以 獲得高的掃描角度。製造過程常常產生尺寸不合的MEMS 掃描鏡,而改變了個別裝置的自然頻率。如果少數MEMS 掃描鏡的主要自然頻率太低或太高,則在為少數MEMS掃 描鏡選擇的交流電(AC)驅動電壓下,少數裝置將不會產生 適當的掃描速度與適當的掃描角度。因此,需要一種裝置 與方法來調整MEMS掃描鏡的主要自然頻率,以改善這些 裝置的製造良率。 【發明内容】 在本發明之一具體實施例中,一微機電系統(MEMS)結 構包含一第一電極’一第二電極’與一移動式元件。第一 電極耦合到第一電壓源。第二電極耦合到第二電壓源。移 動式元件包含一第三電極,其耦合到第三電壓源(如,接 地)。第一電極與第三電極之間的穩定電壓差,係用來將結 構的自然頻率調成應用的掃描頻率。在應用的掃描頻率 89164 200416194 上,第二電極與第三電極之間的振盪電壓差,係用來振盪 移動式元件。在一具體實施例中,移動式單元是鏡面。 【實施方式】 圖4說明本發明之一具體實施例中的MEMS系統400。 MEMS系統400包含具有移動式元件之MEMS結構(如, MEMS結構100,200,或300),其中移動式元件在電壓源 402所供應的電壓下,靜電地移動。電壓源402在不動電極 與移動式元件之移動電極之間,提供一電壓差,以將 MEMS結構100之自然頻率調整成理想之掃描頻率。電壓源 402亦於另一不動電極與移動式元件之移動電極之間,提 供所需之掃描頻率的交流(AC)電壓差,以所需之掃描角度 振盪移動式元件。 移動式元件的運動(如,掃描頻率與掃描角度)係藉由一 感應器404來測量,並回饋至一控制器406。控制器406比 較測量的運動與所需之移動式元件的運動,接著指示電壓 源402提供適當的電壓,以獲得所需之運動。雖然顯示為 個別的組件,MEMS結構100,電壓源402,感應器404,與 控制器406可以建構於相同的晶片或不同的晶片中。 圖1A與1B分別顯示一具體實施例中之MEMS結構100的 組合與分解圖。MEMS結構100可以用於任何需要單軸運動 的應用(如,單向掃描鏡)中。MEMS結構100包含一導電層 105,一絕緣層107,與一導電層109。在一具體實施例 中,導電層105與109係由摻雜的矽所製成,而絕緣層107 則是由二氧化矽(Si02)所製成。絕緣層107電子地隔絕導電 89164 200416194 層105與109上的組件。絕緣層1〇7也用來將導電層ι〇5與 1 0 9完全地結合在一起。 圖1C說明導電層1〇5之一具體實施例的俯視圖。導電層 105包含一掃描鏡ιοί與一偏壓襯墊112。掃描鏡1〇1包含一 反射區域124,其分別藉由錨定1〇8八與1〇8B連接到扭轉樞 紐102A與102B。鏡面1〇1繞著軸122旋轉。 在一具體實施例中,扭轉樞紐1〇2A與102B包含一内部孔 114,以降低結構1 〇 〇之旋轉模態頻率。旋轉模態頻率是確 保掃描鏡101繞著軸122旋轉,而不與其他多餘旋轉與移動 結構振動耦合的最低模態頻率。 鏡面101包含位於轉軸122不同面上的移動刻槽1〇4八與 104B(合稱「移動刻槽104」)。移動刻槽1〇从與1〇4B分別 «棒狀物106A與106B延伸出來。棒狀物i〇6a與ι〇6Β連接 到反射區域124,並且與扭轉樞紐1〇2A與102B平行。 偏壓襯塾112包含位於旋轉轴122不同面上的固定刻槽 103A與103B(合稱「固定刻槽103」)。當偏壓襯墊112與鏡 面101在同一平面時(如,當鏡面101不旋轉時),固定刻槽 1〇3八與1〇36分別與移動刻槽1〇4八與1048咬合。 在一具體實施例中,錨定108A耦合到接地116,而偏壓 襯塾112則搞合到直流(DC)電壓源11 8。DC電壓源11 8提供 DC偏壓給偏壓襯塾112。DC偏壓在固定刻槽1〇3與移動刻 槽104之間,產生穩定的電壓差。固定刻槽ι〇3與移動刻槽 104之間穩定的電壓差,產生轉動鏡面ι〇1的靜電力矩,直 到靜電力矩等於平衡位置的回復力矩。實際上,固定刻槽 89164 200416194 103與移動刻槽104之間穩定的電壓差,產生改變MEMS結 構100之自然頻率的非線性靜電系統。因此,可以藉由增 加或減少固定刻槽1〇3與移動刻槽1〇4之間穩定的電壓差, 來杈準(如,調整)MEMS結構10〇的自然頻率。 在一具體實施例中,在與結構1 〇〇相同的晶片上,建立 DC電壓源118。或者是,在與結構1〇〇分離的晶片上,建立 DC電壓源118。在一具體實施例中,dc電壓源11 8於產生 DC偏壓值的操作期間,是伺服機制控制的,而此一偏壓值 產生結構100之理想自然頻率。 圖1D說明中間層107之一具體實施例的俯視圖。要不是 鏡面101為了電子地隔絕層i 〇 i上的組件,絕緣層i 〇7具有 與導電層105相同的形狀。絕緣層1〇7為鏡面1〇1的掃描動 作,定義十字開口 12 1。 圖1E說明導電層109之一具體實施例的俯視圖。導電層 109包含一驅動襯墊126,其定義十字開口 m。驅動襯墊 126包含轉軸122不同面上的固定刻槽11〇八與n〇B(合稱 「固定刻槽no」)。類似於開口 121,開口 ln是鏡面1〇1之 掃描運動的自由空間。當鏡面101以第一方向轉動(如,順 時鐘)時,固定刻槽110A與移動刻槽1〇4A咬合,而當鏡面 1 0 1以第二方向轉動(如,逆時鐘)時,固定刻槽i i 〇B與移動 刻槽104B咬合。刻槽110A與110B是電子地連接的。當觀塾 112與126之間施加一 AC驅動電壓時,如果移動結構相對於 軸122是對稱的,則一開始會產生移動的合力。此一移動 的合力對轉動是沒有用的。實際上,由於製造容許偏移 89164 200416194 里,結構並不是完全對稱的,而且將開始振盪。一旦結構 開始振盪,力矩增加,而移動合力則減少。此一小初始力 矩的潛在問題,可以藉由使力或結構對軸122稍微不對稱 來解決。舉例來說,可以使刻槽110Aw10B的長度稍微不 同,以產生相對較大的初始力矩。鏡面形狀對軸122可以 稍微不對稱,以產生相同的效應。 在—具體實施例中,固定刻槽110與移動刻槽104形成振 盪掃描鏡101的靜電促動器(如,垂直梳狀驅動器在此一 具體實施例中,驅動襯塾126搞合到AC電壓源120,而錯定 108A則耦合到接地116。當啟動時,Ac電壓源提供一 AC驅動電壓,以驅動襯墊126於固定刻槽“ο與移動刻槽 104&間,產生一振盪電壓差。AC驅動電壓通常具有與結 構自然頻率相等的頻率,以獲得最大的掃描角度。 刻槽110與104之間的振盪電壓差,造成一靜電力矩,此— 靜電力矩產生鏡面1 0 1的掃描運動。 在一具體實施例中,AC電壓源120係建立於與結構1〇〇相 同的晶片上。或者是,AC電壓源12〇係建立於與結構1〇〇分 離的晶片上。在一具體實施例中,AC電壓源12〇在產生Ac 驅動電壓的操作其間,是伺服機制控制,其中該AC驅動電 壓產生所需之掃描速度與掃描角度。 圖1F說明用來配置與操作一具體實施例中之MEMS結構 1〇〇的方法150。結構100通常由一批結構100所產生的裝 置。下面將敘述,動作151與152發生於結構1〇〇之製造期 間而動作I53,154,156與160發生於結構1〇〇之使用期 89164 •10- 200416194 間。 在動作151中,設計者決定應用的掃描頻率與掃描角度 (如,對條碼是1千赫兹(kHz)與5-10度),並修改結構1〇〇的 基本設計’以獲得-特定之自然財,而此—頻率與掃描 頻率相同。設計者藉由改變樞紐的靈活度(如,樞紐的幾 何),或是改變結構的轉動慣量(如,鏡面的幾何),來改變 設計。動作151之後,緊接著是動作152。 在動作152中,設計者預先調整結構1〇〇之Dc電壓差與 AC電壓差的特性。設計者預先校準DC偏壓(圖5),以將結 構1〇〇之自然頻率調整成應用之掃描頻率。設計者預先調 整AC驅動電壓的振幅與頻率(圖5),以獲得結構1〇〇之理想 的掃描角纟。設計者也可以預先調整AC驅動電壓的垂直偏 移量(圖5),以獲得所需之中間的掃描位置,此—位置為振 4大約發生之處。這些步驟是必要的,因為製造的不一 致,每-結構1〇〇與其他的不盡相同。接著,這雄特性被 儲存到控制器勸中,當作此—結構⑽之dc偏壓與鄉 動電壓的初始/預設特性值。 在動作⑸中,最終用戶可以在控制器4〇6中,儲存不同 的DC偏壓與AC驅動電壓特性值。最終用戶可能希望改變 所需之掃描頻率’戶斤需之掃描角度,與所需之中間掃描位 置。 在動作154中’控制器4〇6指示電壓源4〇2供應π偏壓與 AC驅動電壓。電壓源術表示不同的DC與AC電壓源(如, DC電壓源11 8與AC電壓源120)。 89164 -11- 200416194 DC偏C以儲存於控制器4Q6中的預設值開始 機制控制以確保轉動的自然頻率是掃描頻率。在操作階段 中,沉偏壓之伺服機制控制是必要的,因為結構⑽ 然頻率可能因為溫度變&,材料老化,或任何其他原因, 而偏離所需的數值。 AC驅動電壓以儲存於控制“%中的預設值開始,接著 飼服機制控制以確保獲得所需之掃描頻率與掃描角度。在 操作階段中’ AC驅動電壓之伺服機制控制是必要的,因為 掃描頻率,掃描角纟,與中間的掃描位置可能因為溫度變 化,材料老化,或任何其他原因,而偏離所需的數值。動 作154之後’緊接著是動作158。 在動作158中,使用感應器4〇4來監視掃描鏡的運動(如, 掃描頻率,掃描角度,與掃描的中間位置),而所測量的资 訊則輸出到控制器406。動作158之後,緊接著是動作 160 〇 在動作160中,控制器406從感應器4〇4接收動作資訊。 控制器406計算並提供所需之DC偏壓與所需之ac驅動電壓 給電壓源402。DC偏壓之伺服機制控制係藉由擾動dc偏壓 的振幅,以及感應掃描角度的變化來完成。如果]〇(::偏壓是 玉曰加的,而掃描角度也同時增加,則自然頻率接近掃描頻 率,反之亦然。如果繪圖預示高Q係數的主要自然頻率, 則通常以DC偏壓變化控制自然頻率來保持掃描的振幅,會 更有效。 AC驅動電壓之伺服機制控制係藉由擾動AC驅動電壓之 89164 -12- 200416194 振幅’頻率,與垂直偏移量,並感應掃描角度,掃描頻 率’與掃描中間位置的變化來達成。增加AC驅動電壓的振 幅’以增加轉動的角度,反之亦然。增加Ac驅動電壓的頻 率’以增加掃描頻率,反之亦然。改變Ac驅動電壓之垂直 偏移里以取佳化知描的中間位置。動作16 0之後,緊接 著疋動作1 54,而且此一方法持續回饋循環。 圖1G說明結構100之導電層1〇5之另一具體實施例的俯視 圖。圖1C與1G之間相同與類似之處以相同的參考數字指 示。在此一具體實施例中,反射區域124連接到棒狀物 128A與128B。移動刻槽1〇4八與1〇扣,其中此等刻槽從棒 狀物128八與1286足相反的一邊延伸出來。棒狀物128八與 128B之終端,藉由扭轉樞紐13〇八與13犯,分別連接到錨定 108A與108B。每一扭轉樞紐13〇八與13〇B具有彎曲的形 狀,增加移動的難度,但保持樞紐1〇2八與1〇26的扭轉靈活 度。同樣地’如上所述,DC電壓源118耦合到偏壓襯墊 112,而接地U6則耦合到錯定108A。上述之方法15〇可以 用來配置與操作結構⑽,其中結構_具有請之導電層 圖職明導電層109之另-具體實施例的俯視圖。圖r 與1H之間相同或類似的部>,以相同的參考數字指示。, 此-具體實施例中,驅動襯墊126僅包含固定刻槽m 此-組態提供大的初始轉矩,以引發鏡面轉動振湯。固定 刻槽·與移動刻槽職之陳i的電壓差 鏡面101的掃描運動。可是,可以增加振湯電壓声 仏風包壓差,以與 89164 • 13 - 200416194 圖1E中之上述具體實施例的相應振幅一致,因為此一具體 實施例中的層109以固定的刻槽110,僅施加一力於其中一 個反面。上述之方法150可以用來配置與操作結構100,其 中該結構100具有圖1H之導電層109。 圖Π說明導電層109之另一具體實施例的俯視圖。圖1£與 11之間相同或類似的部分,以相同的參考數字指示。在此 一具體實施例中,導電層109分成兩個驅動襯墊132八與 132B(合稱「驅動襯塾η2」),一起定義開口 κι。固定刻 槽110A與110B分別從驅動襯墊132A與132B的相反邊緣延 伸出來。驅動襯墊132A耦合到AC電壓源134A,而驅動襯 墊132B則耦合到另一 AC電壓源134B。AC電壓源134A與 13 4B具有相同的頻率,但是有ι80度的相位差,以提供最 南的扭轉驅動力與初始激勵轉矩。因此,固定刻槽1 1 〇與移 動刻槽104之間的振盪電壓差,產生鏡面1 〇 1的掃描運動。 上述之方法150可以用來配置與操作結構100,其中該結構 100具有圖II之導電層109。 圖1J說明導電層109下面之額外的層136的俯視圖,其電 子地隔絕驅動襯墊132A與132B。在一具體實施例中,絕緣 層136係由本徵矽(intrinsic siHcon)所製成。絕緣層ι36可以 包含一自由空間,保留給鏡面1 〇 1的運動。 圖2A與2B分別說明一具體實施例中之MEMS結構的組合 與分解圖。類似於MEMS結構100,MEMS結構200可以用 於任何需要單軸掃描鏡的應用。MEMS結構200包含一導電 層205 ’ 一隔離與結合層207,以及一結構固定層209。在 89164 •14- 200416194 一具體實施例中,導電層2 0 5係由摻雜的石夕所製成,而隔 離層207則是由二氧化矽(Si02)所製成,以電子地使導電層 205的元件絕緣。層209對上面的兩層提供一支持結構。如 果層209係由不導電的本徵矽所製成,則層207將僅用作結 合層,而且在此一組態中是選擇性的。 圖2C說明導電層205之一具體實施例的俯視圖。導電層 205包含一掃描鏡201,偏壓襯墊212,與驅動襯墊232A與 23 2B。類似於鏡面101,鏡面201包含一反射區域224,其 分別藉由扭轉樞紐202八與202已連接到錨定208八與2083。 鏡面201繞著軸222旋轉。 在一具體實施例中,扭轉樞紐2Ό2Α與202B包含内部的孔 214,以降低旋轉模態頻率。鏡面201亦包含一組移動刻槽 204A與 204B(合稱「移動刻槽 204」)。移動刻槽 204A與 204B從位於軸222不同側面上之棒狀物206A與206B中延伸 出來。棒狀物206 A與206B連接到反射區域224,並且與扭 轉樞紐202A與202B平行。 内部的移動刻槽204B比較靠近反射區域224,並且與固 定刻槽210A與210B咬合(下面敘述)。夕卜面的移動刻槽204A 離反射區域224比較遠,並且與固定刻槽203A與203B咬合 (下面敘述)。 在一具體實施例中,鏡面201是不對稱的,因為其通常 是移除一個或更多個角的方形。因此,鏡面201的重心偏 移到軸222的一邊。當應用需要鏡面20 1從某些初始轉動位 置開始,或迅速地達到一些初始轉動位置時,此一設計是 89164 -15- 200416194 較佳的。 偏壓襯墊2 1 2包含位於軸222之不同側面上的固定刻槽 203A與203B(合稱「固定刻槽203」)。當偏壓襯墊212與鏡 面20 1處於相同的平面時(如,不轉動鏡面20 1時),固定刻 槽203A與203B分別與外部移動刻槽204A咬合。 驅動襯墊232A與232B(合稱「驅動襯墊232」)分別包含 固定刻槽210A與210B(合稱「固定刻槽210」)。當驅動襯 墊232與鏡面201處於相同的平面時,固定刻槽210A與210B 與内部移動刻槽204B咬合。 在一具體實施例中,錨定208A耦合到接地216,而偏壓 襯墊212則耦合到DC電壓源218。DC電壓源21 8提供一 DC偏 壓給偏壓襯墊212,其於固定刻槽203與外部移動刻槽204A 之間,產生穩定的電壓差。同樣地如上文所述,介於固定 槽203與外部移動刻槽204A之間穩定的電壓差會形成靜電 力,因而改變結構200的自然頻率。據此,藉由改變介於 固定槽203與外部移動刻槽204A之間穩定的電壓差,就可 調諧MEMS結構200的自然頻率。 在一具體實施例中,固定刻槽2 1 0與移動刻槽204B形成 振盪掃描鏡20 1的靜電促動器(如,梳狀驅動器)。在此一具 體實施例中,驅動襯墊232係耦合到AC電壓源220。當啟動 時,AC電壓源220提供一 AC驅動電壓給驅動櫬墊232,其 於固定刻槽210與内部移動刻槽204B之間,產生振盪的電 壓差。固定刻槽2 1 0與内部移動刻槽204B之間的振盪電壓 差,造成產生鏡面201之掃描運動的靜電轉矩。 89164 -16- 200416194 類似於以上所述,在一具體實施例中,DC電壓源218與 AC電壓源220係建立於與結構2〇〇相同的晶片上。或者是, 电壓源21 8與220係建立於與結構2〇〇分離之一個或更多個 晶片上。這些晶片接著經由電線,耦合到偏壓襯墊212與 驅動襯墊232。在一具體實施例中,於產生DC偏壓數值的 操作期間,DC電壓源218是伺服機制控制的,其中該〇〇偏 壓數值產生結構100之理想的自然頻率,而在產生AC驅動 電壓期間,AC電壓源220是伺服機制控制的,其中該八〇驅 動電壓產生所需之掃描速度與掃描角度。 圖2D說明隔離層207之一具體實施例的俯視圖。隔離層 2〇7定義一十字開口 221。類似於開口 ,開口 用作鏡 面20 1掃描運動的自由空間。 可以使用上述方法150(圖1F)來操作結構2〇〇。 圖3A至3B分別說明一具體實施例中之MEMS結構300的 組合與分解圖。MEMS結構300可以用於任何需要相對於兩 轉軸旋轉的運動(如,雙向掃描鏡)。MEMS結構3〇〇包含一 結構固定層3〇 1,一絕緣層3〇4,一導電層302,一絕緣層 3〇5,與導電層3〇3。在一具體實施例中,層3〇1係由本徵 石夕或摻雜的秒所製成’導電層3 0 2與3 0 3係由摻雜的石夕所製 成,而絕緣層304與305係由氧化化矽(Si〇2)所製成。絕緣 層304與3 05電子地隔絕層301,302與303上的元件。絕緣 層304與3 05也用來將層301與3 02完全地結合在一起。同樣 地’絕緣層3 0 5也用來將導電層3 0 2與3 0 3完全地結合在一 起0 89164 -17- 200416194 圖3 C虎明導包層3 〇3之一具體實施例的俯视圖。導電層 3〇3包含一掃描鏡316,驅動襯墊3〇6與3〇9,接地襯墊 3〇7,與偏壓襯墊308。掃描鏡316包含一反射區域352, 其刀別藉由彎曲的扭轉樞紐315A與315B,連接到錨定 舁329。鏡面316經由樞紐315A與315B,繞著γ軸旋轉。樞 紐315A與315B決定γ軸的鏡面掃描頻率/速度。 鏡面3 1 6包含γ軸不同側面上的移動刻槽3 14八與3 ΐ4β(合 %「移動刻槽314」)。驅動襯墊3〇6經由彎曲的扭轉樞紐 324,連接到一梳子388。梳子388具有一固定刻槽3丨3,當 梳子388與鏡面316處於相同的平面時(如,不繞著γ軸旋轉 鏡面316時),其與某些移動刻槽314Α咬合。同樣地,驅動 襯墊309經由彎曲扭轉樞紐326連接到一梳子39〇。梳子39〇 具有一固定刻槽311,當不繞著γ軸旋轉鏡面316時,其與 某些移動刻槽3 14Β咬合。 偏壓襯墊308藉由一彎曲之扭轉樞紐325連接到梳子 323Β。板子323Β經由棒狀物330Α連接到梳子323 Α。梳子 323A與323B分別具有固定刻槽310A與310B(合稱「固定刻 槽310」)。當不繞著γ軸旋轉鏡面316時,固定刻槽3i〇a與 310B分別與某些移動刻槽314A與314B咬合。 接地襯塾307藉由彎曲的扭轉樞紐327連接到L形棒狀物 3 3 0 B。棒狀物3 3 0 B連接到猫定3 2 9。因此,接地襯塾3 〇 γ連 接到鏡面3 1 6與移動刻槽3 1 4。200416194 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a micro-electro-mechanical system (MEMS), and more specifically, to a micro-electro-mechanical system scanning mirror. [Prior art] There are various electrostatic designs for micro-electromechanical systems (MEMS) scanning mirrors. Their applications include barcode readers, laser printers, confocal microscopes, fiber optic network components, projection displays for projectors, rear projection televisions (TVs), wearable displays, and military laser tracking and navigation systems. MEMS scanning mirrors are usually driven on their main spectral resonance to obtain high scanning angles. Manufacturing processes often produce out-of-size MEMS scanning mirrors that change the natural frequency of individual devices. If the dominant natural frequency of a small number of MEMS scanning mirrors is too low or too high, a few devices will not produce a proper scanning speed and scanning angle under the alternating current (AC) driving voltage selected for a few MEMS scanning mirrors. Therefore, a need exists for a device and method to adjust the dominant natural frequency of a MEMS scanning mirror to improve the manufacturing yield of these devices. SUMMARY OF THE INVENTION In a specific embodiment of the present invention, a micro-electromechanical system (MEMS) structure includes a first electrode 'a second electrode' and a mobile device. The first electrode is coupled to a first voltage source. The second electrode is coupled to a second voltage source. The mobile element includes a third electrode coupled to a third voltage source (eg, ground). The stable voltage difference between the first electrode and the third electrode is used to adjust the natural frequency of the structure to the scanning frequency of the application. At the applied scanning frequency of 89164 200416194, the oscillation voltage difference between the second electrode and the third electrode is used to oscillate the mobile element. In a specific embodiment, the mobile unit is a mirror. [Embodiment] FIG. 4 illustrates a MEMS system 400 in a specific embodiment of the present invention. The MEMS system 400 includes a MEMS structure (eg, a MEMS structure 100, 200, or 300) having a mobile element, wherein the mobile element is electrostatically moved under a voltage supplied by the voltage source 402. The voltage source 402 provides a voltage difference between the fixed electrode and the moving electrode of the mobile element to adjust the natural frequency of the MEMS structure 100 to an ideal scanning frequency. The voltage source 402 also provides an alternating current (AC) voltage difference at a desired scanning frequency between another fixed electrode and a moving electrode of the mobile element, and oscillates the mobile element at a desired scanning angle. The movement of the mobile device (e.g., scanning frequency and scanning angle) is measured by a sensor 404 and fed back to a controller 406. The controller 406 compares the measured movement with the movement of the required mobile element, and then instructs the voltage source 402 to provide an appropriate voltage to obtain the required movement. Although shown as individual components, the MEMS structure 100, the voltage source 402, the sensor 404, and the controller 406 may be constructed on the same chip or different chips. 1A and 1B show an assembly and an exploded view of a MEMS structure 100 in a specific embodiment, respectively. The MEMS structure 100 can be used in any application that requires uniaxial motion (eg, a unidirectional scanning mirror). The MEMS structure 100 includes a conductive layer 105, an insulating layer 107, and a conductive layer 109. In a specific embodiment, the conductive layers 105 and 109 are made of doped silicon, and the insulating layer 107 is made of silicon dioxide (Si02). The insulating layer 107 electrically isolates conductive 89164 200416194 components on layers 105 and 109. The insulating layer 107 is also used to completely combine the conductive layer ι05 and 109. FIG. 1C illustrates a top view of a specific embodiment of the conductive layer 105. The conductive layer 105 includes a scanning mirror and a bias pad 112. Scanning mirror 101 includes a reflective area 124 which is connected to torsion hubs 102A and 102B by anchoring 108 and 108B, respectively. The mirror surface 101 is rotated around the shaft 122. In a specific embodiment, the torsion hubs 102A and 102B include an internal hole 114 to reduce the rotational modal frequency of the structure 1000. The rotational modal frequency is the lowest modal frequency to ensure that the scanning mirror 101 rotates around the axis 122 without coupling with other unwanted rotations and vibrations of the moving structure. The mirror surface 101 includes moving grooves 104 and 104B (collectively referred to as "moving grooves 104") on different sides of the rotation shaft 122. The moving grooves 10 extend from the rods 106A and 106B, respectively, and 104B. The rods 106a and 106b are connected to the reflection area 124 and are parallel to the torsion hubs 102A and 102B. The biasing liner 112 includes fixed notches 103A and 103B (collectively referred to as "fixed notches 103") on different sides of the rotation shaft 122. When the bias pad 112 and the mirror surface 101 are in the same plane (for example, when the mirror surface 101 is not rotated), the fixed grooves 1083 and 1036 are engaged with the mobile grooves 1044 and 1048, respectively. In a specific embodiment, anchor 108A is coupled to ground 116, and biasing liner 112 is coupled to a direct current (DC) voltage source 118. A DC voltage source 118 provides a DC bias voltage to the bias liner 112. The DC bias voltage is generated between the fixed notch 103 and the movable notch 104 to generate a stable voltage difference. The stable voltage difference between the fixed notch ι03 and the movable notch 104 generates an electrostatic moment that rotates the mirror ιo1 until the electrostatic moment is equal to the restoring moment of the equilibrium position. In fact, the stable voltage difference between the fixed notch 89164 200416194 103 and the movable notch 104 generates a nonlinear electrostatic system that changes the natural frequency of the MEMS structure 100. Therefore, the natural frequency of the MEMS structure 100 can be adjusted (eg, adjusted) by increasing or decreasing the stable voltage difference between the fixed groove 103 and the moving groove 104. In a specific embodiment, a DC voltage source 118 is established on the same wafer as the structure 1000. Alternatively, on a wafer separated from the structure 100, a DC voltage source 118 is established. In a specific embodiment, the dc voltage source 118 is controlled by a servo mechanism during the operation of generating a DC bias value, and this bias value generates the ideal natural frequency of the structure 100. FIG. 1D illustrates a top view of a specific embodiment of the intermediate layer 107. If it is not for the mirror 101 to electrically isolate the components on the layer ioi, the insulating layer io7 has the same shape as the conductive layer 105. The insulating layer 107 is a scanning action of the mirror surface 101 and defines a cross opening 12 1. FIG. 1E illustrates a top view of a specific embodiment of the conductive layer 109. The conductive layer 109 includes a driving pad 126 which defines a cross opening m. The driving pad 126 includes fixed grooves 108 and noB (collectively referred to as "fixed grooves no") on different sides of the shaft 122. Similar to the opening 121, the opening ln is a free space for scanning movement of the mirror surface 101. When the mirror surface 101 is rotated in the first direction (for example, clockwise), the fixed engraved groove 110A is engaged with the mobile engraved groove 104A, and when the mirror surface 101 is rotated in the second direction (for example, counterclockwise), the fixed engraved groove is fixed. The groove ii OB is engaged with the moving engraved groove 104B. The notches 110A and 110B are electrically connected. When an AC driving voltage is applied between the observation poles 112 and 126, if the moving structure is symmetrical with respect to the axis 122, a resultant force of movement will be generated at first. The resultant force of this movement is useless for rotation. In fact, due to manufacturing tolerances 89164 200416194, the structure is not completely symmetrical and will start to oscillate. Once the structure begins to oscillate, the moment increases and the resulting moving force decreases. The potential problem of this small initial moment can be solved by making the force or structure slightly asymmetric about axis 122. For example, the lengths of the grooves 110Aw10B can be made slightly different to produce a relatively large initial moment. The specular shape may be slightly asymmetrical to the shaft 122 to produce the same effect. In a specific embodiment, the fixed notch 110 and the movable notch 104 form an electrostatic actuator (such as a vertical comb driver) that oscillates the scanning mirror 101. In this embodiment, the driving liner 126 is engaged to the AC voltage. The source 120, and the misalignment 108A are coupled to the ground 116. When activated, the AC voltage source provides an AC drive voltage to drive the pad 126 between the fixed groove "ο" and the mobile groove 104 & The AC drive voltage usually has a frequency equal to the natural frequency of the structure to obtain the maximum scanning angle. The oscillating voltage difference between the grooves 110 and 104 causes an electrostatic moment. This — the electrostatic moment generates a scanning motion of the mirror 1 0 1 In a specific embodiment, the AC voltage source 120 is built on the same wafer as the structure 100. Alternatively, the AC voltage source 120 is built on a wafer separate from the structure 100. In a specific implementation In the example, during the operation of generating the AC driving voltage, the AC voltage source 12 is controlled by a servo mechanism, in which the AC driving voltage generates the required scanning speed and scanning angle. Figure 1F illustrates a specific configuration and operation for a specific operation. Method 150 of MEMS structure 100 in the embodiment. Structure 100 is generally a device produced by a batch of structure 100. As will be described below, actions 151 and 152 occur during the manufacture of structure 100 and actions I53, 154, 156 And 160 occur during the service life of structure 100 between 89164 • 10 and 200416194. In act 151, the designer determines the scanning frequency and scanning angle (eg, 1 kilohertz (kHz) and 5-10 degrees for the barcode) ), And modify the basic design of the structure 100 'to obtain a specific natural wealth, and this frequency is the same as the scanning frequency. The designer can change the flexibility of the hub (for example, the geometry of the hub), or change the structure The moment of inertia (such as the geometry of the mirror surface) is used to change the design. Act 151 is followed by action 152. In action 152, the designer adjusts the characteristics of the DC voltage difference and AC voltage difference of the structure 100 in advance. Design The DC bias voltage (Figure 5) is calibrated in advance to adjust the natural frequency of the structure 100 to the scanning frequency of the application. The designer adjusts the amplitude and frequency of the AC drive voltage (Figure 5) in advance to obtain the structure 100 ideal Tracing angle 设计. The designer can also adjust the vertical offset of the AC drive voltage in advance (Figure 5) to obtain the desired intermediate scanning position, which is where the vibration 4 occurs approximately. These steps are necessary, Because of the inconsistent manufacturing, the per-structure 100 is different from the others. Then, this male characteristic is stored in the controller and used as the initial / preset of the dc bias and the rural voltage of the structure. Characteristic value. In action 最终, the end user can store different DC bias and AC drive voltage characteristic values in the controller 406. The end user may wish to change the required scan frequency 'the scan angle required by the user, With the desired intermediate scanning position. In action 154 ', the controller 406 instructs the voltage source 402 to supply a π bias and an AC drive voltage. Voltage source means different DC and AC voltage sources (eg, DC voltage source 118 and AC voltage source 120). 89164 -11- 200416194 DC bias C starts with the preset value stored in the controller 4Q6 to control the mechanism to ensure that the natural frequency of rotation is the scanning frequency. During the operation phase, the servo control of the bias voltage is necessary because the structure's natural frequency may deviate from the required value due to temperature changes & material aging, or any other reason. The AC drive voltage starts with a preset value stored in the control "%, and then the feeding mechanism controls to ensure that the required scanning frequency and scanning angle are obtained. During the operation phase, the servo mechanism control of the AC drive voltage is necessary because The scanning frequency, the scanning angle, and the intermediate scanning position may deviate from the required value due to temperature changes, material aging, or any other reason. Action 154 is followed by action 158. In action 158, the sensor is used 〇4 to monitor the movement of the scanning mirror (such as the scanning frequency, scanning angle, and the middle position of the scanning), and the measured information is output to the controller 406. After action 158, it is followed by action 160. In 160, the controller 406 receives the motion information from the sensor 400. The controller 406 calculates and provides the required DC bias voltage and the required ac driving voltage to the voltage source 402. The servo mechanism control of the DC bias is by Perturbation of the amplitude of the dc bias and the change in the induction scanning angle are done. If] 〇 (:: the bias is added by the jade, and the scanning angle also increases, the natural frequency It is close to the scanning frequency, and vice versa. If the drawing indicates the main natural frequency of the high Q factor, it is usually more effective to control the natural frequency with the DC bias change to maintain the scanning amplitude. The servo mechanism control of the AC driving voltage is by disturbance 89164 -12- 200416194 AC drive voltage amplitude, frequency and vertical offset, and sense the change in scan angle, scan frequency and scan intermediate position. Increase the AC drive voltage amplitude to increase the angle of rotation, and vice versa The same is true. Increasing the frequency of the Ac drive voltage 'to increase the scanning frequency, and vice versa. Change the vertical offset of the Ac drive voltage to optimize the middle position of the profile. After action 160, immediately follow action 154, Moreover, this method continues a feedback loop. FIG. 1G illustrates a top view of another specific embodiment of the conductive layer 105 of the structure 100. The similarities and similarities between FIGS. 1C and 1G are indicated by the same reference numerals. In this specific implementation In the example, the reflection area 124 is connected to the rods 128A and 128B. The moving grooves 104 and 10 are moved, and the grooves are formed from the rods 128 and 1286. The opposite side extends. The ends of the rods 128 and 128B are connected to the anchors 108A and 108B by twisting the hinges 1308 and 13 respectively. Each twisting hub 1308 and 13B has a curved Shape, increasing the difficulty of movement, but maintaining the torsional flexibility of the hubs 108 and 1026. Similarly, as described above, the DC voltage source 118 is coupled to the bias pad 112, while the ground U6 is coupled to the misalignment 108A. The above-mentioned method 15 can be used to configure and operate the structure 其中, where the structure has a conductive layer diagram, and the top view of another specific embodiment of the conductive layer 109. The same or similar parts between Figure r and 1H >, with the same reference numerals. In this specific embodiment, the driving pad 126 only includes a fixed notch m. This configuration provides a large initial torque to cause mirror rotation. The voltage difference between the fixed groove and the movable groove. Scanning movement of the mirror 101. However, it is possible to increase the pressure difference between the vibration voltage and the sound pressure of the wind bag so as to be consistent with the corresponding amplitude of the above-mentioned specific embodiment in FIG. 1E as shown in FIG. 1E, because the layer 109 in this specific embodiment has a fixed groove 110. , Just apply a force to one of the opposite sides. The method 150 described above can be used to configure and operate the structure 100, wherein the structure 100 has the conductive layer 109 of Fig. 1H. FIG. Π illustrates a top view of another embodiment of the conductive layer 109. The same or similar parts between Figure 1 £ and 11 are indicated by the same reference numerals. In this specific embodiment, the conductive layer 109 is divided into two driving pads 132a and 132B (collectively referred to as "driving pads η2"), which together define the opening κι. The fixed notches 110A and 110B extend from opposite edges of the driving pads 132A and 132B, respectively. The drive pad 132A is coupled to an AC voltage source 134A, and the drive pad 132B is coupled to another AC voltage source 134B. The AC voltage sources 134A and 134B have the same frequency, but have a phase difference of 80 degrees to provide the southernmost torsional driving force and initial excitation torque. Therefore, the oscillating voltage difference between the fixed notch 1 10 and the movable notch 104 generates a scanning motion of the mirror surface 101. The method 150 described above can be used to configure and operate the structure 100, wherein the structure 100 has the conductive layer 109 of FIG. II. Figure 1J illustrates a top view of an additional layer 136 underneath the conductive layer 109, which electrically isolates the drive pads 132A and 132B. In a specific embodiment, the insulating layer 136 is made of intrinsic siHcon. The insulating layer ι36 may contain a free space reserved for movement of the mirror 101. 2A and 2B illustrate a combination and an exploded view of a MEMS structure in a specific embodiment, respectively. Similar to the MEMS structure 100, the MEMS structure 200 can be used in any application requiring a uniaxial scanning mirror. The MEMS structure 200 includes a conductive layer 205 ′, an isolation and bonding layer 207, and a structure fixing layer 209. In a specific embodiment of 89164 • 14- 200416194, the conductive layer 205 is made of doped Shi Xi, and the isolation layer 207 is made of silicon dioxide (Si02) to electrically conduct electricity. The elements of layer 205 are insulated. Layer 209 provides a supporting structure for the two upper layers. If layer 209 is made of non-conductive intrinsic silicon, then layer 207 will be used only as a bonding layer and is selective in this configuration. FIG. 2C illustrates a top view of one embodiment of the conductive layer 205. The conductive layer 205 includes a scanning mirror 201, a bias pad 212, and driving pads 232A and 23 2B. Similar to the mirror surface 101, the mirror surface 201 includes a reflection area 224, which has been connected to the anchors 2080 and 2083 by twisting the hinges 202 and 202, respectively. The mirror surface 201 rotates around an axis 222. In a specific embodiment, the torsion hubs 2Ό2A and 202B include internal holes 214 to reduce the rotational modal frequency. The mirror surface 201 also includes a set of moving notches 204A and 204B (collectively referred to as "moving notches 204"). Moving notches 204A and 204B extend from rods 206A and 206B on different sides of shaft 222. The rods 206 A and 206B are connected to the reflection area 224 and are parallel to the twisting hubs 202A and 202B. The internal moving groove 204B is relatively close to the reflection area 224 and is engaged with the fixed grooves 210A and 210B (described below). The moving groove 204A on the evening surface is relatively far from the reflection area 224 and engages with the fixed grooves 203A and 203B (described below). In a specific embodiment, the mirror 201 is asymmetric because it is generally a square with one or more corners removed. Therefore, the center of gravity of the mirror surface 201 is shifted to one side of the shaft 222. This design is better when the application requires the mirror surface 201 to start from some initial rotation positions, or quickly reach some initial rotation positions. The bias pad 2 1 2 includes fixed grooves 203A and 203B (collectively referred to as "fixed grooves 203") on different sides of the shaft 222. When the bias pad 212 and the mirror surface 201 are on the same plane (for example, when the mirror surface 201 is not rotated), the fixed grooves 203A and 203B are engaged with the external moving groove 204A, respectively. The drive pads 232A and 232B (collectively referred to as "drive pads 232") include fixed notches 210A and 210B (collectively referred to as "fixed notches 210"). When the driving pad 232 and the mirror surface 201 are in the same plane, the fixed notches 210A and 210B are engaged with the inner moving notch 204B. In a specific embodiment, anchor 208A is coupled to ground 216, and bias pad 212 is coupled to a DC voltage source 218. The DC voltage source 218 provides a DC bias voltage to the bias pad 212, which generates a stable voltage difference between the fixed notch 203 and the external movable notch 204A. Similarly, as mentioned above, a stable voltage difference between the fixed groove 203 and the external moving engraving groove 204A will form an electrostatic force, thereby changing the natural frequency of the structure 200. Accordingly, the natural frequency of the MEMS structure 200 can be tuned by changing the stable voltage difference between the fixed groove 203 and the external moving groove 204A. In a specific embodiment, the fixed notch 2 10 and the movable notch 204B form an electrostatic actuator (e.g., a comb drive) that oscillates the scanning mirror 201. In this particular embodiment, the drive pad 232 is coupled to an AC voltage source 220. When starting, the AC voltage source 220 provides an AC driving voltage to the driving pad 232, which generates an oscillating voltage difference between the fixed notch 210 and the inner moving notch 204B. The difference in the oscillating voltage between the fixed notch 2 10 and the internal moving notch 204B causes an electrostatic torque that generates the scanning motion of the mirror surface 201. 89164 -16- 200416194 Similar to the above, in a specific embodiment, the DC voltage source 218 and the AC voltage source 220 are built on the same wafer as the structure 200. Alternatively, the voltage sources 218 and 220 are built on one or more wafers separated from the structure 200. These chips are then coupled to the bias pad 212 and the drive pad 232 via a wire. In a specific embodiment, during the operation of generating the DC bias value, the DC voltage source 218 is controlled by a servo mechanism, wherein the 00 bias value generates the ideal natural frequency of the structure 100, and during the generation of the AC driving voltage The AC voltage source 220 is controlled by a servo mechanism, in which the 80 driving voltage generates the required scanning speed and scanning angle. FIG. 2D illustrates a top view of a specific embodiment of the isolation layer 207. The isolation layer 207 defines a cross opening 221. Similar to the opening, the opening is used as a free space for the scanning motion of the mirror 20 1. Structure 200 can be manipulated using method 150 (FIG. 1F) described above. 3A to 3B illustrate an assembly and an exploded view of a MEMS structure 300 in a specific embodiment, respectively. The MEMS structure 300 can be used for any motion that requires rotation relative to two rotational axes (e.g., a two-way scanning mirror). The MEMS structure 300 includes a structure fixing layer 301, an insulating layer 304, a conductive layer 302, an insulating layer 305, and a conductive layer 303. In a specific embodiment, the layer 301 is made of intrinsic stone or doped seconds. The conductive layer 3 2 and 3 0 3 are made of doped stone and the insulating layer 304 and 305 series is made of silicon oxide (SiO2). Insulating layers 304 and 305 electrically isolate components on layers 301, 302, and 303. The insulating layers 304 and 305 are also used to completely bond the layers 301 and 302. Similarly, the 'insulating layer 3 0 5 is also used to completely combine the conductive layers 3 2 and 3 0 3 0 89164 -17- 200416194 Fig. 3 C Huming conductive cladding layer 3 〇 Top view of a specific embodiment Illustration. The conductive layer 303 includes a scanning mirror 316, driving pads 306 and 309, a ground pad 307, and a bias pad 308. The scanning mirror 316 includes a reflective area 352, which is connected to the anchor 舁 329 by means of curved torsion hinges 315A and 315B. The mirror surface 316 rotates around the gamma axis via the pivots 315A and 315B. The pivots 315A and 315B determine the mirror scanning frequency / speed of the gamma axis. The mirror surface 3 1 6 includes moving grooves 3 14 8 and 3 ΐ 4 β on different sides of the γ-axis (total% “moving groove 314”). The drive pad 306 is connected to a comb 388 via a curved torsion hinge 324. The comb 388 has a fixed groove 3, 3, and when the comb 388 and the mirror surface 316 are in the same plane (for example, when the mirror surface 316 is not rotated about the γ axis), it engages with some of the moving grooves 314A. Similarly, the driving pad 309 is connected to a comb 39 through a torsion hinge 326. The comb 39o has a fixed notch 311, which engages with some of the movable notch 3 14B when the mirror surface 316 is not rotated about the γ axis. The biasing pad 308 is connected to the comb 323B through a curved torsion hinge 325. The board 323B is connected to the comb 323 A via a rod 330A. The combs 323A and 323B have fixed notches 310A and 310B (collectively referred to as "fixed notches 310"). When the mirror surface 316 is not rotated around the γ axis, the fixed notches 3ioa and 310B are engaged with some of the movable notches 314A and 314B, respectively. The ground lining 307 is connected to the L-shaped rod 3 3 0 B by a curved torsion hinge 327. The rod 3 3 0 B is connected to Mao Ding 3 2 9. Therefore, the ground lining 3 0 γ is connected to the mirror surface 3 1 6 and the moving groove 3 1 4.

在一具體實施例中,接地襯塾3 0 7搞合到接地3 5 4,而偏 壓襯墊308則耦合到DC電壓源356。DC電壓源356提供一DC 89164 -18- 200416194 偏壓給偏壓襯墊3 08。此一DC偏壓在固定刻槽310與移動刻 槽3 14之間,產生穩定的電壓差。與上述相似,固定刻槽 3 1 0與移動刻槽3 1 4之間穩定的電壓差,產生一非線性靜電 系統,此一非線性靜電系統改變mems結構3〇〇繞著γ軸的 自然頻率。因此,可以藉由改變固定刻槽31〇與移動刻槽 314之間穩定的電壓差,改變(如,調整)]^£]^8結構3〇〇對丫 軸的自然頻率。 與上述類似,DC電壓源356可以建立於與結構3〇〇相同的 晶片上。或者是,DC電壓源356可以建立於與結構3〇〇分離 的晶片上。在一具體實施例中,DC電壓源356於產生Dc偏 壓數值期間,是伺服機制控制的,其中該DC偏壓數值產生 結構3 0 0繞著Y軸之理想自然頻率。 在一具體實施例中,(1)固定刻槽311與移動刻槽314b, 以及(2)固定刻槽3 13與移動刻槽3 14 A,形成兩個靜電促動 态(如’梳狀驅動器),其使掃描鏡3丨6繞著Y軸振盪。在此 一具體實施例中,驅動襯墊306與3〇9係耦合到Ac電壓源 360,而接地襯墊307則耦合到接地354。當啟動時,ac電 壓源360於(1)固定刻槽311與移動刻槽314B之間,以及(2) 固定刻槽313與移動刻槽314A之間,產生一振盪電壓差。 AC驅動電壓通常具有與結構3〇〇之自然頻率相同的頻率, 以獲得最大的掃描角度。刻槽之間的振盪電壓造成靜電轉 矩,而此一靜電轉矩使鏡面316產生繞著丫軸的掃描運動。 類似於上述,在一具體實施例中,AC電壓源36〇係建立 於與結構300相同的晶片上。或者是,AC電壓源36〇係建立 89164 -19- 200416194 於與結構3 00分離的晶片上。在一具體實施例中,AC電壓 源360於產生AC驅動電壓期間,是伺服機制控制的,其中 該AC驅動電壓產生繞著γ軸之理想掃描速度與掃描角度。 在一具體實施例中,導電層303進一步包含位於X軸之不 同側面上的驅動襯墊/梳子317A與317B。梳子317A與317B 分別包含固定刻槽318A與318B。固定刻槽318A與318B係 用來使鏡面316繞著X軸旋轉(下面敘述參考層302)。梳子 3 1 7A與3 17B耦合到AC電壓源374(下面敘述)。 圖3D說明絕緣層305之一具體實施例的俯視圖。要不是 鏡面3 16為了電子地隔絕層303上面的元件,絕緣層3 05具 有與導電層303相同的形狀。絕緣層305定義保留給鏡面 3 1 6之掃描運動的開口 3 5 8。 圖3E說明導電層302之一具體實施例的俯視圖。導電層 3 02包含旋轉結構364與偏壓襯墊/梳子3 19A與3 19B。旋轉 結構364定義鏡面3 16之掃描運動的開口 358。旋轉結構364 包含位於X軸之不同側面上的梳子322A與322B。旋轉結構 364分別藉由彎曲的扭轉樞紐332A與332B,連接到接地襯 塾/梳子3 3 1A與3 3 1B。旋轉結構3 64可以經由樞紐3 3 2 A與 3 3 2 B ’繞著X轴旋轉。鏡面3 16安裝於旋轉結構3 6 4的頂 部。具體地說,鏡面316之錨定328與329分別安裝於旋轉 結構364之錯定支架(anchor mounts)366與367的頂部。這允 許鏡面316使用樞紐315A與315B繞著Y軸旋轉,以及使用 樞紐322A與322B繞著X軸旋轉。 梳子322A與322B分別包含宜甕刻槽321A與321B(合稱 -20- 89164 200416194 移動刻槽321」)。梳子319A與319B分別包含固定刻槽 320A與320B(合稱「固定刻槽32〇」)。當梳子322a,梳子 322B ’與旋轉結構364處於同一平面時(如,f旋轉結構 364不繞著X軸旋轉時),固定刻槽32〇八與32〇b分別與移動 刻槽321A與321B咬合。 在一具體實施例中,錨定33丨A係耦合到接地368,而梳 子3 19A與3 19B則耦合到DC電壓源37〇。Dc電壓源37〇提供 DC偏壓給梳子319A與319B。此一DC偏壓固定刻槽32〇與移 動刻槽321之間,產生穩定的電壓差。類似於上述,固定 刻槽320與移動刻槽321之間穩定的電壓差,產生一非線性 靜電系統,而此一非線性靜電系統改變]^£%8結構繞著乂軸 的自然頻率。因此,可以藉由改變固定刻槽32〇與移動刻 槽321之間穩定的電壓差,來改變(如,調整)mems結構 300繞著X軸的自然頻率。 類似於上述’在一具體實施例中,D C電壓源3 7 0係建立 於與結構3 0 0相同的晶片上。或者是,d C電壓源3 7 0係建立 於與結構3 00分離的晶片上。在一具體實施例中,dc電壓 源370在產生一DC偏壓數值期間,是伺服機制控制的,其 中該DC偏壓數值產生結構300繞著X軸之理想自然頻率。 如上所述,梳子317A與317B(圖3C)分別具有固定刻槽 318A與318B(圖3C)。當鏡面316(圖3C)以第一方向轉動 時,旋轉結構364(圖3E)之移動刻槽321A(圖3E)與固定刻槽 318A咬合,而當鏡面316以相反方向旋轉時,旋轉結構364 之移動刻槽321B(圖3E)與固定刻槽318B咬合。 -21- 89164 200416194 在一具體實施例中,(1)固定刻槽318A與移動刻槽 321A ’以及(2)固定刻槽318B與移動刻槽321B,形成兩個 靜電促動器(如’梳狀驅動器),其使掃描鏡316繞著X軸振 盟。在此一具體實施例中,梳子317A與317B係耦合到ac 電壓源374(圖3C),而接地襯墊331A(圖3E)則耦合到接地 368(圖3E)。當啟動時,AC電壓源374於固定刻槽318A與移 動刻槽321A之間’以及於固定刻槽318B與移動刻槽3216之 間’產生一振盧電壓差。AC驅動電壓通常具有與結構3〇〇 <自然頻率相同的頻率,以獲得最大的掃描角度。刻槽之 間的振盪電壓造成靜電轉矩,而此一靜電轉矩使鏡面316 產生繞著Y軸的掃描運動。 類似於上述’在一具體實施例中,AC電壓源374係建立 於與結構300相同的晶片上。或者是,AC電壓源374係建立 於與結構300分離的晶片上。在一具體實施例中,AC電壓 源374於產生AC驅動電壓期間,是伺服機制控制的,其中 琢AC驅動電壓產生繞著χ軸之理想掃描速度與掃描角度。 圖3F說明絕緣層304之一具體實施例的俯視圖。要不是 旋轉結構364為了使層302上之元件電子地絕緣,絕緣層 3 04具有與導電層3 02相同的形狀。絕緣層3 〇4定義保留給 鏡面3 1 6與旋轉結構3 64之掃描運動的開口 3 5 8。 圖3G說明結構固定層3〇1之一具體實施例的俯視圖。層 301包含一框架378,其定義供作鏡面316之掃描運動與旋 轉結構364的開口 358。旋轉結構364安裝於框架378頂部。 具體地說’旋轉結構364之錨定331Α與33 1Β分別安裝於框 89164 -22- 200416194 架378之錨定支架380與382頂部。導電層3〇2之梳子319八與 319B分別安裝於梳子支架384與386的頂部。 可以修改上述之方法150(圖11?),以配置並操作具體實施 例中的MEMS結構300。結構300通常是由一批結構3〇〇所產 生的裝置。 在動作1 5 1中,設計者決定應用之兩轉軸的掃描頻率與 掃描角度,並修改結構3〇〇的基本設計,以獲得一特定之 自然頻率,而此一頻率與掃描頻率相同。設計者藉由改變 樞紐的靈活度(如,樞紐的幾何),或是改變結構的轉動慣 量(如,鏡面的幾何),來改變設計。動作151之後,緊接著 是動作152。 在動作152中,設計者預先調.整兩轉軸的DC電壓差特 性,以將此一結構300之自然頻率調成掃描頻率。設計者 也預先_整兩轉軸的AC電壓差特性,以獲得振盪發生之理 想的中間掃描角度與掃描位置。接著,這些特性被儲存到 控制器406中,當作此一結構3〇〇iDC偏壓與八(:驅動電壓 的初始/預設特性值。 在動作153中,最終用戶可以在控制器4〇6中,儲存不同 的DC偏壓與AC驅動電壓特性值。最終用戶可能希望改變 所需之掃描頻率,所需之掃描角度,與所需之中間掃描位 置。 在動作154中,控制器406指示電壓源402供應DC偏壓與 AC驅動電壓。電壓源402表示不同的DC與AC電壓源(如, DC電壓源356與370,以及AC電壓源360與374)。 89164 -23- 200416194 DC偏[以儲存於制器4〇6中的預設值開始,接著飼服 機制控制以確保轉動的自然頻率是掃描頻率。 AC驅動電壓以儲存於控制器偏中的預設值開始,接著 伺服機制&制以;5崔保獲得所需之掃描頻率與掃描角度,因 此獲得理想之掃描中間位置。動作154之後,緊接著是動 作 158。 在動作158中,使用感應器4〇4來監視掃描鏡的運動,而 所測ΐ的資訊則輸出到控制器4〇6。動作158之後,緊接著 是動作1 60。 在動作160中,控制器4〇6從感應器4〇4接收動作資訊。 才制mr 406冲算並#疋供所需之DC偏壓與所需之AC驅動電壓 給電壓源402。動作160之後,緊接著是動作154,而且此 一方法持續回饋循環。 所揭不之具體實施例之特性的其他各種修改與組合,屬 於本發明之範圍。下列申請專利範圍包含許多具體實施 例。 【圖式簡單說明】 圖1A與1B分別說明一具體實施例中之MEMS結構100的 組合與分解圖。 圖1C ’ 1D與1E說明一具體實施例中之MEMS結構100的 層的俯視圖。 圖1F說明配置與操作本發明之一具體實施例中的MEMS 結構1 0 0的方法。 圖1G,1H,II與1J說明不同具體實施例之MEMS結構100 89164 -24- 200416194 中,不同層的俯視圖。 圖2A與2B分別說明一具體實施例中之MEMS結構200的 組合與分解圖。 圖2C與2D說明一具體實施例中之MEMS結構200的俯視 圖。 圖3 A與3B分別說明一具體實施例中之MEMS結構300的 組合與分解圖。 圖3C,3D,3E,3F與3G說明一具體實施例中之MEMS結 構300的俯視圖。 圖4說明本發明之一具體實施例中的MEMS系統。 圖5說明用來振盪本發明之一具體實施例中之MEMS結構 的直流(DC)與交流(AC)電壓。 【圖式代表符號說明】 100, 200,3 00 微機電系統(MEMS)結構 400 微機電系統(MEMS) 402 電壓源 404 感應器 406 控制器 105,109, 205, 302, 303 導電層 107, 136, 304, 305 絕緣層 101,201,3 16 掃描鏡 1 12, 212, 308 偏壓襯墊 124, 224, 352 反射區域 102A,102B,130A, 扭轉樞紐 89164 -25 - 200416194 130B,202A,202B, 315A,315B,324, 325, 327, 332A,332B 108A,108B,208A, 猫定 208B,328, 329 114, 214 孔 122, 222 軸 104,104A,104B,204, 移動刻槽 204A,204B,314, 314A, 314B, 321, 321A, 321B 106A, 106B, 128A, 128B, 棒狀物 206A,206B 103,103A,103B,110, 固定刻槽 110A,110B,210, 210A, 210B,203, 203A,203B, 311, 310, 310A,310B, 318A,318B,320, 320A, 320B 116, 354, 368 接地 118, 356, 370 直流電壓源 111, 121, 221, 358 開口 126, 132A,132B,232A, 驅動襯墊 232B,306, 309 120, 220, 360, 374 交流電壓源 89164 -26- 200416194 150 151,152,153,154,156, 158, 160 207 209, 301 307, 33 1A,331B 388, 390, 323A,323B, 317A, 317B, 319A, 319B, 322A, 322B, 331A, 331B 330B 364 366, 367, 380, 382 378 384, 386 方法 (方法150之)動作 隔離與結合層 結構固定層 接地襯墊 梳子 L形棒狀物 旋轉結構 錯定支架 框架 梳子支架 89164 -27-In a specific embodiment, ground pad 307 is coupled to ground 3 5 4 and bias pad 308 is coupled to a DC voltage source 356. The DC voltage source 356 provides a DC 89164-18-200416194 bias to the bias pad 308. This DC bias voltage generates a stable voltage difference between the fixed notch 310 and the movable notch 3 14. Similar to the above, a stable voltage difference between the fixed notch 3 10 and the movable notch 3 1 4 generates a non-linear electrostatic system, which changes the natural frequency of the mems structure 300 around the gamma axis. . Therefore, by changing the stable voltage difference between the fixed notch 31 and the movable notch 314, it is possible to change (eg, adjust) the natural frequency of the structure 300 to the Y axis. Similar to the above, the DC voltage source 356 can be built on the same wafer as the structure 300. Alternatively, the DC voltage source 356 may be built on a wafer separated from the structure 300. In a specific embodiment, the DC voltage source 356 is controlled by a servo mechanism during the generation of the Dc bias value, wherein the DC bias value generates the ideal natural frequency of the structure 300 around the Y axis. In a specific embodiment, (1) the fixed notch 311 and the movable notch 314b, and (2) the fixed notch 3 13 and the movable notch 3 14 A to form two electrostatically motivated dynamics (such as a 'comb drive' ), Which causes the scanning mirrors 3, 6 to oscillate around the Y axis. In this embodiment, the drive pads 306 and 309 are coupled to the Ac voltage source 360, and the ground pad 307 is coupled to the ground 354. When starting, the ac voltage source 360 generates an oscillating voltage difference between (1) the fixed notch 311 and the mobile notch 314B, and (2) between the fixed notch 313 and the mobile notch 314A. The AC drive voltage usually has the same frequency as the natural frequency of the structure 300 to obtain the maximum scanning angle. The oscillating voltage between the grooves causes an electrostatic torque, and this electrostatic torque causes the mirror surface 316 to make a scanning movement around the Y axis. Similar to the above, in a specific embodiment, the AC voltage source 36 is built on the same wafer as the structure 300. Alternatively, the AC voltage source 36 is set up 89164 -19- 200416194 on a wafer separated from the structure 300. In a specific embodiment, the AC voltage source 360 is controlled by a servo mechanism during the generation of the AC driving voltage, wherein the AC driving voltage generates an ideal scanning speed and scanning angle around the gamma axis. In a specific embodiment, the conductive layer 303 further includes driving pads / combs 317A and 317B on different sides of the X-axis. The combs 317A and 317B include fixed notches 318A and 318B, respectively. The fixed grooves 318A and 318B are used to rotate the mirror surface 316 around the X axis (the reference layer 302 is described below). The combs 3 1 7A and 3 17B are coupled to an AC voltage source 374 (described below). FIG. 3D illustrates a top view of a specific embodiment of the insulating layer 305. If it is not for the mirror 3 16 to electrically isolate the components above the layer 303, the insulating layer 3 05 has the same shape as the conductive layer 303. The insulating layer 305 defines an opening 3 5 8 which is reserved for the scanning movement of the mirror 3 1 6. FIG. 3E illustrates a top view of a specific embodiment of the conductive layer 302. The conductive layer 302 includes a rotating structure 364 and a bias pad / comb 3 19A and 3 19B. The rotating structure 364 defines an opening 358 for the scanning movement of the mirror 3 16. The rotating structure 364 includes combs 322A and 322B on different sides of the X-axis. The rotating structure 364 is connected to the ground linings / combs 3 3 1A and 3 3 1B through curved torsion hinges 332A and 332B, respectively. The rotating structure 3 64 can rotate around the X axis via the hinges 3 3 2 A and 3 3 2 B ′. The mirror 3 16 is mounted on the top of the rotating structure 3 6 4. Specifically, the anchors 328 and 329 of the mirror surface 316 are mounted on the tops of anchor mounts 366 and 367 of the rotating structure 364, respectively. This allows the mirror surface 316 to be rotated about the Y axis using the pivots 315A and 315B, and to be rotated about the X axis using the pivots 322A and 322B. The combs 322A and 322B respectively include suitable engraving grooves 321A and 321B (collectively -20- 89164 200416194 moving engraving groove 321 ″). The combs 319A and 319B include fixed notches 320A and 320B (collectively referred to as "fixed notches 32o"). When the comb 322a, comb 322B 'is on the same plane as the rotating structure 364 (for example, when the f-rotating structure 364 does not rotate around the X axis), the fixed notches 3208 and 32b are engaged with the moving notches 321A and 321B, respectively . In a specific embodiment, the anchor 33A is coupled to ground 368, and the combs 3 19A and 3 19B are coupled to a DC voltage source 37. The Dc voltage source 37 provides DC bias to the combs 319A and 319B. This DC bias generates a stable voltage difference between the fixed notch 32 and the movable notch 321. Similar to the above, the stable voltage difference between the fixed notch 320 and the movable notch 321 generates a non-linear electrostatic system, and this non-linear electrostatic system changes] ^ £% 8 The natural frequency of the structure around the Z axis. Therefore, the natural frequency of the mems structure 300 around the X-axis can be changed (eg, adjusted) by changing the stable voltage difference between the fixed notch 32 and the movable notch 321. Similar to the above-mentioned 'in a specific embodiment, the DC voltage source 37 is built on the same wafer as the structure 300. Alternatively, the d C voltage source 370 is built on a wafer separate from the structure 300. In a specific embodiment, the dc voltage source 370 is controlled by a servo mechanism during the generation of a DC bias value, wherein the DC bias value generates the ideal natural frequency of the structure 300 around the X axis. As described above, the combs 317A and 317B (Fig. 3C) have the fixed notches 318A and 318B (Fig. 3C), respectively. When the mirror surface 316 (FIG. 3C) is rotated in the first direction, the moving engraved groove 321A (FIG. 3E) of the rotating structure 364 (FIG. 3E) engages with the fixed engraved groove 318A, and when the mirror surface 316 is rotated in the opposite direction, the rotating structure 364 The moving notch 321B (FIG. 3E) is engaged with the fixed notch 318B. -21- 89164 200416194 In a specific embodiment, (1) the fixed notch 318A and the mobile notch 321A 'and (2) the fixed notch 318B and the mobile notch 321B, forming two electrostatic actuators (such as a' comb Drive), which causes the scanning mirror 316 to vibrate around the X axis. In this embodiment, the combs 317A and 317B are coupled to the ac voltage source 374 (FIG. 3C), and the ground pad 331A (FIG. 3E) is coupled to the ground 368 (FIG. 3E). When activated, the AC voltage source 374 generates a voltage difference between the fixed notch 318A and the mobile notch 321A 'and between the fixed notch 318B and the mobile notch 3216'. The AC drive voltage usually has the same frequency as the structure 300 < natural frequency to obtain the maximum scanning angle. The oscillating voltage between the grooves causes an electrostatic torque, and this electrostatic torque causes a scanning movement of the mirror surface 316 around the Y axis. Similar to the above ', in a specific embodiment, the AC voltage source 374 is built on the same wafer as the structure 300. Alternatively, the AC voltage source 374 is built on a wafer separate from the structure 300. In a specific embodiment, the AC voltage source 374 is controlled by a servo mechanism during the generation of the AC driving voltage, wherein the AC driving voltage generates an ideal scanning speed and scanning angle around the x-axis. FIG. 3F illustrates a top view of a specific embodiment of the insulating layer 304. If it were not for the rotating structure 364 to electrically insulate the elements on the layer 302, the insulating layer 304 has the same shape as the conductive layer 302. The insulating layer 3 0 4 defines an opening 3 5 8 reserved for the scanning movement of the mirror 3 16 and the rotating structure 3 64. FIG. 3G illustrates a top view of a specific embodiment of the structure fixing layer 301. The layer 301 includes a frame 378 that defines an opening 358 for the scanning motion and rotation structure 364 of the mirror 316. The rotating structure 364 is mounted on the top of the frame 378. Specifically, the anchors 331A and 33 1B of the rotating structure 364 are installed on the tops of the anchor brackets 380 and 382 of the frame 89164 -22- 200416194 frame 378, respectively. The combs 319 and 319B of the conductive layer 30 are mounted on the tops of the comb supports 384 and 386, respectively. The method 150 (FIG. 11?) Described above may be modified to configure and operate the MEMS structure 300 in a specific embodiment. Structure 300 is typically a device produced from a batch of structures 300. In action 151, the designer determines the scanning frequency and scanning angle of the two rotating shafts to be applied, and modifies the basic design of the structure 300 to obtain a specific natural frequency, which is the same as the scanning frequency. The designer changes the design by changing the flexibility of the hinge (for example, the geometry of the hinge) or the moment of inertia of the structure (for example, the geometry of the mirror). Action 151 is followed by action 152. In act 152, the designer adjusts the DC voltage difference characteristics of the two rotating shafts in advance to adjust the natural frequency of the structure 300 to the scanning frequency. The designer also pre-adjusts the AC voltage difference characteristics of the two rotating shafts in order to obtain the ideal intermediate scanning angle and scanning position where oscillation occurs. These characteristics are then stored in the controller 406 as this structure. The 300iDC bias and the eight (: initial / preset characteristic values of the driving voltage. In act 153, the end user may be in the controller 4 In 6, different DC bias and AC drive voltage characteristic values are stored. The end user may wish to change the required scanning frequency, the required scanning angle, and the desired intermediate scanning position. In action 154, the controller 406 instructs The voltage source 402 supplies DC bias voltage and AC driving voltage. The voltage source 402 represents different DC and AC voltage sources (eg, DC voltage sources 356 and 370, and AC voltage sources 360 and 374). 89164 -23- 200416194 DC bias [ Start with the preset value stored in the controller 406, and then control the feeding mechanism to ensure that the natural frequency of rotation is the scanning frequency. The AC drive voltage starts with the preset value stored in the controller bias, then the servo mechanism & Make with; 5 Cui Bao obtains the required scanning frequency and scanning angle, so the ideal intermediate position of scanning is obtained. After action 154, it is followed by action 158. In action 158, the sensor 400 is used to monitor the scanning mirror exercise The measured radon information is output to the controller 4 06. After the action 158, it is followed by the action 1 60. In the action 160, the controller 4 receives the action information from the sensor 4 04. Only system mr 406 was calculated and provided the required DC bias voltage and the required AC drive voltage to the voltage source 402. Act 160 was followed by act 154, and this method continued the feedback loop. Specific embodiments disclosed Various other modifications and combinations of the characteristics belong to the scope of the present invention. The following patent application scope includes many specific embodiments. [Simplified illustration of the drawings] FIGS. 1A and 1B illustrate the combination and decomposition of the MEMS structure 100 in a specific embodiment, respectively. Figures 1C '1D and 1E illustrate top views of layers of a MEMS structure 100 in a specific embodiment. Figure 1F illustrates a method of configuring and operating a MEMS structure 100 in a specific embodiment of the present invention. Figures 1G, 1H , II and 1J illustrate top views of different layers in different embodiments of the MEMS structure 100 89164 -24- 200416194. Figures 2A and 2B illustrate a combination and exploded view of the MEMS structure 200 in a specific embodiment, respectively. Figures 2C and 2D Explanation one The top view of the MEMS structure 200 in the embodiment. Figures 3A and 3B illustrate the combination and exploded views of the MEMS structure 300 in a specific embodiment. Figures 3C, 3D, 3E, 3F and 3G illustrate a specific embodiment Top view of MEMS structure 300. Figure 4 illustrates a MEMS system in one embodiment of the present invention. Figure 5 illustrates direct current (DC) and alternating current (AC) voltages used to oscillate a MEMS structure in one embodiment of the present invention. [Illustration of Symbols] 100, 200, 3 00 Micro-electro-mechanical system (MEMS) structure 400 Micro-electro-mechanical system (MEMS) 402 Voltage source 404 Sensor 406 Controller 105, 109, 205, 302, 303 Conductive layer 107, 136 , 304, 305 Insulation layer 101, 201, 3 16 Scanning mirror 1 12, 212, 308 Bias pad 124, 224, 352 Reflective area 102A, 102B, 130A, Torsion hub 89164 -25-200416194 130B, 202A, 202B, 315A, 315B, 324, 325, 327, 332A, 332B 108A, 108B, 208A, Maoding 208B, 328, 329 114, 214 holes 122, 222 shafts 104, 104A, 104B, 204, moving grooves 204A, 204B, 314 , 314A, 314B, 321, 321A, 321B 106A, 106B, 128A, 128B, rod 206A, 206B 103, 103A, 103B, 110, fixed groove 110A, 110B, 210, 210A, 210B, 203, 203A, 203B , 311, 310, 310A, 310B, 318A, 318B, 320, 320A, 320B 116, 354, 368 ground 118, 356, 370 DC voltage sources 111, 121, 221, 358 openings 126, 132A, 132B, 232A, drive liner Pads 232B, 306, 309 120, 220, 360, 374 AC voltage source 89164 -2 6- 200416194 150 151, 152, 153, 154, 156, 158, 160 207 209, 301, 307, 33 1A, 331B 388, 390, 323A, 323B, 317A, 317B, 319A, 319B, 322A, 322B, 331A, 331B 330B 364 366, 367, 380, 382 378 384, 386 Method (Method 150 of) Action Isolation and Bonding Layer Structure Fixed Layer Grounding Pad Comb L-shaped Rod Rotary Structure Uncertain Bracket Frame Comb Bracket 89164 -27-

Claims (1)

拾、申請專利範圍: •—種微機電系統(MEMS)結構,包括: —第一電極,耦合到第一電壓源; —第二電極,耦合到第二電壓源; —移動式元件,包括耦合到第三電壓源之一第三電 2. 其中該第一電極與第三電極之間的穩定電壓差,將 、:構之自然頻率改變成至少大約與應用切描料相 等,而在應用之掃描頻率上,第二電極與第三電極之 間的振盪電壓差振盪移動式元件。 地 ^申請專利範圍第丨項之結構,其中該第—電壓源係Dc 電壓源’第〔電壓源係AC電壓源’❿帛三電壓源係接 •如申請專利範圍第2項之結構,其中該第一電極包括第 一複數個固定刻槽,第二電極包括第二複數個固定刻 槽’而第三電極則包括複數個移動刻槽。 4.如申請專利範圍第2項之結構,其中該DC電壓源與Ac 電壓源位於與結構相同的晶片上。 5·如申請專利範圍第2項之結構,其中至少(i)dc電壓源 與(2)AC電壓源其中之一,位於與結構不同的晶片上。 6·如申請專利範圍第2項之結構,其中該移動式元件係繞 著一軸轉動的掃描鏡。 7 ·如申叫專利範圍第6項之結構,其中該掃描鏡進一步包 括一反射區域,耦合到一扭轉彈簧,其中該複數個移 89164 200416194 動刻槽從與反射區域耦合的 8 ·如申靖袁表丨阁μ 务中延伸出來。 T w寻利軛圍第7項之結構, 、、 + 部孔。 “中该扭轉彈簧包含内 9·如申請專利範圍第7項之結構, p罢咕 _ 其中當掃描鏡處於第一 位置時,第一複數個固定 币 人。 钇與複數個移動刻槽咬 ’其中當掃描鏡處於第二 槽與複數個移動刻槽咬 10 ·如申凊專利範圍第9項之結構 位置時,第二複數個固定刻 合0 u.如申請專利範圍第10項之結構,纟中該第一電極與移 動式凡件包括一上層,而第二電極包括一下層,上層 與下層被電性絕緣材料之中間層分隔開來。 12·如申請專利範圍第6項之結構,其中該鏡面進一步包括 一反射區域,經由一棒狀物耦合到彎曲之扭轉樞紐, 其中該複數個移動刻槽從該棒狀物延伸出來。 1 3 ·如申請專利範圍第1項之結構,進一步包栝一第四電 極,耦合到第四電壓源。 14·如申請專利範圍第13項之結構,其中該第一電壓源係 第一 DC電壓源,第二電壓源係第一 AC電壓源,第三電 壓源係接地,而第四電壓源係第二AC電壓源。 15.如申請專利範圍第丨4項之結構,其中該第一 AC電壓源 與第二AC電壓源提供反相之電壓。 1 6.如申請專利範圍第7項之結構,其中該第一電極、第二 電極、與移動式元件包括一層。 89164 • 2 - 200416194 17. 如申請專利範園第〗6項之結構,其中該第—複數個固 定刻槽與複數個移動刻槽中的第一組移動刻槽咬合, 而第二複數個固定刻槽則與複數個移動刻槽中的第二 組移動刻槽咬合。 18. —種微機電系統(MEMS)結構,包括·· 一第一層,包括定義第一開口之第一驅動襯墊,第 一驅動襯墊包括第一複數個固定刻槽,第一驅動襯墊 並電子地耦合至提供AC電壓之AC電壓源; 一第二層,位於第一層上,該第二層定義與第一開 口重$ <第二開口,該第二層包括一電子絕緣材料; 一第三層,位於第二層上,該第三層包括: 一偏壓襯墊,定義與第二開口重疊之第三開口, 該驅動襯墊包括一第二複數個固定刻槽,並電子地耦 合至提供DC偏壓之DC電壓源; 一鏡面,位於第三開口,並包括: 一反射區域; 一扭轉樞紐,耦合到該反射區域; 一錨疋,耦合到該扭轉樞紐,並安裝於第二層 上’使鏡面可以轉動,該錨定並電子地耦合到接地; 複數個移動刻槽,耦合到反射區域,該複數個 移動刻槽與第二複數個固定刻槽咬合; 其中該複數個移動刻槽與第二複數個固定刻槽之間穩 =的電壓差,將結構之自然頻率改變成應用之掃描頻 率而在應用之掃描頻率上,複數個移動刻槽與第一 89164 200416194 複數個固定刻槽之間的振盪電壓差振盪掃描鏡。 19. 一種微機電系統(MEMS)結構,包括: 一第一層,包括複數個電子絕緣材料; 一第二層,位於第一層上,該第二層包括: 一第一驅動觀塾,該第一驅動觀塾包括第一複數 個固定刻槽,該第一驅動襯墊並電子地耦合到提供第 一 AC電壓之第一 AC電壓源; 一第二驅動襯墊,該第二驅動襯墊包括第二複數 個固定刻槽,該第一驅動襯墊並電子地耦合到提供與 該第一 AC電壓反相之第二AC電壓的第二AC電壓源,其 中該第一驅動襯墊與該第二驅動襯墊定義第一開口; 一第三層,位於第二層上,該第三層定義與第一開 口重疊之第二開口,該第三層包括電子絕緣的材料; 一第四層,其位於第三層上面,該第四層包括: 一偏壓襯墊,定義與第二開口重疊之第三開口, 該驅動襯墊包括一第三複數個固定刻槽,並電子地耦 合到提供DC偏壓之DC電壓源; 一鏡面,位於第一與第二開口上面,並包括: 一反射區域; 一扭轉樞紐,耦合到該反射區域; 一錨定,耦合到該扭轉樞紐,並安裝於第三層 上面,使鏡面可以轉動,該錨定並且電子地耦合到接 地; 複數個移動刻槽,耦合到反射區域,該複數個 89164 -4- 移動刻槽與第三複數個固定刻槽咬合; 其中複數個移動刻槽與第= 的雨厭至 〜複數個固定刻槽之間穩定 的包壓差,將結構之自然 义 ^^ ^ 、肩率改變成應用之掃插頻 羊而在應用之掃描頻率卜 、 % ^ 工’複數個移動刻槽與第一 及弟一複數個固定刻槽之 鏡。 間的振盪電壓差振盪掃插 20. 一種微機電系統(MEMS)結構一第一層,定義一開口, 料; ’包括: _第一層包括電子絕緣材 第一層,包括: 一第一驅動襯墊,包杈 冰 话罘一複數個固定刻槽,該 弟一驅動襯整電子人 _ μ 于也鶴口到提供AC電壓之AC電壓源; 7第二驅動襯墊’該第二驅動襯墊包括第二複數 定刻槽’孩第二驅動襯|並電子地搞合到該A 壓源; ” 偏壓襯墊,包括第三複數個固定刻槽,該偏壓 襯墊電子地耦合到提供DC電壓之DC電壓源; 一鏡面’位於開口上,並包括: 反射區域; 扭轉框紐,耦合到該反射區域; —銷定,耦合到該扭轉樞紐,並安裝於第一層 上’使鏡面可以轉動,該錨定並且電子地耦合到接 地; 弟 複數個移動刻槽’搞合到該反射區域’該第 89164 200416194 複數個移動刻槽與第二複數個固定刻槽咬合; 第二複數個移動刻槽,耦合到該反射區域,該第 一複數個移動刻槽與第三複數個固定刻槽咬合; 其中孩第二複數個移動刻槽與第三複數個固定刻槽之 門t =的電壓差,將結構之自然頻率改變成應用之掃 私^、率’而在應用之掃描頻率上,該第二複數個移動 刻槽與第一及第二複數個固定刻槽之間的振盪電壓差 振藍掃描鏡。 、種拴制具有移動式元件之微機電系統(MEMS)結構之 方法,包括: 兩、走第固足電極與移動式元件之移動電極之間DC 電壓差的振幅,其中該沉電壓差造成結構之自然頻率 至少大約等於應用之掃描頻率; 、彔DC包壓差的振幅,以供應用中使用;及 …知描頻率,#作第二固定電極與移動式元件: 移動電極之間AC電壓差的頻率,以供應用中使用,; 中孩AC電壓差造成移動式元件的振盛。 22·二申請專利範圍第21項之方法,纟中決定沉電壓差D 電壓1之數值,包括·· 對弟固足電極施加一 DC偏厭. 將轉合到移動式元件之移動電極接地; 々周正DC偏壓的振幅,直到該結構之自然頻率至少大 約等於掃描頻率。 23·如申請專利範圍第22項之方法,其中記錄DC電壓差包 89164 200416194 括將DC㈣之振幅程式化到操作则则結構的控制器 中〇 24·如申請專利範圍第23項之方法,其中記錄掃描頻率作 為AC電壓差之頻率包括將掃描頻率程式化到控制器 中。 25·如申請專利範圍第21項之方法,進一步包括: 將移動電極接地; 對第一固足電極施加一 Dc偏壓,以於第一固定電極 與移動電極之間產生該DC電歷Γ差;及 對第二固定電極施加一 Ac驅動電壓,以於第二固定 電極與移動電極之間產生該AC電壓差。 26·如申請專利範圍第25項之方法,進一步包括·· 記錄掃描頻率作為第三固定電極與移動式元件之移 動私極之間之弟二DC電壓差的頻率,該DC電壓差使結 構之自然頻率至少大約等於應用所需之掃描頻率;及 在第二固定電極與移動電極之間,施加理想掃描頻 率4AC電壓差,其中該ac電壓差造成移動式元件之振 i 〇 27. —種用來控制具有移動式元件之微機電系統 構之方法,包括: 在第一固足電極與移動式元件之移動電極之間施加 二DC電壓差,該Dc電壓差使結構之自然頻率至少大約 等於應用所需之掃插頻率;及 在第二固疋電極與該移動電極之間施加一 AC電塾 89164 200416194 差,該AC電壓差造成移動式元件之振盪。 28. 如申請專利範圍第27項之方法,進一步包括: 測量移動式元件之掃描頻率與掃描角度; 將所測量之掃描頻率與掃描角度與所需之掃描頻率 與所需之掃描角度做比較;及 調整該DC電壓差之振幅,以將結構之自然頻率改變 成至少大約等於應用所需之掃描角度。 29. 如申請專利範圍第28項之方法,進一步包括: 調整至少振幅、頻率、與AC電壓差之垂直偏差其中 之一,以改變掃描頻率、掃描角度、與中間掃描位置 其中之一。 3 0.如申請專利範圍第27項之方法,其中施加一 DC電壓差 包括’· 對第一固定電極施加一 DC偏壓;及 將移動電極接地。 3 1.如申請專利範圍第30項之方法,其中施加一 AC電壓差 包括對第二固定電極施加一 AC電壓。 3 2· —種微機電系統(MEMS)結構,包括: 一第一電極,耦合到第一電壓源; 一第二電極,耦合到第二電壓源; 一可旋轉框架,包括一第三電極,而此一第三電極 耦合到第三電壓源,該框架安裝於支持層,以繞著第 一軸旋轉; 一第四電極,耦合到第四電壓源; 89164 200416194 一第五電極,耦合到第五電壓源; 一可旋轉元件,包括一第六電極,而此一第六電極 耦合到第六電壓源,該可旋轉元件安裝於該框架,以 繞著第二軸旋轉; 其中·β 該第一電極與第三電極之間之第一穩定電壓差, 將結構繞著第一軸的自然頻率,改變成至少大約等於 繞著第一軸之應用的掃描頻率; 第四電極與第六電極之間之第二穩定電壓差,將 結構繞著第二軸的自然頻率,改變成至少大約等於繞 著第二軸之應用的掃描頻率; 在第一掃描頻率上,第二電極與第三電極之間的 第一振盪電壓差,使可旋轉元件繞著第一軸振盪;及 在第二掃描頻率上,第四電極與第六電極之間的 第二振盪電壓差,使可旋轉元件繞著第二軸振盪。 33.如申請專利範圍第32項之微機電系統結構,其中該第 一電壓源係第一 DC電壓源,第二電壓源係第一 AC電壓 源,而第三電壓源係接地。 3 4.如申請專利範圍第33項之微機電系統結構,其中該第 一框架進一步包括安裝於支持層頂部的扭轉彈簧,而 第三電極則包括從框架延伸出來的第一複數個刻槽。 35.如申請專利範圍第34項之微機電系統結構,其中該第 一電極包括第二複數個刻槽,安裝於支持層頂部,並 在框架不轉動時,與第一複數個刻槽咬合。 89164 -9- 200416194 36·如申請專利範圍第35項之微機電系統結構,其中該第 二電極包括第三複數個刻槽,位於第二複數個刻槽 上,當框架旋轉時,該第三複數個刻槽與第一複數個 刻槽咬合。 3 7.如申請專利範圍第33項之微機電系統結構,其中該第 四電壓源係一第二DC電壓源,第五電壓源係第二从電 壓源,而第六電壓源係接地。 38·如申請專利範圍第37項之微機電系統結構,其中該旋 轉元件包括一反射區域之掃描鏡,該反射區域並耦合 到安裝於框架頂部的扭轉彈簧,而第六電極則包括從 反射區域延伸的第一複數個刻槽。 39_如申清專利範圍第38項之微機電系統結構,其中該第 四包極包括一第二複數個刻槽,當框架不旋轉時,其 至少與邵分第一複數個刻槽咬合。 4〇·如=請專利範圍第39項之微機電系統結構,其中該第 五電極包括一第三複數個刻槽,當框架不旋轉時,其 至少與邵分第一複數個刻槽咬合。 41·如中請專利範圍第37項之微機電系統結構,其中該第 DC电壓源、第二Dc電恩源、第一 ac電壓源、與第二 AC電壓源位於與結構相同的晶片上。 42·如申叫專利範圍第33項之微機電系統結構,其中至少 第一 DC電壓源、第二DC電壓源、第一 Ac電壓源、第二 AC電壓源其中之一位於與結構不同的晶片上。 43. —種微機電系統(MEMS)結構,包括: 89164 -10 - 200416194 一第一層,包括一電子絕緣材料; 一第二層,位於第一層上,該第二層包括: 一框架,包括從一或更多框架邊緣延伸出來的第 一複數個刻槽,該框架經由第一扭轉樞紐搞合到第一 錨定,以繞這第一軸旋轉,該第一錨定電子地耦合到 接地; 一第一偏壓襯墊,包括第二複數個刻槽,該第一 偏壓襯墊耦合到第一 D C電壓源,而當框架不旋轉時, 第一與第二複數個刻槽係咬合; 一第三層,位於第二層上面,該第三層包括電子絕 緣的材料, 一第四層,位於第三層上面,該第四層包括: 一鏡面,包括第三複數個刻槽,自一或更多鏡面 之邊緣延伸出,該鏡面經由第二扭轉極、紐槁合到第二 錨定,以繞著第二軸旋轉,其中該第二錨定電子地耦 合到接地,而該第二錨定安裝於第三層頂部的框架; 一第二偏壓襯墊,包括第四複數個刻槽,該第二 偏壓襯墊耦合至第二DC電壓源,而當鏡面不旋轉時, 第三與第四複數個刻槽係咬合; 一第一驅動襯塾,包括第五複數個刻槽,該第一 驅動襯塾耦合至一第一 AC電壓源,當鏡面不旋轉時, 該第三與第五複數個刻槽係咬合; 一第二驅動襯墊,包括第六複數個刻槽,該第二 驅動襯墊耦合至一第二AC電壓源,當鏡面繞著第二軸 89164 -11 - 200416194 轉動時,該第一與第六複數個刻槽係咬合; 其中: 該第一與第二複數個刻槽乏間穩定的電壓差使結 構繞著第一軸的自然頻率變成至少大約等於一應用繞 著第一軸的第一掃描頻率; 第三與第四複數個刻槽之間穩定的電壓差使結構 繞著第二軸的自然頻率變成至少大約等於該應用繞著 弟二轴的弟二知描頻率, 在第一掃描頻率上,第三與第五複數個刻槽之間 的第一振盪電壓差使掃描鏡繞著第二軸振盪;及 在第二掃描頻率上,第一與第六複數個刻槽之間 的第二振盪電壓差使掃描鏡繞著第一軸振盪。 44. 一種用來控制具有可旋轉元件之微機電系統(MEMS)結 構之方法,其中該可旋轉元件係安裝於一可旋轉框架 上,該方法包括: 決定可旋轉元件之第一電極與第二電極之間的第一 DC電壓差,該第一 DC電壓差使該結構繞著第二軸之第 一自然頻率,至少大約等於一應用繞著第二軸之第一 掃描頻率; 決定可旋轉框架之第三電極與第四電極之間的第二 DC電壓差,該第二DC電壓差使結構繞著第一軸之第二 自然頻率,至少大約等於該應用繞著第一軸之第二掃 描頻率; 記錄第一與第二DC電壓差,以於應用中使用;及 89164 -12- 200416194 將第一掃描頻率記錄為該可旋轉元件之第五電極與 第一私極之間第一 AC電壓差的第一驅動頻率,該第— AC電壓差使移動式元件繞著第二轴振盪;及 將第二掃描頻率記錄為可旋轉框架之第六電極與第 四電極之間第二AC電壓差的第二驅動頻率,該第二ac 電壓差使可旋轉框架繞著第一軸振盪。 45.如申請專利範圍第料項之方法,其中決定第電壓 差包括: 對該第一電極施加第一 DC偏壓; 將可旋轉元件之第二電極接地;及 調整第一 DC偏壓之振幅,直到第一自然頻率至少大 約等於第一掃描頻率。 46·如申請專利範圍第仏項之方法,其中決定第二dc電壓 差包括: 對該第三電極施加第二DC偏壓; 將可旋轉框架之第四電極接地;及 调整第二DC偏壓之振幅,直到第二自然頻率至少大 約等於第二掃描頻率。 47.如申請專利範圍第46項之方法,其中記錄第一與第二 DC電壓差,包括將第一 dc偏壓與第二DC偏壓程式化到 用來操作MEMS結構的控制器中。 8.如申清專利範圍第47項之方法,其中記錄第一與第二 掃描頻率包括將第一與第二掃描頻率程式化到該控制 器中。 89164 -13- 200416194 49.如申請專利範圍第44項之方法,進一步包括: 將第二電極接地; 對第一電極施加第一 DC偏壓,以產生第一 DC電壓 差; 以第一掃描頻率,對第五電極施加第一 AC驅動電 壓,以產生第一 AC電壓差; 將第四電極接地; 對第三電極施加第二DC偏壓,以產生第二DC電壓 差;及 以第二掃描頻率,對第六電極施加第二AC驅動電 壓,以產生第二AC電壓差。 5 0· —種用來控制具有可旋轉元件之微機電系統(MEMS)結 構之方法,其中該可旋轉元件係安裝於一可旋轉框架 上,該方法包括: 在可旋轉元件之第一電極與第二電極之間,施加第 一DC電壓差,該第一DC電壓差使結構繞著第一軸之第 一自然頻率,大約等於一應用繞著第一軸之第一所需 之掃描頻率; 在可旋轉框架之第三電極與第四電極之間,施加第 二DC電壓差,該第二DC電壓差使結構繞著第二軸之第 二自然頻率,大約等於該應用繞著第二軸之第二所需 之掃描頻率; 在可旋轉元件之第五電極與第二電極之間,以第一 所需之掃描頻率,施加第一 AC電壓差,該第一 AC電壓 89164 -14- 200416194 差使該可旋轉元件繞著第一軸振盪;及 在可旋轉框架之第六電極與第四電極之間,以第二 所需之掃描頻率,施加第二AC電壓差,該第二AC電壓 差使該可旋轉元件繞著第二軸振盪。 51·如申請專利範圍第50項之方法,進一步包括: 測量可旋轉元件繞著第一軸之第一掃描頻率與第一 掃描角度; 將所測量之第一掃描頻率與所測量之第一掃描角度 與第-所需之掃描頻率與第—所需之掃描角度相= 碉整弟一 DC電壓差之振幅,以將第 成至少大約等於第一所需之掃描頻率 52·如申請專利範圍第51項之方法,進—步包括: 調整至少第一 AC電壓声窆掂細 .s , H 振幅、頻率、與垂直偏J 以改變可旋轉元件之第-掃描頻率、第- ”田角度、與第一中間掃描位置其中之—。 53.如申請專利範圍第51項之方法,進一步包括. 測量該可旋轉框架繞著第二 . 二掃描角度; 弟一知描頻率與第 將所測量之第-播γ t v 、 弟一卸描頻率與所測量之第- 度,盥第-%兩4 U 又弟一知描角 /、罘一所而 < 知描頻率與第二 比較;及 而 < 知描角度相 碉整第二DC電壓声乏掂 ,s, 振幅’以將第二自然頻率改㈣ 成土少大約等於第二所需之掃描頻率。 改交 89164 -15- 200416194 54.如申請專利範圍第53項之方法,進一步包括: 調整至少第二AC電壓差之振幅、頻率、與垂直偏差 其中之一,以改變可旋轉元件之第二掃描頻率、第二 掃描角度、與第二中間掃描位置其中之一。 55·如申請專利範圍第50項之方法,其中施加第一 DC電壓 差,包括: 對第一電極施加一 DC偏壓;及 將弟《—電極接地。 56·如申請專利範圍第55項之方法,其中施加第一 AC電壓 差包括對第五電極施加一 AC電壓。 57.如申請專利範圍第56項之方法,其中施加第二DC電壓 差包括: 對第三電極施加一 DC偏壓;及 將第四電極接地。 5 8.如申請專利範圍第57項之方法,其中施加第二AC電壓 差包括對第六電極施加一 AC電壓。 89164 16-Scope of patent application: • A micro-electromechanical system (MEMS) structure, including:-a first electrode coupled to a first voltage source;-a second electrode coupled to a second voltage source;-a mobile element including a coupling To one of the third voltage sources, the third voltage. 2. The stable voltage difference between the first electrode and the third electrode changes the natural frequency of the: to at least approximately equal to the application profile. At the scanning frequency, the oscillating voltage difference between the second electrode and the third electrode oscillates the mobile element. The structure of item 丨 in the scope of patent application, where the-voltage source is Dc, the voltage source is "the voltage source is AC voltage source," and the three voltage sources are connected. The first electrode includes a first plurality of fixed notches, the second electrode includes a second plurality of fixed notches, and the third electrode includes a plurality of mobile notches. 4. The structure according to item 2 of the scope of patent application, wherein the DC voltage source and the Ac voltage source are located on the same wafer as the structure. 5. The structure according to item 2 of the scope of patent application, wherein at least one of (i) the dc voltage source and (2) the AC voltage source is located on a different wafer from the structure. 6. The structure according to item 2 of the scope of patent application, wherein the movable element is a scanning mirror rotating about an axis. 7 · The structure of claim 6 of the patent scope, wherein the scanning mirror further includes a reflection area coupled to a torsion spring, wherein the plurality of shifted 89164 200416194 moving grooves are coupled from the reflection area 8 · Ru Shenjing Yuan Biao 丨 Ge μ extended. T w The structure of the seventh item of the profit yoke,,, + holes. "The torsion spring contains the inner 9 · structure as claimed in item 7 of the scope of patent application, where p is the first multiple fixed coin holders when the scanning mirror is in the first position. Yttrium and multiple mobile slotted bites' Among them, when the scanning mirror is in the second slot and a plurality of moving engraved slots, the second fixed number of engravings is 0 when the structure position of item 9 of the patent application range is applied. The first electrode and the movable part in 纟 include an upper layer, and the second electrode includes a lower layer, and the upper layer and the lower layer are separated by an intermediate layer of an electrically insulating material. Wherein, the mirror surface further includes a reflection area coupled to the bending torsion hinge via a rod, wherein the plurality of moving grooves extend from the rod. 1 3 · As for the structure of the first item in the scope of patent application, A fourth electrode is further included, which is coupled to a fourth voltage source. 14. The structure according to item 13 of the patent application scope, wherein the first voltage source is a first DC voltage source and the second voltage source is a first AC voltage source. , The three voltage sources are grounded, and the fourth voltage source is the second AC voltage source. 15. The structure according to item 4 of the patent application scope, wherein the first AC voltage source and the second AC voltage source provide voltages in antiphase. 1 6. The structure according to item 7 of the scope of patent application, wherein the first electrode, the second electrode, and the movable element include one layer. 89164 • 2-200416194 17. The structure according to item 6 of the patent application park, wherein The first plurality of fixed notches are engaged with the first group of mobile notches in the plurality of mobile notches, and the second plurality of fixed notches are engaged with the second group of mobile notches in the plurality of mobile notches. 18 A micro-electromechanical system (MEMS) structure, including a first layer including a first driving pad defining a first opening, the first driving pad including a first plurality of fixed grooves, and a first driving pad And is electronically coupled to an AC voltage source providing an AC voltage; a second layer located on the first layer, the second layer defining a second opening with a first opening < a second opening, the second layer including an electronic insulating material A third floor, located on the second floor, the The three layers include: a bias pad defining a third opening overlapping the second opening, the driving pad including a second plurality of fixed notches, and being electronically coupled to a DC voltage source providing a DC bias; The mirror surface is located at the third opening and includes: a reflection area; a torsion hub coupled to the reflection area; an anchor pin coupled to the torsion hub and mounted on the second layer to enable the mirror surface to rotate, the anchor And are electronically coupled to the ground; a plurality of mobile notches are coupled to the reflection area, the plurality of mobile notches are engaged with a second plurality of fixed notches; wherein the plurality of mobile notches are in contact with the second plurality of fixed notches Interstable voltage = the voltage difference that changes the natural frequency of the structure to the scanning frequency of the application. At the scanning frequency of the application, the oscillation voltage difference between the plurality of moving grooves and the first 89164 200416194 oscillation groove . 19. A micro-electromechanical system (MEMS) structure, comprising: a first layer including a plurality of electronic insulating materials; a second layer located on the first layer, the second layer including: a first driving mechanism, the The first driving pad includes a first plurality of fixed notches, the first driving pad is electronically coupled to a first AC voltage source providing a first AC voltage; a second driving pad, the second driving pad Including a second plurality of fixed notches, the first driving pad is electronically coupled to a second AC voltage source that provides a second AC voltage opposite to the first AC voltage, wherein the first driving pad and the A second driving pad defines a first opening; a third layer is located on the second layer, the third layer defines a second opening overlapping the first opening, the third layer includes an electrically insulating material; a fourth layer It is located on the third layer. The fourth layer includes: a bias pad defining a third opening overlapping with the second opening, and the driving pad includes a third plurality of fixed grooves and is electronically coupled to DC voltage source providing DC bias; a mirror, bit Above the first and second openings, and including: a reflection area; a torsion hub coupled to the reflection area; an anchor, coupled to the torsion hub, and mounted on the third layer so that the mirror surface can rotate, the anchor Fixed and electronically coupled to the ground; a plurality of moving grooves coupled to the reflection area, the plurality of 89164 -4- moving grooves are engaged with a third plurality of fixed grooves; wherein the plurality of moving grooves and the first = rain I ’m tired of the stable packing pressure difference between a plurality of fixed grooves, changing the natural meaning of the structure ^^ ^ and the shoulder rate to the scanning frequency of the application and the scanning frequency of the application.% ^ The groove and the first and the younger are a plurality of fixed groove mirrors. Oscillating voltage difference between oscillating sweeps 20. A micro-electro-mechanical system (MEMS) structure, a first layer, defining an opening, material; 'including: _ the first layer includes the first layer of electronic insulation, including: a first drive Pads, cladding ice words, a plurality of fixed grooves, the driver drives the electronic manipulator _ μ Yu Ye Hekou to the AC voltage source that provides the AC voltage; 7 the second drive pad 'the second drive pad The pad includes a second plurality of fixed grooves, and the second drive liner is electronically coupled to the A pressure source; and the bias pad includes a third plurality of fixed grooves which are electronically coupled to the supply DC voltage source of DC voltage; a mirror surface is located on the opening and includes: a reflective area; a twisted frame button coupled to the reflective area;-pinned, coupled to the twisted hub and mounted on the first layer to make the mirror surface Can be rotated, anchored and electronically coupled to ground; younger plurality of moving grooves 'fit to the reflection area', the first 89164 200416194 multiple moving grooves are engaged with a second plurality of fixed grooves; the second plurality shift The notch is coupled to the reflection area, and the first plurality of mobile notches are engaged with the third plurality of fixed notches; wherein the voltage of the gate of the second plurality of mobile notches and the third plurality of fixed notches is t = Difference, the natural frequency of the structure is changed to the applied sweep rate, and at the applied scanning frequency, the oscillation voltage difference between the second plurality of moving grooves and the first and second plurality of fixed grooves A vibrating blue scanning mirror. A method for tethering a micro-electromechanical system (MEMS) structure with a mobile element, including: two, the amplitude of the DC voltage difference between the fixed electrode and the mobile electrode of the mobile element, where The natural frequency of the structure caused by the sinking voltage difference is at least approximately equal to the scanning frequency of the application; 彔 the amplitude of the 包 DC envelope pressure difference for use in supply; and ... The frequency of the AC voltage difference between the two is used in supply; The AC voltage difference of the middle child causes the vibration of the mobile components. 22 · 2 The method of applying for the scope of the patent No. 21, Zhong decides the sinking voltage difference D voltage 1 Values, including ... Applying a DC bias to the fixed foot electrode. Ground the moving electrode that is transferred to the mobile element; 々 weekly positive amplitude of the DC bias until the natural frequency of the structure is at least approximately equal to the scanning frequency. For example, the method of applying for the scope of patent No. 22, which records the DC voltage difference package 89164 200416194, including the program of the amplitude of DC㈣ into the controller of the operation rule structure. 24. For the method of applying for the scope of patent No. 23, where the scan is recorded The frequency as the frequency of the AC voltage difference includes programming the scanning frequency into the controller. 25. The method according to item 21 of the patent application, further comprising: grounding the moving electrode; applying a DC bias to the first fixed electrode, So that the DC electric calendar Γ difference is generated between the first fixed electrode and the moving electrode; and an Ac driving voltage is applied to the second fixed electrode to generate the AC voltage difference between the second fixed electrode and the moving electrode. 26. The method according to item 25 of the patent application scope, further comprising: recording the scanning frequency as the frequency of the second DC voltage difference between the third fixed electrode and the mobile private pole of the mobile element, which makes the structure natural The frequency is at least approximately equal to the scanning frequency required for the application; and an ideal scanning frequency 4AC voltage difference is applied between the second fixed electrode and the moving electrode, wherein the ac voltage difference causes the vibration of the mobile element i 〇27. A method for controlling a micro-electromechanical system structure with a mobile element, comprising: applying a two DC voltage difference between the first fixed electrode and the mobile electrode of the mobile element, the Dc voltage difference making the natural frequency of the structure at least approximately equal to the application requirements Sweeping frequency; and applying an AC voltage between the second fixed electrode and the moving electrode 89164 200416194, the AC voltage difference causes oscillation of the mobile element. 28. The method of claim 27, further comprising: measuring the scanning frequency and scanning angle of the mobile component; comparing the measured scanning frequency and scanning angle with the required scanning frequency and the required scanning angle; And adjusting the amplitude of the DC voltage difference to change the natural frequency of the structure to at least approximately equal to the scanning angle required for the application. 29. The method of claim 28, further comprising: adjusting at least one of amplitude, frequency, and vertical deviation from the AC voltage difference to change one of the scanning frequency, the scanning angle, and the intermediate scanning position. 30. The method of claim 27, wherein applying a DC voltage difference includes: applying a DC bias voltage to the first fixed electrode; and grounding the moving electrode. 3 1. The method of claim 30, wherein applying an AC voltage difference includes applying an AC voltage to the second fixed electrode. 3 2 · —A micro-electromechanical system (MEMS) structure including: a first electrode coupled to a first voltage source; a second electrode coupled to a second voltage source; a rotatable frame including a third electrode, The third electrode is coupled to the third voltage source, and the frame is mounted on the supporting layer to rotate about the first axis. A fourth electrode is coupled to the fourth voltage source. 89164 200416194 A fifth electrode is coupled to the third voltage source. Five voltage sources; a rotatable element including a sixth electrode, and the sixth electrode is coupled to the sixth voltage source, the rotatable element is mounted on the frame to rotate about the second axis; where β is the first The first stable voltage difference between one electrode and the third electrode changes the natural frequency of the structure around the first axis to at least approximately equal to the scanning frequency of the application around the first axis; between the fourth electrode and the sixth electrode The second stable voltage difference between them changes the natural frequency of the structure around the second axis to at least approximately equal to the scanning frequency of the application around the second axis; at the first scanning frequency, between the second electrode and the third electrode The first oscillating voltage difference between them causes the rotatable element to oscillate around the first axis; and at the second scanning frequency, the second oscillating voltage difference between the fourth electrode and the sixth electrode causes the rotatable element to orbit around the first axis Two-axis oscillation. 33. The micro-electro-mechanical system structure according to item 32 of the application, wherein the first voltage source is a first DC voltage source, the second voltage source is a first AC voltage source, and the third voltage source is grounded. 34. The micro-electro-mechanical system structure according to item 33 of the patent application, wherein the first frame further includes a torsion spring mounted on the top of the support layer, and the third electrode includes a first plurality of notches extending from the frame. 35. The micro-electro-mechanical system structure according to item 34 of the patent application scope, wherein the first electrode includes a second plurality of grooves, is installed on the top of the support layer, and engages with the first plurality of grooves when the frame does not rotate. 89164 -9- 200416194 36. For example, the micro-electro-mechanical system structure of claim 35, wherein the second electrode includes a third plurality of grooves and is located on the second plurality of grooves. When the frame rotates, the third The plurality of notches are engaged with the first plurality of notches. 37. The micro-electromechanical system structure according to item 33 of the patent application scope, wherein the fourth voltage source is a second DC voltage source, the fifth voltage source is a second slave voltage source, and the sixth voltage source is grounded. 38. The micro-electro-mechanical system structure according to item 37 of the patent application scope, wherein the rotating element includes a scanning mirror of a reflective area, the reflective area is coupled to a torsion spring mounted on the top of the frame, and the sixth electrode includes a reflective area The first plurality of grooves extended. 39_ The micro-electro-mechanical system structure of claim 38 of the patent scope, wherein the fourth package pole includes a second plurality of grooves, and when the frame does not rotate, it engages at least the first plurality of grooves of Shaofen. 40. If = please claim the MEMS structure of item 39 of the patent, wherein the fifth electrode includes a third plurality of grooves, and when the frame does not rotate, it engages at least the first plurality of grooves. 41. The micro-electromechanical system structure according to item 37 of the Chinese Patent Application, wherein the first DC voltage source, the second DC electrical source, the first AC voltage source, and the second AC voltage source are located on the same chip as the structure. 42. As claimed in claim 33, the micro-electromechanical system structure, wherein at least one of the first DC voltage source, the second DC voltage source, the first Ac voltage source, and the second AC voltage source is located on a chip with a different structure. on. 43. A micro-electromechanical system (MEMS) structure, including: 89164 -10-200416194 a first layer including an electronic insulating material; a second layer located on the first layer, the second layer including: a frame, Including a first plurality of notches extending from the edge of one or more frames, the frame is engaged to a first anchor via a first torsion pivot to rotate about this first axis, the first anchor being electronically coupled to Ground; a first biasing pad including a second plurality of notches, the first biasing pad being coupled to a first DC voltage source, and when the frame is not rotating, the first and second plurality of notches are Occlusion; a third layer, which is located on the second layer, which includes an electrically insulating material, a fourth layer, which is located on the third layer, which includes: a mirror surface, including a third plurality of grooves Extending from the edge of one or more mirrors, the mirrors are coupled to a second anchor via a second torsion pole and button to rotate about a second axis, wherein the second anchor is electronically coupled to ground, and The second anchor is mounted on the top frame of the third layer; A second bias pad including a fourth plurality of grooves, the second bias pad is coupled to a second DC voltage source, and when the mirror surface does not rotate, the third and fourth plurality of grooves are engaged; A first driving liner including a fifth plurality of engraved grooves, the first driving lining is coupled to a first AC voltage source, and the third and fifth plurality of engraved grooves are engaged when the mirror surface does not rotate; The second driving pad includes a sixth plurality of grooves. The second driving pad is coupled to a second AC voltage source. When the mirror surface rotates about the second axis 89164 -11-200416194, the first and sixth The plurality of grooves are engaged; wherein: the stable voltage difference between the first and second grooves causes the natural frequency of the structure around the first axis to be at least approximately equal to a first scanning frequency of an application around the first axis. A stable voltage difference between the third and fourth grooves causes the natural frequency of the structure around the second axis to be at least approximately equal to the brother ’s second scan frequency around the second axis of the application, at the first scan frequency, Number between the third and fifth notches Errand oscillating voltage oscillating scanning mirror about a second axis; and on a second scanning frequency, between the first and sixth plurality of second groove errand oscillating voltage oscillating scanning mirror about the first axis. 44. A method for controlling a micro-electromechanical system (MEMS) structure having a rotatable element, wherein the rotatable element is mounted on a rotatable frame, the method includes: determining a first electrode and a second electrode of the rotatable element A first DC voltage difference between the electrodes, the first DC voltage difference causing the structure to have a first natural frequency around the second axis, at least approximately equal to a first scanning frequency of an application around the second axis; A second DC voltage difference between the third electrode and the fourth electrode, the second DC voltage difference causing the structure to have a second natural frequency around the first axis, at least approximately equal to a second scanning frequency of the application around the first axis; Record the first and second DC voltage differences for use in applications; and 89164 -12- 200416194 record the first scan frequency as the first AC voltage difference between the fifth electrode of the rotatable element and the first private electrode. A first driving frequency, and the-AC voltage difference causes the mobile element to oscillate around a second axis; and the second scanning frequency is recorded as the first AC voltage difference between the sixth electrode and the fourth electrode of the rotatable frame. The driving frequency, the second ac voltage errand rotatable frame about a first oscillation axis. 45. The method according to the item of the patent application, wherein determining the second voltage difference includes: applying a first DC bias voltage to the first electrode; grounding the second electrode of the rotatable element; and adjusting the amplitude of the first DC bias voltage Until the first natural frequency is at least approximately equal to the first scanning frequency. 46. The method of claim (1), wherein determining the second dc voltage difference includes: applying a second DC bias voltage to the third electrode; grounding the fourth electrode of the rotatable frame; and adjusting the second DC bias voltage. The amplitude until the second natural frequency is at least approximately equal to the second scanning frequency. 47. The method of claim 46, wherein recording the first and second DC voltage differences includes programming the first dc bias and the second DC bias into a controller for operating the MEMS structure. 8. The method of claim 47, wherein recording the first and second scan frequencies includes programming the first and second scan frequencies into the controller. 89164 -13- 200416194 49. The method of claim 44 further comprising: grounding the second electrode; applying a first DC bias voltage to the first electrode to generate a first DC voltage difference; and using a first scanning frequency Applying a first AC driving voltage to the fifth electrode to generate a first AC voltage difference; ground the fourth electrode; applying a second DC bias voltage to the third electrode to generate a second DC voltage difference; and using a second scan Frequency, a second AC driving voltage is applied to the sixth electrode to generate a second AC voltage difference. 5 0 · —A method for controlling a micro-electromechanical system (MEMS) structure having a rotatable element, wherein the rotatable element is mounted on a rotatable frame, the method includes: a first electrode of the rotatable element and A first DC voltage difference is applied between the second electrodes, and the first DC voltage difference causes the structure to have a first natural frequency around the first axis, which is approximately equal to a first scanning frequency required to apply the first around the first axis; A second DC voltage difference is applied between the third electrode and the fourth electrode of the rotatable frame, and the second DC voltage difference causes the structure to have a second natural frequency around the second axis, which is approximately equal to the first frequency of the application around the second axis. 2. The required scanning frequency; between the fifth electrode of the rotatable element and the second electrode, a first AC voltage difference is applied at the first required scanning frequency, and the first AC voltage 89164 -14-200416194 makes the difference The rotatable element oscillates around the first axis; and a second AC voltage difference is applied between the sixth electrode and the fourth electrode of the rotatable frame at a second required scanning frequency, and the second AC voltage difference makes the Rotating element around A second oscillation axis. 51. The method of claim 50, further comprising: measuring a first scanning frequency and a first scanning angle of the rotatable element about the first axis; and measuring the measured first scanning frequency and the measured first scan The angle is equal to the required scanning frequency and the required scanning angle is equal to the amplitude of the DC voltage difference, so as to make the first at least approximately equal to the first required scanning frequency. 52 The method of item 51, further comprising: adjusting at least the first AC voltage sound 窆 掂 .s, H amplitude, frequency, and vertical offset J to change the -scanning frequency,-"field angle of the rotatable element, and One of the first intermediate scanning positions. 53. The method according to item 51 of the patent application scope, further comprising: measuring the rotatable frame around the second and second scanning angles; -Broadcast γ tv, the frequency of the first scan and the measured first degree, the second-% 2 4 U and the second one knows the scan angle /, and the first one < the frequency of the second scan is compared with the second; and ; Know the angle of the second phase to adjust the second DC voltage sound Lack of s, s, amplitude 'to change the second natural frequency to less than the second required scanning frequency. Transfer 89164 -15- 200416194 54. If the method of the 53rd scope of the patent application, further includes: Adjust at least one of the amplitude, frequency, and vertical deviation of the second AC voltage difference to change one of the second scanning frequency, the second scanning angle, and the second intermediate scanning position of the rotatable element. 55. If applying for a patent The method of claim 50, wherein applying the first DC voltage difference includes: applying a DC bias voltage to the first electrode; and grounding the electrode—the electrode. 56. The method of claim 55, wherein the application of the An AC voltage difference includes applying an AC voltage to the fifth electrode. 57. The method of claim 56 in which the application of the second DC voltage difference includes: applying a DC bias voltage to the third electrode; and applying a fourth electrode to the fourth electrode. Ground. 5 8. The method of claim 57 in the scope of patent application, wherein applying a second AC voltage difference includes applying an AC voltage to the sixth electrode. 89164 16-
TW092131669A 2002-11-22 2003-11-12 MEMS scanning mirror with tunable natural frequency TWI238143B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/302,413 US7034370B2 (en) 2002-11-22 2002-11-22 MEMS scanning mirror with tunable natural frequency
US10/302,387 US6769616B2 (en) 2002-11-22 2002-11-22 Bidirectional MEMS scanning mirror with tunable natural frequency

Publications (2)

Publication Number Publication Date
TW200416194A true TW200416194A (en) 2004-09-01
TWI238143B TWI238143B (en) 2005-08-21

Family

ID=32396707

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092131669A TWI238143B (en) 2002-11-22 2003-11-12 MEMS scanning mirror with tunable natural frequency

Country Status (6)

Country Link
EP (1) EP1563333A1 (en)
JP (1) JP2004177957A (en)
KR (1) KR20060026001A (en)
AU (1) AU2003295445A1 (en)
TW (1) TWI238143B (en)
WO (1) WO2004049034A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690400A (en) * 2020-12-29 2022-07-01 成都极米科技股份有限公司 Vibrating mirror driven by electrostatic force

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703140B1 (en) 1998-04-08 2007-04-05 이리다임 디스플레이 코포레이션 Interferometric modulation and its manufacturing method
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
EP1640781A3 (en) * 2004-08-18 2006-09-27 LG Electronics, Inc. Scanning device and fabrication method thereof
US7889163B2 (en) 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7843410B2 (en) 2004-09-27 2010-11-30 Qualcomm Mems Technologies, Inc. Method and device for electrically programmable display
US7136213B2 (en) 2004-09-27 2006-11-14 Idc, Llc Interferometric modulators having charge persistence
US8310441B2 (en) 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US7724993B2 (en) 2004-09-27 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
US8878825B2 (en) 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. System and method for providing a variable refresh rate of an interferometric modulator display
US7679627B2 (en) 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US7675669B2 (en) 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7532195B2 (en) 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
WO2006073111A1 (en) 2005-01-05 2006-07-13 Nippon Telegraph And Telephone Corporation Mirror device, mirror array, optical switch, mirror device manufacturing method and mirror substrate manufacturing method
JP2006201519A (en) * 2005-01-20 2006-08-03 Ricoh Co Ltd Optical scanner and image forming apparatus
EP1878001A1 (en) 2005-05-05 2008-01-16 QUALCOMM Incorporated, Inc. Dynamic driver ic and display panel configuration
US7948457B2 (en) 2005-05-05 2011-05-24 Qualcomm Mems Technologies, Inc. Systems and methods of actuating MEMS display elements
US7920136B2 (en) 2005-05-05 2011-04-05 Qualcomm Mems Technologies, Inc. System and method of driving a MEMS display device
CN100462774C (en) * 2005-08-22 2009-02-18 佳能株式会社 Optical scanning system and image forming apparatus using the same
JP5164345B2 (en) 2005-08-22 2013-03-21 キヤノン株式会社 Optical scanning device and image forming apparatus using the same
US8391630B2 (en) 2005-12-22 2013-03-05 Qualcomm Mems Technologies, Inc. System and method for power reduction when decompressing video streams for interferometric modulator displays
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8194056B2 (en) 2006-02-09 2012-06-05 Qualcomm Mems Technologies Inc. Method and system for writing data to MEMS display elements
US8049713B2 (en) 2006-04-24 2011-11-01 Qualcomm Mems Technologies, Inc. Power consumption optimized display update
US7702192B2 (en) 2006-06-21 2010-04-20 Qualcomm Mems Technologies, Inc. Systems and methods for driving MEMS display
US7777715B2 (en) 2006-06-29 2010-08-17 Qualcomm Mems Technologies, Inc. Passive circuits for de-multiplexing display inputs
JP5098254B2 (en) * 2006-08-29 2012-12-12 富士通株式会社 Micro oscillating device
JP2008129424A (en) * 2006-11-22 2008-06-05 Topcon Corp Method of adjusting torsional oscillation mirror, torsional oscillation mirror, optical deflector, ophthalmology apparatus and distance measuring apparatus
US7911672B2 (en) * 2006-12-26 2011-03-22 Zhou Tiansheng Micro-electro-mechanical-system micromirrors for high fill factor arrays and method therefore
JP2008185621A (en) 2007-01-26 2008-08-14 Brother Ind Ltd Optical deflector
JP4889026B2 (en) * 2007-02-08 2012-02-29 株式会社リコー Optical scanning device
JP4285558B2 (en) * 2007-04-26 2009-06-24 ブラザー工業株式会社 Optical scanning apparatus, printing apparatus, and amplitude adjustment method of vibrating mirror
JP2009069457A (en) 2007-09-13 2009-04-02 Seiko Epson Corp Optical scanning element, and image display device
US8210038B2 (en) * 2009-02-17 2012-07-03 Robert Bosch Gmbh Drive frequency tunable MEMS gyroscope
EP3447560B1 (en) 2017-08-23 2021-02-24 Murata Manufacturing Co., Ltd. A mems reflector system
US11137593B2 (en) 2019-03-06 2021-10-05 Microsoft Technology Licensing, Llc Control loop for stabilizing a resonant frequency of a mirror of a laser beam scanning display
KR20220084271A (en) * 2019-10-25 2022-06-21 엘지전자 주식회사 Scanner and electronic device having same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201629B1 (en) * 1997-08-27 2001-03-13 Microoptical Corporation Torsional micro-mechanical mirror system
US6245590B1 (en) * 1999-08-05 2001-06-12 Microvision Inc. Frequency tunable resonant scanner and method of making
US20010040419A1 (en) * 2000-03-24 2001-11-15 Behrang Behin Biased rotatable combdrive sensor methods
US7079299B1 (en) * 2000-05-31 2006-07-18 The Regents Of The University Of California Staggered torsional electrostatic combdrive and method of forming same
US6504641B2 (en) * 2000-12-01 2003-01-07 Agere Systems Inc. Driver and method of operating a micro-electromechanical system device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690400A (en) * 2020-12-29 2022-07-01 成都极米科技股份有限公司 Vibrating mirror driven by electrostatic force
CN114690400B (en) * 2020-12-29 2023-05-02 极米科技股份有限公司 Vibrating mirror driven by electrostatic force

Also Published As

Publication number Publication date
KR20060026001A (en) 2006-03-22
EP1563333A1 (en) 2005-08-17
WO2004049034A1 (en) 2004-06-10
AU2003295445A1 (en) 2004-06-18
TWI238143B (en) 2005-08-21
JP2004177957A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
TW200416194A (en) MENS scanning mirror with tunable natural frequency
US7426066B2 (en) MEMS scanning mirror with tunable natural frequency
US6769616B2 (en) Bidirectional MEMS scanning mirror with tunable natural frequency
JP5761194B2 (en) Optical scanning device and image display device
US7649301B2 (en) Actuator capable of driving with large rotational angle or large deflection angle
US7420315B2 (en) Actuator
JP4193817B2 (en) Actuator
US7161275B2 (en) Actuator
JP4012535B2 (en) Resonance type optical scanner capable of frequency modulation
US9335543B2 (en) Optical scanner, image display device, head mount display, and heads-up display
JP2007522529A (en) MEMS scanning system with improved performance
JP2008295174A (en) Oscillation device, light scanner using the device, image display device, and control method of oscillation device
US7324252B2 (en) Electromagnetic scanning micro-mirror and optical scanning device using the same
JP2000089153A (en) Optical deflector
US8094356B2 (en) Light scanning device and image forming device
JP6808506B2 (en) Optical scanning device
CN206133113U (en) Piezoelectric actuator and distorting lens
CN114911051B (en) Low-temperature-drift electrostatic MEMS (micro-electromechanical system) micro-mirror and implementation method thereof
Liao et al. A tip-tilt-piston piezoelectric scanning micromirror with folded PZT unimorph actuators
TWI479796B (en) Electrostatic drive, process to operate a micromechanical component with an electrostatic drive and process to produce an electrostatic drive
JP4123133B2 (en) Actuator
JP2003241134A (en) Optical scanner, its manufacturing method, image forming device having the scanner, and reader
KR20020034764A (en) Micro-driving device
HOW Novel Actuation Mechanisms for MEMS Mirrors
JP2007222970A (en) Actuator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees