TW200411949A - Optoelectronic integrated circuit device and manufacturing method thereof - Google Patents

Optoelectronic integrated circuit device and manufacturing method thereof Download PDF

Info

Publication number
TW200411949A
TW200411949A TW91136925A TW91136925A TW200411949A TW 200411949 A TW200411949 A TW 200411949A TW 91136925 A TW91136925 A TW 91136925A TW 91136925 A TW91136925 A TW 91136925A TW 200411949 A TW200411949 A TW 200411949A
Authority
TW
Taiwan
Prior art keywords
layer
buffer layer
substrate
lattice constant
type
Prior art date
Application number
TW91136925A
Other languages
Chinese (zh)
Other versions
TW565959B (en
Inventor
Mu-Ren Lai
jia-cheng Liu
Jiung-Yu Jang
Original Assignee
Vtera Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vtera Technology Inc filed Critical Vtera Technology Inc
Priority to TW91136925A priority Critical patent/TW565959B/en
Application granted granted Critical
Publication of TW565959B publication Critical patent/TW565959B/en
Publication of TW200411949A publication Critical patent/TW200411949A/en

Links

Abstract

The present invention discloses an optoelectronic integrated circuit device with high lattice matching and manufacturing method thereof. The device has a silicon dioxide layer to dispose the diodes and transistors on the substrate selectively, which is mainly to form a silicon dioxide layer on the substrate, and the said silicon dioxide layer is selectively etched, so as to define the predetermined region of diodes and the predetermined region of FET. Next, grow diodes, diode passivation layer and transistor. The said passivation layer can isolate the diode and transistor.

Description

200411949200411949

【發明所屬之技術領域】 本發明係有關於一種光電積體電路(〇pt〇electr^nic integrated circuit,0EIC)元件及其製作方法,特別是 有關於一種有效將二極體及電晶體隔離且具有高度晶格匹 配(lattice match)之光電積體電路(〇pt〇electrc>nic integrated circuit,0EIC)元件及其製作方法。 【先前技術】 光電積體電路(optoelectronic integrated circuit ,0EIC)是在一基板上包含電子電路部份及光學電路部 份元之單片集成光學元件,是快速且大量的光學傳輸體系 發展的關鍵裝置。 在光電積體電路(optoelectronic integi^ted circui t,0EIC)裝置的結構上,一般是以發射短波長藍 光的氮化鎵(GaN)作為發光層,且形成於砷化鎵(GaAs)基 板上’以達到電子訊號及光訊號在發光層之互相連結。 在目前的光學元件技術中,各磊晶層之晶格常數 (lattice constant)不匹配的問題一直是造成光電積體電 路元件之發光效率與使用壽命不易提升的瓶頸。以氮化鎵 (GaN)為例,氮化鎵(GaN)是非常重要的寬能隙(wide bandgap)半導體材料,可以用來做綠光、藍光到紫外線的 光電積體電路元件。但是因為塊材(buik)GaN的成長一直 有困難’所以目前GaN大多成長在以藍寶石(sapphire)[Technical field to which the invention belongs] The present invention relates to an optoelectronic integrated circuit (0EIC) element and a method for manufacturing the same, and particularly to an effective diode and transistor isolation and Optoelectronic integrated circuit (0EIC) element with high lattice match and manufacturing method thereof. [Previous technology] Optoelectronic integrated circuit (0EIC) is a single-chip integrated optical element that includes electronic circuit parts and optical circuit part elements on a substrate, and is a key device for the rapid and massive development of optical transmission systems. . In the structure of optoelectronic integrated circuit (OEIC) devices, gallium nitride (GaN) that emits short-wavelength blue light is generally used as the light-emitting layer, and is formed on a gallium arsenide (GaAs) substrate. In order to achieve the interconnection of electronic signals and optical signals in the light-emitting layer. In the current optical element technology, the mismatch of the lattice constants of the epitaxial layers has been a bottleneck that causes the luminous efficiency and service life of the optoelectronic integrated circuit elements to be difficult to improve. Taking gallium nitride (GaN) as an example, gallium nitride (GaN) is a very important wide bandgap semiconductor material, which can be used as a photovoltaic integrated circuit element for green light, blue light to ultraviolet light. However, the growth of buik GaN has been difficult, so most of GaN is currently growing with sapphire.

GaP、InP、砷化鎵(GaAs)或碳化矽(SiC)構成之基板上。 以晶格常數(lattice constant)來說,氮化鎵(GaN)為GaP, InP, gallium arsenide (GaAs) or silicon carbide (SiC). In terms of lattice constant, gallium nitride (GaN) is

0769-9103TlVF(nl);VTERA.91 -011 .^;Ph〇el ip he.ptd 第 5 頁 200411949 五、發明說明(2) 3.180A,而砷化鎵(GaAs)為5.653 A,兩者相差近1.473 A。相差如此大的晶格常數,氣化鎵(GaN)形成於神化鎵 (GaAs)基板上會造成嚴重的晶格缺陷(lattice defects) ο 在另一方面,將砷化鎵(GaAs)作為基板在其上形成氮 化鎵(GaN)發光層時,由於由於氮化鎵(GaN)的具有高結晶 度(crystallinity),在利用M0CVD使其成膜時,高的沈積 溫度是必需的(超過1 0 0 0,視沈積之過程而定),此時珅化 鎵(GaAs)基板會因為高溫而產生砷移除(arsenic el iminat ion)的現像(大約高於3〇〇時,坤會產生氣化而移 除表面),造成表面凹陷(dimples)產生。這此凹陷產生在 石申化嫁(G a A s)基板及氮化嫁(G a N )發光層之間。所以以石申 化鎵(GaAs)為作基板,控制其上形成高結晶度 (crystallinity)氮化鎵(GaN)的製程溫度,以避免在界面 產生凹陷的現象,在製程上是相當不易的。 然而為了解決上述問題,一種具有緩衝層(buf f er layer)之光電積體電路元件被提出來。於基板與GaN之間 形成一氮化鎵(GaN)做為緩衝層,晶格常數與基板相近的 緩衝層可以提供成核(nucleation)位置,以利GaN成核、 成長’以形成相同的晶體結構,以提升GaN的結晶度。雖 然採用了GaN做為緩衝層,部份解決了砷化鎵(GaAs)基板 表面砷移除(arsenic el iminati〇n)造成界面凹陷的現象 ,但是砷化鎵(GaAs)基板與GaN緩衝層之晶格常數仍相差 約13.8%,晶格不匹配仍然相當大。因此在砷化鎵(GaAs)0769-9103TlVF (nl); VTERA.91 -011. ^; Phoel ip he.ptd page 5 200411949 V. Description of the invention (2) 3.180A, while the gallium arsenide (GaAs) is 5.653 A, the difference between the two Near 1.473 A. With such large lattice constants, the formation of gallium vaporized (GaN) on a GaAs substrate can cause serious lattice defects. Ο On the other hand, using GaAs as a substrate When a gallium nitride (GaN) light-emitting layer is formed thereon, due to the high crystallinity of gallium nitride (GaN), a high deposition temperature is required (more than 10) when it is formed by MOCVD. 0 0, depending on the deposition process). At this time, the gallium tritide (GaAs) substrate will produce an image of arsenic el iminat ion due to high temperature (at about 300, Kun will generate gasification). While removing the surface), causing surface dimples. These depressions are generated between the Shi Shenhua (G a As s) substrate and the nitrided (G a N) light emitting layer. Therefore, it is difficult to control the process temperature for forming high crystallinity gallium nitride (GaN) on the substrate using GaAs as the substrate, so as to avoid the phenomenon of depression at the interface. However, in order to solve the above problems, a photovoltaic integrated circuit element having a buffer layer is proposed. A gallium nitride (GaN) is formed between the substrate and GaN as a buffer layer, and a buffer layer having a lattice constant close to the substrate can provide a nucleation position to facilitate GaN nucleation and growth to form the same crystal. Structure to improve the crystallinity of GaN. Although GaN is used as the buffer layer, the phenomenon of interface depression caused by arsenic el imination on the surface of the gallium arsenide (GaAs) substrate is partially solved, but the relationship between the gallium arsenide (GaAs) substrate and the GaN buffer layer The lattice constants still differ by about 13.8%, and the lattice mismatches are still quite large. So in gallium arsenide (GaAs)

0769-9103TW(nl);\TERA-91-01MW;Phoelip he.ptd 第 6 頁 2004119490769-9103TW (nl); \ TERA-91-01MW; Phoelip he.ptd page 6 200411949

基板與GaN之間的界面舍右 ^ ^ , ®會有相當兩密度的線缺陷(defect) 產生,使其發光效率降低且使用壽命縮短。 而在美國專利第6,355,945號中也揭露出一種具有氧 化鋅_為緩衝層(buffer layer)之光電積體電路元件 ,以氧化鋅(ZnO)作為緩衝層形成於砷化鎵(GaAs)基板與 GaN之間。請參照第1圖,顯示一習知之具有氧化鋅(Zn〇) 緩衝層之光電積體電路元件之結構剖面圖。在砷化鎵 (GaAs)基板11上磊晶製作發光二極體元件丨1()(光電積體 電路元件之光學電路部份),及一金屬半導體場效電晶體At the interface between the substrate and GaN, ^ ^, there will be line defects (defects) of quite two densities, reducing the luminous efficiency and shortening the service life. In US Patent No. 6,355,945, a photovoltaic integrated circuit element having zinc oxide as a buffer layer is also disclosed. Zinc oxide (ZnO) is used as a buffer layer to form a gallium arsenide (GaAs) substrate and GaN. between. Please refer to FIG. 1, which shows a cross-sectional structure view of a conventional photovoltaic integrated circuit element having a zinc oxide (Zn〇) buffer layer. Production of a light-emitting diode element epitaxially on a gallium arsenide (GaAs) substrate 11 丨 1 () (optical integrated circuit circuit element optical circuit part), and a metal semiconductor field effect transistor

(metal-semiconductor field effect transistor , MESFET) 160 (光電積體電路元件之電子電路部份)。發光 一極體元件11 0中’標號1 2 0係顯示一緩衝層,由氧化鋅 (ZnO)所構成,其主要作用在於降低基板1〇〇與後續磊晶層 (n-GaN)130之間的晶格不匹配(lattice mismatch)及防止 氮化鎵(GaN)直接形成於珅化鎵(GaAs)基板上,導致產生 砷移除(arsenic elimination)現像。(metal-semiconductor field effect transistor, MESFET) 160 (electronic circuit part of the optoelectronic integrated circuit element). The 'No. 1 2 0' in the light-emitting monopolar element 110 shows a buffer layer composed of zinc oxide (ZnO). Its main function is to reduce the gap between the substrate 100 and the subsequent epitaxial layer (n-GaN) 130. Lattice mismatch and prevent gallium nitride (GaN) from being formed directly on the gallium halide (GaAs) substrate, resulting in the appearance of arsenic elimination.

這樣的作法雖然徹底解決了砷化鎵(GaAs)基板表面砷 移除(arsenic elimination)造成界面凹陷的現象,且利 用氧化鋅(ZnO)去匹配與氮化鎵(GaN)之間的晶格。但是其 採用砷化鎵(GaAs)為基板,而氧化辞(ZnO)與砷化鎵 (GaAs)之晶格常數分別為3· 25 A及5· 653人,晶格匹配差 距仍然相當大,因此相當高密度的線缺陷(defect)問題依 然存在,其差排(dislocation)密度也相當高,一旦這些 差排延伸進入第一型束缚層勢必會嚴重破壞元件的特性,This method completely solves the phenomenon of interface depression caused by arsenic elimination on the surface of the gallium arsenide (GaAs) substrate, and uses zinc oxide (ZnO) to match the crystal lattice with gallium nitride (GaN). However, it uses gallium arsenide (GaAs) as the substrate, and the lattice constants of the oxides (ZnO) and gallium arsenide (GaAs) are 3.25 A and 5.653, respectively. The lattice matching gap is still quite large, so The problem of relatively high-density line defects still exists, and the density of their dislocations is also quite high. Once these differential lines extend into the first type of restraint layer, the characteristics of the components will be seriously damaged.

0769-9103TWF(nl);VTERA-91-011-TW;Phoelip he.ptd 第 7 頁 2004119490769-9103TWF (nl); VTERA-91-011-TW; Phoelip he.ptd page 7 200411949

使其發光 元件之各 此外 晶體的相 效應,或 有鑑 提供一種 電積體電 體各 猫日日 【發明内 本發 電路元件 間的晶格 具完美結 本發 配性之光 (G a A s)作 大幅降低 效率降低且使用 蠢晶層晶格不匹 ’在習知光電積 鄰過近,或是兩 連結導線誤觸二 於此’為了解決 有效將二極體及 路元件,其除免 層之間的晶格匹 容】 明之目的在於提 及其製作方法, 不匹配(lattice 晶度之光電積體 明之目的二在於 電積體電路元件 為基板’避免坤 成本。 胥命縮 配的問 體電路 者之間 極體非 上述問 電晶體 除上述 配性亦 短。因 題急需 元件中 的連接 連接電 題,本 隔離且 習知之 較習知 供一種高晶格 以降低二極體 mismatch), 電路元件。 提供一種以矽 及其製作方法 化鎵(GaAs)基 此,光電積體電路 更佳的改善效果。 ,由於一極體與電 導線,易產生電場 極部位。 發明主要目的在於 面晶格匹配性之光 干擾問題,且二極 為佳。 匹配性之光電積體 元件中各磊晶層之 降低線缺陷,提供 為基板之高晶格匹 ’以矽取代砷化鎵 板所產生之問題及 _ 本發明之目的三在於有效隔離二極體元件與電晶元件 ,確保兩者之間僅由一連接導線相連接,而不會造成任何· 元件干擾,或其連接導線誤觸情事發生。 為獲致上述之目的,本發明所提出之高晶格匹配性之 光電積體電路元件’主要針對光電積體電路元件之光學電 路部份(二極體)’其二極體包含一基底,具有第一晶格常Make the phase effect of each light-emitting element of this crystal, or provide a cathodic body electric cat day [the light of the crystal lattice between the circuit elements of the invention within this invention has perfect matching properties (G a A s ) To greatly reduce the efficiency and reduce the use of stupid crystal layers, the lattice is too close in the conventional photoelectricity, or the two connecting wires touch the two by mistake. In order to solve the diode and circuit components effectively, the exemption The purpose of the crystal lattice between the layers] is to mention its manufacturing method, and the mismatch (lattice crystal photoelectricity of the photovoltaic body is clear. The second purpose is that the electrical circuit components are substrates to avoid Kun costs. In addition to the above-mentioned transistor, the body is not short of the above-mentioned characteristics. Because of the urgent need for the connection in the component, the isolated and well-known one is provided with a high lattice to reduce the diode mismatch. Circuit components. Provide a silicon and its manufacturing method based on gallium (GaAs). Based on this, the photovoltaic integrated circuit has a better improvement effect. Because of a pole body and an electric wire, an electric field is easily generated. The main purpose of the invention is to solve the problem of light interference of the plane lattice matching, and the second pole is better. The problem of reducing line defects in the epitaxial layers of the matched optoelectronic integrated device is to provide a high lattice of the substrate. The problem caused by replacing the gallium arsenide plate with silicon and the object of the present invention is to effectively isolate the diode. The component and the transistor component are ensured to be connected only by a connecting wire without causing any interference with the component, or the connection wire mishaps happen. In order to achieve the above-mentioned object, the photoelectric integrated circuit element of the present invention with high lattice matching is mainly directed to the optical circuit part (diode) of the photovoltaic integrated circuit element. The diode includes a substrate and has First lattice constant

200411949 五、發明說明(5) 數;一第一多層緩衝層,設置於上述基底表面,其中上述 第一多層緩衝層之晶格常數呈現梯度變化,由上述第一多 層緩衝層底部所具有之上述第一晶格常數逐漸變化為上述 第一多層緩衝層表面所具有之一第二晶格常數;一第二多 層緩衝層,設置於上述第一多層缓衝層表面,其中上述第 二多層緩衝層之晶格常數呈現梯度變化,由上述第二多層 緩衝層底部所具有之上述第二晶格常數逐漸變化為上述第 二多層緩衝層表面所具有之一第三晶格常數;一第一型束 缚層,設置於上述第二多層缓衝層表面,具有第三晶格常 數;以及一活性層,設置於上述第一型束缚層表面;一第 二型束缚層,設置於上述活性層表面;一第一型電極設置 於上述活性層及一第二型電極設置於上述第二型束缚層。200411949 V. Description of the invention (5): A first multilayer buffer layer is provided on the surface of the substrate, wherein the lattice constant of the first multilayer buffer layer exhibits a gradient change, which is determined by the bottom of the first multilayer buffer layer. The above-mentioned first lattice constant gradually changes to a second lattice constant on the surface of the first multilayer buffer layer; a second multilayer buffer layer is disposed on the surface of the first multilayer buffer layer, wherein The lattice constant of the second multilayer buffer layer exhibits a gradient change, and the second lattice constant on the bottom of the second multilayer buffer layer gradually changes to one of the third on the surface of the second multilayer buffer layer. A lattice constant; a first type restraint layer provided on the surface of the second multilayer buffer layer and having a third lattice constant; and an active layer provided on the surface of the first type restraint layer; a second type restraint A layer is disposed on the surface of the active layer; a first type electrode is disposed on the active layer and a second type electrode is disposed on the second type tie layer.

本發明 包含第一多 電路元件作 基底之間, 基底的第一 相近’晶格 晶格常數, 格常數與第 之特徵 層緩衝 為光學 且多層 多層緩 常數再 使靠近 之一在於 層與第二 電路部份 緩衝層之 衝層之晶 遞增或遞 第二多層 本發明之特徵 一多層緩衝層與第 現梯度 常數與 晶格常數呈 衝層之晶格 二多層緩衝層之 之二在於 一型束缚 化’靠近 第一多層 多層緩 之發光 晶格常 格常數 減,以 緩衝層 晶格常 利用第 層之間 % 一多 緩衝層 少一層多層緩衝層(< 衝層)設置於光電積體 二極體第一型束缚層與 數呈現梯度變化,靠近 與基底之晶格常數略為 趨近第二多層缓衝詹的 的第一多層缓衝層之晶 數略為相近。 二多層緩衝層設置於第 ,且第二多層缓衝層之 層Μ榭厝的镔二多層緩The present invention includes a first multi-circuit element as a substrate, and the first substrate ’s first approximation to the “lattice lattice constant”, the lattice constant and the first characteristic layer are buffered optically, and the multi-layer and multi-layer slow constants are closer to each other between the layer and the second The crystal layer of the buffer layer of the circuit part is incremented or transferred to the second layer. A feature of the present invention is that a multilayer buffer layer and a lattice with a current gradient constant and a lattice constant are two layers. A type of restraint is used to reduce the constant lattice constant of the light-emitting lattice near the first multilayer. The buffer layer lattice is often used between the first layer%. One more buffer layer and one less multilayer buffer layer (< punch layer) are set at The number of the first-type binding layer of the photodiode diode shows a gradient change, and the number of crystals of the first multilayer buffer layer that is close to the lattice constant of the substrate is slightly close to that of the second multilayer buffer layer. Two multi-layer buffer layers are provided at the first and second multi-layer buffer layers of the second multi-layer buffer layer.

200411949 五 '發明說明(6) 晶格常數再遞增或遞減,以趨近第— ,使靠近第-型束缚層的第二多層緩的晶格常數 一型束缚層之晶格常數略為相近。^之阳格常數與第 基於本發明之目的二,本發明係 在其上形成磷化硼(BP)作為第一緩衝居,、:矽基板, (GaAs)基板,在其上可形成第二緩衝居,彳'砷化鎵 形成第一型束缚層(氮化鎵(GaN))、胃爲、"接在其上 層。 化層及第二型束缚 基於本發明之目的三,本發明係一# 擇性將二極體及電晶體設置於基底上·复化矽層選 =-二氧化石夕層,且選擇性#刻上述:氧基:士 極定區及場效電晶體預定區。接續在“區: 序成長一極體、二極體保護層及電晶體,其中,, 層可用與將二極體及電晶體作一絕緣隔離。 a ”濩 根據本發明之目的—及二’上述基底例如為碳化砂 (3C Si),上述第一多層緩衝層例如為Βχ(^(ΐχ)ρ,上 二多層緩衝層例如為InwGawN,並且上述第二型束缚声 如為氮化鎵(GaN)系化合物。如此,上述第一晶格常&大 體為4· 32 A、上述第二晶格常數大體為4· 538 A以及上 第三晶格常數大體為4.51A。 ) ^根據本發明,上述基底例如為矽(S i ),上述第一多居 緩衝層例如為BxGa^p,上述第二多層緩衝層例如為 曰 IrVzGazN,並且上述第一型束缚層例如為氮化鎵(GaN)系化 合物。如此,上述第一晶格常數大體為5·43Α、上述第二200411949 Description of the 5 'invention (6) The lattice constant is increased or decreased again to approach the first-, so that the second layer of the slower lattice constant near the first-type binding layer is slightly similar to the lattice constant of the first-type binding layer . Based on the second aspect of the present invention, the second aspect of the present invention is to form boron phosphide (BP) as a first buffer thereon, a silicon substrate, a (GaAs) substrate, and a second substrate thereon. As a buffer, gallium arsenide forms a first type of binding layer (gallium nitride (GaN)), which is connected to the upper layer. The chemical layer and the second type of restraint are based on the purpose of the present invention. The present invention is a #selective arrangement of a diode and a transistor on the substrate. Engraved above: Oxygen: Shiji fixed area and field effect transistor predetermined area. Continuing in the "area: sequential growth of a diode, a protective layer of a diode and a transistor, wherein the layer can be used to isolate the diode and the transistor as an insulation. A" "According to the purpose of the present invention-and two ' The substrate is, for example, carbonized sand (3C Si), the first multilayer buffer layer is, for example, Bχ (^ (ΐχ) ρ, the upper two multilayer buffer layers are, for example, InwGawN, and the second type binding sound is, for example, gallium nitride (GaN) -based compounds. In this way, the first lattice constant & is approximately 4.32 A, the second lattice constant is approximately 4.538 A, and the upper third lattice constant is approximately 4.51 A.) ^ According to In the present invention, the substrate is, for example, silicon (Si), the first multi-layer buffer layer is, for example, BxGa ^ p, the second multi-layer buffer layer is, for example, IrVzGazN, and the first type tie layer is, for example, gallium nitride. (GaN) -based compound. Thus, the first lattice constant is approximately 5.43A, and the second

0769-9103TW(nl);VrERA-91.011-TlV;Ph〇eiip he<ptd 第 1〇 頁 2004119490769-9103TW (nl); VrERA-91.011-TlV; Ph〇eiip he < ptd page 10 200411949

五、發明說明(7) '~ --I 晶,常數大體為4.538人以及上述第三晶格常數 4· 5 1 A 〇 根據本發明,上述基底例如為磷化鎵(GaP),上述第 少f緩衝層例如為,上述第二多層緩衝層例如 ^ awN,並且上述第一型束缚層例如為氮化鎵(GaN)系 一合勿如此’上述第一晶格常數大體為5·45α、上述第 二晶格常數大體為4· 538 A以及上述第三晶格常數大體為 4· 5 1 A 〇 、根據本發明,上述緩衝層更可以一種以上材質組合 成,上述基底例如為砷化鎵(GaAs)、上述第一多層緩衝層 例如為GaAs(卜y) Py與Ma(卜χ)ρ之堆疊層、上述第三多層、緩 衝層例如為InwGawN,並且上述第一型束缚層例如為氮化 鎵(GaN)系化合物。如此,上述第一晶格常數大體為5· 65 A、上述第二晶格常數大體為4. 5 3 8 A以及上述第三晶格 常數大體為4·51 A。上述GaAs(iy)Py與上述BxGa㈣p接觸的 邛分具有略為相近之晶格常數,亦即上述GaAs(h)匕表面 與匕以彳卜X〉P底部具有一第四晶袼常數大體為5· a a。 根據本發明,上述基底為矽,上述之利用至少一層多 層緩衝層可為一層,且由一種材質組成,如磷化硼(Bp) (IGamP,χ —1),並且上述第一型束缚層例如為氮化鎵 φ (GaN)系化合物。 根據本發明之光電積體電路元件之製作方法,至少包 括下列步驟:V. Description of the invention (7) '~ --I crystal, the constant is approximately 4.538 people, and the third lattice constant is 4.51 A. According to the present invention, the substrate is, for example, gallium phosphide (GaP), which is the least The f buffer layer is, for example, the second multilayer buffer layer, such as ^ awN, and the first type tie layer is, for example, a gallium nitride (GaN) system. This is not true. The first lattice constant is approximately 5.45α, The second lattice constant is approximately 4.538 A and the third lattice constant is approximately 4.51 A. According to the present invention, the buffer layer may be composed of more than one material. The substrate is, for example, gallium arsenide. (GaAs), the first multilayer buffer layer is, for example, a stacked layer of GaAs (Buy) Py and Ma (Bux) ρ, the third multilayer, the buffer layer is, for example, InwGawN, and the first type tie layer is, for example, It is a gallium nitride (GaN) -based compound. As such, the first lattice constant is approximately 5.65 A, the second lattice constant is approximately 4. 5 3 8 A, and the third lattice constant is approximately 4.51 A. The fraction of the GaAs (iy) Py in contact with the BxGa㈣p has a similar lattice constant, that is, the surface of the GaAs (h) and the bottom of the GaAs (h) have a fourth crystal. The constant is approximately 5. · aa. According to the present invention, the above-mentioned substrate is silicon, the above-mentioned utilizing at least one multilayer buffer layer may be one layer, and is composed of one material, such as boron phosphide (Bp) (IGamP, χ-1), and the first-type binding layer is, for example, It is a gallium nitride φ (GaN) -based compound. The method for manufacturing a photovoltaic integrated circuit element according to the present invention includes at least the following steps:

200411949 五、發明說明(8) (1)提供一基底,在上述基底形成一二氧化石夕層; (2 )選擇性蝕刻上述二氧化矽層,以定義出發光二極 體預定區及場效電晶體預定區; (3)在上述發光二極體預定區依序形成至少一層之緩 衝層、一第一型束縛層、一活性層及第二型束缚層,以構 成此光電積體電路元件之發光二極體部份; (4 )形成一保護層,順應性貼附於上述發光二極體 份及部分之上述二氧化石夕層; (5 )形成一離子值佈區於場效電晶體預定區, 形刻/止層,移去上述離子值佈區之二氧化石夕層; 上述二次離t植·Vkl子Λ佈區;;上述離子植佈區,並在 層,再形成-閘㈣閘極氧化層上;聽及閘極氧化 (7 )以述第—开丨]杰/»者 對上述保護層進V選摆Λ 述活性層為㈣停止層 層上之保護層;擇11蝕刻,留下形成於上述二氧化矽 (8) 形成一笛—界丨丨士 第-型電極於上述:㈠極於上述及第二型束缚層上’形成 (9) 形成一線路連接\ 乂及 該線路係以上述保護層/第;型電極與上述源極,且 為使本發明之上;;先一極體隔開。 下文特舉較佳實施^ ,丄特徵和優點能更明顯易懂, : 並配合所附圖式,作詳細說明如下 【實施方式】200411949 V. Description of the invention (8) (1) Provide a substrate on which a dioxide layer is formed; (2) Selectively etch the above silicon dioxide layer to define a predetermined area of the light emitting diode and a field effect power A predetermined region of the crystal; (3) sequentially forming at least one buffer layer, a first-type binding layer, an active layer, and a second-type binding layer on the predetermined region of the light-emitting diode to form the photovoltaic element The light-emitting diode part; (4) forming a protective layer, conformably attached to the above light-emitting diode part and part of the above-mentioned dioxide layer; (5) forming an ion-valued area in a field-effect transistor Predetermined area, engraved / stopped layer, remove the above-mentioned ionic value distribution area of the stone oxide layer; the above-mentioned secondary ion implantation · Vkl sub-Λ distribution area; the above-mentioned ion implantation area, and in the layer, then form- On the gate oxide layer; listen to the gate oxidation (7) to the above-mentioned protective layer for the selection of the above-mentioned protective layer, the active layer is the protective layer on the ㈣stop layer; 11 is etched, leaving the silicon dioxide (8) formed above to form a flute-boundary 丨 丨 the first electrode of the type described above: ㈠ (9) forming a circuit connection on the above-mentioned and second type binding layers, and the circuit is based on the above-mentioned protective layer / number; the type electrode and the above source electrode, and on top of the present invention; the first electrode Body separated. The following is a detailed description of the preferred implementation ^, the features and advantages can be more obvious and easy to understand, and in conjunction with the attached drawings, detailed description is as follows [Embodiment]

200411949 五、發明說明(9) 以下請配合參照第2圖、第3圖與第4圖之光電積體電 路70件剖面圖’以詳細說明本發明。 首先請參照第2圖,本發明之光電積體電路元件,至 少包括:一基底200、一設置於基底200表面之第一多層緩 衝層220、一設置於第一多層緩衝層220表面之第二多層緩 衝層222、一設置於第二多層緩衝層222表面之第一型束缚 層230以及一設置於第一型束缚層230表面之活性層250、200411949 V. Description of the invention (9) In the following, please refer to Fig. 2, Fig. 3 and Fig. 4 of the photovoltaic integrated circuit 70 sectional views' to explain the present invention in detail. First, please refer to FIG. 2. The photovoltaic integrated circuit element of the present invention includes at least: a substrate 200, a first multilayer buffer layer 220 disposed on the surface of the substrate 200, and a first multilayer buffer layer 220 disposed on the surface of the first multilayer buffer layer 220. A second multilayer buffer layer 222, a first type tie layer 230 provided on the surface of the second multilayer buffer layer 222, and an active layer 250 provided on the surface of the first type tie layer 230,

一第二型束缚層232,設置於上述活性層250表面;一第一 型電極242設置於上述第二型束缚層及一第二型電極24〇設 置於上述活性層。此光電積體電路元件亦包含一具有一源 極270、一沒極272及一閘極280之場效電晶體(fieid effect transistor,FET) 260於基底200上作為其電子電 路部份,利用一線路2 90與光學電路(發光二極體)31〇部份 連結。上述場效電晶體係與發光二極體形成於一相同基板 上,且具有一間隔。其中,第一多層緩衝層220可以單一 組成依據不同組成比例調整所構成。本發明之光電積體電 路元件其第一多層緩衝層320也可由一種以上組成,各組 成依據不同組成比例調整,構成多種組成之第一多層緩衝 層3 20 (由321及323構成),如第3圖所示。而本發明之光電 積體電路元件其第一多層緩衝層42 0亦可由單一組成所構 成,如第4圖所示。 以下先以本發明實施例中具單一組成之第一多層緩衝 層2 20的光電積體電路元件(第2圖)為例,說明元件光學電 路(發光二極體)之各層特性。A second-type binding layer 232 is disposed on the surface of the active layer 250; a first-type electrode 242 is disposed on the second-type binding layer and a second-type electrode 24o is disposed on the active layer. The photovoltaic integrated circuit element also includes a field effect transistor (FET) 260 having a source 270, an electrode 272, and a gate 280 on the substrate 200 as part of its electronic circuit. The line 2 90 is connected to a part 31 of the optical circuit (light emitting diode). The field effect transistor system and the light emitting diode are formed on the same substrate and have a space. Among them, the first multilayer buffer layer 220 can be formed by adjusting a single composition according to different composition ratios. The first multilayer buffer layer 320 of the photovoltaic integrated circuit element of the present invention may also be composed of more than one type, and each composition is adjusted according to different composition ratios to form a first multilayer buffer layer 3 20 (consisting of 321 and 323) of various compositions. As shown in Figure 3. The first multilayer buffer layer 420 of the photovoltaic integrated circuit element of the present invention may also be composed of a single composition, as shown in FIG. In the following, the characteristics of each layer of the optical circuit (light-emitting diode) of the element are described using the photovoltaic integrated circuit element (FIG. 2) with the first multilayer buffer layer 220 of the single composition in the embodiment of the present invention as an example.

0769-9103TW(nl);VTERA-91-011-TW;Phoelip he.ptd 第 13 頁 2004119490769-9103TW (nl); VTERA-91-011-TW; Phoelip he.ptd page 13 200411949

基底200具有一第一晶格常數(C1)。第一多層 22()之晶格常數呈現梯度(grading)變化,由第一多層緩^ 層\2〇底部所具有之第一晶格常數(C1)逐漸變化為第一多 層緩=層220表面所具有之一第二晶格常數(C2)。換句話 說,靠近基底200的第一多層緩衝層2〇2之晶格常數與基底 200之晶格常數略為相近,晶格常數再遞增或遞減,以趨 近第二緩衝層222的晶格常數,使靠近第二緩衝層222的第 一多層緩衝層220之晶格常數與第二緩衝層222之晶格常數 略為相近。簡言之,第一多層緩衝層2 2 〇之晶格常數係由 第一晶格常數(ci)逐漸改變至第二晶格常數(C2)。其中, 第一多層緩衝層2 2 0之晶格常數的梯度變化例如可藉由調 整多重緩衝層之組成比例以達成。The substrate 200 has a first lattice constant (C1). The lattice constant of the first multi-layer 22 () exhibits a grading change, and the first lattice constant (C1) at the bottom of the first multi-layer ^^ 2 is gradually changed to the first multi-layer = The surface of the layer 220 has a second lattice constant (C2). In other words, the lattice constant of the first multilayer buffer layer 200 near the substrate 200 is slightly similar to the lattice constant of the substrate 200, and the lattice constant is further increased or decreased to approach the lattice of the second buffer layer 222. The constants are such that the lattice constant of the first multilayer buffer layer 220 near the second buffer layer 222 is slightly similar to the lattice constant of the second buffer layer 222. In short, the lattice constant of the first multilayer buffer layer 22 is gradually changed from the first lattice constant (ci) to the second lattice constant (C2). The gradient change of the lattice constant of the first multilayer buffer layer 220 can be achieved by, for example, adjusting the composition ratio of the multiple buffer layers.

另外,第二多層緩衝層2 2 2之晶格常數呈現梯度變化 ,由第二多層緩衝層222底部所具有之第二晶格常數(C2) 逐漸變化為第二多層緩衝層222表面所具有之一第三晶格 常數(C3)。換句話說,靠近第一多層緩衝層22〇的第二多 層緩衝層222之晶格常數與第一多層緩衝層22〇之晶格常數 略為相近,晶格常數再遞增或遞減,以趨近第一型束缚層 230的晶格常數,使靠近第一型束缚層230的第二多層緩衝 層222之晶格常數與第一型束缚層23〇之晶格常數略為相近 。簡言之,第二多層緩衝層222之晶格常數係由第二晶格 常數(C2)逐漸改變至第三晶格常數(C3)。其中,第二多層 緩衝層222之晶格常數的梯度變化例如可藉由調整多重緩 衝層之組成比例以達成。再者,第一型束缚層2 2 2具有第In addition, the lattice constant of the second multilayer buffer layer 2 2 2 shows a gradient change, and the second lattice constant (C2) at the bottom of the second multilayer buffer layer 222 gradually changes to the surface of the second multilayer buffer layer 222. Has one of the third lattice constants (C3). In other words, the lattice constant of the second multi-layer buffer layer 222 near the first multi-layer buffer layer 22 is slightly similar to that of the first multi-layer buffer layer 22, and the lattice constant is further increased or decreased to Approaching the lattice constant of the first type binding layer 230 makes the lattice constant of the second multilayer buffer layer 222 close to the first type binding layer 230 and the lattice constant of the first type binding layer 23 slightly closer. In short, the lattice constant of the second multilayer buffer layer 222 is gradually changed from the second lattice constant (C2) to the third lattice constant (C3). The gradient of the lattice constant of the second multilayer buffer layer 222 can be achieved by adjusting the composition ratio of the multiple buffer layers, for example. Furthermore, the first type of binding layer 2 2 2 has a

200411949 五、發明說明(11) 三晶格常數(C3) 〇 以下再配合參照第2圖與第3圖,舉例說明適用於本發 明之各層材質組合。200411949 V. Description of the invention (11) Tri-lattice constant (C3) 〇 The following figures are used in conjunction with Figures 2 and 3 to illustrate examples of material combinations applicable to the layers of the present invention.

例1 :如第2圖所示,基底2 〇 〇可為矽(s i ),第一多層緩 衝層220可為BxGa(1—χ)ρ,第二多層緩衝層222可為IiiyGa^N ,並且第一型束缚層230可為氮化鎵(GaN)系化合物。如此 ,第一晶格常數(C1)大體為5.43A、第二晶格常數(C2)大 體為4· 538 A以及第三晶格常數(C3)大體為4· 51人。也就 疋說’基底200具有晶格常數(ci)5.431A,堆疊於基底 200上方之第一多層緩衝層220的晶格常數由底層具(C1) 5.431 Λ(與基底200之晶格常數匹配)逐漸梯度變化成表層 具(C2)4.538A。接著,堆疊於第一多層緩衝層220上方之 第二多層緩衝層222的晶袼常數由底層具(C2)4· 538 A(與 第一多層緩衝層2 2 0表層之晶格常數匹配)逐漸梯度變化成 表層具(C3)4.51A。最後,堆疊於第二多層緩衝層222上 方之第一型束缚層230的晶格常數係為(C3)4· 51 A(與第二 多層緩衝層222表層之晶袼常數匹配)。其中,BxGa(i x)p之 X係在0· 022〜1之間,InyGa卜yN之乂係在0〜〇· 〇59之間。 例2:如第2圖所示,基底200可為碳化矽(3C-Si),第 一多層緩衝層220可為BxGa+nP,第二多層緩衝層222可為 IriyGa^yN,並且第一型束缚層230可為氮化鎵(GaN)系化合 物。如此,第一晶格常數(C1 )及第二晶格常數為 4.538A以及第三晶格常數(c3)大體為4·51Α。也就是說 ,基底200具有晶格常數(ci) 4.32人,堆疊於基底2〇〇上Example 1: As shown in FIG. 2, the substrate 200 may be silicon (si), the first multilayer buffer layer 220 may be BxGa (1-χ) ρ, and the second multilayer buffer layer 222 may be IiiyGa ^ N In addition, the first type tie layer 230 may be a gallium nitride (GaN) -based compound. As such, the first lattice constant (C1) is generally 5.43A, the second lattice constant (C2) is approximately 4.538 A, and the third lattice constant (C3) is approximately 4.51. That is to say, 'the substrate 200 has a lattice constant (ci) 5.431A, and the lattice constant of the first multilayer buffer layer 220 stacked on the substrate 200 is (C1) 5.431 Λ (with the lattice constant of the substrate 200) (Matching) gradually changes into a surface layer with (C2) 4.538A. Next, the crystal constant of the second multilayer buffer layer 222 stacked above the first multilayer buffer layer 220 is (C2) 4.538 A (the lattice constant of the first multilayer buffer layer 2 2 0 surface layer). (Matching) gradually changes into a surface layer with (C3) 4.51A. Finally, the lattice constant of the first type tie layer 230 stacked above the second multilayer buffer layer 222 is (C3) 4.51 A (which matches the crystal constant of the surface layer of the second multilayer buffer layer 222). Among them, the X of BxGa (ix) p is between 0. 022 and 1, and the y of InyGa and yN is between 0 and 0.059. Example 2: As shown in FIG. 2, the substrate 200 may be silicon carbide (3C-Si), the first multilayer buffer layer 220 may be BxGa + nP, and the second multilayer buffer layer 222 may be IriyGa ^ yN. The first-type tie layer 230 may be a gallium nitride (GaN) -based compound. In this way, the first lattice constant (C1) and the second lattice constant are 4.538A, and the third lattice constant (c3) is approximately 4.51A. That is, the substrate 200 has a lattice constant (ci) of 4.32, and is stacked on the substrate 200.

200411949 五、發明說明(12) 方之第一多層緩衝層220的晶格常數(C1)及(C2)維持在 4.538A。接著,堆疊於第一多層緩衝層220上方之第二多 層緩衝層222的晶格常數由底層具(C2)4.538A(與第一多 層緩衝層220表層之晶格常數匹配)逐漸梯度變化成表層具 (C3)4.51 A❶最後,堆疊於第二多層緩衝層222上方之第 一型束缚層230的晶格常數係為(C3)4.51A(與第二多層緩 衝層222表層之晶格常數匹配)。其中,inyGai_yN之y係在 0〜0 · 0 5 9之間。200411949 V. Description of the invention The lattice constants (C1) and (C2) of the first multilayer buffer layer 220 of (12) are maintained at 4.538A. Next, the lattice constant of the second multilayer buffer layer 222 stacked above the first multilayer buffer layer 220 is gradually gradient from the bottom layer with (C2) 4.538A (matching the lattice constant of the surface layer of the first multilayer buffer layer 220). The surface layer is changed to (C3) 4.51 A. Finally, the lattice constant of the first type binding layer 230 stacked on the second multilayer buffer layer 222 is (C3) 4.51A (the same as that of the second multilayer buffer layer 222 surface layer). Lattice constant match). Among them, the y of inyGai_yN is between 0 ~ 0 · 0 5 9.

例3··如第2圖所示,基底200例如為磷化鎵(GaP),第 一多層緩衝層220例如為BxGan_x)P,第二多層緩衝層222例 如為InxGai_xN,並且第一型束缚層230例如為氮化鎵(GaN)Example 3 As shown in FIG. 2, the substrate 200 is, for example, gallium phosphide (GaP), the first multilayer buffer layer 220 is, for example, BxGan_x) P, and the second multilayer buffer layer 222 is, for example, InxGai_xN, and the first type The tie layer 230 is, for example, gallium nitride (GaN)

系化合物。如此,第一晶格常數(C1)大體為5· 45 a、第二 晶格常數(C2)大體為4.538A以及第三晶格常數(C3)大體 為4.51A。也就是說,基底2〇〇具有晶格常數(C1) 545a ’堆疊於基底200上方之第一多層緩衝層220的晶格常數由 底層具(C1) 5·45Α(與基底200之晶格常數匹配)逐漸梯度 變化成表層具(C2)4.538A。接著,堆疊於第一多層緩衝 層220上方之第二多層緩衝層222的晶格常數由底層具(c2) 4·538α(與第一多層緩衝層22〇表層之晶格常數匹配)逐漸 梯度變化成表層具(C3)4· 52 Α。最後,堆疊於第二多層緩 衝層22/上方之第一型束缚層23〇的晶格常數係為((:3)4· 51 Α (與第二多層緩衝層222表層之晶格常數相同)。其中, BxGau-x)P 之X 約為0 〜1。 ’、 例4 :如第3圖所示,根據本發明具多種組成之第一多Department of compounds. As such, the first lattice constant (C1) is approximately 5.45 a, the second lattice constant (C2) is approximately 4.538A, and the third lattice constant (C3) is approximately 4.51A. In other words, the substrate 200 has a lattice constant (C1) 545a. The lattice constant of the first multilayer buffer layer 220 stacked on the substrate 200 is determined by the underlying layer (C1) 5 · 45A (with the lattice of the substrate 200). Constant matching) gradually changes into surface layer with (C2) 4.538A. Next, the lattice constant of the second multilayer buffer layer 222 stacked above the first multilayer buffer layer 220 is (c2) 4 · 538α (matching the lattice constant of the surface layer of the first multilayer buffer layer 22). Gradual change into surface layer with (C3) 4.52 Α. Finally, the lattice constant of the first type tie layer 23o stacked on top of the second multilayer buffer layer 22 / is ((: 3) 4.51 Α (lattice constant with the surface layer of the second multilayer buffer layer 222 Same). Among them, X of BxGau-x) P is about 0 ~ 1. ′, Example 4: As shown in FIG. 3, according to the present invention, the first

200411949 五、發明說明(13)200411949 V. Description of Invention (13)

層緩衝層320的光電積體電路元件,基底300例如為砷化鎵 (GaAs),第一多層緩衝層320具有例如為GaAsy) 與 BxGan_x)P兩種不同比例組成之堆疊層321及323、第二多層 緩衝層322例如為inzGa^N,並且第一型束缚層330例如為 氮化鎵(GaN)系化合物。如此,第一晶格常數(c 1 )大體為 5· 65 A、第二晶格常數(C2)大體為4· 538 A以及第三晶格 常數(C3)大體為4.51A。GaAsyPw與BxGa(1-x)P接觸的部分 具有略為相近之晶格常數’亦即GaASyP^y表面與BxGa(1_x)P 底部具有一第四晶格常數(C4)大體為5· 45 A。也就是說, 基底300具有晶格常數(ci) 5.653 A,堆疊於基底300上方 之GaAsy pi-y第一多層緩衝層321的晶格常數由底層具(C1) 5·653Α(與基底300之晶格常數匹配)逐漸梯度變化成表層 具(C4)5· 45 Α。堆疊於GaASyP^y第一多層緩衝層321上方之 第一多層緩衝層323的晶格常數由底層具(C4) 5· 45 A (與GaASyPh第一多層緩衝層321表層之晶格常數相 同)逐漸梯度變化成表層具(C2 )4.5 38 A。接著,堆疊於 第一多層緩衝層323方之第二多層缓衝層322的晶 格常數由底層具(C2)4.538A(與BxGa(1_x)P第一多層緩衝層 323表層之晶格常數匹配)逐漸梯度變化成表層具(C3)Photoelectric integrated circuit elements of the layer buffer layer 320. The substrate 300 is, for example, gallium arsenide (GaAs), and the first multilayer buffer layer 320 has stacked layers 321 and 323 composed of two different ratios, such as GaAsy) and BxGan_x. The second multilayer buffer layer 322 is, for example, inzGa ^ N, and the first type tie layer 330 is, for example, a gallium nitride (GaN) -based compound. As such, the first lattice constant (c 1) is approximately 5.65 A, the second lattice constant (C2) is approximately 4.538 A, and the third lattice constant (C3) is approximately 4.51A. The portion where GaAsyPw contacts BxGa (1-x) P has a slightly similar lattice constant ', that is, the GaASyP ^ y surface and the bottom of BxGa (1_x) P have a fourth lattice constant (C4) of approximately 5.45 A. That is, the substrate 300 has a lattice constant (ci) of 5.653 A, and the lattice constant of the GaAsy pi-y first multilayer buffer layer 321 stacked on the substrate 300 is determined by the bottom layer with (C1) 5.653A (with the substrate 300). (Lattice constant matching) gradually changes into a surface layer with (C4) 5.45 Α. The lattice constant of the first multilayer buffer layer 323 stacked above the first multilayer buffer layer 321 of GaASyP ^ y is (C4) 5.45 A (the lattice constant of the surface layer of the first multilayer buffer layer 321 of GaASyPh). The same) gradually changes into a surface layer with (C2) 4.5 38 A. Then, the lattice constant of the second multilayer buffer layer 322 stacked on the first multilayer buffer layer 323 is composed of (C2) 4.538A (and BxGa (1_x) P surface crystal of the first multilayer buffer layer 323). Lattice constant matching) Gradual gradient change into surface layer (C3)

4·51 A。最後,堆疊於第二多層緩衝層3〇6上方之第一型 束缚層330的晶格常數係為(¢3)4.51 Α(與第二多層緩衝層 322表層之晶格常數匹配)。其中,BxGa(h)p之又係在卜工之 間’ Ir^GahN之z係在〇· 〇59〜0之間,GaAs(卜y)py之y為丄。 例5 :如第4圖所示’根據本發明之光電積體電路元件4.51 A. Finally, the lattice constant of the first type binding layer 330 stacked on the second multilayer buffer layer 306 is (¢ 3) 4.51 A (matching the lattice constant of the surface layer of the second multilayer buffer layer 322). Among them, the BxGa (h) p is in the range of the laborers ’, and the z of Ir ^ GahN is in the range of 0.059 ~ 0, and the y of GaAs (buy) py is 丄. Example 5: As shown in FIG. 4 ′ Photoelectric integrated circuit element according to the present invention

200411949200411949

組成所構成,基底400例 磷化硼(BP)所組成之堆 為氮化鎵(G a N )系化合物 其第一多層緩衝層420亦可由單一 如為矽(si),第一緩衝層42〇可為 疊層,並且第一型束缚層430例: 本發明上述光電積體_ 含利用一二極體保nu?件之實施方式,其更可包 路部份(發光二極體)i電;;2電積體電路元件其光學電 連接光學電路部:二=::部份(場效電晶體)’且其 ;蔓:與其發光二極體隔開1免元件短路。實施方式如下 在上:提供、一基底500 ’此基底可為-石夕基底。 接著’L以二其拉ςη形成一二氧化矽層5〇2,如第5a圖所示。 為蝕刻停止層對二氧化石夕層502作選擇 區5 61二義·發先二極體預定區511及場效電晶體預定 = 接者對一軋化矽層502蝕刻以定義出發光二極體 ==在發光二極體預定區511及部份化3預 上形成第一緩衝層420 ’如第5b圖所示。第一緩衝声 4丄為磷:匕硼(BP)所組成之堆疊層。在磷化硼(BP)緩曰衝 :42〇上依序形成第一型束缚層53〇、活性層—及第二型 ί丄層532哲以構成此光電積體電路元件之發光二極體部 =10 ’如第5c圖所示。在上述發光二極體部份51〇上形成 3二氧化石夕層作為保護層5〇4 ’順應性貼附於發光二極 ^份51G。接著對場效電晶體預定區561之發基板進行離 子植佈(1〇n implantation),形成離子值佈區562。再以The composition is composed of 400 substrates of boron phosphide (BP). The stack is made of gallium nitride (G a N) -based compounds. The first multi-layer buffer layer 420 can also be made of single silicon buffer layer (Si). 42 ° can be laminated, and there are 430 cases of the first type of binding layer: The above-mentioned photovoltaic body of the present invention _ includes an embodiment that uses a diode to protect the nu ?, which can further include a circuit portion (light emitting diode) i electric ;; 2 electric integrated circuit elements, the optical electrical connection of the optical circuit part: two = :: part (field effect transistor) 'and its; Man: separated from its light emitting diode 1 to avoid short circuit of the element. The embodiment is as follows. A substrate 500 is provided. This substrate may be a Shi Xi substrate. Next, 'L' forms a silicon dioxide layer 502 with two zirconiums, as shown in FIG. 5a. Select a region for the etch stop layer 502 for the dioxide dioxide layer 502. 5 61 Ambipolar · Fast Diode Predetermined Area 511 and Field Effect Transistor Predetermined = Then, a rolled silicon layer 502 is etched to define a light emitting diode. == A first buffer layer 420 is formed on the light-emitting diode predetermined region 511 and the partialization region 3 as shown in FIG. 5b. The first buffer sound 4 丄 is a stacked layer composed of phosphorus: dagger boron (BP). A first type binding layer 53, an active layer—and a second type 532 layer are sequentially formed on the boron phosphide (BP) buffer: 420 to form the light-emitting diode of this photovoltaic integrated circuit element. Part = 10 'as shown in Figure 5c. A 3 SiO 2 layer is formed on the above-mentioned light-emitting diode portion 51O as a protective layer 504 'and is compliantly attached to the light-emitting diode 51G. Then, ion implantation is performed on the hair substrate of the field effect transistor predetermined region 561 to form an ion value distribution region 562. Again

200411949 五、發明說明(15) ---------- 碎基板5 0 0為敍刻傳卜思似a ‘ xj知止層對欲除去之二氧化矽層502a及 5一〇2b蝕刻,以露出離子植佈區562a及562b,如第5d圖所 示對離子植佈區562a及562b再一次進行離子植佈(丨〇11 implantatl〇n),並在離子植佈區5 62a及562b上分別形成 源極570及汲極572。形成閘極氧化層582於矽基板5〇〇上, 在其上形成閘極580,如第5e圖所示。隨後以第二型束缚 層532及活性層5 50為蝕刻停止層對第二型束缚層532及活 性層550其上之保護層5〇4進行蝕刻。再形成第二型電極 540於第一型束缚層532上,形成第一型電極542於活性層 550上’如第5f圖所示。最後形成連接活性層55〇上第一 型電極542與場效電晶體源極57〇之線路59〇,該線路59〇係« 以保護層與發光二極體510隔開,如第5g圖所示。 例7 ·以上述例1所述之發光二極體結構,配合上述例6 所述之光電積體電路元件製程方式,得到一有效將二極體 、 及電晶體隔離且具有高度晶格匹配之光電積體電路元件, 其結構如第6圖所示。 以下說明形成BxGa(卜X)P第一多層緩衝層22〇、321之一 較佳實施例。首先,基底2 0 0可先以適當化學溶液清洗, 接著在4氣氛下,將基底2 0 0加熱至適當溫度,例如 900〜1180°C,較佳為1 030。(:,利用鹵化物氣相磊晶法 (halide vapor phase epitaxy),以 H2 作為承載氣體 (carrier gas),氯化硼(BC13)、三曱基鎵(trimethyl gallium ;TMG)與氣化磷(PC13)或是氣化硼(BC13)、三甲基 鎵(tr imethy 1 gal 1 ium ; TMG)與磷化氫(PH3 )作為前驅物200411949 V. Description of the invention (15) ---------- Broken substrate 5 0 0 is a narrative legend like a 'xj stop layer for silicon dioxide layers 502a and 5-2b to be removed Etching to expose the ion implanted areas 562a and 562b, as shown in FIG. 5d, the ion implanted areas 562a and 562b are again implanted with ion implant (1011 implantat10n), and the ion implanted areas 5 62a and A source electrode 570 and a drain electrode 572 are formed on 562b, respectively. A gate oxide layer 582 is formed on the silicon substrate 500, and a gate electrode 580 is formed thereon, as shown in FIG. 5e. Subsequently, the second-type restraint layer 532 and the active layer 550 are used as etching stop layers to etch the protective layer 504 on the second-type restraint layer 532 and the active layer 550. Then, a second type electrode 540 is formed on the first type tie layer 532, and a first type electrode 542 is formed on the active layer 550 'as shown in FIG. 5f. Finally, a line 59 connecting the first type electrode 542 on the active layer 55 and the field effect transistor source 57 is formed. The line 59 is separated from the light-emitting diode 510 by a protective layer, as shown in FIG. 5g. Show. Example 7 · Using the light-emitting diode structure described in Example 1 above and the photovoltaic device circuit element manufacturing method described in Example 6 above, an effective diode and transistor with high lattice matching are obtained. The structure of the photovoltaic integrated circuit element is shown in FIG. 6. The following describes a preferred embodiment of forming one of the BxGa (Bu X) P first multilayer buffer layers 22 and 321. First, the substrate 2000 can be cleaned with an appropriate chemical solution, and then the substrate 2000 is heated to an appropriate temperature in a 4 atmosphere, such as 900 ~ 1180 ° C, preferably 1 030. (: Using halide vapor phase epitaxy, using H2 as carrier gas, boron chloride (BC13), trimethyl gallium (TMG), and vaporized phosphorus ( PC13) or boron gas (BC13), trimethyl gallium (tr imethy 1 gal 1 ium; TMG) and phosphine (PH3) as precursors

0769-9103TWF(nl);VTERA-91-011-TW;Phoelip he.ptd 第 19 頁 200411949 五、發明說明(16) 。於溫度約1 000 GC上下進行高溫磷化硼層磊晶,反應約 60分鐘,其厚度約為456 Onm。藉由改變各前驅物之含量比 例,以形成不同組成比例之多層堆疊層BxGa(i χ)ρ,使晶格 常數呈現梯度變化。此方法所形成之BxGa(l x)p第一多層緩 衝層220、321係為咼溫163(1_^緩衝層。然而,本發明亦 可於該南溫1〇8(1_3^?緩衝層220、321與基底2〇〇之間設置 一低溫磷化硼(BP)緩衝層,該低溫磷化硼(81〇緩衝層係於 溫度約300 GC之下形成。 再者’第二多層緩衝層222、322則可由inyGai_yN所構0769-9103TWF (nl); VTERA-91-011-TW; Phoelip he.ptd page 19 200411949 V. Description of the invention (16). The epitaxy of the high-temperature boron phosphide layer was performed at a temperature of about 1 000 GC, and the reaction was performed for about 60 minutes, and the thickness was about 456 Onm. By changing the content ratio of each precursor to form multilayer stacking layers BxGa (i χ) ρ with different composition ratios, the lattice constant is changed in a gradient. The BxGa (lx) p first multi-layer buffer layers 220 and 321 formed by this method are 咼 temperature 163 (1_ ^ buffer layer. However, the present invention can also be applied to the south temperature 108 (1_3 ^? Buffer layer 220). A low-temperature boron phosphide (BP) buffer layer is provided between the 321 and the substrate 200, and the low-temperature boron phosphide (81 ° buffer layer is formed at a temperature of about 300 GC. Furthermore, the second multilayer buffer layer 222, 322 can be constructed by inyGai_yN

成。例如利用MOVCVD法,例如以三曱基鋁(tr imethy aluminum ; TMA1)、三甲基銦(trimethy indium ; TMIn) 、三甲基鎵(tri methyl gallium ; TMG)以及NH3為前驅物 而形成,藉由改變各前驅物之含量比例,以形成不同組成 比例之多層堆疊層InyGawN。to make. For example, using the MOVCVD method, for example, trimethyl aluminum (TMA1), trimethy indium (TMIn), trimethyl gallium (TMG), and NH3 are used as precursors. The content ratio of each precursor is changed to form a multi-layer stacking layer InyGawN with different composition ratios.

以下說明形成氮化鎵系(GaN based)第一型束缚層230 、3 30之一較佳實施例。形成氮化鎵(GaN)系化合物之前驅 物可包括一曱基聯胺(monomethyl hydrazine ; MMH)與三 曱基鎵(trimethyl gallium ; TMG),利用M0CVD 法在第二 多層緩衝層2 2 2、3 2 2表面形成氮化鎵系化合物以做為第一 型束缚層2 3 0、3 3 0。首先,供應一 H2與一 N2氣體,溫度例 如約為350〜500°C下,開始供應MMH。再經過一段時間, 例如:3分鐘後,開始進行第一次TMG供應,時間約為2〇分 鐘。接著,停止TMG供應,經過一段時間,例如:5分鐘, 將反應室溫度升高至溫度約為800 °C上下。期間保持ΜΜίί供One of the preferred embodiments for forming the gallium nitride-based first type tie layers 230 and 330 is described below. The precursor for forming a gallium nitride (GaN) -based compound may include monomethyl hydrazine (MMH) and trimethyl gallium (TMG). The second multilayer buffer layer is formed by MOCVD method 2 2 2 A gallium nitride-based compound is formed on the surface of 3, 2 2 as the first type of tie layers 2 3 0, 3 3 0. First, supply one H2 and one N2 gas, and start supplying MMH at a temperature of about 350 ~ 500 ° C, for example. After a period of time, for example: after 3 minutes, the first TMG supply is started, the time is about 20 minutes. Then, the TMG supply is stopped, and after a period of time, for example: 5 minutes, the temperature of the reaction chamber is raised to about 800 ° C. Keep ΜΜίί

0769-9103TWF(nl);VTHRA-91-011-TW;Phoelip he.ptd0769-9103TWF (nl); VTHRA-91-011-TW; Phoelip he.ptd

200411949 五、發明說明(17) -- 應。接著,於相同溫度(約800。〇上下進行第二&TM(J供 應,時間約為60分鐘。期間保持MMH供應。最後,先停止 MMH與TMG之供應,於相同溫度(約8〇〇。〇上下保持一段時 間,例如:30分鐘。再將溫度降至室溫,才完成GaN磊晶。 G a N蠢晶期間持續供應||2與N2氣體。 另外,活性層250、350及450亦可由氮化鎵系化合物 所構成,例如:InyGa卜y N,可例如利用MOVCVD法,例如以 二甲基銘(trimethy aluminum ; TMA1)、三甲基銦 (trimethy indium ;TMIn)、三甲基鎵(trimethyl200411949 V. Description of Invention (17)-Application. Then, the second & TM (J supply, time is about 60 minutes.) Is maintained at the same temperature (about 800. 0). During the period, the MMH supply is maintained. Finally, the supply of MMH and TMG is stopped at the same temperature (about 800). 〇 Hold it up and down for a period of time, for example: 30 minutes. Then reduce the temperature to room temperature to complete the GaN epitaxy. G a N stupid crystals are continuously supplied with || 2 and N 2 gas. In addition, the active layers 250, 350, and 450 It can also be composed of gallium nitride-based compounds, for example: InyGabuy N. For example, MOVCVD can be used, such as trimethy aluminum (TMA1), trimethy indium (TMIn), and trimethyl. Gallium

gal 1 ium ; TMG)以及NHS為前驅物而形成,較佳者可藉由改 變各前驅物之含量比例,以形成不同組成比例之多層堆疊 層I riyGa^y N,使底層活性層之組成中y約為〇,則其晶格常 數約為4.51A ’使底層活性層與第一型束缚層230、330具 有相同之晶格常數(C3)。 本發明之光電積體電路元件更包括·· 一設置於活性層gal 1 ium; TMG) and NHS are formed as precursors. The better one can change the content ratio of each precursor to form a multilayer stack with different composition ratios. If y is about 0, its lattice constant is about 4.51A ', so that the underlying active layer and the first-type binding layers 230 and 330 have the same lattice constant (C3). The photovoltaic integrated circuit element of the present invention further includes a ...

250、350及450表面之一第二型束缚層232、332及432,一 設置於活性層250、350及450上的第一型電極242、342及 442,一設置於第二型束缚層232、332及432表面之一第二 型電極240、340及440,以及具有源極270、370及470、一 沒極2 72、372及472、一閘極280、380及480之場效電晶體 (field effect transistor,FET) 26 0、360 及460 於基底 200、300及400上作為其電子電路部份,利用一線路29〇、 390及4 90與光學電路(發光二極體)21〇、31〇及41〇部份連 結。上述場效電晶體係與發光二極體形成於一相同基板上One of the surfaces of 250, 350, and 450 is a second-type binding layer 232, 332, and 432, a first-type electrode 242, 342, and 442 disposed on the active layers 250, 350, and 450, and a second-type binding layer 232 , 332, and 432 are one of the second-type electrodes 240, 340, and 440, and a field-effect transistor with a source 270, 370, and 470, an electrode 2 72, 372, and 472, and a gate 280, 380, and 480 (field effect transistor, FET) 26 0, 360, and 460 are used as the electronic circuit part on the substrates 200, 300, and 400. A line 29, 390, and 4 90 and an optical circuit (light emitting diode) 21, Sections 31 and 41. The field effect transistor system and the light emitting diode are formed on the same substrate

0769-9103TW(nl);VrERA-91-01M^;Ph〇elip he.ptd 第 21 頁 2004119490769-9103TW (nl); VrERA-91-01M ^; Ph〇elip he.ptd page 21 200411949

,且具有一間隔。第二型束缚層232、332亦可為氮化鎵系 化合物。 第二型束缚層232、332及432與基底200、300及400可 例如以鎮(Mg)摻雜成p型導電型態,或者例如以硫(s)摻雜 成η型導電型態。若第二型束缚層232、332及432係為p型 導電型態,則第二型電極240、340及440則為ρ型導電型 態,且基底200、300及400為η型導電型態,第一型電極 242、342及442為η型導電型態;反之,若第二型束缚層 232、332及432係為n型導電型態,則第二型電極“ο、34〇 及440則為η型導電型態,且基底2〇〇、3〇〇為^型導電型態 ,第一型電極2 42、342及442為η型導電型態。 根據本發明之光電積體電路元件,本發明之優點在於 ,藉由組成比例的改變造成晶格常數梯度變化,可降低晶 格不匹配(lattice mismatch),使磊晶層具有完美晶體結 構,可提升元件發光效率與使用壽命。且可配合所使用的 基板(例如石夕基板)來取代原有磊晶用砷化鎵(GaAs)基板 ,不僅讓LED往下發射的光子沒有被砷化鎵(GaAs )材料 吸收的問題,並且由於si基板其散熱能力比砷化鎵(GaAs )基板好上數倍,因此led應用在操作高電流數百毫安培 至數安培下,其輸出功率不會因基板散熱不佳而影塑豆°發 光效率。 θ八 本發明雖以較佳實施例揭露如上,然其並非用以限定 本發明的範圍,任何熟習此項技藝者,在不脫離本發明之 精神和範圍内,當可做各種的更動與潤飾,因此本發明之And has an interval. The second type tie layers 232 and 332 may be gallium nitride-based compounds. The second-type tethering layers 232, 332, and 432 and the substrates 200, 300, and 400 may be doped into a p-type conductive type, for example, with a town (Mg), or into an n-type conductive type, for example, with sulfur (s). If the second-type binding layers 232, 332, and 432 are p-type conductive types, the second-type electrodes 240, 340, and 440 are p-type conductive types, and the substrates 200, 300, and 400 are n-type conductive types. , The first type electrodes 242, 342, and 442 are n-type conductive types; conversely, if the second type binding layers 232, 332, and 432 are n-type conductive types, the second type electrodes "ο, 34, and 440 Then it is an η-type conductive type, and the substrates 2000 and 300 are ^ -type conductive types, and the first type electrodes 2 42, 342, and 442 are η-type conductive types. Photoelectric integrated circuit elements according to the present invention The advantage of the present invention is that the lattice constant gradient caused by the change of the composition ratio can reduce lattice mismatch, make the epitaxial layer have a perfect crystal structure, and can improve the luminous efficiency and service life of the device. It can be used with the substrate (such as Shixi substrate) to replace the original GaAs substrate for epitaxy, not only does the photons emitted by the LED not be absorbed by the GaAs material, but because The si substrate has several times better heat dissipation ability than the gallium arsenide (GaAs) substrate, because The led is applied under the operation of a high current of several hundred milliamperes to several amperes, and its output power will not be affected by the poor heat dissipation of the substrate. The luminous efficiency. θ8 Although the present invention is disclosed above in a preferred embodiment, it is not useful. To limit the scope of the present invention, anyone skilled in the art can do various modifications and retouching without departing from the spirit and scope of the present invention.

〇769.9103TW(nl);\rrERA.91-011.TW;Ph〇elip he.ptd〇769.9103TW (nl); \ rrERA.91-011.TW; Ph〇elip he.ptd

200411949 五、發明說明(19)保護範圍當視後附之申請專利範圍所界定者為準 0769-9103TWF(nl);VTERA-91-011-TW;Phoelip he.ptd 第 23 頁 200411949 圖式簡單說明 第1圖係顯示根據習知具有緩衝層之光電積體電路元 件。 較 第2圖係顯示根據本發明之光電積體電路元件之 佳實施例的光電積體電路元件剖面圖。 第3圖係顯示根據本發明之光電積體電路元件之另一 較佳實施例的光電積體電路元件剖面圖。 第4圖係顯示根據本發明之光電積體電路元件之另一 較佳實施例的光電積體電路元件剖面圖。 第5a圖至第5g圖係顯示根據本發明之光電積體電路 元件之另一較佳實施例的光電積體電路元件製程流程圖。 第6圖係顯示根據本發明之光電積體電路元件之另一 較佳實施例的光電積體電路元件剖面圖。 【符號說明】 1 0 0〜坤化錄基板; 110、210、310、410、510、610 〜發光二極體; 120〜鋅化鎵(ZnO)緩衝層; 130〜第η型氮化鎵(GaN)束缚層; 132 140 142 160 170 172 180 第P型氮化鎵(GaN)束缚層; •240、340、440、540、640〜第二型電極 •242、342、442、542、642〜第一型電極 260、360、460、560、660〜場效電晶體 270、370、470、570、670〜源極; 272、372、472、572、672〜汲極; 280 、 380 、 480 、 580 、 680〜閉極;200411949 V. Description of invention (19) The scope of protection shall be determined by the scope of the attached patent application. 0769-9103TWF (nl); VTERA-91-011-TW; Phoelip he.ptd page 23 200411949 Fig. 1 shows a photovoltaic device circuit element having a buffer layer according to a conventional technique. Fig. 2 is a sectional view showing a photovoltaic integrated circuit element according to a preferred embodiment of the photovoltaic integrated circuit element according to the present invention. Fig. 3 is a sectional view showing a photovoltaic integrated circuit element according to another preferred embodiment of the photovoltaic integrated circuit element according to the present invention. Fig. 4 is a sectional view showing a photovoltaic integrated circuit element according to another preferred embodiment of the photovoltaic integrated circuit element according to the present invention. Figures 5a to 5g are flowcharts showing the manufacturing process of a photovoltaic integrated circuit element according to another preferred embodiment of the photovoltaic integrated circuit element of the present invention. Fig. 6 is a sectional view showing a photovoltaic integrated circuit element according to another preferred embodiment of the photovoltaic integrated circuit element according to the present invention. [Symbol description] 100 ~ Kunhua recording substrate; 110, 210, 310, 410, 510, 610 ~ Light emitting diode; 120 ~ Gallium zinc (ZnO) buffer layer; 130 ~ n-type gallium nitride ( GaN) tethering layer; 132 140 142 160 170 172 180 P-type gallium nitride (GaN) tethering layer; 240, 340, 440, 540, 640 ~ second type electrode • 242, 342, 442, 542, 642 ~ The first type electrode 260, 360, 460, 560, 660 ~ field effect transistor 270, 370, 470, 570, 670 ~ source; 272, 372, 472, 572, 672 ~ drain; 280, 380, 480, 580, 680 ~ closed pole;

0769-9103TWF(nl);VTERA-91-011-TW;Phoelip he.ptd 第24頁 200411949 圖式簡單說明 190 ^ 290 590、690〜線路; ^ 390 ^ 490 200、300、600〜基板; 220、320、620〜第一多層緩衝層; 222、322、622〜第二多層緩衝層 230、33 0、43 0、530、630 〜第一型束缚層 232、332、432、532、632〜第二型束缚層 2 5 0、350、450、550、650〜活性層; 321〜第一多層緩衝層下層; 323〜第一多層緩衝層上層; 400、500〜石夕基板; 420、520〜磷化硼(BP)緩衝層; 5 0 2、6 0 2〜二氧化矽(S i 02 )層; 502a、502b〜欲移除之二氧化矽(Si 02)層; 504、604〜保護層; 5 11〜發光二極體預定區; 561〜場效電晶體預定區; 562〜離子值佈區; 562a〜源極離子值佈區; 562b〜汲極離子值佈區; 5 8 2、6 8 2〜閘極氧化層; C 1〜第一晶格常數 C 2〜第二晶格常數 C 3〜第三晶格常數;以及 C 4〜第四晶格常數。0769-9103TWF (nl); VTERA-91-011-TW; Phoelip he.ptd page 24 200411949 Schematic description of 190 ^ 290 590, 690 ~ circuit; ^ 390 ^ 490 200, 300, 600 ~ substrate; 220, 320, 620 ~ first multi-layer buffer layer; 222, 322, 622 ~ second multi-layer buffer layer 230, 33 0, 43 0, 530, 630 ~ first type binding layer 232, 332, 432, 532, 632 ~ The second type binding layer 250, 350, 450, 550, 650 ~ active layer; 321 ~ lower layer of the first multilayer buffer layer; 323 ~ upper layer of the first multilayer buffer layer; 400,500 ~ Shixi substrate; 420, 520 ~ boron phosphide (BP) buffer layer; 5 0 2, 6 0 2 ~ silicon dioxide (S i 02) layer; 502a, 502b ~ silicon dioxide (Si 02) layer to be removed; 504, 604 ~ Protective layer; 5 11 ~ predetermined region of light-emitting diode; 561 ~ predetermined field effect transistor; 562 ~ ion value distribution area; 562a ~ source value distribution area; 562b ~ drain value distribution area; 5 8 2 6 8 2 to the gate oxide layer; C 1 to a first lattice constant C 2 to a second lattice constant C 3 to a third lattice constant; and C 4 to a fourth lattice constant.

0769-9103TWF(nl);VTERA-91 -011 -TW;Phoel ip he.ptd 第25頁0769-9103TWF (nl); VTERA-91 -011 -TW; Phoel ip he.ptd page 25

Claims (1)

200411949 形成於該基底 一第一多層 第一多層緩衝層 層緩衝層底部所 第一多層緩衝層 一第二多層 ,其中上述第二 上述第二多層緩 變化為上述第二 包括一作 體部份及 部份,且 基底,具有第一晶格常數,且上述場效電晶體部份 上述基底表面,其中上述 梯度變化 晶格常數 六、申請專利範圍 1 · 一種光電 路元件光學電路 元件電子電路部 部份至少包括: 積體電路元件, 部份之發光二極 份之場效電晶體 緩衝層,設置於 之晶格常數呈現 具有之上述第一 表面所具有之一 緩衝層,設置於 多層緩衝層之晶 衝層底部所具有 多層缓衝層表面 為該光電積體電 該光電積體電路、 上述發光二極體 由上述第一多 逐漸變化為上述 第二晶格常數; 上述第一多層緩衝層表面 格常數呈現梯度變化,由 之上述第二晶格常數逐漸 所具有之一第三晶格常數 一第一型束缚層,設置於上述第二多層緩衝層表面, 具有第三晶格常數; 一活性層,設置於上述第一型束缚層表面; 一第一型電極,設置於上述活性層部分表面; 一第二型束缚層,設置於上述活性層表面; 一第二型電極,設置於上述第二型束缚層部分表面; 以及 一線路,連接上述場效電晶體與上述第一型電極。 2·如申請專利範圍第1項所述之光電積體電路元件,200411949 The first multilayer buffer layer and the second multilayer are formed at the bottom of the substrate, the first multilayer, the first multilayer buffer layer, and the buffer layer. The body part and part, and the substrate, have the first lattice constant, and the above-mentioned field-effect transistor part has the above-mentioned surface of the substrate, among which the above-mentioned gradient changes the lattice constant 6. Application for patent scope 1 · An optical circuit element optical circuit The electronic circuit part of the element includes at least: a integrated circuit element, a field-effect transistor buffer layer of a part of the light-emitting diode, and a buffer layer provided on the lattice constant exhibiting the above-mentioned first surface. The surface of the multi-layer buffer layer at the bottom of the crystal layer of the multi-layer buffer layer is the photovoltaic cell and the photovoltaic cell circuit, and the light emitting diode is gradually changed from the first to the second lattice constant; The surface lattice constant of a multi-layer buffer layer exhibits a gradient change, from which the above-mentioned second lattice constant gradually has one of the third lattice constant-the first A binding layer is provided on the surface of the second multilayer buffer layer and has a third lattice constant; an active layer is provided on the surface of the first type binding layer; a first type electrode is provided on the surface of the active layer portion; A second-type binding layer is disposed on the surface of the active layer; a second-type electrode is disposed on a portion of the surface of the second-type binding layer; and a line connects the field effect transistor and the first-type electrode. 2. Photoelectric integrated circuit components as described in item 1 of the scope of patent application, 0769-9103TWF(nl);VTERA-91 -011 -TW;Phoel ip he.ptd 第 26 頁 2004119490769-9103TWF (nl); VTERA-91 -011 -TW; Phoel ip he.ptd page 26 200411949 其中 發光 護層 其中 上述光電積體電路元件可更包括一保護層形成於上述 二極體及上述場效電晶體之間,且上述線路係以 與上述發光二極體隔開。 ” ^ 如申請專利範圍第1項所述之光電積體電路元件 上述基底包括矽(Si); 上述第一多層緩衝層包括IGa+yP ; 上述第二多層緩衝層InwGa卜Z_WN ;以及 上述第一型束缚層包括氮化鎵(GaN)系化合物。 4·如申請專利範圍第1項之光電積體電路元件,盆 上述基底包括碳化矽(3C-Si ); 八 上述第一多層緩衝層包括BxGa(1_x)P ; 上述第二多層緩衝層包括InyGa卜yN ;以及 上述第一型束缚層包括氮化鎵(GaN)系化合物。 5·如申請專利範圍第1項之光電積體電路元件,1 上述基底包括磷化鎵(GaP); ’、 上述第一多層緩衝層包括BxGa(1_x)P ; 上述第二多層緩衝層包括InyGai_yN ;以及 上述第一型束缚層包括氮化鎵(GaN)系化合物。 6·如申請專利範圍第1項之光電積體電路元件,其中 上述基底包括砷化鎵(GaAs); 八 上述第一多層緩衝層包括GaAs(1_y)Py 上述第二多層緩衝層包括InyGa卜yN ;以及 X 上述第一型束缚層包括氮化鎵(GaN)系化合物The light-emitting protective layer, wherein the photovoltaic integrated circuit element may further include a protective layer formed between the diode and the field effect transistor, and the circuit is separated from the light-emitting diode. ^ The photovoltaic substrate device described in item 1 of the scope of the patent application said substrate includes silicon (Si); said first multilayer buffer layer includes IGa + yP; said second multilayer buffer layer InwGa and Z_WN; and above The first type of tie layer includes a gallium nitride (GaN) -based compound. 4. The photovoltaic substrate of the first item of the scope of patent application, the above substrate includes silicon carbide (3C-Si); The layer includes BxGa (1_x) P; the second multilayer buffer layer includes InyGa and yN; and the first type tie layer includes a gallium nitride (GaN) -based compound. Circuit element, 1 said substrate includes gallium phosphide (GaP); ', said first multilayer buffer layer includes BxGa (1_x) P; said second multilayer buffer layer includes InyGai_yN; and said first type tie layer includes nitride A gallium (GaN) -based compound. 6. The optoelectronic integrated circuit element according to item 1 of the patent application scope, wherein the above-mentioned substrate includes gallium arsenide (GaAs); the above-mentioned first multilayer buffer layer includes GaAs (1_y) Py; Two multilayer buffer layers include InyGa and yN; and X The first type tie layer includes a gallium nitride (GaN) -based compound 0769-9103TW(nl);VrERA-91-011.TW;Phoelip he.ptd0769-9103TW (nl); VrERA-91-011.TW; Phoelip he.ptd 200411949 六、申請專利範圍200411949 6. Scope of Patent Application L一種光電積體電路元件,包括— 路元件光學電路部份之發光二極體部份 元件電子電路部份之場效電晶體部份, 部份至少包括: 作為該光電積體電 及該光電積體電路 且上述發光二極體 一基底,該基底係為一矽基底 份形成於該基底; 且上述場效電晶體部 一由硼化磷所組成之第一緩衝層 述基底表面,具有一第二晶格常數; ’該緩衝層設置於上 一由氮化鎵(GaN)系化合物所組成之第一型束缚層 設置於上述第二多層緩衝層表面,具有第三晶格常數曰; 一活性層,設置於上述第一型束缚層表面; , 一第一型電極,設置於上述活性層部分表面; 第'一型束缚層’设置於上述活性層表面; 一第二型電極,設置於上述第二型束缚層部分表 以及 一線路,連接上述場效電晶體與上述第_型電極。 8 ·如申請專利範圍第7項之光電積體電路元件,其更 可包含一第二多層緩衝層,設置於上述第一多層緩衝層 面與上述活性層之間,其中上述第二多層緩衝層之晶格a 數呈現梯度變化,由上述第二多層緩衝層底部戶^具^之1 述第二晶格常數逐漸變化為上述第二多層緩衝層表面且 有之一第三晶格常數。 θ ^ 9 ·如申請專利範圍第7項所述之光電積體電路元件, 其中上述光電積體電路元件可更包括一保護層形成於上述L A photovoltaic integrated circuit element, including a field-effect transistor portion of an electronic circuit portion of a light-emitting diode portion of an optical circuit portion of a circuit element, and a portion including at least: Integrated circuit and the above-mentioned light-emitting diode is a substrate, the substrate is a silicon substrate formed on the substrate; and the field effect transistor portion has a first buffer layer composed of phosphorus boride, and the substrate surface has a A second lattice constant; 'the buffer layer is disposed on a first type binding layer composed of a gallium nitride (GaN) -based compound and is disposed on the surface of the second multilayer buffer layer, and has a third lattice constant; An active layer is provided on the surface of the first type binding layer; a first type electrode is provided on the surface of the active layer portion; a first type binding layer is provided on the surface of the active layer; a second type electrode is provided Connect the field-effect transistor and the first-type electrode to the second-type binding layer part table and a line. 8 · If the optoelectronic integrated circuit element according to item 7 of the patent application scope, it may further include a second multilayer buffer layer disposed between the first multilayer buffer layer and the active layer, wherein the second multilayer The number of lattice a of the buffer layer exhibits a gradient change. From the bottom of the second multilayer buffer layer, the second lattice constant gradually changes to the surface of the second multilayer buffer layer and there is a third crystal. Lattice constant. θ ^ 9 · The optoelectronic integrated circuit element according to item 7 of the scope of patent application, wherein the optoelectronic integrated circuit element may further include a protective layer formed on the above 200411949 六、申請專利範圍 發光二極體及上述場效電晶體之間,且上述線路係以該保 護層與上述發光二極體隔開。 、μ ” io· 一種光電積體電路元件之製作方法,至φ 列步驟: -包括下 提供一基底,在上述基底形成一二氧化矽層; 選擇性姓刻上述二氧化矽層,以定義出發光二極體預 定區及場效電晶體預定區,且在上述發光二極體預定區依 序形成至少一層之緩衝層、一第一型束缚層、一活性層及 第二型束缚層,以構成此光電積體電路元件之發光二^體 部份; 形成一保護層,順應性貼附於上述發光二極體份 部分之上述二氧化矽層; 。 么^ f 一離子值佈區於場效電晶體預定區,再以矽基板 為餘刻停止層,移去上述離子值佈區之二氧化石夕層; 卜y成一夂離子植佈區於上述離子植佈區,並在上述 一-人離子植佈區上形成一源極、一汲極及一閘極氧化声, 再形成一閘極於閘極氧化層上; 9 、+、a t ί述第二型束缚層及上述活性層為蝕刻停止層對上 ίΞΪ;進行選擇性蝕刻’留下形成於上述二氧化矽層上 型電= 於第二型束缚層上’形成第- 路係:述第一型電極與上述祕’且該線 $保遵層與發光二極體隔開。200411949 6. Scope of patent application Between the light-emitting diode and the field-effect transistor, and the circuit is separated from the light-emitting diode by the protective layer. A method of manufacturing a photovoltaic integrated circuit element, to the φ sequence of steps:-Including a substrate provided below, forming a silicon dioxide layer on the substrate; optionally engraving the above silicon dioxide layer to define the starting point The predetermined region of the photodiode and the predetermined region of the field effect transistor, and at least one buffer layer, a first-type binding layer, an active layer, and a second-type binding layer are sequentially formed in the predetermined region of the light-emitting diode. The light-emitting diode part of the photovoltaic integrated circuit element; forming a protective layer, conformably attached to the above-mentioned silicon dioxide layer of the light-emitting diode component part; The predetermined area of the transistor, and the silicon substrate as the stop layer for the rest of the time, remove the SiO2 layer in the above-mentioned ion-value distribution area; form an ion-implanted area in the above-mentioned ion-implanted area, and A source electrode, a drain electrode, and a gate oxide sound are formed on the ion implantation area, and then a gate electrode is formed on the gate oxide layer; 9, +, at The second type binding layer and the active layer are etched Stop level up; select The etching is left 'formed on the above-mentioned silicon dioxide layer, and a type-circuit system is formed on the second-type confinement layer: the first-type electrode and the above-mentioned secrets', and the line includes a compliance layer and a light-emitting diode. Body separated.
TW91136925A 2002-12-20 2002-12-20 Optoelectronic integrated circuit device and the fabrication method thereof TW565959B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91136925A TW565959B (en) 2002-12-20 2002-12-20 Optoelectronic integrated circuit device and the fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91136925A TW565959B (en) 2002-12-20 2002-12-20 Optoelectronic integrated circuit device and the fabrication method thereof

Publications (2)

Publication Number Publication Date
TW565959B TW565959B (en) 2003-12-11
TW200411949A true TW200411949A (en) 2004-07-01

Family

ID=32502738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91136925A TW565959B (en) 2002-12-20 2002-12-20 Optoelectronic integrated circuit device and the fabrication method thereof

Country Status (1)

Country Link
TW (1) TW565959B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484626B (en) * 2012-02-21 2015-05-11 Formosa Epitaxy Inc Semiconductor light-emitting component and light-emitting device having same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484626B (en) * 2012-02-21 2015-05-11 Formosa Epitaxy Inc Semiconductor light-emitting component and light-emitting device having same
US9220135B2 (en) 2012-02-21 2015-12-22 Formosa Epitaxy Incorporation Light emitting component and light emitting device using same
US9661698B2 (en) 2012-02-21 2017-05-23 Epistar Corporation Light emitting component and light emitting device using same
US10306714B2 (en) 2012-02-21 2019-05-28 Epistar Corporation Semiconductor component and light emitting device using same

Also Published As

Publication number Publication date
TW565959B (en) 2003-12-11

Similar Documents

Publication Publication Date Title
JP3968566B2 (en) Nitride semiconductor crystal manufacturing method, nitride semiconductor wafer, and nitride semiconductor device
JP4530171B2 (en) Semiconductor device
US6635901B2 (en) Semiconductor device including an InGaAIN layer
JP3924303B2 (en) Nitride semiconductor device and manufacturing method thereof
JP4451811B2 (en) Manufacturing method of nitride semiconductor device
TW201125162A (en) Photonic device and method of making the same
TW201009896A (en) Method of forming a circuit structure
JP2006210578A (en) Nitride semiconductor element and method for growing nitride semiconductor crystal layer
US8680569B2 (en) Method for manufacturing gallium oxide based substrate, light emitting device, and method for manufacturing the light emitting device
WO2007060931A1 (en) Nitride semiconductor device
JP2003023220A (en) Nitride semiconductor element
KR20050000846A (en) Nitride semiconductor LED and fabrication method for thereof
KR20070102114A (en) Nitride semiconductor light-emitting device and manufacturing method thereof
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
CN103346217A (en) Method for designing quantum barrier used for enhancing light emitting diode (LED) brightness
CN109802020A (en) A kind of GaN base light emitting epitaxial wafer and preparation method thereof
CN108447952B (en) Light emitting diode epitaxial wafer and preparation method thereof
KR100583163B1 (en) Nitride semiconductor and fabrication method for thereof
CN101292328A (en) Nitride semiconductor device and method for manufacturing same
CN117410405A (en) Deep ultraviolet light-emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light-emitting diode
CN103872204A (en) P (Positive) type insert layer with cycle structure and growing method
CN216450669U (en) Epitaxial wafer and semiconductor light-emitting device
CN116259660A (en) E-HEMT epitaxial wafer and preparation method thereof
JP2007103955A (en) Nitride semiconductor and method for growing nitride semiconductor crystal layer
TW200411949A (en) Optoelectronic integrated circuit device and manufacturing method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees