TW200410896A - Configurable micro flowguide device - Google Patents

Configurable micro flowguide device Download PDF

Info

Publication number
TW200410896A
TW200410896A TW91138141A TW91138141A TW200410896A TW 200410896 A TW200410896 A TW 200410896A TW 91138141 A TW91138141 A TW 91138141A TW 91138141 A TW91138141 A TW 91138141A TW 200410896 A TW200410896 A TW 200410896A
Authority
TW
Taiwan
Prior art keywords
fluid
microchannel
bubbles
micro
bubble
Prior art date
Application number
TW91138141A
Other languages
Chinese (zh)
Other versions
TW550234B (en
Inventor
Tim-K Shia
Jhy-Wen Wu
Nan-Kuang Yao
Yuan-Fong Kuo
Shaw-Hwa Pang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW91138141A priority Critical patent/TW550234B/en
Application granted granted Critical
Publication of TW550234B publication Critical patent/TW550234B/en
Publication of TW200410896A publication Critical patent/TW200410896A/en

Links

Abstract

Disclosed is a micro flowguide device comprising: a micro channel comprising at least one bubble trap to retard bubbles positioned in said bubble trap; an electrolytic bubble generating device to generate bubbles in said fluid by an electrolytic reaction; and a pressure source to supply a suited pressure to said fluid to pass through said micro channel; wherein said electrolytic bubble generating device causes bubbles to be generated at areas adjacent to said at least one bubble trap. Electrolytic bubbles are generated through a localized electrolytic reaction enabled by the exposure of a set of DC-source-connected electrodes inside a conduit branch. Accumulated bubbles will be trapped and kept at several traps of the invented flowguide. When the backward pressure of trapped bubbles is rising to the level of forward pressure head, flow speed reduces to zero and channel branch is shut down.

Description

200410896 五、發明說明d) 【發0月名稱】微 【發明之應用範 本發明是關 一種具有電解氣 發明的微通道^ 環保、電子、; 【發明背景】” 無動件式微 型生化裂置的應 可以應用 樣本卒取等。在 理’主要包括: 1 ·熱觸發式 内流體之黏度, 2 ·熱觸發式 產生氣泡,形成 3 ·電磁力導 (MHD)directed 產生之場力導引 4.膠凝閥( 與收縮原理,作 5 ·氣泡觸發 Sate valve) · 流。 通道流體導?丨元件 疇】 於一種微通道流體導引元件,特別是關於 泡$關或微閥的微通道流體導引元件。本 體導引元件可應用在各種醫學、化學、 業、農業及軍事等用途。 流兀件’尤其是微通道流體導引元件在微 用上’扮演著重要的角色。無動件式微流 在例如細胞操作、分類、藥物分送、生化 習知技術中’無動件式微流導引元件的原 依渠流枯度分流:利用加熱改變微流通道 造成速度分佈差異,以決定流體流向。 沸騰蒸氣阻流:利用加熱導致流體沸騰, 阻流’決疋流體是否流通。 引(M a g n e t 〇 - H y d r 〇 d y n a m i c a 1 1 y flow):利用磁場作用於載電流之流場而 流體 。200410896 V. Description of invention d) [Name of the month] [Application model of the invention] The invention relates to a microchannel with an electrolytic gas invention. ^ Environmental protection, electronics, [Background of the invention] "Miniature biochemical cracking without moving parts" It should be possible to apply sample purge, etc. The rationale mainly includes: 1 · Thermally triggered internal fluid viscosity, 2 · Thermally triggered bubble generation to form 3 · Field force guidance generated by electromagnetic force guidance (MHD) 4. Gel valve (with contraction principle, made 5 · Bubble trigger Sate valve) · Flow. Channel fluid conduction? Element domain] is a microchannel fluid guiding element, especially for microchannel fluid conduction Leading element. The body guiding element can be used in various medical, chemical, industrial, agricultural, and military applications. Flowing elements, especially microchannel fluid guiding elements, play an important role in micro applications. Flow in, for example, cell manipulation, classification, drug distribution, and biochemical technologies The difference is to determine the flow direction of the fluid. Boiling vapor block flow: The use of heat causes the fluid to boil, and the block flow depends on whether the fluid circulates. Induction (M agnet 〇- H ydr 〇dynamica 1 1 y flow): Use a magnetic field to act on the current The flow field is fluid.

Thermal gelation):利用熱敏膠質膨脹 為閥子。 式門閥(ElectrolySis-bubble actuated 利用電解氣泡作動雙態變形板以開關渠Thermal gelation): Expansion of the thermosensitive gel into a valve. Gate valve (ElectrolySis-bubble actuated

200410896 五、發明說明(2) 6 ·機械作動閥:利用機械力或結構作動閥子以開關渠 流。 在上述應用原理中,膠凝閥、氣泡觸發式門閥及機械 作動閥需在微通道内置特殊材料或内部/外部可動元件, 增加元件及其外部系統的複雜度。熱觸發式依渠流粘度分 流、熱觸發式〉弗騰条氣阻流及電磁力導引方式,雖可提供 較為簡單的内敌式無動件機制,但其操作的溫度或電壓則 可能與其使用之生化液劑之預定運作相悖。 除了微流元件外,在微通道系統中之多數特定位置, 設置微流渠導元件,以引導微流體在微通道系統中,依既 定方向、速度及步驟進行,逐一進行所需之生化反應,所 謂「微通道矩陣」,也是一種發展中的趨勢。在這種微通 道矩陣中,透過程式化之方式,控制微流體的行進方向、 行進速度、停留期間等,更是未來所需的應用。成為此行 業人士努力達成的目標。 因此目前必須有一種新穎的無動件式微通道流體導引 元件。 同時也必須有一種新穎的微通道流體導引元件,不必 利用特殊材料或外加之複雜元件,即可完成無動件式流體 導引。 同時也必須有一種新穎的微通道流體導引元件,其中 之工作原理不會損及流體反應之目的。 同時也必須有一種成本低廉,製作簡便之無動件式微 流體通道流體導引元件。200410896 V. Description of the invention (2) 6 · Mechanically actuated valve: Operate the valve with mechanical force or structure to open and close the channel. In the above application principles, gel valves, bubble-triggered gate valves, and mechanically actuated valves need to have special materials or internal / external movable components built into the microchannels, increasing the complexity of the components and their external systems. Thermally-triggered flow-by-channel viscosity shunting, thermally-triggered> Fortten strip air blocking and electromagnetic force guidance methods, although they can provide a simpler internal enemy-type non-moving mechanism, but the operating temperature or voltage may The intended operation of the biochemical fluid used is contrary. In addition to the microfluidic elements, microfluidic channel guiding elements are set at most specific positions in the microchannel system to guide the microfluidics in the microchannel system according to the predetermined direction, speed and steps, and perform the required biochemical reactions one by one. The so-called "microchannel matrix" is also a developing trend. In this kind of microchannel matrix, through the way of programming, controlling the microfluid's traveling direction, traveling speed, staying period, etc. are even more needed applications in the future. Become the goal of this industry. Therefore, there is currently a need for a novel, motionless, microchannel fluid guiding element. At the same time, there must be a novel microchannel fluid guiding element, which can complete the moving parts-free fluid guiding without using special materials or additional complex components. At the same time, there must be a novel microchannel fluid guiding element, the working principle of which will not harm the purpose of fluid reaction. At the same time, there must be a low-cost, simple-to-manufacture, fluid-free microfluidic channel fluid guide element.

200410896 五、發明說明(3) - 同時也必須有一種微通道流體導引元件,適合利用可規叫 (programmable)控制方式,達成流體導引控制。 、里 同時也必須有一種程式化微通道流體導引系統, 過可規劃控制方式’導引流體在其中依預定路線、牛 程序,完成所需之各種反應。 ^ 同時也必須有一種程式化微通道流體導引系統曰 提供使用者進行生化實驗時,可依不同用途輕易=田 之反應程序及步驟。 、擇適用 【發明之目的】 式微通道流 體導之目的乃在提供一種新賴的無動件 本發明之另一 引元件,不 無動件式流 本發明 引元件,其 本發明 之無動件式 本發明 件’適合利 本發明 弓丨系統,可 路線、步驟 本發明 必利用 體導引 之另一 中之工 之另一 微流體 之另一 用可規 之另一 透過可 及程序 之另一 目的也在提供一種新穎的微通道流體導 特殊材料或外加之複雜元件,即可1 ^成 目的也在 作原理不 目的也在 通道流體 目的也在 劃控制方 目的也在 規劃控制 ,完成所 目的也在 提供一種新穎的微通道流體導 會損及流體反應之目的/旦 提供一種成本低廉,製作簡便 導引元件。 提供一種微通道流體導引元 式’達成流體導引控制。 提供一種程式化微通道流體導 方式,導引流體在其中依預定 需之各種反應。 提供一種程式化微通道流體導 200410896 五、發明說明(4) 引系統晶片,提供使用者 _ 時 可依不同用途 輕易選擇適用之反應程序:生化實驗 【發明之簡述】 ^驟。 依據本發明之微通道济 氣泡式微流體開關或微閥2導彡丨元件 機構。氣泡係依待反應之2為無動件i、提供一種電崩 生。因液Μ與氣泡表面張=流體特性,=道流體導引 到壓力達成平衡。選擇^、之差異,結a#方式迅速產 % ^彈喊通谐4 〇成大型氣泡,直 骒^留滯流氣泡,即形成微流適當位置形成氣泡並以氣 體微開關或微閥之功能。:豆之流阻,提供無動件式流 可透過褚凃招者,丨桃別 谷氣泡產生電極之位置及作用, 通 預先規W &制’而達成可規劃(pr〇grammable)微 <流體導引之目的。利用本發明之微通道流體導引元 件’可以在一設有多數微流體反應區之晶片上,任意選擇 所需之流體行進路線、流體反應步驟及程序,以完成各種 生化反應。 上述及其他本發明之目的及優點,可由以下詳細說明 並參考下列圖式,而更形清楚。 【圖式之簡單說明】 第1圖表示本發明微通道流體導引元件工作原理示意 圖。 第2圖表示本發明之微通道流體導引元件應用在微開 關之示意圖。 第3圖表示本發明微通道流體導引元件之製程示意 圖。200410896 V. Description of the Invention (3)-At the same time, there must be a microchannel fluid guiding element, which is suitable for using programmable control methods to achieve fluid guiding control. At the same time, there must also be a stylized micro-channel fluid guidance system. Through a programmable control method, the fluid can be guided in accordance with predetermined routes and procedures to complete the various reactions required. ^ At the same time, there must be a stylized micro-channel fluid guidance system, which can provide users with easy-to-use reaction procedures and steps when performing biochemical experiments. 1. The purpose of the invention is to provide a new type of micro-channel fluid guide, which is another leading element of the present invention, without the moving element, the leading element of the present invention, and the non-moving element of the present invention. The invention piece is suitable for the invention of the bow system. It can be routed and steps. The invention must use the body to guide another microfluid, another application, another application, another penetration, and another procedure. The purpose is also to provide a novel microchannel fluid-conducting special material or additional complex elements, that is, the purpose of the purpose is also working as the principle is not the purpose, the channel fluid purpose is also planned, the control purpose is also planned to control, and complete the purpose It is also for the purpose of providing a novel microchannel fluid conducting which will damage the fluid reaction. Once it is provided, a low-cost, easy-to-manufacture guide element is provided. A microchannel fluid guidance element is provided to achieve fluid guidance control. A stylized microchannel fluid conduction method is provided to guide various reactions in the fluid according to a predetermined demand. Provide a stylized microchannel fluid guide 200410896 V. Description of the invention (4) The system chip is provided to provide the user with an easy-to-select reaction procedure for different purposes: biochemical experiment [Brief description of the invention] ^ step. The micro-channel according to the present invention is a bubble-type micro-fluidic switch or a micro-valve 2 guide mechanism. The bubble system is reaction-free 2 and provides an electrical collapse. Because the liquid M and the bubble surface tension = fluid characteristics, = channel fluid is guided to pressure to reach equilibrium. Choose the difference between ^ and #. The method of a # quickly produces% ^ Bombing and shouting to harmonize 40 into large bubbles, leaving stagnation bubbles in place, that is, forming micro-flows at appropriate positions to form bubbles and using gas micro-switches or micro-valves. : Bean's flow resistance, providing flow-free flow through Chu Tu Zhao, 丨 the position and function of the electrode of Taobie Valley bubble generation, through the pre-regulation of W & system to achieve a programmable micro fluid The purpose of guidance. By using the microchannel fluid guiding element of the present invention, a desired fluid traveling route, fluid reaction steps, and procedures can be arbitrarily selected on a wafer provided with a plurality of microfluidic reaction regions to complete various biochemical reactions. The above and other objects and advantages of the present invention will be made clearer by the following detailed description and reference to the following drawings. [Brief description of the drawings] Fig. 1 shows a schematic diagram of the working principle of the microchannel fluid guiding element of the present invention. Fig. 2 is a schematic diagram showing the application of the microchannel fluid guiding element of the present invention to a microswitch. Fig. 3 is a schematic diagram showing the manufacturing process of the microchannel fluid guiding element of the present invention.

第9頁 200410896 五、發明說明(5) 【發明之詳細說明】 本發明提供一種新穎的微通道流體導引元件及此元件 之製備方法。 雖不欲為任何理論所拘束,但本發明人發現,在一般 之生化反應中所使用之液劑,通常具有特定之電化學特 性。換言之,在通常所使用的生化反應流體中,均存在有 特定之電解質。如果在該生化反應流體中施加局部電流, 可以迅速產生電解氣泡。此種氣泡產生方式並不需對反應 流體加熱至足以損害生化反應之程度,而所施加之局部電 流,對反應系統也不致造成整體的破壞。因而產生之氣 泡,初期為微小氣泡,但因該反應液體之驅動源對該反應 液體所施加之壓力,與氣泡之表面張力間具有相當之差異 值,促使小氣泡表面破壞’形成較大之氣泡’直到兩者 達成平衡。利用一氣泡阱與一大角度反轉流道設計留置該 大型氣泡,即可形成一流阻’足以k供微流體之流阻之功 能。該電解氣泡式流卩旦乃形成一無動件式流體微開關或微 閥,提供流體導引功能° 在一生化晶片或其他生化反應系統中,製備多數反應 區,在各反應區間形成選擇性微通道’並在選擇節點設置 該電解氣泡式流體微開關或微闕’即可藉特定電解氣泡式 流體微開關或微閥之作動與與否’決定流體在各反應區間 之行進路線、步驟及稃序。利f 一可規劃控制裝置,控制 各該電解氣泡式流體微開關或微閥之作動’達成程式化生 化反應晶片之應用。Page 9 200410896 V. Description of the invention (5) [Detailed description of the invention] The present invention provides a novel microchannel fluid guiding element and a method for preparing the element. Although not intending to be bound by any theory, the present inventors have found that the liquid agent used in general biochemical reactions usually has specific electrochemical characteristics. In other words, specific electrolytes are present in the commonly used biochemical reaction fluids. If a local current is applied to the biochemical reaction fluid, electrolytic bubbles can be generated quickly. This kind of bubble generation method does not need to heat the reaction fluid to a degree sufficient to damage the biochemical reaction, and the applied local current does not cause overall damage to the reaction system. The resulting bubbles are initially micro-bubbles, but due to the pressure exerted by the driving source of the reaction liquid on the reaction liquid, there is a considerable difference between the surface tension of the bubbles, which promotes the destruction of small bubble surfaces to form larger bubbles. 'Until the two have reached a balance. By using a bubble trap and a large-angle reverse flow channel design to indulge the large bubbles, a first-order resistance can be formed, which is sufficient for the flow resistance of microfluids. The electrolytic bubble fluid flow is to form a fluidless micro-switch or micro-valve to provide fluid guiding function. In a biochemical wafer or other biochemical reaction system, most reaction zones are prepared, and selectivity is formed in each reaction zone. 'Microchannel' and setting the electrolytic bubble fluid micro switch or micro-pump at the selection node can determine the flow path, steps and Sequence. A control device can be planned to control the operation of each of the electrolytic bubble fluid micro-switches or micro-valves' to achieve the application of a programmed biochemical wafer.

第10頁 200410896 五、發明說明(6) 以下以實例說明本發明之微通道流體導引元件及該微 通道流體導引元件之製備方法。 第1圖表示本發明微通道流體導引元件之工作原理示 意圖。如圖所示,該微通道流體導引元件係建置於一基板 (10)上。該基板(10)可為任何材質之板狀物,用以容 納該微通道流體導引元件,通常可為玻璃、塑膠、矽晶片 等適用之材質。 該微通道流體導引元件包括承載在該基板(1 0)上之 微通道(20)。該微通道(20)具有一流體入口 ( 21)及 一流體出口 ( 25),並具有一第1氣泡阱(22),一第2氣 泡阱(23)及位於其間之橋段(24)。流體入口 ( 21)可 接一壓力源(未圖不)’用以提供流體自入口 ( 21)流經 橋段(24)至出口 ( 25)之壓力。該壓力源可為一氣壓 源、液壓源或其他壓力來源,只要適合搬送一流體在該微 通道(20)中移動即可。 在該第1氣泡阱(22)下方,提供一第1電極(31), 該第2氣泡阱(23)下方提供一第3電極(33),而該橋段 (2 4)下方則提供一第 2電極(32)。各電極均以導線 (34) ( 3 5) ( 3 6)而電氣連接至位於基板(10)邊緣之 接點(3 7) ( 3 8) ( 3 9)。該電極(3 1) ( 32) ( 3 3)較 好裸露至少一部份在該微通道(2 0)中,以提供流經該第 1氣泡阱(22),該橋段(24)及/或該第2氣泡阱(23) 之流體與該電極(3 1) ( 3 2) ( 33)作電氣接觸,用以供 應電流至該流體中。該電極(3 1)( 3 2) ( 3 3)與該導線Page 10 200410896 V. Description of the invention (6) The microchannel fluid guiding element of the present invention and a method for preparing the microchannel fluid guiding element will be described below with examples. Fig. 1 shows the working principle of the micro-channel fluid guiding element of the present invention. As shown, the microchannel fluid guiding element is built on a substrate (10). The substrate (10) can be a plate of any material to accommodate the micro-channel fluid guiding element, and generally can be a suitable material such as glass, plastic, or silicon wafer. The microchannel fluid directing element includes a microchannel (20) carried on the substrate (10). The microchannel (20) has a fluid inlet (21) and a fluid outlet (25), and has a first bubble trap (22), a second bubble trap (23), and a bridge section (24) therebetween. The fluid inlet (21) can be connected to a pressure source (not shown) 'to provide the pressure of the fluid flowing from the inlet (21) through the bridge section (24) to the outlet (25). The pressure source may be a pneumatic source, a hydraulic source, or other pressure source, as long as it is suitable for transporting a fluid to move in the microchannel (20). Below the first bubble trap (22), a first electrode (31) is provided, below the second bubble trap (23) is a third electrode (33), and below the bridge section (24) is provided a The second electrode (32). Each electrode is electrically connected to a contact (3 7) (3 8) (3 9) located on the edge of the substrate (10) by a lead (34) (3 5) (3 6). The electrodes (3 1) (32) (3 3) are preferably exposed at least partly in the microchannel (20) to provide a flow through the first bubble trap (22), the bridge section (24) and / Or the fluid of the second bubble trap (23) is in electrical contact with the electrode (3 1) (3 2) (33) for supplying an electric current to the fluid. The electrode (3 1) (3 2) (3 3) and the lead

200410896 五、發明說明(7) (3 4) ( 3 5) ( 3 6)及該接點(3 7) ( 3 8) ( 3 9)可以為 相同材質或不同材質,但較好為電導體,並可以單一步驟 製成在該基板(1 0)上。在製作時,可以使用任何適用之 方法,例如印刷、塗佈、蝕刻、化學蒸鍍等等習知方法。 如有必要,亦可在該電極表面加一層絕緣層,預留所需之 孔隙,用以規制該電極與流體間之電氣接觸。 為達成電解產生氣泡之目的,該第1電極(31)及該 第3電極(3 3)較好連接至一電源(未圖示)之第1極性, 而該第2電極(3 2)則連接至該電源(未圖示)之第2極 性。因此,該第1電極(31)與該第2電極(32),分別連 接至不同極性。第2電極與第3電極亦然。 待反應之微流體係由微通道(20)之入口 ( 21)進 入。其移動之驅動源為該壓力源(未圖示)所產生之壓力 或其他壓力。該流體通常係包括一液體及溶解或懸浮其中 之待反應物質,用以在該微通道(2 0)中之特定反應區進 行所需之生化實驗。可能進行之實驗包括:加熱、混合、 化學反應、免疫反應,加入物質、沉澱、萃取、乾燥、靜 置等物理、化學或生物反應。該流體中所含之液體可為承 載液體或反應液體本身,通常可為水、低分子量化合物、 其他溶劑、血清、人類或動物之體液或動、植物之產生 物。但為達成本發明電解產生氣泡之目的,其中應具有不 會對反應系統產生不利影響且有助於電解產生氣泡之電解 質。以該待反應流體所含液體為細胞培養液為例,例如市 售之RPMI-1640( GIBC0公司)即可適用。其所含少量食鹽200410896 V. Description of the invention (7) (3 4) (3 5) (3 6) and the contact (3 7) (3 8) (3 9) can be the same material or different materials, but it is preferably an electrical conductor And can be made on the substrate (10) in a single step. In manufacturing, any suitable method can be used, such as printing, coating, etching, chemical vapor deposition and the like. If necessary, an insulating layer can be added to the surface of the electrode to reserve the required pores to regulate the electrical contact between the electrode and the fluid. To achieve the purpose of generating bubbles in electrolysis, the first electrode (31) and the third electrode (33) are preferably connected to a first polarity of a power source (not shown), and the second electrode (32) is Connect to the second polarity of this power supply (not shown). Therefore, the first electrode (31) and the second electrode (32) are connected to different polarities, respectively. The same applies to the second electrode and the third electrode. The microfluidic system to be reacted enters through the inlet (21) of the microchannel (20). The driving source of its movement is the pressure generated by the pressure source (not shown) or other pressure. The fluid usually includes a liquid and a substance to be reacted dissolved or suspended therein, and is used to perform a required biochemical experiment in a specific reaction zone in the microchannel (20). Possible experiments include: physical, chemical, or biological reactions such as heating, mixing, chemical reactions, immune reactions, adding substances, precipitation, extraction, drying, and standing. The liquid contained in the fluid may be the carrier liquid or the reaction liquid itself, and usually may be water, low molecular weight compounds, other solvents, serum, human or animal body fluids, or animal or plant products. However, in order to achieve the purpose of generating bubbles in the electrolysis of the present invention, it should have an electrolyte that does not adversely affect the reaction system and helps to generate bubbles in the electrolysis. Taking the liquid contained in the fluid to be reacted as a cell culture liquid as an example, a commercially available RPMI-1640 (GIBC0 company) can be applied. Small amount of salt

第12頁 200410896 五、發明說明(8) 即$作為適用之電解反應溶液。而濃度則視應用上之需要 而定1此外’在待反應液體中加入含有電解質之液體,以 促進電解產生氣泡,亦屬可行。只要加入之物質及其 3對待反應流體之反應糸統產生不利影響即可。 ^流,自微通道(20)之入口 ( 21)注入,並以壓力源對 流體提供壓力後,流體將向壓力較小的第1氣泡阱(2 2 ^於橋段(24)流動。當流體一部份進入該橋段, f 一部份進入該第1氣泡阱(22)時,由第1電極(31)及 ' 2) ^^供電流。在應用上’第1電極(3 1)血莖 (33 =應屬不同極性;第2電極(32)與第3電極 〜33)亦然。唯各電極之極性,仍應依應用上之需要而 疋。原則卜 > 八f ’在對微流體供應電流時,該微流體之連續部 ^ :有部份接觸—第1極性之電極,另一部份則接觸一 弟2極彳生之雷n ^电極’以促成微流體之電解反應。 對°亥彳放流體提供電流時,因該微流體同時接觸不同極 十生雷;, 口二 . °、’且該流體内含電解質,因而產生電解反應,而 且豆二!^ =發生許多微小氣泡。例如’當該微流體含水, 另^ Μ ί食鹽時’則將在陰電極產生氮氣。在其他微流體 及其解質之場合,亦會發生相同現象。 對兮ΐ流體注入該第1氣泡阱(22)及該橋段(24)時, 人=ί 1電極(31)及該第2電極(32)通電。因此流體内 令.疋之,解質,將因通電而產生微小氣泡。由於微小氣 =又面位旎較大,由壓力源提供於微流體的壓力將破壞該 軋泡表面,使微小氣泡結合成較大氣泡,氣泡之結合不斷Page 12 200410896 V. Description of the invention (8) That $ is the applicable electrolytic reaction solution. The concentration depends on the application needs. In addition, it is also feasible to add a liquid containing an electrolyte to the liquid to be reacted to promote the generation of bubbles in the electrolysis. As long as the added substance and its reaction system to the reaction fluid have an adverse effect. The flow is injected from the inlet (21) of the microchannel (20), and the pressure is applied to the fluid by a pressure source, and the fluid will flow to the first bubble trap (2 2) having a lower pressure in the bridge section (24). When When a part of the fluid enters the bridge section and a part of the f enters the first bubble trap (22), the first electrode (31) and '2) ^^ supply current. In application, the first electrode (3 1) blood stem (33 = should be of different polarity; the second electrode (32) and the third electrode ~ 33) are also the same. However, the polarity of each electrode should still depend on the application. Principle > Eight f 'When supplying a current to a microfluid, the continuous part of the microfluid ^: part of the contact-the electrode of the first polarity, and the other part of the microfluid comes in contact with the thunder of the two poles n ^ The electrode 'promotes the electrolytic reaction of the microfluid. When the current is supplied to the helium discharge fluid, because the microfluid is in contact with ten poles of different poles at the same time; 口 二. °, and the fluid contains an electrolyte, so an electrolytic reaction occurs, and beans two! ^ = Many tiny occurrences bubble. For example, 'when the microfluid is water-containing and the other salt is salt', nitrogen gas will be generated at the negative electrode. The same phenomenon occurs in other microfluidics and their degrading situations. When the Xiqiang fluid is injected into the first bubble trap (22) and the bridge section (24), the first electrode (31) and the second electrode (32) are energized. Therefore, if the fluid is internally decomposed, it will decompose and generate micro-bubbles due to energization. Because the micro gas = and the surface area is relatively large, the pressure provided by the micro fluid from the pressure source will destroy the surface of the bubble, so that the micro bubbles are combined into larger bubbles, and the combination of bubbles continues.

第13頁 200410896 五、發明說明(9) 發生,且氣泡將會被大角度彎道阻泥並在下游氣泡阱集 結,直到氣泡之表面張力,内壓力及外部壓力達到平衡時 為止。此時因為有氣泡阱(2 2) ( 2 3)之設置,該氣泡之 大小及位置可以維持及成長。當形成之氣泡體積適當時, 則可將微流體相對於該第1氣泡阱(2 2)之上、下游兩側 加以隔絕,停止流體進入該第1氣泡阱(2 2)之下游側, 形成一個微閥。而且當橋段為氣泡填滿時,電解反應因鹽 橋為氣泡阻斷會自動停止反應。此種現象也可發生在該第 2氣泡阱(2 3)。換言之,此裝置可串連使用。 第2圖表示本發明微通道流體導引元件應用在微開關 時之示意圖。如圖所示,作為微開關使用時,該微通道流 體導引元件仍製作在一基板(5 0)上,並包括一微通道 (4 0)。該微通道(40)具有一入口 ( 41),並在一節點 (4 6)處,分歧成2支流,分別具有一含有氣泡阱(42) (44)之微閥及其個別之出口 ( 43) ( 4 5)。該基板、微 通道、電極、導線、接點等之製作方式及其構造,均如前 述,不再贅述。 應用時,令流體由入口 ( 41)進入微通道(4 0),以 壓力令其前進,經過節點(4 6)分別進入第1含有氣泡阱 之微閥(42)及第2含有氣泡阱之微閥(44)。利用前述 之操作,使位於所選定微閥之氣泡阱附近之微小氣泡形成 大氣泡,形成阻隔,使流體無法流經該被選定之電極之氣 泡阱,迫使流體只能流向另一含有氣泡阱之微閥,而向其 下游側之出口移動。Page 13 200410896 V. Description of the invention (9) Occurs, and the bubbles will be blocked by the large-angle curve and will gather in the downstream bubble trap until the surface tension of the bubbles, internal pressure and external pressure reach equilibrium. At this time, because of the bubble traps (2 2) (2 3), the size and position of the bubbles can be maintained and grown. When the volume of the formed bubbles is appropriate, the microfluid can be isolated from the upper and lower sides of the first bubble well (2 2), stop the fluid from entering the downstream side of the first bubble well (2 2), and form A micro valve. And when the bridge section is filled with bubbles, the electrolytic reaction will automatically stop the reaction because the salt bridge is blocked by bubbles. This phenomenon may also occur in the second bubble trap (2 3). In other words, this device can be used in series. Fig. 2 shows a schematic diagram of the microchannel fluid guiding element of the present invention when applied to a microswitch. As shown in the figure, when used as a micro-switch, the micro-channel fluid guiding element is still fabricated on a substrate (50) and includes a micro-channel (40). The microchannel (40) has an inlet (41), and branches into two branches at a node (46), each of which has a microvalve containing a bubble trap (42) (44) and its individual outlet (43 ) (4 5). The manufacturing method and structure of the substrate, micro-channels, electrodes, wires, contacts, etc. are as described above and will not be described again. In application, the fluid is caused to enter the microchannel (40) from the inlet (41), and is advanced by pressure, and enters the first microvalve (42) containing the bubble trap and the second microbubble containing the bubble trap through the node (46). Micro valve (44). Using the foregoing operation, the small bubbles near the bubble trap of the selected microvalve form large bubbles to form a barrier, so that fluid cannot flow through the bubble trap of the selected electrode, forcing the fluid to flow only to another bubble trap containing the bubble trap. The microvalve moves toward the outlet on its downstream side.

第14頁 200410896 五、發明說明(10) 利用上述操作,即可使本發明之微通道流體導引元件 作為早次微開關使用。 第3圖為本發明微通道流體導引元件之製作流程圖。 以下依據第3圖說明本發明微通道流體導引元件之製作方 f °如圖所示,在步驟(3〇υ首先製備一玻璃基板,其 次,於^ 302),在該基板上以化學蒸鍍及蝕刻製作電極 層。接著,於(3 0 3),在該基板及電極層上方製備微通 ,層Ik後在(3 0 4)在該微通道層内以顯影蝕刻法形成 ^ t ί之圖型,並使該電極層之電極至少一部份裸露在微 在製作時,需預留適用之氣泡阱。於(3 0 5)在 成冷 =^備覆層,取後在(3 0 6)在該蓋板上形 製’ 口出口,完成本發明微通道流體導引元件之 【發明之效果】 利用本發明所揭示之電解 通道流體導引裝置中,並無任^嘁開關或微閥,在微 元件耗損,反應劑阻塞在通道内等=件,因此不會發生 ;,微通道流體導引元件不需製備複:之使用電解電 =再者’驅動微開關或微閥時率了以簡化 也各易,但所提供之微開關或二電力率小,控制 則具有優異準確之功能。實驗證明,J谷許背壓範圍内’ 解氣泡,較之在1 〇叱下所 2 〇 C下所產生的電 有高出2 3 · 5%之背壓力。 、…、蜀發式沸騰氣泡,具 此外,該微通道流體導引 凡仵之細作,可以透過電子Page 14 200410896 V. Description of the invention (10) With the above operation, the micro-channel fluid guiding element of the present invention can be used as an early micro switch. FIG. 3 is a manufacturing flow chart of the microchannel fluid guiding element of the present invention. The manufacturing method of the microchannel fluid guiding element of the present invention is described below according to FIG. 3. As shown in the figure, a glass substrate is first prepared at 30 °, and then ^ 302), and then chemically evaporated on the substrate. Electrode layer is formed by plating and etching. Then, at (3 0 3), a micro-pass is prepared over the substrate and the electrode layer. After layer Ik, a pattern of ^ t is formed in the micro-channel layer by developing etching at (3 0 4), and the At least a part of the electrode of the electrode layer is exposed in the micro-manufacturing, it is necessary to reserve a suitable bubble trap. At (3 0 5) in the cold = ^ backup layer, take out the "mouth exit" on the cover plate at (3 0 6) to complete the [invention effect] of the microchannel fluid guiding element of the present invention. The electrolysis channel fluid guiding device disclosed in the present invention does not have any switches or microvalves. The microelements are consumed, the reactants are blocked in the channel, etc., so they will not occur; microchannel fluid guidance elements No need to prepare complex: the use of electrolytic electricity = moreover, when driving micro-switches or micro-valves to simplify and easy, but the provided micro-switches or two power rate is small, the control has excellent and accurate functions. Experiments have shown that the de-bubbles within J Gu's back pressure range have a back pressure that is 2 3 · 5% higher than the electricity generated at 20 ° C at 10 ° C. ..., Shufa-type boiling bubbles, in addition, the microchannel fluid guides all the fine works of the penetrating, can pass electrons

200410896 五、發明說明(ιυ 電路,以軟體加以控制,應用上甚為方便。 本發明所提供之微通道流體導引元件,可以在其上設 置數個微流體反應模組,及其相對應之微閥、微開關、反 應元件及偵測裝置。所有這些元件之作動與否,以及作動 時間程序參數,均可透過可規劃(programmab 1 e)之方 式,加以精確控制,實現可規劃微通道流體導引的目的。 本發明所揭示之微通道流體導引元件,由於並未設置 複雜的驅動、導引元件,其製作極為簡便,成本亦低廉。200410896 V. Description of the invention (ιυ circuit, which is controlled by software, is even more convenient to apply. The microchannel fluid guiding element provided by the present invention can be provided with several microfluidic reaction modules, and the corresponding ones. Microvalves, microswitches, response elements and detection devices. The operation of all these elements and the program parameters of the operation time can be precisely controlled in a programmable way (programmab 1 e) to achieve the programmable microchannel fluid Purpose of Guiding. Since the micro-channel fluid guiding element disclosed in the present invention is not provided with a complicated driving and guiding element, its fabrication is extremely simple and the cost is low.

以上是對本發明微通道流體導引元件之說明,習於斯 藝之人士不難由上述之說明,明瞭本發明之精神進而作出 不同的衍伸與變化,唯只要不超出本發明之精神,均應包 含於其申請專利範圍内。 【元件之說明】 10 基板 20 微通道 21 流體入口 22 第一氣泡阱 23 第二氣泡阱 24 橋段The above is the description of the micro-channel fluid guiding element of the present invention. It is not difficult for those skilled in Siyi to understand the spirit of the present invention and make different extensions and changes. As long as it does not exceed the spirit of the present invention, Should be included in the scope of its patent application. [Description of components] 10 substrate 20 microchannel 21 fluid inlet 22 first bubble trap 23 second bubble trap 24 bridge section

25 流體出口 31 第1電極 32 第2電極 33 第3電極 3 4、3 5、3 6 導線25 Fluid outlet 31 First electrode 32 Second electrode 33 Third electrode 3 4, 3 5, 3 6 Lead

第16頁 200410896Page 16 200410896

第17頁 200410896 圖式簡單說明 第1圖表示本發明微通道流體導引元件工作原理示意 圖。 第2圖表示本發明之微通道流體導引元件應用在微開 關之示意圖。 第3圖表示本發明微通道流體導引元件之製程示意 圖。Page 17 200410896 Brief description of the drawings Figure 1 shows a schematic diagram of the working principle of the microchannel fluid guiding element of the present invention. Fig. 2 is a schematic diagram showing the application of the microchannel fluid guiding element of the present invention to a microswitch. Fig. 3 is a schematic diagram showing the manufacturing process of the microchannel fluid guiding element of the present invention.

第18頁Page 18

Claims (1)

200410896 六、申請專利範圍 【申請專利範圍】 1. 一種微通道流體導引元件,包括: 一微通道,可供一流體通過; 該微通道包括至少一形成在該通道内之氣泡阱,用 以滯留形成在該微通道内之氣泡; 一電解氣泡產生裝置,透過對該微通道内之流體供 應電流,引起電解反應,在該流體内產生氣泡;及 一壓力源,用以對通過該微通道之流體提供一適當 壓力; 其特徵在於,該電解氣泡產生裝置可使通過該微通 道之流體在該氣泡牌附近產生氣泡。 2 .如申請專利範圍第1項所述之微通道流體導引元 件,其中該氣泡阱包括一形成在該微通道内之大角度彎 道 ° 3 .如申請專利範圍第1項所述之微通道流體導引元 件,其中該氣泡阱包括一形成在該微通道内,用以阻泥氣 泡並使氣泡集結之部分。 4 .如申請專利範圍第1項所述之微通道流體導引元 件,其中該電解氣泡產生裝置包括一至少一裝置在該氣泡 阱附近之電極。 5 .如申請專利範圍第4項所述之微通道流體導引元 件,其中該電極具有至少一可與該流體接觸之部分。200410896 6. Scope of patent application [Scope of patent application] 1. A microchannel fluid guiding element, including: a microchannel for a fluid to pass through; the microchannel includes at least one bubble trap formed in the channel, and is used for Bubbles formed in the microchannel are retained; an electrolytic bubble generating device generates an electrolytic reaction by supplying an electric current to the fluid in the microchannel; and generates a bubble in the fluid; and a pressure source for passing through the microchannel The fluid provides an appropriate pressure; characterized in that the electrolytic bubble generating device can cause the fluid passing through the microchannel to generate bubbles near the bubble card. 2. The micro-channel fluid guiding element according to item 1 of the scope of patent application, wherein the bubble trap includes a large-angle curve formed in the micro-channel ° 3. The micro-channel according to item 1 of the scope of patent application A channel fluid guiding element, wherein the bubble trap includes a portion formed in the microchannel to block mud bubbles and gather the bubbles. 4. The micro-channel fluid guiding element according to item 1 of the scope of patent application, wherein the electrolytic bubble generating device comprises at least one electrode arranged near the bubble trap. 5. The micro-channel fluid guiding element according to item 4 of the scope of patent application, wherein the electrode has at least one portion that can contact the fluid. 第19頁Page 19
TW91138141A 2002-12-31 2002-12-31 Configurable micro flowguide device TW550234B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91138141A TW550234B (en) 2002-12-31 2002-12-31 Configurable micro flowguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91138141A TW550234B (en) 2002-12-31 2002-12-31 Configurable micro flowguide device

Publications (2)

Publication Number Publication Date
TW550234B TW550234B (en) 2003-09-01
TW200410896A true TW200410896A (en) 2004-07-01

Family

ID=31713738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91138141A TW550234B (en) 2002-12-31 2002-12-31 Configurable micro flowguide device

Country Status (1)

Country Link
TW (1) TW550234B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672456B (en) * 2017-07-14 2019-09-21 美商惠普研發公司 Microfluidic valve, microfluidic system comprising the microfluidic valve, and method for closing the microfluidic valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI345058B (en) 2007-07-30 2011-07-11 Benq Materials Corp Micro flow device and method for generating a fluid with ph gradient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672456B (en) * 2017-07-14 2019-09-21 美商惠普研發公司 Microfluidic valve, microfluidic system comprising the microfluidic valve, and method for closing the microfluidic valve
US11441701B2 (en) 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve

Also Published As

Publication number Publication date
TW550234B (en) 2003-09-01

Similar Documents

Publication Publication Date Title
US7238324B2 (en) Microfluidic device for the controlled movement of fluid
Au et al. Microvalves and micropumps for BioMEMS
JP4323743B2 (en) Polymer valve
Maxwell et al. A microbubble-powered bioparticle actuator
US6725882B1 (en) Configurable micro flowguide device
JP4596776B2 (en) Microfluidic processing method and system
US6869273B2 (en) Microelectromechanical device for controlled movement of a fluid
US20040094733A1 (en) Micro-fluidic system
JP4136969B2 (en) Fluid transfer device
McNeely et al. Hydrophobic microfluidics
US20040219732A1 (en) Thermal micro-valves for micro-integrated devices
US20100165784A1 (en) Instrument with microfluidic chip
US6622746B2 (en) Microfluidic system for controlled fluid mixing and delivery
Ellinas et al. Superhydrophobic, passive microvalves with controllable opening threshold: Exploiting plasma nanotextured microfluidics for a programmable flow switchboard
Lemoff et al. An AC magnetohydrodynamic microfluidic switch for micro total analysis systems
JP2007021351A (en) Cartridge for chemical reaction and chemical reaction processing system
Nafea et al. Frequency-controlled wireless passive thermopneumatic micromixer
JP2002163022A (en) Method of controlling flow in micro-system
Mohammadzadeh et al. Rapid and inexpensive method for fabrication of multi-material multi-layer microfluidic devices
EP1317625A1 (en) Micro-fluidic system
KR100444751B1 (en) Device of Controlling Fluid using Surface Tension
WO2006104467A1 (en) Configurable microfluidic device and method
TW200410896A (en) Configurable micro flowguide device
JP4634309B2 (en) Microchannel device and liquid feeding method
Joo et al. A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees