TW200410464A - Optical parametric oscillator with distributed feedback grating or distributed bragg reflector - Google Patents
Optical parametric oscillator with distributed feedback grating or distributed bragg reflector Download PDFInfo
- Publication number
- TW200410464A TW200410464A TW092131148A TW92131148A TW200410464A TW 200410464 A TW200410464 A TW 200410464A TW 092131148 A TW092131148 A TW 092131148A TW 92131148 A TW92131148 A TW 92131148A TW 200410464 A TW200410464 A TW 200410464A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- laser
- laser device
- patent application
- scope
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 252
- 239000013078 crystal Substances 0.000 claims abstract description 69
- 230000005855 radiation Effects 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims description 57
- 239000000463 material Substances 0.000 claims description 37
- 230000000737 periodic effect Effects 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 21
- 230000010355 oscillation Effects 0.000 claims description 15
- 230000005684 electric field Effects 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 238000001459 lithography Methods 0.000 claims description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 238000005468 ion implantation Methods 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000009501 film coating Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 239000007888 film coating Substances 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 238000001764 infiltration Methods 0.000 claims description 2
- 230000008595 infiltration Effects 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 27
- 238000010586 diagram Methods 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000766026 Coregonus nasus Species 0.000 description 1
- 206010011469 Crying Diseases 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101100518501 Mus musculus Spp1 gene Proteins 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 240000005373 Panax quinquefolius Species 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001831 conversion spectrum Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
200410464 五、發明說明(1) 〔發明領域〕 本發明係有關於—+ ^ 有關於一種利用一 田射破置,且特別是,本發明係 構、藉以經由一也Γ…(Bragg dif fraction)光柵結 & # 、 九學參振盪 射裝置。 益 或附近之一布拉格繞=丨生光學物質或雷射增益物質内部 器 0P0)產生雷射輻射之雷 〔發明 本發 反射滿 光學光 之空間 布拉格 光纖上 —雷 時,此 射。— 點,因 射振盪 物質兩 光柵係 射增益 現象可 射係稱 背景〕 明所討 足布拉 柵,其 波長, 波長。 ,成為 射增益 雷射通 分散式 為在分 所須的 端之布 可以製 物質之 構成此 為分散 論之 一.4l ,¾ ^ 格條# 格繞射光栅乃是一種能夠 中条件之光學波長入〆入产2^〆m) 且‘ 光波所見之折射率,Λ #此光柵 因/、,一正^數。又,此波長又孫稱為Λ “,一布拉格繞射光栅係可以製造於一 物,纖光柵。當一布拉格繞射光柵係製作 =貝之兩端以取代一組雷射之共振器鏡面 韦係稱為一分散式布拉格反射器(抑幻雷 布拉格反射器(DBR)雷射係具有簡便之& 散式布拉格反射器(DBR)雷射中,產生雷 兩面光學共振鏡,係由製作於一雷射增益胃 拉格繞射光柵取代。另外,一布拉格^二 作於整個雷射增益物質之上,不限^ $雷 兩端,此光柵元件造成之分散式光學回饋 布拉格波長附近之雷射振盪,此類^之^ 式回饋(DFB)雷射。由於一分散式回饋" 200410464 五、發明說明(2) (DFB)雷射内部之不因指 . 係具有不同之雷射增兴,W產1(Dngl tudinal mode) 出,此一分散式回DF^气4生严縱向模之雷射輸 (圃雷射同樣具有散式布拉格反射器 迨些分散式布拉格反射器(DBR) 然而 DFB)結構已經廣泛使用於半導兩 1,貝 而,一半導體苗射之各式應用中。 隙(energy band ,廿日/ 千導體材枓之月匕 拉拎反射哭Γ DRW 並且亦無法隨著這些分散式布 拉才口反射σσ ( DBR)及分散式回饋(DFB) 一200410464 V. Description of the invention (1) [Field of the invention] The present invention relates to — + ^ relates to a method using a field shot, and in particular, the present invention constructs a structure through which a Γ ... (Bragg dif fraction) Grating junction &#, nine academic parameters oscillating radiation device. One or near a Bragg winding = internal optical material or laser gain material internal device 0P0) generates a laser radiation laser [invention of the present invention, a space full of optical light reflected on the Bragg fiber — when the laser is on, the laser is emitted. — Point, due to the oscillating matter, the two grating systems, the radiation gain phenomenon can be referred to as the background system], and the wavelength of the Bragg grating is discussed. Become a radiation gain laser through the dispersion type. The cloth at the end of the branch can be made of material. This is one of the dispersion theory. 4l, ¾ ^ 格 条 # Lattice diffraction grating is a kind of optical wavelength that can be used under moderate conditions. (2〆〆m) and the refractive index of the light wave, Λ # This grating factor /, a positive ^ number. Also, this wavelength is also called Λ ". A Bragg diffraction grating system can be manufactured in an object, a fiber grating. When a Bragg diffraction grating system is manufactured, the two ends of the shell are used to replace a group of laser resonator mirrors. The system is called a decentralized Bragg reflector (Dual Bragg Reflector (DBR) laser system, which has a convenient & diffuse Bragg reflector (DBR) laser. A laser gain gastric grating diffraction grating is replaced. In addition, a Bragg ^ 2 is used on the entire laser gain material, and is not limited to the two ends of the laser. The scattered optical feedback caused by this grating element is near the Bragg wavelength. This kind of ^^^ type feedback (DFB) laser. Due to a decentralized feedback " 200410464 V. Description of the invention (2) (DFB) internal non-causation of laser. It has different laser enhancement , W produced 1 (Dngl tudinal mode), this decentralized return to DF ^ gas 4 strict longitudinal mode of laser input (Pu laser also has scattered Bragg reflectors, some distributed Bragg reflectors (DBR) However, DFB) structure has been widely used in semiconducting Belle, in a variety of applications of a semiconductor laser. Gap (energy band, day / thousands of conductors, moons, moons, pulls, and reflections) DRW and can not follow these scattered Bragg reflections σσ (DBR ) And decentralized feedback (DFB)
任意選擇而進行廣域之改變。 ° ' 調變一雷射波長之一種方式係利用一非線性光學材 料。早在西元196 2年,J· A· Armstrong et al便曾經 在Phys· Rev· 1 2 7 ( 1 9 6 2) 1 9 1 8中提出過准相位匹配 (QPM)之非線性頻率轉換技術。舉例來說,來自週期性 極化銳酸鐘晶體(periodically poled lithium niobate,PPLN)之固態雷射激發光學參數產生 (optical parametric generation, 0PG)及光學參數Make arbitrary choices to make wide-area changes. ° 'One way to modulate a laser wavelength is to use a non-linear optical material. As early as 1962 AD, A. Armstrong et al. Proposed a non-linear frequency conversion technique of quasi-phase matching (QPM) in Phys Rev. 1 2 7 (19 2 2) 1 9 1 8. For example, solid-state laser-excitation optical parameter generation (OPG) and optical parameters from periodically polarized lithium niobate (PPLN) solid-state lasers
振盪(ΟΡΟ )係已經提供有效且能夠廣域調變之雷射光源 (如 Myers et a 1. Journal of Optical Society of America B, vo 1. 1 2 ( 1 9 9 5) pp· 2102— 2 1 1 6)。然 而,光學參數產生係產生一寬頻輻射。在中紅外線波長 中,週期性極化鈮酸鋰晶體(PPLN)之固態雷射激發光 學參數產生(0PG)之光譜寬度係可能超過數個奈米 (nm)。因此,為取得有效之窄線雷射輻射,准相位匹Oscillation (ΟΡΟ) has provided an effective laser light source capable of wide-area modulation (such as Myers et a 1. Journal of Optical Society of America B, vo 1. 1 2 (1 9 9 5) pp · 2102— 2 1 1 6). However, the optical parameter generation system generates a broadband radiation. At mid-infrared wavelengths, the solid-state laser-excitation optical parameter generation (0PG) of periodically polarized lithium niobate crystals (PPLN) may have a spectral width exceeding several nanometers (nm). Therefore, in order to obtain effective narrow-line laser radiation,
第9頁 200410464 五、發明說明(3) 配(QPM)之光學參數振盪器(〇p〇)係一普遍裝置。一習 知之線性共振腔光學參數振盪器(0Ρ0)係可以得利於其 共振器之高f i n e s s e值,產生較窄線寬之輸出,但泰半仍 為多縱向模輸出。為取得單縱向模輸出,一操作者通常 #、須採用一更複雜之共振器設計(如B 〇 s e n b e r g e t al. ’ Applied Physics Letters, vol. 61 ( 1992) PP· 3 78— 3 8 9)。因此,倘若一操作者能夠將一 (DFB) 先學參數振盪為之非線光學物質中,1^ K 以取得此振盪器調整範圍中之^立咕、知作者便可 « -2定之布拉格波長獲致單頻振盪之雷射輪。構係可以, 情況。 文進^知技藝所遭遇之上述 〔發明概述〕 為解決上述及其他問題 種簡便且有效之雷射裝置 部製造一布拉格繞射光栅 產生雷射輪射。然而,本 部使用之非線性光學材料 體或一准相位匹配晶體。 本發明之另一目的係提 置’其係在此非線性光學 ,甘/ A q Μ你提令 ,二係於此非線性光學物5 ,错以經由一光學表翁 係可 if 盛1 (〇p( Γ以疋一雙折射相位匹画 有效之雷射裝 分散式回饋Page 9 200410464 V. Description of the invention (3) The optical parameter oscillator (oop) of QPM is a universal device. A conventional linear resonator optical parameter oscillator (OP0) can benefit the high f i n e s s e value of its resonator to produce a narrower line width output, but Thai half still has multiple longitudinal mode outputs. In order to obtain a single longitudinal mode output, an operator usually #, must use a more complex resonator design (such as B o s e n b e r g e t al. ’Applied Physics Letters, vol. 61 (1992) PP · 3 78— 3 8 9). Therefore, if an operator can oscillate a (DFB) prior learning parameter into a non-linear optical substance, 1 ^ K to obtain ^ in the adjustment range of this oscillator, the author can know the Bragg wavelength «-2 Laser wheel with single frequency oscillation. Structure can, situation. [Introduction of Invention] The above-mentioned problems encountered by Wenjin [Summarization of Invention] In order to solve the above and other problems, a simple and effective laser device department manufactures a Bragg diffraction grating to generate laser shots. However, the body of this nonlinear optical material or a quasi-phase matching crystal. Another object of the present invention is to provide 'its system in this nonlinear optics, Gan / A q M you order, the second system in this non-linear optics 5, mistakenly through an optical watch system can be Sheng 1 ( 〇p (Γ Draws effective laser-type decentralized feedback with 疋 -birefringence phase matching
供一種簡便且 物質中實施一For a simple and material implementation
200410464 五、發明說明(4) (DFB)或分散式布拉格反射器(DBR),藉以經由一光 學參數振盪器產生一窄頻寬之雷射。然而,本發明中光 學參數振盪器(0P0)内部使用之非線性光學材料係可以 是一雙折射相位匹配晶體或一准相位匹配晶體。其中, 分散式回饋(DFB)結構係於整個非線性光學物質上實施 週期性之折射率調變,使波長匹配於此調變週期之光束 獲致光學振盪;分散式布拉格反射器(DBR)係將週期性 折射率之調變實施於非線性光學物質之兩端,使波長匹 配於此調變週期之光束獲致光學振盪。 本發明之主要特徵係提供一種雷射裝置,其係利用一 非線性光學元件,藉以經由一光學參數振盪器(0Ρ0)產 生窄頻寬之雷射,其中,此非線性光學元件係具有一光 折射效應之分散式回饋(DFB)光柵,藉由此特定週期$ 分散式回饋光栅,振盪至少光學參數混頻波長之一波 長,而得到一高效率之雷射輸出。 本發明之另一特徵係提供一種雷射裝置,其係利用一 非線性光學元件,藉以經由一光學參數振盈器(0Ρ0)產 生窄頻寬之雷射,其中,此非線性光學元件係具有一光 折射效應之分散式布拉格反射器(DBR)結構,藉由此特 定週期之布拉格反射器,振盪至少光學參數混頻波長之 一波長,而得到一高效率之雷射輸出。 較佳者,此分散式回饋(DFB)結構或此分散式布拉格 反射器(DBR)結構係反射一階(m= 1 )或二階以上(2) 布拉格波長(又=2 ηΛ g)附近之電磁波,其中,Λ谗一布拉200410464 V. Description of the invention (4) (DFB) or decentralized Bragg reflector (DBR), so as to generate a laser with a narrow bandwidth through an optical parameter oscillator. However, the non-linear optical material used in the optical parameter oscillator (OP0) of the present invention may be a birefringent phase-matched crystal or a quasi-phase-matched crystal. Among them, the distributed feedback (DFB) structure performs periodic refractive index modulation on the entire non-linear optical substance, so that the light beam with a wavelength matching this modulation period will cause optical oscillation; the distributed Bragg reflector (DBR) system will The modulation of the periodic refractive index is implemented at both ends of the non-linear optical substance, so that a light beam with a wavelength matching this modulation period will cause optical oscillation. The main feature of the present invention is to provide a laser device, which uses a non-linear optical element to generate a laser with a narrow bandwidth through an optical parameter oscillator (OP0), wherein the non-linear optical element has a light A decentralized feedback (DFB) grating with a refraction effect, oscillates at least one wavelength of the mixing wavelength of an optical parameter by using a specific period $ distributed feedback grating to obtain a high-efficiency laser output. Another feature of the present invention is to provide a laser device, which uses a non-linear optical element to generate a laser with a narrow bandwidth through an optical parameter resonator (OP0). The non-linear optical element has A decentralized Bragg reflector (DBR) structure with a photorefraction effect, by which a Bragg reflector with a specific period oscillates at least one wavelength of a mixing wavelength of an optical parameter, to obtain a high-efficiency laser output. Preferably, the distributed feedback (DFB) structure or the distributed Bragg reflector (DBR) structure reflects electromagnetic waves near the first order (m = 1) or above (2) Bragg wavelength (also = 2 ηΛ g) Of which Λ 谗 一 布
第11頁 200410464 五、發明說明(5) 格繞射光柵周期,且 係可以是任意之非線性混頻波 元件係為一具有二階非線性光 折射率,具有此分 $糸此介質中布拉格波長所見之等效 格反射器(DBR)結椹回饋(DFB)結構或此分散式布拉 進行振盪。此布拉格之雷射裝置能夠在該布拉格波長λ 長。 較佳者,此非線性光風一 學係數(Sec〇nd〜0:rde:r予π coefficient)之物質所^〇Ptical 較佳者,此光學表數^ 線性晶體内部,星有,振盪器(0P0)係於單塊(bulk)非 效應之分散式回饋(DF=建光折射(ph〇t〇refraction) 較佳者’此光學來數彳'、°構 (waveguide)非線性晶數器(〇Ρ〇)係於一波導 分散式回饋(DFB)卜具有—内建光折射效應之 綠ΐΐί由i光學參數振盈器(0P0)係於單塊(bulk)非 Ϊ ί 1及’具有—内建光折射效應之分散式布拉格 反射裔(DBR)結構。 較佳者,此光學參數振盪器(0Ρ0)係於一波導 (waveguWe)非線性晶體内部,具有一内建光折射效應之 分散式布拉格反射器(DBR)結構。 較佳者,此非線性光學晶體係一雙折射相位匹配晶 體。 幸乂佳者,此非線性光學晶體係一准相位匹配晶體。 較佳者,此非線性光學晶體係一具有光折射效應之非Page 11 200410464 V. Description of the invention (5) The period of the grating diffraction grating, and the system can be any non-linear mixing wave element. The system has a second-order non-linear optical refractive index, which has the Bragg wavelength in this medium. The equivalent lattice reflector (DBR) knotted feedback (DFB) structure or this decentralized bran oscillates. This Bragg laser device can be long at the Bragg wavelength λ. Preferably, the non-linear light wind coefficient (Sec0nd ~ 0: rde: r to π coefficient) is ^ 〇Ptical is better, this optical table number ^ linear crystal, star, oscillator ( 0P0) is based on bulk non-effect decentralized feedback (DF = phοt〇refraction) The better one is 'this optics counts', the waveguide nonlinear crystal number device ( 〇Ρ〇) is based on a waveguide decentralized feedback (DFB). It has a built-in light refraction effect. The optical parameter vibrator (0P0) is attached to a bulk (non-bulk), and 1 has' Decentralized Bragg reflector (DBR) structure with built-in light refraction effect. Preferably, the optical parameter oscillator (OP0) is inside a waveguide (waveguWe) nonlinear crystal and has a decentralized form with built-in light refraction effect. Bragg reflector (DBR) structure. Better, this nonlinear optical crystal system is a birefringent phase-matched crystal. Fortunately, this nonlinear optical crystal system is a quasi-phase-matched crystal. Better, this nonlinear optics Crystal system
第12頁 200410464 或銀酸鋰、或雜質摻雜 五、發明說明(6) 線性光學晶體,諸如:鈮酸鋰 之相同光學晶體。 @ # 本發明之又一特徵係提供一種雷射裝置嚷二係利用一 非線性光學元件,藉以、經由一*學參數振:!P〇)產 生窄頻寬之雷射,其中,此非線性光學^ 糸具στ?、, 折射效應之分散式回饋(DFB)或分散式布:反射裔 (DBR)結構,且其中,調變光學折射率之_法係照射一 光束,使其穿透此光折射效應非線性光學兀件上方之一Page 12 200410464 or lithium silverate, or impurity doping V. Description of the invention (6) Linear optical crystals, such as the same optical crystals of lithium niobate. @ # Another feature of the present invention is to provide a laser device. The second system utilizes a non-linear optical element to generate a laser with a narrow bandwidth by using a parameter:! P〇), where this non-linearity Optics ^ Decentralized feedback (DFB) or decentralized cloth with a refractive effect: Reflective (DBR) structure, and wherein the method of modulating the optical refractive index irradiates a light beam to penetrate it Light refraction effect
光罩 〇 較佳者,此光罩係具有一光柵設計,,射一光束後, 即於光罩後產生匹配於該光學參數振盡裔(ορό)布拉格 條件之空間光強度變化。 較佳者,此光束係一光學寫入光束,其係具有在此光 折射效應非線性光學材料内部感應產生空間電荷(s p a c e charge )之功效。 較佳者,此光束係位於可見光或紫外線(UV)波長。 較佳者,此非線性光學元件係為一具有二階非線性光 學 4系數(second-order nonlinear optical coefficient)之所製成。 本發明之再一特徵枝Photomask 〇 Preferably, this photomask has a grating design. After a light beam is radiated, a spatial light intensity change matching the optical parameter Bragg condition (ορό) Bragg condition is generated behind the photomask. Preferably, the light beam is an optical writing beam, which has the effect of inducing a space charge (s p a c e charge) inside the non-linear optical material of the light refraction effect. Preferably, the light beam is located at a wavelength of visible light or ultraviolet (UV) light. Preferably, the non-linear optical element is made of a second-order nonlinear optical coefficient. Another characteristic branch of the present invention
非線性光學元件,籍r k供一種雷射裝置,其係利用一 生窄頻寬之雷射,故由一光學參數振盪器(0P0)產 有一由光折射效應形 此非線性光學元件係具有一具 式布拉格反射器(J^B、之分散式回饋(DFB)結構或分散 )結構’且其中,調變光學折射率Non-linear optical element, a laser device provided by rk, which uses a lifetime narrow band laser, so an optical parameter oscillator (0P0) produces a non-linear optical element system shaped by the light refraction effect. Bragg reflector (J ^ B, DFB structure or dispersion) structure, and wherein the optical refractive index is adjusted
200410464 五、發明說明(7) '~~〜 --- ^ I法係利用一干涉式光折射效應寫入 J,以之兩交又雷射光束經由光學干涉效應使::: 声▲月二予兀 '中產生空間光學強度調變,此空間光學強 &凋受造成光學折射率調變。 強 ,佳者,此干涉條紋之周期性係匹配於此光 羞裔(0P0)操作所冀望之布拉袼條件。 數振 非ί f明之另一特徵係提供一種雷射裝置,其係利用一 ^性光學7G件,藉以經由一光學參數振盪器(〇p〇) 念:頻寬之雷射,其中,此非線性光學元件係具有一具產 百—由電光效應(electro-optic effect)形成之分散;; ^ ( DFB) , , 鉍ί應之非線性光學元件,藉以空間周期性地調變沿兩〜 遞方向之折射率。此折射率變動之周期性係匹配二 此光學參數振盪器(0Ρ0)操作所冀望之布拉格條件。、 非ί S Ξ ί另一特徵係提供一種雷射裝置,其係利用〜 隹,性光學元件,藉以經由一光學參數振盪器(0 生窄頻寬之雷射,其中,此非線性光學元件係具有一恭產 光之分散式布拉格反射器(DBR)光柵,且其、中、,一一^電 =,加於此電光之非線性光學元件,藉以周期性地—電纟^昜 每射傳遞方向之折射率。此折射率調變之周期性倍曼 _ 配於此光學參數振盪器(0Ρ0)操作所冀望,糸匹 件。 < 布拉格條 較佳者,折射率變化之數量,以其簡化形式為之 / 表示成:△ η= ( 1/ 2) rn3E,其中,r係此晶妒 ^係 曰曰饈之電光係200410464 V. Description of the invention (7) '~~~ --- ^ The I method uses an interferometric photorefractive effect to write J, and the two laser beams intersect and the laser beam passes through the optical interference effect to make :: 声 ▲ 月 二The spatial optical intensity modulation is generated in Yuwu, and the spatial optical intensity & decay causes the optical refractive index modulation. Strong, good, the periodicity of this interference fringe is matched to the Brahmin condition expected by this light (0P0) operation. Another feature of the digital vibration amplifier is to provide a laser device that uses a 7G optical element to pass through an optical parameter oscillator (〇p〇) The linear optical element has a production-based dispersion formed by the electro-optic effect; ^ (DFB),, a non-linear optical element of bismuth, by which the space is periodically tuned along two ~ The refractive index in the direction. The periodicity of this refractive index change matches the Bragg conditions expected from the operation of this optical parameter oscillator (OP0). , 非 ί S Ξ ί Another feature is to provide a laser device, which uses ~ 隹, a sexual optical element, so as to pass through an optical parameter oscillator (laser laser with a narrow bandwidth, where this non-linear optical element It is a distributed Bragg reflector (DBR) grating that produces light, and its, medium, and one-to-one electrical = non-linear optical elements added to this electro-optical, thereby periodically- Refractive index in the direction of transmission. The periodic Biman of this refractive index modulation is suitable for the operation of this optical parameter oscillator (OP0), which is the best. ≪ Better Bragg strip, the amount of refractive index change, Its simplified form is / expressed as: △ η = (1/2) rn3E, where r is the crystal envy ^ is the electro-optical system of 馐
第14頁 200410464 五、發明說明(8) 數,η係未施加電壓之折射率,且e係此晶體内部之一電 場0 一本f明之另一特徵係提供一種雷射裝置,其係經由一 ,學蒼數振盪器(0P0)產生窄頻雷射,此光學參數振盪 係於 非線性光學波導表面具有一波狀(c 〇 r r u g a t e d ) 分散式回饋(DFB)結構,藉此,在此波導表面消散波 (evanescent wave)之分散式回饋便足以啟動光學參數振 盘。 較^圭者,此分散式回饋(DFB)結構係利用諸如材料蝕 刻、薄膜披覆、微影製程、離子佈植及其組合之方式 行製作。 特徵係提供一種雷射裝置,其係經由_ (0P0)產生窄頻雷射’此光學參數振續 光學波導(waveguide)表面具有一波狀 散式布拉格反射器(DBR)結構,藉此, 散波(evanescent wave)之分散式回於 數振盪。 胃11 散式布拉格反射器(DBR)結構係利 膜披覆、微影製程、及其組合之太—^ 特徵係提供一種雷射裝置,其係經由— (〇Ρ〇〕產生窄頻雷射,此光學參二數— 光學波導内部具有一分散式回饋13 布拉格反射器(DBI0結構,藉此,JB)Page 14 200410464 V. Description of the invention (8) Number, η is the refractive index without voltage applied, and e is an electric field inside the crystal. 0 Another feature of f is to provide a laser device, which is passed through a The optical oscillator (0P0) generates a narrow-frequency laser. This optical parameter oscillation is based on a non-linear optical waveguide surface with a corrugated distributed feedback (DFB) structure. The decentralized feedback of the evanescent wave is sufficient to activate the optical parameter vibrating disk. More specifically, this distributed feedback (DFB) structure is fabricated using methods such as material etching, thin film coating, lithography, ion implantation, and combinations thereof. The feature is to provide a laser device, which generates a narrow-frequency laser via _ (0P0). The optical parameter of the optical waveguide (waveguide) has a wave-shaped diffuse Bragg reflector (DBR) structure. The decentralized form of the evanescent wave reverts to a number of oscillations. Stomach 11 Scattered Bragg Reflector (DBR) structure is a film coating, lithography process, and a combination of these features. ^ The feature is to provide a laser device that generates a narrow-frequency laser via-(〇Ρ〇) , This optical parameter is a two-way reflector with a decentralized feedback 13 Bragg reflector (DBI0 structure, by which, JB)
本發明之又一 光學參數振盪器 器係於一非線性 (corrugated)分 在此波導表面消 足以啟動光學參 較佳者,此分 如材料蝕刻、薄 行製作。 本發明之再一 光學參數振盪器 為係於一非線性 結構或一分散式Another optical parameter oscillator of the present invention is based on a non-linear (corrugated) component which is sufficient to start the optical parameters on the surface of the waveguide, such as material etching and thin line fabrication. Another optical parameter oscillator of the present invention is a non-linear structure or a decentralized type.
第15頁Page 15
200410464 五、發明說明(9) 動 波導内部布拉格散佈電磁波之光學回饋便能夠足以啟 光學參數振盪。 較佳者’此分散式回饋(DFB)結構或此分散式 反射器(DBR)結構係屬於上述之光折射效應 拉格 (photorefractive)類型。 較,者’此分散式回饋(DFB)結構或此分散式布拉格 r 〇~ 反射器(DBR)結構係屬於上述之電光效應(elect optics effect)類型 佳實施 然本發 ,下文 另外, 來限制 縮於下 發明係 數振盪 其中, 内部之 由兩光 角頻率 ω 氏ω s+ όϋ γ 般而言 〔較 雖 然而 紹。 疋用 徵限 本 學參 藝, 振器 器係 具有 頻率 ω 例之詳細說明〕 明係可以容許很多不同形式之較佳實施例, 將僅就部分較佳實施例進行詳細說明及介 本發明揭露係用來佐證本發明之原理,而不 本發明範圍、或是用來將本發明之更寬廣特 文所述之特定實施例中。 哭中—來拉格繞射光柵之光學回饋以於一光 f幫建立光學參數振盪。第1圖係介紹習知技 一非雷射(PumP laser) 1〇係激發一雷射共 學2 = 2光學元件3〇,且其中,此雷射共振 ω A幫兄畚=2 〇形成。在一光學參數過程中, <兩1光1子。係根據下列關係式產生具有角 60 ,此高頻光子係稱為信號光(Slgnal),且此200410464 V. Description of the invention (9) The optical feedback of the Bragg scattered electromagnetic wave inside the waveguide can be enough to start the optical parameter oscillation. The better one is that the distributed feedback (DFB) structure or the distributed reflector (DBR) structure belongs to the photorefractive type described above. Compared with this, the distributed feedback (DFB) structure or the distributed Bragg r 0 ~ reflector (DBR) structure belongs to the above-mentioned type of electro-optic effects (elect optics effect). In the following invention, the coefficient oscillates, and the internal frequency is composed of two light angular frequencies ω s ω s + ό 而言 γ [Generally speaking, although more. (Using the limitations of this study, the vibrator system has a detailed description of the frequency ω]] The Ming system can allow many different forms of preferred embodiments, and only some of the preferred embodiments will be described in detail and disclosed by the present invention. It is used to prove the principle of the present invention, not the scope of the present invention, or the specific embodiments described in the broader description of the present invention. Crying—The optical feedback of the Lag diffraction grating is used to help establish the optical parameter oscillation of a light f. Fig. 1 introduces the conventional techniques. A non-laser (PumP laser) 10 series excites a laser and learns 2 = 2 optical elements 30. Among them, the laser resonance ω A helps 畚 = 2 0. In the course of an optical parameter, < two light and one photon. The high-frequency photon system is called a signal light (Slgnal) according to the following relationship, and this
第16頁 200410464 五、發明說明(ίο) 低頻光子係稱為閒置 〜 ^一一'一~ '— 可振盪此信號光、介_ ( i d】er)。這此 時振盪兩者。 亦可振盪此間置光(二/、振器鏡面20係 根據本發明…習 1 er)、或者同 性光學元件内容一真之這些共振哭 拉格反射器"回饋( 建分散式回饋(DPr/構取代,如第2®所-或为放式布 ()結構之非Γ結構或分散式ίΛ7"。具有一内 之任何裝置丄非4、『'光學元件係射器 第2b圖,本發明“4泉45、46: 、弟2b至6圖t 線性光學單塊材料中,丄振盪器(〇pc〇所蚀田 圖。此非線性光風w '分散式回饋(df 吏用之一非 性折射率調變,=:f材料之整個長戶上結構之概要 調變周期或此-重1之編號2及2具有一周期 條件。 白布拉袼光柵周期,Λ &不。此折射率 h,^/2ns,或 / 以係滿足布拉格 ! 1 g,f iU 〆 2ni 且η 其^,λ及λ分別係此户$ η 及二分別係此信號光及此間置光子之波長,見 绫ί lc圖係本發明光學參數所見之等效折射率: ;性光學單塊材料中,—器(_所H # !拉格繞射光栅50之兩塊材料之兩端 盪器Γ ΠΡΓί、 错以用从丄’你具有这些 之反射鏡面。另外,u本發明光學參數振 &兩個布拉格繞射光栅Page 16 200410464 V. Description of the invention (ίο) The low-frequency photon system is called idle ~ ^ one one 'one ~' — can oscillate this signal light, medium (i d) er). At this point both are oscillated. It is also possible to oscillate the intervening light (two /, the vibrator mirror surface 20 according to the present invention ... Xier 1 er), or the content of the same-speech optical element is true of these resonant cryo-rag reflectors " feedback (built decentralized feedback (DPr / Structural replacement, such as the 2nd place-or a non-Γ structure or a decentralized structure of a put-on cloth () structure. Any device with one inside, not "4" Figure 2b of the optical element emitter, the present invention "4 Springs 45, 46: Figures 2b through 6t. In a linear optical monolithic material, the 丄 oscillator (0pc0 eroded field map. This nonlinear light wind w 'decentralized feedback (df) Refractive index modulation, =: f The summary modulation period of the entire long structure of the material or this-heavy number 1 and 2 have a periodic condition. White Bragg grating period, Λ & No. This refractive index h , ^ / 2ns, or / to satisfy Prague! 1 g, f iU 〆 2ni and η, where ^, λ, and λ are the wavelengths of the signal light and interposed photons, respectively, see 绫 ί The lc diagram is the equivalent refractive index seen in the optical parameters of the present invention: in the optical monolithic material, the device (_ 所 H #! rag diffraction grating 50 The two ends of the two materials are oscillated by Γ ΠΡΓί, so you can use these mirrors. In addition, the optical parameter of the present invention & two Bragg diffraction gratings
^ 17頁 200410464 五、發明說明(11) 間之非線性光學材料5 5—段係保留不變以用於光學頻率 轉換。 第3a圖係本發明光學參數振盪器(0P0)所使用之一光 學波導中,一分散式回饋(D F Β)結構之概要圖。在整個 裝置長度上,此非線性光學波導6 0上方係具有一波狀周 期結構,亦即:分散式回饋(DFB)結構80。此分散式回 饋(DFB)結構8 0係反射此波導表面消散波以建立此非線^ Page 2004 200410464 V. Description of the invention (11) Non-linear optical material 5 The 5-segment system remains unchanged for optical frequency conversion. Figure 3a is a schematic diagram of a distributed feedback (D F B) structure in an optical waveguide used in the optical parameter oscillator (OP0) of the present invention. The non-linear optical waveguide 60 has a wave-like periodic structure above the entire device length, that is, a decentralized feedback (DFB) structure 80. The distributed feedback (DFB) structure 8 0 reflects the surface dissipated waves of the waveguide to establish the non-linear
性光學波導6 0内部之光學參數振盪。此非線性光學波導 6 0係製作於一合適材料基板7 0之表面。舉例來說,一非 線性光學波導係可以利用所謂之退火質子交換方法(Μ. L· Bortz et a 1. Optics Letters vol· 16 No. 23 (1991) PP· 1 844- 1 846),藉以製作於一鈮酸鋰基由 之表面。此布拉格繞射光柵之另一實施例第3b 此 非線性光學波導60内容内嵌周期性之折射率變化,亦即 内嵌分散式回饋(DFB)結構84,此内嵌分散式回饋 (DFB)結構84’例如,可以是由光折射效應、離子佈相The optical parameters inside the linear optical waveguide 60 oscillate. The non-linear optical waveguide 60 is fabricated on the surface of a suitable material substrate 70. For example, a non-linear optical waveguide system can be fabricated using the so-called annealed proton exchange method (M. L. Bortz et a 1. Optics Letters vol. 16 No. 23 (1991) PP. 1 844-1 846). On the surface of a lithium niobate base. Another embodiment of the Bragg diffraction grating. 3b. The nonlinear optical waveguide 60 is embedded with periodic refractive index changes, that is, embedded distributed feedback (DFB) structure 84, and embedded embedded feedback (DFB). Structure 84 'may be, for example, a photorefractive effect, an ionic phase
Cion imp lan tat i〇n)或熱滲透(thermal ma te:r 等方式產生。當使用光折射致 1 束::經由-光學光罩或者利用雷射干涉“,Cion imp lan tat i〇n) or thermal penetration (thermal ma te: r, etc.). When using light refraction to cause a beam :: via-optical mask or using laser interference ",
^二束強度之空間週期性變化;而使用佈^ ?丄=作微影製程所須之微影光罩ΐϋίί 一符合布拉格纟#鉍& ^ 此光罩具有 微影製程於波導夺‘ 2之空2週期’再利用此光罩配合 變折射率的區;表以罩,遮蔽不須改 僅將需要改變折射率的區域裸露並且^ The spatial variation of the intensity of the two beams is periodic; and the use of cloth ^? 丄 = a lithographic mask required for the lithographic process. The empty 2 cycles' then use this mask to match the area with variable refractive index; the surface is covered with a mask, which does not need to be changed, but only the area where the refractive index needs to be changed is exposed and
第18頁 200410464 五 、發明說明(12) 進 性 施 極 行離子佈植或熱渗透。如是,此内嵌分 DFB)結構84便可以直接提供分政式回饋 光學波導60内部之光波。此布拉回饋予此非線 例第3c圖係於此非線性光學波導㈤上=先栅之另一實 8 7,施加電壓於此週期性電極8 了上,氣作一週期性電 應產生周期性之折射率變化,而、H #二便可經由電光效 光學波導6 0之間,若有必要,可°一電極8 7與非線性 layer)90,例如二氧化矽(Si〇、,、、層緩衝層(Buffer 直接接觸時產生的損耗。如是:2波與電極87 (DFB)結構便可以直接提供分散此4电#光角效應分散式回饋 光學波導6 0内部之光波。 工子回饋於此非線性 第4a圖係本發明光學參數振盪器(〇p〇) 學波導中,一分散式布拉格反射琴f 之先 圖。與分散饋 置王個長度上a又置布拉格繞射光柵,此較佳實施、 一非線性光學波導60表面或内部,於此裝置之兩端製作 這些布拉格繞射光柵’亦即:分散式布拉格反射器 (DBR)結構50,至於介於分散式布拉格反射器(DBR) 50間之非線性光學波導55則保留不變。此分散式布拉格 反射器(DBR)之另一實施例第扑圖係於此非線性光學波 導6 0内容内後周期性之折射率變化,亦即内嵌分散式布 拉格反射器(DBR) 54,此内嵌周期性之折射率變化,例 如,可以是由光折射效應、離子佈植(i 〇 η implantation)或熱滲透(thermal materiai diffusi〇n)Page 18 200410464 V. Description of the invention (12) Progressive electrode Perform ion implantation or thermal penetration. If so, the embedded DFB) structure 84 can directly provide the fractional feedback optical waves inside the optical waveguide 60. This blaard gives feedback to this non-linear example. Figure 3c is on this non-linear optical waveguide = = another real 8 7 of the first grid. A voltage is applied to this periodic electrode 8 and a periodic electricity should be generated by the gas. The periodic refractive index changes, and H # 2 can pass between the electro-optical effect optical waveguide 60, if necessary, an electrode 87 and a non-linear layer) 90, such as silicon dioxide (Si0 ,, The layer, buffer layer (Buffer loss caused by direct contact. If it is: 2 wave and electrode 87 (DFB) structure can directly provide the 4 electric # optical angle effect decentralized feedback optical wave inside the optical waveguide 60. Worker Feedback to this non-linear Figure 4a is a prior image of a decentralized Bragg reflector f in the optical waveguide of the optical parameter oscillator (〇p〇) of the present invention. A Bragg diffraction grating is placed on the length a of the decentralized feed king. In this preferred implementation, a non-linear optical waveguide 60 is provided on the surface or inside of the Bragg diffraction gratings at both ends of the device, that is, a decentralized Bragg reflector (DBR) structure 50. Optical Waveguide (DBR) 50 Nonlinear Optical Waveguide 55 Retains unchanged. Another embodiment of the decentralized Bragg reflector (DBR) is a periodic refractive index change after the content of the non-linear optical waveguide 60, that is, an embedded decentralized Bragg reflector ( DBR) 54. The periodic refractive index change is embedded, for example, it can be caused by light refraction, ionic implantation or thermal materiai diffusi〇n.
200410464 五、發明說明(13) 等方式 光學光 空間週 程所須 之空間 造適當 需要改 透。如 可以直 部之光 4c圖係 57,施 產生周 學波導 layer: 直接接 格反射 予此非 ΐ ί去ΐ Ϊ:光折射效應時寫〜光束可以經由-罩或者利用运射干涉條紋,I生寫入光束強度之 期性變化,而使用離 又 之微影光罩,^ Ϊ ”可先製作微影製 〜尤皁此先罩具有一符合布拉格繞射條件 y,=用,罩配合微影製程於波導表面製 ί 4貝之ί罩,遮敝不須改變折射率的區域,僅將200410464 V. Description of the invention (13) and other methods Optical space The space required by the space program is appropriately made and needs to be changed. For example, if the light of the straight part 4c is shown in Figure 57, a layer of Zhou Xue waveguide is generated: directly reflect to this non-ΐ ί go Ϊ: write under the light refraction effect ~ the light beam can pass through the -shield or use the interference fringe, I Periodic changes in the intensity of the writing beam, and using a lithographic mask, ^ ”” can be made first lithography system ~ You Zao This mask has a condition that meets the Bragg diffraction conditions y, = used, the mask cooperates with the micro The film is made on the surface of the waveguide with a 4 shell cover, which covers the area without changing the refractive index.
,斤ΐ 2i或裸露並且進行離子佈植或熱滲 疋,此内甘欠7刀散式布拉格反射器(DBR)結構54便 接提供分散式光學回讀予此非線性光學波導#6〇内更 波。此布拉格繞射反射器(DBR)之另一實施例第 於此非線性光學波導60兩端製作一週期性電極 加電壓於此週期性電極57上,便可經由電光效應 期性之折,率變化,而週期性電極5 7與非線性光 60之間’若有必要,可加入一層緩衝層(Buf f )100,例如二氧化矽(Si〇2),以避免光波與電極『 觸時產生的損耗。如是,此電光效應分散式布拉 器(DBR)結構便可以直接提供分散式布拉格反射 線性光學波導60内部之光波。Ϊ́ 2i or bare and ion implantation or thermal infiltration, the 7-blade diffuser Bragg reflector (DBR) structure 54 is then provided to provide distributed optical readback to this nonlinear optical waveguide # 6〇 More waves. In another embodiment of the Bragg Diffraction Reflector (DBR), a periodic electrode is made at both ends of the non-linear optical waveguide 60 and a voltage is applied to the periodic electrode 57. Between the periodic electrode 57 and the non-linear light 60 ', if necessary, a buffer layer (Buf f) 100, such as silicon dioxide (Si〇2), may be added to avoid light waves and the electrode "producing Loss. If so, this electro-optical effect decentralized Bragg Bracket (DBR) structure can directly provide light waves inside the decentralized Bragg reflection linear optical waveguide 60.
弟5圖係係一動態頻移(c h i r ped)布拉袼繞射光柵之 概要圖,其係用做本發明所使用非線性光學材料之分散 式回饋(DFB)結構或分散式布拉格反射器(DBR)結構 之另一較佳實施例。一般布拉格繞射光柵係可以於空間 中具有一任意折射率變化,其係經由此布拉格條件反射 出與布拉格繞射光柵内之空間傅立葉成分(F〇urierFigure 5 is a schematic diagram of a dynamic chir ped Bragg diffraction grating, which is used as a distributed feedback (DFB) structure or a distributed Bragg reflector for a nonlinear optical material used in the present invention ( DBR) structure is another preferred embodiment. Generally, a Bragg diffraction grating system can have an arbitrary refractive index change in space, which is reflected by this Bragg condition and the spatial Fourier component (Fourier component in the Bragg diffraction grating).
第20頁 200410464 五、發明說明(14) - 二)匹:之光學波長。13此,-布拉格繞射之反 射^ ^仏可以對應至此布拉格繞射光柵之傅立葉 有一0^r;ler)補轉換頻譜。一動態頻移布拉格繞射光栅係具 於官興if ( F〇urier)轉換頻譜,且因此係適用 於f頻之先學芩數振盪器(0P0)操作。 第6圖/系一串聯(cascaded)布拉格繞射光柵之概要 圖’其係用做本發明所使用非線性光學材料之分散式回 ^ γ DFB)結構或分散式布拉格反射器(DBR)結構之另 ^佳實施例。此串聯式(cascaded)布拉格繞射光栅 Q、、於’在各個具有不同光柵周期之布拉格光柵(90, 咕 · 9 9)於光學參數振盪器(0P0)中振盪產生不同 射、、Γ Ϊ同時,經由此光學參數振盪器(0Ρ0)產生數種雷 有^要此串聯(Cascaded)布拉格繞射光柵之所 Πηϊ,2光學參數振盈器(_頻寬内,本發 長。千’振盪益(〇po)便可以同時產生複數種雷射波 參;;ί !效之t非/性光學元件係用做-光學 中便可利用光折射效摩\盈入物質時,在ά此單塊或波導元件 折射效應材料中,利g =入—布拉格繞射光栅。在一光 成—隨著空間調變的空g t光束強度之空間性調變,形 接,此非線性光學材料Ϊ f荷分佈。經由電光效應耦 強度變動以進行空間調η斤射率係依據寫入光束之空間 之寫入光束係可以利用=i舉例來說,—空間強度調變 Θ此光折射效應非線性光學元件上Page 20 200410464 V. Description of the invention (14)-2): Optical wavelength. 13 Thus, the reflection of-Bragg diffraction ^ ^ 仏 can correspond to the Fourier of this Bragg diffraction grating with a 0 ^ r; ler) complement conversion spectrum. A dynamic frequency-shifted Bragg diffractive grating system is used in Guan Xing if (Fourier) to convert the frequency spectrum, and is therefore suitable for f-frequency prior learning unit oscillator (0P0) operation. FIG. 6 / is a schematic diagram of a cascaded Bragg diffraction grating 'which is used as a distributed back-^^ DFB) structure or a distributed Bragg reflector (DBR) structure of a nonlinear optical material used in the present invention Another preferred embodiment. This cascaded Bragg diffraction grating Q, Yu 'oscillates in the optical parameter oscillator (0P0) in each Bragg grating (90, Go · 9 9) with different grating periods, and Γ Ϊ simultaneously Through this optical parameter oscillator (OP0), several types of lightning are generated. 要 To this Cascaded Bragg diffraction grating, Πηϊ, 2 optical parameter oscillator (within the bandwidth, the hair is long. Thousands of oscillation benefits (〇po) can produce multiple laser wave parameters at the same time; ί! T non-sex optical components are used-in optical can use light refraction to rub \ material into the material, in this single block Or in the refractive effect material of the waveguide element, the ratio of g = in-Bragg diffraction grating. The spatial modulation of the intensity of the light beam with the spatial modulation of the spatial modulation, the shape, the nonlinear optical material Ϊ f charge Distribution. The intensity of the electro-optic effect coupling is used to adjust the space. The emissivity is based on the space of the writing beam. The writing beam system can be used. For example,-the spatial intensity modulation. This optical refraction effect is a nonlinear optical element. on
第21頁 200410464 五、發明說明(15) 方之光罩加以實施,其中,此光罩經一光束照射後於空 間中產生一特定周期的光強度變化,該光強度變化週期 匹配於預期之布拉格折射光栅周期。譬如,使用一相位 光罩將光束以干涉方式寫入此非線性光學材料,其干涉 條紋周期係匹配於預期之布拉格折射光柵周期。再者, 具有一適當角度之兩雷射光束亦可以直接交叉,藉以在 此光折射效應非線性光學晶體中形成一周期性干涉強 度,進而寫入此光折射效應布拉格繞射光栅。 當一電光非線性晶體係用做一光學參數振盪器(0P0) 之增益物質時,在此單塊或波導晶體中係可能實施一電 光布拉格繞射光柵。首先,微電極係可以利用徵影技 術,製作於具有一電極分佈之非線性晶體上,其中,此 電極分佈係與布拉格結構分佈匹配。當一電壓係施加於 這些微電極時,此晶體内部之電場強度係經由電光效應 感應造成折射率變化,藉以在此晶體内部形成一電光布 拉格繞射光柵。舉例來說,若一 0 . 5mm厚度、ζ切面(ζ— cut)周期性極化鈮酸鋰晶體(PPLN)係用於一准相位匹 配之光學參數振盪器(0P0),則晶體之土 ζ表面便可以製 作周期性微電極、並施加一電壓以依據下列等式形成一 布拉格繞射光柵。 Δ η= ( 1/ 2) r33n3Ez 其中,當這些微電極係施加一大約1 0 0伏特之電壓時, 折射率變化係在△ n= 1 0 —乏等級。 若一非線性光學波導係用於一光學參數振盪器Page 21 200410464 V. Description of the invention (15) Fang Zhi's mask is implemented, in which the mask produces a specific period of light intensity change in space after being illuminated by a light beam, and the light intensity change period matches the expected Bragg refraction grating cycle. For example, a phase mask is used to interferingly write a light beam into this nonlinear optical material, and the interference fringe period is matched to the expected Bragg refraction grating period. Furthermore, two laser beams with an appropriate angle can also cross directly, so as to form a periodic interference intensity in the non-linear optical crystal with photorefraction effect, and then write into the Bragg diffraction grating with photorefraction effect. When an electro-optic nonlinear crystal system is used as the gain material of an optical parameter oscillator (0P0), an electro-optic Bragg diffraction grating may be implemented in this monolithic or waveguide crystal. First, the microelectrode system can be fabricated on a non-linear crystal with an electrode distribution by using sign technology. The electrode distribution system matches the Bragg structure distribution. When a voltage is applied to these microelectrodes, the electric field strength inside the crystal induces a change in refractive index through the electro-optic effect, thereby forming an electro-optic Bragg diffraction grating inside the crystal. For example, if a 0.5mm thickness, zeta cut (ζ-cut) periodically polarized lithium niobate crystal (PPLN) is an optical parameter oscillator (0P0) used for quasi-phase matching, then the soil zeta of the crystal A periodic microelectrode can be fabricated on the surface and a voltage can be applied to form a Bragg diffraction grating according to the following equation. Δ η = (1/2) r33n3Ez Wherein, when these microelectrodes are applied with a voltage of about 100 volts, the refractive index change is at Δ n = 1 0-depleted level. If a non-linear optical waveguide is used for an optical parametric oscillator
第22頁 200410464 五、發明說明 (0P0), 術,製作 微影蝕刻 射光柵。 器(DBR) 成光學參 薄膜彼覆 上方。舉 波導、並 波導上得 (16) " " ^--— 則此布拉格繞射光柵係可以利用微影餘刻技 =^波導之表面。在半導體處理中經常使用之 製程係於此非線性波導上形成一波狀布拉格嘵 如一同一分散式回饋(DFB)或分散式布拉格反 一極體雷射,此消散波之布拉格反射係足r ^ 數,盪。或者,此布拉格繞射光柵係可以利1 及微,餘刻技術,藉以形成於此非線性波導 例來說’ 一層材料薄膜係首先彼覆於此非線= 且對此’專膜進行化學或電聚独刻以在此非 到一布拉格繞射光栅。 、1Page 22 200410464 V. Description of the invention (0P0), technique, making lithographic etching grating. The device (DBR) becomes an optical parameter and the film is overlaid. (16) " " ^ --— Then the Bragg diffraction grating system can use the lithography technique to obtain the surface of the waveguide. A process often used in semiconductor processing is to form a wave-shaped Bragg on this non-linear waveguide, such as a distributed decentralized feedback (DFB) or decentralized Bragg inverse polar laser. The Bragg reflection of this dissipated wave is sufficient. Count, swing. Alternatively, this Bragg diffraction grating system can use 1 and micro, and time-cut technology to form a non-linear waveguide. For example, a layer of material thin film is first covered on this non-linear = and this' special film is chemically or Electropolymerization is engraved to a Bragg diffraction grating. ,1
〔實驗結果〕 由於鈮酸鋰晶體係一光折射效應材料,在一周期 化銳酸裡晶體(PPLN)中係可能寫入一由光折射效應所 形成之分散式回饋(DFB)結構或分散式布拉格反射^[Experimental Results] Due to the photorefractive effect material of the lithium niobate crystal system, it is possible to write a distributed feedback (DFB) structure or a dispersed form formed by the photorefractive effect in a periodic acid sharp crystal (PPLN). Prague reflection ^
(DBR)結構。特別是,在一周期性極化鈮酸鋰晶體 (PPLN)中’若能夠利用分散式回饋(ρρΒ)結構或分 式布拉格反射器(DBR)結構取代光學參數振盪器 (0P0)鏡面’則光學參數振盪器(〇p〇)之設計將可以 大幅地簡化。在此實驗中,周期性極化鈮酸鋰晶體 (PPLN)内係具有兩個具有光折射效應分散式回饋 (DFB)光柵之周期性極化鈮酸鋰晶體(ppLN)分散 饋(DFB)光學參數振盪器。其中,一個由光折射致應^ 成之分散式回饋(DFB)光柵係利用紫外線照射穿透此^(DBR) structure. In particular, in a periodically polarized lithium niobate crystal (PPLN), 'if the optical parameter oscillator (0P0) mirror surface can be replaced with a distributed feedback (ρρΒ) structure or a fractional Bragg reflector (DBR) structure', then optical The design of the parametric oscillator (〇PO) will be greatly simplified. In this experiment, a periodically polarized lithium niobate crystal (PPLN) has two periodically polarized lithium niobate crystals (ppLN) dispersed feed (DFB) optics with a photorefractive effect dispersed feedback (DFB) grating. Parametric oscillator. Among them, a diffuse feedback (DFB) grating, which is caused by light refraction ^, uses ultraviolet radiation to penetrate through ^
第23頁 200410464Page 23 200410464
五、發明說明(π) 期性極化鈮酸鋰晶體(PPLN) u ‘ 而另一個由光折射效應形成之2,光罩以製作得到’ 是利用兩道5 32龍波長雷射光東^政工式^饋(DFB)光棚則 性極化鈮酸鋰晶體(PPLN)中。、"條紋’寫入此周期 在第7圖所示之紫外線(UV)止$ +、 銀燈之非同調性紫外線(UV)麵Μ γ法中’來自20 W水 期、5 0 %工作周期之鉻光罩。田、糸照射/於具有1" m周 線(uv)濾波器,僅可穿透水_ 7銀鐙係覆蓋一之紫外 光。經過此紫外線(UV)濾波^光错線之3 6 5龍紫外 光強度係大約〇· 3 W/ cm2。此光1罩mI罩之3 6 5nm Ρ Λ r 广 。。 尤罩係直接接觸於一 4cm 長、0·5龍厚、2M調期及末端拋光(end— ishe 之周期性極化銳酸經晶體(PPLN),其鉻光栅向量 (grating vector)係對齊晶體χ方向之准相位匹配 (QPM)光栅向1。當射紫外線(υν)輻射透過此光罩 時’此周期性極化銳酸鋰晶體(PPLN)之溫度係在3分鐘 内由20 C上升至160 C、並在2小時期間由1 6 〇。 c降低 至2 0 ° C。如此’紫外線(UV)感應之光折射效應分散式 回饋(DFB)光栅便可以記錄於周期性極化鈮酸鋰晶體 (PPLN)中。此1/z m分散式回饋(DFB)光栅周期係可以 在1 1 5· 4 ° C溫度、於1 0 64 nm之幫浦(pUmped)周期性極 化鈮酸鋰晶體(PPLN)中產生針對4. 0 8 5 β m閒置光子之 振盪。其對應之信號波長係1 4 3 8 · 8 n m。利用9 V J/ p u 1 s e脈衝能量、7 3 0 p s脈衝寬度之被動式q開關(Q —switched)摻铷石榴石(Nd: YAG)雷射幫浦分散式回V. Description of the invention (π) Periodically polarized lithium niobate crystal (PPLN) u 'and the other 2 formed by the photorefractive effect, the photomask is made by' is using two 5 32 dragon wavelength laser light Formula (DFB) light booths are polarized in lithium niobate crystals (PPLN). "Stripes' are written in this cycle in the ultraviolet (UV) limit shown in Fig. 7. In the non-homogeneous ultraviolet (UV) surface of the silver lamp, the method is" from the 20 W water period, 50% work. " Chrome mask for cycles. Fields and rays of light have 1 " m circumferential filters (UV), which can only pass through the ultraviolet light of water _ 7 silver gallium. After this ultra-violet (UV) filtering, the optical intensity of the 3 to 5 dragons is about 0.3 W / cm2. This optical 1 cover mI cover is 3 6 5nm ρ Λ r wide. . The hood is in direct contact with a 4cm long, 0.5mm thick, 2M tuned, and end polished (end-ishe periodic polarized sharp acid crystal (PPLN). Its chromium grating vector (grating vector) is aligned with the crystal. The quasi-phase matching (QPM) grating in the χ direction is 1. When the ultraviolet (υν) radiation is transmitted through the mask, the temperature of the periodically polarized lithium sharp acid crystal (PPLN) rises from 20 C to 3 minutes 160 C, and reduced from 16 to 20 ° C over a two-hour period. In this way, the 'UV (UV) -induced light refraction effect dispersion feedback (DFB) grating can be recorded in periodically polarized lithium niobate Crystal (PPLN). This 1 / zm distributed feedback (DFB) grating period system can periodically polarize lithium niobate crystals at a temperature of 1 15 · 4 ° C and a pump (pUmped) of 1 0 64 nm. PPLN) generates an oscillation for 4. 0 8 5 β m idle photons. Its corresponding signal wavelength is 1 4 3 8 · 8 nm. Passive q using 9 VJ / pu 1 se pulse energy and 7 3 0 ps pulse width Q (switched) Er-doped garnet (Nd: YAG) laser pump decentralized return
第24頁 200410464 五、發明說明(18) 饋(DFB)周期性極化鈮酸鋰晶體(ppLN),此分散式回 饋(DFB)光學參數振盪器(opo)信號係可以在i 43 8. 8 nm產生。此信號光譜係於一長度為1/ 2 m之單光儀 (monochromator)後,利用一砷化銦鎵(inGaas)谓剛 器加以量測。此單光儀之解析度係3 A ,其具有一 1 “爪 狹縫開口及一 3 0 0 1 i ne s/ mm的紅外線光栅。此7 3 0 p3幫 浦脈衝寬度係約相當於此4 cm長度之周期性極化銳酸鋰 晶體(PPLN)單趟來回時間,故不會經由此未鍍特定趟 膜之周期性極化銳酸經晶體(PPLN)兩端表面形成光表 數振盪。 > 第8圖係表示不同溫度之光學參數振盪器(〇p〇)及光 學參數產生(0PG)信號光譜。由第8圖可知,雖然光學 參數產生(0PG)波長係隨溫度平移,但是光學參數振盈 器(0P0)信號波長卻因為周期性極化鈮酸鋰晶體 (PPLN)内部之光折射效應分散式回饋(DFB)光柵而保 持不變。在1 1 5 · 4° C溫度,此光學參數產生(〇pg)波^ 係與光學參數振盪器(0Ρ0)信號波長部分重疊,且兩^ 間轉換係大幅改進達3倍。分散式回饋(DFB)光學參數 振盪器(0Ρ0)信號之量測光譜寬度係3Α,而光學參數 產生(0PG)信號之量測光譜寬度係3 nm。在幫浦能量 6 · 7 5 // J時,輸出信號能量係1 v J,相當於1 5 %之信號 光能量轉換率。 u 由於分散式回饋(DFB)光柵向量係晶體X方向,此分 散式回饋(DFB)光栅可能會預期為X方向之空間電荷電Page 24 200410464 V. Description of the invention (18) Feed (DFB) periodically polarized lithium niobate crystal (ppLN). This distributed feedback (DFB) optical parameter oscillator (opo) signal system can be used at i 43 8. 8 nm produced. This signal spectrum is measured after a monochromator with a length of 1/2 m and is measured with an inGaAs ingot. The resolution of this monometer is 3 A, which has a 1 "claw slit opening and an infrared grating of 3 0 0 1 i ne s / mm. The pulse width of this 7 3 0 p3 pump is approximately equivalent to this 4 The length of a single cycle of the periodically polarized lithium a sharp acid crystal (PPLN) with a length of cm is one round trip time, so the periodic polarization of a sharp acid without a specific film is not formed on the two surfaces of the crystal (PPLN). > Figure 8 shows the optical parameter oscillator (oop) and optical parameter generation (0PG) signal spectra at different temperatures. As can be seen from Figure 8, although the optical parameter generation (0PG) wavelength is shifted with temperature, the optical The parametric oscillator (0P0) signal wavelength remains unchanged due to the light-refracting effect distributed feedback (DFB) grating inside the periodically polarized lithium niobate crystal (PPLN). At a temperature of 1 1 5 · 4 ° C, this The optical parameter generation (〇pg) wave ^ is partially overlapped with the optical parameter oscillator (OP0) signal wavelength, and the conversion between the two parameters is greatly improved by 3 times. The distributed feedback (DFB) optical parameter oscillator (OP0) signal The measured spectral width is 3A, and the amount of optical parameter generation (0PG) signal The spectral width is 3 nm. When the pump energy is 6 · 7 5 // J, the output signal energy is 1 v J, which is equivalent to 15% of the signal light energy conversion rate. U Because of the distributed feedback (DFB) grating vector system Crystal X direction, this distributed feedback (DFB) grating may be expected to be a space charge in the X direction
200410464 五、發明說明(19) 場E所導致。然而,z極化(ζ— ρ ο 1 a r i z e d)幫浦電場之 空間電荷電場感應(E χ— i n d u c e d)折射率變化係銳酸經 内部之二階效應,其係表示為: △ η尸 n〇 2ne 3( rwEO 2/ 2 等式(1) 其中,η及η,2 . 2分別係正常及異常折射率,且 r 51~ 3 2 pm/ V係鈮酸鋰之電光係數。在穩定平衡態中, 其係由熱擴散主導、並由非空乏載子近似,此空間電荷 電場之等級大約為Ex «2KkBT / (Aq) «ΐ〇5 v/ m, 其 中,kB係波茨曼常數(Boltzmann’s constant) 、9係一 個電子的電荷量、4 0 0 K係晶體温度、且Λ〜1 /z m係分 散式回饋(DFB)光柵周期。雖然此空間電荷電場係旋轉 銳酸經之折射率橢球(index ellipsoid)、並且對入射 光學電場進行輕微地去極化動作(deρο 1 ar i z e),此雷 射所見之折射率變化,根據等式(1),係僅僅為 △ η «1(Γ9 。然而,由於穿透此光學罩幕之紫外線(UV)繞 射,寫入光束之強度係沿著晶體z方向而空間地變動。這 意味著,空間電荷分佈亦會沿著z方向而呈現變動。隨著 光折射效應電荷之沿z方向變動,z成分之空間電荷電場 Ez亦會在周期性極化鈮酸鋰 晶體(PPLN)中感應得到一 階之折射率變化,其係表示為: △ nz=n33r33Ez/2»105 等式(2) 其中,在計算時係使用r 33» 31 p m / V及Ε Ε 10 5 V/ ΠΓ折射率變化之數量係遠大於等式(1)所計算。在 本發明之周期性極化鈮酸鋰晶體(PPLN)光學參數振盪200410464 V. Description of invention (19) Caused by field E. However, the z-polarized (ζ — ρ ο 1 arized) pump space electric field induced (E χ — induced) refractive index change is the second-order effect of sharp acid inside, which is expressed as: 3 (rwEO 2/2 Equation (1) where η and η, 2.2 are normal and abnormal refractive indices, respectively, and r 51 ~ 3 2 pm / V is the electro-optic coefficient of lithium niobate. In a stable equilibrium state It is dominated by thermal diffusion and approximated by non-empty carriers. The level of this space charge electric field is approximately Ex «2KkBT / (Aq)« ΐ〇5 v / m, where kB is Boltzmann's constant ), 9 is the charge of an electron, 4 0 K is the crystal temperature, and Λ ~ 1 / zm is the distributed feedback (DFB) grating period. Although this space charge electric field is the refractive index ellipsoid of the rotating sharp acid ( index ellipsoid) and a slight depolarization of the incident optical electric field (deρο 1 ar ize), the change in refractive index seen by this laser is, according to equation (1), only △ η «1 (Γ9. However, Because of the ultraviolet (UV) diffraction that penetrates this optical mask, the The degree changes spatially along the z direction of the crystal. This means that the space charge distribution will also change along the z direction. As the light refraction effect charges change along the z direction, the space charge electric field Ez of the z component will also change. A first-order refractive index change is induced in a periodically polarized lithium niobate crystal (PPLN), which is expressed as: △ nz = n33r33Ez / 2 »105 Equation (2) where r 33» is used in the calculation The number of refractive index changes of 31 pm / V and Ε Ε 10 5 V / ΠΓ is much larger than that calculated by equation (1). In the present invention, the optical parameters of the periodically polarized lithium niobate crystal (PPLN) oscillate
第26頁 200410464Page 26 200410464
五、發明說明(20) 器(0P0)之分散式光學回饋係類似於在增益物質上方具 有波狀光栅之分散式回饋(DFB)二極體4 。妷而,^ 波狀光折射效應分散式回饋(DFB)光柵係能夠提供足夠 之光學回饋、並且能夠產生一頻寬達到單光儀解析 極限之信號光。 為利用周期性極化鈮酸鋰晶體(ppLN)中之乂方向空間 ,荷電場,進一步調查分散式回饋(DFB)光學參數二盪 為(0P0)之可此性,光折射效應分散式回讀(Dfb)光 柵係利用干涉5 3 2 nm波長之雷射光束加以寫入,如第9圖 所示。圓形雷射光束係利用一柱狀透鏡組塑型為具有大 約1 · 5 0光軸比之橢圓光束。隨後,此平均功率2 〇 〇 m界之 5 3 2 n m雷射係以一光束分離器(b e a m s p 1 i 11 e r )加以合 離、並以34。角度進行重新組合,藉:在Τ=:〇.5 m m厚度、1 1 // m周期、端面未鍍膜、但末端加以光學拋光 之周期性極化鈮酸鋰晶體(PPLN)上產生〇· 913 # m周期 之干涉條紋。此干涉雷射光束之最大強度大約係〇. 5 W/ cm2。此0. 9 1 3 // m周期之分散式回饋(DFB)光柵係 没汁以在8 2 C溫度’在以5 3 2 n m激發之周期性極化妮酸 鋰晶體(PPLN)中振盪3· 778// m之光學參數振盈器 (0P0)閒置光子波長。此幫浦雷射係一被動q開關、頻 率加倍之摻铷石榴石(Nd: YAG)雷射,其係在具有6· 59 k Η z重覆率及4 3 0 p s脈衝寬度之周期性極化鈮酸鋰晶體 (PPLN)中,產生2 /z J之脈衝能量。這些干涉性之532 nm雷射光束係在單塊周期性極化鈮酸鋰晶體(ρρ[Ν)V. Description of the invention The decentralized optical feedback of the (20) device (0P0) is similar to the decentralized feedback (DFB) diode 4 with a wave grating above the gain material. What is more, the wavy light refraction effect decentralized feedback (DFB) grating system can provide sufficient optical feedback and can generate a signal light with a bandwidth that reaches the analysis limit of a single light meter. In order to take advantage of the 乂 -direction space and electric field in periodically polarized lithium niobate crystals (ppLN), the investigability of the optical parameters of the distributed feedback (DFB) to two oscillations (0P0) was further investigated. The read (Dfb) grating is written using a laser beam with an interference wavelength of 5 3 2 nm, as shown in FIG. 9. The circular laser beam is shaped as an elliptical beam with an optical axis ratio of about 1.50 using a lenticular lens group. Subsequently, the 5 32 nm laser with a mean power of 200 m was separated by a beam splitter (beam m s p 1 i 11 e r), and 34. The angles are recombined by: ·· 913 generated on a periodically polarized lithium niobate crystal (PPLN) with a thickness of T =: 0.5 mm, a period of 1 1 // m, an end surface not coated, but optically polished at the end. # m periodic interference fringes. The maximum intensity of this interference laser beam is approximately 0.5 W / cm2. This 0.9 1 3 // m-cycle decentralized feedback (DFB) grating system has no juice to oscillate in a periodically polarized lithium niobate crystal (PPLN) excited at 5 2 2 nm at a temperature of 8 2 C 3 · 778 // m optical parameter oscillator (0P0) idle photon wavelength. This pump laser is a passive q-switched, erbium-doped garnet (Nd: YAG) laser with a double frequency. It is a periodic electrode with a repeatability of 6.59 k Η z and a pulse width of 4 3 0 ps. In a lithium niobate crystal (PPLN), a pulse energy of 2 / z J is generated. These interfering 532 nm laser beams are in a single periodically polarized lithium niobate crystal (ρρ [Ν)
200410464 五、發明說明(21) 中,產生一 X方向之周期性空間電荷電場。雖然本實驗係 可以清楚看到6 2 0 nm附近之溫度相關光學參數產生 (0PG)信號,但是,本實驗卻無法發現任何證據以辅佐 等式(1)中,微小光學折射率變化所導致之分散式回饋 (DFB)光學參數振盪器(0P0)。 在持續照射5 3 2 nm干涉光於此周期性極化鈮酸鋰晶體 (PPLN)之同時,本實驗亦將強度53mW/ cm2之紫外線 (UV)照射在周期性極化鈮酸鋰晶體(PPLN)之+ z表 面、並且在輸出處再度觀察到分散式回饋(DFB)之光學 參數振盪器(0P0)信號。3 6 5 nm波長之紫外線(UV)在 鈮酸鋰中係沿著z方向衰減、並且會經由所謂之雙光子光 折射效應寫入方法(L· Hesselink, e t a 1. 9 Science 282 ( 1998) pp. 1089)而感應得到一波狀分散式回鑛 (DFB)結構。第1 0圖係表示在不同溫度時,周期性極化 鈮酸鋰晶體(PPLN)之光學參數振盪器(0P0)及光學參 數產生信號光譜。由第1 0圖可知,雖然此光學參數產生 (0PG)係利用溫度加以調變,但是,619. 3 nm之分散式 回饋(DFB)光學參數振盪器(0P0)信號波長卻仍然會 因必須匹配於此光折射效應分散式回饋(DFΒ)光柵而繼 續保持不變。在82. 4° C溫度,此光學參數產生(0PG)波 長係與此光學參數振盪(0Ρ0)信號波長部分重疊,信號 強度最強。當本實驗係沿著ζ方向、於縱切方向移動此幫 浦光束,逐漸使光束由晶體較深處射入時,此分散式回 饋(DFB)光學參數振盪器(0Ρ0)信號係逐漸降低,此200410464 V. Description of Invention (21), a periodic space charge electric field in the X direction is generated. Although this experiment can clearly see the (0PG) signal generated by temperature-related optical parameters near 620 nm, this experiment could not find any evidence to supplement the equation (1) caused by the small optical refractive index change. Decentralized feedback (DFB) optical parameter oscillator (0P0). While continuously irradiating 5 3 2 nm interference light on this periodically polarized lithium niobate crystal (PPLN), this experiment also irradiated ultraviolet (UV) with an intensity of 53mW / cm2 to the periodically polarized lithium niobate crystal (PPLN) ) + Z surface, and the optical parameter oscillator (0P0) signal of decentralized feedback (DFB) was observed again at the output. Ultraviolet (UV) wavelengths of 3 6 5 nm in lithium niobate are attenuated along the z-direction and are written via the so-called two-photon photorefractive effect writing method (L. Hesselink, eta 1. 9 Science 282 (1998) pp 1089), and a wave-shaped decentralized ore return (DFB) structure is obtained by induction. Figure 10 shows the optical spectrum of the optical parameter oscillator (0P0) and optical parameters of the periodically polarized lithium niobate crystal (PPLN) at different temperatures. It can be seen from Fig. 10 that although the optical parameter generation (0PG) is adjusted by temperature, the signal wavelength of the scattered feedback (DFB) optical parameter oscillator (0P0) of 619.3 nm will still have to be matched due to Here, the Diffraction Feedback (DFB) grating of the light refraction effect remains unchanged. At a temperature of 82.4 ° C, the optical parameter generation (0PG) wavelength partially overlaps with the optical parameter oscillation (OP0) signal wavelength, and the signal intensity is the strongest. When this experimental system moves the pump beam along the ζ direction and in the longitudinal direction, and gradually makes the beam enter from deeper places of the crystal, the distributed feedback (DFB) optical parameter oscillator (OP0) signal system gradually decreases. this
第28頁 200410464Page 28 200410464
第29頁 ZUU41U404 圖式簡單說明 ^ 第1圖係一光學彖 知技藝所實施。 振蓋為(0P0)之概要剖面圖,如習 ,2a圖係本發明光學表 口口 第2b圖係本發明光風:振盈為(ΟΡΟ)之概要介紹。 性光學單塊材料中I =數振盪器(0Ρ0)所使用之一非線 第2c圖係本發明光風1散式回饋(DFB)結構之概要圖。 性光學單塊材料中二又,振盪器(0P0)所使用之一非線 概要圖。 为散式布拉格反射器(DBR)結構之 第3a、3b、3c圖係太八Page 29 ZUU41U404 Schematic description ^ Figure 1 is implemented by an optical laboratory. The vibrating cover is a schematic cross-sectional view of (0P0). As shown in Fig. 2a, the optical watch of the present invention is shown in Fig. 2b, which is a brief introduction of the light wind of the present invention: Zhenying is (0PO). A non-linear used in the I = digital oscillator (OP0) in the monolithic optical monolithic material. Figure 2c is a schematic diagram of the light wind 1 scattered feedback (DFB) structure of the present invention. In the optical monolithic material, there are two non-linear schematic diagrams of one of the oscillators (0P0). Figures 3a, 3b, and 3c of the structure of the diffuse Bragg reflector (DBR)
之一非線性光學波導^明^學參數振盪器(ΟΡΟ)所使用 圖。 一分散式回饋(DFB)結構之概要 第4a、4b、4c圖係本菸 之一非線性光學波導ϋΐς二ί振盡器(〇p〇)所使用 概要圖。 刀政式布拉格反射器(DBR)之 3 ^圖係—動態頻移(chirped)布拉 圖其係用做本發明所使二二射先栅之概要 較佳實施: 式布拉格反射器(_)肖構之另- 第6圖係—串聯(caScaded)布拉格繞射光One of the non-linear optical waveguides is used in the optical parametric oscillator (OPPO). Outline of a Decentralized Feedback (DFB) Structure Figures 4a, 4b, and 4c are schematic diagrams used in one of the non-linear optical waveguides of the present invention. 3 of the Knife Government Bragg Reflector (DBR) Picture Series-Dynamic Frequency Shifted Brato It is used as the outline of a two-to-two shot first grid made by the present invention. Preferred Bragg Reflector (_) Xiao Gou Zhi-Picture 6-CaScaded Bragg Diffraction Light
係用做本發明所使用非線性光學田/ 車=):Γ。或分散式布拉格反射器另- ι繞射先栅之一先折射效應分散式Used as the non-linear optical field / car used in the present invention =): Γ. Or one of the decentralized Bragg reflectors
第30頁 200410464 圖式簡單說明 回饋(DFB)光學參數振盪器(op〇)之概要圖。 第8圖係第7圖光折射效應分散式回饋(DFB)光學參數振 盪器(0Ρ0)之量測信號光譜。 第9圖係利用交叉雷射光束在一光折射效應非線性光學晶 體中寫入布拉格繞射光柵之雙光子光折射效應分散式回 饋(DFB)光學參數振盪器(0Ρ0)之概要圖。 第1 〇圖係第9圖雙光子光折射效應分散式回饋(DFB)光 學參數振盈器(0Ρ0)之夏測b 5虎光譜。Page 30 200410464 Brief description of the diagram The outline diagram of the feedback (DFB) optical parameter oscillator (op0). Figure 8 is the measured signal spectrum of the optical parameter oscillator (OP0) of the deflection feedback (DFB) optical refraction effect in Figure 7. Fig. 9 is a schematic diagram of a two-photon photorefractive effect decentralized feedback (DFB) optical parameter oscillator (OP0) written into a Bragg diffraction grating in a non-linear optical crystal with photorefraction effect using crossed laser beams. Fig. 10 is the summer measurement b 5 tiger spectrum of the two-photon photorefractive effect decentralized feedback (DFB) optical parameter vibrator (OP0) in Fig. 9.
元件符號說明: 10幫浦雷射(pump laser) ω s、ω i、ω p角頻率 3 〇非線性光學元件 2 0光學反射鏡面 40、 43、 44、 45、 46裝置 2、 3編號 50、54内嵌分散式布拉袼反射器(Dbr) 5 5非線性光學材料 5 7週期性電極 6 0非線性光學波導 7 〇合適材料基板 8〇分散式回饋(DFB)結構 84内嵌分散式回饋(DFB)結構 87電極 9〇、95、99布拉格光柵 1〇〇緩衝層(Buffer· layer)Element symbol description: 10 pump lasers ω s, ω i, ω p angular frequency 3 〇 non-linear optical element 2 0 optical reflecting mirror surface 40, 43, 44, 45, 46 device 2, 3 number 50, 54 Embedded distributed Bragg reflector (Dbr) 5 5 Non-linear optical material 5 7 Periodic electrode 6 0 Non-linear optical waveguide 7 〇 Suitable material substrate 8 〇 Distributed feedback (DFB) structure 84 Built-in distributed feedback (DFB) Structure 87 electrodes 90, 95, 99 Bragg grating 100 Buffer layer
第31頁Page 31
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/293,620 US6904066B2 (en) | 2001-11-13 | 2002-11-13 | Optical parametric oscillator with distributed feedback grating or distributing Bragg reflector |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200410464A true TW200410464A (en) | 2004-06-16 |
TWI239130B TWI239130B (en) | 2005-09-01 |
Family
ID=37001202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92131148A TWI239130B (en) | 2002-11-13 | 2003-11-06 | Optical parametric oscillator with distributed feedback grating or distributed bragg reflector |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI239130B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI424293B (en) * | 2008-11-14 | 2014-01-21 | 私立中原大學 | Method for determining the dynamic range of volume holographic memories |
CN110212401A (en) * | 2019-08-01 | 2019-09-06 | 南京南智先进光电集成技术研究院有限公司 | A kind of on piece distributed feed-back optical parametric oscillator |
-
2003
- 2003-11-06 TW TW92131148A patent/TWI239130B/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI424293B (en) * | 2008-11-14 | 2014-01-21 | 私立中原大學 | Method for determining the dynamic range of volume holographic memories |
CN110212401A (en) * | 2019-08-01 | 2019-09-06 | 南京南智先进光电集成技术研究院有限公司 | A kind of on piece distributed feed-back optical parametric oscillator |
WO2021017385A1 (en) * | 2019-08-01 | 2021-02-04 | 南京南智先进光电集成技术研究院有限公司 | On-chip distributed feedback optical parametric oscillator |
GB2588065A (en) * | 2019-08-01 | 2021-04-14 | Nanjing Nanzhi Advanced Photoelectric Integrated Tech Research Institute Co Ltd | On-Chip Distributed feedback optical parametric oscillator |
GB2588065B (en) * | 2019-08-01 | 2021-10-06 | Nanjing Nanzhi Advanced Photoelectric Integrated Tech Research Institute Co Ltd | On-Chip Distributed feedback optical parametric oscillator |
Also Published As
Publication number | Publication date |
---|---|
TWI239130B (en) | 2005-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6301273B1 (en) | Power enhanced frequency conversion system | |
US6333943B1 (en) | Optical device, laser beam source, laser apparatus and method of producing optical device | |
JP3909867B2 (en) | Laser equipment | |
JP5395930B2 (en) | Broadband light source device | |
JP6345744B2 (en) | light source | |
US7652815B2 (en) | Mobile charge induced periodic poling and device | |
JP2685969B2 (en) | Second harmonic generator | |
US6904066B2 (en) | Optical parametric oscillator with distributed feedback grating or distributing Bragg reflector | |
TW202021215A (en) | Laser light source and laser projector with it | |
JP2741081B2 (en) | Optical wavelength converter | |
JP7135076B2 (en) | Light source with multi-longitudinal mode continuous wave output based on multi-mode resonant OPO technology | |
TW200910714A (en) | Electro-optic bragg deflector and method of using it as laser Q-switch | |
TW200410464A (en) | Optical parametric oscillator with distributed feedback grating or distributed bragg reflector | |
JP3931235B2 (en) | Reciprocating optical modulator | |
CN101383477A (en) | Laser second harmonic generation device | |
Zukauskas et al. | Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices | |
JP2002287193A (en) | Wavelength conversion element, wavelength conversion device and laser device | |
CN105006734A (en) | 2-micron laser based on half-intracavity optical parametric oscillator containing volume grating | |
US20090219956A1 (en) | Device for Generating Narrowband Optical Radiation | |
JPH01312529A (en) | Nonlinear optical element | |
Moore et al. | Using multiple mutually incoherent fiber lasers to pump a coherent signal beam in an optical parametric oscillator | |
JP2004157504A (en) | Laser apparatus | |
Lazoul et al. | Simultaneous collinear and non-collinear parametric generation in 1D single grating periodically poled lithium tantalate | |
JP2005156634A (en) | Wavelength transducer having cylindrical ferroelectric single crystal and light generator using the same | |
Zukauskas et al. | Periodically Poled KTiOAsO4 For Mid-Infrared Light Generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |