TW200410015A - Semi-transparent type LCD device - Google Patents

Semi-transparent type LCD device Download PDF

Info

Publication number
TW200410015A
TW200410015A TW092126608A TW92126608A TW200410015A TW 200410015 A TW200410015 A TW 200410015A TW 092126608 A TW092126608 A TW 092126608A TW 92126608 A TW92126608 A TW 92126608A TW 200410015 A TW200410015 A TW 200410015A
Authority
TW
Taiwan
Prior art keywords
light
liquid crystal
layer
display device
crystal display
Prior art date
Application number
TW092126608A
Other languages
Chinese (zh)
Other versions
TWI234038B (en
Inventor
Yasunari Nagata
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002281003A external-priority patent/JP3924518B2/en
Priority claimed from JP2002316812A external-priority patent/JP2004151399A/en
Priority claimed from JP2002315749A external-priority patent/JP2004151309A/en
Priority claimed from JP2002323260A external-priority patent/JP3981321B2/en
Priority claimed from JP2002375637A external-priority patent/JP2004205853A/en
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of TW200410015A publication Critical patent/TW200410015A/en
Application granted granted Critical
Publication of TWI234038B publication Critical patent/TWI234038B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

The semi-transparent type LCD device of the present invention is formed by laminating an optical reflective film, coloring layer 3, upper passivation layer, transparent electrode and alignment film on a glass substrate, and comprises a light-transmission part 7 whose transmitted areas to the optical reflective film are different with respective coloring layer 3. Also, a recess groove part 8 is formed in the reflective region of each coloring layer 3. By the above constitution, white balance formed by the RGB of transmission mode and reflective mode can be independently set up. Through the white balance adjustment proceeded in this way, a semi-transparent type LCD device with high quality and high performance can be provided.

Description

玖、發明說明: 【發明所屬之技術領域】 本發明係關於具有反射模式與透過模式之雙方的機能之 半透過型彩色液晶顯示裝置者,尤其是關於可進行白平衡 調整之半透過型彩色液晶顯示裝置者。 【先前技術】 近年來,液晶顯示裝置係使用於小型或中型的攜帶式資 訊終端機、筆記型電腦、與大型且高精細的監視器中。尤 其於攜帶式資訊終端機等之須於室内、室外兩方使用的器 材中,於外光十分強的環境下,作為顯示裝置的照明方法, 積極地利用外光(反射模式),而於外光較弱的環境下,則 使用背光(透過模式),之所謂的半透過型彩色液晶顯示裝 置,係作為主流而被使用者。 使用此半透過型彩色液晶顯示裝置,經由太陽光、螢光 燈等之外來照明時使用反射模式,或使用背光而作為透過 模式使用,為能在一台的液晶顯示裝置中兼備著雙方的機 能,係使用者半透鏡的光半透過膜(參照專利文獻 1 )。又 於主動式矩陣型半透過型彩色液晶顯示裝置中,為了同樣 的目的亦有使用光半透過膜之提議(參照專利文獻2 )。 若使用此光半透過膜,欲使反射率與透過率之雙方的機 能同時提高甚為困難,是其問題,為解決此課題,曾有使 用設置有光透過用孔之反射膜來代替上述光半透過膜的半 透過型彩色液晶顯示裝置之提議(參照專利文獻3 )。 於上述半透過型彩色液晶顯示裝置中,相對於在透過模 5 312/發明說明書(補件)/92-12/92126608 式中光係通過彩色濾光層1次,在反射模式中光則通過彩 色濾光層2次,故與反射模式相比較,透過模式的色純度 較為降低。因此,將使用透過模式與使用反射模式的區域 之空間力口以區隔,藉由使透過模式的區域之彩色濾光層的 膜厚作成為較反射模式的區域之彩色濾光層的膜厚更厚, 以使透過模式的色純度提高,如此構成的半透過型彩色液 晶顯示裝置,亦曾被提議(參照專利文獻4、專利文獻.5 )。 又,經由在反射模式的區域之彩色濾光層上開設針孔, 使反射模式的色純度作成為與透過模式的色純度同等所成 的半透過型彩色液晶顯不裝置’亦曾被提出。 [專利文獻1 ] 日本專利特開平8 - 2 9 2 4 1 3號公報 [專利文獻2 ] 日本專利特開平7 - 3 1 8 9 2 9號公報 [專利文獻3 ] 日本專利第2 8 7 8 2 3 1號公報 [專利文獻4 ] 日本專利特開2 0 0 0 - 2 9 8 2 7 1號公報 [專利文獻5 ] 日本專利特開2 0 0 1 - 1 6 6 2 8 9號公報 【發明内容】 〈發明所欲解決之問題〉 然而,於上述的半透過型彩色液晶顯示裝置中,於透過 模式中係使用LED燈作為光源,另一方面,於反射模式中, 6 312/發明說明書(補件)/92-12/92126608 於室内使用時係使用螢光燈作為光源,於室外使用時係利 用太陽光作為光源,如此般,於透過模式與反射模式中的 光源並不相同。 因而,對於透過模式於反射模式之雙方,色設計、白平 衡設計須分別獨立進行設計。 又,有關彩色濾光層,係由 R (紅)G (綠)B (藍)來形成, 即使依據專利文獻4與專利文獻5所提出的技術來施行, 亦無法對由透過模式與由反射模式所構成的白平衡獨立地 進行設定。 再者,即使是在反射模式的區域之彩色濾光層上開設針 孔的構造,亦無法對由透過模式與由反射模式的RGB所構 成的白平衡獨立地進行設定。 因而,本發明之目的,在於提供可對由透過模式與由反 射模式的R G B所構成的白平衡獨立地進行設定的半透過型 彩色液晶顯示裝置。 本發明之另一目的,在於提供可使反射模式的色純度作 成為與透過模式的色純度大致相同,且可對由透過模式與 由反射模式的RGB所構成的白平衡獨立地進行設定的半透 過型彩色液晶顯示裝置。 A.本發明之半透過型彩色液晶顯示裝置,係具備有:在 基板的一主面上形成光反射膜,並形成分別不同的著色之 著色層,在此等著色層上依序形成由透明導電材所構成之 像素形成電極與配向膜所成的一方構件;在透明基板上依 序形成由透明導電材所構成之另一方的像素形成電極與配 7 312/發明說明書(補件)/92-12/92126608 向層所成的另一方構件;與介在於此等一方構件與另一方 構件之間的液晶層;其特徵在於:在前述光反射膜上,對 應於各個著色層設置有不同的光透過面積之光透過部。 依據上述之構成,於上述光反射膜中依於各像素設置光 透過部,以此光透過部作為透過模式,以光透過部以外的 區域作為反射模式,藉此,作成為半透過型彩色液晶顯示 裝置。 而且,於使用透過模式與反射模式之雙方時,設置對應 於分別的著色層而光透過面積不同的光透過部,藉此,可 對由透過模式與由反射模式的RGB所構成的白平衡獨立地 進行設定。經由進行這樣的白平衡調整,可得到高品質且 高性能的半透過型彩色液晶顯示裝置。 B.又,本發明之半透過型彩色液晶顯示裝置,係具備 有:在基板的一主面上依序形成光反射膜與透明樹脂層, 並形成有分別不同的著色之著色層,在此等著色層上依序 形成由透明導電材所構成之像素形成電極與配向膜所成的 一方構件;在透明基板上依序形成由透明導電材所構成之 另一方的像素形成電極與配向層所成的另一方構件;與介 在於此等一方構件與另一方構件之間的液晶層;其特徵在 於:在前述光反射膜上,對應於各個著色層設置有光透過 部,且對應於前述各個著色層,前述透明樹脂層之對光反 射膜的被覆面積,係作成為不同。 依據本發明之半透過型彩色液晶顯示裝置,如上述的構 成般,對於上述光反射膜依於各像素設置光透過部,以此 8 312/發明說明書(補件)/92-12/92126608 光透過部作為透過模式,以光透過部以外的區域作為反射 模式,藉此,作成為半透過型彩色液晶顯示裝置。 再者,依據本發明之半透過型彩色液晶顯示裝置,對應 於分別的著色層,將此對透明樹脂層的光反射膜之被覆面 積作成為不同,可獲得下述的效果。 以作為透過模式所必須的透過率·色再現性為基準來設 定光透過部的面積與彩色濾光層(著色層)之各要素(色的 濃度·厚度)的情況,於習用的半透過型彩色液晶顯示裝 置,其彩色濾光層中於反射用區域亦形成相同的色濃度· 厚度之著色層,因此,於反射模式之顯示會變暗。 相對於此,經由對於本發明般的各著色層之反射區域, 使透明樹脂層之對光反射膜的被覆面積作成不同,其用作 為反射區域的彩色濾光層(著色層)的量可作增減。亦即, 反射用區域的著色層,與透過用區域的著色層相比較,可 得到將其厚度作成為較薄者的同樣之效果。因而,可使反 射模式之明亮度之降低程度得以減少或使其不降低。 而且,依據本發明,對各著色層的反射用區域,可對透 明樹脂層的光反射膜之被覆面積進行調整,藉此,可對由 透過模式與由反射模式的RGB所構成的白平衡獨立地進行 設定,經由如此般進行白平衡之調整,可得到高品質且高 性能的半透過型彩色液晶顯示裝置。 C.本發明之半透過型彩色液晶顯示裝置,係具備有:在 基板的一主面上依序形成光反射膜與透明樹脂層,並形成 有分別不同的著色之著色層,在此等著色層上依序形成由 9 312/發明說明書(補件)/92-12/92126608 透明導電材所構成之像素形成電極與配向膜所成的一方構 件;在透明基板上依序形成由透明導電材所構成之另一方 的像素形成電極與配向層所成的另一方構件,與介在於此 等一方構件與另一方構件之間的液晶層;其特徵在於:在 前述光反射膜上,對應於各個著色層設置有光透過部, 係作成為經由此光透過部於透過模式時可使背光通過, 在光透過部以外的反射用領域於反射模式時可使外光反射 的構造,且對應於前述各個著色層,前述透明樹脂層之對 光透過部的被覆面積,係作成為不同。 如上述般,依據本發明之半透過型彩色液晶顯示裝置, 對上述反射性金屬層依於各像素設置光透過部,以此光透 過部作為透過模式,以光透過部以外的區域作為反射模 式,藉此,作成為半透過型彩色液晶顯示裝置。 再者,依據本發明之半透過型彩色液晶顯示裝置,對應 於分別的著色層,透明樹脂層之對光透過部的被覆面積, 係作成為不同,藉此,可獲得下述的作用效果。 以作為透過模式所必須的透過率·色再現性為基準來設 定光透過部的面積與彩色濾光層(著色層)之各要素(色的 濃度·厚度)的情況,於習用的半透過型彩色液晶顯示裝 置,其彩色濾光層中於反射用區域亦形成相同的色濃度· 厚度之著色層,因此,於反射模式之顯示會變暗。 相對於此,經由將透明樹脂層之對光透過部的被覆面積 作成為不同,其用作為反射區域的彩色濾光層(著色層)的 量可作增減,且使得透過模式之顯示與反射模式者作成接 10 312/發明說明書(補件)/92-12/92126608 近。反之,反射用區域的著色層,與透過用區域的著色層 果。因 使其不 以減少 像素設 ,使透 當的條 RGB所 此的白 液晶顯 有·在 並形成 形成由 一方構 另一方 在於此 於:在 光透過 成有缺 成般7 透過部 11 相比較,可得到將其厚度作成為較薄者的同樣之效 而,可使反射模式之明亮度之降低程度得以減少或 降低。此乃相當於使反射模式之明亮度的降低可得 或使其不降低。 又,依據本發明,如上述般於光反射膜中依於各 置光透過部,使用於透過模式與反射模式之雙方時 明樹脂層之對光透過部之被覆面積作成為可得到適 件之狀況,藉此,可對由透過模式與由反射模式的 構成的白平衡獨立地進行設定。而且,經由進行如 平衡調整,可得到高品質且高性能的半透過型彩色 示裝置。 D. 本發明之半透過型彩色液晶顯示裝置,係具備 基板的一主面上依序形成光反射膜與透明樹脂層, 有分別不同的著色之著色層,在此等著色層上依序 透明導電材所構成之像素形成電極與配向膜所成的 件,在透明基板上依序形成由透明導電材所構成之 的像素形成電極與配向層所成的另一方構件;與介 等一方構件與另一方構件之間的液晶層;其特徵在 前述光反射膜上,對應於各個著色層設置有不同的 面積之光透過部,且,於各著色層的反射用區域形 刻部。 依據此半透過型彩色液晶顯示裝置,如上述的構 對上述光反射膜依於各像素設置光透過部,以此光 312/發明說明書(補件)/92-12/92126608 作為透過模式,以光透過部以外的區域作為反射模式,藉 此,作成為半透過型彩色液晶顯示裝置。 再者,依據本發明之半透過型彩色液晶顯示裝置,經由 在各著色層的反射用區域形成缺刻$卩,可得到下述般的作 用。 以作為透過模式所必須的透過率、色再現性為基準來設 定光透過部的面積與彩色濾光層(著色層)之各要素(色的 濃度·厚度)的情況,於習用的半透過型彩色液晶顯示裝 置,其彩色濾光層中於反射用區域亦形成相同的色濃度· 厚度之著色層,因此,於反射模式之顯示會變暗。 相對於此,經由在本發明般的各著色層之反射區域形成 缺刻部,其反射用區域的彩色濾光層(著色層)的色濃度· 厚度雖與透過用區域為相同,但就著色層所佔的部分與不 存在有著色層的部分(著色層的缺刻部)綜合來看,設置該 缺刻部可防止顯示之變暗。亦即,反射用區域的著色層, 與透過用區域的著色層相比較,可得到將其厚度作成為較 薄者的同樣之效果。因而,可使反射模式之明亮度之降低 程度得以減少或使其不降低。 附帶地,將反射模式用著色層的厚度作成為較透過模式 用著色層的厚度薄的技術雖曾被提出(參照專利文獻 5 ), 依據此技術,須在著色層形成之前即在欲作為反射區域的 部分先形成透明層,而得增加該部分的製程步驟。於相對 於該技術之本發明中,可於分別形成RGB各著色層之時亦 同時形成著色層的缺刻部,藉此,可不須增加製程步驟, 12 312/發明說明書(補件)/92-12/92126608 降低製造成本。 而且,依據本發明,如上述般依於各像素設置光透過吾 於使用於透過模式與反射模式之時,設置對應於此分別 著色層之不同的光透過面積之光透過部,藉此,可對由 過模式與由反射模式的RGB所構成的白平衡獨立地進行 定,經由如此般進行白平衡之調整,可得到高品質且高 能的半透過型彩色液晶顯示裝置。 E. 本發明之半透過型彩色液晶顯示裝置,係具備有: 基板的一主面上依序形成光反射膜、由透明導電材所構 的一方的像素形成電極、與配向膜所成的一方構件;在 明基板上形成分別不同的著色之著色層,在此等著色層 依序形成由透明導電材所構成之另一方之像素形成電極 配向膜所成的另一方構件;與介在於此等一方構件與另 方構件之間的液晶層;其特徵在於:在前述光反射膜上 對應於各個著色層設置有不同的光透過面積之光透過部 依據此本發明之半透過型彩色液晶顯示裝置,與前面 說明之半透過型彩色液晶顯示裝置相比較,其相異點在 著色層並非形成在一方的部材上,而是形成在另一方的 材上。 如上述的構成般,對上述光反射膜依於各像素設置光 過部,以此光透過部作為透過模式,以光透過部以外的 域作為反射模式,藉此,作成為半透過型彩色液晶顯示 置。 而且,於使用透過模式與反射模式之雙方時,設置對 312/發明說明書(補件)/92-12/92126608 的 透 設 性 在 成 透 上 與 所 於 部 透 區 裝 應 13 對由透過模式與由反射模式的RGB所構成的白平衡獨立地 進行設定。經由進行這樣的白平衡調整,可得到高品質且 高性能的半透過型彩色液晶顯示裝置。 F.於前述半透過型彩色液晶顯示裝置中,以在各著色層 的反射用區域形成缺刻部為佳。 經由在各著色層的反射用區域形成缺刻部,可得到下述 般的效果。 以作為透過模式所必須的透過率·色再現性為基準來設 定光透過部的面積與彩色濾光層(著色層)之各要素(色的 濃度·厚度)的情況,於習用的半透過型彩色液晶顯示裝 置,其彩色濾光層中於反射用區域亦形成相同的色濃度· 厚度之著色層,因此,於反射模式之顯示會變暗。 相對於此,如本發明般,經由在各著色層的反射用區域 形成缺刻部,其反射用區域的彩色濾光層(著色層)的色濃 度·厚度與透過用區域為相同,但就著色層所佔的部分與 不存在有著色層的部分(著色層的缺刻部)綜合來看,設置 該缺刻部可防止顯示之變暗。亦即,反射用區域的著色層, 與透過用區域的著色層相比較,可得到將其厚度作成為較 薄者的同樣之效果。因而,可使反射模式之明亮度之降低 程度得以減少或使其不降低。 附帶地,將反射模式用著色層的厚度作成為較透過模式 用著色層的厚度薄的技術雖曾被提出(參照專利文獻 5 ), 依據此技術,須在著色層形成之前即在欲作為反射區域的 14 312/發明說明書(補件)/92-12/92126608 部分先形成透明層,而得增加該部分的製程步驟。 於相對於該技術之本發明中,可於分別形成RGB各著色 層之時亦同時形成著色層的缺刻部,藉此,可不須增加製 程步驟,降低製造成本。 【實施方式】 以下,就本發明之半透過型彩色液晶顯示裝置的實施形 態參照附圖詳細地加以說明。 (第1實施形態) 圖1為本發明之第1實施形態之半透過型彩色液晶顯示 裝置A1的剖面示意圖,圖2為顯示半透過型液晶顯示裝置 A1的光反射膜與著色層的雙方之關係的示意圖。又,半透 過型液晶顯示裝置A1為S T N型單純矩陣方式者。 圖3為圖2中所示之剖面線X-X的剖面圖,圖4為圖2 中所示之剖面線Y-Y的剖面圖。 半透過型液晶顯示裝置 A1,係由「另一方構件」(於觀 察者觀看此半透過型彩色液晶顯示裝置A 1之時,接近於觀 察者之片面模式(s e g m e n t )側)和其相反側的共同模式 (c 〇 m m ο η )側白勺「一方構件」所構成。 於半透過型液晶顯示裝置Α1的一方部材中,1為共同模 式側的玻璃基板,在此玻璃基板1上,形成有由例如鋁金 屬材等所構成的光反射膜2。在此光反射膜2上,形成由 例如新日鐵化學製之Ρ Η A 0 9 4 X、P H A 1 0 3 X等之丙烯酸系之透 明樹脂層P。較佳者為,只對光透過部7除外的光反射膜2 上積層透明樹脂層P。 15 312/發明說明書(補件)/92-12/92126608 再於透明樹脂層P上形成作為彩色濾光層之著色層3, 構成的上 多數平行 的方向施 向膜 6 〇 脂或Si〇2 各著色層 透過面積 為細長的 ‘。例如, 對應於分 亦可將光 先,在玻 ,然後, 紹金屬膜 對光透過 .之A1合 息過模式 。而光透 上面來的 16 再以將著色層 3覆蓋的方式以由丙烯酸系樹脂所 覆層4進行被覆。然後,在上覆層4上依序形成 地排列之由I T 0所構成的透明電極 5、及依特定 以摩擦(r u b b i n g )之由聚醯亞胺樹脂所構成的配 又,於透明電極5與配向膜6之間亦可介在著由樹 等所構成的絕緣膜。 於本實施形態中,對應於光反射膜2之分別的 3,依於紅、綠、藍之顏色的不同而設置不同之光 的光透過部 7。光透過部 7的形狀,於圖 2中雖 矩形狀者,但本發明並非限定於此,任何形狀皆' 橢圓亦可。又,於圖2中,光透過部7的個數, 別的各著色層 3雖各為1個,但並不限於1個, 透過部分割為複數個而設置。 以下,就光透過部7的形成方法加以說明。首 璃基板1上經由濺鍍進行均一的鋁金屬膜之成膜 對此鋁金屬膜,經由光阻劑塗佈、曝光、顯影、 之蝕刻、光阻劑剝離之一連串的光微影術步驟, 部7進行圖案化而去除,以作成為所要的形狀。 又,作為光反射膜2的材料,亦可使用A 1 N d章 金、Ag金屬及Ag合金等的金屬膜來代替A1材。 經由如此般依於像素而設置光透過部 7,於 中,背光可透過此光透過部 7 (稱為透過用區域) 過部7以外的區域(稱為反射用區域)中,則使由 312/發明說明書(補件)/92-12/92126608 光反射。 依據本發明,光透過部7的面積,亦即光透過面積,系 對應於紅、綠、藍之顏色的不同而作不同的設定。 著色層3係將預先使顏料(紅、綠、藍)分散之感光性光 阻劑塗佈到基板上,經由光微影術形成(顏料分散方式)。 又,於形成著色層3之時,亦可用染色法代替上述的顏 料分散方式。 又,如同顯示光反射膜2與著色層3的雙方之關係的圖 2所示般,亦可作成為將各著色層3以黑色矩陣1 8包圍的 構成。 其次,有關另一方構件,9為片面模式側之玻璃基板, 在此玻璃基板9上,依序形成由多數平行地排列之由I T 0 所構成的條狀的透明電極群1 0,再於條狀的透明電極群1 0 上依特定的方向形成經摩擦之由聚醯亞胺的配向膜1 1。 接著,將此等玻璃基板9與玻璃基板1,介在著例如以 2 0 0〜2 6 0 °的角度扭轉之由對掌層列液晶所構成之液晶層 1 2,以使雙方的條狀的透明電極群5、1 0作成交叉(垂直相 交)的方式,經由黏合材(未圖示)黏合。又,雖未圖示,於 兩玻璃基板1、9之間亦配置著多數個用以使液晶層1 2的 厚度作成為固定之間隔物。 並於玻璃基板9的外側依序疊合由聚碳酸酯所構成之第 1相位差板1 3、第2相位差板1 4、碘系的偏光板1 5,於玻 璃基板1的外側則依序疊合由聚碳酸酯所構成的第3相位 差板1 6、碘系的偏光板1 7。於進行此等之配設時,係以由 17 312/發明說明書(補件)/92-12/92126608 丙稀酸系的材料所構成之黏合材塗佈進行黏合。 又,對一方構件的玻璃基板1側之偏光板1 7,可黏合上 例如由LED或冷陰極管等之光源部與導光板所構成的背光 單元。 依據如此作成之本發明之半透過型液晶顯示裝置A 1,如 上述般,對應於光反射膜 2的各著色層 3,依於紅、綠、 藍之顏色的不同而設置不同之光透過面積的光透過部 7。 藉此,可使得對各R G B之分別的透過率與反射率不同,而 可對由透過模式與由反射模式的RGB所構成的白平衡獨立 地進行設定而進行色設計。經由進行如此的色設計與白平 衡調整,可得到高品質且高性能的半透過型彩色液晶顯示 裝置A1。 其次,就實施例加以闡述。 對於本發明之半透過型液晶顯示裝置A 1,必須分別就透 過模式、反射模式獨立進行色設計、白平衡之設定,對各 著色層3,依於RGB將透過率與反射率定為所須者。 亦即,於本實施例中,對光反射膜2,對應於各著色層3, 依於紅、綠、藍之顏色的不同而形成不同之光透過面積的 光透過部 7,如表1所示般,此光透過部 7的面積,係作 成為R (紅)的像素為對像素全體之3 9 %、G (綠)的像素為對 像素全體之3 9 %、B (藍)的像素為對像素全體之2 7 %的構造。 18 312/發明說明書(補件)/92-12/92126608 A1 透過模式 反射模式 習知例 透過孔 Y X y CF開口率 Y X y R 0.30 32.5 0.515 0.311 R - 32.5 0. 515 0.311 G 0.30 75.4 0.332 0.469 G - 75.4 0.332 0.469 B 0.30 29.7 0.206 0.212 B - 29.7 0.206 0.212 W 45.9 0.336 0.339 W - 45.9 0.336 0.339 比 21.1 OTSC比 - 21.1 實施例 透過孔 Y X y CF開口率 Y X y R 0.39 43.3 0.515 0.311 R - 27.9 0.515 0. 311 G 0.39 100.6 0.332 0.469 G - 64.8 0.332 0,469 B 0.27 26.5 0.206 0.212 B - 31.1 0.206 0. 212 W 56.8 0.352 0.356 W - 41.3 0.326 0.330 NTSC 比 21· 1 C比 - 21.1 19 312/發明說明書(補件)/92-12/92126608 又,作為習知例(比較例),係對應於光反射膜2上之各 透過面 示裝置 膜與著 ,圖 5 線Z - Z 的光透 素對像 之半透 圖示如 雙方的 J )相比 ‘ X、△ X、 Δ 施例, 方向移 的評價 20 著色層 3,形成對紅、綠、藍各色為相同大小的光 積之光透過部 7,其他的構成則與半透過型液晶顯 A 1作成為相同,製作成半透過型液晶顯示裝置B 1 &lt; 作為顯示此半透過型液晶顯示裝置 B 1的光反射 色層的雙方之關係的示意圖,示如圖 5、圖 6。又 為對應於圖2的示意圖。圖6為圖5中所示之剖面 的剖面圖。 依據半透過型彩色液晶顯示裝置B 1,光反射膜2 過部7的光透過面積,如表1所示般,為RGB各像 素全體皆佔30°/〇。 本發明之半透過型彩色液晶顯示裝置A與比較例 過型彩色液晶顯示裝置B之雙方的光學特性之色度 圖7與圖8。 圖7顯示雙方的透過模式之色度圖,圖8則顯示 反射模式之色度圖。 依據圖7、圖8,本發明之實施例與習知例(比較6 較,R、G、B的白平衡W的色度,於透過模式中(Z y )二(0 . 0 1 6、0 · 0 1 7 )係變大,於反射模式中(△ y ) = ( - 0 . 0 1 0、- 0 . 0 0 9 )貝|J變小。亦即,可知:依據實 與習知例相比較,白平衡於透過模式中係往黃色的 動,於反射模式中係往藍色的方向移動。 為供參考,以圖9就本實施例中所用之光學特性 方法加以說明。 312/發明說明書(補件)/92-12/92126608 於反射模式的情況中,如圖9 ( a )所示般,對液晶顯示裝 置的顯示面,自斜上方1 5 °使光(C光源)入射,然後,就 驅動液晶顯示裝置之時(白色顯示、黑色顯示、紅色顯示、 綠色顯示、藍色顯示)的垂直方向的反射光之反射率、對 比、色域面積進行測定,得到評價結果。 又,關於透過模式,係如圖9 ( b )所示般,係對背光除外 之液晶面板的内面,使光(C 光源)入射,然後,就驅動液 晶顯示裝置之時(白色顯示、黑色顯示、紅色顯示、綠色顯 示、藍色顯示)的垂直方向的透過光之透過率、對比、色域 面積進行測定,得到評價結果。 再者,圖1 0中顯示色域面積的定義圖。色域面積係以各 RGB色度點所圍住的面積與NSTC的比表示。此面積愈大, 色再現性愈高,可得到色純度高的面板顯示。 (第2實施形態) 其次,就本發明之第2實施形態加以說明。 第2實施形態之半透過型彩色液晶顯示裝置A 2的剖面示 意圖雖與圖 1者相同,但半透過型彩色液晶顯示裝置 A 2 與半透過型彩色液晶顯示裝置A1相比有下述的不同點。 亦即,透明樹脂層P之對光反射膜2的被覆面積係對應 於各著色層作成為不同。詳細而言,示如圖11與圖12。 圖11與圖12為顯不半透過型彩色液晶顯不裝置A2之光 反射膜2與著色層P之雙方的關係之示意圖,圖1 1為重要 部分之剖面圖,圖1 2為重要部分之俯視圖。 於半透過型彩色液晶顯示裝置 A2中,對應於各著色層 21 312/發明說明書(補件)/92-12/92126608 3 (亦即,對應於紅、綠、藍之顏色的不同),透明樹脂層P 之對光反射膜2的被覆面積係作成為不同。 此構成之光反射膜2,首先,在玻璃基板1上經由濺鍍 以鋁等均一地進行成膜,然後,對此鋁金屬膜,經由光阻 劑塗佈、曝光、顯影、鋁金屬膜之蝕刻、光阻劑剝離之一 連串的光微影術步驟,對光透過部7進行圖案化而去除, 以作成為所要的形狀。 如此的光透過部7,經由對應於各著色層 3,依於紅、綠、 藍的顏色(亦即像素)而設置,在此光透過部 7,於透過模 式時使光透過,而在光透過部7以外的區域,則於反射模 式時使光反射。 依據如此作成之本發明之半透過型彩色液晶顯示裝置 A 2,各著色層3的反射用區域(亦即光透過部7以外之光反 射膜2的區域),係對應於各著色層3,使透明樹脂層P之 對光反射膜2的被覆面積作成為不同。藉此,反射模式區 域的著色層 3,其厚度之較薄的部分之面積的比例可自由 地設定。較薄的部分之面積若作成為較大,則可得到與將 著色層3形成為較薄者之同樣的效果,可使反射模式之明 亮度之降低程度得以減少或使其不降低。 如此做法,對各 RGB,分別設定其透過率與反射率,則 可經由對由透過模式與由反射模式的R G B所構成的白平衡 獨立地進行設定的方式進行色設計。經由進行如此之色設 計與白平衡調整,可得到高品質且高性能的半透過型彩色 液晶顯示裝置A2 。 22 312/發明說明書(補件)/92-12/92126608 其次,就實施例加以闡述: 對上述之本發明之半透過型彩色液晶顯示裝置A 2,就透 過模式、反射模式分別獨立地進行色設計、白平衡之設定, 對各著色層 3,依於各RGB分別決定所須的透過率與反射 〇 亦即,於本實施例中,對應於各著色層 3 (亦即對應於 R (紅)G (綠)B (藍)的顏色之不同),透明樹脂層P之對光反 射膜2的被覆面積係作成為不同,如表2所示般,此被覆 面積的比例,係作成為:於R (紅)的像素中為對光反射膜2 的全體之1 0 0 %、於G (綠)的像素中為對光反射膜2的全體 之1 0 0 %、於B (藍)的像素中為對光反射膜2的像素全體之 7 5 %的構造(同表中之「透明樹脂/反射部」為此被覆面積的 比例)。 23 312/發明說明書(補件)/92-12/92126608 表2 透過模式 反射模式 透明樹 透明樹 脂/反射 Y X y 脂/反射 Y X y 部 部 R 100% 0.515 0.311 R 100% 0.515 0.311 習知例2 G 100% 0.332 0.469 G 100% 0.332 0.469 B 100% 0.206 0.212 B 100% 0.206 0.212 W 3.0 0.336 0.339 W 26.2 0.336 0.339 NTSC 比 21.1 NTSC 比 21.1 透明樹 透明樹 脂/反射 Y X y 脂/反射 Y X y 部 部 R 100% 0.515 0.311 R 100% 0.515 0.311 實施例4 G 100% 0.332 0.469 G 100% 0. 332 0.469 B 75% 0.206 0.212 B 75% 0.182 0.168 W 3.0 0. 336 0.339 W 25.4 0.325 0. 328 NTSC 比 21.1 NTSC 比 22.3 312/發明說明書(補件)/92-12/92126608 24 又,作為習知例(比較例),係對應於各著色層 3,形成 對紅、綠、藍各色為相同之被覆面積比例1 0 0 %之透明樹脂 層P,其他的構成則與半透過型液晶顯示裝置A 2作成為相 同,製作成半透過型液晶顯示裝置B2。 又,光反射膜2的光透過部7之光透過面積,RGB各像 素皆為對像素全體之3 0 %。 本發明之半透過型液晶顯示裝置 A2與比較例之半透過 型液晶顯示裝置B 2的雙方之光學特定的色度圖示如圖1 3 與圖1 4。此評價方法,係與第1實施形態所說明者相同。 圖1 3顯示雙方的透過模式之色度圖,圖1 4則顯示雙方 的反射模式之色度圖。 依據圖1 3與圖1 4,本發明之實施例與習知例(比較例) 相比較,於透過模式,本發明之實施例與習知例(比較例) 的R、G、B的白平衡W的色度為相同,而反射模式中(△ X、 △ y ) = ( - 0 · 0 1卜一0 . 0 1 1 )貝|J變小。亦即,可知:依據實施例, 與習知例相比較,白平衡於透過模式中並無改變,而於反 射模式中係往藍色的方向移動。此處,於透過模式中白平 衡雖未改變,但可經由改變RGB的CF的平衡而調整。 (第3實施形態) 其次,就本發明之第3實施形態加以說明。 此第3實施形態之半透過型彩色液晶顯示裝置A 3的剖面 示意圖雖與圖1者相同,但半透過型彩色液晶顯示裝置A3 與半透過型彩色液晶顯示裝置A1相比有下述的不同點。 圖1 5與圖1 6為顯示半透過型液晶顯示裝置A 3的光反射 25 312/發明說明書(補件)/92-12/92126608 膜與著色層之雙方的關係之示意圖,圖1 5為重要部位之剖 面圖,圖1 6為重要部位之俯視圖。 本實施形態之特徵在於,對應於各著色層,透明樹脂層 之對光透過部的被覆面積係作成為不同,詳細情形則示如 圖1 5與圖16。 參照圖1 5與圖1 6,對應於各著色層3 (亦即對應於紅、 綠、藍之顏色的不同),透明樹脂層P之對光透過部7之透 明樹脂層P的窗之被覆面積係作成為不同。 依據此種本發明之半透過型液晶顯示裝置A 3,經由對應 於各著色層3的反射用區域中之各著色層3,透明樹脂層P 之對光透過部7的被覆面積作成為不同,作為透過區域的 彩色濾光層(著色層3 )使用的量可作增減。 並且可使透過模式之顯示接近於反射模式。反之,反射 用區域的著色層,與透過用區域的著色層相比較,可得到 將其厚度作成為較薄者的同樣之效果。因而,可使反射模 式之明亮度之降低程度得以減少或使其不降低。 綜合言之,依據本發明,如上述般對應於各著色層 3, 依於紅、綠、藍之顏色而設置光透過面積的光透過部 7, 且使透明樹脂層 P之對光透過部 7的被覆面積作成為不 同,藉此,可使得對各RGB之分別的透過率與反射率不同, 而可對由透過模式與由反射模式的RGB所構成的白平衡獨 立地進行設定而進行色設計。經由進行如此的色設計與白 平衡調整,可得到高品質且高性能的半透過型彩色液晶顯 示裝置A3 。 312/發明說明書(補件)/92-12/92126608 26 其次,就實施例加以闡述: 對於上述本發明之半透過型液晶顯示裝置A 3,必須分別 就透過模式、反射模式獨立進行色設計、白平衡之設定, 對各著色層3,依於RGB將透過率與反射率定為所須者。 於本實施例中,對應於各著色層 3(亦即對應於 R (紅)G (綠)B (藍)的顏色之不同),透明樹脂層P之對光反 射膜2的被覆面積係作成為不同。如表3所示般,此被覆 面積的比例,係作成為:於R (紅)的像素中為對光透過部7 的全體之7 0 %、於G (綠)的像素中為對光透過部7的全體之 7 0 %、於B (藍)的像素中為對光透過部7的像素全體之1 0 0 % 的構造(同表中之「透明樹脂/反射部」為此被覆面積的比 例)〇 27 312/發明說明書(補件)/92-12/92126608 表3 透過模式 反射模式 透明樹 透明樹 脂/反 Y X y 脂/反 Y X y 射部 射部 R 100% 0.515 0.311 R 100% 0.515 0.311 習知例 G 100% 0.332 0.469 G 100% 0.332 0.469 B 100% 0.206 0.212 B 100% 0.206 0.212 W 3.0 0.336 0.339 W 26.2 0.336 0.339 NTSC 比 21. 1 NTSC 比 21.1 透明樹 透明樹 脂/反 Y X y 脂/反 Y X y 射部 射部 R 70% 29.3 0.538 0.314 R 70% 0.515 0.311 實施例 G 70% 71. 1 0.329 0.488 G 70% 0.332 0.469 B 100% 29.7 0.206 0.212 B 100% 0.206 0.212 W 2.8 0.344 0.347 W 26.2 0.336 0.339 NTSC 比 24.9 NTSC 比 21.1 312/發明說明書(補件)/92-12/92126608 28 又,作為習知例(比較例),係對應於各著色層 3,形成 對紅、綠、藍各色為相同之被覆面積比例之透明樹脂層P, 其他的構成則與半透過型液晶顯示裝置A3作成為相同,製 作成半透過型液晶顯示裝置B3。 光反射膜2之光透過部7的光透過面積,RGB各像素皆 為對像素全體之3 0 %。 本發明之半透過型液晶顯示裝置 A3與比較例之半透過 型液晶顯示裝置B 3的雙方之光學特定的色度圖示如圖1 7 與圖1 8。 圖1 7顯示雙方的透過模式之色度圖,圖1 8則顯示雙方 的反射模式之色度圖。 如圖1 7與圖1 8所示般,於反射模式,本發明之實施例 與習知例(比較例)的R、G、B之白平衡W的色度為大致相 同,而於透過模式,本發明之實施例的一方,與習知例(比 較例)相比較,(△ X、△ y ) = ( 0 . 0 0 8、0 · 0 0 8 )係變大。且, 依據實施例,可知:與習知例相比,白平衡於透過模式中 並無改變,而於反射模式中係往黃色的方向移動。此處, 於反射模式中白平衡雖未改變,但可經由改變 RGB的 CF 的平衡而調整。 (第4實施形態) 其次,就本發明之第4實施形態加以說明。 圖1 9為本發明之半透過型液晶顯示裝置A 4的剖面示意 圖,圖2 0為顯示半透過型液晶顯示裝置A 4的光反射膜與 著色層的雙方之關係的示意圖。又,半透過型液晶顯示裝 29 312/發明說明書(補件)/92-12/92126608 置A4,為STN型單純矩陣方式者。 半透過型液晶顯示裝置 A 4,係由「另一方構件」(於觀 察者觀看此半透過型彩色液晶顯示裝置A4之時,接近於觀 察者之一方)和其相反側的「一方構件」所構成。 於一方構件中,1為共同模式側的玻璃基板。在此基板1 上,形成有例如由鋁金屬材等所構成的光反射膜 2。在其 上形成著色層 3,並進一步以將著色層 3覆蓋的方式以由 丙烯酸系樹脂所構成的上覆層4進行被覆。然後,在上覆 層4之上依序積層多數平行地排列成條狀之由I T 0所構成 的透明電極 5、及依特定方向摩擦之由聚醯亞胺樹脂所構 成的配向膜6。又,於透明電極5與配向膜6之間亦可介 在著由樹脂或S i 0 2等所構成的絕緣膜。 於各著色層3中,對應於紅、綠、藍等之顏色的不同而 設置不同的面積之光透過部7。 再就此構成的光反射膜2及著色層3之製法加以說明。 在玻璃基板1上經由濺鍍進行均一的鋁金屬膜之成膜, 然後,對此鋁金屬膜,經由光阻劑塗佈、曝光、顯影、鋁 金屬膜之蝕刻、光阻劑剝離之一連串的光微影術步驟,對 光透過部7進行圖案化,以作成為所要的形狀。 又,作為光反射膜2的材料,亦可使用A 1 N d等之A1合 金、Ag金屬及Ag合金等的金屬膜來代替A1材。 接著,經由顏料分散方式形成著色層3之彩色濾光層, 亦即將預先以顏料調和成的感光性光阻劑塗佈到基板上, 經由光微影術來形成。 30 312/發明說明書(補件)/92-12/92126608 又,於著色層3之彩色濾光層的形成時,亦可用染色法 代替上述般的顏料分散方式。 如此做法,於各著色層 3上,對應於紅、綠、藍等之顏 色的不同而設置不同的面積之光透過部7。於此光透過部7 使光透過,於光透過部7以外的區域使光反射。光透過部 7,由於可使光透過,故稱為透過用區域。光透過部7以外 的區域,由於經由光反射膜2而使光反射,故稱為反射用 區域。 依據本發明,更進一步於各著色層 3的反射用區域中形 成顏料不存在(或未經染色)的缺刻部8。 = 圖2 0為顯示缺刻部8的俯視圖。依據圖2 0,係作成為 將各著色層 3以黑色矩陣1 8包圍的構成。依據如此的構 成,於黑色矩陣1 8的内部,經由去除著色層3的一部份而 形成缺刻部8。缺刻部8的形狀,於圖20中雖為三角形, 但並非限定於三角形,亦可為圓、橢圓、四方形等之任意 的形狀。 其次,就另一方構件加以說明。於另一方構件中,9為 片面模式側的玻璃基板,在此玻璃基板9之上依序形成多 數之平行地排列的由I T 0所構成之條狀的透明電極群1 〇。 再於條狀的透明電極群 1 0 上形成依特定方向施以摩擦之 由聚醯亞胺樹脂所構成的配向膜1 1。 然後,將此等玻璃基板9與玻璃基板1,介在著例如以 2 0 0〜2 6 0 °的角度扭轉之由對掌層列液晶所構成之液晶層 1 2,以使雙方的條狀的透明電極群5、1 ◦作成交叉(垂直相 31 312/發明說明書(補件)/92-12/92126608 交)的方式,經由黏合材(未圖示)黏合。又,雖未圖示,於 兩玻璃基板1、9之間亦配置著多數個用以使液晶層1 2的 厚度作成為固定之間隔物。 並於玻璃基板9的外側依序疊合由聚碳酸酯所構成之第 1相位差板1 3、第2相位差板1 4、碘系的偏光板1 5。 又,於一方構件之玻璃基板1的外側則依序疊合由聚碳 酸酯所構成的第3相位差板1 6、碘系的偏光板1 7。於進行 此等之配設時,係以由丙烯酸系的材料所構成之黏合材塗 佈進行黏合。 又,對玻璃基板1側之偏光板1 7,可黏合上例如由L E D 或冷陰極射線管(cold cathodray tube)等之光源部與導光 板所構成的背光單元而配設。 依據如此作成之本發明之半透過型液晶顯示裝置A 4,如 上述般,對應於光反射膜2的各著色層3之大致相同的面 積之各像素,對其等在各著色層3的反射用區域形成大致 相同的面積的缺刻部 8。經由此缺刻部 8的形成,於反射 模式中可使反射光量增加,可防止顯示之昏暗。亦即,可 使反射模式之明亮度不降低,或使其降低程度得以減少。 亦即,經由作成本發明之缺刻部,可得到與使透過用區 域之著色層形成為較薄者之同樣的效果。 此反射光量,係與無著色層存在的部分(著色層的缺刻部 和著色層所佔有的部分之面積比成為函數的關係。面積比 愈大,反射光量亦增大。然而,面積比若過大,則反射光 的著色效果會變弱。 32 312/發明說明書(補件)/92-12/92126608 綜合言之,依據本發明,如上述般對應於光反射膜2的 透過 !,可 由透 行設 整, A 4 〇 對透 ,對 的條 ,3, 積之 係設 為對 .且, 為相 開口 33 各著色層 3,依於紅、綠、藍之顏色而設置不同的光 面積之光透過部7,藉由此光透過部7與前述缺刻部 使各RGB之分別的透過率與反射率作成不同,而可對 過模式與由反射模式的R G B所構成的白平衡獨立地進 定而進行色設計,經由進行如此的色設計與白平衡調 可得到南品質且兩性能的半透過型彩色液晶顯不裝置 其次,就實施例加以闡述·· 對上述本發明之半透過型液晶顯示裝置A 4,須分別 過模式、反射模式獨立地進行色設計、白平衡之設定 各著色層3須依RGB分別將透過率與反射率定為所須 件。 亦即,於實施例中,係對應於光反射膜2之各著色J 依於紅、綠、藍之顏色的不同而形成不同的光透過面 光透過部 7,如表4所示般,此光透過部 7的面積, 定成R (紅)的像素為對像素全體之3 9 %、G (綠)的像素 像素全體之3 9 %、B (藍)的像素為對像素全體之2 7 %。i 將著色層 3的缺刻部 8之面積作成為 RGB各像素皆 同,為對其反射用區域為1 5 %的構造(同表中作為 C F 率表示)。 312/發明說明書(補件)/92-12/92126608 表4 透過模式 反射模式 透過孔 Y X y CF開口 率 Y X y R 39% 0.500 0.310 R 15% 0.483 0.327 實施例 G 39% 0.333 0.459 G 15% 0.325 0.469 B 27% 0.213 0.221 B 15% 0.224 0.209 W 3.8 0.350 0.352 W 20. 1 0.323 0.326 NTSC 比 18. 1 NTSC 比 17.4 312/發明說明書(補件)/92-12/92126608 34 又,作為比較例,於上述構成之半透過型彩色液晶顯示 綠、 構成 透過 射膜 與缺 a - a 圖。 過面 ‘且, 為相 開口 35 裝置A 4中,對應於光反射膜2的各著色層3,對紅、 藍形成相同大小的光透過面積之光透過部 7,其他的 則與半透過型液晶顯示裝置A4作成為相同,製作成半 型液晶顯示裝置B4 。 用以顯示此半透過型彩色液晶顯示裝置 B1 之光反 與著色層的雙方之關係的示意圖,示如圖2 1〜圖2 3。 圖2 1為顯示半透過型液晶顯示裝置B1的著色層3 刻部8的配置的俯視圖,圖2 2為圖2 1中所示之剖面線 之剖面圖,圖2 3為圖 2 1中所示之剖面線b - b之剖面 依據半透過型液晶顯示裝置B 4,光透過部7的光透 積,如表5所示般,R G B各像素對像素全體皆為3 0 %。並 將著色層 3的缺刻部 8之面積作成為 RGB各像素皆 同,為對其反射用區域為1 5 %的構造(同表中作為C F 率表示)。 312/發明說明書(補件)/92-12/92126608 表5 透過模式 反射模式 透過孔 T X y CF開口 率 R X y R 30% 0.500 0.310 R 15% 0.492 0.327 比較例 G 30% 0.333 0.459 G 15% 0.325 0.475 習知例 B 30% 0.213 0.221 B 15% 0.226 0.211 W 3. 1 0.335 0.338 W 24. 9 0.337 0.343 NTSC 比 18. 1 NTSC 比 18.5 312/發明說明書(補件)/92-12/92126608 36 又,本發明之半透過型液晶顯示裝置A4與比較例之半透 過型彩色液晶顯示裝置 B4的雙方之光學特性的色度圖示 如圖24與圖25。 圖24顯示雙方於透過模式的色度圖,圖25則雙方於反 射模式的色度圖。 本發明之實施例,與比較例相較,R、G、B的白平衡的 色度,於透過模式中(Δχ、Δγ) = (0·015、0.014)係變大, 於反射模式中(Δχ、Δγ) = (- 0·014、-0·017)則變小。而且, 依據實施例,與習知例相比較,可知:白平衡於透過模式 中係往黃色的方向移動,於反射模式中則往藍色的方向移 動。 為供參考,就本實施例中所用之光學特性的評價方法加 以說明。 於反射模式的情況,自對液晶顯示裝置的顯示面之斜上 方1 5 °使光(C光源)入射,然後,就驅動液晶顯示裝置之 時(白色顯示、黑色顯示、紅色顯示、綠色顯示、藍色顯示) 的垂直方向的反射光之反射率、對比、色域面積進行測定, 得到評價結果。 又,關於透過模式,係對背光除外之液晶面板的内面, 使光(C光源)入射,然後,就驅動液晶顯示裝置之時(白色 顯示、黑色顯示、紅色顯示、綠色顯示、藍色顯示)的垂直 方向的透過光之透過率、對比、色域面積進行測定,得到 評價結果。 再者,圖1 0中顯示色域面積的定義圖。色域面積係以各 37 312/發明說明書(補件)/92-12/92126608 RGB色度點所圍住的面積與NSTC的比表示。此面積愈大, 色再現性愈高,可得到色純度高的面板顯示。 (第5實施形態) 其次,就本發明之第5實施形態加以說明。 圖26為本發明之半透過型液晶顯示裝置A5的剖面示意 圖。又圖2 7〜圖2 9為顯示半透過型液晶顯示裝置A 5的光 反射膜與著色層的雙方之關係的示意圖,圖 27為其平面 圖,圖28為剖面線X-X之剖面圖,圖29為剖面線Y-Y之 剖面圖。 於半透過型液晶顯示裝置A5的一方構件中,1為共同模 式側的玻璃基板。在此基板1上形成多數的平行地排列之 由I T 0所構成的條狀的透明電極群5,再於條狀的透明電 極群5上形成由鋁金屬材等所構成之光反射膜2,並形成 依特定方向摩擦之由聚醯亞胺樹脂所構成的配向膜6。 又,作為光反射膜2的材料,亦可使用A 1 N d等之A1合 金、Ag金屬及Ag合金等的金屬膜來代替A1材。 於另一方構件中,9為片面模式側的玻璃基板,在此玻 璃基板9之上形成著色層3,並以將著色層3被覆的方式 進行由丙稀酸系樹脂所構成之上覆層4之被覆。然後,在 上覆層4上依序積層多數的平行地排列成條狀的由I T 0所 構成的透明電極群1 0、及依特定方向摩擦之由聚醯亞胺樹 脂所構成的配向膜1 1。又,於透明電極1 0與配向膜1 1之 間亦可介在著由樹脂或S i 0 2等所構成的絕緣膜。 於本發明中,對應於另一方之基板的個著色層 3,亦即 38 312/發明說明書(補件)/92-12/92126608 對應於紅、綠、藍之顏色的不同,而設置不同的光透過面 積之光透過部Η。光透過部Η的形狀,雖於圖2 7所示者為 細長的矩形狀,但本發明並非限定於此,任何的形狀皆可。 例如,亦可為橢圓者。又,圖 27中,對應於各著色層 3 之光透過部7的個數雖為1個,但,並非限定於1個,亦 可將光透過部分割為複數個而設置。 前述光反射膜2,首先,在玻璃基板1上形成條狀的透 明電極群 5,再經由濺鍍進行均一的鋁金屬膜之成膜,然 後,對此铭金屬膜,經由光阻劑塗佈、曝光、顯影、銘金 屬膜之蝕刻、光阻劑剝離之一連串的光微影術步驟,對光 透過部Η進行圖案化而去除,以作成為所要的形狀。 經由如此地設置光透過部 Η,光於透過模式時可透過此 光透過部 Η,於反射模式時可於光透過部 Η以外的區域被 反射。 光透過部 Η,依於紅、綠、藍之顏色的不同而有不同的 光透過面積。藉此,可使得對各色之分別的透過率與反射 率不同,而可對由透過模式與由反射模式的RGB所構成的 白平衡獨立地進行設定而進行色設計。經由進行如此的色 設計與白平衡調整,可得到高品質且高性能的半透過型彩 色液晶顯示裝置A5 。 著色層3之彩色濾光層,可經由顏料分散方式,亦即將 預先以顏料調和成的感光性光阻劑塗佈到基板上,經由光 微影術來形成。依據此顏料分散方式,於該光微影術步驟 中亦可同時形成彩色濾光層。 39 312/發明說明書(補件)/92-12/92126608 又,於形成著色層3之彩色濾光層之時,亦可用染色法 代替上述之顏料分散方式。 \成。 形成 ,經 狀, 圓、 ,缺 ,(著 層所 綜合 層相 而, 不降 3, 積之 與反 構成 此的 40 又,亦可作成為將各著色層3以黑色矩陣1 8包圍的书 更進一步,依據本發明於各著色層3的反射用區域 缺刻部A,亦為本發明的特徵。 於黑色矩陣1 8的内部、各著色層3的反射用區域中 由除去著色層 3的一部份形成缺刻部A。缺刻部A的死 於圖27中雖為四方形,但並非限定於四方形,亦可為 橢圓、三角等之任意的形狀。 對於對應於各著色層 3之大致相同的面積的各像素 刻部A亦為相同的面積。 經由形成缺刻部A,即使其反射用區域的彩色濾光&gt;1 色層)的色濃度·厚度與透過用區域為相同,但就著色 佔的部分與不存在有著色層的部分(著色層的缺刻部) 來看,設置該缺刻部可防止顯示之變暗。 亦即,反射用區域的著色層,與透過用區域的著色 比較,可得到將其厚度作成為較薄者的同樣之效果。因 可使反射模式之明亮度之降低程度得以減少或使其 低。 綜合言之,依據本發明,如上述般對應於各著色層 依於紅、綠、藍之顏色的不同而設置不同的光透過面 光透過部 Η,藉此,可使得對各RGB之分別的透過率 射率不同,而可對由透過模式與由反射模式的RGB所 的白平衡獨立地進行設定而進行色設計。經由進行如 312/發明說明書(補件)/92-12/92126608 色設計與白平衡調整,可得到高品質且高性能的半透過型 彩色液晶顯示裝置A5。 其次,就實施例加以闡述: 對於上述本發明之半透過型液晶顯示裝置A 5,必須分別 就透過模式、反射模式獨立進行色設計、白平衡之設定, 對各著色層3,依於RGB將透過率與反射率定為所須者。 亦即,於實施例中,係對應於各著色層 3,依於紅、綠、 藍之顏色的不同而形成不同的光透過面積之光透過部 H, 如表6所示般,此光透過部Η的面積,係設定成R (紅)的 像素為對像素全體之 3 9 %、G (綠)的像素為對像素全體之 3 9 %、Β (藍)的像素為對像素全體之2 7 %,並且,將著色層3 的缺刻部8之面積作成為RGB各像素皆為相同,為對其反 射用區域為1 5 %的構造(同表中作為C F開口率表示)。 41 312/發明說明書(補件)/92-12/92126608 表6 透過模式 反射模式 實施例 透過孔 Y X y CF開口 率 Y X y R 0.39 44.8 0.500 0.310 R 0.15 28.0 0.483 0.327 G 0.39 100.2 0.333 0.459 G 0.15 53.9 0.325 0.469 B 0.27 29.3 0.213 0.221 B 0.15 29.5 0.224 0.209 W 58. 1 0.350 0.352 W 37,1 0.323 0.326 NTSC 比 18. 1 NTSC 比 17.4 312/發明說明書(補件)/92-12/92126608 42 又,作為習知例(比較例),係對應於各著色層 3,形成 對紅、綠、藍之各色為相同大小的光透過面積之光透過部, 其他的構成則與半透過型液晶顯示裝置A5作成為相同,製 作成半透過型液晶顯示裝置B5。 作為顯示此半透過型彩色液晶顯示裝置 B5之光反射膜 與著色層之雙方的關係之示意圖,示如圖3 0。 又,光反射膜2的光透過部之光透過面積,如表7所示 般,R G B各像素對像素全體皆為 3 0 %。並且,將著色層 3 的缺刻部A之面積作成為RGB各像素皆為相同,為對其反 射用區域為1 5 %的構造(同表中作為C F開口率表示)。 43 312/發明說明書(補件)/92-12/92126608 表7 透過模式 反射模式 習知例 透過孔 Y X y CF開口 率 Y X y R 0.30 34.5 0.500 0.310 R 0.15 34.6 0.492 0.327 G 0.30 77. 1 0.333 0.459 G 0.15 68.8 0.325 0.475 B 0.30 32.6 0.213 0.221 B 0.15 27.8 0.226 0.211 W 48.0 0.335 0.338 W 43.7 0.337 0.343 NTSC 比 18. 1 NTSC 比 18.5 312/發明說明書(補件)/92-12/92126608 44 又,本發明之半透過型液晶顯示裝置 A 5與比較例之半 透過型彩色液晶顯示裝置 B5的雙方之光學特性中之色度 圖示如圖31與圖32。 圖31顯示雙方的透過模式之色度圖,圖32顯示雙方的 反射模式之色度圖。 如上述般,本發明之實施例,與習知例(比較例)相比 較,R、G、B的白平衡W的色度,於透過模式中(Δχ、△ y ) = ( 0 · 0 1 5、0 . 0 1 4 )係變大,於反射模式中(△ X、 △ y )二(-0 . 0 1 4、- 0 . 0 1 7 )貝|J變小。又可知:依據實施例,與習 知例相比較,白平衡於透過模式中係往黃色的方向移動, 於反射模式中係往藍色的方向移動。 以上,雖以本發明之實施例1〜5做說明,但,本發明並 非限定於前述之實施形態中。例如,上述半透過型彩色液 晶顯示裝置雖為S T N型單純矩陣方式者,但亦可用内藏T F T 或TFD之主動型液晶顯示裝置代替此方式,亦可達到同樣 的效果。此外,在本發明之範圍内所作的各種變更亦屬可 能。 【圖式簡單說明】 圖1為本發明之第1實施形態之半透過型彩色液晶顯示 裝置A1的剖面示意圖。 圖2為表示光透過部7的俯視圖。 圖3為圖2中所示之剖面線X-X的剖面圖。 圖4為圖2中所示之剖面線Y-Y的剖面圖。 圖5為表示習知的半透過型彩色液晶顯示裝置之光透過 45 312/發明說明書(補件)/92-12/92126608 部7的俯視圖。 圖6為圖5中所示之剖面線Z - Z之剖面圖。 圖7為半透過型液晶顯示裝置A1與比較例之半透過型 液晶顯示裝置B 1的雙方之透過模式的色度圖。 圖8為半透過型液晶顯示裝置A1與比較例之半透過型 液晶顯示裝置B 1的雙方之反射模式的色度圖。 圖 9 ( a )為表示反射模式之測定方法的說明圖,圖 9 ( b ) 為表示透過模式之測定方法的說明圖。 圖10為表示色域面積之定義圖的圖。 圖1 1為表示本發明之第2實施形態之半透過型彩色液 晶顯示裝置A2的光反射膜2與透明樹脂層P的雙方之關係 的剖面示意圖。 圖1 2為同俯視示意圖。 圖1 3為半透過型液晶顯示裝置A 2與比較例之半透過型 液晶顯示裝置B 2的雙方之透過模式的色度圖。 圖1 4為半透過型液晶顯示裝置A 2與比較例之半透過型 液晶顯示裝置B2的雙方之反射模式的色度圖。 圖1 5為表示本發明之第3實施形態之半透過型彩色液 晶顯示裝置A 3的光透過部7與透明樹脂層P的雙方之關係 的剖面示意圖。 圖1 6為同俯視示意圖。 圖1 7為半透過型液晶顯示裝置A 3與比較例之半透過型 液晶顯示裝置B 3的雙方之透過模式的色度圖。 圖1 8為半透過型液晶顯示裝置A 3與比較例之半透過型 46 312/發明說明書(補件)/92-12/92126608 液晶顯示裝置B 3的雙方之反射模式的色度圖。 圖1 9為本發明之第4實施形態之半透過型彩色液晶顯 示裝置A4的剖面示意圖。 圖20為顯示半透過型液晶顯示裝置A4的著色層3與缺 刻部8的雙方之關係的俯視示意圖。 圖 2 1為顯示習知的半透過型液晶顯示裝置的著色層 3 與缺刻部8的雙方之關係的俯視示意圖。 圖2 2為圖2 1中所示之剖面線a - a之剖面圖。 圖2 3為圖2 1中所示之剖面線b - b之剖面圖。 圖2 4為半透過型液晶顯示裝置A 4與比較例之半透過型 液晶顯示裝置B 4的雙方之透過模式的色度圖。 圖2 5為半透過型液晶顯示裝置A 4與比較例之半透過型 液晶顯示裝置B4的雙方之反射模式的色度圖。 圖2 6為本發明之第5實施形態之半透過型液晶顯示裝 置A5的剖面示意圖。 圖2 7為顯示半透過型液晶顯示裝置A 5的光透過部Η與 缺刻部Α的雙方之關係的俯視示意圖。 圖2 8為圖2 7所示之剖面線X - X之剖面圖。 圖2 9為圖2 7所示之剖面線Y - Y之剖面圖。 圖3 0為顯示習知的半透過型液晶顯示裝置的光透過部Η 與缺刻部Α的雙方之關係的俯視示意圖。 圖3 1為半透過型液晶顯示裝置A 5與比較例之半透過型 液晶顯示裝置B 5的雙方之透過模式的色度圖。 圖3 2為半透過型液晶顯示裝置A 5與比較例之半透過型 47 312/發明說明書(補件)/92-12/92126608 液晶顯示裝置B 5的雙方之反射模式的色度圖。 【元 件符 號 說 明 ] A 光 透 過 部 /缺刻部 1、9 玻 璃 基 板 2 光 反 射 膜 3 著 色 層 4 上 覆 層 5 、 10 透 明 電 極 6 配 向 膜 7、Η 光 透 過 部 8 缺 刻 部 11 酉己 向 膜 12 液 晶 層 13 第 1 相 位 差 板 14 第 2 相 位 差 板 15 偏 光 板 16 第 3 相 位 差 板 17 偏 光 板 18 黑 色 矩 陣 A 1〜 A5 半 透 過 型 彩 色液晶顯示裝置 48 312/發明說明書(補件)/92-12/92126608说明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a transflective color liquid crystal display device having functions of both a reflection mode and a transmission mode, and more particularly to a transflective color liquid crystal device capable of performing white balance adjustment. Display device. [Prior Art] In recent years, liquid crystal display devices have been used in small or medium-sized portable information terminals, notebook computers, and large and high-definition monitors. Especially for portable information terminals and other equipment that must be used indoors and outdoors, in the environment where the external light is very strong, as the lighting method of the display device, the external light (reflection mode) is actively used. In a weak light environment, a backlight (transmission mode) is used, and a so-called semi-transmissive color liquid crystal display device is mainly used by users. Using this transflective color liquid crystal display device, use the reflective mode when lighting through sunlight or fluorescent light, or use the backlight as the transmissive mode. It can have both functions in a single liquid crystal display device. Is a light semi-transmitting film of a user's half lens (see Patent Document 1). In the active matrix transflective color liquid crystal display device, a light transflective film has been proposed for the same purpose (see Patent Document 2). If this light semi-transmitting film is used, it is very difficult to improve the functions of both the reflectance and transmittance at the same time. This is a problem. In order to solve this problem, a reflective film provided with a hole for transmitting light has been used instead of the above light. A semi-transmissive color liquid crystal display device with a semi-transmissive film has been proposed (see Patent Document 3). In the transflective color liquid crystal display device described above, the light system passes the color filter layer once in the transmission mode 5 312 / Invention Specification (Supplement) / 92-12 / 92126608, and the light passes color in the reflection mode. The filter layer is twice, so the color purity of the transmission mode is lower than that of the reflection mode. Therefore, the spatial force of the region using the transmission mode and the region using the reflection mode is distinguished, and the film thickness of the color filter layer in the region of the transmission mode is made the film thickness of the color filter layer in the region of the reflection mode. It is thicker to improve the color purity of the transmission mode, and a semi-transmissive color liquid crystal display device configured in this way has also been proposed (see Patent Document 4, Patent Document 5). In addition, a pin-hole is formed in the color filter layer in the reflection mode area, and the color purity of the reflection mode is made into a transflective color liquid crystal display device which is equal to the color purity of the transmission mode. [Patent Document 1] Japanese Patent Laid-Open No. 8-2 9 2 4 1 3 [Patent Document 2] Japanese Patent Laid-Open No. 7-3 1 8 9 2 9 [Patent Document 3] Japanese Patent No. 2 8 7 8 2 3 JP 1 [Patent Document 4] Japanese Patent Laid-Open No. 2 0 0 0-2 9 8 2 7 JP 1 [Patent Document 5] Japanese Patent Laid-Open No. 2 0 0 1-1 6 6 2 8 9 [ SUMMARY OF THE INVENTION <Problems to be Solved by the Invention> However, in the above-mentioned transflective color liquid crystal display device, an LED lamp is used as a light source in a transmission mode, and on the other hand, in a reflection mode, 6 312 / Invention Specification (Supplements) / 92-12 / 92126608 Use fluorescent light as a light source when used indoors, and use sunlight as a light source when used outdoors. As such, the light source in transmission mode and reflection mode are not the same. Therefore, for both the transmission mode and the reflection mode, the color design and the white balance design must be designed independently. The color filter layer is formed of R (red), G (green), and B (blue). Even if the color filter layer is implemented in accordance with the techniques proposed in Patent Literature 4 and Patent Literature 5, the transmission mode and reflection cannot be determined. The white balance of the mode is set independently. Moreover, even with a structure in which pinholes are provided in the color filter layer in the reflection mode area, it is not possible to independently set the white balance composed of the transmission mode and the RGB of the reflection mode. Accordingly, an object of the present invention is to provide a semi-transmissive color liquid crystal display device capable of independently setting a white balance composed of a transmission mode and an R G B in a reflection mode. Another object of the present invention is to provide a half-color purity that is approximately the same as the color purity of the transmission mode, and that the white balance of the transmission mode and the RGB of the reflection mode can be set independently. Transmissive color liquid crystal display device. A. The transflective color liquid crystal display device of the present invention includes: forming a light reflecting film on one main surface of a substrate, and forming colored layers having different colors; and sequentially forming transparent layers on the colored layers. One member formed by a conductive material with a pixel-forming electrode and an alignment film; the other pixel-forming electrode composed with a transparent conductive material and a electrode are sequentially formed on a transparent substrate 7 312 / Invention Manual (Supplement) / 92 -12/92126608 to the other member formed by the directing layer; and the liquid crystal layer interposed between these one member and the other member; characterized in that: on the aforementioned light reflecting film, different colors are provided corresponding to each colored layer Light transmission area of light transmission area. According to the above configuration, a light transmitting portion is provided for each pixel in the light reflecting film, and the light transmitting portion is used as a transmission mode, and a region other than the light transmitting portion is used as a reflection mode, thereby forming a semi-transmissive color liquid crystal. Display device. In addition, when using both the transmission mode and the reflection mode, light transmission sections having different light transmission areas corresponding to the respective coloring layers are provided, whereby the white balance composed of the transmission mode and the RGB of the reflection mode can be independent. Make settings. By performing such white balance adjustment, a high-quality and high-performance transflective color liquid crystal display device can be obtained. B. In addition, the semi-transmissive color liquid crystal display device of the present invention includes: a light reflection film and a transparent resin layer are sequentially formed on one main surface of the substrate; and different colored layers are formed. Here, One member formed of a pixel-forming electrode made of a transparent conductive material and an alignment film is sequentially formed on the colored layers; the other pixel-forming electrode and an alignment layer made of a transparent conductive material are sequentially formed on a transparent substrate. And a liquid crystal layer interposed between the one member and the other member; characterized in that: a light transmitting portion is provided on the light reflecting film corresponding to each colored layer, and corresponds to each of the foregoing The coloring layer is different from the coating area of the transparent resin layer in the area covered by the light reflecting film. According to the semi-transmissive color liquid crystal display device of the present invention, as described above, a light transmitting portion is provided for each of the above-mentioned light reflecting films depending on each pixel, so that 8 312 / Invention Manual (Supplement) / 92-12 / 92126608 light The transmissive portion is used as a transmission mode, and a region other than the light transmitting portion is used as a reflection mode, thereby making it a transflective color liquid crystal display device. Furthermore, according to the transflective color liquid crystal display device of the present invention, the covering areas of the light reflecting films of the pair of transparent resin layers are made different for the respective colored layers, and the following effects can be obtained. Based on the transmittance and color reproducibility necessary for the transmission mode, the area of the light transmitting part and the elements (color density and thickness) of the color filter layer (coloring layer) are set. The conventional semi-transmission type In a color liquid crystal display device, the color filter layer also forms a colored layer having the same color density and thickness in the reflection area. Therefore, the display in the reflection mode becomes dark. On the other hand, the coverage area of the transparent resin layer with respect to the light reflection film is made different through the reflection areas of the colored layers of the present invention. The amount of the color filter layer (colored layer) used as the reflection area can be set as Increase or decrease. That is, the coloring layer in the reflection region has the same effect as that in which the thickness is made thinner compared with the coloring layer in the transmission region. Therefore, the degree of reduction in brightness of the reflection mode can be reduced or not reduced. In addition, according to the present invention, it is possible to adjust the coverage area of the light reflection film of the transparent resin layer for the reflection areas of the colored layers, thereby allowing the white balance composed of the transmission mode and the reflection mode RGB to be independent. By performing the setting in this manner and adjusting the white balance in this manner, a high-quality and high-performance transflective color liquid crystal display device can be obtained. C. The transflective color liquid crystal display device of the present invention is provided with: a light reflection film and a transparent resin layer are sequentially formed on one main surface of the substrate, and colored layers having different colors are formed, and colored here One layer consisting of a pixel-forming electrode and an alignment film composed of 9 312 / Invention Specification (Supplement) / 92-12 / 92126608 transparent conductive material is sequentially formed on the layer; a transparent conductive material is sequentially formed on a transparent substrate The other pixel forming electrode and the other member formed by the alignment layer and the liquid crystal layer interposed between these one member and the other member are characterized in that the light reflecting film corresponds to each The colored layer is provided with a light transmitting portion, which is configured to allow the backlight to pass through the light transmitting portion in the transmission mode, and to reflect external light when the reflection area other than the light transmitting portion is in the reflection mode, and corresponds to the foregoing. The coverage area of the transparent resin layer with respect to the light transmitting portion is different for each colored layer. As described above, according to the semi-transmissive color liquid crystal display device of the present invention, a light transmitting portion is provided for each of the reflective metal layers depending on each pixel, and the light transmitting portion is used as the transmission mode, and the area other than the light transmitting portion is used as the reflection mode. Thus, it becomes a semi-transmissive color liquid crystal display device. In addition, according to the semi-transmissive color liquid crystal display device of the present invention, the coverage area of the light transmitting portion of the transparent resin layer is different from that of the respective colored layers, and the following effects can be obtained. Based on the transmittance and color reproducibility necessary for the transmission mode, the area of the light transmitting part and the elements (color density and thickness) of the color filter layer (coloring layer) are set. The conventional semi-transmission type In a color liquid crystal display device, the color filter layer also forms a colored layer having the same color density and thickness in the reflection area. Therefore, the display in the reflection mode becomes dark. On the other hand, by changing the covering area of the light transmitting portion of the transparent resin layer, the amount of the color filter layer (coloring layer) used as the reflection area can be increased or decreased, and the transmission mode can be displayed and reflected. The model person made it close to 10 312 / Invention Specification (Supplement) / 92-12 / 92126608. Conversely, the colored layer in the reflection area and the colored layer in the transmission area are the result. Because it is not designed to reduce the number of pixels, the transparent RGB white liquid crystal is obvious. It is formed by one side and the other is here: When the light is transmitted, there is a defect 7 The transmission part 11 is compared with The same effect as making the thickness thinner can be obtained, and the reduction degree of the brightness of the reflection mode can be reduced or reduced. This is equivalent to making a reduction in the brightness of the reflection mode available or not reducing it. In addition, according to the present invention, as described above, depending on each light transmitting portion in the light reflecting film, when the covering area of the light transmitting portion of the clear resin layer is used in both the transmission mode and the reflection mode, suitable areas can be obtained As a result, the white balance composed of the transmission mode and the reflection mode can be set independently. Furthermore, by performing such adjustments as balance, a high-quality and high-performance transflective color display device can be obtained. D. The semi-transmissive color liquid crystal display device of the present invention includes a light reflecting film and a transparent resin layer sequentially formed on one main surface of the substrate, and has different colored layers, and the transparent layers are sequentially transparent on the colored layers. The pixel formation electrode and the alignment film made of a conductive material are formed on the transparent substrate in order to form another member formed of the pixel formation electrode and the alignment layer made of the transparent conductive material in sequence; The liquid crystal layer between the other members is characterized in that: on the light reflecting film, light transmitting portions having different areas are provided corresponding to the respective colored layers, and the region-shaped engraved portions are formed on the reflecting portions of the colored layers. According to this semi-transmissive color liquid crystal display device, as described above, the light reflecting film is provided with a light transmitting portion depending on each pixel, and the light 312 / Invention Specification (Supplement) / 92-12 / 92126608 is used as the transmission mode, and The area other than the light transmitting portion serves as a reflection mode, thereby making it a transflective color liquid crystal display device. In addition, according to the transflective color liquid crystal display device of the present invention, the following effects can be obtained by forming nicks in the reflection areas of the colored layers. Based on the transmittance and color reproducibility necessary for the transmission mode, the area of the light transmission part and the elements (color density and thickness) of the color filter layer (colored layer) are set. In a color liquid crystal display device, the color filter layer also forms a colored layer having the same color density and thickness in the reflection area. Therefore, the display in the reflection mode becomes dark. On the other hand, a notch is formed in the reflection area of each colored layer of the present invention, and the color density and thickness of the color filter layer (colored layer) in the reflection area are the same as those in the transmission area, but the colored layer In view of the occupied portion and the portion where the colored layer does not exist (notched portion of the colored layer), providing the notched portion can prevent the display from being darkened. That is, the coloring layer in the reflection region has the same effect as that in the case where the thickness is made thinner compared with the coloring layer in the transmission region. Therefore, the degree of reduction in the brightness of the reflection mode can be reduced or not reduced. Incidentally, although the technology of making the thickness of the colored layer for reflection mode thinner than the thickness of the colored layer for transmission mode has been proposed (see Patent Document 5), according to this technology, it is necessary to be a reflective layer before the colored layer is formed. Part of the area is first formed with a transparent layer, and the process steps of the part must be added. In the present invention relative to this technology, when the RGB coloring layers are formed separately, the nicks of the coloring layer can also be formed at the same time, thereby eliminating the need for additional process steps. 12 312 / Invention Specification (Supplement) / 92- 12/92126608 Reduce manufacturing costs. Furthermore, according to the present invention, as described above, light transmission is set depending on each pixel. When used in transmission mode and reflection mode, light transmission sections corresponding to different light transmission areas of the respective colored layers are provided. The white balance composed of the over-mode and the reflection-mode RGB is independently determined. By adjusting the white balance in this way, a high-quality and high-energy transflective color liquid crystal display device can be obtained. E. The semi-transmissive color liquid crystal display device of the present invention includes: a light reflecting film is formed on one main surface of the substrate, a pixel forming electrode made of a transparent conductive material, and an alignment film Component; forming colored layers with different colors on the bright substrate, and sequentially forming the other component formed by the other pixel-forming electrode alignment film made of a transparent conductive material in these colored layers; A liquid crystal layer between one member and the other member; characterized in that a light transmitting portion having a different light transmitting area corresponding to each colored layer is provided on the light reflecting film, and a semi-transmissive color liquid crystal display device according to the present invention Compared with the semi-transmissive color liquid crystal display device described above, the difference is that the colored layer is not formed on one member, but is formed on the other member. As described above, a light-transmitting portion is provided for each of the pixels of the light-reflecting film, and the light-transmitting portion is used as a transmission mode, and a region other than the light-transmitting portion is used as a reflection mode, thereby forming a transflective color liquid crystal. Display is set. In addition, when using both transmission mode and reflection mode, the transparence to 312 / Invention Manual (Supplement) / 92-12 / 92126608 should be set to 13 pairs of transmissive modes on the transmissive area and the transmissive area. It is set independently of the white balance composed of the reflection-mode RGB. By performing such white balance adjustment, a high-quality and high-performance transflective color liquid crystal display device can be obtained. F. In the transflective color liquid crystal display device described above, it is preferable that a notch is formed in a reflection region of each colored layer. By forming the notched portion in the reflection region of each colored layer, the following general effects can be obtained. Based on the transmittance and color reproducibility necessary for the transmission mode, the area of the light transmitting part and the elements (color density and thickness) of the color filter layer (coloring layer) are set. The conventional semi-transmission type In a color liquid crystal display device, the color filter layer also forms a colored layer having the same color density and thickness in the reflection area. Therefore, the display in the reflection mode becomes dark. On the other hand, as in the present invention, by forming a notch in the reflection region of each colored layer, the color density and thickness of the color filter layer (colored layer) of the reflection region are the same as those of the transmission region, but they are colored. In view of the portion occupied by the layer and the portion where the colored layer does not exist (notched portion of the colored layer), the presence of the notched portion can prevent the display from being darkened. That is, the coloring layer in the reflection region has the same effect as that in the case where the thickness is made thinner compared with the coloring layer in the transmission region. Therefore, the degree of reduction in the brightness of the reflection mode can be reduced or not reduced. Incidentally, although the technology of making the thickness of the colored layer for reflection mode thinner than the thickness of the colored layer for transmission mode has been proposed (see Patent Document 5), according to this technology, it is necessary to be a reflective layer before the colored layer is formed. Part 14 312 / Invention Specification (Supplement) / 92-12 / 92126608 of the area is first formed with a transparent layer, and the process steps of this part must be added. In the present invention compared with this technology, when the colored layers of RGB are formed separately, the nicks of the colored layer can be formed at the same time, thereby reducing the manufacturing cost without increasing the number of process steps. [Embodiment] Hereinafter, an embodiment of the transflective color liquid crystal display device of the present invention will be described in detail with reference to the drawings. (First Embodiment) FIG. 1 is a schematic cross-sectional view of a semi-transmissive color liquid crystal display device A1 according to a first embodiment of the present invention, and FIG. 2 is a diagram showing both a light reflection film and a coloring layer of the semi-transmissive liquid crystal display device A1. Schematic diagram of the relationship. The transflective liquid crystal display device A1 is a S T N type simple matrix system. FIG. 3 is a cross-sectional view taken along the line X-X shown in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line Y-Y shown in FIG. 2. The semi-transmissive liquid crystal display device A1 is composed of an “other member” (when the observer views the semi-transmissive color liquid crystal display device A 1, which is close to the observer ’s segment mode side) and the opposite side The common mode (c 〇mm ο η) is composed of "one member". In one of the members of the semi-transmissive liquid crystal display device A1, 1 is a glass substrate on the common mode side. On this glass substrate 1, a light reflecting film 2 made of, for example, an aluminum metal material is formed. On this light-reflective film 2, an acrylic transparent resin layer P made of, for example, PΗA 0 9 4 X, P H A 1 0 3 X, or the like manufactured by Nippon Steel Chemical Co., Ltd. is formed. Preferably, the transparent resin layer P is laminated on the light reflection film 2 except for the light transmitting portion 7. 15 312 / Instruction of the invention (Supplement) / 92-12 / 92126608 The coloring layer 3 as a color filter layer is formed on the transparent resin layer P, and most of the composition is applied in parallel to the film 6 grease or Si 2 The transmission area of each colored layer is elongated. For example, the light can be transmitted to the glass first, and then the metal film transmits the light through the A1 compound mode. On the other hand, the light-transmitting layer 16 is coated with an acrylic resin coating layer 4 so as to cover the colored layer 3. Then, a transparent electrode 5 made of IT 0 and a rubbing-made polyimide resin are arranged on the upper cladding layer 4 in order, and the transparent electrode 5 and An insulating film made of a tree or the like may be interposed between the alignment films 6. In this embodiment, different light transmitting portions 7 are provided corresponding to the respective 3 of the light reflecting film 2 depending on the colors of red, green, and blue. Although the shape of the light transmitting portion 7 is rectangular in FIG. 2, the present invention is not limited thereto, and any shape may be oval. In FIG. 2, although the number of the light transmitting sections 7 is one for each of the other colored layers 3, the number of light transmitting sections 7 is not limited to one, and the transmitting sections are divided into a plurality and provided. A method of forming the light transmitting portion 7 will be described below. The formation of a uniform aluminum metal film on the first glass substrate 1 by sputtering is performed on the aluminum metal film through a series of photolithography steps including photoresist coating, exposure, development, etching, and photoresist stripping. The portion 7 is patterned and removed so as to have a desired shape. As the material of the light reflection film 2, a metal film such as A 1 N d gold, Ag metal, or Ag alloy may be used instead of the A1 material. The light transmitting portion 7 is provided depending on the pixels in such a manner. In the middle, the backlight can transmit the light transmitting portion 7 (referred to as the transmission area). / Invention Specification (Supplement) / 92-12 / 92126608 Light reflection. According to the present invention, the area of the light transmitting portion 7, that is, the light transmitting area, is set differently according to the different colors of red, green, and blue. The coloring layer 3 is formed by applying a photosensitive photoresist in which pigments (red, green, and blue) are dispersed in advance on a substrate and photolithography (pigment dispersion method). When the colored layer 3 is formed, a dyeing method may be used instead of the pigment dispersion method described above. Also, as shown in Fig. 2 showing the relationship between both the light reflecting film 2 and the coloring layer 3, it is also possible to have a configuration in which each coloring layer 3 is surrounded by a black matrix 18. Next, with regard to the other member, 9 is a glass substrate on the one-sided mode side. On this glass substrate 9, a strip-shaped transparent electrode group 10 composed of a plurality of IT 0 arranged in parallel is sequentially formed, and then The rubbed alignment film 11 made of polyfluorene imine is formed on the transparent electrode group 10 in a specific direction in a specific direction. Next, the glass substrate 9 and the glass substrate 1 are interposed between, for example, a liquid crystal layer 12 composed of a pair of smectic liquid crystals twisted at an angle of 200 to 2 60 °, so that both of them are stripe-shaped. The transparent electrode groups 5 and 10 are intersected (vertically intersected), and are bonded through a bonding material (not shown). Also, although not shown, a plurality of spacers are provided between the two glass substrates 1 and 9 to make the thickness of the liquid crystal layer 12 constant. The first retardation plate 1 made of polycarbonate, 3, the second retardation plate 14, and the iodine-based polarizing plate 15 are sequentially stacked on the outside of the glass substrate 9, and the outside of the glass substrate 1 is sequentially stacked. A third retardation plate 16 made of polycarbonate and an iodine-based polarizing plate 17 are sequentially stacked. During such deployment, the bonding is performed by coating a bonding material composed of 17 312 / Invention Specification (Supplement) / 92-12 / 92126608 acrylic material. Further, the polarizing plate 17 on the glass substrate 1 side of one member may be bonded to a backlight unit composed of, for example, a light source portion such as an LED or a cold cathode tube, and a light guide plate. According to the semi-transmissive liquid crystal display device A 1 of the present invention thus prepared, as described above, corresponding to the colored layers 3 of the light reflection film 2, different light transmission areas are set depending on the colors of red, green, and blue.的 Light Transmission Portion 7. This makes it possible to make the respective transmittances and reflectances different for each RGB, and to set the color balance independently by setting the white balance composed of the transmission mode and the reflection mode RGB. By performing such color design and white balance adjustment, a high-quality and high-performance transflective color liquid crystal display device A1 can be obtained. Next, the embodiment will be described. For the semi-transmissive liquid crystal display device A 1 of the present invention, it is necessary to independently set the color design and white balance for the transmission mode and the reflection mode. For each colored layer 3, the transmittance and reflectance are determined as required according to RGB. By. That is, in this embodiment, the light reflecting film 2 corresponds to each of the colored layers 3, and the light transmitting portions 7 having different light transmitting areas are formed according to different colors of red, green, and blue, as shown in Table 1. As shown, the area of this light transmitting portion 7 is such that the pixels of R (red) are 39% of the total pixels, the pixels of G (green) are 39% of the total pixels, and the pixels of B (blue) are It is a structure of 27% of the total pixels. 18 312 / Invention Specification (Supplement) / 92-12 / 92126608 A1 Transmission Mode Reflection Mode Conventional Example Transmission Hole YX y CF Opening Ratio YX y R 0.30 32.5 0.515 0.311 R-32.5 0. 515 0.311 G 0.30 75.4 0.332 0.469 G -75.4 0.332 0.469 B 0.30 29.7 0.206 0.212 B-29.7 0.206 0.212 W 45.9 0.336 0.339 W-45.9 0.336 0.339 ratio 21.1 OTSC ratio-21.1 Example through hole YX y CF aperture ratio YX y R 0.39 43.3 0.515 0.311 R-27.9 0.515 0 311 G 0.39 100.6 0.332 0.469 G-64.8 0.332 0,469 B 0.27 26.5 0.206 0.212 B-31.1 0.206 0. 212 W 56.8 0.352 0.356 W-41.3 0.326 0.330 NTSC ratio 21.1 C ratio-21.1 19 312 / Invention Specification (Supplement) ) / 92-12 / 92126608 Also, as a conventional example (comparative example), it corresponds to each of the transmissive surface display device films and works on the light reflection film 2. Fig. 5 is a half of the light transmissive image of line Z-Z Transparency diagrams such as J on both sides) Compared to the 'X, △ X, Δ embodiment, the evaluation of direction shift 20 colored layer 3, forming a light transmitting portion 7 with light product of the same size for each color of red, green, and blue, others Semi-transmissive Crystal becomes substantially the same as A 1, made into a semi-display type liquid crystal device B 1 &lt; As a schematic diagram showing the relationship between both sides of the light reflection color layer of this transflective liquid crystal display device B 1, it is shown in Figs. 5 and 6. It is a schematic diagram corresponding to FIG. 2 again. Fig. 6 is a sectional view of the section shown in Fig. 5. According to the semi-transmissive color liquid crystal display device B1, as shown in Table 1, the light transmission area of the light-transmitting film 2 passing portion 7 is such that each of the RGB pixels occupies 30 ° / 0. Chromaticity of optical characteristics of both transflective color liquid crystal display device A and comparative example transmissive color liquid crystal display device B of the present invention Figs. 7 and 8. Fig. 7 shows the chromaticity diagrams of both transmission modes, and Fig. 8 shows the chromaticity diagrams of reflection modes. According to FIG. 7 and FIG. 8, the embodiment of the present invention and the conventional example (comparison 6), the chromaticity of the white balance W of R, G, and B are (Z y) two (0.  0 1 6, 0 · 0 1 7) becomes larger, in the reflection mode (△ y) = (-0.  0 1 0,-0.  0 0 9) Be | J becomes smaller. That is, it can be seen that, compared with the conventional example, the white balance moves toward yellow in the transmission mode and moves toward blue in the reflection mode. For reference, the optical characteristic method used in this embodiment will be described with reference to FIG. 312 / Invention Specification (Supplement) / 92-12 / 92126608 In the case of the reflection mode, as shown in FIG. 9 (a), the display surface of the liquid crystal display device is lighted at an angle of 15 ° from the top (C light source) ), Then, when the liquid crystal display device is driven (white display, black display, red display, green display, blue display), the reflectance, contrast, and color gamut area of the reflected light in the vertical direction are measured to obtain an evaluation result . As for the transmission mode, as shown in Fig. 9 (b), light (C light source) is incident on the inner surface of the liquid crystal panel except for the backlight, and then, when the liquid crystal display device is driven (white display, black display) , Red display, green display, blue display) The transmittance, contrast, and color gamut area of the transmitted light in the vertical direction were measured to obtain an evaluation result. In addition, a definition diagram of the color gamut area is shown in FIG. 10. The color gamut area is expressed as the ratio of the area enclosed by each RGB chromaticity point to the NSTC. The larger the area, the higher the color reproducibility, and a panel display with high color purity can be obtained. (Second Embodiment) Next, a second embodiment of the present invention will be described. Although the cross-sectional schematic diagram of the semi-transmissive color liquid crystal display device A 2 of the second embodiment is the same as that of FIG. 1, the semi-transmissive color liquid crystal display device A 2 has the following differences from the semi-transmissive color liquid crystal display device A1. point. That is, the covering area of the transparent resin layer P to the light reflecting film 2 is different depending on the coloring layers. In detail, FIG. 11 and FIG. 12 are shown. 11 and 12 are diagrams showing the relationship between the light reflecting film 2 and the coloring layer P of the transflective color liquid crystal display device A2. Fig. 11 is a cross-sectional view of an important part, and Fig. 12 is a cross-sectional view of the important part. Top view. In the transflective color liquid crystal display device A2, corresponding to each colored layer 21 312 / Invention Specification (Supplement) / 92-12 / 92126608 3 (that is, corresponding to different colors of red, green, and blue), transparent The coverage area of the resin layer P to the light reflecting film 2 is different. The light reflecting film 2 having this structure is first uniformly formed on a glass substrate 1 by sputtering with aluminum or the like, and then, the aluminum metal film is coated, exposed, developed, and the aluminum metal film is subjected to photoresist. A series of photolithography steps, such as etching and photoresist stripping, pattern and remove the light transmitting portion 7 to have a desired shape. Such a light transmitting portion 7 is provided in accordance with each of the colored layers 3 in accordance with the colors (ie, pixels) of red, green, and blue. Here, the light transmitting portion 7 transmits light in the transmission mode, and transmits light in the light. Areas other than the transmission section 7 reflect light in the reflection mode. According to the semi-transmissive color liquid crystal display device A 2 of the present invention thus prepared, the reflection area of each colored layer 3 (that is, the area of the light reflecting film 2 other than the light transmitting portion 7) corresponds to each colored layer 3, The coverage area of the transparent resin layer P to the light reflection film 2 is made different. Thereby, the ratio of the area of the thinner portion of the colored layer 3 in the reflection mode region can be freely set. If the area of the thinner portion is made larger, the same effect as that in which the colored layer 3 is formed thinner can be obtained, and the degree of reduction in the brightness of the reflection mode can be reduced or not reduced. In this way, the transmittance and reflectance of each RGB are set separately, and the color design can be performed by independently setting the white balance composed of the transmission mode and the reflection mode RGB. By performing such color design and white balance adjustment, a high-quality and high-performance transflective color liquid crystal display device A2 can be obtained. 22 312 / Invention Specification (Supplement) / 92-12 / 92126608 Next, the embodiment will be described: The semi-transmissive color liquid crystal display device A 2 of the present invention described above is independently colored in the transmission mode and the reflection mode. For design and white balance settings, for each colored layer 3, the required transmittance and reflection are determined according to each RGB. That is, in this embodiment, corresponding to each colored layer 3 (that is, corresponding to R (red ) The colors of G (green) B (blue) are different.) The coverage area of the transparent resin layer P to the light reflecting film 2 is different. As shown in Table 2, the ratio of the coverage area is: For R (red) pixels, it is 100% of the entire light reflecting film 2; For G (green) pixels, it is 100% of the entire light reflecting film 2; for B (blue) The pixel has a structure that is 75% of the entire pixel of the light reflection film 2 (the same as the "transparent resin / reflecting portion" in the table). 23 312 / Description of the Invention (Supplement) / 92-12 / 92126608 Table 2 Transmission mode Reflection mode Transparent tree Transparent resin / Reflection Y X y Grease / Reflection Y X y Part R 100% 0. 515 0. 311 R 100% 0. 515 0. 311 Example 2 G 100% 0. 332 0. 469 G 100% 0. 332 0. 469 B 100% 0. 206 0. 212 B 100% 0. 206 0. 212 W 3. 0 0. 336 0. 339 W 26. 2 0. 336 0. 339 NTSC to 21. 1 NTSC to 21. 1 Transparent tree Transparent resin / Reflective Y X y Grease / Reflective Y X y Portion R 100% 0. 515 0. 311 R 100% 0. 515 0. 311 Example 4 G 100% 0. 332 0. 469 G 100% 0.  332 0. 469 B 75% 0. 206 0. 212 B 75% 0. 182 0. 168 W 3. 0 0.  336 0. 339 W 25. 4 0. 325 0.  328 NTSC to 21. 1 NTSC to 22. 3 312 / Invention Specification (Supplement) / 92-12 / 92126608 24 In addition, as a conventional example (comparative example), it corresponds to each colored layer 3 to form a covering area ratio 1 that is the same for each color of red, green, and blue. The transparent resin layer P is 0%, and the other structures are the same as those of the semi-transmissive liquid crystal display device A2, and a semi-transmissive liquid crystal display device B2 is produced. The light transmission area of the light transmission portion 7 of the light reflection film 2 is 30% of each of the RGB pixels to the entire pixel. Optically specific chromaticity diagrams of both the semi-transmissive liquid crystal display device A2 of the present invention and the semi-transmissive liquid crystal display device B 2 of the comparative example are shown in FIGS. 13 and 14. This evaluation method is the same as that described in the first embodiment. Figure 13 shows the chromaticity diagrams of both transmission modes, and Figure 14 shows the chromaticity diagrams of both reflection modes. According to FIGS. 13 and 14, the embodiment of the present invention is compared with the conventional example (comparative example). In transmission mode, the R, G, B of the embodiment of the present invention and the conventional example (comparative example) are white. The chromaticity of the balance W is the same, and in the reflection mode (△ X, △ y) = (-0 · 0 1 bu 0.  0 1 1) Be | J becomes smaller. That is, according to the embodiment, compared with the conventional example, the white balance does not change in the transmission mode, but moves in the direction of blue in the reflection mode. Here, although the white balance is not changed in the transmission mode, it can be adjusted by changing the CF balance of RGB. (Third Embodiment) Next, a third embodiment of the present invention will be described. Although the schematic cross-sectional view of the semi-transmissive color liquid crystal display device A 3 of this third embodiment is the same as that in FIG. 1, the semi-transmissive color liquid crystal display device A3 has the following differences compared to the semi-transmissive color liquid crystal display device A1. point. 15 and 16 are diagrams showing the relationship between the light reflection of the transflective liquid crystal display device A 3 25 312 / Invention Specification (Supplement) / 92-12 / 92126608 and the relationship between the film and the coloring layer. A cross-sectional view of important parts, FIG. 16 is a plan view of important parts. This embodiment is characterized in that the coverage area of the light transmitting portion of the transparent resin layer is different for each colored layer, and details are shown in FIG. 15 and FIG. 16. Referring to FIGS. 15 and 16, corresponding to each of the colored layers 3 (that is, corresponding to the different colors of red, green, and blue), the transparent resin layer P covers the window of the transparent resin layer P of the light transmitting portion 7. The area system becomes different. According to such a semi-transmissive liquid crystal display device A 3 of the present invention, the coverage areas of the light transmitting portions 7 of the transparent resin layer P through the colored layers 3 and the transparent resin layer P in the reflection areas corresponding to the colored layers 3 are different. The amount of the color filter layer (coloring layer 3) used as the transmission region can be increased or decreased. And can make the display of the transmission mode close to the reflection mode. On the other hand, the colored layer in the reflection area has the same effect as that in which the thickness is made thinner compared with the colored layer in the transmission area. Therefore, the degree of reduction in brightness of the reflection mode can be reduced or not reduced. In summary, according to the present invention, as described above, the light transmitting portion 7 corresponding to each of the colored layers 3 is provided with a light transmitting area according to the colors of red, green, and blue, and the light transmitting portion 7 of the transparent resin layer P is provided. The coverage area is made different, by which the transmittance and reflectance of each RGB can be made different, and the white balance composed of the transmission mode and the reflection mode of RGB can be set independently for color design. . By performing such a color design and white balance adjustment, a high-quality and high-performance transflective color liquid crystal display device A3 can be obtained. 312 / Invention Specification (Supplement) / 92-12 / 92126608 26 Next, the embodiment will be explained: For the above-mentioned semi-transmissive liquid crystal display device A 3 of the present invention, it is necessary to independently perform color design for the transmission mode and reflection mode, For the setting of the white balance, for each colored layer 3, the transmittance and reflectance are determined as required according to RGB. In this embodiment, corresponding to the respective colored layers 3 (that is, the colors corresponding to R (red) G (green) B (blue) are different), the covering area of the transparent resin layer P to the light reflecting film 2 is made For different. As shown in Table 3, the ratio of the coverage area is as follows: 70% of the total light transmitting portion 7 in the pixels of R (red), and light transmission in the pixels of G (green) 70% of the whole of the part 7 and 100% of the pixels of the light transmitting part 7 among the pixels of B (blue) (the "transparent resin / reflecting part" in the table is the area covered by this) Proportion) 〇27 312 / Invention Specification (Supplement) / 92-12 / 92126608 Table 3 Transmission Mode Reflection Mode Transparent Tree Transparent Resin / Reverse YX y Grease / Reverse YX y 515 0. 311 R 100% 0. 515 0. 311 Example G 100% 0. 332 0. 469 G 100% 0. 332 0. 469 B 100% 0. 206 0. 212 B 100% 0. 206 0. 212 W 3. 0 0. 336 0. 339 W 26. 2 0. 336 0. 339 NTSC to 21.  1 NTSC to 21. 1 Transparent tree Transparent resin / anti-Y X y grease / anti-Y X y Shooting section Shooting section R 70% 29. 3 0. 538 0. 314 R 70% 0. 515 0. 311 Example G 70% 71.  1 0. 329 0. 488 G 70% 0. 332 0. 469 B 100% 29. 7 0. 206 0. 212 B 100% 0. 206 0. 212 W 2. 8 0. 344 0. 347 W 26. 2 0. 336 0. 339 NTSC is better than 24. 9 NTSC to 21. 1 312 / Invention Specification (Supplement) / 92-12 / 92126608 28 Also, as a conventional example (comparative example), it corresponds to each colored layer 3, forming a ratio of the coverage area that is the same for each color of red, green, and blue. The other structures of the transparent resin layer P are the same as those of the semi-transmissive liquid crystal display device A3, and a semi-transmissive liquid crystal display device B3 is produced. In the light transmission area of the light transmission portion 7 of the light reflection film 2, each RGB pixel is 30% of the entire pixel. Optically specific chromaticity diagrams of both the semi-transmissive liquid crystal display device A3 of the present invention and the semi-transmissive liquid crystal display device B 3 of the comparative example are shown in FIGS. 17 and 18. Figure 17 shows the chromaticity diagrams of both transmission modes, and Figure 18 shows the chromaticity diagrams of both reflection modes. As shown in FIG. 17 and FIG. 18, in the reflection mode, the chromaticities of the white balance W of R, G, and B in the embodiment of the present invention and the conventional example (comparative example) are approximately the same, and in the transmission mode In the embodiment of the present invention, compared with the conventional example (comparative example), (△ X, △ y) = (0.  0 0 8, 0 · 0 0 8) system becomes larger. Moreover, according to the embodiment, it can be known that, compared with the conventional example, the white balance does not change in the transmission mode, but moves in the yellow direction in the reflection mode. Here, although the white balance is not changed in the reflection mode, it can be adjusted by changing the balance of CF of RGB. (Fourth Embodiment) Next, a fourth embodiment of the present invention will be described. FIG. 19 is a schematic cross-sectional view of a semi-transmissive liquid crystal display device A 4 of the present invention, and FIG. 20 is a schematic diagram showing the relationship between the light reflection film and the colored layer of the semi-transmissive liquid crystal display device A 4. In addition, the semi-transmissive liquid crystal display device 29 312 / Invention Manual (Supplement) / 92-12 / 92126608 is set to A4, which is a STN type simple matrix method. The semi-transmissive liquid crystal display device A 4 is composed of the "other member" (close to one of the observers when the observer views the semi-transmissive color liquid crystal display device A4) and the "one member" on the opposite side. Make up. In one member, 1 is a glass substrate on a common mode side. On this substrate 1, a light reflection film 2 made of, for example, an aluminum metal material is formed. A colored layer 3 is formed thereon, and the colored layer 3 is further covered with an upper coating layer 4 made of an acrylic resin so as to cover the colored layer 3. Then, a plurality of transparent electrodes 5 made of I T 0 and a plurality of alignment electrodes 6 made of polyimide resin rubbed in a specific direction are mostly laminated in parallel on the overlying layer 4 in a row. An insulating film made of resin, S i 0 2 or the like may be interposed between the transparent electrode 5 and the alignment film 6. In each of the colored layers 3, light transmitting portions 7 having different areas are provided in accordance with the colors of red, green, blue, and the like. The manufacturing method of the light reflection film 2 and the coloring layer 3 thus constituted will be described. A uniform aluminum metal film is formed on the glass substrate 1 by sputtering. Then, the aluminum metal film is subjected to a series of photoresist coating, exposure, development, etching of the aluminum metal film, and photoresist peeling. In the photolithography step, the light transmitting portion 7 is patterned to have a desired shape. As the material of the light reflection film 2, a metal film such as an A1 alloy such as A 1 N d, an Ag metal, or an Ag alloy may be used instead of the A1 material. Next, a color filter layer of the coloring layer 3 is formed by a pigment dispersion method, that is, a photosensitive photoresist prepared in advance with a pigment is coated on a substrate and formed by photolithography. 30 312 / Invention Specification (Supplement) / 92-12 / 92126608 In the formation of the color filter layer of the colored layer 3, a dyeing method may be used instead of the above-mentioned pigment dispersion method. In this way, light transmitting sections 7 having different areas are provided on the respective colored layers 3 in accordance with the colors of red, green, blue and the like. Here, the light transmitting portion 7 transmits light, and reflects light in a region other than the light transmitting portion 7. The light transmitting portion 7 is referred to as a transmission area because it can transmit light. The area other than the light transmitting portion 7 is referred to as a reflection area because it reflects light through the light reflecting film 2. According to the present invention, a notch portion 8 in which no pigment is present (or undyed) is formed in the reflection region of each colored layer 3. = FIG. 20 is a plan view showing the notched portion 8. According to Fig. 20, the configuration is such that each colored layer 3 is surrounded by a black matrix 18. According to such a configuration, the notched portion 8 is formed inside the black matrix 18 by removing a part of the colored layer 3. Although the shape of the notch 8 is a triangle in FIG. 20, it is not limited to a triangle, and may be any shape such as a circle, an ellipse, or a square. Next, the other component will be described. In the other member, 9 is a glass substrate on the one-sided mode side, and on this glass substrate 9, a plurality of strip-shaped transparent electrode groups 10 composed of IT 0 are formed in parallel in order. An alignment film 11 made of polyimide resin that is rubbed in a specific direction is formed on the strip-shaped transparent electrode group 10. Then, the glass substrate 9 and the glass substrate 1 are interposed between, for example, a liquid crystal layer 12 composed of a pair of smectic liquid crystals twisted at an angle of 200 to 2 60 °, so that both sides are stripe-shaped. Transparent electrode groups 5, 1 ◦ Cross-bonded (vertical phase 31 312 / Invention Specification (Supplement) / 92-12 / 92126608), and bonded through a bonding material (not shown). Also, although not shown, a plurality of spacers are provided between the two glass substrates 1 and 9 to make the thickness of the liquid crystal layer 12 constant. The first retardation plate 1 made of polycarbonate, 3, the second retardation plate 14, and the iodine-based polarizing plate 15 are sequentially stacked on the outside of the glass substrate 9. Further, a third retardation plate 16 made of polycarbonate and an iodine-based polarizing plate 17 are sequentially laminated on the outside of the glass substrate 1 of one member. For such deployment, the bonding is performed by coating with a bonding material made of an acrylic material. Further, the polarizing plate 17 on the glass substrate 1 side can be arranged by bonding a backlight unit composed of a light source unit such as LED or cold cathodray tube and a light guide plate. According to the semi-transmissive liquid crystal display device A 4 of the present invention thus prepared, as described above, each pixel corresponding to an approximately the same area of each colored layer 3 of the light reflection film 2 is reflected on each colored layer 3 The notches 8 having substantially the same area are formed by the regions. By forming the notch portion 8 in this manner, the amount of reflected light can be increased in the reflection mode, and dimness of the display can be prevented. That is, the brightness of the reflection mode is not reduced, or the degree of reduction can be reduced. That is, the same effect as that obtained by forming the coloring layer in the transmission area to be thin through the notched portion of the invention can be obtained. The amount of reflected light is a function of the area ratio of the portion where no colored layer exists (the notched portion of the colored layer and the portion occupied by the colored layer. The larger the area ratio, the larger the reflected light quantity. However, if the area ratio is too large, , The coloring effect of the reflected light will be weakened. 32 312 / Invention Specification (Supplement) / 92-12 / 92126608 In summary, according to the present invention, the light reflection film 2 corresponds to the transmission as described above! Suppose that A 4 〇 is transparent, right is 3, and product is set to right. In addition, for each of the colored layers 3 of the phase opening 33, a light transmission portion 7 having a different light area is provided depending on the colors of red, green, and blue. The light transmission portion 7 and the notch portion allow the RGB to be transmitted separately. The reflectivity and reflectance are different, and the color design can be independently determined for the over balance mode and the white balance composed of the RGB of the reflection mode. By performing such a color design and white balance adjustment, South quality and two performance Semi-transmissive color liquid crystal display device Next, the embodiment will be explained ... The semi-transmissive liquid crystal display device A 4 of the present invention described above must be independently designed for color design and white balance settings in the mode and reflection mode, and each coloring Layer 3 must set the transmittance and reflectance as required according to RGB. That is, in the embodiment, different color transmission surfaces 7 corresponding to the respective coloring J of the light reflection film 2 are formed depending on the colors of red, green, and blue. As shown in Table 4, The area of the light transmitting portion 7 is determined so that R (red) pixels are 39% of the total pixels, G (green) pixels are 39% of the total pixels, and B (blue) pixels are 2 7 of the entire pixels. %. i The area of the nicked part 8 of the coloring layer 3 is the same for each RGB pixel, and has a structure of 15% for its reflection area (shown as the C F ratio in the table). 312 / Invention Specification (Supplement) / 92-12 / 92126608 Table 4 Transmission mode Reflection mode Transmission hole Y X y CF aperture ratio Y X y R 39% 0. 500 0. 310 R 15% 0. 483 0. 327 Example G 39% 0. 333 0. 459 G 15% 0. 325 0. 469 B 27% 0. 213 0. 221 B 15% 0. 224 0. 209 W 3. 8 0. 350 0. 352 W 20.  1 0. 323 0. 326 NTSC to 18.  1 NTSC to 17. 4 312 / Explanation of the Invention (Supplement) / 92-12 / 92126608 34 As a comparative example, the semi-transmissive color liquid crystal display of the above-mentioned structure is shown in green, structure, transmissive film, and a-a. In addition, it is the phase opening 35. In the device A4, corresponding to the colored layers 3 of the light reflecting film 2, a light transmitting portion 7 having the same light transmitting area for red and blue is formed, and the other is a semi-transmissive type. The liquid crystal display device A4 was made the same, and a half-type liquid crystal display device B4 was produced. Schematic diagrams showing the relationship between the light reflection and the coloring layer of the transflective color liquid crystal display device B1 are shown in Figs. 2 1 to 23. FIG. 21 is a plan view showing the arrangement of the engraved portions 8 of the coloring layer 3 of the transflective liquid crystal display device B1. FIG. 22 is a cross-sectional view of the section line shown in FIG. 21, and FIG. 23 is a view shown in FIG. The cross-sections shown by b-b are based on the semi-transmissive liquid crystal display device B 4 and the light transmittance of the light transmitting portion 7 is as shown in Table 5. Each RGB pixel to pixel is 30%. The area of the nicked portion 8 of the coloring layer 3 is made the same for each RGB pixel, and has a structure of 15% for its reflection area (shown as the C F ratio in the table). 312 / Instruction of the Invention (Supplement) / 92-12 / 92126608 Table 5 Transmission mode Reflection mode Transmission hole T X y CF aperture ratio R X y R 30% 0. 500 0. 310 R 15% 0. 492 0. 327 Comparative example G 30% 0. 333 0. 459 G 15% 0. 325 0. 475 Example B 30% 0. 213 0. 221 B 15% 0. 226 0. 211 W 3.  1 0. 335 0. 338 W 24.  9 0. 337 0. 343 NTSC to 18.  1 NTSC to 18. 5 312 / Invention Manual (Supplement) / 92-12 / 92126608 36 In addition, chromaticity diagrams of optical characteristics of both the semi-transmissive liquid crystal display device A4 of the present invention and the semi-transmissive color liquid crystal display device B4 of the comparative example. Figure 24 and Figure 25. Figure 24 shows the chromaticity diagram of both sides in the transmission mode, and Figure 25 shows the chromaticity diagram of both sides in the reflection mode. In the embodiment of the present invention, compared with the comparative example, the chromaticities of the white balance of R, G, and B are in the transmission mode (Δχ, Δγ) = (0 · 015, 0. 014) becomes larger, and in the reflection mode (Δχ, Δγ) = (-0 · 014, -0.017) becomes smaller. Moreover, according to the embodiment, as compared with the conventional example, it can be known that the white balance moves in the yellow direction in the transmission mode, and moves in the blue direction in the reflection mode. For reference, the evaluation method of the optical characteristics used in this embodiment will be described. In the reflection mode, light (C light source) is made incident 15 ° above the display surface of the liquid crystal display device, and then, when the liquid crystal display device is driven (white display, black display, red display, green display, The reflectance, contrast, and color gamut area of the reflected light in the vertical direction are measured to obtain an evaluation result. As for the transmission mode, when the light (C light source) is incident on the inner surface of the liquid crystal panel except for the backlight, and then the liquid crystal display device is driven (white display, black display, red display, green display, blue display) The transmittance, contrast, and color gamut area of the transmitted light in the vertical direction were measured to obtain an evaluation result. In addition, a definition diagram of the color gamut area is shown in FIG. 10. The color gamut area is expressed as the ratio of the area enclosed by the RGB chromaticity points to the NSTC of each 37 312 / Invention Specification (Supplement) / 92-12 / 92126608. The larger the area, the higher the color reproducibility, and a panel display with high color purity can be obtained. (Fifth Embodiment) Next, a fifth embodiment of the present invention will be described. Fig. 26 is a schematic cross-sectional view of a transflective liquid crystal display device A5 of the present invention. FIGS. 27 to 29 are schematic diagrams showing the relationship between the light reflection film and the coloring layer of the transflective liquid crystal display device A 5. FIG. 27 is a plan view, FIG. 28 is a cross-sectional view taken along section line XX, and FIG. 29 It is a sectional view of a section line YY. Among the members of the transflective liquid crystal display device A5, 1 is a glass substrate on the common mode side. On this substrate 1, a large number of strip-shaped transparent electrode groups 5 made of IT 0 are formed in parallel, and a light-reflective film 2 made of an aluminum metal material is formed on the strip-shaped transparent electrode groups 5, An alignment film 6 made of a polyfluorene resin is rubbed in a specific direction. As the material of the light reflection film 2, a metal film such as an A1 alloy such as A 1 N d, an Ag metal, or an Ag alloy may be used instead of the A1 material. In the other member, 9 is a glass substrate on the one-sided mode side. A colored layer 3 is formed on the glass substrate 9 and an upper coating layer 4 made of an acrylic resin is coated so as to cover the colored layer 3. Covered. Then, a plurality of transparent electrode groups 10 composed of IT 0 and a plurality of transparent electrode groups 1 made of polyimide resin rubbed in a specific direction are laminated on the upper cladding layer 4 in order. 1. An insulating film made of resin, S i 0 2 or the like may be interposed between the transparent electrode 10 and the alignment film 11. In the present invention, each colored layer 3 corresponding to the other substrate is 38 312 / Invention Specification (Supplement) / 92-12 / 92126608. Corresponding to the different colors of red, green, and blue, different settings are provided. The light transmission area Η of the light transmission area. Although the shape of the light transmitting portion Η is an elongated rectangular shape as shown in FIG. 27, the present invention is not limited to this, and any shape may be used. For example, it may be an ellipse. In FIG. 27, although the number of the light transmitting portions 7 corresponding to each of the colored layers 3 is one, it is not limited to one, and the light transmitting portions may be divided into a plurality and provided. The light reflecting film 2 is formed by forming a strip-shaped transparent electrode group 5 on a glass substrate 1 and then forming a uniform aluminum metal film by sputtering. Then, the metal film is coated with a photoresist. A series of photolithography steps including exposure, development, etching of a metal film, and photoresist stripping, patterning and removing the light transmitting portion , to make it into a desired shape. By setting the light transmitting portion Η in this way, light can pass through the light transmitting portion Η in the transmission mode, and can be reflected in areas other than the light transmitting portion 时 in the reflection mode. The light transmission section Η has a different light transmission area depending on the colors of red, green, and blue. Thereby, the transmittance and reflectance of each color can be made different, and the color balance can be set independently by setting the white balance of the transmission mode and the reflection mode of RGB. By performing such color design and white balance adjustment, a high-quality and high-performance transflective color liquid crystal display device A5 can be obtained. The color filter layer of the coloring layer 3 can be formed by a pigment dispersion method, that is, a photosensitive photoresist prepared by mixing a pigment in advance on a substrate and photolithography. According to this pigment dispersion method, a color filter layer can also be formed simultaneously in the photolithography step. 39 312 / Invention Specification (Supplement) / 92-12 / 92126608 When forming the color filter layer of the coloring layer 3, a dyeing method may be used instead of the pigment dispersion method described above. \to make. Form, warp shape, circle, circle, missing (the layer of the layer is integrated, and does not decrease by 3, the product of the product and the reverse constitutes 40. It can also be used as a book that surrounds each colored layer 3 with a black matrix 18 Furthermore, according to the present invention, the notched portion A in the reflection region of each colored layer 3 is also a feature of the present invention. One of the colored regions 3 is removed from the black matrix 18 and the reflection region of each colored layer 3 by removing one of the colored layers 3. The notched portion A is partially formed. Although the notched portion A dies in FIG. 27 although it is a square, it is not limited to the square, and may be any shape such as an ellipse, a triangle, etc. It is approximately the same for each colored layer 3. The engraved portion A of each pixel has the same area. By forming the nicked portion A, the color density and thickness of the reflection area are the same as those of the transmission area, but they are colored. In view of the occupied portion and the portion where the colored layer does not exist (notched portion of the colored layer), the presence of the notched portion can prevent the display from being darkened. That is, compared with the coloring of the transmission region, the same effect can be obtained by making the thickness of the reflection region as thin as that of the transmission region. This reduces or reduces the brightness of the reflection mode. In summary, according to the present invention, as described above, different light-transmitting surfaces and light-transmitting portions 对应 are provided corresponding to the respective colored layers depending on the colors of red, green, and blue, thereby making it possible to separate the respective RGB The transmittance and transmittance are different, and the color balance can be set independently by setting the white balance in the transmission mode and the RGB in the reflection mode. By performing color design and white balance adjustment such as 312 / Invention Specification (Supplement) / 92-12 / 92126608, a high-quality and high-performance transflective color liquid crystal display device A5 can be obtained. Next, the embodiment will be explained: For the above-mentioned semi-transmissive liquid crystal display device A 5 of the present invention, it is necessary to independently set the color design and white balance settings for the transmission mode and reflection mode. For each coloring layer 3, the The transmittance and reflectance are determined as required. That is, in the embodiment, the light transmitting portions H corresponding to the respective colored layers 3 are formed with different light transmitting areas depending on the colors of red, green, and blue. As shown in Table 6, this light transmits The area of the part is set so that R (red) pixels are 39% of the total pixels, G (green) pixels are 39% of the total pixels, and B (blue) pixels are 2 of the total pixels. In addition, the area of the nicked portion 8 of the coloring layer 3 is set to be the same for each RGB pixel, and has a structure of 15% for its reflection area (shown as the CF aperture ratio in the table). 41 312 / Instruction of the Invention (Supplement) / 92-12 / 92126608 Table 6 Transmission mode Reflection mode Example Transmission hole Y X y CF aperture ratio Y X y R 0. 39 44. 8 0. 500 0. 310 R 0. 15 28. 0 0. 483 0. 327 G 0. 39 100. 2 0. 333 0. 459 G 0. 15 53. 9 0. 325 0. 469 B 0. 27 29. 3 0. 213 0. 221 B 0. 15 29. 5 0. 224 0. 209 W 58.  1 0. 350 0. 352 W 37,1 0. 323 0. 326 NTSC to 18.  1 NTSC to 17. 4 312 / Invention Specification (Supplement) / 92-12 / 92126608 42 As a conventional example (comparative example), it corresponds to each colored layer 3 and forms light transmission of the same size for each color of red, green, and blue. The area of the light-transmitting portion is otherwise the same as that of the semi-transmissive liquid crystal display device A5, and is manufactured as a semi-transmissive liquid crystal display device B5. As a schematic diagram showing the relationship between the light reflection film and the coloring layer of this transflective color liquid crystal display device B5, it is shown in FIG. In addition, as shown in Table 7, the light transmission area of the light transmission portion of the light reflection film 2 is 30% for each pixel of the R G B pixel. In addition, the area of the nicked portion A of the coloring layer 3 is assumed to be the same for each RGB pixel, and has a structure of 15% for its reflection area (shown as the C F aperture ratio in the table). 43 312 / Description of the Invention (Supplement) / 92-12 / 92126608 Table 7 Transmission Mode Reflection Mode Conventional Example Through Hole Y X y CF Opening Ratio Y X y R 0. 30 34. 5 0. 500 0. 310 R 0. 15 34. 6 0. 492 0. 327 G 0. 30 77.  1 0. 333 0. 459 G 0. 15 68. 8 0. 325 0. 475 B 0. 30 32. 6 0. 213 0. 221 B 0. 15 27. 8 0. 226 0. 211 W 48. 0 0. 335 0. 338 W 43. 7 0. 337 0. 343 NTSC to 18.  1 NTSC to 18. 5 312 / Invention Specification (Supplement) / 92-12 / 92126608 44 In addition, the chromaticity in the optical characteristics of both the semi-transmissive liquid crystal display device A 5 of the present invention and the semi-transmissive color liquid crystal display device B 5 of the comparative example. Figures are shown in Figure 31 and Figure 32. Fig. 31 shows the chromaticity diagrams of both transmission modes, and Fig. 32 shows the chromaticity diagrams of both reflection modes. As described above, in the embodiment of the present invention, compared with the conventional example (comparative example), the chromaticities of the white balance W of R, G, and B are in the transmission mode (Δχ, Δy) = (0 · 0 1 5, 0.  0 1 4) becomes larger in the reflection mode (△ X, △ y), two (-0.  0 1 4,-0.  0 1 7) Be | J becomes smaller. It can also be seen that, according to the embodiment, compared with the conventional example, the white balance moves in the direction of yellow in the transmission mode and moves in the direction of blue in the reflection mode. Although the first to fifth embodiments of the present invention have been described above, the present invention is not limited to the aforementioned embodiments. For example, although the transflective color liquid crystal display device described above is of the S T N type simple matrix method, an active liquid crystal display device with built-in T F T or TFD can be used instead of this method, and the same effect can be achieved. In addition, various changes made within the scope of the present invention are possible. [Brief description of the drawings] Fig. 1 is a schematic cross-sectional view of a semi-transmissive color liquid crystal display device A1 according to a first embodiment of the present invention. FIG. 2 is a plan view showing the light transmitting portion 7. Fig. 3 is a cross-sectional view taken along a section line X-X shown in Fig. 2. Fig. 4 is a cross-sectional view taken along a section line Y-Y shown in Fig. 2. 5 is a plan view showing light transmission of a conventional transflective color liquid crystal display device 45 312 / Invention Specification (Supplement) / 92-12 / 92126608 Section 7. FIG. FIG. 6 is a sectional view taken along a section line Z-Z shown in FIG. 5. FIG. Fig. 7 is a chromaticity diagram of the transmission modes of both the semi-transmissive liquid crystal display device A1 and the semi-transmissive liquid crystal display device B 1 of the comparative example. FIG. 8 is a chromaticity diagram of reflection modes of both the semi-transmissive liquid crystal display device A1 and the semi-transmissive liquid crystal display device B 1 of the comparative example. Fig. 9 (a) is an explanatory diagram showing a measurement method of a reflection mode, and Fig. 9 (b) is an explanatory diagram showing a measurement method of a transmission mode. FIG. 10 is a diagram showing a definition diagram of a color gamut area. Fig. 11 is a schematic cross-sectional view showing the relationship between the light reflection film 2 and the transparent resin layer P of the semi-transmissive color liquid crystal display device A2 according to the second embodiment of the present invention. Figure 12 is a schematic plan view. FIG. 13 is a chromaticity diagram of the transmission modes of both the semi-transmissive liquid crystal display device A 2 and the semi-transmissive liquid crystal display device B 2 of the comparative example. FIG. 14 is a chromaticity diagram of reflection modes of both the semi-transmissive liquid crystal display device A 2 and the semi-transmissive liquid crystal display device B2 of the comparative example. Fig. 15 is a schematic cross-sectional view showing the relationship between both the light transmitting portion 7 and the transparent resin layer P of the semi-transmissive color liquid crystal display device A 3 according to the third embodiment of the present invention. Figure 16 is a schematic plan view. FIG. 17 is a chromaticity diagram of the transmission modes of both the semi-transmissive liquid crystal display device A 3 and the semi-transmissive liquid crystal display device B 3 of the comparative example. FIG. 18 is a chromaticity diagram of the reflection modes of both the semi-transmissive liquid crystal display device A 3 and the semi-transmissive 46 46 312 / Invention Specification (Supplement) / 92-12 / 92126608 of the comparative example. Fig. 19 is a schematic cross-sectional view of a semi-transmissive color liquid crystal display device A4 according to a fourth embodiment of the present invention. Fig. 20 is a schematic plan view showing the relationship between both the colored layer 3 and the notched portion 8 of the semi-transmissive liquid crystal display device A4. FIG. 21 is a schematic plan view showing the relationship between the colored layer 3 and the nicked portion 8 of a conventional transflective liquid crystal display device. Fig. 22 is a cross-sectional view taken along the line a-a shown in Fig. 21. Fig. 23 is a cross-sectional view taken along a section line b-b shown in Fig. 21. Fig. 24 is a chromaticity diagram of the transmission modes of both the semi-transmissive liquid crystal display device A 4 and the semi-transmissive liquid crystal display device B 4 of the comparative example. FIG. 25 is a chromaticity diagram of the reflection modes of both the semi-transmissive liquid crystal display device A 4 and the semi-transmissive liquid crystal display device B 4 of the comparative example. Fig. 26 is a schematic cross-sectional view of a semi-transmissive liquid crystal display device A5 according to a fifth embodiment of the present invention. FIG. 27 is a schematic plan view showing the relationship between both the light transmitting portion Η and the notched portion A of the semi-transmissive liquid crystal display device A 5. FIG. 28 is a cross-sectional view taken along the section line X-X shown in FIG. FIG. 29 is a cross-sectional view taken along the line Y-Y shown in FIG. FIG. 30 is a schematic plan view showing the relationship between the light transmitting portion Η and the notch portion A of a conventional semi-transmissive liquid crystal display device. FIG. 31 is a chromaticity diagram of the transmission modes of both the semi-transmissive liquid crystal display device A 5 and the semi-transmissive liquid crystal display device B 5 of the comparative example. FIG. 32 is a chromaticity diagram of the reflection modes of both the semi-transmissive liquid crystal display device A 5 and the semi-transmissive 47 47312 / Invention Specification (Supplement) / 92-12 / 92126608 of the comparative example. [Explanation of component symbols] A light transmitting / notched portion 1, 9 glass substrate 2 light reflecting film 3 colored layer 4 top cladding layer 5, 10 transparent electrode 6 alignment film 7, light transmitting portion 8 notched portion 11 12 Liquid crystal layer 13 First retardation plate 14 Second retardation plate 15 Polarizing plate 16 Third retardation plate 17 Polarizing plate 18 Black matrix A 1 to A5 Semi-transmissive color liquid crystal display device 48 312 / Invention Manual (Supplement) / 92-12 / 92126608

Claims (1)

拾、申請專利範圍: 1 . 一種半透過型彩色液晶顯示裝置,其係具備有: 在基板的一主面上形成光反射膜,並形成分別不同的著 色之複數的著色層,在此等著色層上依序形成由一方之透 明導電材所構成之像素形成電極與配向膜所成的一方構 件; 在透明基板上依序形成由透明導電材所構成之另一方 的像素形成電極與配向層所成的另一方構件;與 介在於此等一方構件與另一方構件之間的液晶層; 其特徵在於: 在前述光反射膜上,對應於各個著色層設置有光透過 部, 係作成為經由此光透過部於透過模式時可使背光通 過,在光透過部以外的反射用領域於反射模式時可使光反 射的構造, 且前述光透過部,對應於各個著色層有不同的光透過面 積。 2 . —種半透過型彩色液晶顯示裝置,其係具備有: 在基板的一主面上依序形成光反射膜與透明樹脂層,並 形成有分別不同的著色之著色層,在此等著色層上依序形 成由透明導電材所構成之一方之像素形成電極與配向膜所 成的一方構件; 在透明基板上依序形成由透明導電材所構成之另一方 的像素形成電極與配向層所成的另一方構件;與 49 312/發明說明書(補件)/92-12/92126608 介在於此等一方構件與另一方構件之間的液晶層; 其特徵在於: 在前述光反射膜上,對應於各個著色層設置有光透過 部, 係作成為經由此光透過部於透過模式時可使背光通 過,在光透過部以外的反射用領域於反射模式時可使外光 反射的構造, 且對應於前述各個著色層,前述透明樹脂層之對光反射 膜的被覆面積,係作成為不同。 3 . —種半透過型彩色液晶顯示裝置,其係具備有: 在基板的一主面上依序形成光反射膜與透明樹脂層,並 形成有分別不同的著色之著色層,在此等著色層上依序形 成由透明導電材所構成之一方之像素形成電極與配向膜所 成的一方構件; 在透明基板上依序形成由透明導電材所構成之另一方 的像素形成電極與配向層所成的另一方構件;與 介在於此等一方構件與另一方構件之間的液晶層; 其特徵在於: 在前述光反射膜上,對應於各個著色層設置有光透過 部, 係作成為經由此光透過部於透過模式時可使背光通 過,在光透過部以外的反射用領域於反射模式時可使外光 反射的構造, 且對應於前述各個著色層,前述透明樹脂層之對光透過 50 312/發明說明書(補件)/92-12/92126608 部的被覆面積,係作成為不同。 4.如申請專利範圍第 1項之半透過型彩色液晶顯示裝 置,其係於各著色層的反射用區域形成有缺刻部。 5 . —種半透過型彩色液晶顯示裝置,其係具備有: 在基板的一主面上依序形成光反射膜、由透明導電材所 構成的一方的像素形成電極、與配向膜所成的一方構件; 在透明基板上形成分別不同的著色之著色層,在此等著 色層上依序形成由透明導電材所構成之另一方之像素形成 電極與配向膜所成的另一方構件;與 介在於此等一方構件與另一方構件之間的液晶層; 其特徵在於: 在前述光反射膜上,對應於各個著色層設置有光透過 部, 係作成為經由此光透過部於透過模式時可使背光通 過,在光透過部以外的反射用領域於反射模式時可使光反 射的構造, 且前述光透過部,對應於各個著色層有不同的光透過面 積。 6 .如申請專利範圍第 5項之半透過型彩色液晶顯示裝 置,其係於各著色層的反射用區域中形成有缺刻部者。 51 312/發明說明書(補件)/92-12/92126608Scope of patent application: 1. A transflective color liquid crystal display device, comprising: forming a light reflecting film on a main surface of a substrate, and forming a plurality of coloring layers with different coloring, and coloring them One layer of a pixel-forming electrode composed of one transparent conductive material and an alignment film is sequentially formed on the layer; another pixel-forming electrode and an alignment layer composed of transparent conductive material are sequentially formed on a transparent substrate. And a liquid crystal layer interposed between the one member and the other member; characterized in that: a light transmitting portion is provided on the light reflecting film corresponding to each colored layer, and is configured to pass through this The light-transmitting portion can pass a backlight when in the transmission mode, and can reflect light when the reflection area other than the light-transmitting portion is in the reflection mode, and the light-transmitting portion has a different light-transmitting area corresponding to each colored layer. 2. A semi-transmissive color liquid crystal display device, comprising: a light reflecting film and a transparent resin layer are sequentially formed on a main surface of a substrate, and colored layers having different colors are formed, and colored here On the layer, one member formed of one of the pixel-forming electrodes and the alignment film formed of the transparent conductive material is sequentially formed; on the transparent substrate, the other pixel-forming electrode and the alignment layer of the transparent conductive material are sequentially formed on the transparent substrate. And the other liquid crystal layer between 49 312 / Invention Specification (Supplement) / 92-12 / 92126608 between the one component and the other component; characterized in that: on the aforementioned light reflecting film, corresponding A light transmitting portion is provided in each coloring layer, and is a structure that allows the backlight to pass through the light transmitting portion in the transmission mode, and reflects the external light in the reflection mode in a reflection area other than the light transmitting portion. The coating area of the transparent resin layer with respect to the light reflecting film is different between the respective colored layers. 3. A semi-transmissive color liquid crystal display device, comprising: sequentially forming a light reflecting film and a transparent resin layer on a main surface of a substrate, and forming colored layers having different colors, and coloring these On the layer, one member formed of one of the pixel-forming electrodes and the alignment film formed of the transparent conductive material is sequentially formed; on the transparent substrate, the other pixel-forming electrode and the alignment layer of the transparent conductive material are sequentially formed on the transparent substrate. And a liquid crystal layer interposed between the one member and the other member; characterized in that: a light transmitting portion is provided on the light reflecting film corresponding to each colored layer, and is configured to pass through this A structure that allows the backlight to pass when the light transmitting portion is in the transmission mode, and to reflect external light when the reflection area other than the light transmitting portion is in the reflection mode, and corresponds to each of the aforementioned colored layers, and the transparent resin layer transmits 50 light. The coverage area of 312 / Invention Specification (Supplement) / 92-12 / 92126608 is different. 4. The transflective color liquid crystal display device according to item 1 of the scope of the patent application, wherein a notch is formed in the reflection region of each colored layer. 5. A semi-transmissive color liquid crystal display device comprising: a light reflection film formed on one main surface of a substrate, a pixel formation electrode made of a transparent conductive material, and an alignment film One member; forming colored layers with different colors on the transparent substrate, and sequentially forming the other member formed of the other pixel-forming electrode and the alignment film composed of a transparent conductive material on the colored layers; and The liquid crystal layer between the one member and the other member is characterized in that: a light transmitting portion is provided on the light reflecting film corresponding to each colored layer, and is designed to be able to pass through the light transmitting portion in a transmission mode. A structure in which a backlight is passed and light can be reflected when a reflection area other than the light transmission portion is in the reflection mode, and the light transmission portion has a different light transmission area corresponding to each colored layer. 6. The transflective color liquid crystal display device according to item 5 of the scope of the patent application, wherein a notch is formed in a reflection region of each colored layer. 51 312 / Invention Specification (Supplement) / 92-12 / 92126608
TW092126608A 2002-09-26 2003-09-26 Semi-transparent type LCD device TWI234038B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002281003A JP3924518B2 (en) 2002-09-26 2002-09-26 Transflective color liquid crystal display device
JP2002316812A JP2004151399A (en) 2002-10-30 2002-10-30 Semitransmissive color liquid crystal display device
JP2002315749A JP2004151309A (en) 2002-10-30 2002-10-30 Transflective color liquid crystal display device
JP2002323260A JP3981321B2 (en) 2002-11-07 2002-11-07 Liquid crystal panel and liquid crystal display device including the liquid crystal panel
JP2002375637A JP2004205853A (en) 2002-12-25 2002-12-25 Semi-transmission type color liquid crystal display

Publications (2)

Publication Number Publication Date
TW200410015A true TW200410015A (en) 2004-06-16
TWI234038B TWI234038B (en) 2005-06-11

Family

ID=34280116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092126608A TWI234038B (en) 2002-09-26 2003-09-26 Semi-transparent type LCD device

Country Status (3)

Country Link
KR (1) KR100582009B1 (en)
CN (1) CN1251004C (en)
TW (1) TWI234038B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197049B1 (en) 2005-06-27 2012-11-06 삼성디스플레이 주식회사 Thin film transistor array panel and liquid crystal display including the panel
JP4197000B2 (en) 2005-07-07 2008-12-17 エプソンイメージングデバイス株式会社 Electro-optical device and electronic apparatus
WO2007108239A1 (en) * 2006-03-20 2007-09-27 Sharp Kabushiki Kaisha Display
WO2007108195A1 (en) 2006-03-20 2007-09-27 Sharp Kabushiki Kaisha Display
JP5079454B2 (en) * 2007-10-31 2012-11-21 株式会社ジャパンディスプレイウェスト Display device
CN101430456B (en) * 2007-11-05 2011-11-09 乐金显示有限公司 Backlight unit and LCD device using the same
TW201035528A (en) * 2009-03-25 2010-10-01 Tyntek Corp Output ratio adjustment method of a light sensor
CN102914905B (en) * 2012-10-12 2015-04-29 京东方科技集团股份有限公司 Color film substrate and semitransparent semi-reflective liquid crystal display device

Also Published As

Publication number Publication date
CN1251004C (en) 2006-04-12
KR20040027441A (en) 2004-04-01
KR100582009B1 (en) 2006-05-23
TWI234038B (en) 2005-06-11
CN1492263A (en) 2004-04-28

Similar Documents

Publication Publication Date Title
TW581918B (en) Transmission/reflection type color liquid crystal display device
KR100790357B1 (en) A color filter for transflective LCD and method for fabricating thereof
KR100890924B1 (en) Semi-transparent semi-reflective liquid crystal display device color filter
TWI234038B (en) Semi-transparent type LCD device
JP2002333622A (en) Reflection and transmission common type color liquid crystal display device
US6824935B2 (en) Substrate having colored layers and method for producing the same
JP3435113B2 (en) Liquid crystal display
JP3931199B2 (en) Reflective / transmissive color liquid crystal display
JP4743571B2 (en) Color filter manufacturing method and color filter
JP3981321B2 (en) Liquid crystal panel and liquid crystal display device including the liquid crystal panel
JP2003177392A (en) Liquid crystal display device
JP3924518B2 (en) Transflective color liquid crystal display device
JP2003172927A (en) Substrate for transmission and reflection type display unit
JP3931201B2 (en) Reflective / transmissive color liquid crystal display
JP4799474B2 (en) Liquid crystal display
JP4633083B2 (en) Liquid crystal display device
JP2004151399A (en) Semitransmissive color liquid crystal display device
JP2003005175A (en) Semitransmissive liquid crystal display device
JP2004151309A (en) Transflective color liquid crystal display device
JP2000221486A (en) Liquid crystal display device
JP3931198B2 (en) Reflective / transmissive color liquid crystal display
JP3931200B2 (en) Reflective / transmissive color liquid crystal display
JP3931193B2 (en) Reflective / transmissive color liquid crystal display
JP2006338055A (en) Reflection/transmission type color liquid crystal display device
JP2002323698A (en) Semitransmissive liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees