TW200407799A - Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm - Google Patents

Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm Download PDF

Info

Publication number
TW200407799A
TW200407799A TW091132557A TW91132557A TW200407799A TW 200407799 A TW200407799 A TW 200407799A TW 091132557 A TW091132557 A TW 091132557A TW 91132557 A TW91132557 A TW 91132557A TW 200407799 A TW200407799 A TW 200407799A
Authority
TW
Taiwan
Prior art keywords
image
model
wavelet
resolution
block
Prior art date
Application number
TW091132557A
Other languages
English (en)
Inventor
Ding-Zhou Duan
Shu-Kai Yang
Ming-Fen Lin
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW091132557A priority Critical patent/TW200407799A/zh
Priority to US10/373,411 priority patent/US20040085315A1/en
Publication of TW200407799A publication Critical patent/TW200407799A/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping

Description

200407799 A7 B7 五、發明說明( 編解她一種用於網路傳輸及即時描緣的小波式 ‘解馬㈣貼圖分割與漸進式傳送方法,尤指—種應用於 3 D圖像資料之漸進式傳輸方法。 μ 、
I 虛擬實境與3 的應用在日f生活中目前係隨處 見’例如電腦遊戲、教學軟體等方面的應用,麫而在 際,路上,未見其普及化,探究其原因時,不難發現因3 D场不的貝料讀A,若藉用有限的網路頻寬進行傳遞時 將耗費大量的傳送時間及金錢。再者,I 3 d資料傳遞 之際,亦造成繪圖硬體(如顯示卡)極大的工作負擔,且 無法達到即時描繪的效果。有鑑於此,軟體設計者廣泛地 採用多精細度讀技術(丨evels Gf detail)於⑽資料的建 立過程中,亦即在3 D場景資料甲,距離觀察者越遠及越 不重要的物景,使用較粗糙的模型及貼圖描繪即可,以期 在不損傷輸出影像品質的前提下盡量減輕繪圖硬體的負擔 ’並可降低所需資料的輸送。 ° 、現今J P E G格式是影像編碼中最被廣泛通用的壓縮 格式,但J p E G格式在壓縮與解壓縮上有先天上的限制 ,例如必須將待壓縮的原始影像先行切割成8 χ 8的區塊 ,再對每個區塊分別作轉換,於壓縮率較高時,重建影像 便會有“塊狀失真(blocking artifact),,。 為了能有更廣泛地應用,“低位元率(l〇w bit rate),,是 目前視訊、影像壓縮研發者所努力的方向。在目前發展的 影像壓縮規格JPEG2000標準中,係使用小波轉換來取代 原先JPEG的DCT(離散餘弦變換),使得低位元率傳輸得 L---------— __3 gg紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐 200407799 A7 --------- B7_____ 五、發明說明(2 ) ~" 二實現’並且可以提供多樣性的顯示選擇,例如漸進式傳 別私定解析度、指定傳輸的位元率等。以下就小波影像 編碼的步驟作一簡單敘述: R G B/Y u V轉換:一般來說,尚未經過壓縮的原 始圖樓是由RGB三色系所組成,然而在影像壓縮系統中 通^不使用RGB三色系,主要原因係此三色系的相關性 太咼,使得各色系在單獨壓縮時仍須顧慮到其餘兩種色系 ,‘致壓縮率大為降低。因此現今大部份的影像壓縮方法 (如J P E G )大多採用另一色彩系統_ γ u v。其中, Y是代表亮度(luminance),U和V則分別表示兩種色彩的 飽和度(chrominance),因γ u V三種色系的相關性非常低. ,故適合做資料的壓縮。在影像資料傳送時,由於人對於 亮度的敏感性會大於顏色飽和度,因此γ : U : v的資料 量比例,通常Y會佔有較多的分量。現今大部分對於γ : U · V的比例是取為4 : 2 : 2或是4 ·· 1 : 1,最簡單 的做法就是對每點像素(pixel)或是每四點像素僅取一個u 和V值,而對每一個像素皆取一個Y值,如此便可達成4 :1 : 1或4 : 2 : 2的比例。 根據CCIR 601的標準,RGB轉換成γυ V的公式 如下所不·
(Y) -0.299 0.5 0.114" U = 一 0.147 -0.289 0.436 G 7J 0.615 -0.515 一 0.1_ UJ 4 :¾¾.紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱)
— — — — — — — — I I (請先閱讀背面之注意事項再填寫本頁) · .線· 200407799 A7 五、發明說明(3 ) S+P Transform :在漸進式影像傳輸的前提下,必須使 影像在原圖大小下由模糊漸漸轉成為清晰,因此可採用 S+P Transform來進行轉換。 請參考第五圖所示,其原理係將一影像資料轉換成金 字塔型(pyramid )的資料型態,如此使得原始影像經過數 層的轉換形成自右下level 0至左上level N的架構,當影 像資料傳輸係從level N到level 0依序傳送時,將可令影 像從模糊漸漸轉為清晰,而達成漸進式影像傳輸。 在S+P Transform的轉換過程中,係將一張影像資料 視為一連串的整數數字所組成,對於這串整數數字c[n], η=〇,.··,Ν-1,Ν,可以用下列兩個序列表示: --------------裝—— (請先閱讀背面之注意事項再填寫本頁) •irDV ·
咖]=φ水 c(2« +1)^ = 〇”··,令—1 ......(2) --線. 這兩個序列可視為對c[n]序列的S-Transform,其中 l[n]是相鄰兩數的平均值,而h[n]是相鄰兩數的差值,轉換 後的l[n]和h[n]恰好可放在原本c[n]的儲存空間。如果對 一張2 D的影像先做行(c〇iumn)的s_Transform,再做列 (row)的S-Transform,依此反覆順序可得到如第六圖所示 的結果。 根據第六圖所示,原始影像可經由s-Transform形成 夕層的金字塔架構,這個金字塔的越左上角(11部分)將保留 越夕點的平均值,而其β lh、h卜hh # 會修正圖形的 «5恭紙張尺度適用中國國家標準(cns)a4規格(210 X 297公爱) 200407799 A7 一 , __B7_ 五、發明說明(+ ) 細差異。所以當資料由左上至右下依序傳送時,可以看到 影像係逐漸由模糊而轉為清楚。 但是在經過S-Transform後,各階層的h[]會有關聯性 ,導致h[]無法收斂。為了改善這個狀況,係在S-Transform中再加入預測(predictive coding)的功能,此即為 S+P Transform。其中預測的方法是先算出h[]的預測值, 稱之為M],(如第3式)然後以預測值(甸)和實際值(h[]) 兩者的差值,稱之為九[],以取代原本h[]的輸出,此□會 較原先的h[]收斂許多,使資料壓縮更有效率。 kn] = Σα Δ/[^ + ^Σβ Μη + j] ……(3 )
i-L j-\ J 其中,△/〇?] =/[π-1]-/问,而為預測係數 (predictor coefficients) hd[n] = h[n] - \h[n] + = 1 ……(4) 從第(3)式中可看到α和/3這兩個predictor coefficient ,這兩個predictor是由是否可產生最小的entropy、變化度 (variance)及不同的頻譜(frequency domain)來決定。根據上 述原則,predictor被區分為三種類型,分別是: A類型:可以產生最小計算複雜度 B類型:用在自然影像上(natural image ) C類型:用在要求極為精細的醫學影像(medical image) 由於一般壓縮的圖型均為自然影像,因此採用B類型 的predictor coefficient,則式(3)可改寫為如下式(5): __6_ Μ來紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ' — (請先閱讀背面之注意事項再填寫本頁) —裝 |線· 200407799 A7 ____ B7_ 五、發明說明(f) h[n] = - {2(Al[n] + M[n +1]) +M[n + l]} ······ (5) 8
In the image borders: Λ7Γ11 ΛΓ Δ/[—-1] 請參考第七圖所示,係為整個s+p Transform的轉換 過程示意圖。c[]經過S Transform後產生1[]和h[],而1[] 和h□可以算出predictor石[],利用石□和h□所形成的差值 乃/]取代h[]後,最終的傳送結果便是□和U]。 請參考第八圖所示,經S+P Transform後的結果係形 成一個金字塔型的結構,且不同階層的資料會有一父子 (parent-child)的對應關係。如果要對此資料結構依其重要 性加以排列,便要考慮給予各階層不同的權值,以維持所 有資料重要程度的整體性(unitary)。為了要保持資料的 整體性,各階層的資料要乘以如第九圖示所示的對應倍數 ,如此便可進行下一步的重要性排序步驟。 S P I HT (Set Partitioning in Hierarchical Trees) :當整個圖權經過S+P Transform的轉換之後,便會形成 一個具有金字塔形的資料結構,而這個架構具有父子的關 係,可視為一樹狀(tree)結構,稱之為spatial orientation tree。此樹狀結構有一性質,稱為self-similarity,意即在 不考慮正負號的情況下,屬於同一分支樹(sub- tree)但落在 不同階層點的值有會有大小相似的關係,由於在S+P Transform的最後對整個資料結構依階層越高乘以越大因數 的結果,使得對同一分支樹而言,數值的大小(不包含正 表紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐〉 --------------· 11 .(請先閱讀背面之注意事項再填寫本頁) I · 丨線· 200407799 A7 一 β ______Β7____ 五、發明說明(卜) 負號)從高階層到低階層會形成一近似由大到小的排列, 這樣的情形使得排序更有效率。對一個樹狀結構,定義了 以下符號: 〇(i5j)…node (i,j)之子點座標集合 D(i,j)…node (i,j)之子孫點座標集合 Η…tree roots之座標集合 L(i,j)=D(i,j)_0(i,j) 除了最高及最低level,其餘之0(i,j)可計算如下 0(i,j)=[(2i,2j),(2i,2j + l),(2i+l,2j),(2i+l,2j + l)] 同時再定義有三個List的資料結構,這三個list分別 為:’’List of Insignificant Set (LIS)”(有兩個型態’’A”及 ”B”) 、”List of Insignificant Pixels (LIP)”、”List of Significant Pixels(LSP)”。以及定義Sn(x),其代表x此數的重要性, 其中Sn=l表示重要,Sn=0表示不重要。 而此演算法的核心:Set Partition Sorting Algorithm 這 個方法是把屬於同一 sub-tree的點放在LIS中,然後對每一 個sub-tree由高階層開始檢驗它的重要性,把重要的元素放 到LSP中,不重要的放到LIP中,此法主要利用Spatiai orientation tree大小會由上到下排列的性質,使得較上層的 幾個點可能是significant之subset,而下層大部分的sub— tree可能是 insignificant 之 subset,因此可以減少 Set Partition過程中之數值比較次數。利用到LIS、LIP、LSP 三個串列的重要係數排序及傳輸演算法描述如下: 1) [Initialization]: 8 纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)~-- (請先閱讀背面之注意事項再填寫本頁) 裝 · 丨線- 200407799 A7 B7 五、發明說明( output n= i〇g2 i --------------裝--- (請先閱讀背面之注意事項再填寫本頁) LSP<- φ LISD{ij)\(hj)^H (type A) 2) [Sorting Pass]:
2.1) \/{ij)eLIP 2.1.1) output Sn(i?j)
2.1.2 if Sn(iJ)==l then LSP<-(iJ)<-LIP 2.2) \f(i,j)eLIS do 2.2.1) if (i,j) is type A (D(i,j)), then · output Sn(D(i,j)), (traverse a tree) • if Sn(D(i,j))==l then 1. do --線· • output Sn (k,l) • if Sn (k,l)==l then LSP —(k,l) output the sign of ck l • if Sn (k,l)==0 then LIP —(k,l) 2· if L(I,j)妾 0 then LIS —(i,j) (type B)
go to 2.2.2) otherwise (i,j) —LIS 2.2.2) if (i,j) is type B (L(i,j)), then · output Sn(D(i,j)), • if Sn(L(iJ))—1 then 86泰紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 200407799 A7 > __ _ B7 _ 五、發明說明(g:) 1. LIS <type A>—b,/)(e〇M)
2· (i,j) - US 3) [Refinement Pass] ^f(i,j)eLSP with the same n: output the nth most significant bit of |c~| 4) [Quantization Step Update] n — n-l, go to Step 2. 在前述步驟1)的Initialization係先始化一些變數,包 括找出c□中最大數的位元數,其中c[]是input。 在步驟2)中,則是檢驗LIP中元素的重要性,若屬於重 要性的元素就放到LSP中。2.2)是檢驗LIS中的每一 sub-tree,看有無重要的數。若整個sub-tree未含有任何重要的 數,便跳過整個sub-tree,反之若有的話,則對sub-tree 第一層child逐一檢驗,若找到重的點便放到LSP裡,若 此點不重要則放到LIP。接下來檢驗以child為root的sub_ tree的重要性。若屬重要,則將以child為r〇〇t的sub_tree 分裂出來,放到LIS中。 最後在步驟3)中,對重要的數是利用bit plane的傳 輸方式來傳,所謂的bit plane傳輸方式是說對個數每次只 傳某一位元的資料,一般是由最高位元開始傳起,這樣的 好處是可以讓decode端先知道數的約略大小。Setpartiti〇n
Sorting Algorithm這個方法的結果會把重要的數依序傳出 去給解壓縮端(decode),而decode端只要利用相同的步驟 10 86朱紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------裝—— (請先閱讀背面之注意事項再填寫本頁) -線 200407799 A7 .角格化,如第 後剔除的頂點 五、發明說明( 即可把原數解出來,因此可減少許多儲存位置資訊的資料 〇 另外,在過去的3 D漸進式網路傳輸,大多數均著在 3D模型(mesh)的漸進式傳輸上,對於與模型習習相關的 貼=則少有探討。近來為求3D場景的逼真,影像貼圖被 大量的使用,所以結合模型與貼圖之漸進式傳輸技術已越 來越受人重視,大部分均由漸進式模型開始著手,再搭配 貼圖的配合,以達到漸送式的效果。以下僅舉出兩種作法 1 Joint Geometry/Texture Progressive Coding of 3D Models: 此方法的前提是:應用在貼圖座標的表示方式為每一個 分割三角形的角落均有一組貼圖座標(_er texture coordinate),以簡化模型中的頂點叢集法(乂⑽以 Clustering)及邊線折豐法(Edge c〇iiapsing)為基準,也就是 先考慮每-個頂點的重要性,再從不重要的點開始剔除。 頂點的重要性考慮兩個因素:剔除之後體積變化量V⑴及 顏色重要性c(i),判斷公式如第(6)式 m(i)=a v(I)+(l.a )c(i) ····(6) 頂點剔除後,將原本剔除的空洞重新 十圖所示,而傳輸的時候,則以重要性高 先傳送,達到漸進式傳輸的效果。 (請先閱讀背面之注意事項再填寫本頁) · _線· 2 · Texture Mapping Progressive Meshes 睛參閱附件六所示,前述方法雖然可以達到貼圖及糢
200407799 Ο A7 五、發明說明( 型互相結合,以應用於漸進式傳送,但是在空洞重新 格化的時候,每-個三角形上的貼圖會受到變形破壞1 此 P.v. Sander,j.Snyder,s.j. G〇rtier 及 h h〇刚提 確的作法,以改善此變形破壞。 1 第-步係先將-個模型加以分割,區分成數 (chan)。分割的依據是由模型原本頂點的扁平度㈣咖办) 與緊湊度(compactness)來判斷。並將每—個區域的邊線以 最短簡徑重新整理(如附件七所示)。 第二步係將區塊中的頂點重新佈置’係利用下述第 式進行: l2(M)=1W^W^}……⑺ 目的是使觀簡化時,因職較變所造成的貼圖取 樣,化誤差(texture stretch)最小,並將結果展開至2 D最 小單元四邊形上,爾後再調整每一區塊至適當大小。 第三步係執行簡化,運用邊線折疊法,同時考慮頂點 合併後貼圖偏移量(texture deviation)。例如於附件八中的 V2與VI合併時,三個點的貼圖偏移量。 由於之前是針對每一個模型分割的區域做簡化,故第 四步即從整體著手,針對每一個階層的模型做最佳化,以 求每一相鄰階層的彼此誤差變小。 最後,再針對原本模型切割的區域,將區塊貼圖重新 取樣,重整成一張完整的貼圖。整個過程可如附件九所示 惟前述兩種方式,均是以漸進式模型為其著眼點, 12 將 S6条紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公爱)
—裝--------訂· ;線· ' H .^1 (請先閱讀背面之注意事項再填寫本頁} n n n - 200407799 A7 五、發明說明( 貼圖連帶考慮。對貼圖與模型的結合方式,其貼圖座標皆 以三角形的每一個角(per corner)為其設定方式,故具有下 述數種缺點: 1 .兩者皆由模型簡化著手,而將模型與貼圖綁在一 起,並無法分開個別考慮,使得模型與貼圖均無法重覆使 用。 2·貼圖座標是以三角形的每一個角為其設定方式, …般使用白,丨貝不同,一般係以每一頂點(per vertex)為設 定方式。 3 ·以模型漸進式傳輸為主,故在貼圖的傳輸上皆有 不連續性,可明顯觀察出貼圖的不平滑變化。 4 ·由於貼圖在分割後均非四邊形,故在編碼傳送時 均需補充額外資料,故增加了資料傳輸量。 鑑於目前3 D貼圖的技術仍有諸多改進的缺點,本發 明之主要目的係配合小波編碼手段,提供一種用於網路傳 輸及即時描緣的小波式編解碼模型貼圖分割與漸進式傳送 方法,令3 D場景資料呈漸進式傳輸,讓使用者可預先^ 到影像的基本資料後再決定是否要進一步傳送。 為達成前述目的,本發明之一主要實施手段係含括有 影像成為 一影像切割手段,切割一欲貼附至模型上之 複數個區塊; coding)將前述各 一編碼手段,利用小波編碼(Wavelet 影像區塊轉換為資料串流; 13 (請先閱讀背面之注意事項再填寫本頁) 56本紙張尺度適用中國1S^^NS)A4規格⑽χ 297公爱) 200407799 A7 B7 五、發明說明( -模型切割手段,以對應前述影像切割方式 刀副為複數個區塊並取出各模型區塊之特徵值; 、 值,層判斷手段,依據前述各模型區塊之特徵 W断對應貼附之影像區塊其顯示解析度; 碼手段’依據判斷出之解析度階層,將各資料串 抓通原為具有該解析度之影像區塊,· 的模=手段,將前述解碼出之各影像區塊貼附至對應 又,本發明之另一具體實施方式係包含有·· “杈型切割手段’係將-模型切割為複數個區塊並取 出各模型區塊之特徵值; 、一影像切割手段,以對應前述模型切割的方式, 奴貼附至模型上之影像切割為複數個區塊,· 、 、為馬手丰又利用小波編碼(Wavelet coding)將前述久 影像區塊轉換為資料串流; 解析度階層判斷手段,依據前述各模型區塊之 值判斷對應貼附之影像區塊其顯示解析度;、 、解碼手段,依據判斷出之解析度階層,將各資料串 飢還原為具有該解析度之影像區塊; 、# =貼圖手段,將前述解碼出之各影像區塊貼附至對應 的拉型區塊。 ' 為使貴審查委員能進一步暸解本創作之技術特徵及 其他目的,兹Ρ付以圖式詳細說明如后: (一)圖式部份: _紙張尺細
I — (請先閱讀背面之注意事項再填寫本頁) Ί·-°>ι·. :線. 200407799 A7 ' ' 1 _B7_ 五、發明說明(^ ) 第一圖:係本發明影像分割方式示意圖。 弟二圖·係本發明小波編碼方式不意圖。 第三圖:係本發明產生漸進式3 D模型影像貼圖之步驟流 程圖。 第四圖:係本發明利用漸進式3 D模型影像貼圖之流程圖 描繪於模型上之步驟流程圖。 第五圖:係習用S+P Transform之金字塔結構示意圖。 第六圖:係習用S Transform之示意圖。 第七圖:係習用S+P Transform之轉換過程示意圖。 第八圖:係習用S+P Transform之金字塔結構示意圖。 第九圖:係S+P Transform各階層資料之對應倍數圖。 第十圖:係一習用3 D貼圖之三角格化示意圖。 (二) 圖號部分: 無 (三) 附件部分: 附件一:係本發明模型切割的示意圖。 附件二:係本發明影像解碼之示意圖。 附件三〜五··係本發明之實施例。 附件六:係一習用3 D貼圖其變形示意圖。 附件七:係一習用3 D貼圖其模型切割示意圖。 附件八:係一習用邊線折疊法其偏移量示意圖。 附件九:係一習用3 D貼圖其過程示意圖。 本發明之方法流程主要包含有以下數道步驟··影像分 _15_ 紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----------------- (請先閱讀背面之注意事項再填寫本頁) · -1線· 200407799 A7 · ~—___________B7______ 五、發明說明(Y少) ^、小波編碼、播案存檔、播案開啟、模型切割、階層判 斷、影像解碼及模型貼圖及描繪等。 (請先閱讀背面之注意事項再填寫本頁) 係將欲貼圖的影像切割為多個區塊(tile),復對各個區 塊利用小波編碼方式轉成為代表多階解析度的資料串流; 爾後將欲貼附影像的模型亦相對切割為多個區塊,且取出 各模里區塊之特彳政值,當前述各影像區塊欲描緣至對應的 ' i區塊吩係依據區塊之特徵值而即時決定該影像區塊 所能顯示出的解析度。 夕再者,本發明之另一實施方式亦可將模型先行切割為 夕個區塊並取出其特徵值後,再對貼圖影像進行對應的裁 切動作,各個切割出的影像區塊同樣利用小波編碼轉為具 有多階解析的資料串流,再依據實際解析度需求將各影像 區塊轉貼至對應的模型區塊上。 以下係針對各步驟加以詳述: (一)影像分割 明參閱第一圖所示,為達成在描繪時能夠即時判斷與 即時描%之目的,以及貼圖影像部份傳送的效果,須事先 將欲貼圖的影像加以切割,同時為配合下一階段的小波編 馬’影像係切割成複數個方形區塊(tile)。 (一)小波編碼 在3 D影像的描繪時,為了因應不同的需求而能選擇 不同解析度的貼圖,於是以先前發明背景所述的小波編碼 方法作了些許的調整,以便能產生不同解析度的貼圖影像 〇 — 本’·氏張尺度適用中_家標準⑵◦ X撕公爱) 200407799 l * ^ A7 _ B7 ____ 五、發明說明(1$ ) 在影像資料中,係可以根據不同的頻率將影像資料加 以分別。屬於較低頻的訊號,可視為影像信號的平均信號 ,意即其包含有整體影像最概略的資料而可顯示出影像約 略輪廓;而屬於較高頻的訊號,則可以視為整張影像的特 徵部分,亦可視為是低頻信號的改進資料,用以加強整張 影像的細節及清晰性。 根據前述S+P Transform的敘述,當整張影像轉換成 頻域中的金字塔結構時(如第五圖所示),L V由0到N。 當N越大,則代表這一區的訊號頻率越低,因此當影像資 料傳輸時係由Level N到Level 0依序傳遞’則影像係由模 糊漸漸清晰。 請參閱第二圖所示,為本發明之小波編碼方式示意圖 ,此步驟更進一步包含有: 將前述各切割好的影像區塊(tile)經過S+P Transform, 以轉變成一金字塔狀的資料結構; 先取其最低的LLN,將其輸入SPIHT排序方式,使得 LLN中的數值由大到小排列,並以數值編碼(arithmetic coding)將其編碼; 其次取LV N的LHN、HLN、HHN,將它們輸入SPIHT 排序方式,令LHN、HLN、HHN中的數值由大到小排列, 再以以數值編碼(arithmetic coding)將其編碼; 取 LV (N-1)的 LH^1、HI/·1、HHN·1,將它們輸入 SPIHT排序方式,令LH^·1、HI/·1、HHN·1中的數值由大到 小排列,再以以數值編碼(arithmetic coding)將其編碼; ___________π__ 笨紙張尺度適用中國國家標準(cns)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) Ί3ΊΤ · i線· 200407799 A7 B7 五、發明說明((^ ) 依序取 LV (N-2 )、LV(N-3)、...LV1、LV0 的 LH、 HL、HH,將它們輸入SPIHT排序方式,令LH、HL、HH 中的數值由大到小排列,再以以數值編碼(arithmetic coding)將其編碼。 經由前述編碼方式,每一個影像區塊(tile)係可得到如 下所述的資料串: LLN LHn、HLN、HHn LHn-i、HLn_i、HHn_i LH0、HL0、HH0 (三)檔案存檔 將前述編碼所得的資料串加以存檔,以方便自硬碟或 網路取用,而由使用者端加以繪出。 (四) 檔案開啟 將原本所儲存的檔案開啟,以取得場景的基本資料, 做為建立場景内各物件其階層結構的要素。 (五) 模型切割 根據前述貼圖影像的分割方式,將此貼圖影像欲著附 的模型(mesh )做出對應的切割(partition),例如可利用模 型的貼圖座標(texture coordinate)做為分割基準,並取出模 型分割區域的特徵值(如模型的邊界盒(bounding box )、 模型區域的半徑大小、模型區域的代表向量等),並以一資 料結構加以紀錄,如附件一所示為本發明模型切割之示意 圖。 (六) 階層判斷 在模型區塊切割之後,即進行模型貼圖階層(level)之 判斷。本實施例中係由前述步驟所得的模型區塊特徵值為 ϋ竭紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 請 先 閱 讀 背 之 注 意 事 項 再 k 寫 本 頁 έ· 線
200407799 五、發明說明((1) 判斷基數,根據使用者的需要(如使用者的視角大小及位
,)判斷拉型貼圖區塊的階層數,並即時的將所需的階數 、、虎予解碼軟體,將所需的影像解麼縮出來,同時將此一 ί1白層的〜像放入快取(cache)記憶體中,以允許爾後的方便 使用。 、牛例而δ,假定模型貼圖的階數有N層,階層數分別 為Ν— 1、Ν— 2、···,」,解析度由小到大,若 =模型的邊界盒(boundingb〇x)、模型區域的半徑大小、 模里區域的代表向量作為判斷基準,可分為下列幾個 重點: a ·物體的大小 b ·物體與視點的距離 c·物體的代表向量與視線的夾角大小 根據需要調整三者的權重分配,也可以依使用者自己 的要求,選擇所要的判斷基準,得到所要的效果。 (七)影像解碼 在判斷出每一個影像區塊(tile)所需要的階層之後,即 進行區塊解碼的動作。解碼動作係相對於前述之編碼步驟 ,包含如下: 1 ·自前述資料串流中,取得lln部分,以數值解碼 (arithmetic decoding)方式解碼,再以SPIHT取得原本數值 ’將數值輸入Inverse S+P Transform,以取得最低解析度 的影像; 2 ·取得LHN、HLN、HHN’部分,以數值解碼 _______19 3¾紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 200407799 -ι , A7 _B7_ 五、發明說明(丨?) (arithmetic decoding)方式解碼,再以SPIHT取得原本數值 ,將數值輸入Inverse S+P Transform,對前述最低解析度 影像進行更新,以取得次解析度的影像。 持續前述步驟,直到LV0的LHG、HLG、HHG為止, 以獲取最完整、精細的原始影像。 請參閱附件二所示,係利用前述解碼步驟所得到的結 果。所能得到的相異解析度之影像數量,係由一開始所決 定的階層數相關,例如在做S+P Transform時,如果決定 有N個階層,則具有N個不同解析度的影像。 (八)模型貼圖及描繪 將得到的模型漸進式貼圖解壓縮後,係將每一塊貼圖 對應貼到模型之上,以獲得最後想要描繪的結果。 經由各步驟的詳細解釋後,本發明係可概分為兩大部 分,其一為產生漸進式的3 D模型影像貼圖,另一部分為 根據使用者需求讀取前述漸進式的3 D模型影像貼圖而描 繪至模型上,這兩部分可藉由第三圖及第四圖分別表現出 〇 綜上所述,本發所具備之特色係具有: 3 D影像資料係漸進式傳輸,根據解析度由小到大依 序傳送而令使用者端即時觀察出影像資料,且可適時中止 j 因影像資料係先行切割為多個區塊且轉換為多階層之 顯示解析度,故可依據使用者的要求(如視點位置、視角 大小等)決定欲觀看全貌的影像或其部分區域,且可依據 _20_ δ 紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) --------------裝--- (請先閱讀背面之注意事項再填寫本頁) 一5J· ,線. 200407799 A7 _B7___ 五、發明說明( 解析度要求而進行傳遞,大為降低顯示硬體之工作負擔; 故本發明相較欲現有3 D資料顯示、傳送技術等均有 有大幅改進且未見於任,且符合發明專利申請要件,爰依 法提起申請。 --------------裝--- (請先閱讀背面之注意事項再填寫本頁) •線· 21 d _紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)

Claims (1)

  1. 200407799
    申請專利範圍 1.-種用於網路傳輸 型貼圖分割與漸進式傳、关方、田、、,曰的小波式編解碼模 多個區塊’復以小波編碼手:將貼圖影像切割為 解析度之資料串流,以八社、〜像區塊轉換為多階層 行多階解析度顯示。7"貼圖影像貼附至—模型時可進 描繪的小波式編解二=::::於網路傳輪及即時 塊區塊。 以切告彳為多 =;=_一特徵值:二: 4 ·如申請專利範圍第3項所述詩網路傳 描繪的小波式編解碼模型貼圖分割與漸進式傳关 : 更進一步包含有: 适法’係 一影像切割手段,切割一欲貼附至模型上之 複數個區塊; 〜像成為 一編碼手段,利用小波編碼(Wavelet … 影像區塊轉換為資料串流; :則述各 一模型切割手段,以對應前述影像切割方 切割為複數個區塊並取出各模型區塊之特徵值; 一解析度階層定義手段’係定義出各影像區塊欲 的解析度階層; 人-不 200407799 A8B8C8D8 申請專利範圍 -解碼手段,依據定義出之解析度 流解碼為具有該解析度之影像區塊; #各貝抖爭 -貼圖手段,將前述解碼出之各影像 的模型區塊。 几6丨仃至對應 5.如申請專利範圍第3項所述用於網路 解碼模型貼圖分割與漸進式傳送方法,卩: 出錢值係將—模型切割為複數個區塊並取 、-影像切割手段,以對應前述模型切割的方 奴貼附至模型上之影像㈣為複數個區塊; ; 一編碼手段,利用小波編碼(Wavekt C〇di 影像區塊轉換為資料串流; §)將别述各 值,據前述各模型區塊之特徵 斷對應貼附之影像區塊其顯示解析度; 解碼手段,依據判斷出之解析度階層 流還原為具有該解析度之影像區塊; 貝科串 一貼圖手段,將前述解碼出之各影像區 的模型區塊。 丨仃主對應 6如申睛專利範圍第4或5項所述用於網路傳於 P寺描1的小波式編解碼模型貼圖分割與漸進式傳送方 “亥解析度階層定義手段中,各影像區塊欲顯示的 A層係依據對應的模型區塊之特徵值而決定。 7如申請專利範圍第4或5項所述用於網路傳輸及 23 297公釐) 200407799 :、申請專利範圍 即時描㈣小波式編解碼模型貼圖分割 、 ,於該解析度階層定義手段,各影像區;:法 階層係由使用者自行定義。 —的解析度 8 ·如申請專利範圍第⑷項所述用於 P時描緣的小波式編解碼模型貼圖分割與漸進式傳送' ,其中該貼圖影像係切割為多個方形區塊。 k方去 二利範圍第4或5項所述用於網路傳輪及 守枯、、、曰的小波式編解碼模型貼圖分割與漸進式傳送方、、 ,於前述編碼手段中,係更進一步定義各影像 ^法 之解析度階層N。 不 士 1 〇 ·如申請專利範圍第6項所述用於網路傳輸及即 時描繪的小波式編解碼模型貼圖分割與漸進式傳送方法,p 於前述編碼手段中,其中前述各資料串流係由N段資料結 構組成,以分別表現N種不同的顯示解析度。 1 1 ·如申請專利範圍第4或5項所述用於網路傳輸 及即時描繪的小波式編解碼模型貼圖分割與漸進式傳送方 法’其中前述編碼手段係更包含有: 將前述各切割好的影像區塊(tile)經過s+p TransfQnn, 以轉變成一金字塔狀的資料結構; 先取其最低的LLN,將其輸入SPIHT排序方式,使得 LLN中的數值由大到小排列,並以數值編碼(arithmetic coding)將其編碼; 其次取LV N的LHN、HLN、HHN,將它們輸入SPIHT 排序方式,令LHN、HLN、HHN中的數值由大到小排列, 24 S /禾紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 200407799 A8 B8 C8 D8 六、申請專利範圍 再以以數值編碼(arithmetic coding)將其編碼; (請先閲讀背面之注意事項再塡寫本頁) 取 LV (N-1)的 LHN·1、HI/·1、HHN-1,將它們輸入 SPIHT排序方式,令LH1^1、ΗΙΛ1、HHN-1中的數值由大到 小排列’再以以數值編碼(arithmetic coding)將其編碼; 依序取 LV (N-2 )、LV(N-3)、...LV1、LV0 的 LH、 HL、HH,將它們輸入SPIHT排序方式,令LH、HL、HH 中的數值由大到小排列’再以以數值編碼(arithmetic coding)將其編碼。 1 2 ·如申請專利範圍第4或5項所述用於網路傳輸 及即時描繪的小波式編解碼模型貼圖分割與漸進式傳送方 法,刚述各模型區塊之分割基準係採用模型的貼圖座標 (texture coordinate) 〇 1 3 .如申請專㈣圍第4或5項所述用於網路傳輸 及即時描繪的小波式編解瑪模型貼圖分割與漸進式傳送方 法,前述特徵值係為各模型區塊之模型邊界盒 box)、模型區域半徑大小或模型區域代表向量。 g 張尺度適用中國國家標準(CNS) A4規格(g 297^^
TW091132557A 2002-11-05 2002-11-05 Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm TW200407799A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW091132557A TW200407799A (en) 2002-11-05 2002-11-05 Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm
US10/373,411 US20040085315A1 (en) 2002-11-05 2003-02-24 Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW091132557A TW200407799A (en) 2002-11-05 2002-11-05 Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm

Publications (1)

Publication Number Publication Date
TW200407799A true TW200407799A (en) 2004-05-16

Family

ID=32173894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091132557A TW200407799A (en) 2002-11-05 2002-11-05 Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm

Country Status (2)

Country Link
US (1) US20040085315A1 (zh)
TW (1) TW200407799A (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125251B2 (ja) * 2004-02-13 2008-07-30 キヤノン株式会社 情報処理方法および装置
US7680350B2 (en) * 2004-05-07 2010-03-16 TerraMetrics, Inc. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields
US7529418B2 (en) * 2004-05-20 2009-05-05 Hewlett-Packard Development Company, L.P. Geometry and view assisted transmission of graphics image streams
US9743078B2 (en) 2004-07-30 2017-08-22 Euclid Discoveries, Llc Standards-compliant model-based video encoding and decoding
US9532069B2 (en) 2004-07-30 2016-12-27 Euclid Discoveries, Llc Video compression repository and model reuse
US9578345B2 (en) 2005-03-31 2017-02-21 Euclid Discoveries, Llc Model-based video encoding and decoding
US8902971B2 (en) * 2004-07-30 2014-12-02 Euclid Discoveries, Llc Video compression repository and model reuse
CN101939991A (zh) 2007-01-23 2011-01-05 欧几里得发现有限责任公司 用于处理图像数据的计算机方法和装置
CN102172026B (zh) 2008-10-07 2015-09-09 欧几里得发现有限责任公司 基于特征的视频压缩
CA2942336A1 (en) 2014-03-10 2015-09-17 Euclid Discoveries, Llc Continuous block tracking for temporal prediction in video encoding
US10091507B2 (en) 2014-03-10 2018-10-02 Euclid Discoveries, Llc Perceptual optimization for model-based video encoding
US10097851B2 (en) 2014-03-10 2018-10-09 Euclid Discoveries, Llc Perceptual optimization for model-based video encoding
CN107784674B (zh) * 2017-10-26 2021-05-14 浙江科澜信息技术有限公司 一种三维模型简化的方法及系统
CN110084752B (zh) * 2019-05-06 2023-04-21 电子科技大学 一种基于边缘方向和k均值聚类的图像超分辨重建方法
CN113094460B (zh) * 2021-04-25 2023-07-28 南京大学 一种结构层级的三维建筑物渐进式编码与传输方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505299B1 (en) * 1999-03-01 2003-01-07 Sharp Laboratories Of America, Inc. Digital image scrambling for image coding systems
US6525732B1 (en) * 2000-02-17 2003-02-25 Wisconsin Alumni Research Foundation Network-based viewing of images of three-dimensional objects
US6754642B2 (en) * 2001-05-31 2004-06-22 Contentguard Holdings, Inc. Method and apparatus for dynamically assigning usage rights to digital works

Also Published As

Publication number Publication date
US20040085315A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
Li et al. Progressive coding of 3-D graphic models
JP4629005B2 (ja) 深さイメージに基づく3次元客体の表現装置、3次元客体の表現方法およびその記録媒体
JP4832975B2 (ja) 深さイメージに基づく3次元客体を表現するためのノード構造を記憶させた、コンピュータで読み出し可能な記録媒体
RU2237283C2 (ru) Устройство и способ представления трехмерного объекта на основе изображений с глубиной
JP4612782B2 (ja) 画像処理装置、及びその方法、並びにプログラム、記憶媒体
TW407432B (en) Apparatus and method for encoding wavelet trees generated by a wavelet-based coding method
Khodakovsky et al. Progressive geometry compression
US6144773A (en) Wavelet-based data compression
US6873343B2 (en) Scalable graphics image drawings on multiresolution image with/without image data re-usage
CN102439976B (zh) 重构深度图像的方法和重构深度图像的解码器
CN100545870C (zh) 基于深度图像表示三维物体的装置和方法
TW200407799A (en) Texture partition and transmission method for network progressive transmission and real-time rendering by using the wavelet coding algorithm
RU2267161C2 (ru) Способ кодирования и декодирования данных трехмерных объектов и устройство для его осуществления
JP2010218588A (ja) 深さイメージに基づく3次元客体の表現装置、3次元客体の表現方法およびその記録媒体
JP2007519285A (ja) 複数の固定カメラによってシーン中の移動オブジェクトから取得した複数のビデオを符号化するシステム
JP2002501650A (ja) 3次元メッシュの圧縮および符号化
Pavez et al. Dynamic polygon cloud compression
US20220292730A1 (en) Method and apparatus for haar-based point cloud coding
KR20010053286A (ko) 화상부호/복호방법 및 그 프로그램을 기록한 기록매체
CN102497545B (zh) 内容自适应和艺术可引导可缩放视频编码
US20220217400A1 (en) Method, an apparatus and a computer program product for volumetric video encoding and decoding
WO2013029232A1 (en) Multi-resolution 3d textured mesh coding
JPH0984002A (ja) ディジタル画像の処理方法及びシステム
Okuda et al. Joint geometry/texture progressive coding of 3D models
Berjón et al. Objective and subjective evaluation of static 3D mesh compression