TW200405042A - Laminated polarizing film, polarizing light source device and liquid crystal display device - Google Patents

Laminated polarizing film, polarizing light source device and liquid crystal display device Download PDF

Info

Publication number
TW200405042A
TW200405042A TW092118109A TW92118109A TW200405042A TW 200405042 A TW200405042 A TW 200405042A TW 092118109 A TW092118109 A TW 092118109A TW 92118109 A TW92118109 A TW 92118109A TW 200405042 A TW200405042 A TW 200405042A
Authority
TW
Taiwan
Prior art keywords
polarizing film
laminated
film
light source
liquid crystal
Prior art date
Application number
TW092118109A
Other languages
Chinese (zh)
Inventor
Keiichi Mizuguchi
Taku Honda
Takuya Nishirai
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002197133A external-priority patent/JP2004037988A/en
Priority claimed from JP2002271295A external-priority patent/JP2004109424A/en
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200405042A publication Critical patent/TW200405042A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Abstract

In a liquid crystal display device or the like, a system with enhanced circular polarizing light is utilized to ensure the circular polarization under necessary wavelength of visual light domain and increase the transformation efficiency for the polarizing light, thereby increasing the brightness enhancement achieved by the reflective polarizing film. There is provided a laminated polarizing film 10 formed by a reflective line polarizing film 21, and at least one laminated layer implemented by low-wavelength scattered phase-difference film 22 or reverse-wavelength scattered phase-difference film. On the side of reflective line polarizing film 21, an absorbing type polarizing film 20 can be laminated. In addition, at any position of the layer structure, a light diffusing layer 26 can be laminated. There is also provided a polarizing light source device 64 which sequentially disposes light source members including light guiding plates 52 and reflective plates 53 on the phase-difference film 22 of the laminated polarizing film 1. Furthermore, there is provided a liquid crystal display device which disposes a liquid crystal unit 30 and an absorbing polarizing film 41 on the side of the laminated polarizing film 10. In addition, there is provided a laminated polarizing film 41 capable of increasing indoor brightness and outdoor visibility. Furthermore, there is provided a polarizing light source device using the laminated polarizing film, which has excellent visibility, and a liquid crystal display device. Furthermore, there are provided a absorbing type polarizing film 20 and a reflective line polarizing film 21 implemented laminated layer, and the polarizing penetration axes of the two are substantially parallel. On the side of the reflective line polarizing film 21, a laminated polarizing film 100 formed by a phase-difference layer 123 having positive two-axis alignment is laminated, and a light diffusing layer 24 can be laminated at any position. The light source members including the light guiding plates 52 and reflective plates 53 are arranged on the side of the phase-difference layer 123 of the laminated polarizing film 10 to construct a polarizing light source device. Moreover, the liquid crystal unit 30 and a front side absorbing type polarizing film 41 are arranged on the side of the laminated polarizing film 10 to construct a liquid crystal display device 65.

Description

200405042 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關於透過型液晶顯示裝置、及適合於此的 光源裝置以及積層偏光薄膜。詳細地說是有關於一種以提 高藉由反射型偏光薄膜來提高亮度之效果爲目的的積層偏 光薄膜、及使用其之高亮度的偏光光源裝置以及液晶顯示 裝置。又,在透過型液晶顯示裝置中,藉著將到達背面照 明裝置的外部光再度有效率地從液晶顯示裝置射出’可以 提局畫面壳度,更且,在屋外太陽光下等的外部光強烈的 環境下也不會降低畫面之可視性的積層偏光薄膜、及使用 其之偏光光源裝置以及透過型液晶顯示裝置。 【先前技術】200405042 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a transmissive liquid crystal display device, a light source device suitable for the liquid crystal display device, and a laminated polarizing film. Specifically, the present invention relates to a laminated polarizing film for the purpose of improving the effect of increasing the brightness by a reflective polarizing film, a polarized light source device using the same, and a liquid crystal display device. Moreover, in a transmissive liquid crystal display device, the external light reaching the backlight device can be efficiently emitted from the liquid crystal display device again, which can improve the shell of the screen, and the external light such as outdoor sunlight is strong. A laminated polarizing film that does not reduce the visibility of the screen under polarized environments, and a polarized light source device and a transmissive liquid crystal display device using the same. [Prior art]

液晶顯示裝置由於小型、重量輕,因此被使用在各種 的領域。液晶顯示裝置中的液晶分子,由於並非是使用在 陰極射線管(C RT )等的發光物質,而只具備作爲用來控 制光之偏光狀態的光閥的作用,因此若不用任一方法來照 明時,則液晶顯示部會暗的看不見。在此,在液晶顯示部 的背面配置光源裝置者即爲透過型液晶顯示裝置。 該參照圖9來說明以往的透過型液晶顯示裝置。液晶 顯示裝置一般而言藉著在電氣上讓被封入到液晶單元3 0 內的液晶分子的配向狀態變化而來控制通過此處之光的偏 光狀態,液晶單元3 0是由相向的一對的透明電極,亦即 ,背面側透明電極3 1以及前面側透明電極3 2、與被挾持 (2) (2)200405042 在該些其間的液晶層3 3所構成。雖然未圖示’但液晶單 元30除此外,另外具備有被配置在兩個最表面的單元基 板,讓液晶層3 3配向的配向膜’若是彩色顯示時則也具 備濾色層等。 在液晶單元3 0的前面則配置有用來檢測已透過此處 之光之偏光狀態的前面側吸收型偏光薄膜4 1,另外,則 配置有相位差薄膜42等的光學元件。另一方面,在液晶 單元3 0的背面則因應必要經由背面側的相位差薄膜(未 圖示)而配置有只取出特定的偏光光而朝著液晶單元3 0 射出的偏光光源裝置9 1。偏光光源裝置9 1,則在面向液 晶單元30的位置配置有吸收型偏光薄膜20,在其背面則 因應必要而配置有光源裝置6 1。光源裝置6 1是由在側方 或下方具有光源51的導光板52、以及在導光板52的背 後的反射板5 3所構成,當光源5 1被配置在側方時,來自 此處的光則爲反射鏡5 4所反射事實上全部會被引導到導 光板5 2,更者,則朝著吸收型偏光薄膜2 5側射出。藉由 以上的形式而構成透過型液晶顯示裝置90。 近年來乃採用一在背面側吸收型偏光薄膜與光源裝置 之間插入反射型偏光薄膜的亮度提高系統。該亮度提高系 統則例如如特表平9 - 5 1 1 844號公報所記載般,在來自光 源裝置的射出光中,藉由反射型偏光薄膜事先將背面側吸 &型偏光薄膜已吸收的偏光成分事先加以反射而返回光源 裝置。而能夠再利用,藉著增加能夠利用的光量可以提高 顯示裝置的亮度。利用該亮度提高系統,則在不增加消耗 (3) 200405042 電力的情形下可以提高透過亮度,相反地可以在維持透過 亮度的情形下減少消耗電力。Liquid crystal display devices are used in various fields due to their small size and light weight. The liquid crystal molecules in the liquid crystal display device are not used as light-emitting substances such as cathode ray tubes (CRT), but only serve as light valves for controlling the polarization state of light. Therefore, if no method is used for illumination, At this time, the liquid crystal display portion will be invisible. Here, a transmissive liquid crystal display device is a light source device arranged on the back of the liquid crystal display section. This conventional liquid crystal display device will be described with reference to FIG. 9. The liquid crystal display device generally controls the polarization state of light passing therethrough by electrically changing the alignment state of liquid crystal molecules enclosed in the liquid crystal cell 30. The liquid crystal cell 30 is a pair of opposite The transparent electrode, that is, the back-side transparent electrode 31 and the front-side transparent electrode 3 2 and the liquid crystal layer 3 3 held between them (2) (2) 200405042. Although not shown in the figure, the liquid crystal cell 30 includes a cell substrate disposed on the two outermost surfaces, and an alignment film for aligning the liquid crystal layer 3 to 3, and a color filter layer for color display. On the front of the liquid crystal cell 30, a front-side absorption-type polarizing film 41 for detecting a polarization state of light transmitted therethrough is disposed, and an optical element such as a retardation film 42 is disposed. On the other hand, a polarized light source device 91 that emits only a specific polarized light toward the liquid crystal cell 30 is disposed on the back of the liquid crystal cell 30 through a retardation film (not shown) on the back side as necessary. The polarized light source device 91 is provided with an absorption-type polarizing film 20 at a position facing the liquid crystal cell 30, and a light source device 61 is provided on the back surface thereof as necessary. The light source device 61 is composed of a light guide plate 52 having a light source 51 on the side or below, and a reflective plate 5 3 behind the light guide plate 52. When the light source 51 is arranged on the side, the light from here is In fact, all the reflections from the reflecting mirror 54 are guided to the light guide plate 52, and further, they are emitted toward the side of the absorption-type polarizing film 25. The transmission-type liquid crystal display device 90 is configured in the above-described manner. In recent years, a brightness enhancement system has been adopted in which a reflective polarizing film is interposed between a back-side absorbing polarizing film and a light source device. This brightness enhancement system is described in, for example, Japanese Patent Publication No. 9-5 1 1 844. Among the emitted light from the light source device, the back side is previously absorbed by the reflective polarizing film and the polarizing film is absorbed by the polarizing film. The polarized light component is reflected in advance and returned to the light source device. It can be reused, and the brightness of the display device can be increased by increasing the amount of light that can be used. With this brightness enhancement system, the transmission brightness can be increased without increasing the power consumption (3) 200405042. On the contrary, the power consumption can be reduced while maintaining the transmission brightness.

該亮度提高系統可藉由反射型偏光薄膜更有效率地來 將返回到光源裝置的偏光成分轉換成透過背面側吸收型偏 光薄膜的偏光成分,但提高亮度提高率則更加重要。提高 亮度提高率的方法,則有如在特開2 00 1 - 1 473 2 1號公報 中的提案般地讓反射型偏光薄膜與相位差薄膜之彼此的光 軸以4 5 °或1 3 5 °來交差地配置,而使用1 /4波長相位差 薄膜作爲相位差薄膜的方法。 根據該方法,亮度提高系統由於利用圓偏光,因此能 夠有效地作偏光轉換,而可以提高亮度提高效果。This brightness-enhancing system can more efficiently convert the polarizing component returned to the light source device into a polarizing component that is transmitted through the back-side absorption-type polarizing film by the reflective polarizing film, but it is more important to increase the brightness improving rate. As a method for increasing the brightness improvement rate, as proposed in Japanese Patent Laid-Open No. 200 1-1 473 2 1, the optical axes of the reflective polarizing film and the retardation film can be set at 4 5 ° or 1 3 5 °. A method of using a 1 / 4-wavelength retardation film as a retardation film to arrange them alternately. According to this method, since the brightness enhancement system uses circularly polarized light, it can effectively perform polarization conversion, and can improve the brightness improvement effect.

爲了要有效地活用該槪念,最好圓偏光性能夠在可見 光領域之整個領域發揮作用。但是由通常的聚碳酸酯樹脂 延伸而成的相位差薄膜,由於具有相對於短波長其相位差 變大的特性,因此以1個相位差薄膜並無法在可見光領域 的整個領域均滿足圓偏光性,因無法充分地藉由圓偏光來 達成亮度提高效果。 又’另一方面,透過型液晶顯示裝置則廣泛地被應用 在筆記型個人電腦或桌上型個人電腦的液晶顯示器、液晶 電視、攝影機、攜帶型資訊終端機等,該些在室內使用不 會有任何特別的問題,但是當在屋外,特別是在太陽光下 使用時,則大部分可視性顯著地降低。而此是因爲太陽光 主要在液晶顯示裝置的最表面被反射,而無法通過液晶顯 示部所產生的現象。爲了要改善該現象,則考慮實施一在 -8- (4) 200405042 液晶顯示裝置的最表面實施無反射處理而提高畫素之數値 孔徑等的對策。如此一來,太陽光會一次到達被配置在如 圖9所示之透過型液晶顯示裝置之背面側的光源裝置6 1 ,而藉由被組入在此處的反射板5 3等反射而再度射出到 外部以當作液晶顯示部的照明光來使用。In order to make effective use of this idea, it is desirable that circular polarization can be used in the entire field of visible light. However, a retardation film extended from a normal polycarbonate resin has a characteristic that the retardation becomes larger with respect to a short wavelength. Therefore, a single retardation film cannot satisfy circular polarization in the entire field of visible light. , Because the effect of improving the brightness cannot be achieved by circularly polarized light. On the other hand, transmissive liquid crystal display devices are widely used in liquid crystal displays, liquid crystal televisions, cameras, and portable information terminals of notebook personal computers or desktop personal computers, which are not used indoors. There are any particular problems, but when used outdoors, especially under sunlight, most of the visibility is significantly reduced. This is because the sunlight is mainly reflected on the outermost surface of the liquid crystal display device and cannot pass through the liquid crystal display portion. In order to improve this phenomenon, it is considered to implement a countermeasure to increase the number of pixels, aperture, and the like by performing a non-reflection treatment on the outermost surface of the -8- (4) 200405042 liquid crystal display device. In this way, the sunlight will once reach the light source device 6 1 disposed on the back side of the transmissive liquid crystal display device as shown in FIG. 9, and will be reflected again by the reflection plate 53 which is incorporated here, and the like, and will again be reflected. The light emitted to the outside is used as illumination light of the liquid crystal display section.

此時,太陽光則在通過背面側吸收型偏光薄膜4 0入 射到光源裝置6 1而爲光源裝置6 1所反射後,再度入射到 背面側吸收型偏光薄膜4 0。因此,若在此期間偏光狀態 未改變,由於並不存在當再度入射到背面側吸收型偏光薄 膜4 〇時所吸收之不必要的偏光光,因此能夠有效率地利 用太陽光,藉此可以提高在太陽下的可視性。在實際的液 晶顯示裝置,由於使用了如擴散片5 5或透鏡片5 6般之會 讓偏光狀態轉換的材料,因此太陽光的利用效率會稍微降 低。在此,若是配置反射型偏光薄膜,則可以使上述的亮 度提高系統發揮作用,而能夠提高太陽光的利用效率。At this time, sunlight enters the light source device 61 through the back-side absorption type polarizing film 40 and is reflected by the light source device 61, and then enters the back-side absorption type polarizing film 40 again. Therefore, if the polarization state is not changed during this period, since there is no unnecessary polarized light that is absorbed when it is incident again on the back-side absorbing polarizing film 40, it is possible to efficiently use sunlight, thereby improving the Visibility under the sun. In an actual liquid crystal display device, since a material such as a diffusion sheet 55 or a lens sheet 56 is used to change the polarization state, the utilization efficiency of sunlight is slightly lowered. Here, if a reflective polarizing film is arranged, the above-mentioned brightness enhancement system can be made effective, and the utilization efficiency of sunlight can be improved.

但是當將對於在室內可以有效地提高亮度提高效果, 而將相位差薄膜積層在反射型直線偏光薄膜的方式應用在 透過型液晶顯示裝置時,則知在屋外的可視性反而會降低 。雖然其原因仍不明,但可以考慮到以下的情形。亦即, 爲了要利用太陽光,當讓太陽光通過背面側吸收型偏光薄 膜,而爲光源裝置所反射且再度入射到背面側吸收型偏光 薄膜時最好不要讓偏光狀態產生變化,但是在已積層了相 位差薄膜的情形下,當再度入射到背面側吸收型偏光薄膜 時,其偏光狀態會被轉換,由於在理想的狀態下,會成爲 -9 - (5) 200405042 一全部的光被反射的偏光光,而再度會被光源裝置所反射 ,更且,則不得不再作1次往復。在此,則不得不作成爲 在反射型直線偏光薄膜與光源裝置之間未使用相位差薄膜 時之倍數的2次往復,因此在此過程中會因爲逸散等因素 而造成光的利用效率降低。However, when a transmissive liquid crystal display device in which a retardation film is laminated on a reflective linear polarizing film can be effectively increased in the room can be used to increase the effect of improving the brightness, the visibility outside the room will be reduced. Although the reason is still unknown, the following situations can be considered. That is, in order to use sunlight, it is best not to change the polarization state when the sunlight is passed through the back-side absorbing polarizing film and reflected by the light source device and re-enters the back-side absorbing polarizing film. In the case where a retardation film is laminated, when it is incident on the back-side absorbing polarizing film again, its polarization state is switched. In an ideal state, it becomes -9-(5) 200405042. All the light is reflected. The polarized light will be reflected again by the light source device, and it will have to be reciprocated once more. Here, it is necessary to make a double reciprocation of multiples when the retardation film is not used between the reflective linear polarizing film and the light source device. Therefore, in the process, the utilization efficiency of light is reduced due to factors such as dissipation. .

如此般,若是使用以提高在室內之亮度提高率爲目的 的相位差薄膜時,則會有在屋外可視性降低的問題。因此 對於例如筆記型個人電腦或桌上型個人電腦的液晶顯示器 等主要在室內使用的用途而言,雖然使用反射型直線偏光 薄膜與相位差薄膜的積層體可以很有效,但是對於例如被 搭載在行動電話或攜帶型資訊終端機等可以在室內與室外 同樣使用之機器上的液晶顯示裝置而言,當使用反射型直 線偏光薄膜與相位差薄膜的積層體時,雖然在室內可以看 到明亮的畫面,但是在屋外反而會有畫面變暗的問題。As described above, if a retardation film is used for the purpose of increasing the brightness improvement indoors, there is a problem that the visibility outdoors is reduced. Therefore, for applications such as notebook personal computers and desktop personal computer liquid crystal displays that are mainly used indoors, although a laminated body using a reflective linear polarizing film and a retardation film can be effective, For a liquid crystal display device, such as a mobile phone or a portable information terminal, that can be used indoors and outdoors, when a multilayer of a reflective linear polarizing film and a retardation film is used, although a bright Picture, but the problem of darkening the picture outside the house.

【發明內容】 (本發明所想要解決的問題) 在此,本發明的目的則在於在利用圓偏光的亮度提高 系統中可以確保在可見光領域之必要的波長下的圓偏光性 而提高偏光轉換效率,藉此,可藉由提高由反射型偏光薄 膜所達成的亮度提高率。 更且,本發明的另一個目的則在於針對一在已配置了 反射型偏光薄膜的液晶顯示裝置,可一邊藉由將相位差層 積層來達成透過亮度的上昇效果,一邊也維持在屋外的太 -10- (6) 200405042 陽光利用效率,不論在屋內或屋外皆能夠確保住良好的可 視性。更具體地說,提供一可提高在室內的亮度以及提高 在屋外的可視性的積層偏光薄膜,更且,則提供一使用其 而具備優越之可視性的偏光光源裝置以及液晶顯示裝置。 (解決問題的手段)[Summary of the Invention] (Problems to be Solved by the Present Invention) Here, the object of the present invention is to improve the polarization conversion at the necessary wavelength in the visible light field by ensuring the circular polarization at the necessary wavelength in the field of improving the brightness of the circular polarization By this, it is possible to increase the brightness improvement rate achieved by the reflective polarizing film. Furthermore, another object of the present invention is to provide a liquid crystal display device in which a reflective polarizing film has been arranged, while maintaining the effect of increasing the transmission brightness by laminating a retardation layer, while maintaining the brightness outside the house. -10- (6) 200405042 The utilization efficiency of sunlight can ensure good visibility both inside and outside the house. More specifically, a laminated polarizing film capable of improving brightness indoors and improving visibility outdoors is provided, and a polarized light source device and a liquid crystal display device using the polarized light source device are provided. (Means for solving problems)

本發明人等發現藉由特定出相位差薄膜所具有的波長 分散特性,更可以提高在利用圓偏光時的亮度提高效果, 且能夠提高亮度提高率。The present inventors have found that by specifying the wavelength dispersion characteristics of the retardation film, the brightness improvement effect when using circularly polarized light can be further improved, and the brightness improvement rate can be improved.

更且,本發明人等發現針對使用依照吸收型偏光薄膜 、反射型偏光薄膜、以及相位差層的順序積層而成之積層 偏光薄膜的亮度提高系統,藉著讓相位差層具備正的二軸 配向性,可以一邊維持透過亮度提高效果於高水準,也一 邊能夠抑制反射売度提高效果的降低情形,進而可以提局 透過亮度與反射亮度之合在一起的整體的亮度。此外,在 此所謂的透過亮度係指爲從液晶顯示裝置內之光源所發出 的光所照明的偏光光源裝置以及液晶顯示畫面的亮度。又 ,所謂的反射亮度係指爲從位在液晶顯示裝置外的外部環 境所入射的光所照明的偏光光源裝置以及液晶顯示畫面的 亮度。 亦即,根據本發明,則提供一吸收型偏光薄膜與反射 型直線偏光薄膜被實施積層以使兩者的偏光透過軸大略成 爲平行,更且,則在反射型直線偏光薄膜側積層有低波長 分散相位差薄膜以及逆波長分散相位差薄膜的至少一個、 -11 - (7) 200405042 或具有正的二軸配向性的相位差層。 在此所使用的低波長分散相位差薄膜或逆波長相位差 薄膜則最好是具有1 /4波長的相位差者。此外,該1 /4波 長相位差薄膜的光軸與反射型直線偏光薄膜的偏光透過軸 則最好是被積層或以大略4 5°的角度而交差。Furthermore, the present inventors have discovered that by using a laminated polarizing film that is laminated in the order of an absorptive polarizing film, a reflective polarizing film, and a retardation layer, the brightness improving system is provided by providing the retardation layer with a positive biaxiality. Alignment can maintain the transmission brightness improvement effect at a high level while suppressing the reduction of the reflection intensity improvement effect, and can also improve the overall brightness of the combination of transmission brightness and reflection brightness. The term "transmittance brightness" herein refers to the brightness of a polarized light source device and a liquid crystal display screen illuminated by light emitted from a light source in the liquid crystal display device. The reflection brightness refers to the brightness of a polarized light source device and a liquid crystal display screen illuminated by light incident from an external environment located outside the liquid crystal display device. That is, according to the present invention, an absorptive polarizing film and a reflective linearly polarizing film are provided to be laminated so that the polarization transmission axes of the two become substantially parallel, and further, a low wavelength is laminated on the side of the reflective linearly polarizing film. At least one of a dispersion retardation film and an inverse wavelength dispersion retardation film, -11-(7) 200405042, or a retardation layer having positive biaxial alignment. The low-wavelength dispersion retardation film or reverse wavelength retardation film used here is preferably one having a retardation of 1/4 wavelength. In addition, the optical axis of the 1/4 wavelength retardation film and the polarization transmission axis of the reflective linear polarizing film are preferably laminated or intersected at an angle of approximately 45 °.

又,具有正的二軸配向性的相位差層則最好是1 /4波 長相位差層。此時,反射型偏光薄膜的偏光透過軸與具有 正的二軸配向性的1 /4波長相位差層的光軸則最好被積層 或以大略4 5 °或1 3 5 °而交差。最好具有正的二軸配向性 的1 /4波長相位差層是由1個的二軸延伸薄膜所構成者、 或是至少由2個不同光軸的相位差薄膜實施積層而成者。 後者的相位差薄膜則使用一軸延伸薄膜。A retardation layer having positive biaxial alignment is preferably a 1/4 wavelength retardation layer. At this time, the polarization transmission axis of the reflective polarizing film and the optical axis of the 1/4 wavelength retardation layer having positive biaxial alignment are preferably laminated or crossed at approximately 45 ° or 135 °. It is preferable that the 1/4 wavelength retardation layer having positive biaxial alignment is formed by one biaxially stretched film, or laminated by at least two retardation films with different optical axes. The latter retardation film uses a uniaxially stretched film.

該些的積層偏光薄膜爲了要賦予光擴散性,可以在任 一位置至少實施積層1個的面內相位差値在3 Onm以下的 光擴散層。該光擴散層也可以具有接著性。爲了要容易處 理本發明的積層偏光薄膜,更爲了要避免不必要的界面反 射,最好相鄰的薄膜或層的至少一對藉由感壓接著劑而實 施密接積層。 又,根據本發明,乃提供一具備有上述任一個的積層 偏光薄膜與光源構件以及反射板,而光源裝置以及反射板 依序被配置在積層偏光薄膜的相位差薄膜側而成的偏光光 源裝置。 更且,根據本發明,乃提供一具備有上述偏光光源裝 置、液晶單元以及前面側吸收型偏光薄膜,而液晶單元以In order to impart light diffusibility to these laminated polarizing films, at least one of the laminated polarizing films may be provided with a light diffusion layer having an in-plane retardation 値 of 3 nm or less at any one position. This light-diffusion layer may have adhesiveness. In order to easily handle the laminated polarizing film of the present invention, and to avoid unnecessary interface reflection, it is preferable that at least one pair of adjacent films or layers be tightly laminated with a pressure-sensitive adhesive. Furthermore, according to the present invention, there is provided a polarized light source device including a laminated polarizing film, a light source member, and a reflecting plate, and the light source device and the reflecting plate are sequentially arranged on the retardation film side of the laminated polarizing film. . Furthermore, according to the present invention, there is provided a polarizing light source device, a liquid crystal cell, and a front-side absorption-type polarizing film.

-12- (8) 200405042 及前面側吸收型偏光薄膜依序被配置在偏光光源裝置的積 層偏光薄膜側的液晶顯示裝置。在此,可在液晶單元與前 面側吸收型偏光薄膜之間積層有光擴散層。又,最好從積 層偏光薄膜到前面側吸收型偏光薄膜之各構件的相鄰的至 少一對藉由感壓接著劑實施密接積層。 【實施方式】-12- (8) 200405042 and front-side absorptive polarizing film are liquid crystal display devices that are sequentially arranged on the laminated polarizing film side of the polarizing light source device. Here, a light diffusion layer may be laminated between the liquid crystal cell and the front-side absorption-type polarizing film. In addition, it is preferable that at least one pair of adjacent members of each member from the laminated polarizing film to the front-side absorption type polarizing film is tightly laminated with a pressure-sensitive adhesive. [Embodiment]

爲了要讓本發明更加明確,以下請參照表示其具體例 的圖面加以詳細地說明。本發明之積層偏光薄膜1 〇,如 圖1之斷面的模式圖所示,係一將吸收型偏光薄膜2 0與 反射型直線偏光薄膜2 1加以積層,而在反射型直線偏光 薄膜側至少積層1個的低波長分散相位差薄膜2 2或逆波 長分散相位差薄膜2 3而成者。在圖1的(a )中則表示將 反射型直線偏光薄膜2 1與低波長分散相位差薄膜2 2加以 積層的例子,而在(b )中則表示將反射型直線偏光薄膜 2 1與逆波長分散相位差薄膜加以積層的例子。 反射型直線偏光薄膜2 1則是一讓特定振動方向的直 線偏光光透過,而讓與此呈直交方向上的直線偏光光反射 者。所謂的反射型直線偏光薄膜的偏光透過軸係指當特定 振動方向的直線偏光從該偏光薄膜的垂直方向入射時之透 過率成爲最大的方向,而所謂的偏光反射軸是指與其呈直 交的方向。 反射型直線偏光薄膜則可以是例如利用由布留斯特( Brewster、angle)角度所造成之偏光成分之反射率的差的 -13- (9) 200405042In order to clarify the present invention, the drawings will be described in detail below with reference to specific drawings. The laminated polarizing film 10 of the present invention, as shown in the schematic cross-sectional view of FIG. 1, is a laminated polarizing film 20 and a reflective linear polarizing film 21, and at least the reflective linear polarizing film side One laminated low-wavelength retardation retardation film 2 2 or reverse wavelength-dispersion retardation film 23. Fig. 1 (a) shows an example in which the reflective linear polarizing film 2 1 and the low-wavelength dispersion retardation film 2 2 are laminated, and in (b), the reflective linear polarizing film 2 1 and the inverse are shown. An example of laminating a wavelength-dispersed retardation film. The reflection type linear polarizing film 21 is one that transmits linearly polarized light in a specific vibration direction and reflects linearly polarized light in a direction orthogonal thereto. The so-called polarized light transmission axis of a reflective linear polarizing film refers to a direction in which the transmittance of the linearly polarized light having a specific vibration direction from the perpendicular direction of the polarized film becomes the largest, and the so-called polarized reflection axis refers to a direction orthogonal to the polarized light. . The reflective linear polarizing film may be, for example, a -13- (9) 200405042 using a difference in reflectance of a polarized component caused by a Brewster (angle) angle.

反射型直線偏光薄膜(例如記載在特表平6 - 5 08449號公 報中者),已實施有微細的金屬線狀圖案的反射型直線偏 光薄膜(例如記載在特開平2 - 3 0 8 1 0 6號公報中者),至 少積層了 2種的高分子薄膜,而利用折射率異方性所造成 之反射率之異方性的反射型直線偏光薄膜(例如記載在特 表平9 一 506837號公報中者),在高分子薄膜中具有至少 由2種的高分子所形成的海島構造,而利用折射率異方性 所造成之反射率之異方性的反射型直線偏光薄膜(例如記 載在美國專利第5,825,543號說明書中者),將粒子分散 在高分子薄膜中,而利用由折射率異方性所造成之反射率 之異方性的反射型直線偏光薄膜(例如記載在特表平i i - 5 0 9 0 1 4號公報中者),將無機粒子分散在高分子薄膜 中,而利用由粒子大小產生之亂射能(scattering power) 差而造成之反射率之異方性的反射型直線偏光薄膜(記載 在特開平9 — 297204號公報中者)等。A reflective linear polarizing film (for example, described in Japanese Patent Publication No. 6-5 08449) is a reflective linear polarizing film (for example, described in Japanese Patent Application Laid-Open No. 2-3 0 8 1 0) having a fine metal linear pattern. In the 6th publication), at least two kinds of polymer films are laminated, and a reflective linear polarizing film using anisotropy of reflectance due to refractive index anisotropy (for example, described in Japanese Patent Publication No. 9-506837) In the bulletin), a reflective linear polarizing film having a sea-island structure formed of at least two types of polymers in a polymer film and utilizing anisotropy of reflectance due to refractive index anisotropy (eg, described in (U.S. Patent No. 5,825,543), a reflective linear polarizing film in which particles are dispersed in a polymer film and an anisotropy of reflectance due to refractive index anisotropy is used (for example, described in Special Table Hei ii) -5 0 9 0 1)), the inorganic particles are dispersed in the polymer film, and the anisotropy of the reflectance caused by the difference in scattering power caused by the particle size is used. Reflection type linear polarizing film (disclosed in Japanese Patent Publication 9 - Publication No. 297,204 persons) and the like.

反射型直線偏光薄膜的厚度雖然未特別限制,但是從 液晶顯示裝置之薄型化的觀點來看,則是愈薄愈好。具體 地最好是在1mm以下,又,更好是在〇.2mm以下。在此 爲了要薄型化’則至少實施積層有2種的高分子薄膜,而 手IJ 由折射率異方性所造成之反射率之異方性的反射型直 線偏光薄膜、或在高分子薄膜中具有至少由2種的高分子 所構成的海島構造,而利用由折射率異方性所造成之反射 率之異方性的反射型直線偏光薄膜、或利用膽固醇液晶( chalesteric cystal)的選擇反射特性的反射型直線偏光薄 -14 - (10) 200405042 膜則特別適合於削薄本發明之積層偏光薄膜的厚度。Although the thickness of the reflective linear polarizing film is not particularly limited, from the viewpoint of thinning the liquid crystal display device, the thinner the better. Specifically, it is preferably 1 mm or less, and more preferably 0.2 mm or less. Here, in order to reduce the thickness, at least two types of polymer films are laminated, and IJ is a reflective linear polarizing film with anisotropic reflectance caused by refractive index anisotropy, or a polymer film. It has a sea-island structure composed of at least two types of polymers, and uses a reflective linear polarizing film using anisotropy of reflectance due to refractive index anisotropy, or a selective reflection characteristic using a cholesteric cystal The reflective linear polarizing film -14-(10) 200405042 is particularly suitable for reducing the thickness of the laminated polarizing film of the present invention.

所謂的低波長分散相位差薄膜是一相位差値對於波長 的相關性小的相位差薄膜。在本發明中,則將從 4 8 0〜4 9 0 rim之波長領域所選出的波長λ 2中的相位差R ( λ 2 )以從7 5 0〜7 6 Onm的波長領域所選出的波長λ !中的 相位差R ( λ !)所除的値R ( λ 2 ) /R ( λ !)在0.95以 上、1 .0 5以下的範圍者設爲低波長分散相位差薄膜。該低 波長分散相位差薄膜例如是由原冰片烯系樹脂所構成的相 位差薄膜,具體地說,可以使用由商品名"ARTON”( JSR 株式會社製的樹脂)延伸而成的薄膜、或商品名’’ S -Sheet"(積水化學工業株式會社製的相位差薄膜)等。 所謂的逆波長分散相位差薄膜23,則如由Uclnyama 與 Yatabe 所提出之 Proceedings of The Seventh International Display Workshops ( 2000) ’ p407 — 410 中所The so-called low-wavelength dispersion retardation film is a retardation film having a small retardation and a small dependence on wavelength. In the present invention, the phase difference R (λ 2) in the wavelength λ 2 selected from the wavelength range of 4 0 to 4 9 0 rim is selected from the wavelength range of 7 5 0 to 7 6 Onm. A λR (λ 2) / R (λ!) divided by the phase difference R (λ!) in λ! is in the range of 0.95 or more and 1.0 5 or less as a low-wavelength dispersion retardation film. This low-wavelength dispersive retardation film is, for example, a retardation film composed of an original norbornene-based resin. Specifically, a film extended from the brand name "ARTON" (resin manufactured by JSR Corporation), or Trade name "S-Sheet" (phase retardation film manufactured by Sekisui Chemical Industry Co., Ltd.), etc. The so-called inverse wavelength dispersion retardation film 23 is, for example, Proceedings of The Seventh International Display Workshops (2000) proposed by Uclnyama and Yatabe. ) 'p407 — 410

報告般,是一以短波長則相位差値小’而以長波長則相位 差値變大的相位差薄膜。相較於一般的相位差薄膜具有波 長愈短則相位差値愈大的特性’由於相位差値對於波長的 相關性具有與一般的相位差値相反的特性,因此稱之爲逆 波長分散相位差薄膜。在本發明中則將從4 8 0〜490 nm之 波長領域所選出的波長λ 2中的相位差R ( λ 2 )以從 7 5 0〜760nm之波長領域所選出之波長又1中的相位差R ( λ 1 )來除所得到的値R ( λ 2 ) /R ( λ !)位在〇 · 5 0以上 ,0.9 5以下之範圍者稱爲逆波長分散相位差薄膜。上述之 逆波長分散相位差薄膜可以使用例如在特開2000 — -15- (11) 200405042 1 3 7 1 1 6號公報中所記載之由纖維素乙酸酯樹脂所構成的 薄膜,例如在特開200 1 - 42 1 2 1號公報中所記載之由聚苯 醚與聚苯乙烯所構成的高分子混合薄膜,例如在特開 2002- 48919號公報中所記載之包含有具有莽骨架之聚碳 酸酯樹脂在內的高分子薄膜等,具體地說可以使用商品名 "WRF”(帝人株式會社製的相位差薄膜)。As reported, it is a retardation film having a small phase difference ’at a short wavelength and a large phase difference 値 at a long wavelength. Compared with general retardation films, the shorter the wavelength, the larger the phase difference 値. Because the phase difference 値 has a characteristic that is opposite to the general phase difference 値 for wavelength dependence, it is called inverse wavelength dispersion phase difference film. In the present invention, the phase difference R (λ 2) in the wavelength λ 2 selected from the wavelength range of 4 0 to 490 nm is the phase in the wavelength 1 selected from the wavelength range of 7 50 to 760 nm. The difference R (λ 1) divided by the 値 R (λ 2) / R (λ!) Position obtained is in the range of 0.5 or more and 0.9 5 or less is called an inverse wavelength dispersion retardation film. As the inverse wavelength dispersion retardation film described above, for example, a film composed of a cellulose acetate resin described in Japanese Patent Application Laid-Open No. 2000 — -15- (11) 200405042 1 3 7 1 16 can be used. The polymer mixed film composed of polyphenylene ether and polystyrene described in Japanese Patent Application Laid-Open No. 200 1-42 1 2 1 includes, for example, a polymer having a mandible skeleton described in Japanese Patent Application Laid-Open No. 2002-48919. For a polymer film such as a carbonate resin, specifically, a trade name "WRF" (a retardation film manufactured by Teijin Corporation) can be used.

在本發明中,將該些的低波長分散或逆波長分散相位 差薄膜與反射型直線偏光薄膜加以積層而成爲一積層偏光 薄膜。相位差薄膜最好是1 /4波長相位差薄膜。可以使用 2個以上的相位差薄膜而成爲1 /4波長相位差薄膜。In the present invention, these low-wavelength-dispersed or reverse-wavelength-dispersed retardation films and reflective linear polarizing films are laminated to form a laminated polarizing film. The retardation film is preferably a 1/4 wavelength retardation film. A 1/4 wavelength retardation film can be obtained by using two or more retardation films.

如圖2以模式圖來表示軸的方向,雖然1 /4波長相位 差薄膜24的光軸104與反射型直線偏光薄膜21的偏光透 過軸101最好大略以45°來交差,但若是40〜50°也沒有 關係。藉此,針對來自1 /4波長相位差薄膜24側的入射 光,反射型直線偏光薄膜2 1會將單偏光成分加以反射, 該經反射的偏光成分則在透過1 /4波長相位差薄膜後,則 針對可見光的整個領域具備優越的圓偏光性,而能夠讓亮 度提高系統有效地發揮作用。理想地說,雖然針對可見光 的整個領域最好是1 /4波長,但在本發明中所使用之低波 長分散或逆波長分散相位差薄膜通常則顯示出相位差値的 波長相關性。 在此,在本發明中,則將從 5C〜5 5 5 nm的波長領域 所選出之波長λ 3中的相位差値爲1 3 0〜1 5 0 nm者當作1 /4 波長相位差薄膜。相位差薄膜的光軸則爲在相位差薄膜之 -16- (12) (12)200405042 面內的最大折射率方向。 在本發明中所使用的相位差薄膜也可以具有二軸性( 雙軸性)。所謂的二軸性是將在相位差薄膜的面內的最大 折射率方向設爲X軸方向’將與其呈直交之面內的軸設爲 y軸方向,將厚度方向設爲z軸方向,而當將在各自之軸 方向的折射率設爲n x、n y、以及η z時’則n y古n z。爲了 要表現配向狀態而使用的Νζ係數當以(ηχ— ηζ) / ( ηλ-ny )來表示時,則將Νζ係數# 1的配向狀態稱爲二軸性。 當低波長分散或逆波長分散相位差薄膜爲1 /4波長相 位差薄膜時,則如在圖3以模式圖來表示軸的方向般,相 對於圖2所示之積層偏光薄膜的軸的方向,則新的積層的 吸收型偏光薄膜20的偏光透過軸105的方向雖然最好是 與反射型直線偏光薄膜2 1的偏光透過軸1 0 1爲相同的方 向,亦即,最好大略是0 °,但只要是在10°以下在使用 上皆無問題。有關由反射型直線偏光薄膜2 1的偏光透過 軸101與1/4波長相位差薄膜24的光軸104所成的角度 ,如前所述,雖然最好是大略以 45 °而交差,但若是 40〜50°也沒有關係。 吸收型偏光薄膜是一讓特定振動方向的直線偏光光透 過,而吸收與其呈直交之方向之直線偏光光者。所謂的吸 收型偏光薄膜的偏光透過軸是指特定振動方向的直線偏光 當從該偏光薄膜的垂直方向入射時其透過率成爲最大的方 向。而與其呈直交的方向則成爲偏光吸收軸。 該吸收型偏光薄膜例如可以使用周知的碘系偏光薄膜 -17- (13) 200405042 或染料系偏光薄膜。所謂的碘系偏光薄膜是一在經延伸的 聚乙烯醇薄膜吸著了碘的薄膜,而所謂的染料系偏光薄膜 是一在經延伸的聚乙烯醇薄膜吸著了雙色性染料的薄膜。 該些的偏光薄fe爲了要提升耐久性,最好是以高分子薄膜 來被覆其單面或是雙面。爲了要保護而被覆的高分子的材 質則可以使用纖維素二乙酸醋、或纖維素三乙酸酯、聚對 苯二甲酸乙二醇酯、原冰片烯系樹脂等。As shown in FIG. 2, the axis direction is shown in a schematic diagram. Although the optical axis 104 of the 1/4 wavelength retardation film 24 and the polarized light transmission axis 101 of the reflective linear polarizing film 21 preferably intersect at about 45 °, if it is 40 ~ 50 ° doesn't matter. With this, for the incident light from the 1/4 wavelength retardation film 24 side, the reflective linear polarizing film 21 will reflect the single-polarized light component, and the reflected polarized component will pass through the 1/4 wavelength retardation film. , It has excellent circular polarization for the entire field of visible light, and can make the brightness improvement system work effectively. Ideally, although the entire field of visible light is preferably 1/4 wavelength, the low-wavelength-dispersed or inverse-wavelength-dispersed retardation film used in the present invention generally exhibits a wavelength dependence of the phase difference. Here, in the present invention, a retardation film having a phase difference 値 of a wavelength λ 3 selected from a wavelength range of 5C to 5 5 5 nm is 1 3 0 to 1 50 nm is a 1/4 wavelength retardation film. . The optical axis of the retardation film is the direction of the maximum refractive index in the plane of -16- (12) (12) 200405042 of the retardation film. The retardation film used in the present invention may have biaxiality (biaxiality). The so-called biaxiality is the direction of the maximum refractive index in the plane of the retardation film is the X-axis direction. When the refractive indices in the respective axial directions are set to nx, ny, and ηz, then nycnz. When the ζ coefficient used to express the alignment state is expressed by (ηχ- ηζ) / (ηλ-ny), the alignment state of the ζ coefficient # 1 is called biaxiality. When the low-wavelength-dispersion or reverse-wavelength-dispersion retardation film is a 1 / 4-wavelength retardation film, as shown in FIG. 3 as the pattern direction, the axis direction is relative to the axis direction of the laminated polarizing film shown in FIG. 2 , Although the direction of the polarization transmission axis 105 of the new laminated absorption-type polarizing film 20 is preferably the same direction as the polarization transmission axis 1 0 1 of the reflective linear polarizing film 21, that is, it is preferably approximately 0 °, but as long as it is below 10 °, there is no problem in use. As described above, although the angle formed by the polarized light transmission axis 101 of the reflective linear polarizing film 21 and the optical axis 104 of the 1/4 wavelength retardation film 24 is intersected at about 45 °, as described above, It does not matter if it is 40 ~ 50 °. An absorption-type polarizing film is one that allows linearly polarized light of a specific vibration direction to pass through, and absorbs linearly polarized light in a direction orthogonal to it. The polarization transmission axis of the absorptive polarizing film refers to the direction in which the linearly polarized light of a specific vibration direction has the maximum transmittance when incident from the vertical direction of the polarizing film. The direction orthogonal to it becomes the polarization absorption axis. As this absorption-type polarizing film, for example, a well-known iodine-based polarizing film -17- (13) 200405042 or a dye-based polarizing film can be used. The so-called iodine-based polarizing film is a film in which iodine is absorbed in an extended polyvinyl alcohol film, and the so-called dye-based polarizing film is a film in which a dichroic dye is absorbed in an extended polyvinyl alcohol film. In order to improve the durability of these polarized thin films, it is preferable to cover one side or both sides with a polymer film. As the material of the polymer to be protected, cellulose diacetate, cellulose triacetate, polyethylene terephthalate, orthobornene resin and the like can be used.

吸收型偏光薄膜的厚度雖然未特別加以限定,但是當 使用本發明的積層偏光薄膜在液晶顯示元件等時,則吸收 型直線偏光薄膜最好要薄。具體地說最好是在丨mm以下 ,又,更好是在〇.2mm以下。Although the thickness of the absorptive polarizing film is not particularly limited, when the laminated polarizing film of the present invention is used in a liquid crystal display device or the like, the absorptive linearly polarizing film is preferably thin. Specifically, it is preferably ≦ mm, and more preferably 0.2 mm or less.

在本發明中’由於其主要的目的在於使用來提高在反 射型直線偏光薄膜與光源裝置之間所設置之亮度的系統得 以最佳化’因此光源裝置有時最好不要使用一般所使用的 擴散片’因此最好將面內相位差値在3 0 n m以下的光擴散 層nfl入到積層偏光薄膜內。用來積層光擴散層的場所並未 特別限制’此時的例子則表示在圖4及圖5中。圖4的( a)爲在由圖1 (a)所示之吸收型偏光薄膜2〇、反射型偏 光薄膜2 1以及低波長分散相位差薄膜2 2所構成的層中, 在吸收型偏光薄膜2 0的外側配置有光擴散層2 6者。圖4 的(b )是一在吸收型偏光薄膜20與反射型直線偏光薄膜 21之間配置有光擴散層26者。圖4的(c)是一在反射 型直線偏光薄膜2 1與低波長分散相位差薄膜2 2之間配置 有光擴散層2 6者。圖4的(d )是一在低波長分散相位差 -18- (14) 200405042 薄膜2 2的外側配置有光擴散層2 6者。圖5爲使用逆 分散相位差薄膜2 3時的例子,分別是將圖4的(a ) )中的低波長分散相位差薄膜2 2置換成逆波長分散 差薄膜2 3的形態。 光擴散層2 6由於最好是有高的全光線透過率, 全光線透過率最好是在80%以上,又更好是在90%以 又作爲表示光擴散層2 6之擴散性能的指標的混濁( )率雖然是可以根據所希望的擴散性能而任意地設定 常爲 30%以上,95%以下。在此所謂的混濁率是一以 散光線透過率/全光線透過率)X 1 00 ( % )所表示的數 光擴散層26的材質雖然未特別加以限制,例如 使用已分散有有機或無機之微粒子的高分子薄膜、或 散性感壓接著劑、折射率調變型光擴散薄膜等。爲了 少積層偏光薄膜的零件數目而使厚度變薄,因此,已 有有機或無機之微粒子的光擴散性感壓接著劑特別最 光擴散層之一。在此,構成有機或無機的微粒子的材 以是聚甲基丙烯酸甲酯、聚苯乙烯、聚矽氧烷、二氧 、氧化鈦等。成爲母體的感壓接著劑則可以使用周知 種的東西。例如丙烯酸酯系感壓接著劑、橡膠系感壓 劑、聚矽氧烷系感壓接著劑、聚胺基甲酸酯系感壓接 等。其中最好是使用丙烯酸酯系感壓接著劑。 爲了要使本發明之積層偏光薄膜之處理性變得容 最好構成的薄膜或層與層之間以感壓接著劑加以密接 此密接,可以防止因爲不必要的反射而造成光的損失 波長 〜(d 相位 因此 上。 haze ,通 (擴 値。 可以 光擴 要減 分散 好是 質可 化矽 的各 接著 著劑 易, 。藉 。感 -19- (15) 200405042 壓接著劑可以使用周知的各種的東西。例 壓接著劑、橡膠系感壓接著劑、聚矽氧烷 聚胺基甲酸酯系感壓接著劑等。其中最好 系感壓接著劑。感壓接著劑的厚度雖然未 常在 1/^m以上,100//m以下,最好是;| 5 0 # m以下。 本發明之積層偏光薄膜更者可以將用 位差薄膜加以積層。適當的相位差薄膜的 碳酸酯系樹脂、丙烯酸酯系樹脂、聚硕系 系樹脂等的合成高分子、或纖維素二乙酸 酸酯等的天然高分子所構成的薄膜作一軸 的薄膜、或由在透明高分子薄膜上塗佈具 化合物或液晶組成物而成的薄膜(例如, 所販賣的nWV薄膜”,由日本石油化學株 ” NH薄膜”或"LC薄膜",由住友化學工業 的’’VAG薄膜”等任一商品名)。當目的在 光學補償時,則在積層偏光薄膜的液晶單 薄膜。該些構件爲了要防止因爲中間存在 的損失,則最好是藉由感壓接著劑實施密 本發明之積層偏光薄膜,當在反射型 再積層吸收型偏光薄膜時,則成爲一將該 薄膜側當作光射出面的偏光光源裝置。又 裝置的光射出面配置顯示用液晶面板而成 顯示裝置。有關該些的偏光光源裝置以及 如丙烯酸酯系感 系感壓接著劑、 是使用丙烯酸酯 特別限制,但通 E 20//m 以上或 於光學補償的相 例子則有將由聚 樹脂、原冰片烯 酯、纖維素三乙 或二軸延伸而成 有光學異方性之 由富士軟片公司 式會社所販賣的 株式會社所販賣 於作液晶單元的 元側配置相位差 空氣層而造成光 接積層。 直線偏光薄膜側 吸收型直線偏光 ,在該偏光光源 爲一透過型液晶 透過型液晶顯示 -20- (16) 200405042 裝置則根據圖6之斷面模式圖所示的例子來加以說明。 在圖6所示的例子中,則與圖4 ( a )中所示者相同 ,在依據光擴散層2 6、吸收型偏光薄膜2 0、反射型直線 偏光薄膜2 1以及低波長分散相位差薄膜22的順序積層而 成的積層偏光薄膜1 0的低波長分散相位差薄膜2 2側配置 光源裝置61而構成偏光光源裝置64。In the present invention, 'the main purpose is to optimize the system used to increase the brightness provided between the reflective linear polarizing film and the light source device'. Therefore, it is sometimes better not to use a diffuser which is generally used. Therefore, it is preferable to insert the light diffusion layer nfl having an in-plane retardation of nm 30 nm or less into the laminated polarizing film. The place where the light diffusing layer is laminated is not particularly limited. An example at this time is shown in Figs. 4 and 5. FIG. 4 (a) shows a layer composed of an absorption-type polarizing film 20, a reflection-type polarizing film 21, and a low-wavelength dispersion retardation film 2 2 shown in FIG. 1 (a). A light diffusion layer 26 is arranged on the outside of 20. (B) of FIG. 4 illustrates a case where a light diffusion layer 26 is disposed between the absorption-type polarizing film 20 and the reflection-type linear polarizing film 21. (C) of FIG. 4 shows a light diffusing layer 26 disposed between the reflective linear polarizing film 21 and the low-wavelength dispersion retardation film 22. (D) of FIG. 4 is a case where a light-diffusion layer 26 is arranged on the outer side of the thin film 22 at the low wavelength dispersion phase difference -18- (14) 200405042. Fig. 5 shows an example when the reverse dispersion retardation film 23 is used, and the low-wavelength dispersion retardation film 2 2 in Fig. 4 (a)) is replaced with the reverse wavelength dispersion retardation film 23. Since the light diffusion layer 2 6 preferably has a high total light transmittance, the total light transmittance is preferably more than 80%, and more preferably 90%. It is also used as an indicator of the diffusion performance of the light diffusion layer 26. Although the turbidity () ratio can be arbitrarily set according to the desired diffusion performance, it is usually 30% or more and 95% or less. The turbidity here is a material of the light diffusion layer 26 represented by the scattered light transmittance / total light transmittance X 1 00 (%), although it is not particularly limited, for example, an organic or inorganic material that has been dispersed therein is used. Polymer films of fine particles, or pressure-sensitive adhesives, refractive index-modulated light diffusion films, and the like. In order to reduce the number of parts of the laminated polarizing film and to make the thickness thinner, the light-diffusion pressure-sensitive adhesive having organic or inorganic fine particles is particularly one of the light-diffusion layers. Here, the material constituting the organic or inorganic fine particles is polymethyl methacrylate, polystyrene, polysiloxane, dioxane, titanium oxide, or the like. As the parent pressure-sensitive adhesive, a well-known thing can be used. For example, an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, a polysiloxane pressure-sensitive adhesive, or a polyurethane pressure-sensitive adhesive. Among them, an acrylic pressure-sensitive adhesive is preferably used. In order to make the laminated polarizing film of the present invention more rational, the film or layer formed with the pressure-sensitive adhesive is tightly sealed to prevent the loss of light wavelength due to unnecessary reflection ~ (D The phase is therefore up. Haze, through (expanded. Can be light expanded to reduce the dispersion is good, each adhesive is easy to apply, can be borrowed. Sense. 19- (15) 200405042 well-known adhesive can be used Various things. Examples include pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, polysiloxane polyurethane pressure-sensitive adhesives, etc. Among them, pressure-sensitive adhesives are preferred. Although the thickness of pressure-sensitive adhesives is not It is usually 1 / ^ m or more, 100 // m or less, and preferably; | 5 0 # m or less. The laminated polarizing film of the present invention can be laminated with a parallax film. A carbonate of an appropriate retardation film Films composed of synthetic polymers such as resins, acrylate resins, and polyethylene resins, or natural polymers such as cellulose diacetate as a single axis film, or coated on a transparent polymer film With compound or liquid A thin film made of a composition (for example, a nWV film sold by Japan Petrochemical Co., Ltd. "NH film" or "LC film", "VAG film" by Sumitomo Chemical Industries, etc.). When the purpose is optical compensation, the liquid crystal single film of the polarizing film is laminated. In order to prevent the loss due to the intermediate, it is best to implement the laminated polarizing film of the present invention with a pressure-sensitive adhesive. In the case of a reflective relaminated absorption polarizing film, it becomes a polarized light source device using the film side as a light exit surface. The light exit surface of the device is a display device with a liquid crystal panel for display. These polarized light source devices As for acrylic pressure-sensitive adhesives, the use of acrylate is particularly limited, but examples of phases that pass E 20 // m or more or are optically compensated are polymer resins, orthobornyl esters, cellulose triethyl or Optically anisotropically stretched in two axes. Phase difference air is arranged on the element side of the liquid crystal cell sold by Fuji Film Corporation. The light accumulates the layer. The linearly polarizing film side absorbs linearly polarized light, in which the polarized light source is a transmissive liquid crystal transmissive liquid crystal display -20- (16) 200405042 The device is based on the example shown in the sectional schematic diagram of FIG. 6 The example shown in FIG. 6 is the same as that shown in FIG. 4 (a), according to the light diffusion layer 26, the absorption-type polarizing film 20, the reflection-type linear polarizing film 21, and the low wavelength. A light source device 61 is arranged on the low-wavelength dispersed retardation film 22 on the low-wavelength dispersed retardation film 22 of the laminated polarizing film 10 in which the dispersed retardation film 22 is sequentially laminated, thereby forming a polarized light source device 64.

圖6所示的光源裝置6 1是一稱作爲側光源形式者, 具備有光源5 1,導光板5 2以及被配置在導光板5 2之背 面的反射板5 3,而來自被配置在導光板5 2之側面的光源 5 1的光,則爲覆蓋未面向光源5 1之導光板5 2之一側的 反射鏡5 4所反射,首先被取入到導光板5 2內而在其中前 進外,也隨著在反射板5 3中的反射,而從導光板5 2的前 面側均一地放出光線。光源裝置基本上具備有光源構件與 反射板,當爲圖6所示之側光源形式時’則藉由光源5 1 與導光板5 2而構成光源構件。該光源裝置6 1則配置在積 層偏光薄膜1 〇的低波長分散相位差薄膜2 2側而構成偏光 光源裝置64。更且,積層偏光薄膜1 〇的吸收型偏光薄膜 2 0側則經由光擴散層2 6而面向液晶單元3 0的背面而配 置,而相位差薄膜4 2與前面側吸收型偏光薄膜4 1則配置 在液晶單元3 0的前面側而構成一透過型液晶顯示裝置6 7 圖6雖然是表示一使用圖4(a)所示之積層偏光薄 膜1 0的例子,但當然可將該積層偏光薄膜1 0改成圖4 ( b)〜(d)所示者,或是改成圖5(a)〜(d)所示者。不 -21 - (17) 200405042 管是什麼情形,具備了光源構件與反射板的光源裝置6 1 則被配置在積層偏光薄膜1 0的相位差薄膜22或23側。 以往的偏光光源裝置則廣泛地使用圖9所示之擴散片 55或透鏡片(lens sheet) 56。在本發明之偏光光源裝置 64雖然可以配置其中一者或兩者,但由於該些會成爲一 造成位在反射型直線偏光薄膜與光源裝置之間的偏光狀態 混亂的原因,因此若是可能最好是不要配置。The light source device 61 shown in FIG. 6 is a form of a side light source. The light source device 61 includes a light source 51, a light guide plate 52, and a reflective plate 53 arranged on the back of the light guide plate 52. The light from the light source 51 on the side of the light plate 5 2 is reflected by a mirror 5 4 that covers one side of the light guide plate 5 2 that does not face the light source 51, and is first taken into the light guide plate 52 and advanced therethrough. In addition, the light is uniformly emitted from the front side of the light guide plate 52 in accordance with the reflection in the reflection plate 53. The light source device basically includes a light source member and a reflecting plate. When the light source device is in the form of a side light source shown in FIG. 6, the light source member is constituted by the light source 5 1 and the light guide plate 52. This light source device 61 is disposed on the low-wavelength dispersion retardation film 22 side of the laminated polarizing film 10 to form a polarized light source device 64. Furthermore, the absorption-type polarizing film 20 on the laminated polarizing film 10 is disposed facing the back surface of the liquid crystal cell 30 through the light-diffusing layer 26, and the retardation film 4 2 and the front-side absorption-type polarizing film 41 are disposed. A transmissive liquid crystal display device 6 is arranged on the front side of the liquid crystal cell 30. Although FIG. 6 shows an example of using the laminated polarizing film 10 shown in FIG. 4 (a), the laminated polarizing film can of course be used. 10 is changed to those shown in Figs. 4 (b) to (d), or changed to those shown in Figs. 5 (a) to (d). No -21-(17) 200405042 What is the tube, the light source device 6 1 provided with a light source member and a reflecting plate is disposed on the retardation film 22 or 23 side of the laminated polarizing film 10. A conventional polarized light source device has widely used a diffusion sheet 55 or a lens sheet 56 shown in FIG. 9. Although one or both of the polarized light source devices 64 of the present invention can be arranged, these will cause a disorder of the polarization state between the reflective linear polarizing film and the light source device, so it is best if possible. Do not configure.

在圖6所示之偏光光源裝置64至透過型液晶顯示裝 置6 7中,用在光源裝置6 1的光源未特別限制,但只要是 爲周知的偏光光源裝置或液晶顯示裝置所採用者也同樣地 可以使用在本發明中。適當的光源5 1具體地說可以是冷 陰極管、發光二極體、無機或有機的場致發光(E L )燈 等。In the polarized light source device 64 to the transmissive liquid crystal display device 67 shown in FIG. 6, the light source used in the light source device 61 is not particularly limited, but it is the same as long as it is a known polarized light source device or a liquid crystal display device. Land can be used in the present invention. A suitable light source 51 may specifically be a cold cathode tube, a light-emitting diode, an inorganic or organic electroluminescence (EL) lamp, or the like.

反射板5 3也未特別地限制,但可以使用在周知的偏 光光源裝置或液晶顯示裝置中所採用者。具體地說可以是 在內部已形成有空洞的白色塑膠片,將如氧化鈦或鋅般的 白色顏料塗佈在表面的塑膠片’由折射率不同的至少2種 的塑膠薄膜積層而成的多層塑膠片,由鋁或銀般的金屬所 構成的片等。該些的片可以使用經鏡面加工者,經粗面加 工者的任一者。構成反射板的塑膠片的材質也未特別限定 ,例如可以是聚乙烯、聚丙烯、聚氣乙烯、聚對苯二甲酸 乙二醇酯、聚萘酸乙二醇酯、聚碳酸酯、原冰片烯、聚胺 基甲酸酯、聚丙烯酸酯、聚甲基丙烯酸甲酯。 圖6所示的導光板5 2是一可以將從光源5 1所發出的 -22- (18) 200405042 光取入到內部而作爲面狀發光體者,還是可以使用在周知 之偏光光源裝置或液晶顯示裝置中所採用者。該導光板例 如由塑膠片或玻璃板所構成,可以是一在背面側經實施凹 凸處理或白色點印刷處理、全像處理等者。當以塑膠片來 構成導光板時,雖然其材質未特別限定,但最好是使用聚 碳酸酯、原冰片烯系樹脂、聚甲基丙烯酸甲酯等。The reflection plate 53 is not particularly limited, but may be used in a well-known polarized light source device or a liquid crystal display device. Specifically, it can be a white plastic sheet with a cavity formed inside, and a plastic sheet coated with a white pigment such as titanium oxide or zinc on the surface. A multilayer sheet formed by laminating at least two types of plastic films with different refractive indices. Plastic sheet, sheet made of metal like aluminum or silver, etc. For these pieces, either a mirror finisher or a rough finisher can be used. The material of the plastic sheet constituting the reflecting plate is also not particularly limited, and may be, for example, polyethylene, polypropylene, polyethylene, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, or original borneol. Olefin, polyurethane, polyacrylate, polymethyl methacrylate. The light guide plate 52 shown in FIG. 6 is a person who can take in -22- (18) 200405042 light emitted from the light source 51 into the inside as a planar light emitter, or can use a well-known polarized light source device or Used in liquid crystal display devices. The light guide plate is made of, for example, a plastic sheet or a glass plate, and may be one that has been subjected to a concave-convex process, a white-dot printing process, or a full-image process on the back side. When the light guide plate is made of a plastic sheet, although the material is not particularly limited, it is preferable to use polycarbonate, orbornene-based resin, polymethyl methacrylate, or the like.

在光源裝置的射出面側因應必要而配置的擴散片5 5 (表示在圖9者)則是一讓入射光亂射透過的片,通常是 —合光線透過率在60%以上,混濁率在10%以上的光學元 件。在此,擴散片的全光線透過率則是愈高愈好,更好是 具有80%以上的全光線透過率。該擴散片雖然未特別限定 ,但例如可以使用將塑膠片或玻璃板經粗面化處理者、或 在內部形成空洞或添加了粒子的塑膠片或玻璃板。在此所 謂的塑膠片的材質雖然未特別限定,但可以使用聚乙烯、 聚丙烯、聚氯乙烯、聚對苯二甲酸乙二醇酯、聚萘酸乙二 醇酯、聚碳酸酯、原冰片烯系樹脂、聚胺基甲酸酯、聚丙 烯酸酯、聚甲基丙烯酸甲酯。粗面化處理雖然也未特定限 制,但是可以是藉由噴砂、或壓花輥(emboss roll )實施 壓著的加工、或是在表面塗佈將如塑膠粒子或玻璃粒子、 二氧化矽粒子般的粒子混合在樹脂內的方法等。 而在光源裝置的射出面側因應必要所配置的透鏡片 5 6 (圖9中所示者)則是一將從光源所發出的光加以集光 者。該透鏡片可以例如是在塑膠片上形成有微細的多數棱 鏡者、或是舖有凸透鏡或凹透鏡的微透鏡陣列等。 -23- (19) 200405042A diffusion sheet 5 5 (shown in FIG. 9) arranged as necessary on the exit surface side of the light source device is a sheet that allows incident light to be transmitted randomly. Usually, the combined light transmittance is above 60% and the turbidity is between More than 10% of optical components. Here, the higher the total light transmittance of the diffusion sheet is, the better, more preferably, it has a total light transmittance of 80% or more. Although the diffusion sheet is not particularly limited, for example, a plastic sheet or a glass plate obtained by roughening a plastic sheet or a glass plate or forming a cavity or adding particles to the inside can be used. Although the material of the so-called plastic sheet is not particularly limited, polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, and original borneol can be used. Ethylene resin, polyurethane, polyacrylate, polymethyl methacrylate. Although the roughening treatment is not particularly limited, it may be a sandblasting or emboss roll pressing process, or the surface may be coated with plastic particles, glass particles, or silicon dioxide particles. The method of mixing the particles in the resin. On the other hand, a lens sheet 5 6 (shown in FIG. 9), which is arranged on the exit surface side of the light source device as necessary, is a light collector that collects light emitted from the light source. The lens sheet may be, for example, a micro lens array formed with a fine number of prisms on a plastic sheet, or a micro lens array covered with a convex lens or a concave lens. -23- (19) 200405042

本發明之透過型液晶顯示裝置則是一在圖6所示之例 子中之作爲偏光光源裝置64之射出面的積層偏光薄膜10 側依序配置有液晶單元3 0與前面側吸收型偏光薄膜4 1而 成者。在此,則在液晶單兀3 0與前面側吸收型偏光溥膜 4 1之間因應必要配置有1個或多個的相位差薄膜42。更 且,因應必要,可以在液晶單元3 0的前面側配置光擴散 層。更且,也可以配置相位差薄膜與光擴散層兩者。光擴 散層最好面內相位差値在3 0 m m以下。構成透過型液晶顯 示裝置的各構件,特別是從積層偏光薄膜1 0到前面側吸 收型偏光薄膜4 1爲止的各構件,最好相鄰的至少一對是 藉由感壓接著劑而被密接積層。更且,相鄰的全部的構件 彼此更好都藉由感壓接著劑而被密接積層。The transmissive liquid crystal display device of the present invention is a laminated polarizing film 10 as an exit surface of a polarized light source device 64 in the example shown in FIG. 6. A liquid crystal cell 30 and an absorption polarizing film 4 on the front side are arranged in this order. 1 adult. Here, one or more retardation films 42 are arranged between the liquid crystal unit 30 and the front-side absorption type polarizing diaphragm 41 as necessary. Furthermore, a light diffusion layer may be disposed on the front side of the liquid crystal cell 30 as necessary. Moreover, you may arrange both a retardation film and a light-diffusion layer. The optical diffusion layer preferably has an in-plane phase difference 値 below 30 mm. It is preferable that each member constituting the transmissive liquid crystal display device, particularly each member from the laminated polarizing film 10 to the front-side absorption polarizing film 41, is closely contacted by a pressure-sensitive adhesive. Build up. Furthermore, it is better that all adjacent members are closely laminated with each other by a pressure-sensitive adhesive.

在液晶顯示裝置中所使用的液晶單元3 0爲了要切換 透過光量是-具有將液晶封入到2個基板之間’而藉由施 加電壓而讓液晶的配向狀態變化之功能的裝置。在2個基 板的各自內側則配置背面側透明電極3 1以及前面側透明 電極3 2,且液晶層3 3被挾持在該些之間。 雖然未圖示,液晶單元3 0另外具備有讓液晶層3 3配 向的配向膜,若是彩色顯示則具有濾色層等。在本發明中 ,構成液晶單元3 0之液晶的種類或其驅動方式未特別加 以限定,但可以使用同知之TN液晶或STN液晶等。又, 本發明也可以應用在薄膜電晶體(TFT)驅動方式、垂直 配向(VA )方式' In — Plane驅動方式、光學補償帶( 〇 C B )等之利用偏光進行顯示的各種方式。 -24- (20) 200405042The liquid crystal cell 30 used in the liquid crystal display device has a function of changing the alignment state of the liquid crystal by applying a voltage in order to switch the amount of transmitted light. The liquid crystal cell is enclosed between two substrates. On the inside of each of the two substrates, a back-side transparent electrode 31 and a front-side transparent electrode 3 2 are arranged, and the liquid crystal layer 3 3 is held between these. Although not shown, the liquid crystal cell 30 is additionally provided with an alignment film for aligning the liquid crystal layer 33, and for color display, it has a color filter layer and the like. In the present invention, the type of the liquid crystal constituting the liquid crystal cell 30 or the driving method thereof is not particularly limited, but a TN liquid crystal or a STN liquid crystal or the like, which is also known, can be used. In addition, the present invention can also be applied to various displays using polarized light, such as a thin film transistor (TFT) driving method, a vertical alignment (VA) method, an In-Plane driving method, and an optical compensation band (0 C B). -24- (20) 200405042

有關前面側吸收型偏光薄膜4 1可以使用與先前針對 構成本發明之積層偏光薄膜之吸收型偏光薄膜爲例子所說 明時同樣的東西。因應必要而被配置在液晶單元3 0與前 面側吸收型偏光薄膜4 1之間的相位差薄膜42則通常使用 樹脂的延伸薄膜,適當的例子可以是將以聚碳酸酯樹脂、 聚丙條酸酯系樹脂、聚碼系樹脂、聚乙烯醇系樹脂、原冰 片Μ系樹脂爲首的環狀聚烯烴系樹脂等的合成熱塑性高分 子或以纖維素三乙酸酯爲首的天然高分子等藉由張力器等 的延伸裝置而呈一軸或二軸被延伸的薄膜。又,或是使用 將液晶化合物塗佈在透明高分子薄膜而成的薄膜,例如由 富士軟片公司所販賣的"W V薄膜,,(商品名),由日本石 油化學株式會社所販賣的"LC薄膜,,(商品名),由住友 化學工業株式會社所販賣的”νΑ(:薄膜"(商品名)等作爲 相位差薄膜42。更且,當在液晶單元30的前面側積層光 擴散層時’則可以使用與先前針對構成本發明之積層偏光 薄膜之光擴散層的例子說明時相同的東西。 以下則針對本發明之又一實施形態來詳細地說明。本 發明當在利用反射型偏光薄膜的亮度提高系統中組合相位 差層時’藉由相位差層特別使用具有正的二軸配向性者, 可以在維持室內因爲相位差層所達成之亮度提高效果的情 形下’也發現可以利用屋外的太陽光。 通常在看液晶顯示裝置時,則大約是從顯示畫面的大 致法線方向來看。亦即,在室內,從背面側的光源裝置主 要朝法線方向射出的光,則藉由依序通過背面側偏光薄膜 -25- (21) 200405042Regarding the front-side absorption-type polarizing film 41, the same thing as that described above as an example of the absorption-type polarizing film constituting the laminated polarizing film of the present invention can be used. The retardation film 42 disposed between the liquid crystal cell 30 and the front-side absorption-type polarizing film 41 according to necessity is usually a stretched film of a resin. A suitable example may be a polycarbonate resin or a polyacrylate. Synthetic thermoplastic polymers such as cyclic polyolefin resins, such as resins based on resins, poly-coded resins, polyvinyl alcohols, and borneol M-based resins, or natural polymers such as cellulose triacetate The film is stretched in one or two axes by an extension device such as a tensioner. Alternatively, a film obtained by applying a liquid crystal compound to a transparent polymer film, such as "WV film sold by Fujifilm", (trade name), "quoted by Nippon Petrochemical Co., Ltd." An LC film, (trade name), "νΑ (: film" (trade name), etc., sold by Sumitomo Chemical Industries, Ltd.) is used as the retardation film 42. Furthermore, when a light diffusion layer is laminated on the front side of the liquid crystal cell 30 In the case of the layer, the same thing as the previous description of the example of the light diffusing layer constituting the laminated polarizing film of the present invention can be used. The following is a detailed description of another embodiment of the present invention. When the present invention is using a reflective type When combining a retardation layer in a system for improving the brightness of a polarizing film, 'by using a retardation layer with a positive biaxial alignment, it is possible to maintain the brightness improvement effect achieved by the retardation layer in the room'. Use the sunlight outside the house. Generally, when you look at a liquid crystal display device, it is viewed from the approximate normal direction of the display screen. That is, Chamber from the primary light source means emitted to the rear side toward the normal direction, the back surface side by sequentially through the polarizing film -25- (21) 200 405 042

、液晶單元、前面側偏光薄膜等而形成顯示畫像而看的到 。另一方面,在屋外,雖然必須將太陽光一次取入到背面 側的光源裝置,但是在取入後,則可以見到主要朝法線方 向射出的光而有如當初從光源裝置射出。在此,必須要考 慮太陽光是從何處入射到液晶顯示裝置而是否到達背面側 的光源裝置。亦即,由於使用者爲了要看到顯示畫面而站 在顯示畫面的法線方向,因此太陽光不能從法線方向入射 。或者使用者遮住太陽光的入射,而液晶顯示裝置進入到 使用者的影子內,因此無法利用太陽光。亦即,在利用太 陽光之際,太陽光只能從使用者不在的角度方向入射,亦 即,只能從法線方向以外的角度入射。, Liquid crystal cell, front side polarizing film, etc. to form a display image and see. On the other hand, outside the house, although the sunlight must be taken into the light source device on the back side at a time, after the light is taken in, the light emitted mainly in the normal direction can be seen as if it were originally emitted from the light source device. Here, it is necessary to consider where the sunlight enters the liquid crystal display device and whether it reaches the light source device on the back side. That is, since the user stands in the normal direction of the display screen in order to see the display screen, sunlight cannot be incident from the normal direction. Or the user blocks the incidence of sunlight, and the liquid crystal display device enters into the shadow of the user, so the sunlight cannot be used. That is, when using sunlight, sunlight can only be incident from an angle where the user is not present, that is, it can be incident only from an angle other than the normal direction.

如先前所述,將相位差層所產生的偏光轉換功能應用 在亮度提高系統,則能夠有效地利用在室內的顯示裝置, 亦即,利用從光源裝置所發出的光來看顯示畫面,而與利 用屋外的顯示裝置,亦即,在取入太陽光等的外光的狀態 下來看顯示畫面時具有相反的效果。然而,利用從光源裝 置所發出的光的情形與利用外光的情形,由於其光路徑不 同’因此該光路徑的差異,亦即,在外光到達光源裝置爲 止的光路徑中,若相位差層未發揮其功能時,則可以排除 @外光所造成之惡劣影響。亦即,相位差層雖然在法線方 向可以有效地作用,但是若是針對太陽光入射的方向爲斜 向而無法有效地作用時,則可以排除在取入太陽光時所造 成的惡劣影響。一般而言,所謂的正的二軸性的相位差層 ’則其相位差功能則與光線入射角度有很大的關係。因此 -26- (22) 200405042 ,藉著使用具有上述之正的二軸性的相位差層,相對於法 線方向可以有效地發揮相位差功能,而相對於斜方向,由 於完全沒有相位差功能,因此可以同時擁有在室內與室外 的功能。As mentioned earlier, the application of the polarization conversion function generated by the retardation layer to a brightness enhancement system can effectively use a display device indoors, that is, use a light emitted from a light source device to view a display screen, and Using a display device outside the house, that is, when the display screen is viewed in a state where external light such as sunlight is taken in, has the opposite effect. However, in the case where the light emitted from the light source device is used and the case where external light is used, the light path is different because the light path is different, that is, in the light path until external light reaches the light source device, if the retardation layer When not functioning, you can exclude the bad effects caused by @ 外 光. That is, although the retardation layer can function effectively in the normal direction, if the direction of incidence of sunlight is oblique and cannot function effectively, the bad influence caused by taking in sunlight can be ruled out. In general, the so-called positive biaxial retardation layer ′ has a large relation between its retardation function and the incident angle of light. Therefore, -26- (22) 200405042, by using a phase difference layer having the above-mentioned positive biaxiality, can effectively perform the phase difference function with respect to the normal direction, and has no phase difference function with respect to the oblique direction. , So you can have both indoor and outdoor functions.

圖10爲表示另一個之本發明之積層偏光薄膜10之層 構成的斷面模式圖。如圖所示,本發明之積層偏光薄膜 1 〇是-依序積層吸收型偏光薄膜2 0、反射型直線偏光薄 膜2 1與具有正的二軸配向性的相位差層1 2 3而成者。此 時,如圖1 1的(a )所表示的軸的方向般,吸收型偏光薄 膜20的偏光透過軸105與反射型直線偏光薄膜21的偏光 透過軸101大略爲平行。Fig. 10 is a schematic cross-sectional view showing the layer structure of another laminated polarizing film 10 of the present invention. As shown in the figure, the laminated polarizing film 1 of the present invention is formed by sequentially laminating an absorptive polarizing film 20, a reflective linear polarizing film 21, and a retardation layer 1 2 3 having positive biaxial alignment. . At this time, the polarization transmission axis 105 of the absorption-type polarizing film 20 is approximately parallel to the polarization transmission axis 101 of the reflection-type linear polarizing film 21, as in the direction of the axis shown in (a) of FIG. 11.

針對上述之吸收型偏光薄膜2 0與反射型直線偏光薄 膜2 1的積層體,則在反射型直線偏光薄膜2 1的外側更加 積層有具有正的二軸配向性的相位差層1 2 3。所謂的正的 二軸配向性係表折射率的異方性,而指其二軸方向的折射 率均較厚度方向的折射率爲大的情形。具體地,當將在層 之面內的最大折射率方向設爲X軸,將在與呈直交之面內 的軸設爲y軸,厚度方向設爲z軸,且將在各自的軸方向 的折射率設爲nx、ny以及nz時,則意味著nx>ny>nz。換 言之,在表示配向狀態所使用的Nz係數=(nx — nz ) / ( nx - )較1爲大。在本發明中所使用之具有正的二軸配向 性的相位差層則其Nz係數至少必須較1.5爲大,最好在2 以上,再好是在3以上,更好是在5以上。此外,在本說 明書中所謂之相位差層的光軸係指最大折射率方向’亦即 -27- (23) 200405042 ,X軸方向。Regarding the laminated body of the absorption-type polarizing film 20 and the reflection-type linearly-polarizing film 21 described above, a phase difference layer 1 2 3 having positive biaxial alignment is further laminated on the outside of the reflection-type linearly-polarizing film 21. The so-called positive biaxial alignment refers to the anisotropy of the surface refractive index, and refers to a case where the refractive index in the biaxial direction is larger than the refractive index in the thickness direction. Specifically, when the direction of the maximum refractive index in the plane of the layer is the X axis, the axis in the plane orthogonal to the plane is the y axis, the thickness direction is the z axis, and the When the refractive index is set to nx, ny, and nz, it means nx > ny > nz. In other words, the Nz coefficient = (nx — nz) / (nx-) used to indicate the alignment state is larger than 1. The retardation layer having positive biaxial alignment used in the present invention must have an Nz coefficient larger than 1.5, preferably 2 or more, still more preferably 3 or more, more preferably 5 or more. The optical axis of the retardation layer in this specification refers to the direction of the maximum refractive index ', that is, -27- (23) 200405042, the X-axis direction.

具有正的二軸配向性的相位差層1 23的材質未特別加 以限定。又,可以是單層、或是由2層以上的積層體所構 成。在作積層之際,可將同種的相位差薄膜加以積層、或 將不同種的相位差薄膜加以積層。相位差薄膜的例子則可 以是-將以聚碳酸酯系樹脂、聚丙烯酯系樹脂、聚硕系樹 脂、原冰片烯系樹脂爲首的環狀聚烯烴系樹脂等的合成高 分子、或由纖維素二乙酸酯纖維素三乙酸酯等的天然高分 子所構成的薄膜朝一軸或二軸延伸而成者、或是讓由具有 光學異方性的化合物或液晶組成物所構成的層配向在透明 高分子薄膜上者等。The material of the retardation layer 1 23 having positive biaxial alignment is not particularly limited. It may be a single layer or a multilayer body composed of two or more layers. In the case of lamination, the retardation films of the same kind may be laminated, or the retardation films of different kinds may be laminated. Examples of the retardation film include synthetic polymers such as cyclic polyolefin resins including polycarbonate resins, polypropylene resins, polyethylene resins, and original norbornene resins. Films made of natural polymers such as cellulose diacetate and cellulose triacetate extending in one or two axes, or layers made of a compound with optical anisotropy or a liquid crystal composition Aligned on transparent polymer film.

具有完全之正的二軸配向性,亦即,成爲nx与ny>nz 的相位差層,雖然可藉由將合成高分子或天然高分子實施 二軸延伸的方法而製作出,但也可以利用其他針對合成高 分子或天然高分子作二軸延伸而成的一軸配向性的薄膜, 亦即,使用2個nx>ny的薄膜,且將其貼在一起以使各自 的延伸軸呈直交的方法’讓無機層狀化合物或膽固醇液晶 等的二軸性化合物在面內實施配向的方法,將塗佈 nematic液晶等的一軸性化合物所構成的2層實施直交積 層的方法等來製作。 具有正的二軸配向性的i /4波長相位差層雖然可藉由 將合成高分子或天然高分子實施二軸延伸的方法而製作, 但也可以藉由將2個以上由合成高分子或天然高分子實施 一軸延伸而成的一軸配向性,亦即,nx>ny的薄膜使光軸 -28- (24) 200405042It has completely positive biaxial alignment, that is, it becomes a phase difference layer between nx and ny > nz. Although it can be produced by biaxially stretching synthetic polymers or natural polymers, it can also be used. Other uniaxially oriented films that are biaxially extended for synthetic polymers or natural polymers, that is, methods that use two nx> ny films and stick them together so that the respective extension axes are orthogonal 'It is made by a method of in-plane alignment of a biaxial compound such as an inorganic layered compound or a cholesteric liquid crystal, a method of applying a orthogonal layer to two layers composed of a uniaxial compound coated with a nematic liquid crystal, or the like. Although an i / 4 wavelength retardation layer having positive biaxial alignment can be produced by a biaxial stretching method of a synthetic polymer or a natural polymer, it can also be formed by combining two or more synthetic polymers or Natural polymer implements uniaxial alignment formed by uniaxial extension, that is, the nx> ny film makes the optical axis -28- (24) 200405042

呈不同地貼在一起的方法,將由塗佈配向(nematic )液 晶等的一軸性化合物而成的2層以上使光軸呈不同地實施 積層的方法,將由讓無機層狀化合物或膽固醇型液晶等的 二軸性化合物在面內作配列的完全二軸配向性相位差層積 層在一軸配向性相位差層等的方法來製作。在此,當將由 具有光學異方性的化合物或液晶組成物實施配向塗佈而成 的層與延伸薄膜實施積層來使用時,則藉著將具有光學異 方性的化合物或液晶組成物在延伸薄膜上實施塗佈配向可 以使厚度變薄。The method of attaching them differently is to laminate two or more layers of a uniaxial compound such as a nematic liquid crystal and make the optical axis differently. The method is to use an inorganic layered compound or a cholesteric liquid crystal. The biaxial compound is a complete biaxially aligned retardation layer which is aligned in the plane, and is produced by a method such as a uniaxially oriented retardation layer. Here, when an optically anisotropic compound or a liquid crystal composition is subjected to alignment coating and a stretched film is laminated and used, the compound or the liquid crystal composition having optical anisotropy is stretched. The thickness of the film can be reduced by applying the coating alignment on the film.

當相位差層123由單層所構成、或由光軸呈一致之2 層以上的積層體所構成時,若將相位差層在面內的折射率 成爲最大的方向設爲X軸,將與在面內的X軸呈直交的方 向設爲y軸,將厚度方向設爲Z軸,將在各自的軸方向的 折射率設爲nx、ny及nz、或將層的厚度設爲d時,則面 內相位差値R以上述的公式R= ( nx — ny ) xd來表示。面 內的折射率成爲最大的X軸方向則爲落後相軸,而在面內 與其呈直交的y軸方向則爲領先相軸。另一方面,當相位 差層由2層以上的積層體所構成,且至少構成此的至少一 對的光軸爲不平行時,則會很困難直接定義出相位差層面 內的最大折射率方向。此時,將2個偏光元件如使彼此的 偏光透過軸呈平行般地配置,而讓相位差層插入其間而旋 轉來求取產生最大透過率的軸方向。因此,可以判定其軸 方向是相當於落後相軸、或相當於領先相軸,若相當於落 後相軸則將該軸設爲X軸,或若相當於領先相軸則將與該 -29- (25) 200405042When the retardation layer 123 is composed of a single layer or a multilayer body having two or more layers with the same optical axis, if the direction in which the retardation layer has the largest refractive index in the plane is the X axis, When the direction orthogonal to the X-axis in the plane is set to the y-axis, the thickness direction is set to the Z-axis, the refractive index in the respective axial directions is set to nx, ny, and nz, or the thickness of the layer is set to d, Then the in-plane phase difference 値 R is expressed by the above formula R = (nx — ny) xd. The X-axis direction with the largest refractive index in the plane is the backward phase axis, and the y-axis direction that is orthogonal to it in the plane is the leading phase axis. On the other hand, when the retardation layer is composed of two or more layers, and the optical axes of at least one pair constituting the retardation layer are not parallel, it is difficult to directly define the direction of the maximum refractive index in the retardation plane. . At this time, the two polarizing elements are arranged so that the polarization transmission axes of the two polarizers are parallel to each other, and the retardation layer is interposed therebetween and rotated to obtain the axial direction that produces the maximum transmittance. Therefore, it can be judged that the axis direction is equivalent to the backward phase axis, or equivalent to the leading phase axis. If it is equivalent to the backward phase axis, this axis is set to the X axis, or if it is equivalent to the leading phase axis, it is related to the -29- (25) 200405042

軸在面內呈直交的軸設爲x軸,而測量在外觀上的面內相 位差値R。此外,當將2個相位差薄膜如使各自的落後相 軸呈直交般地實施積層時,則該積層體整體的面內相位差 値,由於在理論上爲2個相位差薄膜之各自的面內相位差 値的差,因此,在2個中之面內相位差値大的相位差薄膜 的落後相軸則成爲積層體整體的落後相軸(X軸)。在本 說明書中不管是那種情形均將X軸(落後相軸)方向設爲 該相位差層的光軸。The axis orthogonal to the in-plane axis is set to the x-axis, and the in-plane phase difference 値 R in appearance is measured. In addition, when the two retardation films are laminated such that the respective backward phase axes are orthogonal to each other, the in-plane phase difference 整体 of the entire laminated body is theoretically the respective surfaces of the two retardation films. The difference of the internal phase difference 値, therefore, the backward phase axis of the retardation film having a large phase difference between the two planes becomes the backward phase axis (X-axis) of the entire laminated body. In this case, the X-axis (backward phase axis) direction is set as the optical axis of the retardation layer in either case.

吸收型偏光薄膜2 0與反射型直線偏光薄膜2 1,則請 參照圖 U ( a )般如上所述,藉著將前者的偏光透過軸 1 〇 5與後者的偏光透過軸1 〇 1如使大略呈平行地加以配置 可以發揮最大的亮度提高效果。因此,在將具有正的二軸 配向性的相位差層1 2 3實施積層時,藉著調整由反射型直 線偏光薄膜2 1的偏光透過軸1 〇 1與具有正的二軸配向性 的相位差層1 2 3的光軸1 73所成的角度能夠調整亮度提高 效率,當具有正的二軸配向性的相位差層1 2 3爲1 /4波長 相位差層時,則如圖1 1的(a )〜(c )所示的軸的方向般 ,吸收型偏光薄膜20的偏光透過軸105與反射型直線偏 光薄膜21的偏光透過軸則配置成大略爲平行’更且 ,該些的偏光透過軸1〇5、101與相位差層123的光軸 1 7 3則配置成呈4 5 °或1 3 5 °的角度’藉此可以發揮最大 的亮度提高效果。實用上’只要將該些角度設在中心i 5 % 以內即可以。 在本發明中,由於其主要的目的在於使在反射型偏光 -30- (26) (26)200405042 薄膜與光源裝置之間的亮度提高系統能夠成爲最佳狀態, 因此以圖9所示的形態而通常使用在光源裝置的擴散片 5 5有時有最好是不用的情形。 因此最好將光擴散層組入到積層偏光薄膜。而光擴散 層實施積層的位置,則只要該光擴散層的面內相位差値在 3 Onm以下,則未特別加以限制。此時的例子則表示在圖 13。圖13的(a)係在由圖10所示的吸收型偏光薄膜20/ 反射型直線偏光薄膜2 1 /具有正的二軸配向性的相位差層 1 2 3所構成的層構造中,將光擴散層2 6配置在吸收型偏 光薄膜2 0的外側。圖1 3的(b )則是將光擴散層2 6配置 在吸收型偏光薄膜2 0與反射型直線偏光薄膜2 1之間。圖 1 3的(c )則是將光擴散層2 6配置在反射型直線偏光薄 膜2 1與具有正的二軸配向性的相位差層1 2 3之間。圖1 3 的(d )則是將光擴散層26配置在具有正的二軸配向性的 相位差層1 2 3的外側,此時,雖然當然光擴散層2 6的面 內相位差値最好是在30nm以下,但也可以較其爲大。 光擴散層26最好是具備與上述同樣的全光線透過率 、霧度率。 光擴散層26的材質則與上述同樣的。更且’爲了要 容易處理以上所得到的積層偏光薄膜’因此最好用於構成 的薄膜或層之間要以感壓接著劑來實施密接。感壓接著劑 的種類、厚度則如上所述。又,同樣地也可以積層一用於 光學補償的相位差薄膜。相位差薄膜的例子則可以與上述 相同。 -31 - (27) 200405042 積層偏光薄膜可以是一將其吸收型偏光薄膜側當作光 射出面的偏光光源裝置。又,可將顯示用液晶單元配置在 該偏光光源裝置中的吸收型偏光薄膜側而成爲透過型液晶 顯示裝置。有關該些的偏光光源裝置以及透過型液晶裝置 則請參照圖1 4之斷面模式圖所示的例子來說明。As shown in FIG. U (a), as described above, with the absorption polarizing film 20 and the reflective linear polarizing film 21, the former polarized light transmission axis 1 005 and the latter polarized light transmission axis 1 〇1 are used as described above. Arranged in approximately parallel to maximize the brightness improvement effect. Therefore, when the retardation layer 1 2 3 having positive biaxial alignment is laminated, the phase of the polarized light transmission axis 1 〇1 of the reflective linear polarizing film 21 and the phase having positive biaxial alignment are adjusted by adjusting The angle formed by the optical axis 1 73 of the difference layer 1 2 3 can adjust the brightness and improve the efficiency. When the phase difference layer 1 2 3 having a positive biaxial alignment is a 1/4 wavelength phase difference layer, as shown in FIG. 1 1 As shown in (a) to (c), the polarization transmission axis 105 of the absorption-type polarizing film 20 and the polarization transmission axis of the reflective linear polarization film 21 are arranged substantially parallel. Moreover, these The polarized light transmission axes 105 and 101 and the optical axis 173 of the retardation layer 123 are arranged at an angle of 45 ° or 135 °, thereby maximizing the brightness enhancement effect. Practically, as long as these angles are set within i 5% of the center. In the present invention, since the main purpose is to optimize the brightness improvement system between the reflective polarized light -30- (26) (26) 200405042 film and the light source device, it is in the form shown in FIG. 9 On the other hand, in some cases, the diffusion sheet 55 used in a light source device is preferably not used. Therefore, it is preferable to incorporate the light diffusion layer into the laminated polarizing film. The position where the light diffusing layer is laminated is not particularly limited as long as the in-plane phase difference 値 of the light diffusing layer is 3 Onm or less. An example at this time is shown in FIG. 13. (A) of FIG. 13 has a layer structure composed of the absorptive polarizing film 20 / the reflective linear polarizing film 2 1 / the retardation layer 1 2 3 having positive biaxial alignment shown in FIG. 10. The light diffusion layer 26 is disposed outside the absorption-type polarizing film 20. Fig. 13 (b) shows the light diffusion layer 26 arranged between the absorption-type polarizing film 20 and the reflection-type linear polarizing film 21. (C) of FIG. 13 shows that the light diffusion layer 26 is disposed between the reflective linear polarizing film 21 and the retardation layer 1 2 3 having positive biaxial alignment. (D) of FIG. 13 shows that the light diffusion layer 26 is arranged outside the phase difference layer 1 2 3 having positive biaxial alignment. At this time, although the in-plane phase difference of the light diffusion layer 26 is of course the largest, Fortunately, it is below 30nm, but it can also be larger. The light diffusion layer 26 preferably has the same total light transmittance and haze ratio as described above. The material of the light diffusion layer 26 is the same as described above. Furthermore, in order to facilitate the handling of the laminated polarizing film obtained as described above, it is preferable to use a pressure-sensitive adhesive agent for adhesion between the formed films or layers. The type and thickness of the pressure-sensitive adhesive are as described above. Also, a retardation film for optical compensation can also be laminated in the same manner. Examples of the retardation film may be the same as those described above. -31-(27) 200405042 The laminated polarizing film may be a polarized light source device that uses the absorption-type polarizing film side as the light exit surface. Further, the liquid crystal cell for display can be disposed on the side of the absorption-type polarizing film in the polarized light source device to be a transmissive liquid crystal display device. These polarized light source devices and transmissive liquid crystal devices will be described with reference to the examples shown in the cross-sectional schematic diagrams in FIG. 14.

在圖1 4所示的例子中,則與圖1 3 ( a )所示者相同, 乃將光源裝置6 1配置在依照具有正的二軸配向性的相位 差層123、反射型直線偏光薄膜21、吸收型偏光薄膜20、 以及光擴散層26的順序實施積層而成的積層偏光薄膜1 0 的相位差層1 23側而構成偏光光源裝置64。The example shown in FIG. 14 is the same as that shown in FIG. 13 (a), in which the light source device 61 is disposed on the retardation layer 123 and the reflective linear polarizing film in accordance with positive biaxial alignment. 21. The absorption-type polarizing film 20 and the light-diffusing layer 26 are laminated in this order to form a polarized light source device 64 on the retardation layer 1 23 side of the laminated polarizing film 10.

圖14中的光源裝置61爲側光型式,具備有光源5 1 、導光板5 2、以及被配置在導光板5 2之背面的反射板5 3 ,而來自被配置在導光板5 2之側面的光源5 1的光則爲用 於覆蓋未面向光源51之導光板5 2之一側的反射板5 4所 反射,伴隨著反射板5 3的反射,將光從導光板5 2的前面 側均勻地放出。光源裝置61基本上具備有光源構件與反 射板,當爲如圖1 4所示的側光型式時,則由光源5 1與導 光板5 2來構成光源構件。該光源裝置6 1則被配置在積層 偏光薄膜1 〇之具有正的二軸配向性的相位差層1 2 3側而 構成偏光光源裝置6 4。又,積層偏光薄膜1 0的吸收型偏 光薄膜20側則面向液晶單元30的背面而被配置,而相位 差薄膜42與前面側吸收型偏光薄膜4 1被配置在液晶單元 3 0的前面側而構成透過型液晶顯示裝置65。 圖1 4雖然係表使用圖1 3 ( a )所示的積層偏光薄膜 -32- (28) (28)200405042 1 〇的例子,但當然該積層偏光薄膜1 0也可以改成圖1 3 ( b)〜(d)所示者。不管是使用何種的積層偏光薄膜,具 備有光源構件與反射板的光源裝置6 1均被配置在積層偏. 光薄膜1 〇的相位差層1 2 3側。 在以往的偏光光源裝置中乃廣泛地使用圖9所示的擴 散片55或透鏡片56。在圖14所示的偏光光源裝置64中 雖然可以配置其中一者或是兩者,但由於該些會成爲-造 成位在反射型偏光薄膜與光源裝置之間的偏光狀態弄亂的 原因,因此最好可能的話不要配置。 本發明之另一個的透過型液晶顯示裝置6 7,則如圖 1 4的例子所示係將液晶單元3 0與前面側吸收型偏光薄膜 4 1依序配置在作爲偏光光源裝置64之光射出面的積層偏 光薄膜1 0側。在此,則因應必要將1個或是多個的相位 差薄膜配置在液晶單元3 0與前面側吸收型偏光薄膜4 1之 間。又,因應必要可將光擴散層配置在液晶單元3 0的前 面側。更且,也可以同時配置相位差薄膜與光擴散層兩者 。光擴散層最好面內相位差値在30nm以下。而構成透過 型液晶顯示裝置的各構件,特別是從積層偏光薄膜1 〇到 前面側吸收型偏光薄膜4 1爲止的各構件,則最好相鄰的 至少一對是藉由感壓接著劑來實施密接積層。更且,相鄰 的全部的構件彼此更好是藉由感壓接著劑來實施密接積層 〇 使用在液晶顯示裝置6 7的液晶單元3 0則如上所述。 有關前面側吸收型偏光薄膜4 1則可以使用與先前在 -33- (29) 200405042 說明構成本發明之積層偏光薄膜之吸收型偏光薄膜爲例子 時同樣的東西而如上所述。 實施例 以下雖然是表示本發明的實施例’但本發明並未爲該 些實施例所限定。此外,在例子中用於製作積層偏光薄膜 之材料則如以下所述。The light source device 61 in FIG. 14 is an edge light type, and includes a light source 5 1, a light guide plate 5 2, and a reflective plate 5 3 arranged on the back of the light guide plate 5 2, and from the side of the light guide plate 5 2. The light from the light source 5 1 is reflected by a reflecting plate 5 4 that covers one side of the light guide plate 5 2 that does not face the light source 51. With the reflection of the reflecting plate 5 3, the light is uniform from the front side of the light guide plate 5 2 To release. The light source device 61 basically includes a light source member and a reflecting plate. When the light source device 61 is a side-light type as shown in FIG. 14, the light source member 51 and the light guide plate 52 are used to constitute the light source member. This light source device 61 is disposed on the side of the laminated polarizing film 10 with a positive biaxially-aligned retardation layer 1 2 3 to form a polarized light source device 64. The side of the absorbing polarizing film 20 of the laminated polarizing film 10 is disposed facing the rear surface of the liquid crystal cell 30, and the retardation film 42 and the front side of the absorbing polarizing film 41 are disposed on the front side of the liquid crystal cell 30. A transmissive liquid crystal display device 65 is configured. Fig. 14 shows an example using the laminated polarizing film -32- (28) (28) 200405042 1 〇 shown in Fig. 13 (a), but of course, the laminated polarizing film 10 can also be changed to Fig. 13 ( b) ~ (d). No matter which laminated polarizing film is used, the light source device 61 having a light source member and a reflecting plate is disposed on the retardation layer 1 2 3 side of the laminated polarizing film 10. In the conventional polarized light source device, a diffusion sheet 55 or a lens sheet 56 shown in Fig. 9 has been widely used. Although one or both of the polarized light source devices 64 shown in FIG. 14 can be arranged, these may cause the disorder of the polarization state between the reflective polarizing film and the light source device. It is best not to configure if possible. As another example of the transmissive liquid crystal display device 67 of the present invention, as shown in the example of FIG. 14, the liquid crystal cell 30 and the front-side absorption type polarizing film 41 are sequentially arranged to emit light as a polarized light source device 64. 10 side of the laminated polarizing film. Here, if necessary, one or more retardation films are arranged between the liquid crystal cell 30 and the front-side absorption-type polarizing film 41. If necessary, a light diffusion layer may be disposed on the front side of the liquid crystal cell 30. Furthermore, both the retardation film and the light diffusion layer may be arranged at the same time. The light-diffusion layer preferably has an in-plane phase difference 値 of 30 nm or less. For each member constituting the transmissive liquid crystal display device, in particular, each member from the laminated polarizing film 10 to the front-side absorbing polarizing film 41, it is preferable that at least one pair of adjacent members is a pressure-sensitive adhesive. Carry out close-packing. Furthermore, it is more preferable that all adjacent members are adhered to each other with a pressure-sensitive adhesive. The liquid crystal cell 30 used in the liquid crystal display device 67 is as described above. Regarding the front-side absorption-type polarizing film 41, the same thing as that described in the case of the absorption-type polarizing film constituting the laminated polarizing film of the present invention described in -33- (29) 200405042 can be used as described above. Examples Although the examples of the present invention are shown below, the present invention is not limited to these examples. In addition, the materials used to make the laminated polarizing film in the examples are as follows.

(1 )吸收型偏光薄膜 SRW062A :碘系吸收型偏光薄膜,由佳友化學工業株 式會社取得 (2 )反射型偏光薄膜 DBEF- P:將2種的高分子薄膜加以積層,而利用折 射率異方性所造成之反射率的異方性的薄膜,係由住友 3 Μ公司取得。 (3 )相位差薄膜(相位差層)(1) Absorptive polarizing film SRW062A: Iodine-based absorptive polarizing film, obtained by Jiayou Chemical Industry Co., Ltd. (2) Reflective polarizing film DBEF-P: Laminate two kinds of polymer films and use refractive index anomaly Anisotropic thin films with reflectivity due to the properties were obtained by Sumitomo 3M. (3) a retardation film (a retardation layer)

SEF340138 、 SEF460275 、 SEF460565 、 SEF460690 : 均是由聚碳酸酯樹脂延伸而成之具有通常的波長分散特性 的薄膜,由住友化學工業株式會社取得。 SEN340 1 40、SEN49 02 7 5 :由 JSR株式會社所販賣之 原冰片烯樹脂"ARTON”延伸而成的低波長分散相位差薄膜 ,係由住友化學工業株式會社取得。 S EW48 0 1 8 3 :帝人株式會社製的逆波長分散相位差薄 膜,由住友化學工業株式會社所取得。 針對該些相位差薄膜,利用由王子計測機器株式會社 -34- (30) 200405042 所製的自動多折射率計”KOBRA — 21 ADH”來求取由549nm 的相位差値R( 549nm) 、483nm與755nm下各自的相位 差値所算出之相位差之波長分散性的指標R ( 4 8 3 nm ) /R (7 5 5 n m )、以及在5 8 9 n m下的N z係數。同樣地則利用 王子計測機器株式會社製的自動多折射率計”K〇 BRA -2 1 A D Η ’,,在波長5 5 0 nm下測量面內相位差値以及Ν ζ係 數。結果則分別表示在表1 — 1、1 一 2 ° 表1 一1 R( 5 49nm ) R(4S3nm) R(T55nm) Nz係數 SEF3 40 1 3 8 1 40nm 1.10 1.34 SEN340140 1 4 3 nm 1.01 1.44 SE W4 8 0 1 3 8 1 4 1 nm 0.83 0.89 表1 一 2 面內位相差値 Nz係數 SEF340138 1 3 8 n m 1.44 SEF460275 2 7 5 nm 1.02 SEF460565 5 6 0 n m 0.99 SEF460690 7 0 0 n m 0.98 SEN340140 1 3 8 nm 1.33 SEN490275 2 7 5 n m 0.99SEF340138, SEF460275, SEF460565, and SEF460690: All are thin films with ordinary wavelength dispersion properties extended from polycarbonate resins. They were obtained from Sumitomo Chemical Industries, Ltd. SEN340 1 40, SEN49 02 7 5: Low-wavelength dispersion retardation film extended from original norbornene resin " ARTON "sold by JSR Co., Ltd., obtained by Sumitomo Chemical Industry Co., Ltd. S EW48 0 1 8 3 : Inverse wavelength dispersion retardation film manufactured by Teijin Co., Ltd., obtained by Sumitomo Chemical Industry Co., Ltd. For these retardation films, an automatic multi-refractive index manufactured by Oji Measurement Co., Ltd. -34- (30) 200405042 is used Calculate "KOBRA — 21 ADH" to obtain the index R (4 8 3 nm) / R of the wavelength dispersion of the phase difference calculated from the phase difference 値 R (549nm) at 549nm, and the phase difference 483 at 483nm and 755nm. (7 5 5 nm) and Nz coefficient at 5 8 9 nm. Similarly, an automatic multi-refractive index meter "KOBRA-2 2 AD AD '" manufactured by Oji Measurement Co., Ltd. was used at a wavelength of 5 The in-plane phase difference 値 and the N ζ coefficient were measured at 50 nm. The results are shown in Tables 1-1, 1, and 2 °. Table 1 to 1 R (5 49nm) R (4S3nm) R (T55nm) Nz coefficient SEF3 40 1 3 8 1 40nm 1.10 1.34 SEN340140 1 4 3 nm 1.01 1.44 SE W4 8 0 1 3 8 1 4 1 nm 0.83 0.89 8 nm 1.33 SEN490275 2 7 5 nm 0.99

(4 )光擴散層 光擴散性感壓接著劑# Β :面內相位差値爲〇 m m ’而 -35- (31) 200405042 分散有微粒子且混濁率7 8 %之丙烯酸酯系感壓接著劑,由 住友化學工業株式會社取得。 參考例1(4) Light-diffusing layer light-diffusing pressure-sensitive adhesive # Β: an in-plane phase difference 値 of 0 mm ′ and -35- (31) 200405042 an acrylic pressure-sensitive pressure-sensitive adhesive having fine particles dispersed and a turbidity of 78%, Obtained by Sumitomo Chemical Industries, Ltd. Reference example 1

從曰本電氣株式會社製的TFT彩色液晶模組 ”NL 1 02 7 6AC 24 — 0 5 ”去除液晶面板而取出光源裝置。該光 源裝置是一側光形式,在導光板端部配置冷陰極管,而在 導光板上配置由白色塑膠片所構成的反射板,將2個透鏡 片配置在導光板上,更在其上配置1個擴散片。在該光源 裝置中也可以只取下擴散片,而改配置由株式會社 KiMOTO所製之作爲擴散片的"Lightup”而成爲—評估用的 光源裝置8 0。如圖7示,在感壓接著劑8 2側將依照反射 型直線偏光薄膜21、光擴散層26、吸收型偏光薄膜20以 及感壓接著劑 8 2的順序而實施密接積層而成的積層薄膜 8 3與1 . 1 mm厚的玻璃板8 1貼在一起,且使玻璃板8 1成 爲上側般地將其配置在上述光源裝置8 0之上而製作出偏 光光源裝置8 5。針對該偏光光源裝置8 5藉由亮度計(株 式會社Tope oN製的商品名”BM - 7”)來測量透過亮度。 其結果則表示在表2。 實施例1 其順序爲感壓接著劑#7/吸收型直線偏光薄膜 SRW0 6 2A/光擴散性感壓接著劑#B/反射型直線偏光薄膜 DBEF — P/感壓接著劑#7/低波長分散相位差薄膜 -36- (32) 200405042The light source device was removed from the TFT color liquid crystal module "NL 1 02 7 6AC 24 — 0 5" manufactured by Japan Electric Co., Ltd. The light source device is in the form of one-side light. A cold-cathode tube is arranged at the end of the light guide plate, and a reflective plate composed of a white plastic sheet is arranged on the light guide plate. Two lens sheets are arranged on the light guide plate, and further above it. With one diffuser. In this light source device, it is also possible to remove only the diffusion sheet, and reconfigure the "Lightup" as a diffusion sheet made by KiMOTO Co., Ltd. to become a light source device 80 for evaluation. As shown in FIG. On the adhesive agent 8 2 side, a laminated film 8 3 and 1.1 mm thick which is closely laminated in accordance with the order of the reflective linear polarizing film 21, the light diffusion layer 26, the absorption polarizing film 20, and the pressure-sensitive adhesive agent 8 2 is applied. A polarized light source device 8 5 is produced by attaching the glass plates 81 together and placing the glass plate 81 on the light source device 80 as an upper side. A polarimeter is used for the polarized light source device 85. (Trade name "BM-7" manufactured by Tope On Co., Ltd.) was used to measure the transmission brightness. The results are shown in Table 2. Example 1 The order is pressure-sensitive adhesive # 7 / absorptive linear polarizing film SRW0 6 2A / Light Diffusion Sensitive Adhesive # B / Reflective Linear Polarizing Film DBEF — P / Pressure Sensitive Adhesive # 7 / Low Wavelength Dispersion Phase Difference Film -36- (32) 200405042

S ΕΝ 3 4 0 1 4 0,而吸收型直線偏光薄膜的偏光透過軸與反射 型直線偏光薄膜的偏光透過軸係平行,且實施密接積層而 反射型直線偏光薄膜的偏光透過軸與低波長分散相位差薄 膜的光軸以4 5 ^交差而製作出本發明的積層偏光薄膜1 〇 。如圖8所示,乃更換成在參考例1中所使用的積層薄膜 8 3,而使玻璃板8 1成爲上側般地將在感壓接著劑8 2側將 該積層偏光薄膜10貼在1.1mm厚的玻璃板81上者配置 在使用在參考例1中之光源裝置80之上而製作出本發明 的偏光光源裝置8 6。針對該偏光光源裝置8 6利用與參考 例1同樣的方法來測量透過亮度。其結果則表示在表2。 針對參考例 1則加上低波長分散相位差薄膜 22 ( SEN3 40 1 40 )所達成的亮度提高效果則在1 · 5倍以上,而 得到一高亮度的偏光光源裝置。 實施例2S ENE 3 4 0 1 4 0, and the polarization transmission axis of the absorption linear polarizing film is parallel to the polarization transmission axis of the reflective linear polarizing film, and the polarization transmission axis of the reflective linear polarizing film is tightly laminated and low-wavelength dispersed. The optical axis of the retardation film is crossed at 4 5 ^ to produce the laminated polarizing film 10 of the present invention. As shown in FIG. 8, the laminated film 8 3 used in Reference Example 1 was replaced with the laminated glass film 8 1 on the pressure-sensitive adhesive 8 2 side so that the laminated glass film 81 was placed on the upper side. The mm-thick glass plate 81 was placed on the light source device 80 used in Reference Example 1 to produce a polarized light source device 86 according to the present invention. For this polarized light source device 86, the transmission brightness was measured by the same method as in Reference Example 1. The results are shown in Table 2. For Reference Example 1, the brightness enhancement effect achieved by adding the low-wavelength dispersive retardation film 22 (SEN3 40 1 40) is more than 1.5 times, and a high-brightness polarized light source device is obtained. Example 2

除了取代實施例1中的低波長分散相位差薄膜 SEN340 1 40而改採逆波長分散相位差薄膜SEW4 8 0 1 3 8外 ,其他則與實施例1相同而進行評估。其結果則表示在表 2。相對於參考例1,加上逆波長分散相位差薄膜 SEW48 0 1 3 8所達成之亮度提高效果則在1·〇5倍以上,而 得到高亮度的偏光光源裝置。 比較例1 除了取代實施例1中的低波長分散相位差薄膜 -37- (33) 200405042 SEN3 40 1 40而改採具有通常之波長分散特性的相位差薄膜 SEF3 40 1 3 8外,其他則與實施例1相同而進行評估。其結 果則表示在表 2。相對於參考例1,加上相位差薄膜 SEF 3 4 0 1 3 8所達成之亮度提高效果則停滯在不足1.05倍 表2 透過売度 相對於參考例1的亮度比 參考例1 64 5 cd/m2 一 實施例1 699cd/m2 1 · 〇 8 倍 實施例2 703cd/m2 1 . 〇 9 倍 比較例1 671cd/m2 1.04 倍Except that the low-wavelength dispersion retardation film SEN340 1 40 in Example 1 was used instead of the reverse-wavelength dispersion retardation film SEW4 8 0 1 3 8, the rest were evaluated in the same manner as in Example 1. The results are shown in Table 2. Compared with Reference Example 1, the brightness enhancement effect achieved by adding the reverse wavelength dispersion retardation film SEW48 0 1 3 8 is more than 1.05 times, and a high-brightness polarized light source device is obtained. Comparative Example 1 Except that instead of the low-wavelength dispersion retardation film -37- (33) 200405042 SEN3 40 1 40 in Example 1, a retardation film SEF3 40 1 3 8 with ordinary wavelength dispersion characteristics was used. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 2. Compared with Reference Example 1, the brightness improvement effect achieved by adding the retardation film SEF 3 4 0 1 3 8 stagnates at less than 1.05 times. Table 2 The brightness of the transmittance relative to Reference Example 1 is 6 64 cd / m2 Example 1 699 cd / m2 1 · 〇8 times Example 2 703 cd / m2 1. 〇9 times Comparative Example 1 671 cd / m2 1.04 times

參考例2Reference example 2

除了將在參考例1中所使用的光源裝置8 0中的擴散 片” Lightap 100TL4”改成株式會社KiMOTO製的擴散片 "Lightup 100SXE”外,其他則與參考例1相同而進行評估 。其結果則表示在表3。 實施例3 將在實施例1中所製作的積層偏光薄膜與1 . 1 mm厚 的玻璃板貼在一起而成者以與實施例1同樣的狀態配置在 參考例2中所使用的光源裝置,而與參考例〗同樣地進行 評估。其結果則表示在表3。相對於參考例2,則加上低 -38- (34) 200405042 波長分散相位差薄膜SEN40 1 40所達成之亮度提高效果在 1 · 〇 5倍以上,而得到高亮度的偏光光源裝置。 實施例4 將在實施例2中所製作的積層偏光薄膜與1 . 1 mm厚 的玻璃板貼在一起而成者以與實施例2同樣的狀態配置在 參考例2中所使用的光源裝置,而與參考例2同樣地進行 評估。其結果則表示在表3。相對於參考例2,則加上逆 波長分散相位差薄膜SEW4 8 0 1 3 8所達成之亮度提高效果 在1.05倍以上,而得到高亮度的偏光光源裝置。 比較例2Except that the diffuser sheet "Lightap 100TL4" used in the light source device 80 used in Reference Example 1 was changed to a diffuser sheet "Lightup 100SXE" manufactured by KiMOTO Co., Ltd., it was evaluated in the same manner as in Reference Example 1. It was evaluated. The results are shown in Table 3. Example 3 A laminated polarizing film produced in Example 1 and a 1.1-mm-thick glass plate were pasted together and placed in Reference Example 2 in the same state as in Example 1. The light source device used in the evaluation was evaluated in the same manner as in Reference Example. The results are shown in Table 3. Compared with Reference Example 2, a low -38- (34) 200405042 wavelength dispersion retardation film SEN40 1 40 was added. The achieved brightness improvement effect is more than 1.05 times, and a high-brightness polarized light source device is obtained. Example 4 The laminated polarizing film produced in Example 2 was pasted together with a 1.1-mm-thick glass plate. The author placed the light source device used in Reference Example 2 in the same state as in Example 2 and evaluated it in the same manner as in Reference Example 2. The results are shown in Table 3. Compared to Reference Example 2, it was added Inverse wavelength dispersion phase difference The luminance improving effect reached film SEW4 8 0 1 3 8 1.05 times or more, to obtain a polarized light source device with high luminance. Comparative Example 2

將在比較例1中所製作的積層偏光薄膜與1 . 1 mm厚 的玻璃板貼在一起者,以與比較例1同樣的狀態配置在參 考例2中所使用的光源裝置,而與參考例1同樣地進行評 估。相較於參考例2,則加上相位差薄膜SEF3 40 1 3 8所達 成之亮度提高效果則停滯在不足1 . 〇 5倍。 •39- (35) 200405042 表3 透過売度 相對於參考例2的亮度比 參考例2 583cd/m2 實施例3 6 1 7 c d / m 2 1 · 0 6 倍 實施例4 620cd/m2 1 . 0 6 倍 比較例2 597cd/m2 1.02 倍The laminated polarizing film produced in Comparative Example 1 and a 1.1-mm-thick glass plate were pasted together, and the light source device used in Reference Example 2 was placed in the same state as Comparative Example 1. 1 Perform the same evaluation. Compared with Reference Example 2, the brightness enhancement effect achieved by adding the retardation film SEF3 40 1 3 8 is stagnant at less than 1.5 times. • 39- (35) 200405042 Table 3 Brightness ratio of transmittance relative to Reference Example 2 Reference Example 2 583cd / m2 Example 3 6 1 7 cd / m 2 1 · 0 6 times Example 4 620cd / m2 1.0 6 times Comparative Example 2 597 cd / m2 1.02 times

參考例3Reference example 3

從曰本電氣株式會社製的T F T彩色液晶模組 ” N L 1 0 2 7 6 A C 2 4 - 0 5 ’’取下液晶面板,將內藏在光源裝置之 光射出側的擴散薄膜改成株式會社K i Μ Ο Τ Ο製的擴散薄 膜” Lightup 100TL4”而成爲光源裝置80。如圖15所示, 依照反射型直線偏光薄膜2 1 ( D B E F — P )、光擴散層2 6 (光擴散性感壓接著劑#B )、吸收型偏光薄膜20 ( SRW062A )以及感壓接著劑 82 (感壓接著劑#7 )的順序 實施密接積層而製作出積層薄膜1 8 3。此時,吸收型偏光 薄膜2 0的偏光透過軸與反射型直線偏光薄膜2 1的偏光透 過軸乃配置成平行。在感壓接著劑 82側將該積層薄膜 183與1.1mm厚的玻璃基板81貼在一起,更且,如使玻 璃板8 1朝上側般地配置在上述光源裝置1 80上而製作出 偏光光源裝置。針對該偏光光源裝置1 8 5藉由以下之(A )所示的方法來測量透過亮度以及反射亮度’將其結果表 示在表4。 -40- (36) 200405042 (A )売度評估方法 將以上所製作的偏光光源裝置1 8 5呈水平地配置在從 大塚光學株式會社製的圓罩(商品名”ENV - B — 2”取下罩 殼者的台座上,如圖1 6所示,將圓罩的環狀螢光燈187 呈水平地配置,更且,藉著調整距台座(未圖示)的高度 ,可將環狀螢光燈在點燈時相對於台座的照明角度1 8 8 ( 燈相對於台座之法線方向的斜率)調節成1 5 °。在台座的 上方則配置亮度計1 89 (株式會社TOP CON製的商品名 "BM — 7”)以測量亮度。測量則全部在暗室中進行。 (A- 1 )透過亮度 將光源裝置1 8 0點亮,在使環狀螢光燈1 8 7熄滅的狀 態下,藉由亮度計1 8 9來測量偏光光源裝置1 8 5的透過亮 度。 (A - 2 )反射亮度的測量Remove the liquid crystal panel from the TFT color liquid crystal module "NL 1 0 2 7 6 AC 2 4-0 5" made by Japan Electric Co., Ltd., and change the diffuser film built into the light emitting side of the light source device into a company K i Μ Ο Τ Ο diffused film "Lightup 100TL4" becomes the light source device 80. As shown in Fig. 15, according to the reflective linear polarizing film 2 1 (DBEF-P), the light diffusion layer 2 6 (light diffusion pressure Adhesive #B), absorption-type polarizing film 20 (SRW062A), and pressure-sensitive adhesive 82 (pressure-sensitive adhesive # 7) are laminated in this order to produce a laminated film 1 8 3. At this time, the absorption-type polarizing film 2 The polarized light transmission axis of 0 is parallel to the reflective linear polarizing film 21. The polarized light transmission axis of 1 is arranged in parallel. The laminated film 183 and the 1.1 mm-thick glass substrate 81 are pasted together on the pressure-sensitive adhesive 82 side. A polarized light source device was produced by placing the glass plate 81 on the light source device 180 so that it faces upward. With respect to the polarized light source device 1 8 5, the transmission brightness and reflection brightness were measured by the method shown in (A) below. 'The results are shown in Table 4. -40- (36) 200405042 (A) Degree of Evaluation Method The polarized light source device 1 8 5 manufactured as described above is horizontally placed on a dome (trade name "ENV-B — 2" manufactured by Otsuka Optical Co., Ltd. As shown in FIG. 16, the ring-shaped fluorescent lamp 187 of the dome is horizontally arranged on the pedestal of the lower cover, and the ring-shaped fluorescent lamp 187 can be adjusted by adjusting the height from the pedestal (not shown). The lighting angle of the fluorescent lamp with respect to the base when lighting is 1 8 8 (the slope of the lamp with respect to the normal direction of the base) is adjusted to 15 °. A brightness meter 1 89 (manufactured by TOP CON Co., Ltd.) is arranged above the base. Trade name " BM — 7 ") to measure the brightness. The measurements are all performed in a dark room. (A- 1) The light source device 1 80 is lit by the brightness, and the ring fluorescent lamp 1 8 7 is turned off In the state, the transmission brightness of the polarized light source device 1 8 5 is measured by a luminance meter 1 8 9. (A-2) Measurement of reflection brightness

將光源裝置1 8 0熄滅,而在讓環狀螢光燈的點亮的狀 態下,藉由亮度計1 8 9來測量偏光光源裝置1 8 5的反射亮 度。 貫施例5 藉由感壓接著劑#7而如使彼此的光軸呈直交般地將 相位差薄膜SEF4 602 7 5 (面內相位差値2 75 nm)與相位差 薄膜SEF3 40 1 3 8 (面內相位差値138nm)予以密接積層’ 而製作一具有正的二軸配向性的1 /4波長相位差層。針對 -41 - (37) 200405042 該具有正的二軸配向性的1 /4波長相位差層,利用王子計 測機器株式會社製的自動多折射率計’’KOBRA — 2 1 ADH"來 測量在波長5 5 0 nm下的面內相位差値以及Nz係數。其結 果則表示在表4。The light source device 180 was turned off, and the reflection brightness of the polarized light source device 1 8 5 was measured by a luminance meter 1 89 while the ring-shaped fluorescent lamp was turned on. Throughout Example 5 A phase difference film SEF4 602 7 5 (in-plane phase difference 値 2 75 nm) and a phase difference film SEF3 40 1 3 8 were made as if the optical axes of the two were orthogonal to each other by the pressure-sensitive adhesive # 7. (In-plane retardation 値 138 nm) is tightly laminated to produce a quarter-wavelength retardation layer having positive biaxial alignment. For -41-(37) 200405042, this 1/4 wavelength retardation layer with positive biaxial alignment is measured by the automatic multi-refractive index meter `` KOBRA — 2 1 ADH " manufactured by Oji Measurement Co., Ltd. In-plane phase difference 値 and Nz coefficient at 55 nm. The results are shown in Table 4.

在此所製作之具有正的二軸配向性的1 /4波長相位差 層123,如圖17所示,是一第1相位差薄膜123a( SEF460275 )與第2相位差薄膜1 2 3 b ( S E F 3 4 0 1 3 8 )藉由 感壓接著劑 82 (感壓接著劑#7 )積層而成者。此外,如 同一圖所示,在該1 / 4波長相位差層1 2 3的第1相位差薄 膜123 a ( SEF46 0275 )側,將在參考例3中所製作的積層 薄膜183藉由感壓接著劑82,在其反射型直線偏光薄膜 2 1側實施密接積層,而製作出積層偏光薄膜1 0。此時, 反射型直線偏光薄膜2 1的偏光透過軸與具有正的二軸配 向性的1/4波長相位差層123的光軸則配置或以45 °交差 。將該積層偏光薄膜1〇在其積層薄膜83的感壓接著劑 8 2側與1 . 1 mm厚的玻璃板8 1貼在一起,更且,如使玻璃 板8 1成爲上側般地配置在參考例3中所使用的光源裝置 1 8 0之上而製作出偏光光源裝置1 8 6。針對該偏光光源裝 置1 8 6,藉由與參考例3同樣的方法來測量透過亮度以及 反射亮度。將結果表示在表4。 實施例6 藉由感壓接著劑#7如使彼此的光軸呈直交般地將相 位差薄膜SEF460690 (面內相位差値700nm)與相位差薄 -42- (38) 200405042 膜SEF460 5 65 (面內相位差値5 60nm)實施密接積層,而 製作出具有正的二軸配向性的1 /4波長相位差層。針對該 具有正的二軸配向性的1 /4波長相位差層來測量波長 5 5 Onm 下的面內相位差値以及 Nz 係數。又,將 SEF460690當作第1相位差薄膜23a,將SEF460565當作 第2相位差薄膜2 3 6,而在與實施例5 (圖1 7 )同樣的狀 態下製作積層偏光薄膜1 〇。藉由同樣的方法來測量透過 亮度以及反射亮度,且將結果表示在表4。 實施例7The quarter-wave retardation layer 123 having positive biaxial alignment produced here is a first retardation film 123a (SEF460275) and a second retardation film 1 2 3 b (see FIG. 17). SEF 3 4 0 1 3 8) laminated with pressure-sensitive adhesive 82 (pressure-sensitive adhesive # 7). In addition, as shown in the same figure, on the first retardation film 123 a (SEF46 0275) side of the 1/4 wavelength retardation layer 1 2 3, the laminated film 183 produced in Reference Example 3 is subjected to pressure sensing. The adhesive agent 82 is closely laminated on the reflective linear polarizing film 21 side to produce a laminated polarizing film 10. At this time, the polarization transmission axis of the reflective linear polarizing film 21 and the optical axis of the quarter-wave retardation layer 123 having positive biaxial alignment are arranged or crossed at 45 °. This laminated polarizing film 10 is laminated to a 1.1 mm thick glass plate 81 on the pressure-sensitive adhesive 8 2 side of the laminated film 83, and is disposed as if the glass plate 81 is an upper side. A polarized light source device 1 8 6 was fabricated on the light source device 1 80 used in Reference Example 3. Regarding this polarized light source device 1 8 6, the transmission brightness and the reflection brightness were measured by the same method as in Reference Example 3. The results are shown in Table 4. Example 6 The phase difference film SEF460690 (in-plane phase difference 値 700 nm) and the phase difference were thin by the pressure-sensitive adhesive # 7 such that the optical axes of the two orthogonally intersect with each other -42- (38) 200405042 film SEF460 5 65 ( The in-plane retardation (値 60 nm) is tightly laminated to produce a 1/4 wavelength retardation layer having positive biaxial alignment. The in-plane phase difference 値 and the Nz coefficient at a wavelength of 5 5 Onm are measured for the 1/4 wavelength retardation layer having positive biaxial alignment. Further, SEF460690 was used as the first retardation film 23a, and SEF460565 was used as the second retardation film 2 3 6. In the same state as in Example 5 (Fig. 17), a laminated polarizing film 10 was produced. The transmission brightness and reflection brightness were measured by the same method, and the results are shown in Table 4. Example 7

藉由感壓接著劑#7如使彼此的光軸呈直交般地將相 位差薄膜SEF490275 (面內相位差値2 7 5nm )與相位差薄 膜SEF3 40 1 4〇 (面內相位差値138nm )實施密接積層,而 製作出具有正的二軸配向性的1 /4波長相位差層。針對該 具有正的二軸配向性的1 /4波長相位差層來測量波長 5 5 Onm下的面內相位差値以及Nz係數。又,將 SEF4902 7 5當作第1相位差薄膜123a,將SEF340 1 40當 作第2相位差薄膜1 2 3 6,而在與實施例5 (圖1 7 )同樣 的狀態下製作積層偏光薄膜1 〇。藉由同樣的方法來測量 透過亮度以及反射亮度,且將結果表示在表4。 比較例3 在參考例3中所製作之圖1 5所示之積層薄膜1 8 3的 反射型偏光薄膜21側’將相位差薄膜SEF3 40 1 3 8 (面內 -43- (39) 200405042 相位差値1 3 8nm ),如使前者的偏光透過軸與後者的光軸 以4 5 °交差般地藉由感壓接著劑# 7實施密接積層而製作 出積層偏光薄膜。該積層偏光薄膜用於取代在實施例5中 之具有正的二軸配向性的1 /4波長相位差層,其他則在與 實施例5同樣的狀態下來測量透過亮度以及反射亮度。且 將結果表不在表4。 表4 第1 第2 面內 Nz 透過亮度* 反射亮度* 相位差薄膜 相位差薄膜 位相差値 係數 (cd/m2) (cd/m2) 參考例3 _ — — 一 645 377 實施例5 SEF460275 SEF340138 132nm 2.49 696 340 [1.08] [0.90] 實施例6 SEF460690 SEF460565 137nm 5.37 699 336 [1.08] [0.89] 實施例7 SEN490275 SEN340140 138nm 2.21 692 336 [1.04] [0.89] 比較例3 SEF340138 _ 138nm 1.44 671 318The phase difference film SEF490275 (in-plane phase difference 値 2 7 5nm) and the phase difference film SEF3 40 1 40 (in-plane phase difference 値 138nm) are made by the pressure-sensitive adhesive # 7 such that the optical axes of the two are orthogonal to each other. A tightly laminated layer is implemented to produce a 1/4 wavelength retardation layer having positive biaxial alignment. The in-plane phase difference 値 and the Nz coefficient at a wavelength of 5 5 Onm were measured for the 1/4 wavelength retardation layer having positive biaxial alignment. Further, using SEF4902 7 5 as the first retardation film 123a and SEF340 1 40 as the second retardation film 1 2 3 6, a laminated polarizing film was produced in the same state as in Example 5 (FIG. 17). 1 〇. The transmission brightness and reflection brightness were measured by the same method, and the results are shown in Table 4. Comparative Example 3 The reflective polarizing film 21 side of the laminated film 1 8 3 shown in FIG. 15 produced in Reference Example 3 is a retardation film SEF3 40 1 3 8 (in-plane-43- (39) 200405042 phase The differential polarization is 1 3 8 nm), and the laminated polarized film is produced by tightly laminating the pressure-sensitive adhesive # 7 such that the polarization axis of the former and the optical axis of the latter cross at 45 °. This laminated polarizing film was used in place of the 1/4 wavelength retardation layer having positive biaxial alignment in Example 5, and the others measured transmission brightness and reflection brightness in the same state as in Example 5. And the result table is not in Table 4. Table 4 First and second in-plane Nz transmission brightness * reflection brightness * retardation film retardation film phase difference 値 coefficient (cd / m2) (cd / m2) Reference Example 3 — — — 645 377 Example 5 SEF460275 SEF340138 132nm 2.49 696 340 [1.08] [0.90] Example 6 SEF460690 SEF460565 137nm 5.37 699 336 [1.08] [0.89] Example 7 SEN490275 SEN340140 138nm 2.21 692 336 [1.04] [0.89] Comparative Example 3 SEF340138 _ 138nm 1.44 671 318

[1.04] [0.84] *下面加括弧者爲相較於參考例3的亮度比 由表4可知,相較於參考例3的偏光光源裝置,在加 上通常之1/4波長相位差薄膜SEF 3 40 1 3 8後的比較例3中 ,除了透過亮度提高效果停滯在不足1.05倍外,反射亮 -44- (40) 200405042[1.04] [0.84] * The bracketed value below is the brightness ratio compared to Reference Example 3. As can be seen from Table 4, compared with the polarized light source device of Reference Example 3, the normal 1/4 wavelength retardation film SEF is added. In Comparative Example 3 after 3 40 1 3 8 except that the transmission brightness improvement effect stagnates less than 1.05 times, the reflection is bright -44- (40) 200405042

度也降低到不足〇 . 8 5倍。相較於此,對於在同一個的偏 光光源裝置增加具有正的二軸配向性的1/4波長相位差層 的實施例5〜7而言,則相較於參考例3,透過亮度提高到 1 . 〇 5倍以上,另一方面,反射亮度較參考例1降低者之相 較於參考例1的反射亮度比則在〇. 8 5倍以上,而反射亮 度的降低比例則停在1 5 %以下。因此,藉著在吸收型偏光 薄膜以及反射型偏光薄膜之外加上具有正的二軸配向性的 相位差層,可以更加提高液晶顯示裝置的亮度,連外部光 線也能夠有效地利用。 參考例4 除了將參考例3中所使用之光源裝置8 〇中的擴散片 Lightup 100TL4”改成株式會社κίΜΟΤΟ製的擴散薄膜 ’’ L i g h t u p 1 0 0 S X E ’’外’則藉由與參考例3同樣的方法來進 行評估,且將結果表示在表5。The degree is also reduced to less than 0.85 times. In comparison, in Examples 5 to 7 in which a 1/4 wavelength retardation layer having positive biaxial alignment is added to the same polarized light source device, the transmission brightness is improved to that of Reference Example 3. 1.5 times or more. On the other hand, the ratio of the reflection brightness lower than that of Reference Example 1 is 0.85 times or more, and the reduction ratio of reflection brightness is stopped at 1.5. %the following. Therefore, by adding a retardation layer having positive biaxial alignment in addition to the absorption-type polarizing film and the reflection-type polarizing film, the brightness of the liquid crystal display device can be further improved, and even external light can be effectively used. Reference Example 4 Except that the light diffusion device Lightup 100TL4 in the light source device 8 used in Reference Example 3 was changed to a diffusion film `` Lightup 1 0 0 SXE '' made by κίΜΟΤ Co., the same as the reference example 3 Evaluation was performed in the same manner, and the results are shown in Table 5.

實施例8 將由將在實施例5中所製作的積層偏光薄膜貼在 1 · 1 m m厚的玻璃板而成者以與實施例5同樣的狀態配置在 參考例4中所使用的光源裝置,而與參考例4同樣地進行 評估,且將結果表不在表5。 實施例9 將由將在實施例6中所製作的積層偏光薄膜貼在 -45- (41) (41)200405042 1 · 1 m m厚的玻璃板而成者以與實施例6同樣的狀態配置在 參考例4中所使用的光源裝置,而與參考例4同樣地進行 評估,且將結果表示在表5。 實施例1 〇 將由將在實施例7中所製作之積層偏光薄膜貼在 1 · 1 m m厚的玻璃板而成者以與實施例7同樣的狀態配置在 參考例4中所使用的光源裝置,而與參考例4同樣地進行 評估,且將結果表示在表5。 比較例4 將己積層有與在比較例3中所使用者相同之相位差薄 膜 S E F 3 4 0 1 3 8的積層偏光薄膜以與比較例3同樣的狀態 配置在參考例4中所使用的光源裝置’而與參考例4同樣 地進行評估,且將結果表示在表5。Example 8 A light source device used in Reference Example 4 was placed in the same state as in Example 5 by laminating the laminated polarizing film prepared in Example 5 on a 1.1 mm-thick glass plate. Evaluation was performed in the same manner as in Reference Example 4, and the results are not shown in Table 5. Example 9 A laminated polarizing film prepared in Example 6 was attached to a -45- (41) (41) 200405042 1 · 1 mm thick glass plate, and was placed in the same state as in Example 6 for reference. The light source device used in Example 4 was evaluated in the same manner as in Reference Example 4, and the results are shown in Table 5. Example 10 A light source device used in Reference Example 4 was placed in the same state as in Example 7 by applying the laminated polarizing film produced in Example 7 to a 1.1 mm thick glass plate. The evaluation was performed in the same manner as in Reference Example 4, and the results are shown in Table 5. Comparative Example 4 A laminated polarizing film having the same retardation film SEF 3 4 0 1 3 8 as the user used in Comparative Example 3 was laminated in the same state as that of Comparative Example 3 and the light source used in Reference Example 4 was arranged. The device was evaluated in the same manner as in Reference Example 4, and the results are shown in Table 5.

-46 - (42) 200405042 表5 第1 第2 面內 Nz 透過亮度* 反射亮度* 相位差薄膜 相位差薄膜 位相差値 係數 (cd/m2) (cd/m2) 參考例4 — — 一 一 583 288 實施例8 SEF460275 SEF340138 132nm 2.49 614 263 [1.05] [0.91] 實施例9 SEF460690 SEF460565 137nm 5.37 617 261 [1.06] [0.91] 實施例10 SEN490275 SEN340140 138nm 2.21 612 263 [1-05] [0.91] 比較例4 SEF340138 — 138nm 1.44 597 248-46-(42) 200405042 Table 5 Nz transmission brightness * reflection brightness * in the first and second planes Phase difference film Phase difference film Phase difference 値 Coefficient (cd / m2) (cd / m2) Reference Example 4 — — One 583 288 Example 8 SEF460275 SEF340138 132nm 2.49 614 263 [1.05] [0.91] Example 9 SEF460690 SEF460565 137nm 5.37 617 261 [1.06] [0.91] Example 10 SEN490275 SEN340140 138nm 2.21 612 263 [1-05] [0.91] Comparative Example 4 SEF340138 — 138nm 1.44 597 248

[1.02] [0.86] *在下段之括弧內爲相較於參考例4的亮度比[1.02] [0.86] * In the lower brackets, the brightness ratio compared to Reference Example 4

由表5可知,相較於參考例4的偏光光源裝置,加上 通常之1/4波長相位差薄膜SEF 3 40 1 3 8的比較例4,除了 提高透過亮度的效果停滯在不足1.05倍外,其反射亮度 也降低到不足〇 . 9倍。相較於此,對於在同樣的偏光光源 裝置加上具有正的二軸配向性之1 /4波長相位差層的實施 例 8〜1 0而言,則除了相較於參考例4,透過亮度提高到 1 . 0 5倍以上外,另一方面,反射亮度相較於參考例3降低 者之相對於參考例3的反射亮度比則在0.9倍以上,而反 射亮度的降低比例停在1 〇%以下。 -47- (43) 200405042 (發明的效果) 右使用本發明的積層偏光薄膜則可以提局透過型液晶 顯示裝置的透過亮度。又,若使用本發明的積層偏光薄膜 除了可以提高透過型液晶顯示裝置的透過亮度外,由於可 以提高外部光線的利用效率,因此能夠提高在屋外之顯示 畫面的視覺效果。As can be seen from Table 5, compared to the polarized light source device of Reference Example 4, and Comparative Example 4 in which a normal 1 / 4-wavelength retardation film SEF 3 40 1 3 8 is added, the effect of improving the transmission brightness stagnates less than 1.05 times. , Its reflection brightness is also reduced to less than 0.9 times. Compared to this, for Examples 8 to 10 in which the same polarized light source device is added with a quarter-wave retardation layer having a positive biaxial alignment of 1/4, in addition to the transmission brightness compared to Reference Example 4, It is increased to more than 1.0 times. On the other hand, the ratio of the reflection brightness lower than that of Reference Example 3 to that of Reference Example 3 is 0.9 times or more, and the reduction ratio of reflection brightness is stopped at 1.0. %the following. -47- (43) 200405042 (Effect of the invention) By using the laminated polarizing film of the present invention on the right, the transmission brightness of a local transmission type liquid crystal display device can be improved. In addition, by using the laminated polarizing film of the present invention, in addition to improving the transmission brightness of the transmissive liquid crystal display device, since the utilization efficiency of external light can be improved, the visual effect of a display screen outdoors can be improved.

【圖式簡單說明】 圖1爲針對本發明之積層偏光薄膜表示層構造之例子 的斷面模式圖。 圖2爲針對本發明之積層偏光薄膜表示軸構成之例子 的模式圖。 圖3爲針對已積層了吸收型偏光薄膜之本發明之積層 偏光薄膜表示軸構成的模式圖。[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view showing an example of the structure of a layer of a laminated polarizing film of the present invention. Fig. 2 is a schematic view showing an example of the axis configuration of the laminated polarizing film of the present invention. Fig. 3 is a schematic diagram showing the axis structure of the laminated polarizing film of the present invention in which an absorption-type polarizing film is laminated.

圖4爲針對本發明之積層偏光薄膜表示在已積層了光 擴散層時之層構造的例子的斷面模式圖。 圖5爲針對本發明之積層偏光薄膜表示在已積層了光 擴散層時之層構造的其他例子的斷面模式圖。 圖6爲表示本發明之液晶顯示裝置之一例的斷面模式 圖。 圖7爲表示在參考例1中經評估之偏光光源裝置之構 成的斷面模式圖。 圖8爲表示在參考例1中經評估之偏光光源裝置之構 成的斷面模式圖。 -48- (44) 200405042 圖9爲表示以往之透過型液晶顯示裝置之構成的斷面 模式圖。 圖10爲針對本發明之積層偏光薄膜表示層構成之一 例的斷面模式圖。 圖1 1爲針對本發明之積層偏光薄膜表示軸構成之例 子的模式圖。Fig. 4 is a schematic cross-sectional view showing an example of a layer structure of a laminated polarizing film of the present invention when a light diffusion layer has been laminated. Fig. 5 is a schematic sectional view showing another example of the layer structure of the laminated polarizing film of the present invention when a light diffusion layer has been laminated. Fig. 6 is a schematic sectional view showing an example of a liquid crystal display device of the present invention. Fig. 7 is a schematic sectional view showing the structure of a polarized light source device evaluated in Reference Example 1. Figs. Fig. 8 is a schematic sectional view showing the configuration of a polarized light source device evaluated in Reference Example 1. Figs. -48- (44) 200405042 Fig. 9 is a schematic sectional view showing the structure of a conventional transmissive liquid crystal display device. Fig. 10 is a schematic cross-sectional view showing an example of a constitution of a laminated polarizing film of the present invention. Fig. 11 is a schematic view showing an example of the axis configuration of the laminated polarizing film of the present invention.

圖13爲針對本發明之積層偏光薄膜表示在已積層了 光擴散層時之層構造的例子的斷面模式圖。 圖1 4爲表示本發明之液晶顯示裝置之一例的斷面模 式圖。 圖1 5爲表示在參考例3中經評估之偏光光源裝置之 構成的斷面模式圖。 圖1 6爲表示在參考例3中使用在測量亮度上之裝置 之構成的斷面模式圖。Fig. 13 is a schematic cross-sectional view showing an example of a layer structure of a laminated polarizing film of the present invention when a light diffusion layer has been laminated. Fig. 14 is a sectional view showing an example of a liquid crystal display device of the present invention. Fig. 15 is a schematic sectional view showing the configuration of a polarized light source device evaluated in Reference Example 3. Figs. FIG. 16 is a schematic cross-sectional view showing the structure of a device for measuring brightness used in Reference Example 3. FIG.

圖1 7爲表示在實施例6中經評估之偏光光源裝置之 構成的斷面模式圖。 元件對照表 1 〇 :積層偏光薄膜 20 :吸收型偏光薄膜 2 1 :反射型直線偏光薄膜 22 :低波長分散相位差薄膜 2 3 :逆波長分散相位差薄膜 2 4 :低波長分散或逆波長分散的1 / 4波長相位差薄膜 -49 - (45)200405042 2 6 :光擴散層 3 0 :液晶單元 3 0、3 1 :透明電極 3 3 :液晶層 40 :背面側吸收型偏光薄膜 4 1 :前面側吸收型偏光薄膜 42 :相位差薄膜Fig. 17 is a schematic sectional view showing the configuration of a polarized light source device evaluated in Example 6. Element comparison table 1 〇: Multilayer polarizing film 20: Absorptive polarizing film 2 1: Reflective linear polarizing film 22: Low-wavelength dispersion retardation film 2 3: Inverse-wavelength dispersion retardation film 2 4: Low-wavelength dispersion or reverse-wavelength dispersion 1/4 wavelength retardation film -49-(45) 200405042 2 6: light diffusion layer 3 0: liquid crystal cell 3 0, 3 1: transparent electrode 3 3: liquid crystal layer 40: back-side absorption type polarizing film 4 1: Front-side absorptive polarizing film 42: retardation film

5 1 :光源 5 2 :導光板 5 3 :反射板 5 4 :反射鏡 5 5 :擴散片 5 6 :透鏡片 6 1 :光源裝置 64 :偏光光源裝置5 1: Light source 5 2: Light guide plate 5 3: Reflective plate 5 4: Mirror 5 5: Diffusion sheet 5 6: Lens sheet 6 1: Light source device 64: Polarized light source device

6 7 :透過型液晶顯示裝置 8 0 :在參考例中所使用的光源裝置 8 1 :玻璃板 8 2 :感壓接著劑 8 3 :在參考例1中所評估的積層薄膜 8 5 :在參考例1中所使用的偏光光源裝置 8 6 :在實施例1中所使用的偏光光源裝置 8 7 :環狀螢光體 8 8 :環狀螢光體在點燈時的照明角度 -50- (46)200405042 8 9 :亮度計 90 :習知之透過型液晶顯示裝置 9 1 :習知之偏光光源裝置 1 〇 1 :反射型直線偏光薄膜的偏光透過軸 104: 1/4波長相位差薄膜的光軸 1 〇 5 :吸收型偏光薄膜的偏光透過軸 1 2 3 :具有正的二軸配向性的相位差層6 7: Transmissive liquid crystal display device 8 0: Light source device used in reference example 8 1: Glass plate 8 2: Pressure-sensitive adhesive 8 3: Laminated film evaluated in Reference Example 1 8 5: In reference Polarized light source device 8 6 used in Example 1: Polarized light source device 8 used in Example 1: Ring phosphor 8 8: Illumination angle of ring phosphor when lighting -50- ( 46) 200405042 8 9: Brightness meter 90: Conventional transmission type liquid crystal display device 9 1: Conventional polarization light source device 1 〇1: Polarization transmission axis of reflective linear polarizing film 104: Optical axis of 1/4 wavelength retardation film 1 〇5: Polarized light transmission axis of the absorption-type polarizing film 1 2 3: Phase difference layer with positive biaxial alignment

123a,123b:相位差薄膜 172 :反射型偏光薄膜的偏光透過軸 1 7 3 :具有正的二軸配向性的1 /4波長相位差層的光 1 8 3 :在參考例3中所評估的積層薄膜 1 8 5 :在參考例3中所使用的偏光光源裝置 1 8 6 :在實施例5中所使用的偏光光源裝置123a, 123b: retardation film 172: polarization transmission axis of reflective polarizing film 1 7 3: light of 1/4 wavelength retardation layer with positive biaxial alignment 1 8 3: evaluated in Reference Example 3 Laminated film 1 8 5: Polarized light source device used in Reference Example 3 1 8 6: Polarized light source device used in Example 5

-51 --51-

Claims (1)

(1) 200405042 拾、申請專利範圍 1 · 一種積層偏光薄膜,其特徵在於: 將吸收型偏光薄膜與反射型直線偏光薄膜如使兩者的 偏光透過軸大略成平行地實施積層,更且,則在反射型直 線偏光薄膜側將低波長分散相位差薄膜以及逆波長分散相 位差薄膜的至少一個或具有正的二軸配向性的相位差層實 施積層。(1) 200405042 Patent application scope 1 · A laminated polarizing film, characterized in that: if the polarization axis of the absorption polarizing film and the reflective linear polarizing film are laminated approximately parallel to each other, moreover, At least one of a low-wavelength dispersive retardation film and a reverse-wavelength dispersive retardation film or a retardation layer having positive biaxial alignment is laminated on a reflective linear polarizing film side. 2 ·如申請專利範圍第1項之積層偏光薄膜,相位差 薄膜具有1 /4波長的相位差,且相位差薄膜的光軸與反射 型直線偏光薄膜的偏光透過軸則大略以45°而交差。 3. 如申請專利範圍第1項之積層偏光薄膜,具有正 的二軸配向性的相位差層可當作1 /4波長相位差層來使用 而反射型直線偏光薄膜的偏光透過軸與具有正的二軸配向 性的1 /4波長相位差層的光軸則是以大略45 °或1 3 5 °交 差而實施積層。2 · If the laminated polarizing film of item 1 of the patent application, the retardation film has a phase difference of 1/4 wavelength, and the optical axis of the retardation film and the polarization transmission axis of the reflective linear polarizing film intersect at approximately 45 ° . 3. For the laminated polarizing film of the first item of the patent application, a retardation layer with positive biaxial alignment can be used as a 1/4 wavelength retardation layer. The polarization transmission axis of the reflective linear polarizing film and The optical axis of the 1/4 wavelength retardation layer of the biaxial alignment is laminated at approximately 45 ° or 1 3 5 °. 4. 如申請專利範圍第1項之積層偏光薄膜,具有正 的二軸配向性的相位差層是由1個的二軸延伸薄膜所構成 5. 如申請專利範圍第1項之積層偏光薄膜’具有正 的二軸配向性的相位差層是由至少2個的光軸不同的相位 差薄膜實施積層而成。 6. 如申請專利範圍第1項之積層偏光薄膜’至少1 個相位差薄膜是一軸延伸薄膜。 7. 如申請專利範圍第1項之積層偏光薄膜’更且’ 4 ·’> Γ\ X乃 -52- (2) 200405042 至少積層有1層的面內相位差値在30nm以下的光擴散層 8 ·如申請專利範圍第7項之積層偏光薄膜,光擴散 層具有接著性。 9 ·如申請專利範圍第1項之積層偏光薄膜,相鄰的 薄膜或層的至少一對係藉由感壓接著劑實施密接積層。 1 〇 . —種偏光光源裝置,其特徵在於:4. If the laminated polarizing film of the first scope of the patent application, the retardation layer having positive biaxial alignment is composed of a biaxially stretched film. 5. If the laminated polarizing film of the first scope of patent application ' The retardation layer having positive biaxial alignment is formed by laminating at least two retardation films having different optical axes. 6. The laminated polarizing film according to item 1 of the patent application scope. At least one retardation film is a uniaxially stretched film. 7. For example, the laminated polarizing film of the first scope of the patent application is' more and more '4' > Γ \ X 乃 -52- (2) 200405042 at least one layer of the laminated layer has an in-plane phase difference of 値 30nm or less Layer 8 · The light diffusion layer has adhesiveness, as in the laminated polarizing film of item 7 of the scope of patent application. 9 · If the laminated polarizing film according to item 1 of the patent application, at least one pair of adjacent films or layers is tightly laminated with a pressure-sensitive adhesive. 1 〇. A polarized light source device, characterized in that: 具備有第1項所記載的積層偏光薄膜、光源構件以及 反射板,該光源構件以及反射板則依照順序被配置在積層 偏光薄膜的相位差薄膜或相位差層側。 1 1. 一種液晶顯示裝置,其特徵在於: 具備有第1 〇項所記載的偏光光源裝置、液晶單元以 及前面側吸收型偏光薄膜,該液晶單元以及前面側吸收型 偏光薄膜則依照順序被配置在偏光光源裝置的積層偏光薄 膜側。The laminated polarizing film, the light source member, and the reflecting plate according to the first item are provided, and the light source member and the reflecting plate are arranged in order on the retardation film or retardation layer side of the laminated polarizing film. 1 1. A liquid crystal display device comprising the polarized light source device described in Item 10, a liquid crystal cell, and a front-side absorption polarizing film, and the liquid crystal cell and the front-side absorption polarizing film are arranged in order. On the side of the laminated polarizing film of the polarized light source device. 12.如申請專利範圍第 π項之液晶顯示裝置,在液 晶單元與前面側吸收型偏光薄膜之間實施積層有面內相位 差値在30nm以下的光擴散層。 1 3 .如申請專利範圍第1 1項之液晶顯示裝置,從積層 偏光薄膜到前面側吸收型偏光薄膜之各構件的相鄰的至少 一對則藉由感壓接著劑實施密接積層。 -53-12. For a liquid crystal display device with a scope of application of patent No. π, a light diffusing layer having an in-plane phase difference of 30 nm or less is laminated between the liquid crystal cell and the front-side absorption type polarizing film. 13. In the case of a liquid crystal display device according to item 11 of the patent application scope, at least one pair of adjacent members of each member from the laminated polarizing film to the front-side absorptive polarizing film is tightly laminated with a pressure-sensitive adhesive. -53-
TW092118109A 2002-07-05 2003-07-02 Laminated polarizing film, polarizing light source device and liquid crystal display device TW200405042A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002197133A JP2004037988A (en) 2002-07-05 2002-07-05 Laminated polarizing film and its application to optical device
JP2002271295A JP2004109424A (en) 2002-09-18 2002-09-18 Laminated polarizing film, polarizing light source device and liquid crystal display device

Publications (1)

Publication Number Publication Date
TW200405042A true TW200405042A (en) 2004-04-01

Family

ID=37314990

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092118109A TW200405042A (en) 2002-07-05 2003-07-02 Laminated polarizing film, polarizing light source device and liquid crystal display device

Country Status (2)

Country Link
KR (1) KR20040004138A (en)
TW (1) TW200405042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767320A (en) * 2019-05-03 2021-12-07 3M创新有限公司 Optical system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831480B1 (en) * 2006-07-24 2008-05-21 주식회사 에이스 디지텍 Method for manufacturing of anti-reflective compensation film
JP6032452B2 (en) 2013-09-30 2016-11-30 エルジー・ケム・リミテッド Optical element
KR102126711B1 (en) 2015-12-24 2020-06-25 주식회사 엘지화학 Polarizing Element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767320A (en) * 2019-05-03 2021-12-07 3M创新有限公司 Optical system

Also Published As

Publication number Publication date
KR20040004138A (en) 2004-01-13

Similar Documents

Publication Publication Date Title
TW557371B (en) Semi-transparent-semi-reflectivity film, semi- transparent-semi-reflectivity polarized film, polarized light device using these films, and liquid crystal display device using these films
JP4122808B2 (en) Liquid crystal display device and electronic device
TWI288283B (en) Liquid crystal display device
JP3790775B1 (en) Liquid crystal display
TW578024B (en) Transflective polarizing element
JP6126016B2 (en) Optical film laminate
JP4271951B2 (en) Elliptical polarizing plate and liquid crystal display device
CN106932964A (en) Optical film
JP2004354678A (en) Polarizing light source device and liquid crystal display
JP4225042B2 (en) Transflective and semi-reflective polarizing film, and polarized light source device and liquid crystal display device using the same
US6831713B2 (en) Polarizing plate having all surfaces and sides covered with low moisture-permeable layers and liquid crystal display using the same
WO2002084389A1 (en) Translucent reflective liquid crystal display
JP3916857B2 (en) Polarizing plate and liquid crystal display device using the same
JP2002341343A (en) Lighting device and liquid crystal display device
WO2012005050A1 (en) Liquid crystal display device
JP2002258051A (en) Polarizing plate and liquid crystal display device using the same
US7355663B2 (en) Polarizing plate and liquid crystal display using the same
JP2004038064A (en) Laminated polarizing film, polarizing light source device, and liquid crystal display device
JP2004037988A (en) Laminated polarizing film and its application to optical device
TW200405042A (en) Laminated polarizing film, polarizing light source device and liquid crystal display device
US20030086170A1 (en) Polarizing plate and a liquid crystal display using the same
JP2003177236A (en) Interference semitransmissive reflection plate and polarizing plate attached with interference semitransmissive reflection plate using the same, transflective liquid crystal substrate and transflective liquid crystal display device
JP2001235623A (en) Semi-permeable half reflective polarizing element
JPH1164631A (en) Polarizing means, liquid crystal device and electronic equipment
US20030152717A1 (en) Optical film and liquid crystal display using the same