TW200402075A - Electrolytic condenser drive electrolyte and electrolytic condenser using the same - Google Patents

Electrolytic condenser drive electrolyte and electrolytic condenser using the same Download PDF

Info

Publication number
TW200402075A
TW200402075A TW92114898A TW92114898A TW200402075A TW 200402075 A TW200402075 A TW 200402075A TW 92114898 A TW92114898 A TW 92114898A TW 92114898 A TW92114898 A TW 92114898A TW 200402075 A TW200402075 A TW 200402075A
Authority
TW
Taiwan
Prior art keywords
acid
electrolytic
driving
electrolytic solution
component
Prior art date
Application number
TW92114898A
Other languages
Chinese (zh)
Other versions
TWI271760B (en
Inventor
Hiroyuki Matsuura
Yuichiro Tsubaki
Hisao Nagara
Yukihiro Nitta
Original Assignee
Matsushita Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd filed Critical Matsushita Electric Ind Co Ltd
Publication of TW200402075A publication Critical patent/TW200402075A/en
Application granted granted Critical
Publication of TWI271760B publication Critical patent/TWI271760B/en

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention is to provide an electrolytic solution for driving electrolytic condensers, which has low impedance and long period stabilized performance and high reliability even at an high temperature atmosphere, and an electrolytic condenser. The electrolytic solution for driving electrolytic condensers comprises water as the main solvent, carboxylic acid and/or inorganic acid as the acidic component of the electrolyte, and ammonium as the basic component, and has a pH at 30 DEG C in the range of 6.0 to 8.5. An electrolytic condenser is made by using the electrolytic solution.

Description

200402075 玖、發明說明: (一) 發明所屬之技術領域 本發明之目的爲提供低阻抗、即使於高溫環境下也具有 長期安定性的可靠性高之電解電容器驅動用電解液及電解電 容器。 (二) 先前技術 迄今,在低阻抗用的電解電容器中,作爲電解電容器驅 動用的電解液(以下稱爲「電解液」係正被使用著,其使用γ-丁內酯當作溶劑,以苯二甲酸或馬來酸的四級銨鹽當作電解 ® 質(溶質)。又,近年來,集中注意於以乙二醇和水當作溶劑 的電解液。 然而,使用γ-丁內酯當作溶劑且以四級銨鹽當作電解質 的電解液之電解電容器,係具有高的導電度,雖然在高溫環 境下亦能得到的穩定的可靠性,但是在濕度高的環境下連續 通電時,在陰極所生成的鹼成分會侵蝕封口體,而有電解液 漏出電容器外部的問題。另一方面,使用乙二醇和水的電解 φ 電容器雖然具有高的導電度,但是在使用鋁電極的電解容器 器時,有在高溫環境下不能得而穩定可靠性的問題。即,在 高溫環境下,水與鋁電極係發生水合反應而使特性急據劣 化,不能滿足所要求的性能。 (三) 發明內容 發明槪述 本發明的電解電容器驅動用電解液係以水當作主溶劑, -6 - 200402075 電解質的酸成分係羧酸及/或無機酸,鹼成份係銨,其特徵在 於該電解液包含氨以外的鹼性化合物,而且30°C時的電解液 之pH爲在6.0〜8.5的範圍內。藉由該構些,以水當作主溶劑, 可以得到高的導電性,在30°C的pH爲在6.0〜8 ·5的範圍內, 於使用於電解電容器時,即使在高溫環境下驅動,也能抑制 由於電極箔的水合所產生的劣化,而得到安定的性能。 在該電解電容器驅動用電解液中,相對鹼成分的銨,未 解離的羧酸基上’較宜爲加有等莫耳量以上的氨以外之鹼性 化合物。藉由該構成,以鹼成分來中和酸成分,而可以更加 抑制電極箔的氧化反應,再者,即使於高溫環境下銨被蒸發 的情況中,由於過剩存在的鹼成分可以中和酸成分,故能抑 制電極箔的急劇氧化反應。 又,氨以外的鹼性化合物係爲選自於銨化合物、胺化合 物、咪唑啉化合物、吡啶化合物、鹼金屬化合物中的至少一 種化合物時,由於該些鹼性化合物係比氨更熱安定的,因此 在高溫環境下的蒸散少,可抑制電解液的pH之酸性傾向。 又,氨以外的鹼性化合物係爲選自於羥基銨、二羥基銨、 甲胺、乙胺、乙醇胺、羥甲基胺基甲烷、二羥甲基胺基甲烷、 三羥甲基胺基甲烷、三羥乙基胺基甲烷、二甲胺、二乙胺、 二乙醇胺、三甲胺、三乙胺、三乙醇胺、四甲銨、四乙銨、 I,2,3,4-四甲基咪唑啉、1-甲基吡啶中的至少一種化合物時, 係可更適合使用的。 又,酸成分的羧酸係爲選自於甲酸、醋酸、乳酸、羥乙 -7 - 200402075 酸、草酸、琥珀酸、丙二酸、己二酸、苯甲酸、水楊酸、對 硝基苯甲酸、戊二酸、壬二酸、乙二胺二乙酸、乙二胺四乙 酸、三甲基己二酸、1,6-癸二羧酸、1,7-辛二羧酸、丁基辛 二羧酸、癸二酸中的至少一種時,則在使用於電解電容器時, 係能提高電極箔上所形成的氧化皮膜之修復性,能抑制電極 箔的水合劣化。 又,酸成分的無機酸係爲選自於磷酸、亞磷酸、次磷酸、 硼酸、胺磺酸中的至少一種時,則在使用於電解電容器時, 係具有高的導電度,即使在高溫環境中也可能得安定的可靠 性。 本發明的電解電容器之第1態樣的特徵爲:使電解紙介 於陽極箔與陰極箔之間而捲成元件,將此元件浸於驅動用電 解液中,插入殼體內,以封口體來密封而成爲電解電容器, 上述封口體係由異丁烯異戊二烯橡膠、乙烯丙烯三元共聚物 或其混合物所形成,而且任意部位的硬度係在 65〜100 IRHD(國際橡膠硬度單位)的範圍內,上述驅動用電解液之特 徵爲如上述所構成的電解電容器驅動用電解液。藉由該構 成,可以抑制經時的封止力之降低,以防止水的透過,而能 得到特性變化少的高可靠性電解電容器。 又,本發明的電解電容器之第1態樣的特徵爲:電解電 容器包括由形成有氧化皮膜的鋁箔所構成的陽極箔,由鋁箔 所構成的陰極箔,及含驅動用電解液的電解紙,上述驅動用 電解液係爲如申請專利範圍第1〜6項中任一項所記載的電解 -8- 200402075 液。藉由該構成,經鋁氧化皮膜和吸附於鋁上的磷原子,可 、 以提高陽極箔和陰極箔的耐水性’而且能得到一種電解電容 器,其爲低阻抗且即使在高溫環境中亦能實現安定的驅動。 如上述的本發明,電解電容器驅動用電解液係以水當作 主溶劑,電解質的酸成分係羧酸及/或無機酸,鹼成份係銨, 含有氨以外的鹼性化合物,而且在30°C的pH爲在6.0〜8·5 的範圍內,使用其的電解電容器係具有低阻抗而且即使在高 溫環境下亦難以發生電極劣化’而可成爲高性能的電解電容 · 器。 (四)實施方式 發明的實施形態 ~ 以下詳細說明本發明。 本發明的電解電容器驅動用電解液係以水當作主溶劑, 電解質的酸成分係羧酸及/或無機酸,鹼成份係銨。由於使用 水當作主溶劑,故能得到高的導電性,於使用於電解電容器 φ 時,可謀求低阻抗。然而,如上述習知例地使用含水的電解 液之鋁電解電容器,在高溫環境下被驅動時,通常構成電極 的鋁箔與水會發生激烈反應,產生氣體,而引動安全閥,發 生不合適情況。又,在高溫環境下,用作爲溶質的氨係低沸 點,因此選擇地蒸散,使電解液的pH傾向於酸性側’鋁的 溶解反應變成激烈的。 因此,本發明的電解液含有氨以外的鹼性化合物’而且 -9- 200402075 將30°C的pH調整在6.0〜8.5的範圍內,以能抑制鋁電極的 水合劣化。由於鹼性化合物係比氨更熱安定的,因此即使在 高溫環境下也蒸散少,能抑制電解液的PH之酸性傾向。氨 以外的鹼性化合物之添加量,係對應於電解液中所含有的氫 離子濃度來適當地調整,以使在30°C的pH爲在6.0〜8.5的 範圍內。當電解液的pH低於6· 0時’酸所導致的鋁之氧化 反應係進行著,而容易發生電極的水合劣化,當PH超過8·5 時,鹼所導致的鋁之溶解反應係進行著,而容易發生電極劣 $ 化。因此,於30°C時電解液的pH必須在6.0至8.5的範圍 內。 又,相對於鹼性成分的銨,若將氨以外的鹼性化合物以 等莫耳量以上加到未解離的羧酸中之羧基,則酸成分可被鹼 成分所中和,能抑制酸成分所致的鋁之氧化反應。又,於氨 在高溫環境下蒸散的情況中,由於藉由過剩存在的鹼成分來 中和酸成分,故可抑制在高溫環境下急劇的鋁之氧化反應。 因此,使用本發明的電解液之電解電容器,由於使用水 φ 當作溶劑,故具有高的導電性,又藉由添加氨以外的鹼性化 合物,而將30°C時電解液的pH調整在6·0〜8.5的範圍內, 故抑制由於電解箔的水合所導致的劣化’而具有高的阻抗, 而且即使在高溫環境下,亦爲具有長期間安定性質的可靠性 高之電解電容器, 詳而言之,本發明的電解液係以水當作溶劑,溶劑中的 水含有率係3 5〜1 0 0重量%。當溶劑中的水含有率低於3 5重 200402075 量%時,導電度降低,比電阻增加,僅能得到與使用γ- 丁內 酯溶劑的習知電解液同樣程度的特性。 與水一起使用的溶劑例如爲甲醇、乙醇、丙醇、丁醇、 環丁醇、環己醇、乙二醇、丙二醇、丙三醇、甲基溶纖劑、 乙基溶纖劑、甲氧基丙二醇等的醇類’或非質子性有機溶劑。 非質子性有機溶劑例如爲Ν-甲基甲醯胺、Ν,Ν-二甲基甲醯 胺、Ν-乙基甲醯胺、Ν,Ν-二乙基甲醯胺、Ν-甲基乙醯胺、Ν,Ν-二甲基乙醯胺等的醯胺系有機溶劑,含α-戊內酯、γ-戊內酯 0 等的內酯類之有機溶劑,碳酸伸乙酯、碳酸伸丙酯等的環狀 醯胺系有機溶劑,乙腈等的腈系有機溶劑,二甲亞碾等的氧 化物系有機溶劑,3-甲基-1,3-噁唑啶-2-酮、1,3-二乙基-2-咪 唑啉酮、1,3-二丙基-2-咪唑啉酮、1-甲基-3-乙基-2-咪唑啉 酮、1,3,4-三甲基-2-咪唑啉酮、1,3,4,5-四甲基-2-咪唑啉酮 等的咪唑啉酮系有機溶劑。 本發明中的電解液之電解質(溶質)係爲酸成分的羧酸及/ 或無機酸與鹼性成分的銨(氨或氨水)之鹽,其在電解液中的 φ 含量通常爲10〜95重量%,較佳20〜9 0重量%。若電解質的 含量低於1 〇重量%或超過95重量%時,則導電度顯著降低。 使用羧酸作爲酸成分係能提高鋁的氧化皮膜之修復性, 而可能抑制水合劣化。又,若倂用分子量比己二酸分子量(146) 小的酸和分子量比己二酸分子量大的酸,則能得到高導電度 化和局溫安定化之兩特性優良的電解液。 本發明之電解液中所使用的羧酸係爲2〜4元的多羧酸或 200402075 單羧酸。2〜4元的多羧酸例如爲脂肪族多羧酸、芳香族多竣 酸、脂環族多羧酸及此等之烷基(碳數1〜3)取代物或硝基取 代物或含硫物。脂肪族多羧酸例如爲草酸、丙二酸、號拍酸、 戊—酸、己一酸、庚一酸、半一酸、壬二酸、癸二酸、二甲 基己二酸、1,6-癸二羧酸、1,7-辛二羧酸、5,6_癸二竣酸、丁 基辛一殘酸、乙一肢一乙酸、氰基三乙酸、乙二胺四乙酸、 N,N-雙-2-羥乙基甘胺酸等的飽和多羧酸,或馬來酸、富馬酸、 伊康酸等的不飽和多羧酸。芳香族多羧酸例如爲醜酸、異醜 酸、對酞酸、偏苯三甲酸、均苯四甲酸等,或環己院二殘 酸、環己烯-1,2-二羧酸等的脂環族多羧酸,或六羥基酞酸及 此等多羧酸的烷基(碳數1〜3)取代物或檸康酸、二甲基馬來 酸、硝基酞酸(3_硝基酞酸、4-硝基酞酸等的硝基取代物), 或硫代丙酸等的含硫多羧酸。 單殘酸例如爲碳酸1〜3 0的脂肪族單殘酸、芳香族單竣酸、 含氧殘酸等。脂肪族單殘酸例如爲甲酸、乙酸、丙酸、丁酸、 異丁酸、戊酸、己酸、庚酸、辛酸、壬酸、月桂酸、肉豆蔻 馨 酉欠、硬β曰酸、一十一酸寺的飽和單竣酸,或丙烯酸、甲基丙 烯酸、油酸等的不飽和單羧酸。芳香族單羧酸例如爲苯甲酸、 鄰硝基苯甲酸、對硝基苯甲酸、桂皮酸、萘甲酸等。含氧羧 酸例如爲水楊酸、扁桃酸、間苯二酚酸等。 於本發明中,上述羧酸之中特佳爲選自於甲酸、醋酸、 乳酸、羥乙酸、草酸、琥珀酸、丙二酸、己二酸、苯甲酸、 水楊酸、對硝基苯甲酸、戊二酸、壬二酸、乙二胺二乙酸、 200402075 乙二胺四乙酸、三甲基己二酸、1,6-癸二羧酸、ι,7-辛二羧 酸、丁基辛二羧酸、癸二酸中的至少一種。 作爲酸成分而使用無機酸較佳係選自於磷酸、亞磷酸、 次磷酸、硼酸、胺磺酸中的至少一種。使用該等無機酸係能 實現與上述羧酸同樣的高導電度化和高溫安定化之兩特性優 良的電解液。 本發明中所使用之氨以外的鹼性化合物例如爲銨化合 物、胺化合物、咪唑啉化合物、吡啶化合物、鹼金屬化合物, 可單獨使用它們或可使用混合物。 具體地,銨化合物例如爲羥基銨、二羥基銨等。 胺化合物例如爲一級胺類的甲胺、乙胺、乙醇胺、羥甲 基胺基甲烷、二羥甲基胺基甲烷、三羥甲基胺基甲烷、三羥 乙基胺基甲烷,二級胺類的二甲胺、二乙胺、二甲醇胺、二 乙醇胺,三級胺類的三甲胺、二甲基乙胺、甲基二乙胺、三 乙胺、三乙醇胺、二甲基正丙胺、二甲基異丙胺、甲基乙基 正丙胺、甲基乙基異丙胺、二乙基正丙胺、二乙基異丙胺、 三正丙胺、三異丙胺、三正丁胺、三第三丁胺等,四級銨鹽 類的四甲銨、四乙銨,含苯基的胺類之二甲基苯胺、甲基乙 基苯胺、二乙基苯胺等。 咪唑啉化合物例如爲1,8-二氮雜環[5,4,0]十一烯-7、1,5-二氮雜環[4,3,0]壬烯-5,1,2-二甲基咪唑啉、1,2,4-三甲基咪 唑啉、卜甲基-2 -乙基咪唑啉、1,4 -二甲基-2 -乙基咪唑啉、 1,2,3,4-四甲基咪唑啉、丨_甲基-2-庚基咪唑啉、1-甲基-2-(3、 200402075 庚基)咪唑啉、1-甲基-2-十二基咪唑啉、1,2-二甲基-l,4,5,6-四氫嘧啶、1-甲基咪唑、1 -甲基苯並咪唑等 吡啶化合物例如爲1 -甲基吡啶、1 -乙基吡啶、1 -甲基-3 -乙基吡啶等。 驗金屬化合物例如爲氫氧化鉀、氫氧化鈉、氫氧化鋰等。 上述氨以外的鹼性化合物中,較佳爲使用至少一種選自 本發明中的羥基銨、二羥基銨、甲胺、乙胺、乙醇胺、經甲 基胺基甲烷、二羥甲基胺基甲烷、三羥甲基胺基甲烷、三羥 乙基胺基甲烷、二甲胺、二乙胺、二乙醇胺、三甲胺 '三乙 胺、三乙醇胺、四甲銨、四乙銨、1,2,3,4 -四甲基咪唑啉、1_ 甲基吡啶中的至少一種。 再者,在本發明的電解液中,只要不損害物性,則可更 添加各種添加劑。添加劑例如爲磷酸酯等的磷系化合物、硼 酸與多糖類(甘露糖醇、山梨糖醇等)的絡合物、硼酸與多元 醇(乙二醇、丙三醇等)的絡合物等的硼酸系化合物、鄰硝基 酚、間硝基酚、對硝基酚等的硝基化合物。添加該等添加劑, 則能提高電解液的火花電壓,故係較宜的。 又,本發明的電解電容器係使用如上述所構成的電解電 容器驅動用電解液。 具體地,使電解紙介於陽極箔與陰極箔之間而捲成元件, 將此元件浸於如上述構成的本發明驅動用電解液中,插入殻 體內’以封口體來密封而成爲電解電容器。於本發明中,封 口體較佳係由異丁烯異戊二烯橡膠、乙烯丙烯三元共聚物及 200402075 其混合物所形成,而且任意部位的硬度係在65〜100 IRHD(國 際橡膠硬度單位)的範圍內。若封口體的硬度低於65 IRHD ’ 則在高溫下內壓上升的情況中,由於密封力不夠,而發生由 封口部漏出液體。若封口體的硬度超過100 IRHD,則在高 溫下的彈性率降低,而在封口體發生龜裂,發生漏液。 若如上述地構成,則經時的密封力不會發生降低,故即 使在高溫環境下,亦能防止電解液由導線部漏出,而能抑制 特性的變化,得到可靠性高的電容器。又,若封口體的至少 一部分之硬度爲75 IRHD以上,則在內部壓力上升時易發生 的封口面之外觀變形係可藉由封口體本身所具有的物理強度 來抑制。 又,本發明的電解電容器之其它構造例如包括由形成有 氧化皮膜的鋁箔所構成的陽極箔,由鋁箔所構成的陰極箔, 及電解液。在上述電解電容器中,使用上述所構成的本發明 之電解液,陽極箔和陰極箔的表面係經磷酸所處理。 如此,若使用經磷酸處理的陽極箔和陰極箔當作電極箔, 則由於磷原子吸附於鋁氧化皮膜和鋁上,而能提高耐水性, 在如本發明使用pH範圍爲6.0〜8.5的電解液之電解電容器 中’係能實現優良的耐水性效果。 又,於本發明中,亦可組合如上述之具有特別物性的封 口體、經磷酸所處理的陽極箔和陰極箔表面之構造,以成爲 電解電容器。 以下,藉由藉由實施例來具體說明本發明,惟本發明不 200402075 受其所限制。而且,在以下實施例、比較例中,各種物性質 的測定係根據以下方法來進行。 (1) 比電阻(Ωοιη):使用比導電度測定裝置及測定單元,測量 溫度被調整至30°C的電解液之導電度,以其倒數當作比電 阻而計算出。 (2) pH(-):使用pH測定裝置,測量溫度被調整至3〇t:的電 解液之pH。 (3) 靜電容量Cap(gF):根據JIS C5120中所記載的方法來測 量。 (4) 介電損失之正切Tan5(%):根據JIS C5120中所記載的方 法來測量。 (5) 漏電流LC(pC):根據JIS C5 120中所記載的方法來測量。 (6) 靜電容量的變化率(%):計算初期的靜電容量與試驗彳奏@ 靜電容量之差異的百分率。 (7) 硬度(IRHD):以瓦雷斯硬度計來測量。 (8) 阻抗(ιηΩ):使用 HEWLETT PACKAD 公司製的 precisi〇n LCR METER 42 83A,於頻率數 120kHz、電壓 〇.5Vrms 的 條件下進行測量。測定回路係使用交流電橋法。 表1中顯示以下實施例、比較例中所使用的電解液之組 成和物性。 -16- 200402075 (表 1) 1/3 電解液組成 (括弧內的數値係重量%) A B (IRHD) C (Ωοτη) pH (30°C) 實施例1 I 水(70) 乙二醇(15) 有 75 18 8.5 II 甲酸銨(5) 己二酸2銨(6) III 三乙醇胺(4) 實施例2 I 水(60) 乙二醇(18) 有 75 21 6.4 II 甲酸銨(5) 己二酸2銨(5) 1,6-十二碳二竣酸2胺(8) III 三乙胺(4) 實施例3 I 水(70) 乙二醇(8) 有 75 13 7.1 II 甲酸銨(8) 己二酸2銨(5) 1,7-辛二羧酸2胺(5) 乙二胺四乙酸2銨(2) III 三羥甲基胺基甲烷P) 實施例4 I 水(70) 乙二醇(6) 有 75 16 8.5 II 甲酸銨(8) 己二酸2銨(5) 1,7-辛二羧酸2胺(5) 乙二胺四乙酸2銨(2) III 三羥甲基胺基甲烷(4) 實施例5 I 水(50) 乙二醇(30) 有 75 40 6.2 II 己二酸銨(5) 1,7-辛二羧酸2胺(5) 三甲基己二酸(5) 次磷酸(3) III 羥基銨(2) 實施例6 I 水(70) 丙三醇(5) 有 75 20 6.0 II 醋酸銨(10) 己二酸2銨(5) 戊二酸(8) III 二乙醇胺(2) I =溶劑 II :酸/鹼成分 III :鹼性化合物 A :陽極箔、陰極箔的磷酸處理之有無 B:封口橡膠的硬度 C :比電阻 200402075 (表 1) 2/3 電解液組成 (括弧內的數値係重量%) A Β (IRHD) C (Ωογπ) PH (30°C) I 水(50) 乙二醇(25) 實施例7 II 甲酸銨(7) 己二酸2銨(10) 1,7-辛二羧酸2胺(5) 有 75 28 6.7 III 1,2,3,4-四甲基咪唑啉(3) I 水(40) 乙二醇(35) 實施例8 II 甲酸銨(11) 丁基辛二羧酸銨(13) 有 75 33 7.9 III 氫氧化餅(1) I 水(70) 乙二醇(15) 實施例9 II 硼酸銨(7) 癸二酸銨(7) 有 75 22 6.5 III 四乙銨(1) I 水(70) 乙二醇(8) 實施例 10 II 甲酸銨(8) 己二酸2銨(5) 1,7-辛二羧酸2胺(5) 次磷酸銨(1) 有 75 13 8.5 III 三羥甲基胺基甲烷(3) I 水(70) 乙二醇(8) 實施例 11 II 甲酸銨(8) 己二酸2胺(5) 1,7-辛二羧酸2胺(5) 次磷酸銨(1) Μ j \ \\ 75 13 8.5 III 三羥甲基胺基甲烷(3) I 水(70) 乙二醇(8) 實施例 12 II 甲酸銨(8) 己二酸2銨(5) 1,7-辛二羧酸2胺(5) 次磷酸銨(1) 有 60 13 8.5 III 三羥甲基胺基甲烷(3) I :溶劑 II :酸/驗成分 III :鹼性化合物 A :陽極箔、陰極箔的磷酸處理之有無 B:封口橡膠的硬度 C :比電阻 200402075 (表 1) 3/3 電解液組成 (括弧內的數値係重量%) A B (IRHD) C (Ωογω) pH (30°〇 比較例1 I 水(70) 乙二醇(19) 有 75 17 7.0 II 甲酸銨(5) 己二酸2銨(6) I 水(70) 乙二醇(15) 比較例2 II 甲酸銨(5) 己二酸(6) 有 75 20 5.5 III 三乙醇胺(0.5) I 水(70) 乙二醇(15) 比較例3 II 甲酸銨(5) 己二酸(6) 有 75 21 9.3 III 三乙醇胺(10) 比較例4 I 水(20) 乙二醇(69) 有 75 71 6.6 II 甲酸銨(5) 己二酸(6) I =溶劑 II :酸/鹼成分 III :鹼性化合物 A :陽極箔、陰極箔的磷酸處理之有無 B:封口橡膠的硬度 C :比電阻 200402075 實施例1〜實施例1 0 使用表1中所示組成及物性的電解液,使電解紙介於陽 極箔與陰極箔之間而捲起,浸在電解液中以製作元件。然後, 分別由陽極箔和陰極箔拉出端子電極,插入鋁殻體內’以封 口橡膠來密封。封口橡膠係使用硬度75 IRHD的過氧化物過 硫之丁基橡膠。構成電極箔的鋁箔和形成有氧化皮膜的鋁箔 係在6(TC的磷酸3%水溶液中被浸漬2分鐘以施予磷酸處理。 所得到的電解電容器之額定電壓爲 6.3V,靜電容量爲 1500pF,尺寸·· c()10mmxL16mmo 製作10個該鋁電解電容器,測量在10 5 °C 3 0 0 0小時的高 溫負荷特性,求得其之平均値。 表2中顯示所得到的鋁電解電容器之測定結果。200402075 (1) Description of the invention: (1) Technical field to which the invention belongs The purpose of the present invention is to provide a low-impedance, high-reliability electrolytic capacitor driving electrolyte and electrolytic capacitor with long-term stability even in a high-temperature environment. (2) Prior art So far, in electrolytic capacitors for low impedance, an electrolytic solution for driving electrolytic capacitors (hereinafter referred to as "electrolyte") is being used, which uses γ-butyrolactone as a solvent, The quaternary ammonium salt of phthalic acid or maleic acid is used as the electrolyte (solute). Also, in recent years, attention has been focused on electrolytic solutions using ethylene glycol and water as solvents. However, γ-butyrolactone is used as Electrolytic electrolytic capacitors using quaternary ammonium salts as solvents and electrolytes with high quaternary ammonium salts have high electrical conductivity. Although stable reliability can also be obtained in high temperature environments, when continuous power is applied in high humidity environments, The alkaline component generated at the cathode will erode the sealing body and cause the electrolyte to leak out of the capacitor. On the other hand, although electrolytic φ capacitors using ethylene glycol and water have high conductivity, they are used in electrolytic containers with aluminum electrodes. It has the problem of stability and reliability when it is not available under high temperature environment. That is, under high temperature environment, the hydration reaction between water and aluminum electrode system causes the characteristics to deteriorate rapidly, which cannot meet the requirements. (3) Summary of the Invention The invention is described in the electrolytic capacitor driving electrolyte of the present invention using water as the main solvent, -6-200402075 the acid component of the electrolyte is carboxylic acid and / or inorganic acid, and the alkali component is ammonium. It is characterized in that the electrolyte contains alkaline compounds other than ammonia, and the pH of the electrolyte at 30 ° C is in the range of 6.0 to 8.5. By using this structure, water can be used as the main solvent to obtain high Electrical conductivity, pH range of 6.0 ~ 8 · 5 at 30 ° C. When used in electrolytic capacitors, even if driven in a high temperature environment, it can suppress deterioration due to hydration of the electrode foil and obtain stability. In the electrolytic solution for driving an electrolytic capacitor, it is more preferable that an alkaline compound other than ammonia is added to an undissociated carboxylic acid group with respect to ammonium having an alkaline component. With this configuration, The alkaline component is used to neutralize the acid component, which can further suppress the oxidation reaction of the electrode foil. Furthermore, even in the case of ammonium being evaporated in a high temperature environment, the excess alkaline component can neutralize the acid component, so it can be suppressed. The rapid oxidation reaction of the polar foil. When basic compounds other than ammonia are at least one compound selected from the group consisting of ammonium compounds, amine compounds, imidazoline compounds, pyridine compounds, and alkali metal compounds, these basic compounds are It is hotter and stable than ammonia, so it has less evapotranspiration in high temperature environments, and can suppress the acidic tendency of the pH of the electrolyte. In addition, basic compounds other than ammonia are selected from the group consisting of hydroxyammonium, dihydroxyammonium, methylamine, and ethyl. Amine, ethanolamine, methylolaminomethane, dimethylolaminomethane, trimethylolaminomethane, trimethylolaminomethane, dimethylamine, diethylamine, diethanolamine, trimethylamine, trimethylamine In the case of at least one compound among ethylamine, triethanolamine, tetramethylammonium, tetraethylammonium, I, 2, 3, 4-tetramethylimidazoline, and 1-methylpyridine, it is more suitable for use. The carboxylic acid component is selected from formic acid, acetic acid, lactic acid, hydroxyethyl-7-200402075 acid, oxalic acid, succinic acid, malonic acid, adipic acid, benzoic acid, salicylic acid, p-nitrobenzoic acid, pentyl Diacid, azelaic acid, ethylenediamine diacetic acid, ethylenediamine When at least one of amine tetraacetic acid, trimethyladipic acid, 1,6-sebacic acid, 1,7-octanedicarboxylic acid, butyloctanedicarboxylic acid, and sebacic acid is used, it is used in electrolysis. In the case of a capacitor, it can improve the repairability of the oxide film formed on the electrode foil, and can suppress the hydration degradation of the electrode foil. In addition, when the inorganic acid of the acid component is at least one selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, boric acid, and sulfamic acid, when used in electrolytic capacitors, it has high conductivity, even in high temperature environments. It may also have a stable reliability. The first aspect of the electrolytic capacitor of the present invention is characterized in that: an electrolytic paper is interposed between an anode foil and a cathode foil to form a component, and the component is immersed in a driving electrolyte, inserted into a casing, and sealed with a sealing body. It is sealed to become an electrolytic capacitor. The above sealing system is formed of isobutylene isoprene rubber, ethylene propylene terpolymer or a mixture thereof, and the hardness of any part is in the range of 65 ~ 100 IRHD (International Rubber Hardness Unit). The driving electrolyte is characterized by the electrolytic capacitor driving electrolyte configured as described above. With this configuration, it is possible to suppress a decrease in the sealing force with time, prevent water from permeating, and obtain a high-reliability electrolytic capacitor with little change in characteristics. The first aspect of the electrolytic capacitor of the present invention is characterized in that the electrolytic capacitor includes an anode foil composed of an aluminum foil formed with an oxide film, a cathode foil composed of an aluminum foil, and an electrolytic paper containing a driving electrolyte, The above-mentioned driving electrolyte is an electrolytic-8-200402075 solution as described in any one of claims 1 to 6. With this configuration, the aluminum oxide film and phosphorus atoms adsorbed on aluminum can improve the water resistance of the anode foil and the cathode foil, and an electrolytic capacitor can be obtained which has a low impedance and can be used even in a high temperature environment. Drive for stability. As described in the present invention, the electrolytic solution for driving electrolytic capacitors uses water as the main solvent, the acid component of the electrolyte is carboxylic acid and / or inorganic acid, and the alkaline component is ammonium, which contains basic compounds other than ammonia, and the temperature is 30 °. The pH of C is in the range of 6.0 to 8.5. Electrolytic capacitors using it have low impedance and are unlikely to undergo electrode degradation even in high-temperature environments, and can become high-performance electrolytic capacitors. (4) Embodiments Embodiments of the invention ~ The present invention will be described in detail below. The electrolytic solution for driving an electrolytic capacitor of the present invention uses water as a main solvent, the acid component of the electrolyte is a carboxylic acid and / or an inorganic acid, and the alkaline component is ammonium. Since water is used as the main solvent, high conductivity can be obtained, and when used for electrolytic capacitors φ, low impedance can be achieved. However, as the above-mentioned conventional aluminum electrolytic capacitors using an aqueous electrolyte are driven in a high-temperature environment, the aluminum foil that constitutes the electrode usually reacts violently with water to generate gas, and the safety valve is actuated, which causes inappropriate conditions. . In addition, the ammonia-based low-boiling point used as a solute in a high-temperature environment is selectively evapotranslated, so that the pH of the electrolytic solution tends to be acidic. The dissolution reaction of aluminum becomes intense. Therefore, the electrolytic solution of the present invention contains a basic compound other than ammonia ', and the pH of 30 ° C is adjusted in the range of 6.0 to 8.5 to suppress the hydration degradation of the aluminum electrode. Since alkaline compounds are more thermally stable than ammonia, they have less evapotranspiration even in high-temperature environments, and can suppress the acidic tendency of the pH of the electrolyte. The addition amount of basic compounds other than ammonia is appropriately adjusted in accordance with the hydrogen ion concentration contained in the electrolytic solution so that the pH at 30 ° C is in the range of 6.0 to 8.5. When the pH of the electrolyte is lower than 6.0, the oxidation reaction of aluminum caused by the acid progresses, and the hydration degradation of the electrode is prone to occur. When the pH exceeds 8 · 5, the dissolution reaction of aluminum caused by the alkali proceeds As a result, electrode degradation can easily occur. Therefore, the pH of the electrolyte must be in the range of 6.0 to 8.5 at 30 ° C. In addition, if basic compounds other than ammonia are added to the carboxyl group of the undissociated carboxylic acid in an equal molar amount or more with respect to the ammonium of the basic component, the acid component can be neutralized by the alkaline component and the acid component can be suppressed. The oxidation reaction of aluminum. When ammonia is evaporated in a high-temperature environment, the acid component is neutralized by an excessively-existing alkali component, so that the rapid oxidation reaction of aluminum in a high-temperature environment can be suppressed. Therefore, the electrolytic capacitor using the electrolytic solution of the present invention has high conductivity since water φ is used as a solvent, and the pH of the electrolytic solution at 30 ° C is adjusted by adding alkaline compounds other than ammonia. In the range of 6.0 to 8.5, it has a high resistance to suppress deterioration due to the hydration of the electrolytic foil, and it is a highly reliable electrolytic capacitor with long-term stability even in a high-temperature environment. In other words, the electrolytic solution of the present invention uses water as a solvent, and the water content in the solvent is 35 to 100% by weight. When the water content in the solvent is less than 35,200,020,075% by weight, the conductivity decreases and the specific resistance increases, and only characteristics similar to those of a conventional electrolytic solution using a γ-butyrolactone solvent can be obtained. Solvents used with water are, for example, methanol, ethanol, propanol, butanol, cyclobutanol, cyclohexanol, ethylene glycol, propylene glycol, glycerol, methyl cellosolve, ethyl cellosolve, methoxy Alcohols such as propylene glycol, or aprotic organic solvents. The aprotic organic solvent is, for example, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylethyl Ammonium organic solvents such as amidine, Ν, Ν-dimethylacetamide, organic solvents containing lactones such as α-valerolactone, γ-valerolactone 0, etc. Cyclic ammonium organic solvents such as propyl ester, nitrile organic solvents such as acetonitrile, oxide organic solvents such as dimethyl arylene, 3-methyl-1,3-oxazolin-2-one, 1 1,3-diethyl-2-imidazolidinone, 1,3-dipropyl-2-imidazolinone, 1-methyl-3-ethyl-2-imidazolinone, 1,3,4-triazine Imidazolinone-based organic solvents such as methyl-2-imidazolinone and 1,3,4,5-tetramethyl-2-imidazolinone. The electrolyte (solute) of the electrolytic solution in the present invention is a salt of a carboxylic acid and / or an inorganic acid and an ammonium (ammonia or ammonia water) of an alkaline component, and its φ content in the electrolytic solution is usually 10 to 95 % By weight, preferably 20 to 90% by weight. When the content of the electrolyte is less than 10% by weight or more than 95% by weight, the electrical conductivity is significantly reduced. The use of a carboxylic acid as the acid component improves the repairability of the aluminum oxide film, and may suppress hydration degradation. Further, if an acid having a molecular weight smaller than the molecular weight of adipic acid (146) and an acid having a larger molecular weight than adipic acid are used, an electrolytic solution excellent in both characteristics of high conductivity and stable local temperature can be obtained. The carboxylic acid used in the electrolytic solution of the present invention is a 2- to 4-membered polycarboxylic acid or a 200402075 monocarboxylic acid. 2- to 4-membered polycarboxylic acids are, for example, aliphatic polycarboxylic acids, aromatic polycarboxylic acids, alicyclic polycarboxylic acids, and alkyl (carbon number 1 to 3) substitutions or nitro substitutions or Sulfur. Aliphatic polycarboxylic acids are, for example, oxalic acid, malonic acid, acetic acid, glutaric acid, adipic acid, pimelic acid, hemic acid, azelaic acid, sebacic acid, dimethyl adipate, 1, 6-decanedioic acid, 1,7-octanedioic acid, 5,6-decanedioic acid, butyloctanic acid, acetonitrile monoacetic acid, cyanotriacetic acid, ethylenediaminetetraacetic acid, N, Saturated polycarboxylic acids such as N-bis-2-hydroxyethyl glycine, and unsaturated polycarboxylic acids such as maleic acid, fumaric acid, and iconic acid. Aromatic polycarboxylic acids are, for example, ugly acid, isouglylic acid, terephthalic acid, trimellitic acid, pyromellitic acid, etc., or cyclohexene diresidual acid, cyclohexene-1,2-dicarboxylic acid, and the like Alicyclic polycarboxylic acids, or alkyl (carbon number 1 to 3) substitutions of hexahydroxyphthalic acid and these polycarboxylic acids or citraconic acid, dimethyl maleic acid, nitrophthalic acid (3-nitro Nitrosubstituents such as phthalic acid, 4-nitrophthalic acid), or sulfur-containing polycarboxylic acids such as thiopropionic acid. The mono-residual acid is, for example, an aliphatic mono-residual acid with 1 to 30 carbonic acid, an aromatic mono-acid, or an oxygen-containing residual acid. Aliphatic monoresidues are, for example, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, hexanoic acid, heptanoic acid, caprylic acid, nonanoic acid, lauric acid, myristic acid, hard beta acid, Unsaturated monocarboxylic acid, or unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid, and oleic acid. Examples of the aromatic monocarboxylic acid include benzoic acid, o-nitrobenzoic acid, p-nitrobenzoic acid, cinnamic acid, and naphthoic acid. Examples of the oxygen-containing carboxylic acid include salicylic acid, mandelic acid, and resorcinol. In the present invention, the carboxylic acid is particularly preferably selected from the group consisting of formic acid, acetic acid, lactic acid, glycolic acid, oxalic acid, succinic acid, malonic acid, adipic acid, benzoic acid, salicylic acid, and p-nitrobenzoic acid. , Glutaric acid, azelaic acid, ethylene diamine diacetic acid, 200402075 ethylene diamine tetraacetic acid, trimethyl adipic acid, 1,6-sebacic acid, ι, 7-octanedicarboxylic acid, butyloctane At least one of dicarboxylic acid and sebacic acid. The inorganic acid used as the acid component is preferably at least one selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, boric acid, and sulfamic acid. The use of these inorganic acid-based electrolytes can achieve the same properties as the carboxylic acid described above, including high conductivity and high temperature stability. The basic compounds other than ammonia used in the present invention are, for example, ammonium compounds, amine compounds, imidazoline compounds, pyridine compounds, and alkali metal compounds, and these compounds may be used alone or as a mixture. Specifically, the ammonium compound is, for example, hydroxyammonium, dihydroxyammonium, or the like. The amine compounds are, for example, methylamine, ethylamine, ethanolamine, methylolaminomethane, dimethylolaminomethane, trimethylolaminomethane, trimethylolaminomethane, and secondaryamines of primary amines. Dimethylamine, diethylamine, dimethanolamine, diethanolamine, tertiary amine trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, triethanolamine, dimethyl-n-propylamine, Dimethyl isopropylamine, methyl ethyl n-propylamine, methyl ethyl isopropylamine, diethyl n-propylamine, diethyl isopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-tert-butylamine And the like, quaternary ammonium salts such as tetramethylammonium and tetraethylammonium, phenyl-containing amines such as dimethylaniline, methylethylaniline, diethylaniline and the like. The imidazoline compound is, for example, 1,8-diaza heterocyclic [5,4,0] undecene-7, 1,5-diaza heterocyclic [4,3,0] nonene-5,1,2- Dimethylimidazoline, 1,2,4-trimethylimidazoline, dimethyl-2 -ethylimidazoline, 1,4-dimethyl-2 -ethylimidazoline, 1,2,3,4- Tetramethylimidazoline, 丨 methyl-2-heptylimidazoline, 1-methyl-2- (3, 200402075 heptyl) imidazoline, 1-methyl-2-dodecylimidazoline, 1, Pyridine compounds such as 2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole, and 1-methylbenzimidazole are, for example, 1-methylpyridine, 1-ethylpyridine, 1- Methyl-3 -ethylpyridine and the like. The test metal compounds are, for example, potassium hydroxide, sodium hydroxide, lithium hydroxide, and the like. Among the basic compounds other than ammonia, it is preferred to use at least one selected from the group consisting of hydroxylammonium, dihydroxyammonium, methylamine, ethylamine, ethanolamine, methylaminomethane, and dimethylolaminomethane selected from the present invention. , Trimethylolaminomethane, trimethylolaminomethane, dimethylamine, diethylamine, diethanolamine, trimethylamine'triethylamine, triethanolamine, tetramethylammonium, tetraethylammonium, 1, 2, At least one of 3,4-tetramethylimidazoline and 1-methylpyridine. Furthermore, various additives can be added to the electrolytic solution of the present invention as long as the physical properties are not impaired. Additives are, for example, phosphorus-based compounds such as phosphate esters, complexes of boric acid and polysaccharides (mannitol, sorbitol, etc.), complexes of boric acid and polyols (ethylene glycol, glycerol, etc.) Boric acid compounds, nitro compounds such as o-nitrophenol, m-nitrophenol, and p-nitrophenol. Adding these additives can increase the spark voltage of the electrolyte, so it is more suitable. The electrolytic capacitor of the present invention uses the electrolytic solution for driving an electrolytic capacitor configured as described above. Specifically, an electrolytic paper is wound between an anode foil and a cathode foil to form an element, and the element is immersed in the driving electrolyte of the present invention configured as described above, and inserted into a case to be sealed with a sealing body to become an electrolytic capacitor. . In the present invention, the sealing body is preferably formed of isobutylene isoprene rubber, ethylene propylene terpolymer, and a mixture of 200402075, and the hardness of any part is in the range of 65 to 100 IRHD (International Rubber Hardness Unit). Inside. When the hardness of the sealing body is lower than 65 IRHD ', when the internal pressure rises at a high temperature, the sealing force is insufficient and a liquid leaks out from the sealing portion. When the hardness of the sealing body exceeds 100 IRHD, the modulus of elasticity at a high temperature decreases, and cracks occur in the sealing body, leading to liquid leakage. With the structure as described above, the sealing force does not decrease with time. Therefore, even in a high-temperature environment, the electrolytic solution can be prevented from leaking from the lead portion, and the change in characteristics can be suppressed to obtain a highly reliable capacitor. If the hardness of at least a part of the sealing body is 75 IRHD or more, the appearance deformation of the sealing surface that is liable to occur when the internal pressure rises can be suppressed by the physical strength of the sealing body itself. Further, other structures of the electrolytic capacitor of the present invention include, for example, an anode foil composed of an aluminum foil formed with an oxide film, a cathode foil composed of an aluminum foil, and an electrolytic solution. In the above electrolytic capacitor, the electrolytic solution of the present invention configured as described above is used, and the surfaces of the anode foil and the cathode foil are treated with phosphoric acid. In this way, if an anode foil and a cathode foil treated with phosphoric acid are used as electrode foils, since phosphorus atoms are adsorbed on the aluminum oxide film and aluminum, water resistance can be improved. In the present invention, an electrolytic solution having a pH range of 6.0 to 8.5 is used. In liquid electrolytic capacitors, 'systems can achieve excellent water resistance. Further, in the present invention, the structure of the sealing body having the above-mentioned special physical properties, the surface of the anode foil and the cathode foil treated with phosphoric acid may be combined to form an electrolytic capacitor. In the following, the present invention is specifically described by way of examples, but the present invention is not limited by it. In the following examples and comparative examples, the measurement of various physical properties was performed according to the following method. (1) Specific resistance (Ωοιη): Measure the conductivity of the electrolytic solution whose temperature is adjusted to 30 ° C using a specific conductivity measuring device and measuring unit, and calculate the specific resistance as the reciprocal. (2) pH (-): The pH of the electrolytic solution was adjusted to 30 t: using a pH measuring device. (3) Cap (gF): Measured according to the method described in JIS C5120. (4) Tang5 (%) of the dielectric loss: measured according to the method described in JIS C5120. (5) Leakage current LC (pC): Measured according to the method described in JIS C5 120. (6) Change rate of electrostatic capacity (%): Calculate the percentage of the difference between the initial electrostatic capacity and the test performance @ electrostatic capacity. (7) Hardness (IRHD): Measured with a Varese hardness tester. (8) Impedance (ιηΩ): Measured under the conditions of 120kHz frequency and 0.5Vrms voltage using precisiON LCR METER 42 83A manufactured by HEWLETT PACKAD. The measurement circuit is an AC bridge method. Table 1 shows the composition and physical properties of the electrolytic solutions used in the following examples and comparative examples. -16- 200402075 (Table 1) 1/3 electrolyte composition (number in weight in parentheses) AB (IRHD) C (Ωοτη) pH (30 ° C) Example 1 I Water (70) Glycol ( 15) Yes 75 18 8.5 II Ammonium formate (5) Ammonium adipate (6) III Triethanolamine (4) Example 2 I Water (60) Ethylene glycol (18) Yes 75 21 6.4 II Ammonium formate (5) 2 ammonium adipate (5) 1,6-dodecanedicarboxylic acid 2 amine (8) III triethylamine (4) Example 3 I Water (70) Ethylene glycol (8) 75 75 7.1 II Formic acid Ammonium (8) Adipate 2 Ammonium (5) 1,7-octanedicarboxylic acid 2 amine (5) Ethylenediamine tetraacetic acid 2 ammonium (2) III Trimethylolaminomethane P) Example 4 I Water (70) Ethylene glycol (6) Has 75 16 8.5 II Ammonium formate (8) 2 Ammonium adipate (5) 1,7-octanedicarboxylic acid 2 amine (5) Ethylenediamine tetraacetic acid 2 ammonium (2) III Trimethylolamine (4) Example 5 I Water (50) Ethylene glycol (30) 75 75 6.2 II Ammonium adipate (5) 1,7-octanedicarboxylic acid 2 amine (5) Trimethyladipate (5) Hypophosphorous acid (3) III Ammonium hydroxyammonium (2) Example 6 I Water (70) Glycerol (5) Yes 75 20 6.0 II Ammonium acetate (10) Ammonium adipate (10) 5) glutaric acid (8) III diethanolamine (2) I = solvent II: acid / base formation Sub-III: Basic compound A: Presence or absence of phosphoric acid treatment of anode foil and cathode foil B: Hardness of sealing rubber C: Specific resistance 200402075 (Table 1) 2/3 composition of electrolyte (number in weight in parentheses) A Β (IRHD) C (Ωογπ) PH (30 ° C) I Water (50) Ethylene glycol (25) Example 7 II Ammonium formate (7) Ammonium adipate (10) 1,7-octanedicarboxylic acid 2 Amine (5) 75 28 6.7 III 1,2,3,4-Tetramethylimidazoline (3) I Water (40) Ethylene glycol (35) Example 8 II Ammonium formate (11) Butyloctanedi Ammonium carboxylate (13) Yes 75 33 7.9 III Hydroxide cake (1) I Water (70) Ethylene glycol (15) Example 9 II Ammonium borate (7) Ammonium sebacate (7) Yes 75 22 6.5 III Four Ethyl ammonium (1) I water (70) ethylene glycol (8) Example 10 II ammonium formate (8) 2 ammonium adipate (5) 1,7-octanedicarboxylic acid 2 amine (5) ammonium hypophosphite ( 1) with 75 13 8.5 III trimethylolaminomethane (3) I water (70) ethylene glycol (8) Example 11 II ammonium formate (8) adipic acid 2 amine (5) 1,7-octyl Dicarboxylic acid 2 amine (5) Ammonium hypophosphite (1) Μ j \ \\ 75 13 8.5 III Trimethylolaminomethane (3) I Water (70) Ethylene glycol (8) Example 12 II Ammonium formate (8) 2 ammonium adipate (5) 1,7-octanedicarboxylic acid 2 amine (5) Ammonium hypophosphite (1) Yes 60 13 8.5 III Trimethylol Aminomethane (3) I: Solvent II: Acid / Testing ingredient III: Basic compound A: Presence or absence of phosphoric acid treatment of anode foil and cathode foil B: Hardness of sealing rubber C: Specific resistance 200402075 (Table 1) 3 / 3 Electrolyte composition (number in weight in parentheses) AB (IRHD) C (Ωογω) pH (30 °) Comparative Example 1 I Water (70) Glycol (19) 75 75 7.0 II Ammonium formate (5 ) 2 Ammonium adipate (6) I Water (70) Ethylene glycol (15) Comparative Example 2 II Ammonium formate (5) Adipic acid (6) Yes 75 20 5.5 III Triethanolamine (0.5) I Water (70) Glycol (15) Comparative Example 3 II Ammonium formate (5) Adipic acid (6) 75 75 9.3 III Triethanolamine (10) Comparative Example 4 I Water (20) Glycol (69) 75 71 6.6 II Ammonium formate (5) Adipic acid (6) I = solvent II: acid / base component III: basic compound A: presence or absence of phosphoric acid treatment of anode foil and cathode foil B: hardness of sealing rubber C: specific resistance 200402075 Example 1 to Example 1 0 The composition shown in Table 1 was used. The physical properties of the electrolyte, electrolytic paper between the anode and cathode foils and interposed rolling, immersed in the electrolyte to produce element. Then, the terminal electrodes were pulled out from the anode foil and the cathode foil, respectively, and inserted into an aluminum case 'to be sealed with a sealing rubber. The sealing rubber is a peroxide-sulfur butyl rubber with a hardness of 75 IRHD. The aluminum foil constituting the electrode foil and the aluminum foil formed with the oxide film were immersed in a 6% phosphoric acid 3% aqueous solution for 2 minutes to apply phosphoric acid treatment. The obtained electrolytic capacitor had a rated voltage of 6.3V and a capacitance of 1500pF. Dimensions · c () 10mmxL16mmo 10 pieces of these aluminum electrolytic capacitors were manufactured, and the high-temperature load characteristics at 10 5 ° C for 300 hours were measured to obtain the average 値. Table 2 shows the measurements of the obtained aluminum electrolytic capacitors. result.

20- 200402075 初期特性 105°C 3000小時後 Cap Tan δ Ζ LC △ Cap Tan δ Ζ LC _ (%) (πιΩ) (μΑ) (%) (%) (ηιΩ) (μΑ) 實施例1 1540 5.2 13 12 -18 5.5 15 11 實施例2 1565 5.8 14 11 -19 5.9 16 12 實施例3 1594 5.2 10 10 -19 5.5 13 12 實施例4 1573 5.8 11 12 -20 6.1 14 11 實施例5 1567 5.7 30 11 -18 5.9 32 11 實施例6 1533 5.1 15 11 -18 5.4 17 10 實施例7 1587 6.0 19 11 -22 6.2 22 13 實施例8 1535 6.1 22 11 -21 6.3 24 12 實施例9 1569 5.2 16 12 -19 5.5 18 11 實施例10 1544 5.2 10 12 -17 5.5 13 11 實施例11 1544 5.2 10 12 -25 5.8 16 18 實施例12 1544 5.2 10 12 -28 5.7 17 22 比較例1 1585 5.2 12 12 由於氣體的發生,在500小時 內安全閥完全打開 比較例2 1545 5.3 15 12 由於氣體的發生,在500小時 內安全閥完全打開 比較例3 1557 5.3 15 11 由於氣體的發生,在500小時 內安全閥完全打開 比較例4 1545 6.9 65 11 由於氣體的發生,在500小時 內安全閥完全打開20- 200402075 Initial characteristics 105 ° C 3000 hours after Cap Tan δ ZO LC △ Cap Tan δ ZO LC _ (%) (πΩ) (μΑ) (%) (%) (%) (ηιΩ) (μΑ) Example 1 1540 5.2 13 12 -18 5.5 15 11 Example 2 1565 5.8 14 11 -19 5.9 16 12 Example 3 1594 5.2 10 10 -19 5.5 13 12 Example 4 1573 5.8 11 12 -20 6.1 14 11 Example 5 1567 5.7 30 11- 18 5.9 32 11 Example 6 1533 5.1 15 11 -18 5.4 17 10 Example 7 1587 6.0 19 11 -22 6.2 22 13 Example 8 1535 6.1 22 11 -21 6.3 24 12 Example 9 1569 5.2 16 12 -19 5.5 18 11 Example 10 1544 5.2 10 12 -17 5.5 13 11 Example 11 1544 5.2 10 12 -25 5.8 16 18 Example 12 1544 5.2 10 12 -28 5.7 17 22 Comparative Example 1 1585 5.2 12 12 Due to the occurrence of gas, Safety valve fully opened within 500 hours Comparative Example 2 1545 5.3 15 12 Safety valve fully opened within 500 hours due to gas generation Comparative Example 3 1557 5.3 15 11 Safety valve fully opened within 500 hours due to gas generation Comparative Example 4 1545 6.9 65 11 Due to the occurrence of gas, the safety valve is fully opened within 500 hours

Cap :靜電容量Cap: Capacitance

Tan δ :介電損失的正切 Ζ :阻抗 LC :漏電流 △ Cap :靜電容量的變化率 -2 1- 200402075 實施例11 陽極箔和陰極箔沒有進行磷酸處理。以外與實施例1 〇同 樣地作而製得鋁電解電容器。 表2中顯示所得到的鋁電解電容器之測定結果。 實施例1 2 封口橡膠的硬度爲60 IRHD。以外與實施例10同樣地作 而製得鋁電解電容器。 表2中顯示所得到的鋁電解電容器之測定結果。 實施例1〜1 0係以水當作主溶劑,電解質的酸成分係羧酸 及/或無機酸,鹼成份係銨的銨鹽,而且使用在3 0 °C的pH被 調整成6.0〜8.5的電解液,由於電極箔的表面被施予磷酸處 理,故得到低阻抗且可抑制鋁電極箔之水合劣化的電解電容 器。又,因爲使用由異丁烯異戊二烯橡膠所成且任意部位之 硬度在65〜1〇〇 IRHD範圍內的封口橡膠,故即使在高溫環境 下’也不發生由於氣體產生而導致安全閥的作動,能得到能 實現安定驅動的電解電容器。 實施例1 1中由於電極箔沒有進行磷酸處理,故靜電容量 的變化率(%)係稍大於實施例1 0者,但即使在高溫環境下也 不發生由於氣體產生而導致安全閥的作動,能得到能實現安 定驅動的電解電容器。 實施例1 2的封口橡膠之硬度稍小,但由於使用本發明的 電解液,故即使在高溫環境下也不發生由於封口橡膠之劣化 而造成電解液的漏液。得到能實現安定驅動的電解電容器。 -22- 200402075 比較例1 沒有配合氨以外的鹼性化合物。以外與實施例1同樣ί也 作而製得基於表1中所示組成的電解液。然後,使用該電解 液’以外與實施例1同樣地作而製得鋁電解電容器。 表2中顯示所得到的鋁電解電容器之測定結果。 比較例2 雖然有配合氨以外的鹼性化合物,但是電解液的pH係比 本發明範圍更低的5 · 5。以外與實施例1同樣地作,而製得 基於表1中所示組成的電解液。然後,使用該電解液,以外 與實施例1同樣地作而製得鋁電解電容器。 表2中顯示所得到的鋁電解電容器之測定結果。 比較例3 雖然有配合氨以外的鹼性化合物,但是電解液的pH係比 本發明範圍更高的9.3。以外與實施例1同樣地作,而製得 基於表1中所示組成的電解液。然後,使用該電解液,以外 與實施例1同樣地作而製得鋁電解電容器。 表2中顯示所得到的鋁電解電容器之測定結果。 比較例4 沒有配合氨以外的鹼性化合物。以外與實施例i同樣地 作而製得基於表1中所示組成的電解液。然後,使用該電解 液,以外與實施例1同樣地作而製得鋁電解電容器。 表2中顯示所得到的鋁電解電容器之測定結果。 比較例1中由於沒有添加氨以外的鹼性化合物,雖然電 -23- 200402075 極表面有施予磷酸鹽處理,封口橡膠的硬度亦高,但是在500 小時內發生氣體,而安全閥全部打開,產生不適合的情形。 比較例2雖然有添加氨以外的鹼性化合物,但是由於電 解液的pH係比本發明範圍低,比較例3雖然有添加氨以外 的鹼性化合物,但是由於電解液的pH係比本發明範圍高, 故皆在500小時內發生氣體,而安全閥全部打開,產生不適 合的情形。 比較例4雖然對電極表面施有磷酸處理,封口橡膠的硬 度高,但是由於沒有添加氨以外的鹼性化合物,故在5 0 0小 時內發生氣體,而安全閥全部打開,產生不適合的情形。Tan δ: Tangent of dielectric loss Z: Impedance LC: Leakage current △ Cap: Change rate of capacitance -2 1- 200402075 Example 11 The anode foil and cathode foil were not treated with phosphoric acid. An aluminum electrolytic capacitor was obtained in the same manner as in Example 10 except for the following. Table 2 shows the measurement results of the obtained aluminum electrolytic capacitors. Example 12 The hardness of the sealing rubber was 60 IRHD. Except for the above, the same operation as in Example 10 was carried out to obtain an aluminum electrolytic capacitor. Table 2 shows the measurement results of the obtained aluminum electrolytic capacitors. Examples 1 to 10 use water as the main solvent, the acid component of the electrolyte is a carboxylic acid and / or an inorganic acid, and the alkali component is an ammonium salt of ammonium, and the pH is adjusted to 6.0 to 8.5 at 30 ° C. Since the surface of the electrode foil is treated with phosphoric acid, an electrolytic capacitor having a low impedance and capable of suppressing hydration degradation of the aluminum electrode foil is obtained. In addition, because a sealing rubber made of isobutylene isoprene rubber and having a hardness in the range of 65 to 100 IRHD is used, even in a high-temperature environment, the safety valve does not act due to gas generation. , An electrolytic capacitor capable of achieving stable driving can be obtained. In Example 11, since the electrode foil was not treated with phosphoric acid, the change rate (%) of the electrostatic capacity was slightly larger than that in Example 10. However, even in a high-temperature environment, the operation of the safety valve due to gas generation did not occur. An electrolytic capacitor capable of achieving stable driving can be obtained. The hardness of the sealing rubber of Example 12 is slightly smaller, but since the electrolytic solution of the present invention is used, the leakage of the electrolytic solution due to the deterioration of the sealing rubber does not occur even in a high-temperature environment. An electrolytic capacitor capable of achieving stable driving was obtained. -22- 200402075 Comparative Example 1 No basic compound other than ammonia was blended. An electrolytic solution based on the composition shown in Table 1 was prepared in the same manner as in Example 1 except for the following. An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the electrolytic solution was used. Table 2 shows the measurement results of the obtained aluminum electrolytic capacitors. Comparative Example 2 Although a basic compound other than ammonia was blended, the pH of the electrolytic solution was 5 · 5, which was lower than the range of the present invention. Except for the above, the same procedure as in Example 1 was carried out to prepare an electrolytic solution based on the composition shown in Table 1. Then, an aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the electrolytic solution was used. Table 2 shows the measurement results of the obtained aluminum electrolytic capacitors. Comparative Example 3 Although an alkaline compound other than ammonia was blended, the pH of the electrolytic solution was higher than the range of the present invention by 9.3. Except for the above, the same procedure as in Example 1 was carried out to prepare an electrolytic solution based on the composition shown in Table 1. Then, an aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the electrolytic solution was used. Table 2 shows the measurement results of the obtained aluminum electrolytic capacitors. Comparative Example 4 No basic compound other than ammonia was blended. An electrolytic solution based on the composition shown in Table 1 was prepared in the same manner as in Example i except for the above. Then, an aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that this electrolytic solution was used. Table 2 shows the measurement results of the obtained aluminum electrolytic capacitors. In Comparative Example 1, no alkaline compounds other than ammonia were added. Although the surface of the electrode was applied with phosphate treatment and the hardness of the sealing rubber was also high, gas was generated within 500 hours and all the safety valves were opened. An inappropriate situation arises. Although Comparative Example 2 has alkaline compounds other than ammonia, the pH of the electrolyte is lower than the scope of the present invention. Comparative Example 3 has basic compounds other than ammonia, but the pH of the electrolyte is higher than the scope of the present invention. High, so gas is generated within 500 hours, and all safety valves are opened, resulting in unsuitable conditions. In Comparative Example 4, although the surface of the electrode was treated with phosphoric acid, the hardness of the sealing rubber was high, but since no basic compound other than ammonia was added, gas was generated within 500 hours, and all the safety valves were opened, resulting in an unsuitable situation.

~ 2 4 -~ 2 4-

Claims (1)

200402075 拾、申請專利範圍: 1. 一種電解電容器驅動用電解液,其係以水當作主溶劑,電 解質的酸成分係羧酸及/或無機酸,鹼成份係銨,其含有氨 以外的鹼性化合物,而且在30°C的pH爲在6.0〜8.5的範圍 內。 2. 如申請專利範圍第1項之電解電容器驅動用電解液,其中 相對於鹼成分的銨,添加有等莫耳量以上之氨以外的鹼性 化合物到未解離的羧酸中之羧基。 I 3 ·如申請專利範圍第1項之電解電容器驅動用電解液,其中 氨以外的鹼性化合物係選自於銨化合物、胺化合物、咪唑 啉化合物、吡啶化合物、鹼金屬化合物中的至少一種化合 物。 4.如申請專利範圍第1項之電解電容器驅動用電解液,其中 氨以外的鹼性化合物係選自於羥基銨、二羥基銨、甲胺、 乙胺、乙醇胺、羥甲基胺基甲烷、二羥甲基胺基甲烷、三 羥甲基胺基甲烷、三羥乙基胺基甲烷、二甲胺、二乙胺、· 二乙醇胺、三甲胺、三乙胺、三乙醇胺、四甲銨、四乙銨、 1,2,3,4 -四甲基咪Π坐啉、1 -甲基壯π定、氫氧化鈉、氫氧化鋰、 氫氧化鉀中的至少一種。 5 ·如申請專利範圍第1項之電解電容器驅動用電解液,其中 酸成分的羧酸係選自於甲酸、醋酸、乳酸 '羥乙酸、草酸、 琥珀酸、丙二酸、己二酸、苯甲酸、水楊酸、對硝基苯甲 酸、戊二酸、壬二酸、乙二胺二乙酸、乙二胺四乙酸、三 -25- 200402075 甲基己二酸、1,6-癸二羧酸、1,7-辛二羧酸、丁基辛二羧酸、 · 癸二酸中的至少一種。 6·如申請專利範圍第1項之電解電容器驅動用電解液,其中 無機酸係選自於磷酸、亞磷酸、次磷酸、硼酸、胺磺酸中 的至少一種。 7 . —種電解電容器,其係爲使電解紙介於陽極箔與陰極箔之 間而捲成元件,將此元件浸於驅動用電解液中,插入殼體 內,以封口體來密封而成爲的電解電容器,其中該封口體 | 係由異丁烯異戊二烯橡膠、乙烯丙烯三元共聚物及其混合 物所形成,而且任意部位的硬度係在65〜1〇〇 IRHD的範圍 內,該驅動用電解液係爲如申請專利範圍第1〜6項中任一 項所記載的電解電容器驅動用電解液。 » 8 . —種電解電容器,其包括由形成有氧化皮膜的鋁箔所構成 的陽極箔,由鋁箔所構成的陰極箔’及含驅動用電解液的 電解紙,其中該陽極箔和陰極箔的表面係施有磷酸處理, 該驅動用電解液係爲如申請專利範圍第1〜6項中任一項所 φ 記載的電解電容器驅動用電解液° -26 - 200402075 柒、指定代表圖: (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件代表符號簡單說明: fiBE200402075 The scope of patent application: 1. An electrolytic solution for electrolytic capacitor driving, which uses water as the main solvent, the acid component of the electrolyte is carboxylic acid and / or inorganic acid, and the alkali component is ammonium, which contains alkalis other than ammonia Compounds, and the pH at 30 ° C is in the range of 6.0 ~ 8.5. 2. For example, the electrolytic solution for driving electrolytic capacitors in the scope of patent application No. 1 is a carboxyl group in an undissociated carboxylic acid added to a basic compound other than ammonia in an amount equal to or more than ammonia in an alkali component. I 3 · The electrolytic solution for driving electrolytic capacitors according to item 1 of the patent application, wherein the basic compound other than ammonia is at least one compound selected from the group consisting of ammonium compounds, amine compounds, imidazoline compounds, pyridine compounds, and alkali metal compounds . 4. The electrolytic solution for driving electrolytic capacitors according to item 1 of the application, wherein the alkaline compound other than ammonia is selected from the group consisting of hydroxylammonium, dihydroxyammonium, methylamine, ethylamine, ethanolamine, methylolaminomethane, Dimethylolaminomethane, trimethylolaminomethane, trimethylolaminomethane, dimethylamine, diethylamine, diethanolamine, trimethylamine, triethylamine, triethanolamine, tetramethylammonium, At least one of tetraethylammonium, 1,2,3,4-tetramethylimidinoline, 1-methylziridine, sodium hydroxide, lithium hydroxide, and potassium hydroxide. 5. The electrolytic solution for driving electrolytic capacitors according to item 1 of the application, wherein the carboxylic acid of the acid component is selected from formic acid, acetic acid, lactic acid 'glycolic acid, oxalic acid, succinic acid, malonic acid, adipic acid, benzene Formic acid, salicylic acid, p-nitrobenzoic acid, glutaric acid, azelaic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, tri-25- 200402075 methyl adipic acid, 1,6-decanecarboxylic acid At least one of an acid, 1,7-octanedicarboxylic acid, butyl suberic acid, and sebacic acid. 6. The electrolytic solution for driving electrolytic capacitors according to item 1 of the application, wherein the inorganic acid is at least one selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, boric acid, and sulfamic acid. 7. An electrolytic capacitor, which is formed by rolling an electrolytic paper between an anode foil and a cathode foil into a component, immersing the component in a driving electrolyte, inserting the component into a casing, and sealing with a sealing body. Electrolytic capacitor, wherein the sealing body is made of isobutylene isoprene rubber, ethylene propylene terpolymer and mixture thereof, and the hardness of any part is in the range of 65 ~ 100IRHD. The driving electrolytic The liquid system is the electrolytic solution for driving an electrolytic capacitor as described in any one of claims 1 to 6 of the scope of patent application. »8. An electrolytic capacitor including an anode foil composed of an aluminum foil formed with an oxide film, a cathode foil composed of the aluminum foil, and an electrolytic paper containing a driving electrolyte, wherein the surfaces of the anode foil and the cathode foil are It is treated with phosphoric acid, and the electrolytic solution for driving is the electrolytic solution for driving electrolytic capacitors as described in any of items 1 to 6 of the scope of application for patent ° -26-200402075 柒, designated representative diagram: (1) The designated representative map in this case is: (). (2) Brief description of the component representative symbols of this representative map: fiBE 捌、本案若有化學式時,請揭示最能顯示發明特徵的化學式: Μ捌 If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: Μ -5--5-
TW92114898A 2002-06-05 2003-06-02 Electrolytic condenser drive electrolyte and electrolytic condenser using the same TWI271760B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163936A JP4039129B2 (en) 2002-06-05 2002-06-05 Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
TW200402075A true TW200402075A (en) 2004-02-01
TWI271760B TWI271760B (en) 2007-01-21

Family

ID=29996400

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92114898A TWI271760B (en) 2002-06-05 2003-06-02 Electrolytic condenser drive electrolyte and electrolytic condenser using the same

Country Status (4)

Country Link
JP (1) JP4039129B2 (en)
CN (1) CN100419929C (en)
MY (1) MY142367A (en)
TW (1) TWI271760B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303062A (en) * 2004-04-13 2005-10-27 Rubycon Corp Electrolytic capacitor and electrolytic solution for driving the same
EP1808875B1 (en) * 2004-09-07 2017-11-08 Panasonic Intellectual Property Management Co., Ltd. Electrolyte for electrolytic capacitor and electrolytic capacitor utilizing the same
JP2007115947A (en) * 2005-10-21 2007-05-10 Nichicon Corp Electrolyte for driving electrolytic capacitor
JP5152643B2 (en) * 2005-11-15 2013-02-27 日本ケミコン株式会社 Electrolytic capacitor
JP4862602B2 (en) * 2006-10-13 2012-01-25 パナソニック株式会社 Aluminum electrolytic capacitor
CN101840790B (en) * 2010-05-31 2012-09-05 福建国光电子科技股份有限公司 Processing method of aluminum foil in manufacturing process of solid aluminum electrolytic capacitor
CN104538183A (en) * 2014-12-10 2015-04-22 南通瑞达电子材料有限公司 Electrolyte for medium and high voltage of electrolytic capacitor and preparation method of electrolyte
CN113628885B (en) * 2020-05-07 2023-04-18 深圳新宙邦科技股份有限公司 Electrolyte for solid-liquid mixed electrolytic capacitor and electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684620B1 (en) * 1993-12-03 2003-06-04 Sanyo Chemical Industries, Ltd. Electrolytic solution and electrochemical element prepared therefrom

Also Published As

Publication number Publication date
JP4039129B2 (en) 2008-01-30
CN100419929C (en) 2008-09-17
MY142367A (en) 2010-11-30
CN1467764A (en) 2004-01-14
TWI271760B (en) 2007-01-21
JP2004014666A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
KR102085393B1 (en) Flame-retardant electrolytic capacitor
TW200402075A (en) Electrolytic condenser drive electrolyte and electrolytic condenser using the same
JP6297798B2 (en) Flame retardant electrolytic capacitor
JP2009283581A (en) Driving electrolyte for electrolytic capacitor
JP6371757B2 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP4724336B2 (en) Electrolytic solution for electrolytic capacitor drive
JP6423786B2 (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP2008117949A (en) Electrolytic solution and electrochemical device using the same
JP4588130B2 (en) Electrolytic solution for electrolytic capacitors
JP4016218B2 (en) Electrolytic solution for electrolytic capacitors
JP2008244346A (en) Electrolyte for electrolytic capacitor
JP4081617B2 (en) Electrolytic solution for electrolytic capacitors
JP3885836B2 (en) Electrolytic solution for electrolytic capacitors
JP2002217068A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same
JP3642195B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor using the same
JP4016219B2 (en) Electrolytic solution for electrolytic capacitors
JP2000200735A (en) Electrolysis solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP4019230B2 (en) Electrolytic solution for electrolytic capacitors
JP4081616B2 (en) Electrolytic solution for electrolytic capacitors
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4019232B2 (en) Electrolytic solution for electrolytic capacitors
JP4016221B2 (en) Electrolytic solution for electrolytic capacitors
JP2000068155A (en) Electrolytic solution for electrolytic capacitor
JP3491501B2 (en) Aluminum electrolytic capacitor
JP2005222975A (en) Electrolyte for aluminium electrolytic capacitor, and aluminium electrolytic capacitor employing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees