TW200401912A - Methods for making and using point lump-free compositions and products coated with point lump-free compositions - Google Patents

Methods for making and using point lump-free compositions and products coated with point lump-free compositions Download PDF

Info

Publication number
TW200401912A
TW200401912A TW92112063A TW92112063A TW200401912A TW 200401912 A TW200401912 A TW 200401912A TW 92112063 A TW92112063 A TW 92112063A TW 92112063 A TW92112063 A TW 92112063A TW 200401912 A TW200401912 A TW 200401912A
Authority
TW
Taiwan
Prior art keywords
coating
item
filter
patent application
scope
Prior art date
Application number
TW92112063A
Other languages
Chinese (zh)
Inventor
Gregory Lee Ii Workman
Donald Leon King
Camille Jeanette Rechel
Timothy Edward Myers
Original Assignee
Borden Chem Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borden Chem Inc filed Critical Borden Chem Inc
Publication of TW200401912A publication Critical patent/TW200401912A/en

Links

Abstract

A method is provided to manufacture a coated substrate, such as an optical fiber, without undesirable point lumps. The method filters a coating composition while controlling the filtering temperature, pressure drop across a filtering assembly, and filter pore size to achieve a resulting filtration factor not greater than 250,000 s-1. The filtration factor is a function of filtering temperature and pressure drop across the filtering assembly. Typically, the coating composition is filtered by passing the coating composition through one or more filters of the filtering assembly, having an absolute pore size rating in the range from approximately 0.05 to approximately 5 microns, at a temperature less than approximately 105 DEG F (40 DEG C), and at a pressure drop Δ P across the filtering assembly of at most approximately 80 psig, wherein the ratio of pressure drop (mPa) to viscosity (mPa.s), which is dependent upon filtering temperature, minimizes the filtration factor to ≤ 250,000 s-1.

Description

200401912 玖、發明說明: 本案主張申請曰為西元2002年5月9曰之美國臨時申 請案號60/378,663之優先權,其全部在此併入本案參考。 【發明所屬之技術領域】200401912 发明 Description of the Invention: This case claims the priority of the US Provisional Application No. 60 / 378,663, dated May 9, 2002, which is incorporated herein by reference. [Technical Field to which the Invention belongs]

本發明係有關於一種用於需要一大致純淨(clear)表面 之產品的塗料之技術。具體地說,本發明是一種對(例如 光纖之)塗料中之點狀突塊之問題的解決方法,在該塗料 之過濾過程中限制該過濾條件例如孔洞尺寸(pore size)、® 力差(pressure drop)以及溫度。 【先前技術】The present invention relates to a technique for coatings for products that require a substantially clear surface. Specifically, the present invention is a solution to the problem of dot-like bumps in (for example, optical fiber) coatings. In the filtering process of the coating, the filtering conditions such as pore size, ® force difference ( pressure drop) and temperature. [Prior art]

用於光的傳遞之光纖在拉伸時係為異常地強壯並且具 有極少之内部缺陷。然而,即使是一個小小的表面瑕疵 也會使該光纖變得易碎且容易被破壞。因此,這些光纖 一般係包覆有如頒佈給Shustack的美國專利第6,014,488 號、第 5,352,712 號、第 5,527,835 號、第 5,538,791 號、 第5,587,403號以及第6,048,911號所揭示之用以保護之 一主要以及非必要的一次要塗層。這些專利之全部在此 併入參考。 在光纖纜線之製造中,一預先形成之玻璃桿(其一般係 製造於一分離之製程中)係被垂直地懸掛並且以一控制 下的速度移入一加熱爐中。該預先形成之玻璃桿在加熱 爐中軟化並且在該預先形成之玻璃桿之熔融端被位於一 拉伸台(draw tower)之底座之絞盤(capstan)大幅地(freely) 6 拉伸以形成一光纖。 為了保護拉伸之光纖以避免由磨損或是操作造成之損 害,該光纖傳統上係由一塗層保護。該塗層係在被拉伸 之光纖達到任何捲繞機器(rolling machine)或是絞盤之前 塗佈於該光纖,用以限制任何會在其捲繞時產生的缺陷。 除了僅保護該光纖之表面以避免磨損,該塗層之接構 係被選擇以限制傳遞缺陷(transmission defect)。具體地 說,如頒給Chapin等人之美國第4,962,992號專利(全部 在此併入參考)所敘述不合規格的塗料會產生大氣泡、 空洞、非同一中心(non-concentric coating)之塗層以及微 彎折(microbending ),這些中的每一個都經常會造成傳 遞缺陷。 具有雙塗層之光纖一般係用於纜線,以在保護以避免 前述不期望發生之影響同時獲得所設計的可撓性以及改 善之效能。一般而言,一個具有雙塗層之光纖包含一塗 層系統,該塗層系統係具有一内部或是主要塗層,該塗 層之特徵係為由相對而言低模數(modulus )的彈性 (rubbery)材料塗佈於該光纖而製成。該主要塗層應該有 效地降低由外部橫向力傳遞到該玻璃之應力,因此降低 該玻璃之微彎折。主要塗層材料具有之特徵在於具有在 約50 psi至約200 psi之範圍的彈性之平衡模數 (equilibrium modulus)。平衡模數可被界定為及時或在高 溫下達到交叉連接材料(cross-linked material)之最終模 數(final modulus)。此模數係被選擇使得該主要塗層達到 其首要目的(即施加於該光纖之應力衰減以及均勻分 佈)。經由該衰減以及分佈,由微彎折造成損失將大致減 少。該主要塗層之目的在於允許有限制程度之彎折並且 不會造成微彎折衰減誤差(microbending aattenuation error) ° 雖然邊塗層並不直接參與訊號經由該玻璃纖維傳輸的 角色’該塗層在光線的表現上具有關鍵性。該塗層係用 以提供(1)力 i 維持(strength retenti〇n) ; (2)環境保護;(3) 杬微考折相失,以及(句幫助光纖一致性;以及當束成 纜線結構時,分隔獨立之光纖。 該主要塗層通常係為柔軟或是有彈性。因該主要塗層 在□化之彳灸有低玻璃轉換溫度(glass transiH〇n temperatUre)(例如-2(TC至-50。〇,其具有低模數並且有 吸展之功此。该主要塗層亦對玻璃在多種之環境下以及 扭作條件下大致具有#良之黏接性,同日寺又有足夠低之 黏接性可輕易將塗層剝除,並且具有抗層離性 (delamination)。這種可剝離性(strippabiiity)係敘述於頒 與Shustack之美國第6,〇14,488號專利,全部在此併入參 考。 一外層或是次要塗層係塗佈於該主要塗層上方。該次 要塗層通常係為高模數材料用以對該具有塗層之光纖提 供抗磨蚀性以及低摩擦性。該雙塗層材料係以該主要塗 層為該光纖提供緩和作用並且以該次要塗層分散外力, 藉此使該光纖不至於彎折。 該次要塗層係大致為堅硬的、抗刮蝕塗層,其玻璃轉 換溫度可能相當於或是於高於約80°C。該次要塗層係被 特別選擇以具有高模數以及低延展性並且針對例如惡劣 的機械以及化學條件等環境提供保護。該摩擦係數不能 太低(使光纖滑動)或是太高(發黏性(tackiness)或是黏著 性(stickiness))。亦希望能維持一適當之固化程度已限制 該塗層之滑動以及黏性。 一般而言,該主要以及次要塗層係以紫外光固化(交叉 連結)。然而,其他固化技術包含電子束或是包含熱以及 可見光之電磁波照射。 典型具有塗層的光纖具有約245μιη之總直徑。該拉伸 玻璃纖維核心(core)—般具有約8μπι之直徑,並具有約 117μηι之同圓心之覆蓋層(cladding)。該主要塗層之厚度 約為65μηι,以該55μηι之外層塗層係形成該具有塗層之 光線之厚度之平衡。 該最内部之結構或是玻璃纖維係設計以將訊號從一站 載送到另一站。一般掺雜有鍺(germanium)及/或斜 (erbium)之玻璃核心係由一純玻璃衍生之覆蓋層包圍。該 玻璃核心之折射率大於該覆蓋層的折射率。這保證訊號 聚集並且限制該光束於該核心之中央。 該可紫外光固化之光纖塗料係大致包含一寡聚物、一 單體、一光起始劑以及添加物。典型的寡聚物、單體、 光起始劑以及添加物係揭示於頒與Shustack之美國第 6,014,488號以及第5,352,712號專利,全部在此併入參 考。該寡聚物具有高黏度並且提供該塗層之基本性質, 同時該低黏度之單體幫助調整該交叉連結密度或是幫助 調整黏度。該光起始劑係用以啟動該固化反應,並且該 添加物係包含修飾性質例如黏接性(例如石夕接合劑)、儲存 穩定度(例如耐儲時間)以及摩擦係數。 該光纖之玻璃部分係習知地經由一拉伸台製造。一固 結(consolidated)之半成品(blank)或是預先形成物 (preform)係放下進入一設定在1900°C以及2300°C之間之 加熱爐,並且一高精確度電腦控制的執道係用以從該熔 融之玻璃預先形成物拉伸該光纖。該裸光纖被向下傳送 到該台時其被冷卻至50°C-60°C。該塗料係被塗佈於該裸 光纖該其拉伸於約35°C-40°C用於超過800公尺/分鐘的 拉伸速度。為了更高的速度,需要更多的調整於該塗料 之黏度。 該塗層可以傳統的「濕疊乾」(wet-on-dry)製程塗佈。 在濕疊乾製程中,未固化之主要塗料係塗佈於該裸光纖 上。然後該主要塗料經由一組紫外光燈被至少部分固 化。一旦此固化產生之後,該次要塗料被塗佈並且藉由 另一組紫外光燈固化。該次要塗料係以「濕」狀態塗佈 於「乾」主要塗層上。 200401912Optical fibers used for light transmission are exceptionally strong when stretched and have very few internal defects. However, even a small surface flaw can make the fiber brittle and easily damaged. Therefore, these optical fibers are generally covered with one of the main and non-essential protections disclosed in Shustack U.S. Patent Nos. 6,014,488, 5,352,712, 5,527,835, 5,538,791, 5,587,403 and 6,048,911 Secondary coating. All of these patents are incorporated herein by reference. In the manufacture of fiber optic cables, a pre-formed glass rod (which is typically manufactured in a separate process) is suspended vertically and moved into a heating furnace at a controlled speed. The pre-formed glass rod is softened in a heating furnace and at the melting end of the pre-formed glass rod is stretched freely 6 by a capstan at the base of a draw tower to form a optical fiber. To protect stretched fibers from damage caused by abrasion or handling, the fibers have traditionally been protected by a coating. This coating is applied to the optical fiber before it reaches any rolling machine or capstan to limit any defects that may occur during its winding. In addition to protecting only the surface of the fiber from abrasion, the coating's junction system is selected to limit transmission defects. Specifically, substandard coatings such as those described in U.S. Patent No. 4,962,992 to Chapin et al. (All incorporated herein by reference) can cause large bubbles, voids, non-concentric coatings, and Microbending, each of these often causes transfer defects. Optical fibers with double coatings are generally used for cables to achieve the designed flexibility and improved performance while protecting against the aforementioned undesired effects. Generally speaking, a double-coated fiber includes a coating system, which has an internal or primary coating. The coating is characterized by a relatively low modulus elasticity. A rubbery material is coated on the optical fiber. The primary coating should effectively reduce the stress transmitted to the glass by external lateral forces, thus reducing the micro-bending of the glass. Primary coating materials are characterized by having an equilibrium modulus of elasticity in the range of about 50 psi to about 200 psi. The equilibrium modulus can be defined as the final modulus that reaches the cross-linked material in time or at high temperature. This modulus is chosen so that the primary coating achieves its primary purpose (that is, the stress attenuation and uniform distribution applied to the fiber). Through this attenuation and distribution, the loss caused by the micro-bend will be substantially reduced. The purpose of the main coating is to allow a limited degree of bending without causing microbending aattenuation error ° Although the edge coating does not directly participate in the role of the signal transmitted through the fiberglass, the coating is The performance of light is critical. This coating is used to provide (1) the strength i maintenance (strength retenti〇n); (2) environmental protection; (3) 杬 micro examination of phase loss, and (sentence to help fiber consistency; and when the bundle into a cable In the structure, separate independent optical fibers. The main coating is usually soft or elastic. Because the main coating has a low glass transition temperature (glass transiHon temperatUre) (such as -2 (TC To -50.〇, it has a low modulus and has the function of absorption. The main coating also has #good adhesion to glass in various environments and twisting conditions, and Tongri Temple is sufficiently low The adhesiveness can easily peel off the coating and has delamination resistance. This strippabiiity is described in US Patent No. 6,014,488 issued to Shustack, all hereby incorporated For reference, an outer layer or a secondary coating is applied over the primary coating. The secondary coating is usually a high modulus material used to provide abrasion resistance and low friction to the coated optical fiber. The dual coating material uses the main coating to provide buffer for the optical fiber. It acts and disperses external forces with the secondary coating, thereby preventing the optical fiber from being bent. The secondary coating is generally a hard, scratch-resistant coating whose glass transition temperature may be equal to or higher than About 80 ° C. The secondary coating is specifically selected to have high modulus and low ductility and to protect against environments such as harsh mechanical and chemical conditions. The coefficient of friction must not be too low (slip the fiber) or Too high (tackiness or stickiness). It is also desirable to maintain a proper degree of cure which has limited the coating's slip and tackiness. Generally speaking, the primary and secondary coating systems are Cured with ultraviolet light (cross-linked). However, other curing techniques include electron beam or electromagnetic radiation including heat and visible light. Typical coated optical fibers have a total diameter of about 245 μιη. The stretched glass fiber core— Generally has a diameter of about 8 μm, and has a concentric cladding of about 117 μm. The thickness of the main coating is about 65 μm, and the outer layer is coated with the 55 μm Form the balance of the thickness of the coated light. The innermost structure or glass fiber is designed to carry the signal from one station to another. Generally doped with germanium and / or erbium The glass core is surrounded by a cover layer derived from pure glass. The refractive index of the glass core is greater than the refractive index of the cover layer. This ensures that the signal is focused and limits the beam to the center of the core. The UV-curable fiber The coating system generally includes an oligomer, a monomer, a photoinitiator and additives. Typical oligomers, monomers, photoinitiators and additives are disclosed in U.S. Patent No. 6,014,488 issued to Shustack and Patent No. 5,352,712, all incorporated herein by reference. The oligomer has a high viscosity and provides the basic properties of the coating, while the low-viscosity monomer helps to adjust the cross-link density or to help adjust the viscosity. The photo-initiator is used to initiate the curing reaction, and the additive system includes modification properties such as adhesiveness (such as Shixi bonding agent), storage stability (such as storage time), and friction coefficient. The glass portion of the optical fiber is conventionally manufactured via a stretching table. A consolidated blank or preform is put into a heating furnace set between 1900 ° C and 2300 ° C, and a high-precision computer-controlled execution system is used. The optical fiber is drawn with a preform from the molten glass. The bare fiber was cooled down to 50 ° C-60 ° C as it was passed down to the station. The coating is applied to the bare optical fiber and it is stretched at about 35 ° C to 40 ° C for a stretching speed of more than 800 meters / minute. For higher speeds, more adjustments need to be made to the viscosity of the coating. The coating can be applied in a traditional "wet-on-dry" process. In the wet stack dry process, the uncured primary coating is applied to the bare fiber. The primary coating is then at least partially cured via a set of ultraviolet lamps. Once this curing occurs, the secondary coating is applied and cured by another set of UV lamps. The secondary coating was applied to the "dry" primary coating in a "wet" state. 200401912

除了濕疊乾製程之外還有一種濕疊濕(wet-on-wet)製 程。在濕疊濕製程中,該主要塗料係塗佈於該次要塗料 之前。然而,在該次要塗料塗佈之前該主要塗料未被固 化。因此,兩種塗料係同時固化。此種使用於濕疊濕製 程的塗層裝置之特殊設計係敘述於頒與Taylor之美國第 4,474,830號專利,全部在此併入參考。因為只有單一組 紫外光燈係要用於濕疊濕應用系統,所以可使用比濕疊 乾製程更小的台以及以更快的速度進行。 傳統上,該塗料組成物係在塗佈上該玻璃纖維之前被 過濾。使用例如具有孔洞尺寸〇.1-5.0 μπι的尼龍過濾 器,在約105°F(40°C)的溫度下以及約40 psig(275 kPa) 至約60 psig (415 kPa)的壓力差(ΔΡ)下進行過濾製程。In addition to the wet-on-wet process, there is also a wet-on-wet process. In a wet-on-wet process, the primary coating is applied before the secondary coating. However, the primary coating was not cured before the secondary coating was applied. Therefore, both coatings are cured simultaneously. The special design of such a coating device for a wet-on-wet process is described in U.S. Patent No. 4,474,830 issued to Taylor, which is incorporated herein by reference in its entirety. Because only a single set of UV lamps are to be used in wet-on-wet applications, a smaller stage than a wet-on-dry process can be used and performed at a faster rate. Traditionally, the coating composition is filtered before being coated with the glass fiber. Use, for example, a nylon filter with a pore size of 0.1-5.0 μm at a temperature of about 105 ° F (40 ° C) and a pressure difference (Δρ) of about 40 psig (275 kPa) to about 60 psig (415 kPa) ).

然而,即使有該過濾步驟,具有塗層之光纖仍具有瑕 庇塗層。一般而言,該塗層之瑕疫(imperfections)係導因 於製程(即是用以塗佈該玻璃纖維的製程)缺陷(defects) 或是組成物(即是形成該塗料之材料以及組成物)缺陷。製 程缺陷包含例如同中心集中(concentricity ),而組成物 缺陷包含例如内含纖維物或其他污染物。此外,例如氣 泡或是層離登缺陷可能是一個製程缺陷、一個組成物缺 陷或是兩者皆有。 組成物缺陷的其中之一係為點狀突塊(point lump)。該 點狀突塊的特性係為已知。然而,本發明人相信點狀突 塊的成因在於該次要塗料之凝膠組成物(gel formations) 11 200401912 的高分子量碎片(在此之後稱為凝膠(gel)或是凝膠組成 物)。However, even with this filtering step, the coated optical fiber still has a defective coating. Generally speaking, the imperfections of the coating are due to defects in the manufacturing process (that is, the process used to coat the glass fiber) or compositions (that is, the materials and compositions that form the coating )defect. Process defects include, for example, concentricity, while composition defects include, for example, fiber content or other contaminants. In addition, for example, a bubble or delamination defect may be a process defect, a composition defect, or both. One of the defects in the composition is a point lump. The characteristics of this stippled bump are known. However, the inventors believe that the cause of the dot-like bumps is the high molecular weight fragments (hereinafter referred to as gels or gel compositions) of gel formations 11 200401912 of the secondary paint .

點狀突塊可造成(1)具有塗層之光纖表現出低拉伸模 數,主要由於後拉伸製程(例如墨水上色)中機械性的阻礙 物,或是(2)塗層上會造成微彎折或衰減的缺陷。這些凝 膠組成物可能在視覺上可察覺或是可能需要放大。然 而,大部分的點狀突塊造成該光纖整體直徑5 μιη (或是 該總直徑的約2%)的轉移(shift)。另外,儘管點狀突塊出 現不一定會降低該具有塗層之光纖的拉伸強度,該點狀 突塊可能會在後製成的上染料步驟中被卡住。Dotted bumps can cause (1) the coated fiber to exhibit low tensile modulus, mainly due to mechanical obstructions in the post-stretch process (such as ink coloring), or (2) the coating on Defects that cause microbending or attenuation. These gel compositions may be visually perceptible or may require magnification. However, most of the point-like bumps caused a shift of the entire fiber diameter of 5 μm (or about 2% of the total diameter). In addition, although the appearance of dot-like bumps does not necessarily reduce the tensile strength of the coated optical fiber, the dot-like bumps may become stuck in the subsequent dyeing step.

該點狀突塊經常具有與該固化之塗層相同之折射率。 因此,儘管它們不同,它們是由同一種材料形成。第1 圖圖示一不具有任何點狀突塊之光纖10。其具有一玻璃 纖維112、一主要塗層114以及一次要塗層116。一種點 狀突塊(一外部點狀突塊)使得該具有塗層之光纖的總直 徑改變。外部點狀突塊128(示於第2圖)係大致可見,因 為儘管該突塊之折射率與該塗層相同,至少該突起(bulge) 係為可觀察到的。第2圖圖示一具有玻璃纖維122、一主 要塗層124以及一次要塗層126以及一外部點狀突塊128 之光纖120的部分。第3圖圖示一具有玻璃纖維132、一 主要塗層134以及一次要塗層136以及一内部點狀突塊 138之光纖130的部分。内部點狀突塊經常無法以肉眼看 見。内部點狀突塊通常會造成該主要塗層之壓縮 12 200401912 (compression)使得該具有塗層之光纖的直徑不改變只有 單獨之組成物件(comp〇nent)的相對直徑被改變。 點狀突塊的出現是一個難題。由於光纖工業的競爭特 性,去挑出或是淘汰含有這種瑕疵的光纖產品是不經濟 的。在較早期的光纖技術中,生產具有塗層之光纖之成 本遠高於今日,因此挑出瑕疵品的成本不足為題。使該 問題加重的原因是該點狀突塊要到塗層塗佈於該玻璃纖 維上之後才能偵測到。 在避免该内含點狀突塊上更增加困難性的是該測試。 不幸的是,目前所知的唯一用以測試該點狀突塊的方法 是針對從一預先形成物拉伸光纖以及塗佈該拉伸光纖。 只有在該塗料被塗佈於該玻璃纖維上之後可偵測到該點 狀突塊的出現。即使是那個時候,未有已知的自動測試 裝置被發展用以分離該點狀突塊。然而,的確有裝置只 要特定條件出現用以判定出現缺陷的總數,但是無法特 疋地判定點狀突塊的數目。因此,唯一已知用以判定具 有塗層之光線上之點狀突塊的方法係為手動以及利用顯 微掃描其表面並且數出。因此,該測試過程係為耗時並 且昂貴。在塗層製造場中過濾未固化之次要塗層材料係 為已知。然而,這是在高壓下進行以加速生產並且除去 微小的(依然可見的)微粒。這種過濾法不能除去任何不可 見的凝膠(據信是點狀突塊的來源)。 此外,相同類的問題(即是該内含點狀突塊)在其他需 13 200401912 要塗層之產品(例如袖珍磁碟、齒科組成物以及分層的表 面)上已知造成同樣不希望之點狀突塊。 因此,在此領域中需要提供一種方法以經濟地製造一 光纖,藉由在塗佈於該裸光纖之前除去塗料中的凝膠或 是凝膠組成物使得其塗層具有極少的甚至沒有點狀突塊 缺陷。The spot-shaped bumps often have the same refractive index as the cured coating. So although they are different, they are formed from the same material. Figure 1 illustrates an optical fiber 10 without any point-like bumps. It has a glass fiber 112, a primary coating 114, and a secondary coating 116. A dot-like bump (an external dot-like bump) causes the total diameter of the coated fiber to change. The outer dot-like projection 128 (shown in Figure 2) is generally visible because, although the refractive index of the projection is the same as that of the coating, at least the bulge is observable. Fig. 2 illustrates a portion of an optical fiber 120 having glass fibers 122, a primary coating 124 and a secondary coating 126, and an external dot-like projection 128. Figure 3 illustrates a portion of an optical fiber 130 having glass fibers 132, a primary coating 134 and a secondary coating 136, and an internal dot-shaped projection 138. Internal stippled bumps are often invisible to the naked eye. The internal point-like bumps usually cause the compression of the main coating 12 200401912 (compression) so that the diameter of the coated optical fiber does not change and only the relative diameter of the individual component is changed. The appearance of point bumps is a difficult problem. Due to the competitive nature of the fiber optic industry, it is not economical to single out or eliminate fiber optic products containing such defects. In earlier fiber optic technologies, the cost of producing coated optical fibers was much higher than today, so the cost of identifying defective products was not sufficient. This problem is aggravated because the dot-like bumps cannot be detected until the coating is applied to the glass fiber. Adding to the difficulty of avoiding the inclusion of punctiform bumps is the test. Unfortunately, the only known method for testing the spotted bumps is to stretch the fiber from a preform and coat the stretched fiber. The appearance of the dot-like bumps can be detected only after the coating is applied to the glass fiber. Even then, no known automatic test device was developed to separate the spot-shaped bumps. However, some devices do require the occurrence of specific conditions to determine the total number of defects, but cannot specifically determine the number of point bumps. Therefore, the only known method for determining point bumps on coated light is to manually and scan the surface with a microscope and count. Therefore, this testing process is time consuming and expensive. It is known to filter uncured secondary coating materials in a coating manufacturing facility. However, this is done under high pressure to speed up production and remove tiny (still visible) particles. This filtration method does not remove any invisible gels (which are believed to be the source of spotted bumps). In addition, the same type of problem (that is, the inclusion of punctiform bumps) is known to cause the same undesirability on other products that require coating (such as compact disks, dental compositions, and layered surfaces). Point-like bumps. Therefore, there is a need in this field to provide a method for economically manufacturing an optical fiber by removing the gel or gel composition in the coating before coating the bare optical fiber so that its coating has few or no spots Bump defect.

【發明内容】 根據對由液態材料(相對於氣態或是固態塗層材料)製 成的塗層中點狀突塊之特性的發現,本發明以除去點狀 突塊找出解決點狀突塊之問題的方法。[Summary of the Invention] According to the discovery of the characteristics of point bumps in a coating made of a liquid material (as opposed to a gaseous or solid coating material), the present invention removes the point bumps to find solutions to the point bumps Problem approach.

因此用於整個說明書以及申請專利範圍的「點狀突塊」 係為一個在塗層中且由不同於該塗層之材料的材料構成 之物體。該點狀突塊可能可見(對肉眼而言),可經由放大 而可見或是當其具有相同於該次要塗層之折射率時係為 不可見。點狀突塊會造成以下之中的一或多個:(1)在該 具有塗層之光纖中具有低拉伸力;(2)由於塗層上的缺陷 造成微彎曲或是衰減;以及(3)可見(由肉眼或是經由放大) 之對該具有塗層之光纖直徑的干擾(perturbation)。 為了避免點狀突塊之發生或是將光纖塗層上的點狀突 塊之發生率降到最小,係選擇特定之條件用以過濾該塗 層組成物。 具體地說,發現選擇適當之跨越該過濾裝置中的至少 一過濾介質之壓力差(ΔΡ),過濾未固化塗層材料的溫 14 200401912 度,以及過濾器的孔洞尺寸,可將該點狀突塊的發生率 減到最小或是去除。這些因素係特別選擇使得一由Δρ 以及過濾溫度決定的過濾係數(filtration factor)在至少一 過濾裝置之過濾介質中係小於或是等於250000s-1。該過 程在用以過遽該用以形成塗層於一基材上之材料(例如 用以作為光纖的次要塗層的材料、用以形成塗層於一光 學介質上的材料、例如袖珍磁碟或是數位影音磁碟、齒 科應用或是層壓表面)上係為有效。在本說明書中,所有 之過濾裝置之過濾介質的過濾係數(γ)係由下列公式界 定: AP(mPa) / _κ η{ηιΡα^)=Ύ{8 } ⑴ 其中ΔΡ係為跨越該過濾裝置中的個別過濾介質之壓 力差,以及係為塗層組成物在該過濾裝置中的個別過 濾介質之黏度。 該過程可用以過濾用於一濕疊濕或是濕疊乾的光纖塗 佈製程的次要塗層。較佳地,該製程可用於過濾、用於一 濕疊濕的光纖塗佈製程的次要塗層。本發明選擇適當之 溫度、壓力差以及過濾孔洞尺寸以除去會造成點狀突塊 之凝膠微粒。 具體地說,該塗層組成物係通過一具有孔洞尺寸從約 〇·〇5 μιη至約5 μπι之過濾器,在小於約1〇5T(4(rc)的溫 15 200401912 度以及跨越單一或是多重過濾介質之壓力差為約〇至約 5psig ’其中該壓力差(mpa)對黏度(mPa-s)的比例將使用 具有孔洞尺寸從約〇·〇5 μιη至約5 μιη之過濾器之該過濾 係數降低至2 250,000s·1。應注意的是,黏度的自然對數 係顯示以直接正比於該溫度。 因此,藉由根據本發明之方法過濾該塗層組成物可除 去點狀突塊(即在該主要或是次要塗層中可見的干擾 物)’或是任何不可見的導致微彎折、衰減或是降低光纖 強度的變形。 本發明之其他目的、特徵、和優點將在以下之較佳實 施例的詳細說明’並配合所附圖示(其中相似的數字係用 以標示數個圖中對應之部分)而更明顯。 【實施方式】 A、 點狀突塊 第1圖圖示一不具有任何點狀突塊之光纖11〇。該光 纖110之中央係為一玻璃纖維112,被一主要塗層114 以及一次要塗層116圍繞。 參照第2圖,一點狀突塊128係為次要塗層126上或 是中的一干擾物。基本上,點狀突塊128係為當一塗層 塗佈於一玻璃纖維表面時的缺陷,導致雌要塗層126之 錯位(dislocation)。該導因於點狀突塊128之錯位會導致 該次要塗層126之表面跟沒有點狀突塊128之位置相比 移位約5μηι。 16 200401912Therefore, the "spotted bump" used throughout the specification and the scope of the patent application is an object in the coating and composed of a material different from the material of the coating. The stippled bumps may be visible (to the naked eye), visible through magnification, or invisible when they have the same refractive index as the secondary coating. Pointed bumps will cause one or more of the following: (1) low tensile force in the coated optical fiber; (2) microbending or attenuation due to defects in the coating; and ( 3) Visible (by the naked eye or by magnification) perturbation of the coated fiber diameter. In order to avoid the occurrence of spotted bumps or to minimize the occurrence rate of spotted bumps on the optical fiber coating, specific conditions are selected to filter the coating composition. Specifically, it was found that selecting a suitable pressure difference (ΔP) across at least one filter medium in the filter device, the temperature of the filter uncured coating material 14 200401912 degrees, and the hole size of the filter can make the dot-like protrusions The occurrence of blocks is minimized or eliminated. These factors are specifically selected so that a filtration factor determined by Δρ and the filtration temperature is less than or equal to 250,000 s-1 in the filter medium of at least one filter device. This process is used to pass through the material used to form a coating on a substrate (such as the material used as a secondary coating for optical fibers, the material used to form a coating on an optical medium, such as a pocket magnet Disks or digital video disks, dental applications or laminated surfaces). In this specification, the filter coefficient (γ) of the filter media of all filter devices is defined by the following formula: AP (mPa) / _κ η {ηιΡα ^) = Ύ {8} ⑴ where ΔP is across the filter device The pressure difference between the individual filter media and the viscosity of the individual filter media of the coating composition in the filter device. This process can be used to filter secondary coatings for a wet-on-wet or wet-on-fiber coating process. Preferably, the process can be used for filtering, and as a secondary coating for a wet-on-fiber optical fiber coating process. The present invention selects an appropriate temperature, pressure difference, and filter pore size to remove gel particles that would cause spot-like bumps. Specifically, the coating composition is passed through a filter having a hole size from about 0.05 μm to about 5 μm, at a temperature of 15 200401912 degrees less than about 105T (4 (rc), and across a single or Is a multiple filter media with a pressure difference of about 0 to about 5 psig 'wherein the ratio of the pressure difference (mpa) to viscosity (mPa-s) will use a filter with a pore size from about 0.05 μm to about 5 μm The filter coefficient is reduced to 2 250,000s · 1. It should be noted that the natural logarithm of the viscosity is shown to be directly proportional to the temperature. Therefore, the spotted bumps can be removed by filtering the coating composition by the method according to the present invention. (Ie, interferences visible in the primary or secondary coating) 'or any invisible deformation that causes microbends, attenuation, or reduction in fiber strength. Other objects, features, and advantages of the present invention will be in The following detailed description of the preferred embodiment is more obvious in conjunction with the accompanying drawings (where similar numbers are used to indicate corresponding parts in several figures). [Embodiment] A. Point-shaped protrusions Figure 1 Figure 1 does not have any points The optical fiber 11 is shaped like a bump. The center of the optical fiber 110 is a glass fiber 112 surrounded by a primary coating 114 and a secondary coating 116. Referring to FIG. 2, a one-point bump 128 is a secondary coating. An interference on or in 126. Basically, the dot-shaped protrusion 128 is a defect when a coating is applied on a glass fiber surface, which causes the female to 126 dislocation. The cause The misalignment of the dot-shaped bumps 128 will cause the surface of the secondary coating 126 to shift about 5 μm compared to the position without the dot-shaped bumps 128. 16 200401912

如第2圖所示,導因於外部點狀突塊128之外部干擾 物係從該次要塗層126向遠離該主要塗層124以及玻璃 纖維122的方向延伸之位移而來。第3圖係圖示一内部 點狀突塊138,其係由該次要塗層136向該主要塗層134 以及玻璃纖維132的方向延伸之位移而來。雖然圖未依 照比例而畫,任何具有點狀突塊128、138之薄膜 (membrane)或是過渡帶(transition)跟沒有點狀突塊之光 纖相比之總位移係為約5μπι。在一些情況下,點狀突塊 128、138可能會較小,造成約3μηι之位移。在另一些情 況下,測量出的位移可能約為該光纖總剖面之約2%。當 然,一單一點狀突塊148可同時形成内部以及外部影響 (第4圖)。As shown in Fig. 2, the external interference caused by the external dot-like projection 128 is a displacement extending from the secondary coating layer 126 in a direction away from the primary coating layer 124 and the glass fiber 122. FIG. 3 illustrates an internal dot-like projection 138 which is displaced by the secondary coating 136 extending in the direction of the primary coating 134 and the glass fiber 132. Although the figure is not drawn to scale, the total displacement of any membranes or transitions with dot-like bumps 128, 138 compared to optical fibers without dot-like bumps is about 5 μm. In some cases, the dot-like protrusions 128, 138 may be smaller, causing a displacement of about 3 μm. In other cases, the measured displacement may be about 2% of the total profile of the fiber. Of course, a single point-like protrusion 148 can form both internal and external influences (Figure 4).

當内部點狀突塊138出現時,可能無法從該光纖130 之表面偵測出。該内部點狀突塊138形成之干擾物相内 延伸將會迫使該主要塗層離開其原有之位置。因為該主 要塗層134之組成物的可撓性,並且被迫使離開其原有 之位置,該主要塗層134輕易地被壓縮以讓出空間。當 内部點狀突塊138出現時,,該主要塗層134以及該次 要塗層136之過渡帶係被移開例如約5μιη,但是該位移 可能只有在光折射時才能看出,其他的時候無法從光纖 130表面看出。然而,這種特徵經常可從一掃描電子顯微 鏡或可能由一標準之立體顯微鏡以放大約200倍的倍率 看出。 17 本發明之方法係特別設計以除去一光纖120、130、140 中之該點狀突塊128、138、148。該點狀突塊128、138、 148之出現可能會導致該具有塗層之光纖具有低拉伸 力、衰減訊號損失或是輕易的具有髒污表面。 B、製造光纖之方法When the internal dot-shaped protrusion 138 appears, it may not be detected from the surface of the optical fiber 130. The in-phase extension of the interfering phase formed by the internal dot-like projections 138 will force the primary coating to leave its original position. Because the composition of the primary coating 134 is flexible and forced to leave its original position, the primary coating 134 is easily compressed to make room. When the internal dot-like projections 138 appear, the transition bands of the primary coating 134 and the secondary coating 136 are removed, for example, about 5 μm, but the displacement may be seen only when the light is refracted, other times It cannot be seen from the surface of the optical fiber 130. However, this feature is often seen in a scanning electron microscope or possibly a standard stereo microscope at a magnification of about 200 times. 17 The method of the present invention is specifically designed to remove the point-like projections 128, 138, 148 in an optical fiber 120, 130, 140. The appearance of the dot-shaped protrusions 128, 138, and 148 may cause the coated optical fiber to have low tensile force, attenuate signal loss, or easily have a dirty surface. B. Method for manufacturing optical fiber

第5圖主要係圖示製造一具有塗層之玻璃纖維的過 程。在此過程中,一個預先成形之玻璃材料係提供(步驟 162)以及設於一拉伸台(draw tower)藉此將一裸玻璃纖維 從該處拉伸出來(步驟164)。該裸拉伸玻璃纖維係為易反 應的以及亦損壞的。因此在操作之前完成形成塗層之步 驟是很重要的。因此,在較佳的濕疊濕塗佈過程中,該 主要塗料係被提供(步驟160)以及塗佈於該裸拉伸玻璃 纖維(步驟166)。不是同時就是在該步驟之後立即,一次 要塗層組成物係被提供(步驟161)以及塗佈於該主要塗 層上(步驟168)。使用一組紫外光燈,該兩層塗層係在原 處同時固化(步驟170)。雖然此種濕疊濕應用係為較佳, 仍可能在該主要塗層至少部分固化之後才塗佈上該次要 塗層。最後,使用一絞盤(capstan)從該拉伸台拉出並且 將該具有塗層之光纖捲成一捲(步驟172)。此外,如上所 述,整體排除該主要塗層以及只使用一單一塗層亦在本 發明之範圍内。 一般而言,該主要以及次要塗層組成物係製備於遠離 它們被商業上塗佈於該玻璃纖維的地點。當然較佳地該 18 200401912 主要以及次要塗層組成物可在它們被商業上塗佈於該玻 璃纖維的地點被製造以及過濾。 第6圖圖示一用於製備一次要塗料之典型步驟,其包 含將該次要塗層成份混合以形成一混合物(步驟182),冷 卻該混合物(步驟183),以及接著過濾該冷卻混合物(步 驟184)形成該次要塗層組成物。Fig. 5 is a diagram illustrating a process of manufacturing a coated glass fiber. In this process, a pre-formed glass material is provided (step 162) and a draw tower is provided to draw a bare glass fiber therefrom (step 164). The bare drawn glass fiber is reactive and also damaged. It is therefore important to complete the coating formation step before operation. Therefore, in a preferred wet-on-wet coating process, the primary coating is provided (step 160) and applied to the bare drawn glass fiber (step 166). Either simultaneously or immediately after this step, a secondary coating composition is provided (step 161) and applied to the primary coating (step 168). Using a set of UV lamps, the two coatings are cured in situ simultaneously (step 170). Although such wet-on-wet applications are preferred, it is still possible to apply the secondary coating after the primary coating is at least partially cured. Finally, a capstan is used to pull out from the stretching table and roll the coated optical fiber into a roll (step 172). Further, as mentioned above, it is also within the scope of the present invention to exclude the primary coating as a whole and to use only a single coating. Generally, the primary and secondary coating compositions are prepared away from the locations where they are commercially applied to the glass fibers. It is of course preferred that the 18 200401912 primary and secondary coating compositions can be manufactured and filtered where they are commercially applied to the glass fiber. Figure 6 illustrates a typical step for preparing a secondary coating that includes mixing the secondary coating ingredients to form a mixture (step 182), cooling the mixture (step 183), and then filtering the cooled mixture ( Step 184) The secondary coating composition is formed.

該次要塗層成分之混合一般係發生於一升高之溫度 (例如約140°F(60°C))以促進混合並且使該成分流動。然 而,傳統上該熱混合物係冷卻至105°F(40.5°C)然後在該 溫度被過濾。一主要塗成組成物之製備亦通常在較高溫 度下混合其成分以形成一混合物,冷卻該混合物至適合 過濾之溫度,接著過濾該混合物以形成該主要塗層組成 物。該過濾過程可在單一階段執行,如第6圖所示,或 是分成多個階段。步驟182、183以及184係通常在一第 一位置執行,其中該已過濾的塗層組成物係被製備以及 置入容器中。該塗層組成物之容器係被運送至一第二位 置用以塗佈於該玻璃纖維。 本發明與習知過程不同,使用獨特的過濾條件以意外 的除去點狀突塊。該條件將解釋於下。 C、過濾該次要塗層 傳統的過濾係由一具有孔洞尺寸為0·45μιη之尼龍過 濾器,壓力差在40-60 psig之間以及105°F之溫度下執行。 相對地,本發明藉由改變一個或多個傳統條件以減少 19 200401912 或去除最終產物的點狀突塊數。 本發明平衡過濾溫度、跨越一過濾裝置之至少一過淚 介質的壓力差,以及過濾器的孔洞尺寸之係數藉此在該 過濾裴置之至少一過濾介質中得到小於或等於 250000,,較佳係小於100000,,更佳係小於5〇〇⑻ s 1 ’例如小於43000 s-1之過濾係數。該過濾、介質之厚度 可能亦為一參數,因為越厚的過濾器可具有較較薄之過 濾器更大的孔洞尺寸並也可非常有效率。然而,壓力差 的參數將該孔洞尺寸以及厚度特徵計算進去,在標準的 操作條件下,較厚的過遽介質將比具有相同孔洞尺寸之 較薄的過濾介質具有較大的壓力差。 如以上所出現的,過濾係數(γ)係由下列通式I界定: ^P{mPa) / 一“ ^T)=Y(S } ⑴ 其中ΔΡ係為壓力差,以及”係為塗層組成物在通過 該過濾裝置中的個別過濾介質之黏度。因此,過濾係數 係針對整體之過濾裝置的每一過濾總成而計算並且過濾 係數係決定使得在整體之過濾裝置中至少一過濾總成具 有該適當過濾係數。 一般而言,該過濾總成包含一支撐件例如一圍欄 (enclosure)或是一外殼(housing),其包含一單一過濾介質 或是平行之多個過濾介質使得AP係為該支撐件之入口 20 200401912 以及該支撐件出口之壓力差。 例如,該過濾總成可包含一外殼,其具有一個或是多 個獨立的過濾介質平行地設置於其中。在本發明之範圍 中亦可使用一具有單一過濾介質的過濾裝置,特別是一 個單一過濾、器設在一個單一外殼中。在本發明之範圍中 亦可使用複數個連續地設置的過濾、介質,特別是複數個 包含過濾介質的過濾器外殼其中該外殼係以連續的方式 設置。在本發明之範圍中該過濾裝置亦可同時包含以平 行以及連續排列之外殼。 較佳地,所有組成物都通過該符合所期望之過濾、係數 的至少一過濾介質。例如,若該過濾裝置具有三個外殼, 其中该第一以及第二彼此平行之外殼各自包含三個平行 5又置之過遽介質並且提供給(feed)該具有單一過遽介質 的第三外殼,然後該平行之外殼(以及其個別之介質)皆具 有該所期望之過濾係數或是該第三外殼(以及其個別之 介質)具有該所期望之過濾係數。 雖然不希望被任何理論限制,該點狀突塊係被推測由 忒塗佈於玻璃纖維之前的次要塗料中的凝膠組成物形 成。據信,升高的溫度使得該凝膠組成物部分溶解或是 變形,並且增加的壓力給予該凝膠組成物部分溶解或是 父幵7額外的「助力」藉此穿過該狹窄的孔洞尺寸。因此, =理降低溫度以及壓力會降低該過濾係數以及避免該凝 膠、、且成物成為具有可撓性足以穿過該狹窄的孔洞尺寸。 21 200401912 過滤係數’在此情況下’可界定為壓力差(ΔΡ)以及淨 料黏度的比例。黏度的自然對數係直接正比於該光纖塗 層材料的溫度。如前所述,經由過濾除去點狀突塊的主 要因素在於過濾執行時的溫度。若使用傳統的1〇5Τ,必 須使用非傳統的跨越該過濾器的低壓力差來平衡。亦發 現高溫會導致塗層膠黏劑的降解。然而,較佳係為較傳 統溫度低的溫度。 一般而言,過濾係在小於約120Τ的溫度下進行,例 如在50Τ以及120Τ之間,或是在70Τ以及105Τ之間。 較佳的過濾溫度範圍係從60Τ至95°F(15.5°C至32 2 °C),更佳係從70°F至90°F(21.2°C至32.2。〇或甚至是從 7〇°F 至 80T(21.2〇C 至 26.7。〇。 雖然得到的資料顯示出降低過濾溫度對點狀突塊的性 成具有正面影響,然而此影響係為有限。據信太大幅地 降低該溫度(例如低於約5 0 T)將導致該次要塗料在過濾 時產生結晶。雖然降低溫度會限制點狀突塊在最終具有 塗層之光纖上的生成,在塗佈於裸玻璃纖維之前該塗層 溶液中生成的結晶也會增加其他問題。 此外,具有較低溫度時,因黏度大致上增加所需用以 完成任何過濾步驟的時間變得較長。在標準的溫度下(例 如105 F)’穿過標準30英吋過濾匣的一個通常流速係為 每分鐘約1〇〇克穿過每10英吋之過濾器(使用多匡 (catridge)的過濾裝置)。然而,將溫度降低至7〇卞將在過 22 200401912The mixing of the minor coating ingredients typically occurs at an elevated temperature (e.g., about 140 ° F (60 ° C)) to facilitate mixing and flow the ingredients. However, traditionally the hot mixture was cooled to 105 ° F (40.5 ° C) and then filtered at that temperature. The preparation of a primary coating composition also typically involves mixing its ingredients at a higher temperature to form a mixture, cooling the mixture to a temperature suitable for filtration, and then filtering the mixture to form the primary coating composition. The filtering process can be performed in a single stage, as shown in Figure 6, or divided into multiple stages. Steps 182, 183, and 184 are usually performed in a first position, where the filtered coating composition is prepared and placed into a container. The container of the coating composition is transported to a second position for coating the glass fiber. The present invention differs from the conventional process in that it uses unique filtering conditions to accidentally remove point bumps. This condition is explained below. C. Filtration of the secondary coating. Traditional filtration is performed by a nylon filter with a hole size of 0.45 μm. The pressure difference is between 40-60 psig and a temperature of 105 ° F. In contrast, the present invention reduces one or more conventional conditions to reduce the number of punctiform bumps of 19 200401912 or remove the final product. The present invention balances the filtering temperature, the pressure difference across at least one tearing medium across a filtering device, and the coefficient of the hole size of the filter to thereby obtain less than or equal to 250,000 in the filtering medium of the filtering device, preferably The filter coefficient is less than 100,000, more preferably less than 50000 s 1 ′, such as less than 43000 s-1. The thickness of the filter and media may also be a parameter, because thicker filters can have larger pore sizes than thinner filters and can also be very efficient. However, the pressure difference parameter takes into account the hole size and thickness characteristics. Under standard operating conditions, thicker media will have a larger pressure difference than thinner filter media with the same hole size. As shown above, the filter coefficient (γ) is defined by the following general formula I: ^ P {mPa) /-"^ T) = Y (S} ⑴ where ΔP is the pressure difference, and" is the coating composition The viscosity of the material passing through the individual filter media in the filter device. Therefore, the filter coefficient is calculated for each filter assembly of the overall filter device and the filter coefficient is determined so that at least one filter assembly in the overall filter device has The appropriate filter factor. Generally speaking, the filter assembly includes a support such as an enclosure or a housing, which contains a single filter medium or multiple filter media in parallel such that the AP system is the The pressure difference between the inlet 20 200401912 of the support and the outlet of the support. For example, the filter assembly may include a housing having one or more independent filter media disposed in parallel therein. It is also within the scope of the present invention. A filter device with a single filter medium can be used, especially a single filter, the device is arranged in a single housing. Within the scope of the present invention, a plurality of consecutive settings can also be used Filters, media, especially a plurality of filter housings containing filter media, wherein the housings are arranged in a continuous manner. Within the scope of the present invention, the filtering device may also include parallel and continuous housings. Preferably, All components pass through at least one filter medium that meets the desired filter and coefficient. For example, if the filter device has three shells, the first and second parallel shells each contain three parallel 5 and Pass the medium and feed the third housing with a single medium, and then the parallel housing (and its individual medium) all have the desired filter factor or the third housing (and its individual Medium) has the desired filter coefficient. Although not wishing to be bound by any theory, the spot-like bumps are presumed to be formed of a gel composition in a secondary coating before the glass fiber is applied to the glass fiber. It is believed that The elevated temperature causes the gel composition to partially dissolve or deform, and increased pressure gives the gel composition a partial dissolution or dissolution.幵 7 Extra "boost" to pass through the narrow hole size. Therefore, reducing the temperature and pressure will reduce the filtration coefficient and avoid the gel, and the product will be flexible enough to pass through the narrow hole. 21 200401912 The filter factor 'in this case' can be defined as the ratio of the pressure difference (ΔP) and the viscosity of the net material. The natural logarithm of the viscosity is directly proportional to the temperature of the fiber coating material. As mentioned earlier, The main factor in removing spotted bumps by filtration is the temperature at which the filtration is performed. If using conventional 105T, it must be balanced with a non-traditional low pressure difference across the filter. It has also been found that high temperatures can cause the coating to stick Degradation of the agent. However, the temperature is preferably lower than the traditional temperature. Generally speaking, the filtration is performed at a temperature of less than about 120T, such as between 50T and 120T, or between 70T and 105T. The preferred filtration temperature range is from 60T to 95 ° F (15.5 ° C to 32 2 ° C), and more preferably from 70 ° F to 90 ° F (21.2 ° C to 32.2 ° or even 70 °). F to 80T (21.2 ° C to 26.7 °. Although the data obtained show that lowering the filtration temperature has a positive effect on the properties of the point bumps, this effect is limited. It is believed that lowering the temperature too much (for example, low (At about 50 T) will cause the secondary coating to crystallize during filtration. Although lowering the temperature will limit the formation of stippled bumps on the final coated fiber, the coating solution before coating on bare glass fibers The formation of crystals in the solution also adds other problems. In addition, at lower temperatures, the time required to complete any filtration step becomes longer due to the increase in viscosity. At standard temperatures (eg 105 F) A typical flow rate through a standard 30-inch filter cartridge is about 100 grams per minute through a 10-inch filter (using a catridge filter). However, the temperature is reduced to 70 ° F Will be after 22 200401912

濾中將流速從係數4降到1。這是由於降低溫度而增加塗 料的黏度。事實上,次要塗層材料以及/或其個別成分一 般係加熱至14 0 °F以允許在過濾前能足夠的抽取以及混 合。然後,該次要塗層材料係在過濾之前冷卻。當過濾 係執行於一遠低於該標準l〇5°F的溫度時,在抽取/混合 以及過濾之間需要額外的冷卻,增加製造該塗料溶液的 成本以及時間。因此,本發明的範圍中在一較低溫度下 過濾時,需增加穿過該過濾器本身之面積或是過濾裝置 整體面積(例如額外的過濾匣或是較大的過濾表面積)之 該表面流動,以達成與較高溫度下相同之流速。The filtration reduces the flow rate from a factor of 4 to 1. This is due to an increase in the viscosity of the coating due to a decrease in temperature. In fact, the secondary coating material and / or its individual ingredients are typically heated to 140 ° F to allow adequate extraction and mixing before filtering. The secondary coating material is then cooled before filtering. When the filtration system is performed at a temperature much lower than the standard 105 ° F, additional cooling is required between extraction / mixing and filtration, increasing the cost and time for manufacturing the coating solution. Therefore, when filtering at a lower temperature in the scope of the present invention, it is necessary to increase the surface flow through the area of the filter itself or the entire area of the filter device (such as an additional filter box or a larger filter surface area) To achieve the same flow rate as at higher temperatures.

在過濾係數公式I中,AP係為該過濾裝置中跨越個別 過濾介質的壓力差。傳統AP的範圍之最高限制係為約 80 psig,例如在約3以及約40 psig之間。本發明可使用 之過濾裝置中跨越個別過濾介質的壓力差AP係從約〇 至 80 psig,0 至 60 psig,或是 5 至 60 psig,或是 10 至 60 psig。然而,使用範圍中較高之壓力差係由一非傳統 的低過濾溫度平衡。因此,該壓力差(mPa)對黏度(mPa-s) 的比例係控制以將該過濾係數降低至$ 25000(^4。較佳 地,該ΔΡ係從35至55 psig,更佳係從40至50 psig。 將ΔΡ保持在40 psig並且在70°F下過濾(使得過濾係數 為約43000 s’在使用多種孔洞尺寸之過濾器時都具有 效率。 應了解的是上述的過濾係數可用於多種不同型態之過 23 濾器以及過濾系統。該前述之最小過濾係數係可知地包 含系統其中該過濾器的面積係增加以允許使用於低壓 力。該前述的過濾係數說明具有不同黏度之塗料,當具 有高黏度之塗料可在高溫度下進行並且顯示出所欲之過 濾係數。 在本發明中,過濾器的孔洞尺寸的標準比例在最高限 制為約10 μηι的範圍,例如從約〇 〇5至約μιη,或是 從約0.45至約3 μηι,從約〇·〇5至約5 μηι,或是從約0.1 至約3 μηι。 在本發明之範圍中亦使用一具有一絕對額定值 (absolute rating)之過濾器孔洞尺寸的過濾器,該孔洞尺 寸係在最高限制為約1〇μηι的範圍,例如從約〇〇5至約 10 μηι ’或是從約〇·45至約3 μηι,從約〇·〇5至約5 μηι, 或疋從約0· 1至約3 μηι。 一個標稱額定值(nominal rating)係指一個過濾器在一 單一經過(pass)之後將移除至少(等於或大於)所有微粒的 50%。一個絕對額定值係指一個過濾器在一單一經過 (pass)之後將移除至少(等於或大於)所有微粒的99%。 薄膜過濾器之孔洞尺寸,已知亦為平均孔洞尺寸,之 範圍係從約〇·〇5至約〇·6μηι,較佳〇·ΐ至4μηι。較佳的 薄膜過濾器之孔洞尺之範圍係從〇·1μιη至〇·45μηι。一典 型薄膜過遽器係為孔洞尺寸〇·45μηι之尼龍薄膜過濾器 或是孔洞尺寸Ο.ίμιη之聚四氟乙烯 24 200401912 (polytetrafluoroethylene,PTFE)薄膜過遽器。 中央過遽器(depth filter)的絕對額定之孔洞尺寸,例如 以「泡泡測試法(bubble test)」測試而得(見於美國第 5468382號專利),較佳地其範圍係在約1至約4 。較 佳的中央過濾器之孔洞尺之範圍係從1 μπι至3.〇pm。_ 典型中央過濾器係為孔洞尺寸3·0μπι之聚丙婦 (polypropylene)中央過濾器。 薄膜過濾、器以及中央過濾、器在此領域中係為習知。 弟7以及弟8圖分別圖不用於本發明之一習用薄膜過 濾器以及一中央過濾器。習用中央過濾器以及薄膜過 濾器可用於本發明之過濾步驟。典型的過濾器係出現 以及敘述於頒與Cook等人之美國第5279731號專利、 頒與Ohtani之美國第5468382號專利以及頒與c0〇k 等人之美國第5846421號專利。這些專利之全部在此 併入參考。 第7圖係為根據本發明所使用之習用薄膜過濾器的 局部剖開圖,其係出現以及敘述於美國第5846421號 專利。具體地說,第7圖係圖示——般之打褶(pleat) 型之薄膜匣過濾器。一過濾器薄膜203係被打褶當夾 設於兩個液體可滲透性(liquid-permeable)薄片202以及 204之間並且其係捲繞於一個具有很多個集液口(liquid collection ports)之核心205上。一個外圍的防護物201 係設於該過濾器薄膜203之外部用以保護該過濾器薄 25 200401912 膜203。該精密的過濾薄片薄膜2〇3係以末端盤狀物 206雄封於该圓柱狀物之兩相對端。該末端盤狀物2⑽ 係以一密封墊(gaSket)207鄰接於一過濾器外殼(未示於 圖中)的密封部。過濾後之液體係從該核心之集液口從 一出口 208流出。 第8圖圖示可用於本發明之一習用中央過濾器之橫 向剖視圖,用以取代或是與帛7圖之薄膜過濾器合併 使用。此種中央過濾器係出現以及敘述於美國第 5468382號專利。該中央過濾器裝置包含一大致圓柱狀 之具有褶曲(pleat)311中央過濾器介質31〇。每一褶曲 311係沿著該過濾介質的長度延伸並且該褶曲一起環 繞著该過濾器彼此平行延伸。一内部支撐核心312係 配置於該圓柱狀中央過濾器介質中並且接觸内部褶 曲。一外部支撐籠313接觸該外部褶曲。 一該中央過濾器介質之圓柱可為不具有任何邊緣 在封之過濾介質之連續式筒套。一第二可能性係為由 平坦薄片之中央過濾器介質形成該圓柱狀過濾器介質 310,其具有一密封處以形成該圓柱體。一第三可能性 係為將一平坦之矩形薄片捲成圓柱狀圓筒,該薄片之 兩相對邊緣至少重疊一次。 違過渡器介質亦可為纖維狀之結構例如聚婦烴、聚 酯、聚氨基化合物、玻璃纖維或是金屬纖維。例如該 中央過遽元件可由「炼化吹出製程」(meh bl〇wing 26 200401912 process)形成並且其直徑從ι_20μηι,較佳為1-12μηι。 如前述,過濾步驟184(第ό圖)可為單一階段或是一 系列階段。在一實施例中,步驟184係以一第一過濾 器,或是一預過濾器(pre-filter)進行,該過濾器具有大 致較大之孔洞尺寸。因過濾器具有有限之可用壽命, 隨著該過濾器的孔洞尺寸下降其成本上升。因此使用 具有較大孔洞尺寸的預過濾器在使用相對較昂貴的過 濾器(具有較小的孔洞尺寸)之前將塗料溶液中的許多 大的濾出物(filtrate)除去。該最終過濾器係一般落於前 述之前述之孔洞尺寸範圍中。 在此所有敘述中,應注意到的是當提及一過濾裝置 日寸’亦可使用多過濾介質,並且反之亦然。此外,調 整該過濾特徵,例如增加表面積將會影響該過濾係數 的計算,當增加表面積時將降低所得之壓力差。 此外,如上所述,增力σ之表面積能達成低壓力差亦 在本毛明之圍内。然而,該壓力差的測量係跨越每 -過濾、總成而測得的’無論該過濾、總成係為一具有大 或i表面積之單-過濾、H,或是以連續式歧平行設 置的多過濾、器。即壓力差係由跨越每一獨立之過滤總 成測得,與任何其他在過濾、裝置之外的職總成或是 裝置無關。 例如,典型的過濾包会 ^ ^ ^ 3 ^浦用以從一補充槽抽吸 該塗層組成物並且送到一第一 k /慮器中。在此例中係 27 200401912 假設該幫浦以40 psig將該塗層組成物餵入(feed)該第 一過濾器。在第一過濾器之後,該塗層組成物流入一 第一過慮為。然而,根據本發明,壓力差係由跨越每 一獨立過濾總成測得,並且因此不受外部裝置,該過 濾器的上游或是下游,例如幫浦或是熱交換器的影 響。用於本發明之整體裝置亦可包含一個或是多個壓 力梯度裝置設於該入口至該第一過濾器之間以及該最 後一個過濾之出口,例如熱交換器、幫浦或是設於該 獨立過濾器之前、後或是之間之閥亦不會影響壓力差 的計算。溫度係為在個別過濾總成之組成物之溫度。 根據前述之步驟的概述,可能限制出現於一基材上 之塗層(例如一光纖上之塗層)之點狀突塊。前述之方法 生產出之塗層組成物係用以形成大致無點狀突塊之固 化塗層,例如當以下列過程測量時,其中〇至〇 〇〇1%, 較佳0至0.0001%之塗層表面具有點狀突塊。例如該前 述之方法可生產一光纖每公里具有平均0至10個點狀 犬塊,較佳每公里具有從0至5個點狀突塊,更佳每 公里具有從〇至2個點狀突塊。 因此本發明之方法可用以保證過濾後之一批批塗 料能使具有塗層之光纖每公里具有平均少於10,一般 少於5、少於2或〇個點狀突塊。 本發明達成一遠低於習用製程的淘汰率(scrap rate)。根據本發明之塗層材料的工業級製造中,一般在 28 200401912 每連續12個月中包含連續的產品或是多批產品生產 5(M_嘲’例如50(M_ 0頓’本發明可用則呆證該塗 層組成物係適合用以作為—貫地生產具有㈣而言每 公里少於約10,少於約5、或約〇個點狀突塊。 例如該一批批合適的產品使得至少98%塗佈有本發 明之材料的光纖具有每公里少於約1〇個點狀突塊,少 於約5個點狀突塊、少於2個點狀突塊或約〇個點狀 突塊。例如1000公里長之光纖,至多2〇公里具有每 么里多於1 〇個點狀突塊。較佳的,至少99%具有塗層 之光纖具有每公里少於約10個點狀突塊,少於約5個 點狀突塊、少於2個點狀突塊或約0個點狀突塊;或 是至少99.75%具有塗層之光纖具有每公里少於約1〇個 點狀突塊,少於約5個點狀突塊、少於2個點狀突塊 或約0個點狀突塊;或是1 〇〇%具有塗層之光纖具有每 公里少於約10個點狀突塊,少於約5個點狀突塊、少 於2個點狀突塊或約〇個點狀突塊。因此,因點狀突 塊造成該最終產物(由50噸之最終組成物製成)的淘汰 率係為至多約2%,較佳至多約1% ,更佳至多約 0.25%。該點狀突塊之數目可利用下列方式在該主要塗 層以及該次要塗層皆塗佈於該玻璃纖維並且固化之後 判定: 1、可見地置放於纏繞著的光纖或是一段纖維上的 一缺陷。將該光纖固定對著一光並且尋找該光纖 29 200401912 上之突塊或是小圓點。亦可以感覺該具有塗層之 光纖表面而辨認出一突塊。 2、 設定一彩色照相機(例如SONY的3CCD)通過一 具有20倍(200倍放大倍率,雖然對於一些缺陷 需要更高的倍率)之物鏡的顯微鏡(例如LECCIA DMRX)。In the filter coefficient formula I, AP is the pressure difference across the individual filter media in the filter device. The highest limit of the range of conventional APs is about 80 psig, such as between about 3 and about 40 psig. The pressure difference AP across individual filter media in the filter device usable in the present invention is from about 0 to 80 psig, 0 to 60 psig, or 5 to 60 psig, or 10 to 60 psig. However, the higher pressure difference in the use range is balanced by an unconventionally low filtration temperature. Therefore, the ratio of the pressure difference (mPa) to the viscosity (mPa-s) is controlled to reduce the filter coefficient to $ 25000 (^ 4. Preferably, the ΔP is from 35 to 55 psig, more preferably from 40 Up to 50 psig. Keeping ΔP at 40 psig and filtering at 70 ° F (making a filtration factor of about 43000 s' is effective when using a variety of hole size filters. It should be understood that the above-mentioned filtration factors can be used for a variety of Different types of filters and filtration systems. The aforementioned minimum filtration coefficient is known to include the system where the area of the filter is increased to allow use at low pressures. The aforementioned filtration coefficients indicate coatings with different viscosities, when Coatings with high viscosity can be performed at high temperatures and show the desired filtration coefficient. In the present invention, the standard ratio of the pore size of the filter is in the range of up to about 10 μηι, for example, from about 0.05 to about μιη, or from about 0.45 to about 3 μηι, from about 0.05 to about 5 μηι, or from about 0.1 to about 3 μηι. Within the scope of the present invention, one having an absolute rating (absol A filter with a pore size of ute rating), the pore size is in a range with a maximum limit of about 10 μηι, for example, from about 0.05 to about 10 μηι, or from about 0.45 to about 3 μηι, From about 0.05 to about 5 μm, or 疋 from about 0.1 to about 3 μm. A nominal rating refers to a filter that will be removed at least after a single pass (Equal to or greater than) 50% of all particles. An absolute rating means that a filter will remove at least (equal to or greater than) 99% of all particles after a single pass. Membrane filter hole size It is known that it is also the average pore size, and the range is from about 0.05 to about 0.6 μm, preferably 0 to 4 μm. The range of the hole size of the preferred membrane filter is from 0.1 μm to 0. · 45μηι. A typical membrane filter is a nylon membrane filter with a hole size of 0.45μm or a polytetrafluoroethylene 24 200401912 (polytetrafluoroethylene, PTFE) membrane filter with a hole size of 0. The central filter ( depth filter) The pore size, for example, is measured by a "bubble test" (see US Patent No. 5,468,382), and preferably ranges from about 1 to about 4. The preferred size of the pore size of the central filter The range is from 1 μm to 3.0 μm. _ Typical central filters are polypropylene central filters with a hole size of 3.0 μm. Membrane filters, filters, and central filters are known in this field. . Brother 7 and Brother 8 are respectively not used in a conventional membrane filter and a central filter of the present invention. Conventional central filters and membrane filters can be used in the filtration step of the present invention. Typical filters appear and are described in U.S. Patent No. 5,279,731 issued to Cook et al., U.S. Patent No. 5,468,382 issued to Ohtani, and U.S. Patent No. 5,864,421 issued to Cok et al. All of these patents are incorporated herein by reference. Figure 7 is a partial cutaway view of a conventional membrane filter used in accordance with the present invention, which appears and is described in U.S. Patent No. 5,864,421. Specifically, FIG. 7 is a diagram showing a general pleated film cassette filter. A filter membrane 203 is pleated when sandwiched between two liquid-permeable sheets 202 and 204 and is wound around a core with a plurality of liquid collection ports 205 on. A peripheral shield 201 is provided outside the filter film 203 to protect the filter film 25 200401912 film 203. The precision filter sheet film 203 is male-sealed at the opposite ends of the cylindrical object with a terminal disc 206. The end disc 2⑽ is connected to a seal portion of a filter housing (not shown) with a gasket 207 (gaSket). The filtered liquid system flows from an outlet 208 from the liquid collecting port of the core. Figure 8 illustrates a cross-sectional view of a conventional central filter that can be used in the present invention, instead of or in combination with the membrane filter of Figure 7. Such a central filter appears and is described in U.S. Patent No. 5,468,382. The central filter device includes a substantially cylindrical central filter medium 31 with a pleat 311. Each fold 311 extends along the length of the filter medium and the folds together extend parallel to each other around the filter. An inner support core 312 is disposed in the cylindrical central filter medium and contacts the inner pleats. An outer support cage 313 contacts the outer fold. A cylinder of the central filter medium may be a continuous sleeve without any sealed filter medium at the edges. A second possibility is to form the cylindrical filter medium 310 from a flat sheet of central filter medium, which has a seal to form the cylinder. A third possibility is to roll a flat rectangular sheet into a cylindrical cylinder, with two opposite edges of the sheet overlapping at least once. The transponder medium can also be a fibrous structure such as a polyhydrocarbon, a polyester, a polyurethane, a glass fiber, or a metal fiber. For example, the central transition element can be formed by a "refining and blowing process" (meh blowing 26 200401912 process) and its diameter is from ι_20 μηι, preferably 1-12 μηι. As mentioned above, the filtering step 184 (Fig. 6) can be a single stage or a series of stages. In one embodiment, step 184 is performed with a first filter or a pre-filter, which has a substantially larger hole size. Because the filter has a limited useful life, its cost increases as the hole size of the filter decreases. Therefore using a pre-filter with a larger pore size removes many large filtrates from the coating solution before using a relatively more expensive filter (with a smaller pore size). The final filter generally falls within the aforementioned pore size range. In all the descriptions, it should be noted that when referring to a filter device, it is also possible to use multiple filter media, and vice versa. In addition, adjusting the filtering characteristics, such as increasing the surface area will affect the calculation of the filtering coefficient, and increasing the surface area will reduce the resulting pressure difference. In addition, as described above, the surface area of the booster σ can achieve a low pressure difference, which is also within the range of this Maoming. However, the measurement of the pressure difference is measured across each filter, the assembly is' whether the filter, the assembly is a single-filter, H with a large or i surface area, or is arranged in a continuous and parallel arrangement. Multiple filters and filters. That is, the pressure difference is measured across each independent filter assembly, and has nothing to do with any other job assembly or device outside the filter, device. For example, a typical filter pack would be used to pump the coating composition from a supplemental tank and send it to a first k / filter. In this example, 27 200401912, it is assumed that the pump feeds the coating composition to the first filter at 40 psig. After the first filter, the coating composition flows into a first filter. However, according to the present invention, the pressure difference is measured across each independent filter assembly and is therefore not affected by external devices, upstream or downstream of the filter, such as pumps or heat exchangers. The integrated device used in the present invention may also include one or more pressure gradient devices provided between the inlet and the first filter and the last filtered outlet, such as a heat exchanger, a pump, or Valves before, after, or between independent filters will not affect the calculation of the pressure difference. The temperature is the temperature of the composition of the individual filter assembly. According to the outline of the foregoing steps, it is possible to limit the dot-like bumps that appear on a coating on a substrate (such as a coating on an optical fiber). The coating composition produced by the aforementioned method is used to form a cured coating having substantially no stippled bumps. For example, when measured by the following process, 0 to 0.001%, preferably 0 to 0.0001% of the coating is applied. The surface of the layer has spot-shaped bumps. For example, the aforementioned method can produce an optical fiber with an average of 0 to 10 dot-shaped dog blocks per kilometer, preferably from 0 to 5 dot-shaped bumps per kilometer, and more preferably from 0 to 2 dot-shaped bumps per kilometer. Piece. Therefore, the method of the present invention can be used to ensure that a batch of coating after filtration can make the coated optical fiber have an average of less than 10, generally less than 5, less than 2 or 0 point bumps per kilometer. The invention achieves a scrap rate that is much lower than conventional processes. In the industrial-grade manufacturing of the coating material according to the present invention, generally 28 200401912 includes continuous products or multiple batches of production every 12 consecutive months. 5 (M_ mock 'e.g. 50 (M_ 0ton)' It is proved that the coating composition is suitable for continuous production of less than about 10, less than about 5, or about 0 point bumps per kilometer. For example, the batch of suitable products makes At least 98% of the optical fiber coated with the material of the present invention has less than about 10 dot-like bumps per kilometer, less than about 5 dot-like bumps, less than 2 dot-like bumps, or about 0 dots. Bumps. For example, 1000 kilometers of optical fiber, at most 20 kilometers with more than 10 dot-like bumps per mol. Preferably, at least 99% of the coated optical fibers have less than about 10 dots per kilometer. Bumps, less than about 5 dot-like bumps, less than 2 dot-like bumps, or about 0 dot-like bumps; or at least 99.75% of coated fibers have less than about 10 dots per kilometer Bulges, less than about 5 bulges, less than 2 bulges, or about 0 bulges; or 100% coated optical fibers Less than about 10 point bumps per kilometer, less than about 5 point bumps, less than 2 point bumps, or about 0 point bumps. Therefore, the final product is caused by the point bumps (Made of 50 tons of final composition) the elimination rate is at most about 2%, preferably at most about 1%, more preferably at most about 0.25%. The number of the dot-shaped protrusions can be applied to the main coating in the following manner: Both the layer and the secondary coating are applied to the glass fiber and cured to determine: 1. Visible placement of a defect on a wound fiber or a length of fiber. Fix the fiber to a light and look for the The bumps or small dots on the optical fiber 29 200401912. You can also feel the bump on the coated fiber surface to identify a bump. 2. Set a color camera (such as SONY's 3CCD) to pass 20 times (200 times). Magnification, although for some defects a higher magnification is required for objective microscopes (eg LECCIA DMRX).

3、 調整照明技術包含亮視野以及光纖旋轉用以使 缺陷顯現。將光纖對位是很重要的。 4、 注意該缺陷可見的放大倍率之特徵。一個點狀 突塊可由一具有與塗層相似折射率的凝膠狀 (gel-like)成分或是前述的不具任何可見内含物 的簡單干擾物指出。 此用以判斷點狀突塊的過程亦可使用於塗佈於其它 基材上之塗層組成物。3. Adjust the lighting technology including bright field of view and fiber rotation to make defects appear. It is important to align the fibers. 4. Note the characteristics of the magnification at which the defect is visible. A stippled bump can be pointed out by a gel-like component with a refractive index similar to that of the coating or by the aforementioned simple interferer without any visible inclusions. This process for judging point bumps can also be used for coating compositions coated on other substrates.

若需要的話,該主要塗層材料可由前述之用於該次 要塗料的方法過濾、。 D、 拉伸光纖之方法 在本發明之方法中,裸玻璃纖維112、122、132、142 係以習知的方式由一熔融的預先形成之玻璃拉伸而出, 如第5、9以及10圖所示,並且大致由美國第4913859 號專利教導,全部在此併入參考。然而,形成玻璃纖維 112、122、132、142的特定方法並非本發明之組成部分。 第9圖圖示一裝置大致標號為20並且用以從一特別製 30 200401912 備的圓柱狀預先形成物22拉伸出一光纖21並且接著塗 佈該光纖21。該光纖21係由局部以及對稱加熱該預先形 成物22而形成,該預先形成物22在2000°C的溫度下其 直徑為約17 mm長度為約60 cm。當預先形成物22深入 並且穿過一加熱爐23時,光纖21係從該熔融材料拉伸 出。If necessary, the primary coating material can be filtered by the method described above for the secondary coating. D. Method for drawing optical fiber In the method of the present invention, bare glass fibers 112, 122, 132, and 142 are drawn from a molten pre-formed glass in a conventional manner, such as Nos. 5, 9, and 10 As shown in the figure, and is generally taught by U.S. Patent No. 4,913,859, all incorporated herein by reference. However, the specific method of forming the glass fibers 112, 122, 132, 142 is not an integral part of the present invention. Fig. 9 illustrates a device generally designated 20 and used to stretch an optical fiber 21 from a cylindrical preform 22 prepared in 2004200412 and then apply the optical fiber 21. The optical fiber 21 is formed by locally and symmetrically heating the preform 22, and the preform 22 has a diameter of about 17 mm and a length of about 60 cm at a temperature of 2000 ° C. When the preform 22 penetrates and passes through a heating furnace 23, the optical fiber 21 is drawn from the molten material.

可見於第9圖,該拉伸系統包含該加熱爐23,其中該 預先形成物22係拉伸至該光纖之尺寸,之後該光纖21 係被拉離該加熱帶。該光纖21之直徑係由一裝置24在 加熱爐23之後立即測試以輸入一控制系統。在該控制系 統中,所測得之直徑係與較佳之值比較並且輸出訊號以 大致調整該拉伸速度使得該光纖之直徑達到該較佳之 值。As can be seen in Figure 9, the stretching system includes the heating furnace 23, wherein the preform 22 is stretched to the size of the optical fiber, and then the optical fiber 21 is pulled away from the heating belt. The diameter of the optical fiber 21 is tested by a device 24 immediately after the heating furnace 23 to input a control system. In the control system, the measured diameter is compared with a better value and a signal is output to roughly adjust the drawing speed so that the diameter of the optical fiber reaches the better value.

在測量該光纖21之直徑之後,該塗層材料(包含該主 要塗層以及該次要塗層)係由一裝置25塗佈,其他之細 節係圖示於第10圖並且討論於下。接著,該具有塗層之 光纖21通過一定中心規(centering gauge)26、一紫外光裝 置27用以固化該塗層材料以及一裝置用以測量該具有塗 層之外徑,其經由一絞盤(capstan)29移動並且捲繞用以 測試並且在接下來之操作或是銷售之前庫存。在將該光 纖製成帶狀(ribboning)、加上外罩(jacketing)、連接 (connectorization)、榑成纜線(cabling)以及使用它們的過 程中,該本質上具有高強度之光纖的保存是很重要的。 31 200401912 第Η)圖圖示-塗層塗覆機62之典型實施例用以㈣ 包含主要塗料亦即次要塗料之塗層材料移動之夫 纖。該塗覆機62具有_轴57該光纖係、沿著該轴移動。 該塗覆機62係用以塗不-單-層之主要塗料以及次要塗 料於一光纖21。After measuring the diameter of the optical fiber 21, the coating material (including the primary coating and the secondary coating) is coated by a device 25, and other details are illustrated in Figure 10 and discussed below. Then, the coated optical fiber 21 passes a centering gauge 26, an ultraviolet light device 27 for curing the coating material, and a device for measuring the outer diameter of the coating, which is passed through a capstan ( capstan) 29 moves and coils for testing and inventory before subsequent operations or sales. In the process of making the fiber into ribbons, adding jacketing, connectorization, cabling, and using them, the preservation of the intrinsically high-strength fiber is very important. 31 200401912 Figure ii)-A typical embodiment of a coating applicator 62 is used to coat a moving fiber of a coating material containing a primary coating, that is, a secondary coating. The coating machine 62 has an axis 57 of the optical fiber system, and moves along the axis. The coating machine 62 is used to apply a non-single-layer primary coating and a secondary coating to an optical fiber 21.

該塗層塗覆機62(詳細係示於第1〇圖)包含一外殼65 其具有喇α八形入口 66,該光纖21的連續增加係從該喇叭 形入口 66進入。該喇队形入口 66連接於一圓柱狀通道 67其對一第一槽腔68具有開口。該第一槽腔68之一較 低部份69係具有圓錐型並且與一對一第二槽腔71具有 開口的圓柱狀通道70連通。該第二槽腔71之一較低部 份72係具有圓錐型並且與一圓柱狀通道73連通。The coating coater 62 (shown in detail in FIG. 10) includes a housing 65 having an alpha octagonal inlet 66, and a continuous increase of the optical fiber 21 is entered from the horn-shaped inlet 66. The herringbone-shaped inlet 66 is connected to a cylindrical passage 67 and has an opening to a first slot cavity 68. A lower portion 69 of one of the first slot cavities 68 has a conical shape and communicates with a cylindrical passage 70 having an opening in the one-to-one second slot cavity 71. A lower portion 72 of the second groove cavity 71 has a conical shape and communicates with a cylindrical passage 73.

該塗覆機62被操作以使得該槽腔68以及71之間具有 一壓力差並且具有該室壓之周圍大氣係大於在槽腔之壓 力。在一典型之實施例中,該槽腔68以及71係分別沿 著線76以及77連接至一真空源(未示於圖中)。 對準該圓柱狀通道67、70以及73的是分別具有模開 口(die opening)84以及86之第一以及第二模(die)81以及 82。每一模開口 84以及86係由一牆(wall)或是地帶(land) 界定。在此「模」係指該塗覆機62之部分,該部分最後 界定或是幫助限制所給予之圍繞該光纖之塗層。應觀察 到的是,在一實施例中,分別與該第一以及第二模相關 之該模開口 84以及88具有一大致較大於該通道73之直 32 200401912 徑。另一方面,該通道67以及70之直徑可比該模開口 之直徑大或是小。然而,在一典型實施例中他們係相對 的小以限制空氣流入。一般而言,每一開口 84以及86 具有一直徑相等於約1.5之產品以及該光纖之外徑。The coater 62 is operated so that there is a pressure difference between the grooves 68 and 71 and the surrounding atmosphere having the chamber pressure is larger than the pressure in the groove. In a typical embodiment, the grooves 68 and 71 are connected to a vacuum source (not shown) along lines 76 and 77, respectively. Aligned with the cylindrical passages 67, 70, and 73 are first and second dies 81 and 82 having die openings 84 and 86, respectively. Each die opening 84 and 86 is defined by a wall or a land. "Die" herein refers to the portion of the coater 62 which finally defines or helps to limit the coating given around the optical fiber. It should be observed that in one embodiment, the mold openings 84 and 88 associated with the first and second molds, respectively, have a diameter that is substantially larger than the diameter of the channel 73 32 200401912. On the other hand, the diameter of the channels 67 and 70 may be larger or smaller than the diameter of the die opening. However, in a typical embodiment they are relatively small to restrict air inflow. Generally speaking, each of the openings 84 and 86 has a product having a diameter equal to about 1.5 and an outer diameter of the optical fiber.

另外,該塗覆機係設置以提供兩種材料之流動通道 (flow path)。此種盤狀(disk-like)流動通道係出現於美國 第4474830號專利以及美國第4512944號專利中,這些 專利之全部在此併入參考。在表面之間的空隙(敘述於其 中)界定一提供給一第一塗層材料94之流動通道93,該 流動通道93提供該光纖一缓衝塾層(cushioning layer)64。該流動通道93具有至少一元件係垂直於沿著 該縱軸57移動該光纖之通道。在一典型實施例中,該流 動通道93係為盤狀並且垂直於移動該光纖之通道。此 外,該流動通道93在平行於移動該光纖之通道之方向的 厚度係相當小,約2-10 mils的等級。在相鄰於塗佈該塗 層材料之點且平行於於沿著該縱軸57移動該光纖之通道 的空隙尺寸係稱為其厚度並且一般係小於該纖維直徑的 三倍。一般而言,該空隙係小於該纖維直徑的兩倍。 事實上,已知的或是最近發展的提供一拉伸裸玻璃纖 維的所有方法係能用於本發明之方法。此外,當一濕疊 濕製程係較佳用以塗佈一主要塗層以及一次要塗層於玻 璃纖維上,使用本發明之方法於濕疊乾塗佈製程係在本 發明之範圍中。 33 200401912 本發明可用於任何主要以及次要塗層之組成物。因 此,該主要以及次要塗層之特定組成物並非本發明之一 部份。然而,為求完整,典型之主要以及次要塗層之組 成物係欽述於下。 E、塗層組成物 1、主要塗層In addition, the coating machine is provided to provide a flow path of two materials. Such disk-like flow channels appear in U.S. Patent No. 4,474,830 and U.S. Patent No. 4,512,944, all of which are incorporated herein by reference. The space between the surfaces (described therein) defines a flow channel 93 provided to a first coating material 94 which provides the fiber with a buffering layer 64. The flow channel 93 has a channel where at least one element is moved perpendicular to the optical fiber along the longitudinal axis 57. In a typical embodiment, the flow channel 93 is disk-shaped and perpendicular to a channel for moving the optical fiber. In addition, the thickness of the flow channel 93 in the direction parallel to the channel where the fiber is moved is relatively small, on the order of about 2-10 mils. The size of the void at the point adjacent to the point where the coating material is applied and parallel to the channel that moves the fiber along the longitudinal axis 57 is called its thickness and is generally less than three times the fiber diameter. Generally, the voids are less than twice the fiber diameter. In fact, all known or recently developed methods for providing a stretched bare glass fiber can be used in the method of the present invention. In addition, when a wet stack wet process is preferably used to apply a primary coating and a secondary coating to glass fiber, the wet stack dry coating process using the method of the present invention is within the scope of the present invention. 33 200401912 The present invention can be applied to any primary and secondary coating composition. Therefore, the specific composition of the primary and secondary coatings is not part of the invention. For completeness, however, the components of a typical primary and secondary coating are described below. E. Coating composition 1. Main coating

本發明使用之主要塗料可為習知技術中任何形式。然 而,典型的主要塗料可由下列成分形成(1)末端為甲基丙 烯酸酯之氨基曱酸乙酯寡聚物 ((meth)acrylate-terminated urethane oligomer) ; (2)單體 稀釋劑(monomer diluent) ; (3)非必要的膠黏促進劑 (optional adhesion promoter) ; (4)非必要的光起始劑 (optional photoinitiator)以及(5) 非必要的穩定劑 (stabilizer),如頒與Shustack之美國第6014488號專利所 述,全部在此併入參考。不提供主要塗層,即是只使用 一單一塗層以保護該玻璃纖維,亦在本發明之範圍中。 a、寡聚物 該末端為甲基丙烯酸酯之氨基甲酸乙酯寡聚物係被選 擇能發生同質聚合作用(homopolymerization)以形成主要 塗層30之主要結構。該末端為丙烯酸酯或是曱基丙烯酸 酯之成分係為完全脂肪族(aliphatic)之氨基曱酸乙酯丙 烯酸酯或是甲基丙烯酸酯寡聚物。 該氨基甲酸乙酯丙烯酸酯或是甲基丙烯酸酯寡聚物包 34 200401912The main coatings used in the present invention can be in any form known in the art. However, a typical main coating can be formed from the following ingredients: (1) (meth) acrylate-terminated urethane oligomer terminated with methacrylate; (2) monomer diluent (3) Optional adhesion promoter; (4) Optional photoinitiator and (5) Stabilizer, such as the United States awarded to Shustack No. 6014488, which is incorporated herein by reference in its entirety. It is within the scope of the present invention to provide no primary coating, that is, to use only a single coating to protect the glass fibers. a. Oligomers The urethane oligomers whose methacrylate ends are selected to be capable of undergoing homopolymerization to form the main structure of the main coating layer 30. The component whose terminal end is an acrylate or a fluorenyl acrylate is a fully aliphatic urethane ethyl acrylate or a methacrylate oligomer. The urethane acrylate or methacrylate oligomer bag 34 200401912

含該未固化主要塗層材料(組成物)重量之從約10%至約 80%(根據該組成物的總重量)。較佳地,該寡聚物成分包 含從約15%至約70%,更佳地該組成物重量之約20%至 約60%(根據該所有成分的總重量)。該可利用於本發明之 末端為丙烯酸酯或是甲基丙烯酸酯之氨基甲酸乙酯寡聚 物係為以下反應之產物(i ) 一脂肪族多元醇(aliphatic polyol); (ii) —脂肪族聚異氰酸酯(polyisocyanate); 以及(iii )可提供反應性末端之末端包覆之單體 (endcapping monomer ),其反應性末端係為丙烯酸S旨或 是甲基丙烯酸酯。The weight of the uncured main coating material (composition) is from about 10% to about 80% (based on the total weight of the composition). Preferably, the oligomer component comprises from about 15% to about 70%, more preferably from about 20% to about 60% by weight of the composition (based on the total weight of all the components). The urethane oligomer whose terminal is acrylate or methacrylate in the present invention is the product of the following reaction (i) an aliphatic polyol; (ii) —aliphatic Polyisocyanate; and (iii) an endcapping monomer that can provide a reactive end, the reactive end of which is acrylic acid or methacrylate.

然而,其係為該寡聚物的官能基主幹(backbond)而不 是末端官能基(end group),這賦予該組成物良好的特 性。因此,與前述之以丙烯酸酯或是曱基丙烯酸酯為基 礎的組成物的類似系統(但是擁有任何反應性末端官能 基)係同等地符合該要求。因此,該曱基丙烯酸酯可部分 或是全部被多種其他例子的末端官能基(可因照射或其 它方法(不是藉自由基誘發就是藉陽離子固化)而反應) 置換,以提供良好表現的塗層。這些末端官能基包含自 由基系統,例如硫醇稀(thiolene )系統(以多官能基硫 醇以及不飽和多元烯之反應為基礎,不飽和多元烯係例 如乙稀酸(vinyl ether );乙稀硫化物(vinyl su lfide ); 丙晞醚(allylic ether)以及二環稀(bicyclicene ));胺 稀(amine-ene )系統(以多官能基胺以及不飽和多元稀 35 200401912However, it is the functional group backbond of the oligomer rather than the end group, which gives the composition good characteristics. Therefore, a similar system to the aforementioned acrylate-based or fluorenyl-based composition (but possessing any reactive terminal functionalities) meets this requirement equally. Therefore, the fluorenyl acrylate can be partially or completely replaced by terminal functional groups of various other examples (which can be reacted by irradiation or other methods (either induced by free radicals or cured by cations) to provide a coating that performs well. . These terminal functional groups include radical systems, such as thiolene systems (based on the reaction of polyfunctional thiols and unsaturated polyenes, unsaturated polyenes such as vinyl ether); ethylene Sulphide (vinyl su lfide); allylic ether (bicyclicene and bicyclicene)); amine-ene (amine-ene) system (with polyfunctional amines and unsaturated polyethers 35 200401912

之反應為基礎);乙炔系統;系統中該化合物之反應部 分係在分子中而非在末端;其它乙烯(例如苯乙烯)系 統;丙嫦醯胺(acrylamide)系統;丙稀基(allylic)系 統;衣康酸(itaconate )系統以及丁稀酸酯(crotonate ) 系統;以及陽離子固化系統例如鏽鹽誘發乙烯醚(onium salt-induced vinyl ether ) 系統以及環氧基末端 (epoxy-terminated)系統(其藉開環而反應);以及任何 其它任何教導於頒給Shustack的美國第5,352,712號專利 (在此將其全部併入參考)擁有反應性末端為基礎的化合 物。事實上任何末端官能基在以照射或其它方法固化時 不會對固化組成物的所欲性質(即氧化性、熱以及水解 穩定性以及抗濕性)產生負面影響係為可預見的。可用 以作為末端包覆單體的化合物包含(但不限於)丙烯酸 酉旨、甲基丙烯酸醋、乙稀醚(vinyl ether)、乙稀硫化物 (vinyl su lfide )、丙烯醚(allylic ether )、二環烯 (bicyclicene)、硫醇(mercaptan)、乙炔(acetylene)、環 氧化物(epoxide)、胺(amine)、苯乙烯(styrene)、丙烯醯胺 (acrylamide)以及其他。合適用於作為末端包覆之單體的 末端為氫氧基之化合物包含(但不限於)氫氧乙基丙烯酸酯 (hydroxyethyl acrylate);氫氧乙基甲基丙烯酸酯 (hydroxyethyl methacrylate);氫氧丙基丙烯酸酯 (hydroxypropyl acrylate);氫氧丙基曱基丙烯酸酯(hydroxypropyl methacrylate);氫氧丁基丙烯酸酯(hydroxybutyl acrylate);氫 36 200401912 氧丁基甲基丙晞酸酯(hydroxybutyl methacrylate);稀丙基醚 (allyl ether);氫氧乙基乙婦6|(hydroxyethyl vinyl ether); 氫氧丙基乙稀醚(hydroxypropyl vinyl ether);氫氧丁基乙稀 醚(hydroxybutyl vinyl ether);氫氧乙基硫醇(hydroxyethyl mercaptan);氫氧丙基硫醇(hydroxypropyl mercaptan);氫 氧乙基 -3- 破氫硫 基丙酸 (hydroxyethyl-3_mercaptopropionate);以及氫氧丙基-3-碳氫 硫基丙酸(hydroxypropyl-3-mercaptopropionate)。 多元醇(i)的例子可包含聚醚多元醇(p〇lyether p〇ly〇1);碳 氫化合物多元醇(hydrocarbon polyol );聚礙酸酯多元醇 (polycarbonate polyol );聚異氰酸酯多元醇(p〇lyis〇cyanate polyol);以及其混合物。多元醇應限制於或較佳不包含聚酯或是 環氧主幹。聚醚多元醇典型地係以直鏈、分支或是環烷基氧化物 為基礎,其中烷基之官能基包含約一至約十二個碳原子。此種聚 醚夕元醇包含但不限於聚四亞甲基多元醇(P〇ly^etramethylene polyol)、聚亞甲基氧化物(p〇lymethylene 〇xide)、聚乙烯氧化物 (polyethylene oxide)、聚丙烯氧化物(p〇1ypr〇pylene 〇xide)、聚丁烯 氧化物(polybutylene oxide)、以及其同分異構物(isomer)、以及其 混合物。一聚醚多元醇亦可包含至少一些單位之聚四亞甲基氧化 物(polytetramethylene oxide)及 / 或聚丙烯氧化物(p〇iypropyiene oxide)。 為了較長期的穩定性,該寡聚物成分可包含很少量的以聚酯為 基礎的氨基曱酸乙酯丙烯酸酯,而不是只可含有上述種類 37 200401912 之寡聚物。 聚醚多元醇典型地係以直鏈、分支或是觀基氧化物為基礎, 其中烧基之官能基包含約-至約忙個碳原子。該_多元醇可 由任何在此領域中習知的方法製備,並且可具有多種平均分子量 _(在此例子中係經由ASTMD-3592卩蒸氣壓渗壓測量法 (vapor pressure osmometry)判定),該聚醚多元醇之平均分子量足 以提供以其為基礎之整體寡㈣之分子量達料大於約議 dalton。廷種聚醚多元醇之例子包含但不限於聚四亞甲基多元醇 (polytetmmethylene p〇ly〇1)、聚亞甲基氧化物(p〇iymethylene oxide)、聚乙烯氧化物(p〇丨yethylene 〇xide)、聚丙婦氧化物 (polypropylene 0Xide)、聚丁烯氧化物(p〇lybutylene 〇xide)、以及其 同分異構物(isomer)、以及其混合物。 可使用的具代表性碳氫化合物多元醇包含但不限於以直鏈或 分支碳氫化合物聚合物(分子量從600至4〇〇〇)為基礎,該碳氫 化合物聚合物係為例如完全或部分氫化之丨,孓聚丁二烯;丨,2_聚丁 二烯氫化至從9至21之碘數;以及完全或部分氫化之聚異丁烯。 代表性的碳氫化合物多元醇包含但不限於二烷基碳酸酯與一 稀二醇(非必要地與烯醚二醇共聚合)之反應產物。 聚異氰酸酯成分(ii)可為非芳香族。可使用4個到2〇個碳 原子的非芳香族聚異氰酸酯。合適的飽和脂肪族聚異氰酸酯包含 但不限於異佛樂_二異氰酸醋(is〇ph〇rone(iiis〇cyanate);二環己 基甲燒-4,4丨-二異氣酸酷(dicyclohexylmethane-4,4’-diisocyanate ); 1,4-四亞甲基二異氰酸醋(i,4_tetramethyiene diisocyanate) ;1,5- 38 200401912Based on the reaction); acetylene system; the reactive part of the compound in the system is in the molecule rather than at the end; other ethylene (such as styrene) system; acrylamide system; allylic system An itacate system and a crotonate system; and a cationic curing system such as an onium salt-induced vinyl ether system and an epoxy-terminated system (which React by opening the ring); and any other compounds taught in US Patent No. 5,352,712 to Shustack, which is incorporated herein by reference in its entirety, possess a reactive end-based compound. It is foreseeable that virtually any terminal functional group does not adversely affect the desired properties of the cured composition (ie, oxidative, thermal, and hydrolytic stability and moisture resistance) when cured by irradiation or other methods. Compounds that can be used as the terminal coating monomer include, but are not limited to, acrylic acid, methacrylic acid, vinyl ether, vinyl su lfide, allylic ether, Bicyclicene, mercaptan, acetylene, epoxide, amine, styrene, acrylamide, and others. Suitable for use as a terminal-coated monomer, a compound having a hydroxyl group at the end includes, but is not limited to, hydroxyethyl acrylate; hydroxyethyl methacrylate; Hydroxypropyl acrylate; hydroxypropyl methacrylate; hydroxybutyl acrylate; hydrogen 36 200401912 hydroxybutyl methacrylate; dilute propylene Allyl ether; hydroxyethyl vinyl ether 6 | (hydroxyethyl vinyl ether); hydroxypropyl vinyl ether; hydroxybutyl vinyl ether; hydroxybutyl vinyl ether Hydroxyethyl mercaptan; hydroxypropyl mercaptan; hydroxyethyl-3_mercaptopropionate; and hydroxypropyl-3-hydrocarbylthio Propionic acid (hydroxypropyl-3-mercaptopropionate). Examples of the polyol (i) may include polyether polyol (polyol polyol); hydrocarbon polyol; hydrocarbon polyol; polycarbonate polyol; polyisocyanate polyol ( p〇lyis〇cyanate polyol); and mixtures thereof. The polyol should be limited or preferably not contain polyester or epoxy backbone. Polyether polyols are typically based on linear, branched, or cycloalkyl oxides, where the functional group of the alkyl group contains from about one to about twelve carbon atoms. Such polyether evening alcohols include, but are not limited to, polytetramethylene polyols, polymethylene oxides, polyethylene oxides, polyethylene oxides, Polypropylene oxide (polypropylene oxide), polybutylene oxide (polybutylene oxide), and isomers (isomer), and mixtures thereof. A polyether polyol may also contain at least some units of polytetramethylene oxide and / or polypropylene oxide. For longer-term stability, the oligomer component may contain a small amount of polyester-based aminoethyl acrylate, instead of containing only the above-mentioned oligomers of 37 200401912. Polyether polyols are typically based on linear, branched, or mesogenic oxides, where the functional group of the alkyl group contains from about to about one carbon atom. The polyol can be prepared by any method known in the art and can have a variety of average molecular weights (in this example, determined by ASTMD-3592 卩 vapor pressure osmometry), the polymer The average molecular weight of the ether polyol is sufficient to provide an overall oligofluorene based molecular weight of greater than about dalton. Examples of these polyether polyols include, but are not limited to, polytetmmethylene polyol (polytetmmethylene p〇ly〇1), polymethylene oxide (p〇iymethylene oxide), polyethylene oxide (p〇 丨 yethylene Oxide), polypropylene oxide, polybutylene oxide, and isomers thereof, and mixtures thereof. Representative hydrocarbon polyols that can be used include, but are not limited to, based on linear or branched hydrocarbon polymers (molecular weights from 600 to 4,000), which are, for example, fully or partially Hydrogenated polybutadiene; 2-polybutadiene hydrogenated to an iodine number from 9 to 21; and fully or partially hydrogenated polyisobutene. Representative hydrocarbon polyols include, but are not limited to, the reaction product of a dialkyl carbonate with a dilute diol (optionally copolymerized with an ene ether diol). The polyisocyanate component (ii) may be non-aromatic. Non-aromatic polyisocyanates of 4 to 20 carbon atoms can be used. Suitable saturated aliphatic polyisocyanates include, but are not limited to, isophorol diisocyanate (isopharone (iiis〇cyanate); -4,4'-diisocyanate); 1,4-tetramethyiene diisocyanate; 1,5-38 200401912

五亞甲基二異氰酸S旨(l,5-pentamethylene diisocyanate) ; 1,6-六亞 甲基二異氰酸酯(l,6-hexamethylene diisocyanate) ; 1,7-七亞甲基 二異氰酸6旨(l,7-heptamethylene diisocyanate) ; 1,8-八亞甲基二異 氰酸醋(l,8-octamethylene diisocyanate); 1,9-九亞甲基二異氰酸 醋(l,9-nonamethylene diisocyanate); 1,10-十亞甲基二異氰酸醋 (l,10-decamethylene diisocyanate) ; 2,2,4-三曱基-1,5-五亞甲基二 異氰酸酯(2,2,4-trimethyl-l,5-pentamethylene diisocyanate) ; 2,2-二曱基-1,5-五亞甲基二異氰酸醋(2,2-dimethyl-l,5-pentamethylene diisocyanate ); 3-甲氧基-1,6-六亞甲基二異氰酸酉旨 (3-methoxy-l,6_hexamethylene diisocyanate) ; 3-丁氧基_1,6_六亞 甲基二異氰酸酉旨(3-butoxy-l,6-hexamethylene diisocyanate);omega, omega’-二丙基醚二異氰酸醋(omega,omega’-dipropylether diisocyanate ) ; 1,4-環己基二異氰酸酯(l,4-cyclohexyl diisocyanate ) ; 1,3-環己基二異氰酸醋(l,3-cyclohexyl diisocyanate );三甲基六亞甲基二異氰酸醋 (trimethylhexamethylene diisocyanate ); 1,3-二(異氰酸S旨曱基) 環己烧(l,3-bis(isocyanatomethyl) cyclohexane) ; 1,4-二異氰酸g旨 丁烧(l,4-diisocyanato-butane);六亞甲基二異氰酸S旨之縮二尿 (biuret of hexamethylene diisocyanate);雙環庚院二異氰酸醋甲基 2,5(6)-二(二異氰酸酯曱基)二環(2,2,1)庚燒(norbomane diisocyanatomethyl 2,5(6)-bis(isocyanatomethyl)bicyclo (2,2,1) heptane)以及其混合物。 異佛樂酮二異氰酸酯係為可能之脂肪族聚異氰酸酯。合適之 39 方香族聚異氰酸自旨包含甲苯二異氰酸酯(toluene diisocyanate); ~苯基亞甲基二異氰酸酉旨(diphenylmethylene diisocyanate);四甲 基二甲苯二異氰酸醋(tetramethyl xylene diisocyanate); 1,3-二(異 氰酸酉旨曱基)苯(l,3-bis(isocyanatomethyl)benzene);對,間-次苯 基二異氰酸酯(p,m-phenylene diisocyanate) ; 4,4’-苯基甲烧二異 氰酸酯(4,4’-diphenylmethane diisocyanate);二曱氧基苯胺二異 氰酸酯(dianisidine diisocyanate)(即 4,4 二異氰酸酯_3,3’_二 甲 氧 -1,Γ- 二苯基二異 氰酸西旨 (4,4’_diisocyanato_3,3’-dimethoxy-l,l’-biphenyl diisocyanate));二 甲基對二氨基聯苯二異氰酸S旨(tolidine diisocyanate)(即4,4’-二 異氰酸酯-3,3’-二曱基-1,1’-二苯基二異氰酸酯 (4,4’-diisocyanato-3,3’-dimethy-l,l’-biphenyl diisocyanate));以及 其混合物。 末端為氫氧基的多元醇以及二異氰酸酯之間的犯應速率可由 使用100至200 ppm觸媒而增加。合適的觸媒包含但不限於二丁 基錫月桂酸酯(dibutyl tin dilaurate )、二丁基錫氧化物(dibutyl tin oxide)、二丁基錫二-2-己酸酯(dibutyl tin di-2-hexoate)、油酸酯 亞錫(stannous oleate)、辛酸酯亞錫(stannous octoate)、辛酸酯 錫(lead octoate)、乙醯乙酸酯鐵(ferrous acetoacetate)、以及胺 類例如三乙基胺(triethylamine )、二乙基甲基胺 (diethylmethylamine )、三乙稀二胺(triethylenediamine )、二曱基 乙基胺(dimethylethylamine)、嗎林(morpholine)、氮-乙基嗎林 (N-ethyl morpholine)、對二氮己環(piperazine)、氮,氮-二甲基 200401912 甲本胺(N,N-dimethyl benzylamine )、氮,氮·二甲基月桂胺 (N,N-dimethyllauiylamine)以及其混合物。 末端包覆的單體(iii)可為一個可提供至少一反應末端並且較 佳提供丙烯酸酯或甲基丙烯酸酯末端的化合物。可用以作為末端 包覆單體的合適氫氧端點化合物包含(但不限於)氫氧基烷基丙 婦酸酯或甲基丙烯酸酯。類似於以丙婦酸酯為基礎,但擁有任何 反應性末端g能基的化合物系統,係為同樣合適。多樣的其它例 示末端官能基可因照射或其它方法(不是藉自由基誘發就是藉陽 離子固化)而反應,以提供良好表現的塗層,其包含(但不限於) 藉由’自由基系統例如硫醇稀(thiolene)系統(以多官能基硫醇 以及不飽和多元烯之反應為基礎,例如乙烯醚(vinyl ether);乙 稀硫化物(vinyl su lfide);丙婦酸(allylic ether)以及二環烯 (bicyclicene ));胺埽(amine_ene )系統(以多官能基胺以及不 飽和多元烯之反應為基礎);乙炔系統;系統中該化合物之反應部 分係在分子中而非在末端;其它乙烯(例如苯乙烯)系統;丙烯 酿胺(acrylamide )系統;丙烯基(aliylic )系統;衣康酸(itaconate ) 系統以及丁烯酸酯(crotonate)系統;以及陽離子固化系統(例 如鑌鹽誘發乙稀醚(onium salt-induced vinyl ether )系統以及環氧 基末端(epoxy-terminated)系統(其藉開環而反應);以及任何其 它以擁有反應性末端為基礎的化合物。事實上任何末端官能基在 以照射或其它方法固化時不會對固化組成物的所欲性質(即氧化 性、熱以及水解穩定性以及抗濕性)產生負面影響係為可預見的。 相似的系統另揭示於頒給Shustack的美國第5,352,712號專利以 41 200401912 及美國第5,572,835號專利,在此將其全部併入參考。 典型的丙烯酸酯以及甲基丙烯酸酯包含氫氧乙基丙烯酸酯 (hydroxyethyl acrylate)、氫氧乙基甲基丙烯酸酯(hydr0Xyethyl methacrylate)、氫氧丙基丙婦酸醋(hydroxypropyl acrylate)、氫 氧丙基曱基丙稀酸醋(hydroxypropyl methacrylate)、氫氧丁基丙 烯酸酯(hydroxybutyl acrylate )、氫氧丁基甲基丙烯酸酯 (hydroxybutyl methacrylate ),以及以此類推。Pentamethylene diisocyanate (1,5-pentamethylene diisocyanate); 1,6-hexamethylene diisocyanate; 1,7-heptamethylene diisocyanate 6 purpose (l, 7-heptamethylene diisocyanate); 1,8-octamethylene diisocyanate; 1,9-ninemethylene diisocyanate (l, 9 -nonamethylene diisocyanate); 1,10-decamethylene diisocyanate; 2,2,4-trifluorenyl-1,5-pentamethylene diisocyanate (2, 2,4-trimethyl-l, 5-pentamethylene diisocyanate); 2,2-dimethyl-l, 5-pentamethylene diisocyanate); 3-methoxy-1,6-hexamethylene diisocyanate (3-methoxy-l, 6_hexamethylene diisocyanate); 3-butoxy_1,6_hexamethylene diisocyanate Purpose (3-butoxy-l, 6-hexamethylene diisocyanate); omega, omega'-dipropylether diisocyanate; 1,4-cyclohexyl diisocyanate (l, 4 -cyclohexyl diisocyanate); 1,3- Hexyl diisocyanate (l, 3-cyclohexyl diisocyanate); trimethylhexamethylene diisocyanate (trimethylhexamethylene diisocyanate); 1,3-bis (isocyanic acid) l, 3-bis (isocyanatomethyl) cyclohexane); 1,4-diisocyanato-g-butane; l-4-diisocyanato-butane; biuret of hexamethylene diisocyanate hexamethylene diisocyanate); dicycloheptyl diisocyanate methyl 2,5 (6) -bis (diisocyanate fluorenyl) bicyclo (2,2,1) (isocyanatomethyl) bicyclo (2,2,1) heptane) and mixtures thereof. Isophorone diisocyanates are possible aliphatic polyisocyanates. Suitable 39 aromatic polyisocyanates intentionally include toluene diisocyanate (toluene diisocyanate); ~ diphenylmethylene diisocyanate (diphenylmethylene diisocyanate); tetramethylxylene diisocyanate (tetramethyl) xylene diisocyanate); 1,3-bis (isocyanatomethyl) benzene; p, m-phenylene diisocyanate; 4 4,4'-phenylphenyl diisocyanate (4,4'-diphenylmethane diisocyanate); dianisidine diisocyanate (4,4 diisocyanate_3,3'_dimethoxy-1, Γ- diphenyl diisocyanate (4,4'_diisocyanato_3,3'-dimethoxy-l, l'-biphenyl diisocyanate)); dimethyl p-diaminobiphenyl diisocyanate S (tolidine diisocyanate ) (I.e. 4,4'-diisocyanato-3,3'-difluorenyl-1,1'-diphenyl diisocyanate (4,4'-diisocyanato-3,3'-dimethy-l, l'- biphenyl diisocyanate)); and mixtures thereof. The reaction rate between hydroxyl-terminated polyols and diisocyanates can be increased by using 100 to 200 ppm catalyst. Suitable catalysts include, but are not limited to, dibutyl tin dilaurate, dibutyl tin oxide, dibutyl tin di-2-hexoate, oleic acid Stannous oleate, stannous octoate, lead octoate, ferrous acetoacetate, and amines such as triethylamine, Diethylmethylamine, triethyldiamine, dimethylethylamine, morpholine, N-ethyl morpholine, Piperazine, nitrogen, nitrogen-dimethyl 200401912 N, N-dimethyl benzylamine, nitrogen, nitrogen-N-dimethyllauiylamine, and mixtures thereof. The terminal-coated monomer (iii) may be a compound which provides at least one reactive terminal and preferably provides an acrylate or methacrylate terminal. Suitable hydroxyl end-point compounds that can be used as terminal coating monomers include, but are not limited to, hydroxyl alkyl propionate or methacrylate. Similar to a compound system based on propionate, but with any reactive terminal g-energy group, it is equally suitable. A variety of other exemplified terminal functional groups may be reacted by irradiation or other methods (either induced by free radicals or cured by cations) to provide a well-performing coating that includes (but is not limited to) by a 'radical system such as sulfur Thiolene system (based on the reaction of polyfunctional thiols and unsaturated polyenes, such as vinyl ether; vinyl su lfide; allylic ether) Bicyclicene); amine_ene system (based on the reaction of polyfunctional amines and unsaturated polyenes); acetylene system; the reactive part of the compound in the system is in the molecule rather than at the end; other Ethylene (such as styrene) systems; acrylamide systems; aliylic systems; itacate systems and crotonate systems; and cationic curing systems (such as phosphonium salt-induced ethyl acetate) Dilute ether (onium salt-induced vinyl ether) system and epoxy-terminated system (which reacts by ring opening); and any other Compounds with a reactive end. Virtually any terminal functional group does not negatively affect the desired properties of the cured composition (ie, oxidative, thermal and hydrolytic stability, and moisture resistance) when cured by irradiation or other methods The impact is foreseeable. Similar systems are also disclosed in U.S. Patent No. 5,352,712 issued to Shustack as 41 200401912 and U.S. Patent No. 5,572,835, all of which are incorporated herein by reference. Typical Acrylates and Methacrylates Contains hydroxyethyl acrylate, hydr0Xyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate methacrylate), hydroxybutyl acrylate, hydroxybutyl methacrylate, and so on.

該多元醇、二異氰酸酯以及末端包覆單體的莫耳分率可為約 1:2:2。 b、纽The mole fraction of the polyol, diisocyanate, and terminal coating monomer may be about 1: 2: 2. b, New

係選擇可與上述寡聚物相容之單體稀釋成分用以製備 本發明之該主要塗層並且可與前述的寡聚物反應。在此 情況下,其應可與上述之募聚物反應並且每一單體具有 一種或多種丙稀酸酯或是曱基丙稀酸酯部分。該單體稀 釋劑能降低含有該單體稀釋劑的固化組成物之玻璃轉換 溫度Tg,並且能降低該未固化(液態)組成物的黏度, 使其黏度在25°C下係在約1000至約10000 cps的範圍 該單體稀釋劑佔該為未固化(液態)組成物重量百分 比的約10%至約75%,該重量百分比係以該組成物的總 (所有成分)重量為基礎。 舉例而言,合適的单體稀釋劑包含(但不限於)含有 芳香族的單體,例如苯氧烷(phen〇xyalkyi)丙烯酸酯或是 甲基丙烯酸酯(例如苯氧乙基(甲基)丙烯酸酯);苯氧烷烷氧基 42 200401912 化(alkoxylate)丙烯酸酯或是甲基丙烯酸酯(例如苯氧乙基乙 氧基(曱基)丙烯酸酯或是苯氧乙基丙氧基(甲基)丙烯酸酯); 對-枯基盼乙乳基(甲基)丙婦酸g旨(pafa-cumylpheiiol ethoxylated (meth)acrylate) ; 3-丙烯醯氧丙基-2-氮-苯基氨 基甲酸酯(3-acryloyloxypropyl-2-N-phenylcarbamate);The monomer dilution component compatible with the above oligomer is selected to prepare the main coating layer of the present invention and can react with the aforementioned oligomer. In this case, it should be reactive with the aforesaid agglomerates and each monomer has one or more acrylic or fluorenyl acrylic ester moieties. The monomer diluent can reduce the glass transition temperature Tg of the cured composition containing the monomer diluent, and can reduce the viscosity of the uncured (liquid) composition, making its viscosity at about 1000 to 25 ° C. In the range of about 10,000 cps, the monomer diluent comprises from about 10% to about 75% by weight of the uncured (liquid) composition based on the total (all ingredients) weight of the composition. For example, suitable monomer diluents include, but are not limited to, aromatic-containing monomers, such as phenoxyalkyi acrylate or methacrylate (such as phenoxyethyl (methyl) Acrylate); phenoxyalkalkoxy 42 200401912 alkoxylate acrylate or methacrylate (such as phenoxyethylethoxy (fluorenyl) acrylate or phenoxyethylpropoxy (methyl Base) acrylate); p-cumyl ethoxylated (meth) propanoic acid g purpose (pafa-cumylpheiiol ethoxylated (meth) acrylate); 3-propenyloxypropyl-2-nitro-phenylcarbamate Acid ester (3-acryloyloxypropyl-2-N-phenylcarbamate);

或是任何一種已知可用以調整將其包含於其中之組成物 的折射率的單體稀釋劑。包含這些之中的一種或多種組 合物係為一樣合適。屬於稍後揭示以及敘述於頒予 Shustack美國第5,146,531號專利(在此併入本案參考) 的單體稀釋劑,例如包含(1)一芳香族基團;(2)—提供一 反應性(例如丙烯酸酯或是甲基丙烯酸酯)官能基之基團; 以及(3)—碳氫化合物基團。Or any monomer diluent known to adjust the refractive index of the composition contained therein. Compositions containing one or more of these are equally suitable. A monomer diluent that is disclosed later and described in Shustack US Patent No. 5,146,531 (herein incorporated by reference), for example, contains (1) an aromatic group; (2) —provides a reactivity (Such as acrylate or methacrylate) functional groups; and (3) -hydrocarbon groups.

另包含碳氩化合物特性以及一乙烯官能基的芳香族 單體稀釋劑例子包含(但不限於)聚烯乙二醇壬基苯基醚 丙烯酸醋(polyalkylene glycol nonylphenylether acrylates ),例如聚乙稀乙二醇壬基苯基醚丙烯酸酯 (polyethylene glycol nonylphenylether acrylate)或是聚 丙嫦乙二醇壬基苯基鱗丙烯酸酯(polypropylene glycol nonylphenylether acrylate);聚婦乙二醇壬基苯基驗甲基丙 嫦酸酯(polyalkylene glycol nonylphenylether methacrylates )例如聚乙嫦乙二醇壬基苯基鱗曱基丙稀酸醋 (polyethylene glycol nonylphenylether methacrylate)或 聚丙烯乙二醇壬基苯基醚甲基丙烯酸酯(p〇iypr〇pyiene 43 200401912 glycol nonylphenylether methacrylate):以及它們的混合 物。 此單體係為可購得,例如日本東京Toagasei化學工業 公司商品名為 ARONIX M110、Mill、M113、M114 以 及Ml 17,以及賓州Ambler之Henkel公司商品名為 PHOTOMER 4003。Examples of aromatic monomer diluents that also include argon compounds and a vinyl functional group include, but are not limited to, polyalkylene glycol nonylphenylether acrylates such as polyethylene glycol Alcohol nonylphenyl ether acrylate or polyethylene glycol nonylphenylether acrylate; polypropylene glycol nonylphenyl ether acrylate; polyethylene glycol nonylphenyl ether methacrylate Polyalkylene glycol nonylphenylether methacrylates such as polyethylene glycol nonylphenylether methacrylate or polypropylene glycol nonylphenyl ether methacrylate 〇pyiene 43 200401912 glycol nonylphenylether methacrylate): and mixtures thereof. This single system is commercially available, for example, Toagasei Chemical Industry Co., Ltd. of Tokyo, Japan under the trade names ARONIX M110, Mill, M113, M114, and Ml 17, and Henkel Co. of Ambler, Pennsylvania, under the trade name PHOTOMER 4003.

其它合適的單體稀釋劑另包含直鏈或是分支的氫氧化 合物烷基丙烯酸酯或是丙烯酸曱酯,其烷基部分可包含 八個到十八個碳原子例如丙稀酸己S旨;曱基丙稀酸己 酯;丙烯酸乙基己酯;甲基丙烯酸乙基己酯;丙烯酸異 辛酯;甲基丙烯酸異辛酯;丙烯酸辛酯;甲基丙烯酸辛 酯;丙烯酸癸酯;甲基丙烯酸癸酯;丙烯酸異癸基酯; 甲基丙烯酸異癸基酯;丙烯酸月桂基酯;甲基丙烯酸月桂 酯;丙烯酸三癸基酯;甲基丙烯酸三癸酯;丙烯酸十四烷 基酉旨;曱基丙晞酸十四烧基S旨;丙婦酸棕櫚基S旨;曱基丙 烯酸棕櫚基酯;丙烯酸十八烷基酯;甲基丙烯酸十八烷基 酉旨;丙稀酸十六烧基醋;甲基丙稀酸十六烧基S旨;二丙稀 酸十四到十五個碳之碳氫氧化合物二醇酯;二甲基丙烯 酸十四到十五個碳之碳氫氧化合物二醇酯;以及上述之 混合物。 環狀單體亦為合適,例如丙稀酸異冰片基(isobornyl ) 酯;如曱基丙烯酸異冰片基酯;丙烯酸二環戊烯 (dicyclopentenyl) S旨;甲基丙稀酸二環戊晞酉旨;丙婦酸 44 200401912Other suitable monomeric diluents further include linear or branched hydroxide alkyl acrylates or acrylates, the alkyl portion of which may contain eight to eighteen carbon atoms, such as hexadecanoic acid; Hexyl methacrylate; ethylhexyl acrylate; ethylhexyl methacrylate; isooctyl acrylate; isooctyl methacrylate; octyl acrylate; octyl methacrylate; decyl acrylate; methyl Decyl acrylate; isodecyl acrylate; isodecyl methacrylate; lauryl acrylate; lauryl methacrylate; tridecyl acrylate; tridecyl methacrylate; tetradecyl acrylate; Tetradecyl succinic acid methyl ester; palmityl succinic acid ester; palmityl methacrylate; octadecyl acrylate; octadecyl methacrylate; hexadecyl acrylate Hexyl vinegar; Hexadecyl methyl methacrylate; Dihydrocarbon diol esters of 14 to 15 carbons; Dimethacrylate 14 to 15 carbons Compound glycol esters; and mixtures of the foregoing. Cyclic monomers are also suitable, such as isobornyl acrylate; such as isobornyl acrylate; dicyclopentenyl acrylate; dicyclopentenyl methacrylate Purpose; feminine 44 200401912

二環戊婦基乙氧酯;甲基丙烯酸二環戊烯基乙氧酯;丙 稀酉夂四氣化糠基(tetrahydrofurfuryl)醋;曱基丙稀酸四氫 化糠基酯;以及其混合物。亦為合適尚有TONE M-100單 體’其係為一丙晞酸己内酸酮(capr〇lact〇ne )酯,可由康 乃迪克州Danbury的Union Carbide公司購得,GENORAD 1122單體可由瑞士蘇黎世的Hans Rahn公司購得,其係 為 2_丙稀酸(2_propenoic acid)、2-( ( ( 丁基)氨基) 碳氫 基氧) 乙基酯 (2-(((butyl)amino)carbonyloxy)ethylester )以及氮-乙稀 己内龜胺(N-vinyl caprolactam ) 〇 包含調整折射率型之單體的典型單體係揭示於 此,其單獨或是與(甲基)丙烯酸烷基酯合併,例如丙烯酸 月桂基酯。 c、膠黏促進劑Dicyclopentyl ethoxylate; dicyclopentenyl ethoxy methacrylate; propylene tetrahydrofurfuryl vinegar; fluorenyl acrylic acid tetrahydrofurfuryl ester; and mixtures thereof. Also suitable are TONE M-100 monomers, which are caprolactone monopropionate and are commercially available from Union Carbide, Danbury, Connecticut. GENORAD 1122 monomer is available from Commercially available from Hans Rahn, Zurich, Switzerland, which is 2-propanoic acid, 2- (((butyl) amino) hydrocarbyloxy) ethyl ester (2-(((butyl) amino) carbonyloxy) ethylester) and N-vinyl caprolactam 〇 A typical single system containing monomers with refractive index adjustment is disclosed here, either alone or with alkyl (meth) acrylate Combined, for example, lauryl acrylate. c. Adhesion promoter

黏著促進劑亦可包含於該主要塗層組成物。在該塗層 容易從玻璃纖維分層的高濕度以及高溫環境之下黏著性 係為一個特別重要的難題。為了在此環境下提供保護, 需要黏著促進劑。 在此領域中已知使用酸性官能材料(acid-functional material)或是有機官能矽烧(organofunctional silane)能改 善樹脂對玻璃的黏著性。矽烷(silane)亦為合適的膠黏促 進劑。此外,在一些環境中,使用具有在固化中與該系 統連結之功能的黏結促進劑有助於將被釋放的揮發性物 45 200401912An adhesion promoter may also be included in the main coating composition. Adhesion is a particularly important problem in high humidity and high temperature environments where the coating is easily delaminated from glass fibers. To provide protection in this environment, adhesion promoters are required. It is known in the art that the use of acid-functional materials or organofunctional silanes can improve the adhesion of the resin to glass. Silane is also a suitable adhesion promoter. In addition, in some environments, the use of adhesion promoters that have the function of bonding to the system during curing can help to release volatiles

質降到最低。多種合適的有機官能基矽烧包含但不限於 丙烯酸酯官能基矽烷;胺基官能基矽烷;氫硫基官能基矽 烷;丙烯醯胺官能基矽烧;丙烯官能基矽烷以及乙稀官 能基矽烷。該黏著促進劑亦可為甲氧基或是乙氧基取 代。有用的有機官能基矽烷包含但不限於氫硫基烷基三烷 氧基石夕烧(mercaptoalkyl trialkoxy silane)、甲基丙稀醯氧烧 基石夕烧((meth)acryloxyalkyl trialkoxy silane)、胺基院基三 烧氧基石夕烧(aminoalkyl trialkoxy silane)、其混合物以及 其相似物。甲基丙稀酸石夕烧(methacrylated silane)係為較 佳,因為它們與固化系統接合良好。氫硫基官能基黏著促 進劑在固化時亦會產生化學鍵結並且明顯地降低該系統 的固化速度。Quality is minimized. Various suitable organic functional silanes include, but are not limited to, acrylate functional silanes; amine functional silanes; hydrogen thio functional silanes; acrylamide functional silanes; propylene functional silanes and vinyl functional silanes. The adhesion promoter may be substituted by methoxy or ethoxy. Useful organic functional silanes include, but are not limited to, mercaptoalkyl trialkoxy silane, (meth) acryloxyalkyl trialkoxy silane, and amine radicals. Aminoalkyl trialkoxy silane, mixtures thereof, and the like. Methacrylated silanes are preferred because they adhere well to the curing system. The hydrogen-sulfur functional group adhesion promoter also produces chemical bonds during curing and significantly reduces the curing speed of the system.

另外一些較佳的在潮濕環境下增加黏著性之有機官能 基矽烷包含 3-丙烯氧丙基三曱氧矽烷 (3-acryloxypropyltrimethoxy silane)、乙稀·三(2-曱氧乙氧 石夕烧)(vinyl-tris(2-methoxyethoxysilane))、3-曱基丙嫦醯 氧丙基三甲氧石夕烧(3-methacryloxypropyltrimethoxy silane)、3_胺基丙基三乙氧石夕烧(3-aminopropyltriethoxy silane)、3-氫硫基丙基三甲氧石夕烧(3-mercaptopropyl trimethoxy silane)以及3-氫硫基丙基三乙氧石夕烧 (3-mercaptopropyl triethoxy silane)以及其混合物。其他的 黏著促進劑係為3-丙烯醯氧丙基三甲氧矽烷。 該矽烧成份係以少但是有效的分量加入固化之後會形 46 200401912 成該主要塗層之組成物中,以提南該組成物對該基材之 表面的黏結力。其中的矽烷化合物以所有成份的總重量 為基礎佔成分的重量百分比的約0.01%至約3%。該矽烷 化合物亦可能以所有成份的總重量為基礎佔成分的重量 百分比的約0.2%至約2.0%。 d、光起始劑Other preferred organic functional silanes that increase adhesion in a humid environment include 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxy silane, and 2-trioxoethoxylate (vinyl-tris (2-methoxyethoxysilane)), 3-methacryloxypropyltrimethoxy silane, 3-aminopropyltriethoxy silane ), 3-mercaptopropyl trimethoxy silane, 3-mercaptopropyl triethoxy silane, and mixtures thereof. The other adhesion promoter is 3-propenyloxypropyltrimethoxysilane. The silicon sintered component is added in a small but effective amount to form a shape after the curing 46 200401912 into the main coating composition to improve the adhesion of the composition to the surface of the substrate. The silane compound is about 0.01% to about 3% by weight based on the total weight of all the components. The silane compound may also be about 0.2% to about 2.0% by weight based on the total weight of all ingredients. d. Photoinitiator

該主要成分亦可能包含一光起始劑。此成分的必要性 係根據所設想的固化模式。若是該組成物係藉由紫外光 固化,則需要光起始劑。若該塗料係藉由電子束固化, 則可除去光起始劑。 在紫外光固化實施例中,光起始劑(係以少但是有效的 分量促進輻射固化)必須提供合理的固化速度而不會導 致混合成份過早凝膠化。 合適的光起始劑包含(但不限於):The main component may also contain a photoinitiator. The necessity of this component is based on the envisaged curing mode. If the composition is cured by ultraviolet light, a photoinitiator is required. If the coating is cured by an electron beam, the photoinitiator can be removed. In UV curing examples, the photoinitiator (which promotes radiation curing with a small but effective amount) must provide a reasonable cure rate without causing premature gelation of the mixed ingredients. Suitable photoinitiators include (but are not limited to):

氫氧基環己基苯基酮(hydroxycyclohexylphenyl ketone);氫氧基甲基苯基丙酮 (hydroxymethyl-phenylpropanone);二甲氧基苯基乙醯苯 酮(dimethoxyphenylacetophenone) ; 2-甲基-1_(4-甲基(硫 醇)苯基)-2-嗎林代-丙酮-1 (2-methyl-l-(4-methyl (thio)phenyl)-2-morpholino- propanone-1) ; 1-(4-異丙基 苯基)-2-鼠氧-2-曱基丙烧-1-顚1 (l-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-l-one) ,1 - (4-十二炫基本基)-2-氣氧J-2-甲基丙烧-1 -酉同 47 200401912 (1 (4-dodecylphenyl)-2-hydroxy-2-methylpropan-l-one); 4-(2氮氧乙氧)苯基-(2-氣乳-2-丙基)嗣 (4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone) ;二乙氧乙醯苯酮(diethoxyacetophenone) ; 2,2-二-sec-丁氧乙驢苯酮(2,2-di-sec-butoxyacetophenone);二乙氧苯 基乙酸苯酮(diethoxy-phenyl acetophenone);以及其混合 物。Hydroxycyclohexylphenyl ketone; hydroxymethyl-phenylpropanone; dimethoxyphenylacetophenone; 2-methyl-1_ (4- Methyl (thiol) phenyl) -2-morpholino-acetone-1 (2-methyl-l- (4-methyl (thio) phenyl) -2-morpholino-propanone-1); 1- (4- Isopropylphenyl) -2-ratoxy-2-fluorenylpropan-1--1- (1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-l-one), 1-(4- Dodecyl Basic Group) -2-Aerobic Oxygen-2-methylpropane-1-47 4701901912 (1 (4-dodecylphenyl) -2-hydroxy-2-methylpropan-l-one); 4- ( 2 Nitrooxyethoxy) phenyl- (2-pneumo-2-propyl) pyrene (4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone); (Diethoxyacetophenone); 2,2-di-sec-butoxyacetophenone; diethoxy-phenyl acetophenone; and mixtures thereof.

較佳種類的光起始劑係為磷氧化物,例如三甲基苯甲 醯二苯基氧化填(trimethylbenzoyldiphenyl-phosphine oxide) (可購自北卡羅來納州夏洛特市的BASF公司的化學部 門,其商品名為LUCIRINTPO)、三甲基苯甲醯乙氧苯基氧 化磷(可購自BASF公司,其商品名稱為LUCIRIN 8893) (trimethylbenzoylethoxyphenylphosphine oxide);二-(2,6-二甲氧苯甲醯)-2,4,4-三甲基戊基氧化磷 (bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyl phosphine oxide)、以及二-(2,4,6-三甲氧苯曱醯)-苯基氧化 鱗(bis-(2,4,6-trimethylbenzoyl)-phenyl phosphine oxide )(商品名稱CGI 819)或是二-(2,6-二甲氧苯甲 醯)-2,4,4-三甲基戊基氧化磷 (bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethyl pentyl phosphine oxide)(成分名稱為 CGI 1700 or CGI 1800) 皆可購自紐約州Ardsley之Ciba特用化學品。 光起始劑(當使用時)較佳地以總混合物的重量為基礎 48 200401912 佔未固化混合物之重量百分比的約0.5%至約10%。光起 始劑的量可為約1%至約6%。該光起始劑可具有一個量 以得到一小於0.7 J/cm2之固化速率(以劑量對模數的曲 線測得)。 2、次要塗層A preferred type of photoinitiator is a phosphorus oxide, such as trimethylbenzoyldiphenyl-phosphine oxide (commercially available from the Chemical Division of BASF Corporation in Charlotte, North Carolina, Its trade name is LUCIRINTPO), trimethylbenzoylethoxyphenylphosphine oxide (commercially available from BASF, its trade name is LUCIRIN 8893) (trimethylbenzoylethoxyphenylphosphine oxide);醯) -2,4,4-trimethylpentyl phosphine oxide (bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl phosphine oxide), and bis- (2,4,6-trimethyloxy) Phenylhydrazone) -phenyl oxide scale (bis- (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide) (trade name CGI 819) or bis- (2,6-dimethoxybenzidine) -2 Bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethyl pentyl phosphine oxide (CGI 1700 or CGI 1800) is available from New York State Ardsley's Ciba specialty chemicals. The photoinitiator (when used) is preferably based on the weight of the total mixture 48 200401912 to about 0.5% to about 10% by weight of the uncured mixture. The amount of photoinitiator may be from about 1% to about 6%. The photoinitiator may be present in an amount to obtain a cure rate of less than 0.7 J / cm2 (measured as a curve of dose versus modulus). 2.Secondary coating

本發明中所使用的次要塗料亦可為此領域中任何習知 的形式。例如一典型之次要塗料係敘述於頒與Shustack 的美國第6014488號專利、美國第5352712號專利,這 些專利之全部在此併入參考。 在其中所述的次要塗料包含: (I) 重量百分比為從約10%至約90%之以一聚酯及/或 聚醚為基礎且包含一反應性末端的脂肪族氨基曱酸 乙酯寡聚物; (II) 重量百分比為從約20%至約60%之可與(I)的反 應性末端反應之碳氫氧化物的黏度調整成分;The secondary coatings used in the present invention may also be in any form known in the art. For example, a typical secondary coating is described in U.S. Patent No. 6,014,488 and U.S. Patent 5,327,712 issued to Shustack, all of which are incorporated herein by reference. The secondary coatings described therein include: (I) from about 10% to about 90% by weight of a fatty acid ethyl ester based on a polyester and / or polyether and including a reactive end Oligomers; (II) a viscosity adjusting component having a weight percentage of from about 20% to about 60% of a carbon hydroxide capable of reacting with the reactive end of (I);

(III) 非必要的,重量百分比為從約0.05%至約10% 之光起始劑,所有上述之重量百分比係以(I)、(II) 以及(III)的總重量為基礎。 該次要塗層的具有反應性之末端可為揭示於適合該主 要塗層的之反應性末端並且可能是或可能不是(在一雙 塗層系統的情況中)與該主要塗層相同之末端,只要對該 末端官能基的化學性沒有負面反應(例如胺烯系統以及 陽離子固化系統)。與該主要塗層「混成」(hybrid)的組成 49 200401912 物亦可用於該次要塗層。 a、寡聚物 該次要塗層組成物的一第一成分(I)可為以一聚酯及/ 或聚醚為基礎且包含一反應性末端的脂肪族氨基曱酸乙 酯寡聚物。(III) Non-essential, photoinitiators from about 0.05% to about 10% by weight, all of the above weight percentages are based on the total weight of (I), (II), and (III). The reactive end of the secondary coating may be a reactive end revealed to be suitable for the primary coating and may or may not be (in the case of a dual coating system) the same end as the primary coating , As long as there is no negative reaction to the chemistry of the terminal functional group (such as amine and system and cationic curing system). Compositions "hybrid" with this primary coating 49 200401912 Substances can also be used in this secondary coating. a. An oligomer A first component (I) of the secondary coating composition may be an aliphatic ethyl amino phosphonate oligomer based on a polyester and / or polyether and containing a reactive end .

通常使用於紫外光固化系統的寡聚物包含丙烯酸聚酯 (acrylated polyester),環氧化物(epoxy)以及氨基甲酸乙 酯(urethane)。丙稀酸聚酯較不好因為它們容易水解於高 溫水解老化(high temperature hydrolytic aging)。關於丙烯 酸酯氨基甲酸乙酯,芳香族以及脂肪族以異氰酸酯為基礎 之氨基甲酸乙酯都適合。脂肪族氨基甲酸乙酯不具有不 良的熱以及氧化穩定性的缺點。 當使用以聚醚為基礎的氨基甲酸乙酯時可能需要添加 多種熱穩定劑以及抗氧化劑。The oligomers commonly used in UV curing systems include acrylated polyester, epoxy, and urethane. Acrylic polyesters are not good because they are easily hydrolyzed by high temperature hydrolytic aging. Regarding acrylic urethanes, aromatic and aliphatic isocyanate-based urethanes are suitable. Aliphatic urethanes do not have the disadvantages of poor thermal and oxidative stability. When using polyether-based urethanes, various thermal stabilizers and antioxidants may need to be added.

亦可能使用以聚酯及/或聚醚混合物為基礎的氨基甲 酸乙酯。這種混合物可由混合預先形成之末端反應聚醚 氨基甲酸乙酯以及預先形成之末端反應聚酯氨基甲酸乙 酯形成,或是配製一混合批次將聚酯單元以及聚醚單元 與一異氰酸酯引導物(precursor)反應以形成一混合寡聚物, 然後添加該反應末端。 然而,其係為該寡聚物的官能基主幹(backbond)而不 是末端官能基(end group),這賦予該組成物良好的特 性。因此,與前述之以丙烯酸酯或是曱基丙烯酸酯為基 50 200401912It is also possible to use urethanes based on polyester and / or polyether mixtures. This mixture can be formed by mixing a preformed end-reacted polyether urethane and a preformed end-reacted polyester urethane, or a mixed batch can be prepared by mixing the polyester units and polyether units with an isocyanate guide (precursor) to form a mixed oligomer, and then add the reaction end. However, it is the functional group backbond rather than the end group of the oligomer, which gives the composition good characteristics. Therefore, it is based on the above acrylate or fluorenyl acrylate 50 200401912

礎的組成物的類似系統(但是擁有任何反應性末端官能 基)係同等地符合該要求。因此,該甲基丙烯酸酯可部分 或是全部被多種其他例子的末端官能基(可因照射或其 它方法(不是藉自由基誘發就是藉陽離子固化)而反應) 置換,以提供良好表現的塗層。這些末端官能基包含自 由基系統,例如硫醇稀(thiolene )系統(以多官能基硫 醇以及不飽和多元烯之反應為基礎,不飽和多元烯係例 如乙稀6|( vinyl ether);乙稀硫化物(vinyl sulfide); 丙婦醚(allylic ether)以及二環稀(bicyclicene));胺 稀(amine-ene )系統(以多官能基胺以及不飽和多元稀 之反應為基礎);乙炔系統;系統中該化合物之反應部 分係在分子中而非在末端;其它乙烯(例如苯乙烯)系 統;丙稀醯胺(acrylamide)系統;丙稀基(allylic)系 統;衣康酸(itaconate )系統以及丁嫦酸酉旨(crotonate ) 系統;以及陽離子固化系統例如鏽鹽誘發乙烯醚(onium salt-induced vinyl ether )系統以及環氧基末端 (epoxy-terminated)系統(其藉開環而反應);以及任何 其它任何教導於頒給Shustack的美國第5,639,846號專利 (在此將其全部併入參考)擁有反應性末端為基礎的化合 物。事實上任何末端官能基在以照射或其它方法固化時 不會對固化組成物的所欲性質(即氧化性、熱以及水解 穩定性以及抗濕性)產生負面影響係為可預見的。可用 以作為末端包覆單體的化合物包含(但不限於)丙烯酸 51 200401912A similar system of the base composition (but possessing any reactive terminal functionalities) meets this requirement equally. Therefore, this methacrylate can be partially or completely replaced by terminal functional groups of various other examples (which can be reacted by irradiation or other methods (either induced by free radicals or cured by cations) to provide a coating that performs well . These terminal functional groups include free radical systems, such as thiolene systems (based on the reaction of polyfunctional thiols and unsaturated polyenes, unsaturated polyenes such as ethylene 6 | (vinyl ether); ethyl Dilute sulfide; allylic ether and bicyclicene); amine-ene system (based on polyfunctional amine and unsaturated polyvalent dilute reaction); acetylene System; the reactive part of the compound in the system is in the molecule rather than at the end; other ethylene (such as styrene) systems; acrylamide systems; allylic systems; itaconic acid Systems and crotonate systems; and cationic curing systems such as onium salt-induced vinyl ether systems and epoxy-terminated systems (which react by ring opening) ; And any other teachings taught to Shustack in U.S. Patent No. 5,639,846, which is incorporated herein by reference in its entirety, possesses a reactive end-based compound. It is foreseeable that virtually any terminal functional group does not adversely affect the desired properties of the cured composition (ie, oxidative, thermal, and hydrolytic stability and moisture resistance) when cured by irradiation or other methods. Compounds that can be used as terminal coating monomers include, but are not limited to, acrylic acid 51 200401912

酯、甲基丙婦酸酯、乙稀醚(vinyl ether)、乙埽硫化物 (vinyl su lfide )、丙嫦醚(allylic ether )、二環稀 (bicyclicene)、硫醇(mercaptan)、乙炔(acetylene)、環 氧化物(epoxide)、胺(amine)、苯乙稀(styrene)、丙晞醯胺 (acrylamide)以及其他。合適用於作為末端包覆之單體的 末端為氫氧基之化合物包含(但不限於)氫氧乙基丙烯酸酯 (hydroxyethyl acrylate);氫氧乙基甲基丙烯酸酯 (hydroxyethyl methacrylate);氫氧丙基丙稀酸酯 (hydroxypropyl acrylate);氫氧丙基甲基丙婦酸酯(hydroxypropyl methacrylate );氫氧丁基丙婦酸酯(hydroxybutyl aery late );氬 氧丁基甲基丙嫦酸酯(hydroxybutyl methacrylate);稀丙基醚 (allyl ether);氫氧乙基乙烯醚(hydroxyethyl vinyl ether); 氫氧丙基乙稀鱗(hydroxypropyl vinyl ether);氫氧丁基乙婦 醚(hydroxybutyl vinyl ether);氫氧乙基硫醇(hydroxyethyl mercaptan);氫氧丙基硫醇(hydroxypropyl mercaptan);氫 氧乙基 -3- 碳氯硫 基丙酸 (hydroxyethyl-3-mercaptopropionate);以及氫氧丙基-3-碳氫 硫基丙酸(hydroxypropyl-3-mercaptopropionate)。 一合適的基礎券聚物’接著,係為一具有一聚g旨及/ 或聚醚主幹的脂肪族氨基甲酸乙酯募聚物,例如一丙烯 酸酯脂肪族氨基甲酸乙酯寡聚物,其包含70%寡聚物固 態物於一己烷二醇二丙烯酸酯溶劑(hexanedi〇l diacrylate solvent)中。一合適的券聚物係講自喬治亞州j7〇rest park 52 200401912Esters, methyl propionate, vinyl ether, vinyl su lfide, allylic ether, bicyclicene, mercaptan, acetylene ( acetylene), epoxide, amine, styrene, acrylamide and others. Suitable for use as a terminal-coated monomer. Hydroxyl-terminated compounds include, but are not limited to, hydroxyethyl acrylate; Hydroxypropyl acrylate; hydroxypropyl methacrylate; hydroxybutyl aery late; hydroxybutyl methacrylate methacrylate); allyl ether; hydroxyethyl vinyl ether; hydroxypropyl vinyl ether; hydroxybutyl vinyl ether; Hydroxyethyl mercaptan; hydroxypropyl mercaptan; hydroxyethyl-3-mercaptopropionate; and hydroxy-3 -Hydroxypropyl-3-mercaptopropionate. A suitable base bond polymer is then an aliphatic urethane polymer having a polymer and / or polyether backbone, such as an acrylate aliphatic urethane oligomer, Contains 70% oligomer solids in a hexanediol diacrylate solvent. A suitable broker is from j7〇rest park 52 200401912

之Eastman Chemical其成分名稱為015-1516,其包含重 量百分比為75%之以一聚酯及/或聚醚為基礎的丙烯酸酯 脂肪族氨基甲酸乙酯寡聚物以及在己烷二醇二丙烯酸酯 溶劑中重量百分比為25%之聚醚。另一合適的寡聚物係 為PHOTOMER 6008,其係為一以聚醚為基礎的丙烯酸 酯脂肪族氨基甲酸乙酯寡聚物,購自賓州Ambler之 Cognis。除了丙烯酸酯之末端以外其他末端亦可用於該 主要或是次要塗層。其他適合的寡聚物之例子包含 PHOTOMER 6008(月旨肪族氨基甲酸乙酯丙烯酸酯)、 PHOTOMER 6019(丙烯酸酯寡聚物51%、三丙烯乙二醇 二丙烯酸酉旨(tripropylene glycol diacrylate)48.08%、對苯 二盼(hydroquinone)0.9%以及丙烯酸 0·02%),皆由 Cognis 製造;由喬治亞州Smyrna之UCB購得之曱基丙婦酸酯 寡聚物;購自賓州Exton之Sartomer之E10010 (聚謎氨 基曱酸乙 S旨二丙烯酸醋(polyether urethane diacrylate)); 購自Eastman Chemical之015-1516 (氨基甲酸乙酯丙烯 酸酯寡聚物75%、1,6己烷二醇二丙烯酸酯25%);購自 Sartomer之CN 969 (丙烯酸S旨寡聚物);購自Cognis之 PHOTOMER 6010 (2-氫氧乙基丙烯酸酯-4-4’亞甲基二 (環己基異氰酸酯)-聚四亞甲基乙二醇聚合物 (2-hydroxyethyl acrylate-4-4’ methylene bis (cyclohexylisocyanate)-polytetramethylene glycol polymer)87%、三亞甲基醇丙烧聚乙稀乙二醇醚三丙烯酸 53 200401912 酉旨(trimethylolpropane polyethylene glycol ether triacrylate) 13%)及其混合物。 該寡聚物成分包含該上樹次要塗層組成物、乾固態基 礎之總重量從約10%至約90%之重量,該上數百分比係 以僅該募聚物的種量為基礎。 b、礙氫化合物黏度調整化合物Eastman Chemical has a component name of 015-1516, which contains 75% by weight of a polyester and / or polyether-based acrylate aliphatic urethane oligomer and hexanediol diacrylic acid. 25% by weight polyether in the ester solvent. Another suitable oligomer is PHOTOMER 6008, which is a polyether-based acrylate aliphatic urethane oligomer available from Cognis, Ambler, PA. In addition to the acrylate ends, other ends can also be used for this primary or secondary coating. Examples of other suitable oligomers include PHOTOMER 6008 (monthly aliphatic urethane acrylate), PHOTOMER 6019 (51% acrylate oligomer, tripropylene glycol diacrylate 48.08 %, Hydroquinone (0.9%, and acrylic acid 0.02%), all manufactured by Cognis; amidinopropionate oligomers purchased from UCB, Smyrna, Georgia; Sartomer, purchased from Exton, Pennsylvania E10010 (polyether urethane diacrylate); purchased from Eastman Chemical 015-1516 (urethane acrylate oligomer 75%, 1,6 hexanediol diacrylate) Acrylate 25%); CN 969 (S acrylic oligomer) from Sartomer; PHOTOMER 6010 (2-Hydroxyethylacrylate-4-4'methylenebis (cyclohexyl isocyanate)) from Cognis -Polytetramethylene glycol polymer (2-hydroxyethyl acrylate-4-4 'methylene bis (cyclohexylisocyanate) -polytetramethylene glycol polymer) 87%, trimethylene alcohol propylene glycol polyethylene glycol ether triacrylate 53 200401912 trimethylolpropane polyethylene glycol ether triacrylate) 13%) and mixtures thereof. The oligomer component includes the total weight of the secondary coating composition and the dry solid base from about 10% to about 90% by weight, and the percentage is based on the amount of the polymer alone. b. Viscosity-adjusting compounds that interfere with hydrogen

該次要塗層組成物的一第二成分係為可與(I)的末端反 應之碳氫化合物的黏度調整成分(II)。此化合物的功能之 一係調整該塗料之黏度以使該塗料能輕易地塗佈於具有 緩衝塗層的纖維。該化合物性質上可為碳氫化合物以提 供其疏水性以及使得奇遇其他系統相容,並且可包含一 雙環結構使得其在固化時的收縮降至最低。A second component of the secondary coating composition is a viscosity adjusting component (II) of a hydrocarbon compound which can react with the terminal of (I). One of the functions of this compound is to adjust the viscosity of the coating so that the coating can be easily applied to fibers having a buffer coating. The compound can be a hydrocarbon in nature to provide its hydrophobicity and make it compatible with other systems, and can include a bicyclic structure to minimize shrinkage during curing.

此種合適的化合物包含但不限於丙烯酸異冰片酯 (isobornyl acrylate);甲基丙稀酸異冰片酯(isobomyl methacrylate);六至十六個礙飽和碳氫二醇丙烯酸酯或是曱基丙稀 酸酯例如十四個碳以及十五個碳的二醇二丙烯酸酯或是二甲基丙 稀酸酯的混合物(a mixture of C14 and C15 diol diacrylates or dimethacrylates)、己烧二醇二丙稀酸酯(hexanediol diacrylate)或是 己烧二醇二甲基丙稀酸S旨(hexanediol dimethacrylate);乙烯喊異 冰片酯(isobomyl vinyl ether);六至十六個碳飽和碳氫二醇乙稀喊 (C6 to C16 saturated hydrocarbon diol vinyl ethers)例如己烧二醇二 乙稀醚(hexanediol divinyl ether) or環己院二甲醇二乙稀鍵 (cyclohexane dimethanol divinyl ether);六至十六個碳飽禾j二石危醇 54 200401912Such suitable compounds include, but are not limited to, isobornyl acrylate; isobomyl methacrylate; six to sixteen saturated hydrocarbon glycol acrylates or fluorenyl acrylates Esters, such as a mixture of C14 and C15 diol diacrylates or dimethacrylates of fourteen carbons and fifteen carbons, hexanedipropylene glycol Hexanediol diacrylate or hexanediol dimethacrylate; hexanediol dimethacrylate; isobomyl vinyl ether; six to sixteen carbon saturated hydrocarbon diols C6 to C16 saturated hydrocarbon diol vinyl ethers) such as hexanediol divinyl ether or cyclohexane dimethanol divinyl ether; six to sixteen carbon saturated diols Stone dangerous alcohol 54 200401912

(C6 to C16 saturated dithiols)例如己烧二硫醇(hexanedithiol)、癸烧 二硫醇(decanedithiol)以及環己烷二甲醇二硫醇(CyCi〇hexane dimethanol dithiol);六至十六個碳飽和碳氫末端二氧化物(C6 to Cl6 saturated hydrocarbon terminal dioxides)例如四癸二晞二氧<匕 物(tetradecadiene dioxide);六至十六個碳飽和碳氫末端二縮水甘 油鱗(C6 to Cl6 saturated hydrocarbon terminal diglycidyl ethers)例 如己烧二醇二縮水甘&_(hexanediol diglycidyl ether);或是這些 化合物之混合物(只要這些混合物會共反應(coreactive)但是不會 與使用於(I)的成分發生負面反應)。丙烯酸異冰片酯(isobornyl acrylate)與己烧二醇二丙稀酸S旨(hexanediol diacrylate)(該己烧 二醇二丙烯酸酯係提供作為寡聚物的反應溶劑)的混合物係為一 種適合的成分。(C6 to C16 saturated dithiols) such as hexanedithiol, decanedithiol, and CyCiohexane dimethanol dithiol; six to sixteen carbon saturated carbons C6 to Cl6 saturated hydrocarbon terminal dioxides such as tetradecane dioxane < tetradecadiene dioxide; six to sixteen carbon saturated hydrocarbon terminal diglycidol scales (C6 to Cl6 saturated hydrocarbon terminal diglycidyl ethers) such as hexanediol diglycidyl ether; or a mixture of these compounds (as long as these mixtures will be coreactive but not negative to the ingredients used in (I) reaction). A mixture of isobornyl acrylate and hexanediol diacrylate (the hexanediol diacrylate provides a reaction solvent as an oligomer) is a suitable ingredient .

該第二成分一般係為一單體或是單體混合物。合適的單體包含 購自Sartomer之SR238 (1,6己烧二醇二丙稀酸酯99.09%、對苯 二酚單甲基醚〇·〇1°/。); CD614(聚丙烯乙二醇九酚醚丙烯酸酯 (polypropylene glycol nonphenyl ether acrylate)99.50%、聚[氧(甲基 -1,2-乙醯)],α -(九苯)-ω -氫氧-(poly[oxy(methyl-1,2-ethanediyl)], a-(nonphenyl)-0-hydroxy-)O.5O〇/〇);購自 UCB 之 IBOA (exo-丙 嫦酸異冰片醋);購自Sartomer之SR 339 (2-苯氧乙基丙嫦酸酉旨 (2-phenoxy ethyl acrylate) 99.91%、對苯二齡單甲基醚 (hydroquinone monomethyl ether) 0.09%);購自 UCB 之 HDODA (1,6己烷二醇二丙烯酸酯);購自Sartomer之SR-339(2-苯氧乙基 丙晞酸酯(2-phenoxyethyl acrylate) 99.91%、對苯二盼單甲基醚 55 200401912The second component is generally a monomer or a mixture of monomers. Suitable monomers include SR238 (1,6 hexanediol dipropionate 99.09%, hydroquinone monomethyl ether 0.001 ° /.) Purchased from Sartomer; CD614 (polypropylene glycol Polypropylene glycol nonphenyl ether acrylate, 99.50%, poly [oxy (methyl-1,2-acetamidine)], α- (nonaphenyl) -ω-hydrogen- (poly [oxy (methyl- 1,2-ethanediyl)], a- (nonphenyl) -0-hydroxy-) O.5O〇 / 〇); IBOA (exo-propionate isobornyl vinegar) from UCB; SR 339 from Sartomer ( 2-phenoxy ethyl acrylate (99.91%, hydroquinone monomethyl ether 0.09%); HDODA (1,6 hexane di) from UCB Alcohol diacrylate); SR-339 (2-phenoxyethyl acrylate) 99.91%, p-phenylenediphenyl monomethyl ether 55 200401912 from Sartomer

(hydroquinone monomethyl etiier) 0·09%);講自 Sartomer 之 SR 349 (二盼 A 聚乙稀乙二醇二_二丙烯酸fi旨(bisphenol A polyethylene glycol diether diacrylate) 99.91%、對苯二紛單甲基醚 0.09%); TMPTA (三曱基醇丙烧三丙稀酸酯(trimethylolpropane triacrylate)99.9%、對苯二紛甲基醚0·1%);以及購自紐約州之 Tarrytown的ISC特用化學品公司之ARONIX Ml 17 (聚丙烯乙 二醇九苯醚丙婦酸 S旨(polypropylene glycol nonphenyl ether acrylate)99%、甲苯 1%)。 成分(II)包含以該(I),(II) and (III)成分之乾固態基礎之總重量 為準佔該組成物之重量百分比從約20 %至約60 〇/〇。 c、光起始劑(hydroquinone monomethyl etiier) 0 · 09%); from Sartomer's SR 349 (bispan A polyethylene glycol diether diacrylate) 99.91%, terephthalate Ether 0.09%); TMPTA (99.9% trimethylolpropane triacrylate, 0.1% terephthalate methyl ether); and ISC special purpose purchased from Tarrytown, New York ARONIX Ml 17 (99% for polypropylene glycol nonphenyl ether acrylate, 1% for toluene) from Chemical Company. Ingredient (II) comprises from about 20% to about 60% by weight of the composition based on the total weight of the dry solid basis of the (I), (II) and (III) ingredients. c. Photoinitiator

如在主要塗料’ 一光起始劑(III)係為該次要塗層的可 能成分但是(在不使用輻射系統的情況下)僅在紫紫外光 固化時需要使用。任何前述之試用於主要塗料之光起始 劑都可適用。較佳的光起始劑係為氫氧基環己基苯基酮 (hydroxycyclohexylphenyl ketone)以及(4-辛氧苯基)苯 基破六氟銻酸鹽((4-octyloxyphenyl) phenyl iodonium hexafluoro antimonate)。該光起始劑可添加量係為能有效 地誘發該組成物的固化並且以(I)、(II)以及(ΠΙ)的總重量 為準包含重量百分比為從約0.05 %至約1〇 〇/〇。 合適的光起始劑包含購自紐約州Tarrytown之Ciba 特用化學品的IRGACURE 184 (1-氫氧基環己基苯基 酮);購自台灣台北的Chitec之CHIVACURE 184 (1-氫氧 56 基環己基苯基酮)以及其混合物。 一般而言,較低階(lower level)的光起始劑係為可接受 並且雖然並不是必要的,相較於使用於主要塗料中可能 較佳使用於該次要塗料中。 d、非必要添加物For example, in the primary coating ’a photoinitiator (III) is a possible component of the secondary coating but (without the use of a radiation system) is only required for curing in ultraviolet UV light. Any of the aforementioned photoinitiators tried for primary coatings can be used. Preferred photoinitiators are hydroxycyclohexylphenyl ketone and (4-octyloxyphenyl) phenyl iodonium hexafluoro antimonate. The photoinitiator can be added in an amount that can effectively induce curing of the composition and includes a weight percentage of from about 0.05% to about 100% based on the total weight of (I), (II), and (III). / 〇. Suitable photoinitiators include IRGACURE 184 (1-hydroxycyclohexylphenyl ketone) commercially available from Ciba Specialty Chemicals, Tarrytown, New York; Cyclohexylphenyl ketone) and mixtures thereof. In general, lower level photoinitiators are acceptable and although not necessary, they may be better used in this secondary coating than in primary coatings. d. Non-essential additives

正如在主要塗層中,多種可用的非必要添加劑(IV)例 如穩定劑包含但不限於一種或是多種有機亞磷酸鹽 (organic phosphites)、受阻紛(hindered phenols)、受阻胺 (hindered amines)、某些石夕烧化合物(silanes)以及其混合 物以及其類似物。典型的穩定劑係為硫醇二乙烯二 [3_(3,5_二-第三丁基-4-氫氧苯基)丙酸]CAS #41484-35-9。當使用時,該穩定劑的量係為以⑴寡聚 物、(II)單體以及(III)光起始劑之總重量為基礎的重量百 分比從約0.1%至約3%。Just as in the main coatings, a variety of available non-essential additives (IV) such as stabilizers include, but are not limited to, one or more organic phosphites, hindered phenols, hindered amines, Certain silanes and their mixtures and their analogs. A typical stabilizer is thiol diethylene di [3_ (3,5_di-third-butyl-4-hydrophenyl) propionic acid] CAS # 41484-35-9. When used, the amount of the stabilizer is from about 0.1% to about 3% by weight based on the total weight of the fluorene oligomer, (II) monomer, and (III) photoinitiator.

適合的穩定劑包含購自伊利諾州Palatine之Crompton (OSI)的SILQUEST Α-1110 ((γ-胺基丙基)三甲氧矽烷 ((γ-aminopropyl) trimethoxysilane) 98%、甲醇 2%);以 及購自Ciba特用化學品的irgANOX 1035(苯丙酸 (benzenepropanoic acid)) ° 用於次要塗層之另一非必要添加劑係為表面張力調整 矽樹脂添加劑,其可使用於次要塗層係塗覆於已固化之 主要塗層上的實施例中。 合適的表面活化劑包含購自德國Essen的Tego 57 200401912Suitable stabilizers include SILQUEST A-1110 ((γ-aminopropyl) trimethoxysilane 98%, methanol 2%) available from Crompton (OSI) of Palatine, Illinois; and IrgANOX 1035 (benzenepropanoic acid) from Ciba Specialty Chemicals ° Another non-essential additive for secondary coatings is a surface tension adjustment silicone resin additive, which can be used in secondary coatings Examples of application to a cured primary coating. Suitable surfactants include Tego 57 200401912 from Essen, Germany

Chemie之TEGO RAD 2200N (石夕聚醚丙稀酸酯(silicon polyether acrylate) 98%、輕芳香族溶劑石腦油 (Naphtha)(石油)2%);購自密西根州Midland之Dow Corning 的 DC ADDITIVE 57 (矽氧烷(siloxane)以及矽、 二曱基(di-methyl)、3-氫氧丙基甲基(3-hydroxypropyl methyl)、醚力口入聚乙嫦乙二醇醋酸根(polyethylene glycol acetate)88%、聚乙婦乙二醇單婦丙基醚醋酸根 (polyethylene glycol monoallyl ether acetate)9〇/〇、聚(氧 -1,2- 乙酿) (X- 乙 S藍 基 -co-( 乙 酿 基 氧 )-(poly(oxy-1,2-ethanediyl)Chemie's TEGO RAD 2200N (silicon polyether acrylate 98%, light aromatic solvent naphtha (petroleum) 2%); DC from Dow Corning, Midland, Michigan ADDITIVE 57 (siloxane and silicon, di-methyl, 3-hydroxypropyl methyl, polyethylene glycol acetate glycol acetate) 88%, polyethylene glycol monoallyl ether acetate 90 / 〇, poly (oxy-1,2- ethyl alcohol) (X- ethyl blue co- (ethynyloxy)-(poly (oxy-1,2-ethanediyl)

a-acetyl-o)-(acetyloxy)- )3%);購自 Crompton (OSI)的 SILWET L-7602 (矽氧烷(siloxane)以及矽、二甲基 (di-methyl)、3-氫氧丙基甲基(3-hydroxypropyl methyl)、 醚加入聚乙稀乙二醇單甲基醚(polyethylene glycol monomethyl ether) 80%、聚氧乙婦稀丙基曱基醚 (polyoxyethylene allyl methyl ether) 20%):購自德國 Wesel 的 BYK Chemie 之 BYK 371 (二甲苯(xylene) 48%、丙稀酸官能基二甲基聚石夕氧烧(acrylic_functional dimethylpolysiloxane)40%、乙基苯(ethylbenzene) 12%); 購自BYK Chemie的BYK 361 (丙烯酸共聚物(acrylic co-polymer) 98%、輕芳香族溶劑石腦油(Naphtha)(石油) 2%);購自BYK Chemie的修飾BYK371 (丙烯酸官能基 二曱基聚石夕氧院(acrylic-functional dimethylpolysiloxane) 58 200401912 70% 、1,6 己烷二醇二丙烯酸酯(hexanediol diacrylate)30%、二曱苯(xylene) 1%)以及其混合物。 一架橋劑(crosslinking agent)亦可非必要地包含於該 次要塗料中。a-acetyl-o)-(acetyloxy)-) 3%); SILWET L-7602 (siloxane) and silicon, di-methyl, 3-hydroxide from Crompton (OSI) Propyl methyl (3-hydroxypropyl methyl), ether added polyethylene glycol monomethyl ether 80%, polyoxyethylene allyl methyl ether (polyoxyethylene allyl methyl ether) 20% ): BYK 371 (xylene) 48%, acrylic_functional dimethylpolysiloxane 40%, ethylbenzene 12%) from BYK Chemie, Wesel, Germany ; BYK 361 (acrylic co-polymer) 98%, light aromatic solvent naphtha (petroleum) 2%, purchased from BYK Chemie; modified BYK371 (acrylic functional group two) Acrylic-functional dimethylpolysiloxane 58 200401912 70%, 1,6 hexanediol diacrylate (30%, xylene 1%) and mixtures thereof. A crosslinking agent may optionally be included in the secondary coating.

可包含一鏈傳遞劑(chain transfer agent)例如由新漢普 郡(New Hampshire) Nashua 的 Hampshire 製造之 IOMPA (異辛基 3_碳氫硫基丙酸(isoctyl 3-mercaptopropionate))。 最後,該次要塗層可能包含之膠黏促進劑,例如購自 Crompton (OSI)的 SILANE A-172 (乙烯三(2-甲氧乙氧) 石夕烧(vinyltris (2-methoxyethoxy) silane) 95%、聚石夕氧烧 (polysiloxane) 3.5% (不純),2-甲氧乙醇 (2-methoxyethanol)1.5%);講自 Crompton (OSI)的 SILANE Α·189 ((γ-氫硫基丙基)三甲氧矽烷A chain transfer agent may be included, such as IOMPA (isoctyl 3-mercaptopropionate) manufactured by Hampshire of Nashua, New Hampshire. Finally, the secondary coating may contain an adhesion promoter, such as SILANE A-172 (vinyltris (2-methoxyethoxy) silane) from Crompton (OSI) 95%, polysiloxane 3.5% (impure), 2-methoxyethanol (1.5%); Silane Α · 189 ((γ-Hydroxythiopropyl) from Crompton (OSI) Radical) trimethoxysilane

((y-mercaptopropyl)trimethoxysilane) 85%、(3-氯丙基)三 甲氧石夕烧((3-chloropropyl) trimethoxysilane) 15°/〇);以及 丙稀酸聚石夕氧烧(acrylated polysiloxane),例如購自德國 Essen的Tego Chemie之丙烯酸聚矽氧烷以及其混合 物。 一個適合用以塗佈於一光纖的次要塗層組成物包含: (I) 重量百分比為從約40%至約80%之以一聚酯 及/或聚醚為基礎的丙烯酸酯脂肪族氨基曱酸乙酯 养聚物,以及 (II) 重量百分比為從約25%至約50%之丙烯酸異冰 59 片醋(isobornyl acrylate)以及己烧二醇二丙晞酸酉旨 (hexanediol diacrylate)的混合物;以及 (III) 重量百分比為從約2%至約7%之氫氧基環己 基苯基酮(hydroxycyclohexylphenyl ketone),所有上 述之重量百分比係以(I)、(II)以及(III)的總重量為基 礎。 此組成物亦可包含重量百分比為從約0.5%至約1.5% (以該組成物重量為基礎)之穩定劑例如硫醇二乙烯二 (3,5-二-第三丁基-4-氫氧)氫桂皮酸鹽(thiodiethylene bis(3,5-di_tert-butyl-4-hydroxy)hydrocinnamate)。成匕夕卜, 在一具體實施例中,一敘述用於該主要塗層的架橋劑型 態以及用量亦可能用於此。在實施例中,表面張力調整 添加物亦可包含於其中並且寡聚物成分(I)可為以聚醚為 主幹的脂肪族氨基甲酸乙酯丙烯酸酯寡聚物的混合物。 因為傳統在塗佈於玻璃纖維之前用以過濾次要塗層的 方法不能避免點狀突塊的產生,本發明的焦點係特別有 關於改變過濾條件。 以下係為一個典型的次要塗層,如頒與Shustack等人 的美國第6,048,911號專利所述,該專利之全部在此併入 參考。 一脂肪族氨基甲酸乙酯丙烯酸酯; 己燒二醇丙稀酸酉旨(hexanediol acrylate,HD0DA); 一光起始劑包含IRGACURE 184 (1-氫氧基環己基苯 200401912 基酮)以及一抗氧化劑包含IRGANOX 1035 (—受阻聚酚 (hindered polyphenol)); 一石夕丙稀酸醋相容劑(silicone acrylate compatibility agent)例如 BYK-371 ; 一聚有關能劑之石夕化合物(functionalized silicone compound)例如 TEGO Rad-2100、TEGO Rad-2200 ;以及((y-mercaptopropyl) trimethoxysilane) 85%, (3-chloropropyl) trimethoxysilane 15 ° / 〇); and acrylated polysiloxane For example, acrylic polysiloxane from Tego Chemie, Essen, Germany, and mixtures thereof. A secondary coating composition suitable for applying to an optical fiber comprises: (I) a polyester and / or polyether based acrylate aliphatic amino group from about 40% to about 80% by weight Ethyl oxalate phytopolymers, and (II) weight percents of isobornyl acrylate 59 tablets from about 25% to about 50% and hexanediol diacrylate Mixture; and (III) hydroxycyclohexylphenyl ketone from about 2% to about 7% by weight, all of the above weight percentages are based on (I), (II), and (III) Based on total weight. The composition may also include a stabilizer, such as a mercaptan diethylene di (3,5-di-third-butyl-4-hydrogen), in an amount of from about 0.5% to about 1.5% by weight (based on the weight of the composition). Oxygen) thiodiethylene bis (3,5-di_tert-butyl-4-hydroxy) hydrocinnamate. As a result, in a specific embodiment, a description of the type and amount of the bridging agent used for the main coating may also be used here. In the embodiment, the surface tension adjusting additive may also be included therein and the oligomer component (I) may be a mixture of aliphatic urethane acrylate oligomers having polyether as a backbone. Since the conventional method for filtering the secondary coating before coating on the glass fiber cannot avoid the generation of spot-like bumps, the focus of the present invention is particularly on changing the filtering conditions. The following is a typical secondary coating, as described in U.S. Patent No. 6,048,911 to Shustack et al., Which is incorporated herein by reference in its entirety. Mono aliphatic urethane acrylate; hexanediol acrylate (HDODA); a photoinitiator containing IRGACURE 184 (1-hydroxycyclohexylbenzene 200401912 based ketone) and a primary antibody The oxidant contains IRGANOX 1035 (—hindered polyphenol); a silicon acrylate compatibility agent such as BYK-371; a functionalized silicone compound such as TEGO Rad-2100, TEGO Rad-2200; and

如前述之非必要的傳統添加物例如熱穩定劑以及其類 似物,其包含例如有機構酸(organic phosphates)、受阻 紛(hindered phenols)、受阻胺(hindered amines)以及其混 合物。其他適合的次要塗層組成物包含可購自俄亥俄州 Columbus 之博登化學公司之 KLEARSHIELD 1-001、 KLEARSHIELD 2-002 、KLEARSHIELD 1-002 、 KLEARSHIELD 2-001 、BONDSHEILD 5-001 、 BONDSHIELD 5-002、KLEARSHIELD 4-001 以及 DATASHIELD 6-002。Non-essential conventional additives such as heat stabilizers and the like include, for example, organic phosphates, hindered phenols, hindered amines, and mixtures thereof. Other suitable secondary coating compositions include KLEARSHIELD 1-001, KLEARSHIELD 2-002, KLEARSHIELD 1-002, KLEARSHIELD 2-001, BONDSHEILD 5-001, BONDSHIELD 5-002 commercially available from Boden Chemical Company, Columbus, Ohio. , KLEARSHIELD 4-001, and DATASHIELD 6-002.

表一係為一典型次要塗料(塗料A)之個別成分,並以 重量百分比表示: 61 200401912 表一 成分 %,重量百分比 丙晞酸單體1 15.66 丙烯酸單體2 起始劑 3.98 抗化劑 0.99 丙烯酸單體 13.89 丙烯酸寡聚物 32.73 甲基丙烯酸寡聚物 32.73 界面活性劑 0.02Table 1 shows the individual components of a typical secondary coating (Paint A) and is expressed in weight percent: 61 200401912 Table 1 Ingredient%, Weight Percent Propionate Monomer 1 15.66 Acrylic Monomer 2 Starter 3.98 Inhibitor 0.99 Acrylic monomer 13.89 Acrylic oligomer 32.73 Methacrylic oligomer 32.73 Surfactant 0.02

塗料A可由以下方式一系列步驟配製。第一,光起始 劑、具有官能基之石夕化合物(functionalized silicone) '抗 氧化劑、其他添加劑以及一半之丙烯酸單體係混合於一 清潔、通風良好的管中1.5小時。此混合物先備保存並 持續混合提供之後使用。 下一步全部丙烯酸寡聚物的70%被加熱至140QF有 助於被抽吸至一壺(kettle)中。該寡聚物係被緩慢地攪: 動,並且被保持於低於或是等於105°F的溫度下。 該第一步驟所得之混合物係被抽吸至壺中的寡聚物 中。其餘的寡聚物的接著加入該壺中。當30%之該丙烯 酸單體加入時得到的混合物係以較高速率攪拌並且混合 62 200401912 30分鐘。 實施例Coating A can be formulated in a series of steps in the following manner. First, the light initiator, functionalized silicone 'antioxidants, other additives, and half of the acrylic single system were mixed in a clean, well-ventilated tube for 1.5 hours. This mixture is kept in reserve and is provided after continuous mixing. In the next step, 70% of all acrylic oligomers are heated to 140QF to help them be drawn into a kettle. The oligomer was agitated slowly and kept at a temperature below or equal to 105 ° F. The mixture obtained in this first step is sucked into the oligomer in the pot. The remaining oligomers were then added to the pot. The mixture obtained when 30% of the acrylic monomer was added was stirred and mixed at a higher rate 62 200401912 for 30 minutes. Examples

下列於表二之黏度係由一 Brookfield黏度計(具有恒溫 槽以及樣品杯,使用編號SC4-34軸(spindle),轉速6 rpm) 針對塗料A(如前述)之塗層組成物在多種溫度下所測。其 使用之過濾器係為杯狀結構匣(Calyx Cartridge),WN等 級,代號5之石夕過濾、器(silicone filter),其具有之孔洞尺 寸為 0·45 μ,例如 Catalog No. WN04000A51'Material No· 1212686,其可購自明尼蘇達州Minnetonka的Osmonics 公司。 表二 溫度(°c) 測得黏度(mPa) 25 4879 30 3159 35 2110 40 1440 45 1030 50 725 55 550 60 415The following viscosities in Table 2 are based on a Brookfield viscometer (with a constant temperature bath and a sample cup, using the number SC4-34 spindle (spindle), speed 6 rpm) for the coating composition of coating A (as described above) at various temperatures Measured. The filter used is a Calyx Cartridge, WN grade, a silicon filter, code 5. It has a hole size of 0.45 μ, such as Catalog No. WN04000A51'Material No. 1212686, which is available from Osmonics Corporation of Minnetonka, Minnesota. Table 2 Temperature (° c) Measured viscosity (mPa) 25 4879 30 3159 35 2110 40 1440 45 1030 50 725 55 550 60 415

上述之資料係以圖表的方式示於第11圖,詳細圖示該 黏度對溫度的直接依附關係。表二資料的線性回歸分析 示於以下公式II : (Π) Ι^) = 6992.5(1/Γ)-15.025 63 200401912 其中η係為以mPa·s為測量單位之黏度以及T視為以 絕對溫度(Kelvin (°C +273))為測量單位之溫度。此外, 應注意的是,線性回歸產生之R2為0.998。因此,在任 何溫度下,該公式III可用以計算所得之黏度: 7?=β(69922/Γ)-15.025 ⑽The above information is shown graphically in Figure 11 and illustrates the direct dependence of the viscosity on temperature. The linear regression analysis of the data in Table 2 is shown in the following formula II: (Π) Ι ^) = 6992.5 (1 / Γ) -15.025 63 200401912 where η is the viscosity in mPa · s as the measurement unit and T is regarded as the absolute temperature (Kelvin (° C +273)) is the temperature in units of measurement. In addition, it should be noted that R2 produced by linear regression is 0.998. Therefore, the formula III can be used to calculate the viscosity at any temperature: 7? = Β (69922 / Γ) -15.025 ⑽

其中η係為以mPa.s為測量單位之黏度以及Τ視為以 絕對溫度為測量單位之溫度。雖然這些觀察以及計算結 果係由如前述之塗料A判定,相同的黏度測量以及計算 可由實際的塗層組成物上重複出現。當塗層組成物改變 時,示於公式II以及III的特定數字會改變,但是在年 度的自然對數以及溫度的通用關係保持不變。 當過濾係數(γ),如以下公式I所述: AP(mPa)Where η is the viscosity with mPa.s as the measurement unit and T is regarded as the temperature with the absolute temperature as the measurement unit. Although the results of these observations and calculations were determined by Coating A as described above, the same viscosity measurements and calculations can be repeated on the actual coating composition. When the coating composition is changed, the specific numbers shown in Equations II and III will change, but the general relationship between the natural logarithm of the year and the temperature remains unchanged. When the filter coefficient (γ) is as described in the following formula I: AP (mPa)

(1) r](mPa.s)-Y(S 其中η係為黏度,並且過濾係數(γ)係保持在小於或是 等於250,000 s·1時,可判定最大溫度以及壓力差之值。 表三提供在過濾係數為250,000 s·1時數個壓力差下之最 兩溫度。 表三 壓力差(psi) 最高溫度(°C) 0.5 123.2 5 77.5 64 200401912 10 65.7 20 54.7 30 48.6 40 44.4 50 41.2 60 38.7 70 36.5 80 34.7 90 33.1 100 31.7(1) r] (mPa.s) -Y (S where η is the viscosity and the filter coefficient (γ) is kept below or equal to 250,000 s · 1, the maximum temperature and pressure difference can be determined. Table Three provides the two temperatures under several pressure differences when the filter coefficient is 250,000 s · 1. Table 3 Pressure difference (psi) Maximum temperature (° C) 0.5 123.2 5 77.5 64 200401912 10 65.7 20 54.7 30 48.6 40 44.4 50 41.2 60 38.7 70 36.5 80 34.7 90 33.1 100 31.7

該資料係以圖表形式示於第12圖。 表四提供數個樣品過濾溫度下壓力差的最大值,其中 過濾係數係限於最大值為250,000 s_1。 表四 溫度(°c) 最大壓力差(psi) 0 1438.7 5 907.6 10 582.0 20 250.4 30 113.9 40 54.5 50 27.3 60 14.2 70 7.7 80 4.3 90 2.5 100 1.5This information is shown graphically in Figure 12. Table 4 provides the maximum pressure difference at several sample filtration temperatures, where the filter coefficient is limited to a maximum of 250,000 s_1. Table 4 Temperature (° c) Maximum pressure difference (psi) 0 1438.7 5 907.6 10 582.0 20 250.4 30 113.9 40 54.5 50 27.3 60 14.2 70 7.7 80 4.3 90 2.5 100 1.5

該資料係以圖表形式示於第13圖。 上述之計算係以最大過濾係數250,000 s·1為基礎,其 中 ΔΡ/η = 250,000 s·1。 從表三的資料以及公式I、II和III產生第12圖以 65 200401912 及第13圖之圖表。示於第12圖的曲線圖圖示在給予之 過濾、溫度下達成過濾係數250,000 的最大的壓力差。 特別是,該曲線圖說明在一個給予的溫度下,任何在該 曲線下之壓力差將使得過濾係數小於或是等於25〇,〇〇〇 s-1。該曲線代表著達成過濾係數250,00〇 s_i的參數,使 得在該曲線以下的任何壓力差將必然會提供合適的過遽 係數。此外,該曲線說明了當過濾溫度上升時,各自之 最大壓力差下降。雖然不希望被任何理論限制,但是相 信在較高的溫度下,凝膠狀組成物變得較有彈性以及柔 軟,因此由向著該過濾器施壓於該凝膠造成之力將更容 易撕開該凝膠(或是使它們更加柔軟以擠過該過濾孔洞) 並且允續流動通過該過遽孔洞。類似地,當溫度降低時, 該最大壓力差升高。同樣地,相信在較低溫度下凝膠具 有車父J的無性以及柔軟性造成這個結果。因此,在較低 溫度下需要較大的力量才能撕開或是擠壓該凝膠組成 物。 示於第13圖的曲線圖詳述當過遽壓力上升時如何對 最大過濾溫度造成影響,使得過濾係數在25〇,〇〇〇,的 上限。第13圖圖示當壓力差增加,最高溫度下降。如同 與第12圖相關之敘述,相信因為較高壓力差對凝膠產生 較大壓力,只需要較低溫度以避免該力量將凝膠撕開以 及強迫該凝膠通過該過濾、孔洞。只要該選擇溫度係在該 曲線以下,所得之過濾係數將保持在小於或等於25〇,〇〇〇 66 200401912 的水平。應注意的是,列在X軸的壓力改變係為跨越 該過濾器的總體察覺的壓力。因此,此圖考慮到該過濾 器的數量,無論是平行或是連續以及其表面積。若是該 因素改變,使得該總體察覺的壓力改變,將導致不同之 最大溫度。 根據以上概述之過程,相同的計算可用於任何塗層組 成物。該主要的過程如下:This information is shown graphically in Figure 13. The above calculation is based on a maximum filter factor of 250,000 s · 1, where ΔP / η = 250,000 s · 1. From the data in Table 3 and formulas I, II, and III, the graphs of Figure 12 to 65 200401912 and Figure 13 are generated. The graph shown in Fig. 12 illustrates the maximum pressure difference at which the filtration factor of 250,000 is reached at the given filtration and temperature. In particular, the graph illustrates that at a given temperature, any pressure difference below the curve will cause the filter coefficient to be less than or equal to 250,000 s-1. This curve represents a parameter that achieves a filter coefficient of 250,00 s_i, so that any pressure difference below this curve will necessarily provide a suitable over-coefficient. In addition, this curve illustrates that as the filtration temperature increases, the respective maximum pressure differences decrease. Although not wishing to be bound by any theory, it is believed that at higher temperatures, the gel-like composition becomes more elastic and soft, so the force caused by pressing the gel against the filter will more easily tear The gels (or make them softer to squeeze through the filter holes) and allow continuous flow through the perforations. Similarly, as the temperature decreases, the maximum pressure difference increases. As such, it is believed that the gel has the asexuality and softness of Car J at lower temperatures, resulting in this result. Therefore, a larger force is required at a lower temperature to tear or squeeze the gel composition. The graph shown in Fig. 13 details how the maximum filtration temperature is affected when the overpressure rises, so that the filtration coefficient is at the upper limit of 250,000. Figure 13 illustrates that as the pressure difference increases, the maximum temperature decreases. As described in relation to Figure 12, it is believed that because the higher pressure difference causes greater pressure on the gel, lower temperatures are needed to avoid the force tearing the gel and forcing the gel through the filter, pores. As long as the selection temperature is below the curve, the obtained filter coefficient will be maintained at a level of less than or equal to 250,000 000 200401912. It should be noted that the change in pressure listed on the X axis is the overall perceived pressure across the filter. Therefore, this graph takes into account the number of filters, whether parallel or continuous, and their surface area. If this factor is changed, changing the overall perceived pressure will result in different maximum temperatures. Following the process outlined above, the same calculations can be applied to any coating composition. The main process is as follows:

1、在多種溫度(T)下測出黏度(η)以判定其數學關係 式,以完成該通式IV (IV) \η(η) = α(γ)-l· b 其中η係為黏度,以單位mPa.s測試,並且T係為 以絕對溫度測試的溫度。 2、 一旦a以及b的數值經由由該第一步驟之資料得到 的一線性回歸分析計算出來之後,可判定該黏度以及壓 力差的關係式使得任何之過濾係數係限制於最大值 250,000 S_1。具體而言,使用公式III可計算出對多種黏 度(由過濾溫度決定)以及壓力差的過濾係數。 3、 然後可選擇一種合適的黏度以及壓力差使得過濾係 數的最大值保持於250,000 s·1,同時亦限制多種其他的 過濾、成本’例如用以產生昇溫溫度以及壓力差以及總過 濾流的能量。 根據上述用於通過多種過濾介質的壓力差、黏度以及 67 200401912 溫度的通用計算式,本發明得到可用以維持過濾以除去 點狀突塊的公式。具體地說,以下的公式v可用以在一 給予的溫度下判定跨越每一過濾介質的最大壓力差 (△P):1. Measure viscosity (η) at various temperatures (T) to determine its mathematical relationship to complete the general formula IV (IV) \ η (η) = α (γ) -l · b where η is the viscosity , Tested in units of mPa.s, and T is the temperature tested in absolute temperature. 2. Once the values of a and b are calculated through a linear regression analysis obtained from the data in the first step, it can be determined that the relationship between the viscosity and the pressure difference makes any filter coefficient limited to a maximum of 250,000 S_1. Specifically, formula III can be used to calculate filter coefficients for various viscosities (determined by filtration temperature) and pressure differences. 3. Then select a suitable viscosity and pressure difference to keep the maximum value of the filtration coefficient at 250,000 s · 1, and also limit a variety of other filtering, costs' for example to generate heating temperature and pressure difference and the energy of the total filtration flow . According to the above-mentioned general calculation formulas for passing pressure differences, viscosities of various filter media, and temperature of 200420041212, the present invention obtains a formula that can be used to maintain filtration to remove spot-like bumps. Specifically, the following formula v can be used to determine the maximum pressure difference (△ P) across each filter medium at a given temperature:

AP max(/75/) _ ^ max(l / s) X TJ (mPa s) 6.894757 (mPa / psi) (V)AP max (/ 75 /) _ ^ max (l / s) X TJ (mPa s) 6.894757 (mPa / psi) (V)

其中η係為在該特定溫度下該塗層組成物的黏度, 以及γ係為最大的較佳過濾係數。因此,當過濾係數維 持於在250,000 s·1或是250,000 s·1以下,該壓力差係根 據以下的公式計算 ΑΡ 250000 (\ / S)X 6 6992 5(mPa s K) ,Γ(〇+273 , -15 025(mPas) (VI) m3X(psi)—— 6.894757 (mPa / psi) 其中T係為個別過濾介質的過濾溫度(以攝氏為單位)。 經由使用公式V以及VI,以下的公式VII係決定於在 過濾、溫度最大值時以維持過濾係數的最大值:Wherein η is the viscosity of the coating composition at the specific temperature, and γ is the maximum preferred filter coefficient. Therefore, when the filter coefficient is maintained below 250,000 s · 1 or below 250,000 s · 1, the pressure difference is calculated according to the following formula: AP 250000 (\ / S) X 6 6992 5 (mPa s K), Γ (〇 + 273, -15 025 (mPas) (VI) m3X (psi) —— 6.894757 (mPa / psi) where T is the filtration temperature (in Celsius) of the individual filter media. By using formulas V and VI, the following formula The VII series is determined to maintain the maximum value of the filter coefficient at the maximum value of filtration and temperature:

T max(C)——T max (C) ——

In 6992.5c mPa s K) -273 (_) χ 6.894757(^, max(i / s) psi) —15.025(^ 其中T係為在過濾係數最大值γ的一壓力差ΔΡ下得 68 (VII) 200401912 到之過濾溫度最大值。然而,上述之公式ι-νπ可用以 選擇任何小於或是等於250,000 s·1的過濾係數。 本發明已決定將至少通過一過濾介質的塗層組成物之 過濾係數限制於小於約250,000 s-1,使得點狀突塊的數 目減少或是消除。有多種過濾過程示例於下說明將過濾 係數保持在約250,000 s-1以下的好處。In 6992.5c mPa s K) -273 (_) χ 6.894757 (^, max (i / s) psi) —15.025 (^ where T is 68 under a pressure difference ΔP of the maximum filter coefficient γ (VII) 200401912 to the maximum filter temperature. However, the above formula ι-νπ can be used to select any filter coefficient less than or equal to 250,000 s · 1. The invention has decided that the filter coefficient of the coating composition that will pass through at least one filter medium Limiting it to less than about 250,000 s-1 reduces or eliminates the number of spotted bumps. There are several examples of filtering processes that illustrate the benefits of keeping the filter coefficient below about 250,000 s-1.

典型用於本發明之過濾方法的塗層組成物係在多種溫 度以及壓力下過濾,其詳細結果示於表五。在示於表五 的例子中,所使用的過濾器係為10英吋尼龍、杯狀結構 匣(Calyx Cartridge),WN等級,代號5之矽過濾器 (silicone filter),其具有之孔洞尺寸為0·45 μ,例如 Catalog No. WN04000A51、Material No. 1212686,其可 購自明尼蘇達州Minnetonka的Osmonics公司。 表五 塗料 溫度 (°F) 壓力差 (psig) 過濾係數 (sj 結果 B-1 105 60 284,802 失敗 B-2 105 40 189,868 成功 B-3 90 40 103,306 成功 B-4 105 15 71,200 成功 B-5 70 40 43,479 成功 69 C-1 105 60 284,802 失敗 C-2 90 60 154J26 成功 C-3 90 40 103,306 成功 200401912 表五中,該壓力差以及過濾係數係用於該總體過濾系 統。 對於B-1,該壓力差60 psi係為該具有多個在兩個連 續排列之外殼中平行排列的過濾器之過濾系統的總體壓 力差。因此,表五中的壓力差係從該第一外殼之入口至 該第二外殼之出口。然而,該第一外殼具有5 psi之壓力 差,並且該兩個外殼之間的壓力差係為可忽視的。 B-2、B-3以及B-5的壓力差40 psi係為具有一個包含 多個平行排列之過濾器的過濾外殼之過濾系統總體壓力 差。因此,表五中的壓力差係從該過濾外殼之入口至該 過濾、外殼之出口。 對於B_4,該壓力差係為該具有多個在兩個連續排列 之外殼中平行排列的過濾器之過濾系統的總體壓力差。 因此,表五中的壓力差係從該第一外殼之入口至該第二 外殼之出口,但是該第一外殼之壓力差係為〇,並且該兩 個外殼之間的壓力差係為可忽視的。 對於C-1以及C-2,該壓力差60 psi係為該具有多個 在兩個連續排列之外殼中平行排列的過濾器之過遽系統 的總體壓力差。因此,其壓力差係從該第一外殼之入口 70 200401912 至該第二外殼之出口。然而,該第一外殼具有5 psi之壓 力差以及第二外殼具有55 psi之壓力差,並且該兩個外 殼之間的壓力差係為可忽視的。 C-3的壓力差40 psi係為具有一個包含多個平行排列 之過濾器的過濾外殼之過濾系統總體壓力差。因此,表 五中的壓力差係從該過濾外殼之入口至該過濾外殼之出 π 〇The coating composition typically used in the filtration method of the present invention is filtered under various temperatures and pressures. The detailed results are shown in Table 5. In the example shown in Table 5, the filter used is a 10-inch nylon, Calyx Cartridge, WN grade, silicon filter (code 5) with a hole size of 0.45 μ, such as Catalog No. WN04000A51, Material No. 1212686, which are available from Osmonics Corporation of Minnetonka, Minnesota. Table 5 Coating temperature (° F) Pressure difference (psig) Filter coefficient (sj result B-1 105 60 284,802 Failure B-2 105 40 189,868 Success B-3 90 40 103,306 Success B-4 105 15 71,200 Success B-5 70 40 43,479 Success 69 C-1 105 60 284,802 Failure C-2 90 60 154J26 Success C-3 90 40 103,306 Success 200401912 In Table 5, the pressure difference and filter coefficient are used in the overall filtration system. For B-1, the The pressure difference of 60 psi is the overall pressure difference of the filter system having a plurality of filters arranged in parallel in two consecutively arranged casings. Therefore, the pressure difference in Table 5 is from the entrance of the first casing to the first The outlet of the second case. However, the first case has a pressure difference of 5 psi, and the pressure difference between the two cases is negligible. The pressure difference of B-2, B-3, and B-5 is 40 psi. It is the overall pressure difference of a filter system with a filter housing containing a plurality of filters arranged in parallel. Therefore, the pressure difference in Table 5 is from the inlet of the filter housing to the outlet of the filter and housing. For B_4, the pressure The difference is that having multiple The overall pressure difference of the filter system of the filters arranged in parallel in the consecutively arranged shells. Therefore, the pressure difference in Table 5 is from the inlet of the first shell to the outlet of the second shell, but the pressure of the first shell The difference is 0, and the pressure difference between the two shells is negligible. For C-1 and C-2, the pressure difference of 60 psi is for the case where there are multiple parallel in two consecutively arranged shells. The overall pressure difference of the filter system of the arrayed filters. Therefore, the pressure difference is from the inlet 70 200401912 of the first housing to the outlet of the second housing. However, the first housing has a pressure difference of 5 psi and the first The second case has a pressure difference of 55 psi, and the pressure difference between the two cases is negligible. The C-3 pressure difference of 40 psi is a filter with a filter case containing a plurality of filters arranged in parallel. The overall system pressure difference. Therefore, the pressure difference in Table 5 is from the inlet of the filter housing to the outlet of the filter housing π 〇

在表五的例子中,結果係決定於點狀突塊的比例。如 上所述,在一些情況下,平均每公里5-10個點狀突塊係 為可忍受的,表示為「成功」,儘管在其他情況下要求 平均每公里0-5個點狀突塊,以及儘管在另外其他的情 況下要求完全除去點狀突塊,即是該整個過濾產物中具 有0個點狀突塊。此外,其他的例子已顯示具有在約 50,000以及190,000 s_1之間的過濾係數得到的塗層材料 在典型工廠製品中製造出具有減少或是去除點狀突塊出 現頻率的光纖。In the example in Table 5, the results are determined by the proportion of point bumps. As mentioned above, in some cases, an average of 5-10 point bumps per kilometer is tolerable, expressed as "success", although in other cases an average of 0-5 point bumps per kilometer is required, And although in other cases it is required to completely remove the stippled bumps, that is, there are 0 stippled bumps in the entire filtration product. In addition, other examples have shown that coating materials obtained with filter coefficients between about 50,000 and 190,000 s_1 produce optical fibers with a frequency that reduces or removes the appearance of point bumps in typical factory products.

塗層B由KLEARSHIELD 2-002構成(購於俄亥俄州 Columbus之博登化學公司)。塗層C由KLEARSHIELD 2-001構成(購於俄亥俄州Columbus之博登化學公司)。 塗層B以及塗層C都是根據敘述於頒給Shustack的美 國第5,527,835號專利的製程製造。 雖然本發明已配合較佳的實施例敘述,應很容易瞭解 可對本發明許多改變以及/或修飾而不離開本發明之精 71 200401912 神。例如應注意的是本發明之過濾過程可用於任何階段 的塗料產品,從未加工的製造材料至拉伸台上之塗佈以 及固化。因此,將該成分在混合成為次要塗料之前過濾 以及在混合之後在用於拉伸台之前同時過濾所有成分都 視為落在本發明之範圍中。Coating B consists of KLEARSHIELD 2-002 (purchased from Boden Chemical Co., Columbus, Ohio). Coating C consists of KLEARSHIELD 2-001 (purchased from Boden Chemical Columbus, Ohio). Coating B and Coating C are manufactured according to the process described in US Patent No. 5,527,835 issued to Shustack. Although the present invention has been described with reference to preferred embodiments, it should be readily understood that many variations and / or modifications can be made to the invention without departing from the spirit of the invention. For example, it should be noted that the filtration process of the present invention can be used for coating products at any stage, coating and curing from raw manufacturing materials to a drawing table. Therefore, it is considered to fall within the scope of the invention to filter the ingredients before mixing to become a secondary coating and to filter all ingredients simultaneously after mixing and before use in a stretching table.

此外,任何塗層組成物都可以本發明之過濾技術過 濾。儘管本發明已揭示使用於過濾用於光纖的塗層,過 濾任何設在任何要求除去點狀突塊表面上的塗層組成物 係視為落入本發明之範圍。因此前述之過濾過程可在製 造其他物品例如光學介質、例如袖珍磁碟以及數位影音 磁片、齒科組成物(例如牙齒)以及層壓表面。 在任何情況中,本發明係僅被以下之申請專利範圍限 制。 【圖式簡單說明】In addition, any coating composition can be filtered by the filtration technique of the present invention. Although the present invention has been disclosed for use in filtering coatings for optical fibers, it is considered to fall within the scope of the present invention to filter any coating composition provided on the surface of any point where it is desired to remove point bumps. Therefore, the aforementioned filtering process can be used to manufacture other items such as optical media, such as compact magnetic disks and digital video and magnetic disks, dental compositions (such as teeth), and laminated surfaces. In any case, the invention is limited only by the scope of the following patent applications. [Schematic description]

第1圖係為沿著一具有塗層光纖之縱軸的視圖,其中 該具有塗層光纖沒有點狀突塊; 第2圖係為沿著一具有塗層光纖之縱軸的視圖,其中 該具有塗層光纖具有外部點狀突塊; 第3圖係為沿著一具有塗層光纖之縱軸的視圖,其中 該具有塗層光纖具有内部點狀突塊; 第4圖係為沿著一具有塗層光纖之縱軸的視圖,其中 該具有塗層光纖具有一點狀突塊,該點狀突塊具有内部 以及外部之特徵; 72 200401912 。第5圖係為—圖表表示根據本發明之-光纖塗佈流 程, 第6圖係為一圖表表示根據本發明之一光纖塗層 物之過濾流程; ㈢、、、战 第7圖係為根據本發明所使用之薄膜過遽器的局 開圖; 第8圖係為根據本發明所使用之一中央過濾器之橫向 剖視圖; 第9圖係為用以拉伸玻璃纖維之裝置的整體立體透視 圖; 第10圖係為用以塗佈塗層組成物之裝置的局部橫向 剖視圖; 第11圖係為一圖表圖示黏度對溫度的對應性; 第12圖係為一圖表圖示根據本發明在不同壓力差下 所使用之最高溫度;以及 第13圖係為一圖表圖示根據本發明最高壓力對應所 使用之溫度而改變。 圖號說明 ·· 110 光纖 112 玻璃纖維 114 主要塗層 116 次要塗層 120 光纖 122 玻璃纖維 124 主要塗層 126 次要塗層 128 點狀突塊 200401912 130 光纖 132 玻璃纖維 134 主要塗層 136 次要塗層 138 點狀突塊 140 光纖 142 玻璃纖維 144 主要塗層 146 次要塗層 148 點狀突塊 160 提供主要塗料 161 提供次要塗料 162 提供預成形物 164 拉伸纖維 166 塗佈主要塗料 168 塗佈次要塗料 170 紫外光固化 172 捲繞 182 混合次要塗層成分183 冷卻 184 過濾 201 防護物 202 薄片 203 過濾器薄膜 204 薄片 205 核心 206 末端盤狀物 207 密封墊 208 出口 310 過濾器介質 311 褶曲 312 支撐核心 311 支撐籠 20 裝置 21 光纖 22 預先形成物 23 加熱爐 24 裝置 25 裝置 26 定中心規 27 紫外光裝置FIG. 1 is a view along a longitudinal axis of a coated optical fiber, wherein the coated fiber has no dot-like bumps; FIG. 2 is a view along a longitudinal axis of a coated optical fiber, where the The coated optical fiber has external dot-like projections; FIG. 3 is a view along the longitudinal axis of a coated optical fiber, wherein the coated optical fiber has internal dot-shaped projections; A view of the longitudinal axis of a coated optical fiber, wherein the coated optical fiber has a punctiform bump having internal and external features; 72 200401912. Fig. 5 is a diagram showing the optical fiber coating process according to the present invention, and Fig. 6 is a diagram showing the filtration process of an optical fiber coating according to the present invention; Fig. 7 is based on A partial plan view of a membrane filter used in the present invention; FIG. 8 is a cross-sectional view of a central filter used according to the present invention; and FIG. 9 is an overall perspective view of a device for stretching glass fibers Figure 10 is a partial cross-sectional view of a device for applying a coating composition; Figure 11 is a chart illustrating the correspondence of viscosity to temperature; Figure 12 is a chart illustrating a method according to the present invention The maximum temperature used under different pressure differences; and FIG. 13 is a graph illustrating the change in the maximum pressure according to the temperature used according to the present invention. Description of the drawing number · 110 optical fiber 112 glass fiber 114 primary coating 116 secondary coating 120 optical fiber 122 glass fiber 124 primary coating 126 secondary coating 128 dot bumps 200401912 130 optical fiber 132 glass fiber 134 primary coating 136 times Primary coatings 138 Point-shaped bumps 140 Optical fibers 142 Glass fibers 144 Primary coatings 146 Secondary coatings 148 Point-shaped bumps 160 Provide primary coatings 161 Provide secondary coatings 162 Provide preforms 164 Stretch fibers 166 Apply primary coatings 168 Applying the secondary coating 170 UV curing 172 Winding 182 Mixing the secondary coating ingredients 183 Cooling 184 Filtration 201 Protector 202 Sheet 203 Filter film 204 Sheet 205 Core 206 End plate 207 Seal 208 Exit 310 Filter Medium 311 Fold 312 Support core 311 Support cage 20 Device 21 Optical fiber 22 Preform 23 Heating furnace 24 Device 25 Device 26 Center gauge 27 Ultraviolet light device

74 200401912 29 絞盤 57 軸 62 塗層塗覆機 64 緩衝墊層 65 外殼 66 °刺σ八形入口 67 圓柱狀通道 68 第一槽腔 69 較低部份 70 圓柱狀通道 71 第二槽腔 72 較低部份 73 圓柱狀通道 76 線 77 線 81 模 82 模 84 模開口 86 模開口 88 模開口 93 流動通道 94 第一塗層材料74 200401912 29 Winch 57 Shaft 62 Coating coater 64 Cushion pad 65 Housing 66 ° Spiral octagonal inlet 67 Cylindrical channel 68 First slot cavity 69 Lower portion 70 Cylindrical channel 71 Second slot cavity 72 Compared Lower part 73 cylindrical passage 76 line 77 line 81 die 82 die 84 die opening 86 die opening 88 die opening 93 flow channel 94 first coating material

7575

Claims (1)

200401912 拾、申請專利範圍: 1、一種用以在一基材上形成塗層的方法,其包含: 提供一塗層組成物; 藉由使該塗層組成物通過一包含至少一過濾器之至少 一過濾總成之過濾裝置來過濾該塗層組成物,以及 將該過滤、後之塗層組成物塗佈於該基材; 其中該至少一過濾總成具有決定於一公式I之一過濾 係數(γ) (I) 纖,―1) 該過濾係數(γ)係最大為2500003^,其中係為具有個 別溫度之塗層組成物於個別過濾總成中之黏度,以及 ΔΡ係為跨越該個別至少一過濾、總成之壓力差,該壓力 差係介於約0至约80 psig之間,並且該至少一過濾總 成之至少一過濾、器之的孔洞尺寸係為最大10 μιη,並且 在該至少一過濾總成中的該塗層組成物之個別溫度係 最大為約120°F。 2、如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中在該過濾過程中該最大壓力差係根據由 AP max(psi) ^ max(l / s)XT^j (mPa s)6·894757(w/w _) 以及 USERVERA程序初稿\00703-TW-專利說明書doc 76 200401912 AP 250000ο /S)Xe 6992.5(mPa s K) ~~Γ(〇+273 —15.025(w户 a ^ max( psi)— 6.894757(^/ psi) 組成之群組中選出者決定* 其中7?係為塗層組成物在操作溫度T時於個別過濾總 成中之黏度,以及γ係為最大的預先設定過濾係數。 3、如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中在該過濾過程中該最大溫度係根據下列 公式決定 Τ max(C) In _6992.5(, ΔΡ(㈣ x 6.894757( mPa / psi) -273 ϊ max(i / -15.025(, 其中ΔΡ係為跨越每一個別過濾總成之壓力差,以及7? 係為塗層組成物在過濾溫度Τ時於個別過濾總成中之 黏度,以及γ係為最大的預先設定過濾係數。 4、 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該至少一過濾總成之至少其中之一過濾 器具有最大為250000s“之過濾係數,其孔洞尺寸在約 0.05 μιη至約5 μπι之範圍中,並且其中該過濾係在小 於約105°F(40°C)的溫度以及跨越個別過濾總成之壓力 差最大為約80psig下進行。 5、 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該基材係為一光纖。 6、 如申請專利範圍第5項所述之用以在一基材上形成塗 \\SERVER\程序初稿\00703-TW·專利說明書doc 77 200401912 層的方法,其中該塗層組成物係塗佈於該光纖上作為一 次要塗層;並且另包含下列步驟: 將該光纖塗佈一主要塗層組成物,其中該次要塗層係塗 佈於該主要塗層上。 7、 如申請專利範圍第6項所述之用以在一基材上形成塗 層的方法,另包含:固化該光纖上之主要塗層;以及在 此之後固化該光纖上之次要塗層。 8、 如申請專利範圍第6項所述之用以在一基材上形成塗 層的方法,其中係同時固化該主要塗層以及固化該次要 塗層。 9、 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該過濾係進行於約6〇°F至約95卞之溫 度下。 10、 如申請專利範圍第i項所述之用以在一基材上形成塗 層的方法,其中該過濾係進行於約7〇卞至約90T之溫 度下。 11、 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該過濾係進行於約70卞至約80卞之溫 度下。 12、 如申請專利範圍第丨項所述之用以在一基材上形成塗 層的方法,其中該至少一過濾總成具有一過濾係數為小 於或是等於約43000s“。 13、 如申請專利範圍第丨項所述之用以在一基材上形成塗 層的方法,其中該至少一過濾總成具有一過濾係數在約 50000s·1至約19〇〇〇〇s-i之範圍中。 14、 如申請專利範圍第丨項所述之用以在一基材上形成塗 層的方法,其中該過濾之壓力差係為約35至約55psig \\SERVERA程序初稿\00703-TW-專利說明書d〇c yg 200401912 15 > 16、 17, 18 19 20 21 22, WSERVERA程序初 79 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該過濾之壓力差係為約40至約50psig 〇 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該至少一過濾總成包含一薄膜過濾器 (membrane filter),該薄膜過濾器具有一從約0·05至約 〇·6μηι之孔洞尺寸。 •如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該至少一過濾總成包含一薄膜過濾器, 違溥膜過濾、器具有一從約〇· 1至約0 45μηι之孔洞尺寸 〇 •如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法’其中該至少一過濾、總成包含一中央過濾器 (depth filter),該中央過濾器具有一從約〇· 5至約5μπι 之孔洞尺寸。 k如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法’其中該至少一過濾總成包含一中央過濾器, 该中央過濾器具有一從約1至約3 μιη之孔洞尺寸。 ‘如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法’其中該基材係為袖珍磁碟(cornpact disk)或 疋數位影音磁碟(digital video disk, DVD)。 ‘如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該基材係為光學介質。 >如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中塗層組成物係為一齒科組成物(dental composition) 〇 稿\〇07〇3-丁评-專利說明書doc 200401912 23 24 25、 26、 27、 28、 29 30 31 \\SERVER\程序 如申咕專利範圍第i項所述之用以在一基材上形成塗 層的方法’其中該基材係為—層壓表面(h她伽d surface)。 ‘如申請專利範圍第丨項所述之用以在一基材上形成塗 層的方法,其中該過濾裝置包含複數個連續地排列之過 渡總成。 如申請專利範圍第丨項所述之用以在一基材上形成塗 層的方法,其中該過濾裝置包含複數個平行排列之過濾 總成。 如申請專利範圍第1項所述之用以在一基材上形成塗層的方法,其中每一過濾總成具有至多250000s-1之過濾、係數。 如申請專利範圍第1項所述之方法製成之產品,其中該 具有塗層之基材係為一光纖並且該產品在每公里具有 少於約10個點狀突塊。 如申請專利範圍第1項所述之方法製成之產品,其中該 具有塗層之基材係為一光纖並且該產品在每公里具有 少於約5個點狀突塊。 '如申請專利範圍第1項所述之方法製成之產品,其中該 具有塗層之基材係為一光纖並且該產品在每公里具有 〇個點狀突塊。 ‘如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該至少一過濾總成之至少其中之一過濾 器具有在約〇·〇5 μιη至約5 μιη之範圍中之孔洞尺寸, 並且該過濾係在小於約1〇yF(4(rc)的溫度以及跨越該 至y 過渡總成之Μ力差最大為約80psig下進行。 、如申請專利範圍第1項所述之用以在一基材上形成塗 习稿\00703-丁评-專利說明書doc 3〇 200401912 層的方法,其中該壓力差係在約3至約40psi的範圍中 32、 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該過濾器之孔洞尺寸在約0.45至約3μπι 之範圍中。 33、 如申請專利範圍第1項所述之用以在一基材上形成塗 層的方法,其中該過濾溫度係在約70至約105°F之範 圍中。 34、 一種用以過濾一塗層組成物之方法,其包含: 在一溫度以及一壓力差(ΔΡ)之下,通過一包含至少一 過濾總成之過濾裝置過濾一具有一黏度之塗層組成物 ,使得所得之該至少一過濾總成之至少一過濾器的過 濾係數係為不大於250000s·1,其中該壓力差係由跨越 每一過濾總成測出, 其中ΔΡ係介於約0至約80psig之間以及該至少一過 濾總成之至少一過濾器的孔洞尺寸係至多為ΙΟμπι,在 至多為120°F之溫度下。 35、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中在該過濾過程中該最大壓力差係根據由 AP max(l / s) X T^j (mPa s) 6.894757(wiw_) 以及 ΔΡ max(/75/) 250000 (\/ s)X 6 6992.5(mPa s K) ,r(〇+273 —l5.025(mPa i 6.894757(mFa / \\SERVER\程序初稿\00703-TW-專利說明書doc 81 200401912 組成之群組中選出者決定, 其中7/係為塗層組成物在操作溫度T時於個別過濾總 成中之黏度,以及γ係為最大的預先設定過濾係數。 36、如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中在該過濾過程中該最大溫度係根據下列公 式決定 Τ max(c): 6992.5(, K) In ΔΡ^οχ 6.894757, (mPa I 一 273 r max(i / 15.025(, 其中ΔΡ係為跨越每一個別過濾總成之壓力差,以及 係為塗層組成物在過濾溫度T時於個別過濾總成中之 黏度’以及γ係為最大的預先設定過濾係數。 37、 如申請專利範圍第34項所述之用以過慮一塗層組成物 之方法,其中該過濾係在壓力差為最大為約80psig以 及在約50至約140T之範圍中的溫度下進行。 38、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該至少一過濾總成包含一薄膜過濾器,該 薄膜過濾器具有一從約〇·1至約3μηι之孔洞尺寸。 39、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該過濾係在約60至約95Τ之範圍中的溫 度下進行。 40、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法’其中該過濾係在約70至約90Τ之範圍中的溫 度下進行。 41、 如申請專利範圍第34項所述之用以過濾一塗層組成物 WSERVERA程序初稿\00703-TW·專利說明書d〇c g2 200401912 之方法,其中該過濾係在約70至約80°F之範圍中的溫 度下進行。 42、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該壓力差對該黏度之比例將該至少一過濾 總成之預先設定過濾係數降低為小於或是等於約 43〇〇〇s_i 0 43、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該至少一過濾總成中的過濾之壓力差係為 約35至約55psig。 44、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該至少一過濾總成中的過濾之壓力差係為 約40至約5〇psig。 45、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該至少一過濾總成包含一薄膜過濾器,該 薄膜過濾器具有一從約0.05至約0·6μιη之孔洞尺寸。 46、 如申請專利範圍第34項所述之用以過滤一塗層組成物 之方法,其中該至少一過濾總成包含一薄膜過濾器,該 薄膜過濾器具有一從約0.1至約〇·45μιη之孔洞尺寸。 47、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該至少一過濾總成包含一中央過濾器 (depth filter),該中央過濾器具有一從約1至約4μιη之 孔洞尺寸。 48、 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該至少一過濾總成包含一中央過濾器,該 中央過濾器具有一從約1至約3μπι之孔洞尺寸。 49、 一種申請專利範圍第34項之用以過濾的方法,其中該 至少一過渡總成之孔洞尺寸在約〇.〇5 μπι至約5 μιη之 \\SERVER\程序初稿\〇〇7〇3-TW-專利說明書doc 83 200401912 50 51 52 53 54 55 56 57 58 ^ \\SERVER\程序初 範圍中,並且該過濾係在小於約1〇5°F(4〇〇的溫度以 及該至少一過濾總成之壓力差為最大為約80psig下進 行。 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法,其中該壓力差係在約3至約40psi的範圍中。 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法’其中該過濾器的孔洞尺寸係在約〇 45至約3μπι 的範圍中。 如申請專利範圍第34項所述之用以過濾一塗層組成物 之方法’其中該過濾溫度係在約70至約l〇5°F之範圍 中。 如申請專利範圍第49項所述之用以在一基材上形成塗 層的方法,其中該基材係為一光纖。 如申請專利範圍第49項所述之用以在一基材上形成塗 層的方法,其中其中該基材係為一光學介質。 如申請專利範圍第49項所述之用以在一基材上形成塗 層的方法,其中其中該塗層組成物係為一齒科組成物。 如申請專利範圍第49項所述之用以在一基材上形成塗 層的方法,其中該基材係為一層壓表面。 一種用以製備具有塗層之光纖的方法,其包含: 在12個月中提供至少5〇噸之塗料組成物; 過濾該塗料組成物;以及 將個別之光纖塗佈上該塗料組成物以形成數公里長之 具有塗層之光纖, 其中至少98%之具有塗層之光纖每公里具有少於約w 個點狀突塊。 如申請專利範圍第57項所述之用以製備具有塗層之 ,\00703-TW·專利說明書 doc 84 ^ 200401912 纖的方法,其中該提供塗料組成物之步驟包含提供至少 - 500噸之塗料組成物。 59、 如申請專利範圍第57項所述之用以製備具有塗層之光 纖的方法,其中該提供塗料組成物之步驟包含提供至少 1000噸之塗料組成物。 60、 如申請專利範圍第57項所述之用以製備具有塗層之光 纖的方法,其中大於或是等於98%之具有塗層之光纖每 公里具有少於約5個點狀突塊。 61、 如申請專利範圍第57項所述之用以製備具有塗層之光 纖的方法,其中大於或是等於98%之具有塗層之光纖每 公里具有少於約2個點狀突塊。 62、 如申請專利範圍第57項所述之用以製備具有塗層之光 纖的方法,其中大於或是等於98%之具有塗層之光纖每 公里具有少於約0個點狀突塊。 63、 如申請專利範圍第57項所述之用以製備具有塗層之光 纖的方法,其中大於或是等於99 %之具有塗層之光纖每 公里具有少於約10個點狀突塊。 64、 如申請專利範圍第57項所述之用以製備具有塗層之光 纖的方法,其中大於或是等於99。75%之具有塗層之光 纖每公里具有少於約10個點狀突塊0 65、 如申請專利範圍第57項所述之用以製備具有塗層之光 纖的方法,其中大於或是等於100%之具有塗層之光纖 每公里具有少於約10個點狀突塊。 66、 一種產品包含該至少50公噸之申請專利範圍第57項所 述之塗層組成物。 拾壹、圖式: \\SERVER\程序初稿\00703-TW-專利說明書doc 85200401912 Patent application scope: 1. A method for forming a coating on a substrate, comprising: providing a coating composition; passing the coating composition through at least one filter including at least one filter A filtering device of the filtering assembly filters the coating composition, and applies the filtering and subsequent coating composition to the substrate; wherein the at least one filtering assembly has a filtering coefficient determined by a formula I (γ) (I) fiber, -1) The filter coefficient (γ) is a maximum of 2500003 ^, which is the viscosity of the coating composition with the individual temperature in the individual filter assembly, and ΔP is the span across the individual The pressure difference between at least one filter and the assembly, the pressure difference is between about 0 to about 80 psig, and the pore size of the at least one filter and the filter of the at least one filter assembly is a maximum of 10 μm, and The individual temperature of the coating composition in the at least one filter assembly is a maximum of about 120 ° F. 2. The method for forming a coating on a substrate as described in item 1 of the scope of the patent application, wherein the maximum pressure difference during the filtration process is determined by AP max (psi) ^ max (l / s) XT ^ j (mPa s) 6.894757 (w / w _) and the first draft of the USERVERA program \ 00703-TW-patent specification doc 76 200401912 AP 250000ο / S) Xe 6992.5 (mPa s K) ~~ Γ (〇 + 273 — 15.025 (w ^ a (max) (psi) — 6.894757 (^ / psi) is selected by the selected group *, where 7? Is the viscosity of the coating composition in the individual filter assembly at the operating temperature T, and γ is the maximum preset filter coefficient. 3. The method for forming a coating on a substrate as described in item 1 of the scope of patent application, wherein the maximum temperature during the filtration process is determined according to the following formula: max (C) In _6992.5 (, ΔP (㈣ x 6.894757 (mPa / psi) -273 ϊ max (i / -15.025 (, where ΔP is the pressure difference across each individual filter assembly, and 7? It is the viscosity of the coating composition in the individual filter assembly at the filtration temperature T, and the preset filter coefficient for the maximum γ system. 4. The method for forming a coating on a substrate as described in item 1 of the scope of patent application, wherein at least one of the filters of the at least one filter assembly has a filter coefficient of up to 250000s, and its pores The size is in the range of about 0.05 μm to about 5 μm, and wherein the filtration is performed at a temperature of less than about 105 ° F (40 ° C) and a pressure difference across the individual filtration assemblies is at a maximum of about 80 psig. 5. Such as The method for forming a coating on a substrate as described in item 1 of the scope of patent application, wherein the substrate is an optical fiber. 6. The method as described in item 5 of the scope of patent application for use on a substrate A method of forming a coating layer \\ SERVER \ program draft \ 00703-TW · patent specification doc 77 200401912 layer, wherein the coating composition is coated on the optical fiber as a secondary coating; and further includes the following steps: the optical fiber Applying a primary coating composition, wherein the secondary coating is applied on the primary coating. 7. The method for forming a coating on a substrate as described in item 6 of the scope of patent application, Also includes: curing the main Coating; and thereafter curing the secondary coating on the optical fiber. 8. The method for forming a coating on a substrate as described in item 6 of the patent application scope, wherein the primary coating is cured simultaneously And curing the secondary coating. 9. The method for forming a coating on a substrate as described in item 1 of the scope of the patent application, wherein the filtering is performed at a temperature of about 60 ° F to about 95 ° F. 10. The method for forming a coating on a substrate as described in item i of the scope of patent application, wherein the filtering is performed at a temperature of about 70 ° to about 90T. 11. The method for forming a coating layer on a substrate as described in item 1 of the scope of patent application, wherein the filtering is performed at a temperature of about 70 ° to about 80 °. 12. The method for forming a coating on a substrate as described in item 丨 of the scope of patent application, wherein the at least one filter assembly has a filter coefficient of less than or equal to about 43000s ". 13. As a patent application The method for forming a coating on a substrate as described in the range item 丨, wherein the at least one filter assembly has a filter coefficient in a range of about 50,000 s · 1 to about 19,000 si. The method for forming a coating on a substrate as described in the scope of the patent application, wherein the pressure difference of the filtration is about 35 to about 55 psig \\ serverA program draft \ 00703-TW-patent specification d〇 c y 200401912 15 > 16, 17, 18 19 20 21 22, WSERVERA program beginning 79 The method for forming a coating on a substrate as described in the first patent application scope, wherein the pressure difference of the filtration is About 40 to about 50 psig. The method for forming a coating on a substrate as described in item 1 of the patent application scope, wherein the at least one filter assembly includes a membrane filter, the membrane filter The device has a range from about 0.05 to about 0.0 6μηι pore size. • The method for forming a coating on a substrate as described in item 1 of the scope of patent application, wherein the at least one filter assembly includes a membrane filter, and the membrane filter has A hole size of about 0.1 to about 45 μm. The method for forming a coating on a substrate as described in item 1 of the patent application scope, wherein the at least one filter and assembly includes a central filter ( depth filter), the central filter has a pore size from about 0.5 to about 5 μm. k The method for forming a coating on a substrate as described in claim 1 of the patent application scope 'wherein the at least one filter The assembly includes a central filter having a pore size from about 1 to about 3 μm. 'Method for forming a coating on a substrate as described in item 1 of the scope of patent application', wherein the The substrate is a cornpact disk or a digital video disk (DVD). 'The method for forming a coating on a substrate as described in item 1 of the patent application scope, wherein The substrate is ≫ The method for forming a coating on a substrate as described in item 1 of the scope of patent application, wherein the coating composition is a dental composition 〇 draft \ 〇07〇 3-Ding-Patent Specification doc 200401912 23 24 25, 26, 27, 28, 29 30 31 \\ SERVER \ Procedure A method for forming a coating on a substrate as described in item i of Shengu Patent Scope 'Wherein the substrate is a laminated surface. ‘The method for forming a coating layer on a substrate as described in item 丨 of the patent application scope, wherein the filter device includes a plurality of transition assemblies arranged continuously. The method for forming a coating on a substrate as described in the scope of the patent application, wherein the filtering device comprises a plurality of filtering assemblies arranged in parallel. The method for forming a coating on a substrate as described in item 1 of the scope of the patent application, wherein each filter assembly has a filter and a coefficient of at most 250,000 s-1. A product made by the method described in item 1 of the scope of the patent application, wherein the coated substrate is an optical fiber and the product has less than about 10 dot-like bumps per kilometer. A product made by the method described in item 1 of the scope of patent application, wherein the coated substrate is an optical fiber and the product has less than about 5 dot-like bumps per kilometer. 'A product made by the method described in item 1 of the scope of the patent application, wherein the coated substrate is an optical fiber and the product has 0 point bumps per kilometer. 'The method for forming a coating on a substrate as described in item 1 of the scope of the patent application, wherein at least one of the filters of the at least one filter assembly has a thickness of about 0.05 μm to about 5 μm The size of the pores in the range, and the filtration is performed at a temperature of less than about 10 μF (4 (rc)) and the maximum difference in M force across the to y transition assembly is about 80 psig. The method for forming a coating paper on a substrate according to the item described above, wherein the pressure difference is in the range of about 3 to about 40 psi. 32, such as applying for a patent The method for forming a coating on a substrate as described in the scope item 1, wherein the filter has a hole size in the range of about 0.45 to about 3 μm. 33. Use as described in the scope of the patent application scope item 1 A method for forming a coating on a substrate, wherein the filtration temperature is in a range of about 70 to about 105 ° F. 34. A method for filtering a coating composition, comprising: at a temperature and Under a pressure difference (ΔP), The filtering device of the assembly filters a coating composition having a viscosity so that the filtration coefficient of the at least one filter of the at least one filtering assembly obtained is not greater than 250,000 s · 1, wherein the pressure difference is Measured by the filter assembly, where ΔP is between about 0 to about 80 psig and the pore size of at least one filter of the at least one filter assembly is at most 10 μm, at a temperature of at most 120 ° F. 35. The method for filtering a coating composition as described in item 34 of the scope of patent application, wherein the maximum pressure difference during the filtering process is based on AP max (l / s) XT ^ j (mPa s) 6.894757 ( wiw_) and Δ max (/ 75 /) 250000 (\ / s) X 6 6992.5 (mPa s K), r (〇 + 273 —l5.025 (mPa i 6.894757 (mFa / \\ SERVER \ Preliminary Program \ 00703- TW-Patent Specification doc 81 200401912 selected from the group consisting of 7 / is the viscosity of the coating composition in the individual filter assembly at the operating temperature T, and γ is the maximum preset filter coefficient. 36. Used for filtering and coating as described in item 34 of the scope of patent application The composition method, in which the maximum temperature during the filtration process is determined by τ max (c) according to the following formula: 6992.5 (, K) In ΔΡ ^ οχ 6.894757, (mPa I-273 r max (i / 15.025 (, where ΔP is the pressure difference across each individual filtration assembly, and is the viscosity of the coating composition in the individual filtration assembly at the filtration temperature T 'and γ is the preset filter coefficient that is the largest. 37. The method for filtering a coating composition as described in item 34 of the scope of the patent application, wherein the filtering is performed at a pressure difference of a maximum of about 80 psig and a temperature in a range of about 50 to about 140T. 38. The method for filtering a coating composition as described in item 34 of the scope of the patent application, wherein the at least one filter assembly includes a membrane filter having a thickness of from about 0.1 to about 3 μm. Hole size. 39. The method for filtering a coating composition as described in item 34 of the scope of patent application, wherein the filtering is performed at a temperature in a range of about 60 to about 95T. 40. The method for filtering a coating composition as described in item 34 of the scope of the patent application, wherein the filtering is performed at a temperature in a range of about 70 to about 90T. 41. The method for filtering a coating composition WSERVERA preliminary draft as described in item 34 of the scope of patent application \ 00703-TW · patent specification doc g2 200401912, wherein the filtering is at about 70 to about 80 ° F Performed at temperatures in the range. 42. The method for filtering a coating composition as described in item 34 of the scope of the patent application, wherein the ratio of the pressure difference to the viscosity reduces the preset filter coefficient of the at least one filter assembly to less than or equal to 4300s_i 0 43. The method for filtering a coating composition as described in item 34 of the scope of patent application, wherein the filtration pressure difference in the at least one filtration assembly is about 35 to about 55 psig . 44. The method for filtering a coating composition as described in item 34 of the scope of the patent application, wherein the pressure difference of the filtration in the at least one filtration assembly is about 40 to about 50 psig. 45. The method for filtering a coating composition as described in item 34 of the scope of patent application, wherein the at least one filter assembly includes a membrane filter having a thickness of from about 0.05 to about 0.6 μm Hole size. 46. The method for filtering a coating composition as described in item 34 of the scope of patent application, wherein the at least one filter assembly includes a membrane filter having a thickness of from about 0.1 to about 0.45 μm Hole size. 47. The method for filtering a coating composition as described in item 34 of the scope of the patent application, wherein the at least one filter assembly includes a depth filter having a range from about 1 to about 4μιη hole size. 48. The method for filtering a coating composition according to item 34 of the scope of patent application, wherein the at least one filter assembly includes a central filter having a hole size from about 1 to about 3 μm . 49. A method for filtering according to item 34 of the scope of patent application, in which the pore size of the at least one transition assembly is about 0.05 μm to about 5 μm. -TW-Patent Specification doc 83 200401912 50 51 52 53 54 55 56 57 58 ^ \\ SERVER \ Initial program range, and the filter is at a temperature of less than about 105 ° F (400 ° C and the at least one filter) The pressure difference of the assembly is performed at a maximum of about 80 psig. The method for filtering a coating composition according to item 34 of the patent application scope, wherein the pressure difference is in the range of about 3 to about 40 psi. The method for filtering a coating composition described in the scope of patent application item 34 ', wherein the hole size of the filter is in the range of about 045 to about 3 μm. A method of filtering a coating composition ', wherein the filtering temperature is in a range of about 70 to about 105 ° F. The method for forming a coating on a substrate as described in item 49 of the patent application scope Method, wherein the substrate is an optical fiber. The method for forming a coating on a substrate as described in item 49, wherein the substrate is an optical medium. The method for forming a coating on a substrate as described in item 49 of the patent application scope. A method for forming a layer, wherein the coating composition is a dental composition. The method for forming a coating on a substrate as described in item 49 of the application, wherein the substrate is a laminate Surface A method for preparing a coated optical fiber, comprising: providing at least 50 tons of a coating composition in 12 months; filtering the coating composition; and coating an individual optical fiber with the coating composition In order to form a coated optical fiber that is several kilometers long, at least 98% of the coated optical fiber has less than about w dot-shaped bumps per kilometer. It is used to prepare a coated optical fiber as described in item 57 of the scope of patent application. The method of providing a coating composition includes providing a coating composition of at least -500 tons. 59. Use as described in item 57 of the scope of patent application To prepare A method for coating an optical fiber, wherein the step of providing a coating composition includes providing at least 1,000 tons of a coating composition. 60. The method for preparing a coated optical fiber as described in claim 57 of the patent application scope, wherein Or equal to 98% of the coated optical fiber has less than about 5 dot-shaped bumps per kilometer. 61. The method for preparing a coated optical fiber as described in item 57 of the patent application scope, wherein It is equal to 98% of coated optical fibers with less than about 2 dot-like bumps per kilometer. 62. The method for preparing a coated optical fiber as described in item 57 of the scope of the patent application, wherein greater than or equal to 98% of the coated optical fiber has less than about 0 point bumps per kilometer. 63. The method for preparing a coated optical fiber as described in item 57 of the scope of the patent application, wherein greater than or equal to 99% of the coated optical fiber has less than about 10 point bumps per kilometer. 64. The method for preparing a coated optical fiber as described in item 57 of the scope of the patent application, wherein greater than or equal to 99.75% of the coated optical fiber has less than about 10 spot-shaped bumps per kilometer 0 65. The method for preparing a coated optical fiber as described in item 57 of the scope of the patent application, wherein greater than or equal to 100% of the coated optical fiber has less than about 10 spot-shaped bumps per kilometer. 66. A product comprising the coating composition described in item 57 of the patent application scope of at least 50 metric tons. First, schema: \\ SERVER \ Draft of the program \ 00703-TW-Patent Specification doc 85
TW92112063A 2002-05-09 2003-05-01 Methods for making and using point lump-free compositions and products coated with point lump-free compositions TW200401912A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37866302P 2002-05-09 2002-05-09

Publications (1)

Publication Number Publication Date
TW200401912A true TW200401912A (en) 2004-02-01

Family

ID=52340011

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92112063A TW200401912A (en) 2002-05-09 2003-05-01 Methods for making and using point lump-free compositions and products coated with point lump-free compositions

Country Status (1)

Country Link
TW (1) TW200401912A (en)

Similar Documents

Publication Publication Date Title
US7238386B2 (en) Methods for making and using point lump-free compositions and products coated with point lump-free compositions
CN112400127B (en) Small diameter low attenuation optical fiber
JP5607162B2 (en) Optical fiber with multilayer coating system
US5744514A (en) Coated optical fibers having a reduced content of extractable and volatile material
US6849333B2 (en) Optical fiber with an improved primary coating composition
US9488774B2 (en) Primary optical fiber coating composition containing non-radiation curable component
JP5840203B2 (en) Optical fiber with photoacid coating
WO1998033081A1 (en) Coated optical fibers having strippable primary coatings and processes for making and using same
EP3911980A1 (en) Optical fiber cable with high fiber count
AU2002368263B2 (en) Optical fiber with cured polymeric coating
CN102439101B (en) There is the optical fiber of single coating
US20230049256A1 (en) Resin composition, optical fiber, and method for producing optical fiber
KR20040000420A (en) Optical fiber assembly using reactive moiety di-terminated diphenylmethane polyol oligomer, and methods for making and using same
JP2006010717A (en) Active energy ray curable resin composition and coated optical fiber using the same
RU2320590C2 (en) Optical fiber with hardened polymer coat
TW200401912A (en) Methods for making and using point lump-free compositions and products coated with point lump-free compositions
JP4869548B2 (en) Optical fiber coating resin composition, optical fiber and optical fiber unit using the same
EP4289876A1 (en) Resin composition, optical fiber, optical fiber manufacturing method, optical fiber ribbon, and optical fiber cable
US20230242690A1 (en) Resin composition, optical fiber, and method for producing optical fiber
US20240116807A1 (en) Resin composition, method for producing resin composition, optical fiber, method for producing optical fiber, optical fiber ribbon, and optical fiber cable
JP2005338240A (en) Active energy ray-curing resin composition and single coated optical fiber using same
CN114845967A (en) Optical fiber coating with low pullout force