TW200401036A - Method of detecting base substitution - Google Patents

Method of detecting base substitution Download PDF

Info

Publication number
TW200401036A
TW200401036A TW092104652A TW92104652A TW200401036A TW 200401036 A TW200401036 A TW 200401036A TW 092104652 A TW092104652 A TW 092104652A TW 92104652 A TW92104652 A TW 92104652A TW 200401036 A TW200401036 A TW 200401036A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
base
probe
target nucleic
sequence
Prior art date
Application number
TW092104652A
Other languages
Chinese (zh)
Inventor
Junko Yamamoto
Hiroyuki Mukai
Kiyozo Asada
Ikunoshin Kato
Original Assignee
Takara Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc filed Critical Takara Bio Inc
Publication of TW200401036A publication Critical patent/TW200401036A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Abstract

A chimeric oligonucleotide primer and a probe useful in detecting a base substitution on a gene; a method of detecting a base substitution on a gene with the use of the chimeric oligonucleotide probe; and a kit therefor.

Description

200401036 玖、發明說明: 【發明所屬之技術領域】 —本發明係、關於在檢測基因上之鹼基置換方面有用之敌合 募核甞酸引子及探針’ €用該嵌合寡核苷酸引子之檢測基 因上之驗基置換之方法以及供該方法使用之套組。 【先前技術】 已知屬於同種之生物個ϋ之基因組上所含之基因暗號不 相同’以及存在所胃「多型」之鹼基序列上之差異。在多 1方面缺失或插入1〜數10個鹼基者及特定鹼基序列被重 覆者等已為A知,1個鹼基被其他鹼基置換者被稱為單鹼基 置換夕型(single nucleotide p〇lymorphism,SNp)。 早驗基置換多型若以數百驗基至i〇〇〇驗基中有^個之比 例存在則可以推定在人類之基因組上有3〇〇萬〜1〇〇〇萬之 SNP。SNP在疾病相關基因之探索、與疾病之關聯性、以及 做為探知對藥物成φ降γ 、 刃攻又性(作用、副作用)差異之指標上受到 注目,對於其之檢測方法亦正進行研究。 先前SNP之檢測手段被分類為根據雜交者、根據引子伸 長者或利用酵素之基質特異性者。 雜交法’為藉由核酸試料與探針之雜交而檢測出是否有 鹼基置換之方法。該方法必須找到可以只藉由i個鹼基差異 即能影響雜交之探針及雜交條件,因此要構築具有高度再 現性之檢測系統頗為困難。 ^前之方法,例如為使用循環探針反應(例如參照美國專 利第5,660,988號公報)之突變檢測方法。在該方法中,使具 83954 200401036 有易開裂鍵結之核酸探針與做為目的之核酸分子雜交。在 做為目的之核酸分子中無鹼基置換之情況,該探針開裂, 而在有鹼基置換之情況’該探針不開裂。之後藉由檢測來 自開裂探針之游離片段之產生量以及予以定量而檢測出驗 基置換。但是’在該方法中,標的核酸為微量之情況,由 於該探針之開裂化物之絕對量少,開裂化物要達到可以定 量及檢測之程度頗為費時。 另方法例如為使用TaqMan法(例如參照美國專利第 5,21〇,〇15號公報或美國專利第號公報)之突變檢 測方法。在該方法中,传用料4,a Y使用附加赏光色素及消光劑(quencher 之TaqMan才未針。該探斜,你 使用包έ鹼基置換者及不包含鹼 基置換者2種。該法夕4主彡叫 *為使該探針與做為目的之核酸分 子雜交,引子若從其之上游 α 长 /、有在做為目的之核酸 刀子不自驗基置換之惰 心允 該探針會被DNA聚合酶之y — 3核酸内切酶活性分解, 基置換。但是,在該方二 之螢光而檢測出鹼 λ- "',有所謂「必須使用具有5丨— 3核馱内切扭活性之聚合 酸進行PCR,且必須輪 末端被封阻之標識核苷 花費之時門县 ^ 、地調整溫度,以及至檢測出所需 化賈之時間長」之問題。 1而 做為利用酵素之方法者, ,此等方法 者f先有使用UNA聚合酶之方法 寸乃次向有例如(1 ) 換之鹼基部分之引子,、,〃 3末端黏接於待檢出鹼基置 置換$ t亚從引子伸長反應之有益檢測鹼A 置換之方法(例如參照美 另..、、柷利鹼基 用待檢測驗基置換之^:其1乐5,13 7,806號公報);⑺使 置換之知基部分定位在從3,末端算起第二個 83954 200401036 核答酸處之引子’並從引子伸長反應之有無檢測鹼基置換 之方法(例如參照國際公開第〇1/42498號公報广㈠)使用以 3末纟而黏接於待檢測鹼基置換之鹼基之3,側所鄰接之鹼基 上之引子,並判別在該引子中納入之驗基以決定目的部分 是否有變異及其之鹼基之方法。 又,有使用DNA連接酶之方法。該方法藉由使探針之末 端部分對應於待檢測鹼基置換之鹼基部分,然後從是否與 鄰接該處之探針雜交而檢測出鹼基置換。 上述使用DNA聚合酶及DNA連接酶之方法,不可能正確 檢測出引子或探針與標的核酸之間由於鹼基置換所造成之 錯配。亦即’ Λ等酵素縱使在有錯配之引子或探針之情況 ’亦會開始反應而賦予錯誤之結果。 亦即,有標的核酸與該引子之黏接錯誤及使用之連接酶 或聚合酶之錯誤而造成偽陽性之情況,因此必須嚴密控制 反應條件,尤其是反應溢度,而有再現性方面之問題。 再者可歹|]舉如侵入(Invader)法(例如參照美國專利第 ,846,7 17號公報)等利用具有可認識及切斷雙股核酸之特 殊構造之活性之酵素之方法。做為此㈣素者,已 7㈣由設計具有於存在(或者不存在)驗基置 、之it况會形成可被料素職之構造之探針,以及 該探針之切斷情形’可以檢測出驗基置換。但是,使用: 有認識及切斷雙股核酸之特殊構造之活性之酵素之方法了 在/、之敏感度上有問題。亦即,由於該方 標的核酸生成i個作鲈之太、土 π 馮刀子之 成1们L唬之方法,因此從微量之核酸試料無法 83954 200401036 /寻丨足以銥測驗基置換之充 ^ 應雖可增強俨妒,L 5虎。*然重覆探針切斷反 增幅。亦即2 " 了得到強信號必須預先將標的核酸 曰丨田亦即,在該方法中,椤的枋响达 該探針之切斷物之量少,要達不到能^微量之情況,由於 程度頗為費時。 此°祆測出該切斷物量之 測述方法具有在標的核酸為微量之情況無法檢 :的:Γ嚴密的溫度管理條件下進行,必須嚴密控制 興才示的核酸之勒接,w 3 v m K帛具有供檢敎特別性質 酵素專問4,所以企求能夠正確檢測出驗基置換之方法。 澱粉不溶素(amylin,胰臟蘭氏小島類;殿粉蛋白質;亦被 稱為小島類澱粉多&(_ΜΑΡΡ)),已被分離及鐘定為沉 著於㈣尿病(亦被稱為胰島素非依存性糖尿病)患者之 胰臟蘭氏小島之類澱粉之主要構成份之生理活性樣胜肷, 其在胰臟万細胞中被特異性表現,以及可與胰島素一起被 分泌至血中(例如參照 Westermark P et al ,Pr〇c Nati. Acad·200401036 发明, Description of the invention: [Technical field to which the invention belongs] — The present invention relates to the use of chimeric oligonucleotides for probes and probes useful for detecting base substitution on genes A method for detecting a base replacement on a gene of a primer and a set for the method. [Prior art] It is known that the genetic codes contained in the genomes of organisms belonging to the same species are not the same 'and that there are differences in the gastric polymorphic base sequence. Those who have deleted or inserted 1 to 10 bases in more than one aspect, and those whose specific base sequences have been repeated are known to A. Those who replace one base with other bases are called single base substitutions ( single nucleotide polymorphism (SNp). If the early test base replacement polytype exists in a ratio of several hundred test bases to 100 000 test bases, it can be estimated that there are 3 million to 10 million SNPs in the human genome. SNP has attracted attention in the exploration of disease-related genes, its correlation with disease, and as an indicator for detecting differences in drug formation φ and γ, and the effect (effect, side effect) of the drug, and its detection methods are also being studied. . Previous SNP detection methods were classified as those based on hybrids, those based on primer extension, or those using substrate specificity of enzymes. Hybridization method 'is a method of detecting the presence or absence of a base substitution by hybridization of a nucleic acid sample and a probe. The method must find probes and hybridization conditions that can affect hybridization by only i base differences, so it is difficult to construct a highly reproducible detection system. The previous method is, for example, a mutation detection method using a circulating probe reaction (for example, refer to U.S. Patent No. 5,660,988). In this method, a nucleic acid probe having a cleavable bond of 83954 200401036 is hybridized with a nucleic acid molecule as a purpose. When there is no base substitution in the target nucleic acid molecule, the probe is cracked, and when there is a base substitution, the probe is not cracked. Thereafter, the amount of free fragments from the cleavage probe is measured and quantified to detect the replacement of the test sample. However, in this method, when the target nucleic acid is in a trace amount, since the absolute amount of the cleavage of the probe is small, it takes a long time for the cleavage to reach a quantifiable and detectable level. Another method is, for example, a mutation detection method using the TaqMan method (for example, refer to U.S. Patent No. 5,21,015 or U.S. Patent No.). In this method, pass-through materials 4, a Y use additional photochromic pigments and matting agents (TaqMan of Queencher is not needle. For this probing, you use two types of base substitution and those without base substitution. The The main tweet of Faxi 4 is: * In order to hybridize the probe with the nucleic acid molecule for the purpose, if the primer is long from the upstream α, the inert heart of the nucleic acid knife that is not intended to replace the probe will allow the probe The needle will be decomposed by the y-3 endonuclease activity of the DNA polymerase, and the base will be replaced. However, the alkali λ- " 'is detected in the fluorescence of the second side, and there is the so-called "must use 5-3 nuclear驮 Internally twisted active polymer acid is used for PCR, and the end of the round must be blocked to identify the nucleosides. It takes time to adjust the temperature, and the time required to detect the required chemical species is long. 1 and As a method of using enzymes, these methods f have the method of using UNA polymerase first, and then the primers for which the base part is replaced by, for example, (1), and the 3 ends are stuck to the detection A method for detecting the substitution of base A by using the base extension substitution t t from the primer extension reaction (eg Refer to the United States and the United States .., the substitution of the base with the test base to be detected ^: its 1 Le 5,13 7,806); the position of the base of the replacement is located from 3, the second from the end of 83,854 200401036 A method for detecting primer substitution at the nucleotide of the nucleic acid and elongating the reaction from the primer (for example, refer to International Publication No. 01/42498 Publication No. Hiroki) uses 3 terminal bonds to adhere to the base to be detected. There is a method of determining primers on the base adjacent to the base 3 adjacent to the base and judging the test base included in the primer to determine whether there is a mutation in the target portion and its base. DNA ligase is also used. This method detects the base substitution by making the terminal portion of the probe correspond to the base portion of the base substitution to be detected, and then detecting whether or not to hybridize with a probe adjacent thereto. The above uses DNA polymerase and DNA ligase Method, it is impossible to correctly detect the mismatch caused by the base substitution between the primer or the probe and the target nucleic acid. That is, "even if the enzyme such as Λ is mismatched with the primer or the probe," it will start to react. And give the wrong result. In case of false positive caused by the adhesion error between the target nucleic acid and the primer and the error of the ligase or polymerase used, it is necessary to strictly control the reaction conditions, especially the reaction overflow, and there are problems with reproducibility. One can use methods such as the Invader method (for example, refer to U.S. Patent No. 846,7,17) and other methods that utilize enzymes that have the activity of recognizing and cutting the special structure of double-stranded nucleic acids. To do so Those who have not already done so can design probes that have a presence (or non-existence) test base, and that it will form a structure that can be used as a raw material, and that the probe is cut off. Replacement. However, the method of using the enzyme that recognizes and cleaves the activity of the special structure of the double-stranded nucleic acid has a problem in sensitivity. That is, because the squared nucleic acid generates a method for making sea bass, soil π, and Feng Daocheng, one of them, the method can not be used from a trace amount of nucleic acid sample 83954 200401036 / find enough to replace the iridium test base. Although it can enhance jealousy, L 5 Tiger. * Of course, repeating the probe cut-off reverse amplitude. That is to say, in order to obtain a strong signal, the target nucleic acid must be called in advance. In other words, in this method, the amount of radon that is squeaked by the probe is small, and it cannot reach a small amount. , Because the degree is quite time-consuming. This method of measuring the amount of the cut off has no way to detect when the target nucleic acid is in a trace amount: Γ It is performed under strict temperature management conditions, and the connection of nucleic acids must be closely controlled, w 3 vm K 帛 has special enzymes for testing 敎, so the company is looking for a method to detect the replacement of test bases. Amylin (amylin, pancreatic islets; gluten meal protein; also known as islet starch & (_ΜΑΡΡ)), has been isolated and has been identified as indwelling in diarrhea (also known as insulin Non-dependent diabetes mellitus) The main physiological constituents of starch, such as pancreatic islets, are specifically expressed in pancreatic cells and can be secreted into the blood together with insulin (for example, With reference to Westermark P et al, PrOc Nati. Acad

Sci. USA, 84,3881 〜3885 (1987)或 Cooper G. J. S. et al., Proc. Natl. Acad· Sci. USA, 84, 8628〜8632 (1987))。在 2型 糖尿病患者中,由於高頻率觀察到類殿粉沉著在胰臟蘭氏 小島中’因此類澱粉與2型糖尿病之關聯性受到注目。 澱粉不溶素之全序列已被決定,曾報告該基因存在於第 12染色體短臂ρ12.3中(例如參照Nishi M. et al. Mol. Endocrinol” 3,1775〜1781 (1989))。 在2型糖尿病患者中,澱粉不溶素基因之第20位之絲胺酸 (AGC)被置換為甘胺酸(GGC)之錯義變異曾被報告(例如參 83954 200401036 .¾ Sakagashira S. et al, Diabetes, 45, 1279-1281 (1996)) 〇 該變異,在日本、中國、台灣、香港及韓國人中被報告, 但在白人中未冒被報告。檢測該基因變異之方法,為將包 含該變異部位之區域予以PCR增幅,將得到之增幅產物用 限制酵素Msp I處理,然後用環脂糖凝膠電泳檢查該增幅產 物疋否被分解(例如芩照Sakagashira s et al.,Diabeks,C, 1279〜1281 (1996))。 , 如上述,雖暗示澱粉不溶素基因變異與2型糖尿病間之關 聯,但尚無有效率檢測出該基因變異之方法。 醛去氫酶(ALDH)為將乙醛氧化為乙酸之酵素。在人類中 ,ALDH包含複數個同功酶,彼等在每個組織中之分布不同 (例如參照 Harada s. et al , Life Science, 26, i 773〜i78〇 (1980))。其中’ ALDH2主要存在於肝臟中,具有做為醇代 謝系酵素之機能。 ALDH2藉由肝萃取液之電泳,發現活性型蛋白質及不活 性蛋白質等多型(例如參照Harada S. et al_,Am. j· Hum Genet·’ 3 2’ 8〜15 (1980)) ’但不明白此與醇耐性之關係(例 如參,系 Harada S. et al·, Lancet II,982 (1981))。 ALDH2之王驗基序列為公知,曾報告外顯子u之穀胺酸 (GAA)被置換為離胺酸(AAA)之錯義變異⑼如參照〜副& A. et al., Proc. Natl. Acad. Sci. USA, 8 1, 258-261 (1984) 。該變異為黃種人特有,在高加索人及尼格羅人中未曾報 告有此種變異。做為檢測該基因變異之方法者,曾報告有 等位基因知異性引子_pcR法(例如參照原田勝二等人,醇代 83954 -10- 謝及肝’ 10, 1〜5 (1 98 8)) ’限制片段長度多型(RFLp)法(例 如參照 Harada S. et al. Alcohol Alcohol·, 28,11-13 (1993)) ,以及PCR-SSCP (PCR-單股構形改變多型)法(例如參照Sci. USA, 84, 3881 to 3885 (1987) or Cooper G. J. S. et al., Proc. Natl. Acad · Sci. USA, 84, 8628 to 8632 (1987)). In patients with type 2 diabetes, the association of amyloid and type 2 diabetes has been noticed due to high-frequency observation of Dianfen powder deposition in the pancreatic islets. The complete sequence of amylin has been determined, and the gene has been reported to exist in the short arm ρ12.3. Of chromosome 12 (see, for example, Nishi M. et al. Mol. Endocrinol "3, 1775 ~ 1781 (1989)). In 2 In patients with type 2 diabetes, an ambiguous variant in which serine (AGC) at position 20 of the amyloid insoluble gene has been replaced with glycine (GGC) has been reported (see, for example, 83954 200401036. ¾ Sakagashira S. et al, Diabetes , 45, 1279-1281 (1996)) 〇 This mutation has been reported among Japanese, Chinese, Taiwan, Hong Kong, and Korean, but has not been reported among white people. The method for detecting this genetic mutation is to include the mutation The area of the part was amplified by PCR. The obtained amplified product was treated with the restriction enzyme Msp I, and then the amplified product was checked by cyclolipose gel electrophoresis to see if it was broken down (for example, according to Sakagashira s et al., Diabeks, C, 1279 ~ 1281 (1996)). As mentioned above, although there is a suggestion of the association between the starch insolubilin gene mutation and type 2 diabetes, there is no effective method for detecting the gene mutation. Aldehyde dehydrogenase (ALDH) is an acetaldehyde An enzyme that oxidizes to acetic acid. In the study, ALDH contains a plurality of isozymes, and their distribution in each tissue is different (for example, see Harada s. Et al, Life Science, 26, i 773 ~ i78〇 (1980)). Among them, 'ALDH2 mainly exists in The liver has a function as an alcohol metabolism enzyme. ALDH2 uses electrophoresis of liver extracts to find polymorphs such as active proteins and inactive proteins (for example, see Harada S. et al_, Am. J. Hum Genet · ' 3 2 '8 ~ 15 (1980))' But do not understand the relationship between this and alcohol tolerance (for example, refer to Harada S. et al., Lancet II, 982 (1981)). The sequence of the king of ALDH2 is well known, It has been reported that the glutamic acid (GAA) of exon u has been replaced by a missense variant of lysine (AAA). For example, refer to Para. &A; et al., Proc. Natl. Acad. Sci. USA, 8 1, 258-261 (1984). This mutation is endemic to the yellow race and has not been reported among Caucasians or Negro. As a method of detecting this genetic mutation, allele homology has been reported. Introduction_pcR method (for example, refer to Harada Koji, et al., Alcohol substitution 83954 -10- thanks to the liver '10, 1 ~ 5 (1 98 8))' restricted fragment Of polymorph (RFLP) method (see, for example Harada S. et al. Alcohol Alcohol ·, 28,11-13 (1993)), and PCR-SSCP (PCR- single strand conformational polymorphism changes shape) method (refer to e.g.

Harada S. et al. Alcohol Clin. Exp. Res·,23, 958〜962 (1999)) 0 但是,尚無有效率檢測出該基因變異之方法。 【發明内容】 發明目的 因此,本發明之目的為解決上述方法之問題,而提供一 種在使用微量核酸試料下,正確且再現性地檢測出鹼基置 換(例如SNP)之優異手段。 發明之概要 本發明者,藉由將增幅標的核酸之技術與可以檢測出標 的核酸上存在之目的鹼基置換之探針加以組合’構築出迅 速且南敏感度之檢測方法,而完成本發明。 本發明之第1發明係關於一種供檢測標的核酸上之特定 鹼基中是否有鹼基置換之组合物,其包含: (a) 可將標的核酸上包含特定鹼基之區域增幅之引子, 该引子為至少含有選自去氧核糖核苷酸及核铝酸類似物中 之成員及核糖核苷酸,且該核糖核苷酸被配置在該引子之 3'末端或3'末端側之至少2種嵌合寡核甞酸引子; (b) 可與標的核酸上包含上述特定鹼基之區域雜交,真 視上述特定鹼基之種類可被核酸酶切斷或不被切斷之探 針; (c) 具有股置換活性之dna聚合酶,以及 83954 -11 - 200401036 (d)核酸酶。 本發明之第2發明係關於一種供檢測標的核酸 6 鹼基中是否有鹼基置換之組合物,其包含: ,疋 ()可將払6勺核酸上包含特定鹼基之區域增幅之引子 ^恤至少含有選自去氧核糖核嫌核軸似物 中之成員為特徵之至少2種寡核苷酸引子; ㈦可與標的核酸上包含上述特定鹼基之區域雜交,以 及視上述特定鹼基之種類可被核酸酶切斷或不被切斷,且 不會被DNA聚合酶之5、3,核酸外切酶活性切斷之探針; (c) DNA聚合酶,以及 (d )核酸酶。 在本發明之第2發明中,DNA聚合酶可為具有股置換活性 之DNAxk σ酶。再者,在本發明之第1及2發明中,探針為 含有核糖核:y:酸之探針’核酸酶可為核糖核酸酶Η。 本毛Θ之第3發明係關於一種驗基置換之檢測方法,其係Harada S. et al. Alcohol Clin. Exp. Res., 23, 958 ~ 962 (1999)) 0 However, there is no effective method for detecting the mutation of this gene. [Summary of the Invention] The purpose of the present invention is therefore to provide an excellent means for accurately and reproducibly detecting base substitutions (for example, SNPs) using a trace amount of nucleic acid sample in order to solve the problems of the above methods. SUMMARY OF THE INVENTION The present inventors have completed the present invention by combining a technique for amplifying a target nucleic acid with a probe capable of detecting a target base substitution existing on the target nucleic acid 'to construct a rapid and sensitive method. The first invention of the present invention relates to a composition for detecting whether there is a base substitution in a specific base on a target nucleic acid, comprising: (a) a primer that can amplify a region containing the specific base on the target nucleic acid, the The primer contains at least a member selected from the group consisting of deoxyribonucleotides and ribonucleotides and ribonucleotides, and the ribonucleotides are arranged at the 3 'end or at least 2 of the 3' end side of the primer A chimeric oligonucleotide primer; (b) a probe that can hybridize to the target nucleic acid region containing the above-mentioned specific base, depending on whether the type of the above-mentioned specific base can be cleaved by the nuclease or not; c) DNA polymerase with strand replacement activity, and 83954-11-200401036 (d) Nuclease. The second invention of the present invention relates to a composition for detecting whether there is a base substitution in the 6 bases of a target nucleic acid, which comprises: 疋 () can increase the primers for a region containing a specific base on 勺 6 spoons of nucleic acid ^ The shirt contains at least two oligonucleotide primers characterized by members selected from the group of deoxyribonucleic susceptors; ㈦ can hybridize to the target nucleic acid region containing the above specific base, and depending on the above specific base Types of probes that can be cleaved or not cleaved by nucleases, and are not cleaved by DNA polymerase 5, 3, exonuclease activity; (c) DNA polymerase, and (d) nuclease . In the second aspect of the present invention, the DNA polymerase may be a DNAxk sigma enzyme having strand displacement activity. Furthermore, in the first and second inventions of the present invention, the probe is a probe containing a ribonucleotide: y: acid'nuclease may be a ribonuclease. The third invention of the hair Θ relates to a method for detecting base replacement, which is

才欢測的核酸^ -Ml rh B 、 知足驗基中疋否有鹼基置換之方法,其特 徵為包含培育合t τ、+、^ .., 月3有下述成分之組合物,然後檢測該組合物 中之探針疋否被切斷之步驟: (a)標的核酸, ()至^ 1種嵌合寡核苷酸引子,其與標的核酸之上述特 定鹼基之3’末端側之鹼基序列實質上互補,以及至少含有 選自去氧核糖核苷酸及核苷酸類似物中之成員及核糖核苷 - Λ核糖核芬酸被配置在該引子之3,末端或31末端側, ()可契&的核酸上包含上述特定鹼基之區域雜交,且 83954 200401036 視上述特定鹼基之種類可 針; 種類了破核酸酶切斷或不被切斷之探 ⑷具有股置換活性之DNA聚合酶,以及 (e)核酸酶。 本务明之第4發明係關於—種 ,^ 驗基置換之檢測方法,甘在 檢測軚的核酸上特定鹼基中 ,、係 徵為包含培育含有下述成分 八4寸 t之探釙4 ‘由" 組合物,然後檢測該組合物 〒之你針疋否被切斷之步驟·· 〇)標的核酸, (b)至少1種寡核苷酸引, , 子/、将徵為與標的核酸之上述 ,《土之3’末端側之鹼基序列實質上互補,以及至少含 有選自去氧核糖核苷酸及核苷酸類似物中之成員,3 ⑷可與標的核酸上包含上述特定鹼基之區域雜交,以 及視上述特定驗基之種類可被核酸酶切斷或不被切斷,且 不會被D N A聚合酶之5,— 3,核酸外切酶活性切斷之探針’ (d) DMA聚合酶,以及 (e )核酸酶。 在本發明之第4發明中,DNA聚合酶可為具有股置換活性 =NA聚合酶。再者’在本發明之第3及4發明中,組合物 可含有2種引子,探針為含有核糖核苷酸之探針,以及核酸 峙可為核糖核酸酶Η。又,該組合物可在等溫條件下被培 育。 本發明之第5發明係關於具有序列表之序列編號1,2,7 8 ’ 13及Μ記載之鹼基序列之嵌合寡核苷酸引子。 83954 -13 - 200401036 本發明之第6發明係關於具有序列表之序列編號9,10, 19及20記載之鹼基序列之募核铝酸引子。 本發明之第7發明係關於具有序列表之序列編號3, 4, u ,1 2,1 5,1 6,2 1及22記載之鹼基序列之嵌合寡核甞酸引 子。 本1月之第8發明係關於一種供檢測標的核酸上之特定 鹼基中疋否有鹼基置換之組合物,其包含: U)至少〖種嵌合寡核苷酸引子,其與標的核酸之上述特 =驗基之3末端側之驗基序列實質上互補,以及至少含有 選自去氧核糖核苷酸及核苷酸類似物中之成員及核糖核苷 西文且該核糖核甞酸被配置在該引子之3,末端或3,末端側, 以及 (b)在特定溫度條件下可以選擇是否與標的核酸上包含 上述特定鹼基之區域雜交之探針。 本=明之第9發明係關於一種鹼基置換之檢測方法,其係 杈測‘:核酸上特定鹼基中是否有鹼基置換之方法,其特 徵為包含培育含有下述成分之組合物,然後檢測該组合物 中之探針是否被切斷之步驟: (a)標的核酸, ()至乂 1種嵌合寡核苷酸引子,其與標的核酸之上述特 疋鹼土之3末端侧之鹼基序列實質上互補,以及至少含有 選自去氧核糖核苷酸及核苷醆類似物中之成員及核糖核苷 酸’且該核糖核苷酸被配置在該引子之3,末端或3,末端側, (c)在特定溫度條件下可以選擇是否與標的核酸上包含 S3954 -14- 上述特疋驗基之區域雜交之探針 (d) DN A聚合酶,以及 0)核酸酶。 【實施方式】 發明之詳細說明 在本說明書中所謂鹼基置換係指在核酸上之 其之-部分鹼基被其他鹼基置換。藉由該鹼基置 個體間之遺傳f訊產生差異,該遺傳資訊之差異被稱為多 型或變異(variati〇n)。又,在太mi 故稱為夕 )又在本5兄明書中所謂之鹼基置換包 S上述多型及變異中之驗基置換。又,核酸中被人為導入 之鹼基置換亦被包含在本說明書中之鹼基置換中。 在本說明書記載之驗基置換中,被置換之鹼基之數目益 特殊限定,可存在1個鹼基或以上之置換。 本發明特別適合用於基因組多型及變異之檢測,尤其是 基因上之SNP(單鹼基置換多型)之檢測。 以下將詳細說明本發明。 (1)本發明之組合物 H M Ha σ t '悲樣為檢測標的核酸上之特定驗基 中是否有驗基置換之組合物,其. ⑷可將標的核酸上包含特定鹼:之區域增幅之引子, 忒引子為至少含有廷自去氧核糖核苷酸及核甞酸類似物中 之成員及核糖核苷酸,且該核糖核苷酸被配置在該引子之 3’末端或3’末端側之至少2種嵌合寡核答酸引子; (b)可與標的核酸上包含上述特定鹼基之區域雜交,且 83954 -15- 200401036 視上述特定驗基之種類可姑访缺& 針· 、 皮杉§文s母切斷或不被切斷之探 ⑷具有股置換活性之DNA聚合酶,以及 (d)核酸酶。 又’本發明之組合物之另一能样 心k ’為檢測標的核酸上之 特定驗基中是否有驗基置換之纽合物,1包含: (:可將標的核酸上包含特定驗基之區域增幅之引子, 少含有選自去氧核掩核菩酸及核⑽似物 中之成貝為4寸徵之至少2種寡核苷酸引子; (b) 可與標的核酸上包含卜n士 a 热.目L、左 匕3上述特定鹼基之區域雜交,以 及視上述特定驗基之種類可姑社祕 合 破核^酶切斷或不被切斷,且 不會被DNA聚合酶之5,— 且 r核&外切酶活性切斷之探針; (c) DNA聚合酶,以及 木对’ (d) 核酸酶。 本發明之組合物之里—自t μ 鹼基中是否有浐其罢 忐樣’為檢測標的核酸上之特定 疋否有鹼基置換之組合物,其包含: (a)至少1種嵌合寡核苷酸 定鹼基之3 1末浐# ,/、舁標的核酸之上述特 土心J禾知側之鹼基序 選自去氧核糖枋^ 、貝上互補,以及至少含有 方虱核糖核苷酸及核苷酸 酸,且該核糖抄# 、物中之成貝及核糖核苷 以及 °亥引子之3'末端或3,末端側, ()在特定溫度條件下可以 θ 上述特定驗基之區域雜交之探針擇疋否與標的核酸上包含 又,另—態樣之特徵為含有 83954 -16 - 200401036 ⑷至;Μ種寡核#酸引子,其與標的㈣之上述特定驗 基之3’末端側之鹼基序列實質上互補,以及至少含有選自 去氧核糖核:y:酸及核嘗酸類似物中之成員,以及 (b)可與標的核酸上包含上述特定鹼基之區域雜交,且 視上述特定鹼基之種類可被核酸酶切斷或不被切斷之探針。 上述之嵌合募核苷酸引子,藉由將具有股置換活性之 D N A聚合酶與可將來自上述引子之伸長物中之引子部分所 存在之核糖核苷酸切斷之核酸酶加以組合,可以在等溫條 件下將做為模板之核酸增幅。該核酸增幅方法被稱為IC AN 法(等溫及嵌合引子-啟動之核酸增幅法),其之細節被揭示 於國際公開第00/56877號公報及國際公開第〇2/16639號公 報。引子之設計及反應條件之設定,可根據此等公報之揭 示,視目的而適當的決定。 在本發明中,使用可將標的核酸上包含待檢測變異之特 定鹼基之區域予以增幅之引子。亦即,可以使用能與標的 核酸上之上述特定鹼基之上游及下游之區域之鹼基序列或 與其互補之鹼基序列黏接之引子。 藉由在本發明之組合物中,加入做為模板之標的核酸, 具有股置換活性之DNA聚合酶以及具有上述作用之核酸酶 ,以及於等溫條件下培育,可以得到從丨種引子之伸長產物 。在使用含有兩種引子之組合物之情況,可以將此等引子 所包失之區域特異性增幅。 再者’本發明亦包含只使用1種引子之態樣。在該情況, 以使上述引子之伸長產物包含待檢測變異之特定驗基之方 83954 -17- 200401036 式設計引子。亦即,可以使用與標的核酸上之上述特定鹼 基之3’-末端側之鹼基序列實質互補之引子。藉由從上述引 子連續地生成伸長產物,可將下述探針能雜交之核酸予以 增處所t胃「ff上互補之引子」意指在使用之反應 條件下可與做為模板之核酸黏接之引子。 上述嵌合寡核甞酸引子,雖沒有特殊限定,但較佳使用 供檢測編碼胰臟蘭氏小島類澱粉蛋白質之澱粉不溶素基因 之變異且具有序列表之序列編號丨,2,7及8記載之鹼基序 列者,以及供檢測醛脫氫酶(ALDH2)基因之變異且具有序 列表之序列編號13及14記載之鹼基序列者。 又,同樣地,供檢測澱粉不溶素基因之變異之寡核甞酸 引子,較佳使用具有序列表之序列編號9及丨〇記載之鹼基序 列者,以及供檢測醛脫氫酶(ALDH2)基因之變異且具有序 列表之序列編號19及20記載之鹼基序列者。 上述本兔明之組合物所含之探針可與待被增幅之標的核 酸雜交。II由設計一探針,使其在標的核酸上之特定鹼基 存在鹼基置換之情況可被核酸酶特異性切斷或者特異性地 不被切斷’將可以該探針之切斷為指標,檢測出驗基置換 之存在或不存在。 對於切斷之該探針之核酸酶雖無特殊限定,但在例如使 用=與上述特定鹼基互補之鹼基或其週邊鹼基做為核糖核 誓酸之探針之情況’適宜使用國際公開第02/22831號公報 5己載之方法調製之核糖核酸酶Η。 又,如上述,在鹼基置換之檢測上有用之探針及其之切 83954 -18 - 200401036 斷手段已被揭示於美國專利第5660988號中。 做為上述嵌合寡核苷酸引子者,雖無特殊限定,但以使 用供檢測編碼胰臟蘭氏小島類澱粉蛋白質之澱粉不溶素基 因之變異且具有序列表之序列編號3,4,丨丨及12記載之鹼 基序列者’以及供檢測醛脫氫酶(ALDH2)基因之變異且具 有序列表之序列編號15,16 , 21及22記載之鹼基序列者為 較佳。 (2)本發明之鹼基置換之檢測方法 本發明之鹼基置換之檢測方法為使用上述(丨)記載之組 合物檢測標的核酸上之特定鹼基中鹼基置換之存在或不存 在之方法。 在本發明之方法中所使用之核酸增幅方法可為使用具有 與模板核酸互補之序列之引子之各種方法。例如可以使用 聚合酶連鎖反應法(PCR,美國專利第4,683,195號,第 4,683,202號及第4,800,159號),股置換型增幅法(8]3八,特The method for measuring the nucleic acid ^ -Ml rh B, whether there is a base substitution in the content test base, which is characterized by comprising a combination of the following components t τ, +, ^ .., and 3, and then Steps for detecting whether the probe in the composition is cut off: (a) the target nucleic acid, () to ^ 1 chimeric oligonucleotide primer, and the 3 'end side of the specific base of the target nucleic acid The base sequence is substantially complementary and contains at least a member selected from the group consisting of deoxyribonucleotides and nucleotide analogs, and a ribonucleoside-Λribose riboflavin is disposed at the 3, 31 or 31 end of the primer On the side, () can be hybridized with the region containing the above specific base on the nucleic acid, and 83954 200401036 depending on the type of the above specific base; needles with or without nuclease-cleaved probes Displacement-active DNA polymerase, and (e) nuclease. The fourth invention of the present invention relates to a method for detecting a base replacement. In a specific base on a nucleic acid for detecting tritium, the characteristic is to include a probe that contains the following ingredients: 8 inches t Steps from " composition, and then detecting whether the composition is cut off by your needle ... 〇) target nucleic acid, (b) at least 1 oligonucleotide primer, and / / will be levied as the target For the nucleic acid described above, the base sequence of the 3 'end of the soil is substantially complementary and contains at least a member selected from deoxyribonucleotides and nucleotide analogs. Base-region hybridization, and probes that can be cleaved or not cleaved by nucleases depending on the type of specific test substrate mentioned above, and will not be cleaved by DNA polymerase 5, 3, exonuclease activity ' (d) DMA polymerase, and (e) nuclease. In the fourth invention of the present invention, the DNA polymerase may have a strand displacement activity = NA polymerase. Furthermore, in the third and fourth inventions of the present invention, the composition may contain two kinds of primers, the probe is a probe containing ribonucleotides, and the nucleic acid 峙 may be a ribonuclease Η. The composition can be cultivated under isothermal conditions. The fifth invention of the present invention relates to a chimeric oligonucleotide primer having a base sequence described in SEQ ID NOs: 1, 2, 7 8 '13 and M of the Sequence Listing. 83954 -13-200401036 The sixth invention of the present invention relates to a nuclear aluminate primer having a base sequence described in SEQ ID NOs: 9, 10, 19, and 20 of the Sequence Listing. The seventh invention of the present invention relates to a chimeric oligonucleotide primer having a base sequence described in SEQ ID NOs: 3, 4, u, 12, 15, 15, 16, 21 and 22 of the Sequence Listing. The eighth invention of January relates to a composition for detecting whether there is a base substitution in a specific base on a target nucleic acid, which comprises: U) at least one chimeric oligonucleotide primer, which is related to the target nucleic acid The above-mentioned special feature: the test base sequence at the 3 terminal side of the test base is substantially complementary, and contains at least a member selected from deoxyribonucleotides and nucleotide analogs, and ribonucleosides in Western languages, and the ribonucleotide The probe is arranged at the 3, terminus or 3, terminus side of the primer, and (b) a probe that can select whether to hybridize to a target nucleic acid region containing the aforementioned specific base under specific temperature conditions. The ninth invention of the present invention relates to a method for detecting base substitution, which is based on the method of detecting whether there is a base substitution in a specific base on a nucleic acid, which is characterized by including cultivating a composition containing the following ingredients, and then Steps for detecting whether the probe in the composition is cleaved: (a) the target nucleic acid, () to (1) a chimeric oligonucleotide primer, and the base of the target nucleic acid on the 3 terminal side of the above-mentioned special alkaline earth The base sequence is substantially complementary, and contains at least a member selected from deoxyribonucleotides and nucleoside 醆 analogs and ribonucleotides', and the ribonucleotides are arranged at the 3, end or 3, of the primer, On the terminal side, (c) under specific temperature conditions, you can choose whether to hybridize to the target nucleic acid containing S3954 -14- the above specific test probe region (d) DN A polymerase, and 0) nuclease. [Embodiment] Detailed description of the invention In the present specification, the term “base substitution” refers to the replacement of a part of bases on a nucleic acid with other bases. The difference in genetic information between individuals based on the base set, the difference in genetic information is called polymorphism or variation. In addition, it is also called Xi in Taimi) and the so-called base substitution package S in the 5th brother's book is the above-mentioned polytype and mutation in the test base substitution. In addition, the base substitution that is artificially introduced into a nucleic acid is also included in the base substitution in this specification. In the base replacement described in this specification, the number of bases to be replaced is particularly limited, and one or more bases may be substituted. The invention is particularly suitable for the detection of genomic polymorphisms and mutations, especially the detection of SNPs (single base substitution polymorphisms) on genes. The present invention will be described in detail below. (1) The composition HM Ha σ t 'of the present invention is a composition for detecting whether there is a test group replacement in a specific test group on the target nucleic acid, which can increase the area of the target nucleic acid containing a specific base: Primer, 忒 primer is a member containing at least Ting self-deoxyribonucleotide and riboic acid analog and ribonucleotide, and the ribonucleotide is arranged at the 3 'end or 3' end side of the primer At least 2 kinds of chimeric oligonucleotide primers; (b) can hybridize to the target nucleic acid region containing the specific base mentioned above, and 83954 -15- 200401036 depending on the type of the specific test base can be visited without & needle · 2. Pseudotsuga sylvestris syllabary or non-slicing probes for DNA polymerases with strand replacement activity, and (d) nucleases. Also, "another sample-like center k of the composition of the present invention" is a conjugate for detecting whether there is a test group substitution in a specific test group on the target nucleic acid. 1 includes: (: the target nucleic acid may contain a specific test group. The regionally amplified primers contain at least two oligonucleotide primers selected from the group consisting of deoxynuclear masking acid and nuclear analogues with a 4-inch sign; (b) can be included with the target nucleic acid.士 a Hot. Mesh L, left dagger 3 hybridization of the above specific bases, and depending on the type of the above specific test base, can be combined with the cleavage enzyme cleavage enzyme or not, and will not be cut by DNA polymerase No. 5—Probe with r nuclear & exonuclease activity cleaved; (c) DNA polymerase, and wood pair '(d) nuclease. In the composition of the present invention—from t μ bases Is there such a thing as a specific composition on the target nucleic acid to detect whether there is a base substitution composition, which comprises: (a) at least one chimeric oligonucleotide with 3 bases #, /, The base sequence of the above-mentioned special soil J and the known side of the target nucleic acid is selected from the group consisting of deoxyribose ^^, complementary on the shellfish, and at least ribonucleotides of square tick and Nucleic acid, and the ribose copy #, the shellfish and ribonucleosides, and the 3 'end or 3, end side of the ° primer, () can hybridize to the region of the above specific test substrate under specific temperature conditions The probe is selected and included on the target nucleic acid. In addition, it is characterized by containing 83954 -16-200401036 ⑷ to M; oligonucleotide # acid primers, and the 3 'end of the specific test base of the target ㈣ The flanking base sequence is substantially complementary and contains at least a member selected from the group consisting of deoxyribonucleic acid: y: acid and ribonucleic acid analogs, and (b) can hybridize to a region containing the above specific base on the target nucleic acid, Depending on the type of the specific base, the probe can be cleaved or not cleaved by the nuclease. The aforementioned chimeric nucleotide-recruiting primers can be derived from DNA polymerases with strand displacement activity and can be derived from the above primers. In combination with the ribonucleotide cleaving nuclease present in the primer portion of the elongation, the nucleic acid as a template can be amplified under isothermal conditions. This method of nucleic acid amplification is called the IC AN method (isothermal and Chimeric primer-primed nucleic acid amplification method), The details are disclosed in International Publication No. 00/56877 and International Publication No. 02/16639. The design of the primers and the setting of the reaction conditions can be appropriately determined according to the purpose of these publications. In the present invention, primers are used that can amplify a region on the target nucleic acid that contains a specific base for the mutation to be detected. That is, a base sequence that can be used upstream and downstream of the specific base on the target nucleic acid can be used. Or primers that adhere to its complementary base sequence. By adding the target nucleic acid as a template, a DNA polymerase with strand displacement activity and a nuclease with the above-mentioned effect to the composition of the present invention, and isothermal By incubating under conditions, elongation products from the primers can be obtained. In the case where a composition containing two kinds of primers is used, the area lost by these primers can be specifically increased. Furthermore, the present invention also includes a case where only one type of primer is used. In this case, the primers are designed in such a way that the elongation products of the above primers include specific test bases for the mutations to be detected. That is, primers that are substantially complementary to the base sequence on the 3'-terminal side of the above-mentioned specific base on the target nucleic acid can be used. By continuously generating elongation products from the above primers, nucleic acids that can hybridize with the probes described below can be added to the stomach. "Complementary primers on ff" means that they can adhere to the nucleic acid used as a template under the reaction conditions used. Primer. Although the aforementioned chimeric oligonucleotide primer is not particularly limited, it is preferably used for detecting a variation of the amylin gene encoding the pancreatic islet amyloid protein and having the sequence number of the sequence listing 丨, 2, 7, and 8 Those who have recorded the base sequence, and those who have detected the aldehyde dehydrogenase (ALDH2) gene mutation and have the base sequences described in sequence numbers 13 and 14 of the sequence listing. Also, similarly, the oligonucleotide primers for detecting the variation of the starch insolubilin gene are preferably those having the base sequences described in SEQ ID NOs: 9 and 0 of the Sequence Listing, and for detecting the aldehyde dehydrogenase (ALDH2). Gene mutations and those having the base sequences described in SEQ ID NOs: 19 and 20 of the Sequence Listing. The probe contained in the above-mentioned composition of the present rabbit can hybridize with the target nucleic acid to be amplified. II by designing a probe so that the presence of a base substitution at a specific base on the target nucleic acid can be specifically cut or not specifically cut by nucleases, the index of the probe can be cut. , Detect the presence or absence of test base substitution. Although the nuclease of the probe to be cleaved is not particularly limited, for example, when a base complementary to the above-mentioned specific base or its surrounding bases is used as a probe of ribonucleic acid, it is appropriate to use an international publication No. 02/22831 5 A ribonuclease enzyme prepared by a method already described. In addition, as described above, probes useful for the detection of base substitutions and their cleavage 83954 -18-200401036 have been disclosed in U.S. Patent No. 5,660,988. As the aforementioned chimeric oligonucleotide primer, although there is no particular limitation, it is used for detecting the variation of the amylin gene encoding the pancreatic islet amyloid protein and having the sequence number 3, 4, and 丨Those having the base sequences described in 丨 and 12 'and those having a base sequence described in sequence number 15, 16, 21, and 22 for detecting a variation in the aldehyde dehydrogenase (ALDH2) gene are preferred. (2) Method for detecting base substitution of the present invention The method for detecting base substitution of the present invention is a method for detecting the presence or absence of base substitution in a specific base on a target nucleic acid using the composition described in the above (丨). . The nucleic acid amplification method used in the method of the present invention may be various methods using primers having a sequence complementary to the template nucleic acid. For example, a polymerase chain reaction method (PCR, US Patent Nos. 4,683,195, 4,683,202, and 4,800,159), a stock replacement type amplification method (8), 38, special

a平7-11471 8號)’ ICAN法(等溫及嵌合引子_發動之核酸增 幅法,見國際公開第00/56877號公報)等核酸增幅方法。^ 此等方法中,於增幅標的核酸之同時或增幅後,藉由於 RNaseH存在下與被標識之探針雜交,可以檢測出目^之鹼 基置換。 W 本發明之較佳態樣,無特殊限 j y,、荷徵為包含培 育含有下列成分之組合物: (a) 標的核酸, (b) 至少1種嵌合养核苷酸引子,其與標的核醆之上述特 83954 -19 - 200401036 定鹼基之3’末端側之鹼基序列實質上互補,以及至少含有 遙自去氧核糖核苷酸及核芸酸類似物中之成員及核糖核苷 酸,且該核糖核苷酸被配置在該引子之3,末端或3,末端側, (c) 可與標的核酸上包含上述特定鹼基之區域雜交,且 視上述特定鹼基之種類可被核酸酶切斷或不被切斷之探針, (d) 具有股置換活性之DNA聚合酶,以及 (e) 核酸酶; 並檢測該組合物中之探針是否被切斷之步驟。 又另一態樣之特徵為包含培育含有下列成分之組合物: (a) 標的核酸, (b) 至少1種寡核苷酸引子,其特徵為與標的核酸之上述 特,驗基之3,末端側之驗基序列實f上互補,以及至少含 有遠自去氧核糖核:y:酸及核苷酸類似物中之成員, (c) 可與標的核酸上包含上述特定鹼基之區域雜交,以 及視上述特定鹼基之種類可被核酸酶切斷或不被切斷,且 不會被DNA *合酶之5,— 3'核酸外切活性切斷之探針, (d) DNA聚合酶,以及 (e) 核酸酶; 並k ’則忒組合物中之探針是否被切斷之步驟。 又,再-態樣之特徵為包含培育含有下列成分之組合物: (a) 標的核酸, (b) 至少1種嵌合寡核^:酸引子’其與標的核酸之上述特 :鹼基,3,末端侧之驗基序列實質上互補,以及至少含有 运自去核糖核#酸及核甞酸類似物中之成員及核糖核誓 83954 -20- 200401036 l,且該核糖核苷酸被配置在該引子之3'末端或3,末端側, (c) 在特定溫度條件下可以選擇是否與標的核酸上包含 上述特定鹼基之區域雜交之探針, (d) DNA聚合酶,以及 (e) 核酸酶; 並檢測該組合物中之探針是否被切斷之步驟。 . 再者,又一態樣之特徵為包含培育含有下列成分之組合 物: 。 U)標的核酸, _ (b) 至少1種寡核苷酸引子,其與標的核酸之上述特定鹼 基之3’末端側之鹼基序列實質上互補,以及至少含有選自 去氧核糖核甞酸及核甞酸類似物中之成員, (c) 在特定溫度條件下可以選擇是否與標的核酸上包含 上述特定驗基之區域雜交之探針, (d) DNA聚合酶,以及 (e) 核酸酶; 並檢測該組合物中之探針是否被切斷之步驟。 · 上述寡核苷酸引子,只要可以將標的核酸上包含上述特 定鹼基之區域增幅,將無特殊限定。雖無特殊限定,但以 - 使用國際公開第02/16639號公報記載之嵌合寡核苷酸引子 、 為較佳。又,在本發明之方法中可為Dn A引子。再者,在 本發明之方法中’可以使用兩種寡核苷酸引子。 在上述步驟中使用之DNA聚合酶雖無特殊限定,但以使 用具有股置換活性者為較佳。又對於核酸酶亦無特殊限定 83954 21 200401036 ’但從切斷嵌合寡核铜I子之核糖核苷酸部分之觀點言 之,核糖核酸酶Η適合用於本發明。 ’ σ 特佳之態樣,例如為使用以與上述特定驗基互補之驗美 :基做為核糖核答酸之探針以及使用只含二 核I輙Η(做為核酸酶)之組合物之檢測方法。 又,對於反應之條件亦無特殊限$,只要適 所用之DNA聚合酶及核酸酶保持#月望活性之條件即可月。匕终 育之溫度,視所用之酵素及引子以及探針之鍵長等而決= 。尤其以使用耐熱性酵素在高溫(例如5〇它〜Μ 應之態樣為特佳。 )卜進盯反 在上述反應中’被增幅之標的核酸與探針雜交。其中, 在標的核酸與探針之鹼基序列非正 核酸與探針之雙股核酸形成錯配部分。亦具= =換而具有野生型驗基序列之探針之情況,若標的核酸 中存在驗基置換,則形成如上述之錯配部分。此時,藉由 與具有錯配感受性之核酸酶共存,將只有不形成錯配:探 針被切斷。再者,获士. 猎由以使破切斷之探針不與標的核酸再 雜交之方式設定反應條件及探針之鍵長,被切斷之探針將 從標的核酸游離,繼而耜& _ & & μ… 而新的板針與標的核酸雜交以及 樣地切斷。反覆此耸牛SR . ^ 寺步知,在反應物_被切斷之探針將 積。 上述之反應雖為使用具有野生型驗基序列之探針之情況 之例子C藉由使用具有包含驗基置換之驗基序列之探針 ,於存在驗基置換之標的核酸存在下探針亦可被切斷/ 83954 -22- 200401036 上述之核糖核酸酶Η對於錯配具有感受性,適合在本發明 中用來切斷探針。 又,在所用之DNΑ聚合酶為具有5 3 ’核酸外切酶活性者 之情況,不論是否錯配,探針皆會被分解。因此從防止此 現象之觀點言之,被用做上述探針者,以使用不會被DNA 聚合酶之5,— 3'核酸外切酶活性分解,亦即對於5|〜3,核酸 外切酶活性有耐性之探針為較佳。 在一態樣中,藉由調整從所用引子之雜交區域至該探針 之雜交區域之距離,可以構築對於5,_3,核酸外切酶活性有 耐性之探針。 又,在另一態樣中,可以使用經修飾以致探針不會被5, 4 3’核酸外切酶活性分解之探針。該修飾無特殊限制,例 如5’末端之脫磷酸化、核糖之3位之羥基之修飾、鍵結於磷 駄基之氧原子被硫原子置換之(α —s)核苷酸之使用、胜肽 核酸(PNA ; Nature,365, 566-568 (1993))之使用、胺烷基化 、色素、螢光物質、發光物質、消光物質、各種配位子(生 物素及洋地黃毒牮等)、酵素等之附加、以及導入可以得到 立體障礙之置換基。該修飾,若可以獲得上述耐性,將可 被置於該探針之51末端或51末端側之任一位置。 又,在另一態樣中,被增幅之標的核酸雖與探針雜交, 但在特定溫度條件下,當該探針之鹼基序列與標的核酸之 鹼基序列非正確地一致之情況’標的核酸與探針之雙股核 St非常不安定m在該探針之祕序列與標的核 酸之鹼基序列正確地一致之情況,標的核酸與探針之雙股 83954 -23 - 200401036 核酸定。4士 w 。 二果,只有形成安定雙股之情況,該探針被切 斷’二ΐ,藉由以使被切斷之探針不與標的核酸再雜交之 方^又疋反應條件及探針之鏈長,被切斷之探針將從標的 核酸游離,繼而新的探針與標的核酸雜交以及被同樣地切 斷反復此等步驟,在反應物中被切斷之探針將蓄積。 反應雖為使用具有野生型鹼基序列之探針之情況 之例子’但藉由使用具有包含驗基置換之驗基序列之探針 :;存在基置換之標的核酸,探針亦可被切斷。 在上述情況中,必須設定特定溫度條件,以在該探針之 :基序物票的核酸之驗基序列非正禮地一致之情;I : 私的核馱與探針之雙股核酸非常不安定;另一方面 探針^基序列與標的㈣线基序列正確地—致之情= ’使&的核酸與探針雙 該溫度可以視探針 凋整。雖無特殊限定,但可列舉7〇<>c以下為例 ,以65。〇以下為較佳。 ” 對於檢測探針之切斷之手段 枋舻八> i 丁仅…、特殊限疋,可利用公知之 核I文刀析手法。例如藉由一 猎由电,水法或局速液相層析法,可以 k仏針之鏈長變化檢測出切斷。 做為特佳之態樣者,包含例如探針用她# & μ a a + ^ φ ^ ( 紂用瓦光物質及具有使 螢先物貝發出之螢光消光之作 辦#! lL π <物貝一者以適當之間隔 不《者。此寺探針雖然在完整能 〜、穴體不會發出螢光,但 在被切斷以致螢光物質與消光物 夠發出營光。此等離被拉開之情況能 D 使用 6-FAM (6-羧基螢光 ABCYL(4_:甲胺基偶氮笨,)、職(6·„_Χ_ 83954 -24 - 200401036 若丹明 mDABCYL、6-FAM 與 Eclipse (Epoch Bi〇Sciences 公司製)、ROX與Eclipse、TET(四氣螢光素)與daBCYL、 以及TET與Eclipse等。藉由使用此等探針,可以由直接觀 察反應中之反應液知道疋否有驗基置換。又,藉由使用如 Smart Cycler (TAKARA Bio公司製)之反應試管中之被增幅 核酸在關閉試管下可被檢測之裝置,將能即時進行檢測及 定量。 在本發明之一態樣中,藉由使增幅產物與探針形成雜交 ’以及利用只有在完全正確配對時RNA部才會被ic AN反應 液中之RNaseH切斷並得到螢光,而錯配時RNA部不會被 RNaseH切斷而無法得到螢光訊號,可以檢測出標的核酸中 之鹼基置換。又,在另一態樣中,利用只有在於特定溫度 條件下與標的核酸形成安定雙股之情況,該探針才會被 RNaseH切斷,可以檢測出標的核酸中之驗基置換。 在本發明之鹼基置換之檢測方法中所使用之標的核酸, 可以使用單股及雙股之核酸,亦可使用DNA及RNA。視所 使用之核酸酶,有時雖難以用RNA做為標的核酸,但在該 情況,藉由以該RNA為模板調製cDNA,然後以該(::〇1^八做 為標的核酸’可以檢測出RNA上之鹼基置換。 在本發明中’可將含有標的核酸之試料用於檢測反應。 對於上述4料,雖m特殊限定,但可包含核酸或生物等 所有試料,例如可以使用細胞、組織(生檢試料等)、全血 、企清、腦脊趙液、精液、唾液、疼痰、尿、翼便、毛髮 及細胞培養物等。上述之檢體,雖無特殊限定,但較佳經 83954 -25- 200401036 過適當之處理,例如形女* t 例如心成為可以實施ϋΝΑ聚合酶反應之形 :,X供本龟明使用。此等處理包含細胞之溶解以及從試 料中萃取及精製核酸。 包含人類之高等動物之細胞通常為有1對染色體之二倍 體/因此’在染色體上之特定鹼基中有可能存在鹼基置換 為、”田胞可a為兩染色體皆不具有驗基置換之同型接合體 (同。型)、兩染色體皆存在驗基置換之同塑接合體(同型)、以 及^有*色體具有驗基置換之異型接合體(異型)3種。 對於攸一 t體之細胞調製之核酸試料,藉由使用本發明 ,驗基置換之檢測方法,可針對基因上之任意驗基,調查 忒、”田胞(即具有s亥細胞之個體)之基因型為同型或異型。雖 無特殊限;t ’但例如在使用分別對應於4套驗基之探針實施 ,毛月方法之|f况,在來自基因型為異型之細胞之核酸試 料中k測出2種&針之核荅酸被切斷所伴生之信號。另—方 面在來自基因型為同型之細胞之核酸試料中,只有檢測 出1種探針之唬。因此,本發明方法在檢測如上述之對立 基因上之鹼基置換亦有用。 在本發明方法中所使用之嵌合募核苷酸引子雖無特殊限 疋 < 以使用七、核測編碼胰臟蘭氏小島類澱粉蛋白質之;殿 粉不溶素基因之變異且具有序列表之序列編號丨,2,7及8 β己載之鹼基序列者,以及供檢測醛脫氫酶(ALDH2)基因之 變異且具有序列表之序列編號1 3及14記載之鹼基序列者為 較佳。 又’同樣地’供檢測澱粉不溶素基因之變異之寡核苷酸 83954 -26- 200401036 引子,以使用具有序列表之序列編號9及〗〇記載之鹼基序列 者,以及供檢測醛脫氫酶基因之變異且具有序列表之序列 編號1 9及2 0記載之鹼基序列者為較佳。 本發明所使用之探針雖無特殊限^,但以使用供檢測編 瑪胰臟蘭氏小島類澱粉蛋白質之澱粉不溶素基因之變異且 具有序列表之序列編號3,4,i丨及12記載之驗基序列者, 以及供檢測醛脫氫酶(ALDH2)基因之變異且具有序列表之 序列編號15,16,21及22記載之鹼基序列者為較佳。 (3)本發明之鹼基置換之檢測所使用之套組 本發明提供檢測上述本發明之鹼基置換所使用之套組。 在-實施態樣中,該套組含有本發明組合物之成分,亦即: (a) 至y 1種肷合寡核苷酸引子,其與標的核酸之上述特 疋驗基之3纟端側之驗基序列實質上互補,以及至少含有 選自去氧核糖核芬酸及核誓酸類似物中之成員及核糖核誓 酸’且該核糖核:y:酸被配置在該引子之3|末端或3,末端 以及 、(b)可與標的核酸上包含上述特定鹼基之區域雜交,且 視上述特定鹼基之種類可被核酸酶切斷或不被切斷之探針。 又’另一態樣為含有下列者之套組: 容二)與標的核酸之上述特线基之3,末端側之鹼基序列 貝貝上互補之至少丨種募核苷酸引子,以及 (b) 可與標的核酸上包含上述特定鹼基之區域雜交,以 及視上述特定鹼基之種類可被核酸酶切斷或不被切斷,且 不曰被DNAaK合酶之5,— 31核酸外切酶活性切斷之探針。 83954 -27- 200401036 又’另~態樣為含有下列者之套組: 至少!種嵌合寡核甞酸引子,其與標的核酸之上述特 疋双土之3’末端側之鹼基序列實質上互補,以及至少含有 :自去氧核糖核苷酸及核甞酸類似物中之成員及核二二苷 :及且該核糖核菩酸被配置在該引子之3,末端或3,末端側, (b)在特定溫度條件下可以選擇是否與標的核酸上包人 上述特定鹼基之區域雜交之探針。 3 再者’另一態樣為含有下列者之套組: (a) 至少1種嵌合寡核甞酸引子,其與標的核酸之 定驗基之3'末端側之驗基序列實f上互補,以及至少含有 選自去氧核糖核苷酸及核苷酸類似物中之成員,以及3 (b) 在特定溫度料下可以選擇是否與標的核酸上包人 上述特定鹼基之區域雜交之探針。 3 上述钕針,例如為含有具野生型鹼基序列之探針或呈人 :基置換之驗基序列之探針者,含有此二種探針者,以: 3有刀別對應於4種驗基之4種探針者。此等探針可以 供檢測之標識。 、σ 本發明之套組所用之嵌合寡核苷酸引子雖無特殊限定, 仁以使用供檢測編碼胰臟蘭氏小島類澱粉蛋白質之澱粉不 ’合素基因之變異且具有序列表之序列編號】,2,7及8記載 之驗基序列者’以及供檢測經脫氫酶(ALDH〗)基因之變異 有彳列表之序列編號13及14記載之㉟基序列者為較 83954 -28- 又,同樣地’供檢測澱粉不溶素基因之變異之募核货酸 引子,以使用具有序列表之序列編號9及10記載之鹼基序列 者,以及供檢測醛脫氫酶(ALDH2)基因之變異且具有序列 表之序列編號1 9及20記載之鹼基序列者為較佳。 本發明套組所使用之探針雖無特殊限定,但以使用供檢 測編碼胰臟蘭氏小島類澱粉蛋白質之澱粉不溶素基因之變 異且具有序列表之序列編號3,4’丨丨及12記載之鹼基序$ 者,以及供檢測醛脫氫酶(ALDH2)基因之變異且具有序列 表之序列編號15,16,21及22記載之鹼基序列者為較佳。 上述套組可含有DNA聚合酶、核酸酶、DNA聚合酶之基 質(即dNTP)及反應液之調製等時所使用之其他成分。 如上述,本發明,將具有待調查鹼基置換之序列之標的 核酸增幅,再者,由於視該鹼基置換之存在或不存在連續 地引起探針之切斷,因此在以微量之標的核酸做為試料之 情況,可以高感度檢測出鹼基置換。再者,標的核酸之掸 幅,雜交,探針之切斷以及起因於探針之切斷之信號之^ 測可以單一步驟實施,而提供簡便且迅速之驗基置換之= 測方法。 欢 貫施例 雖藉由以下之實施例更詳細地說明本發明,但本發明 限於實施例之範圍。 參考例1 在實施例中耐熱性RNaseH之單位數藉由以下之方法叶 83954 -29 - 200401036 將聚(rA)及聚(dT)(皆為 Amersham Pharmacia Biotech 公 司製)各1 mg分別溶解於含1 mM EDTA之40 mM Tris-HCl緩 衝液(pH 7.7) 1 ml中,以調製聚(rA)溶液及聚(dT)溶液。 繼而,在含 4 mM MgCl2、1 mM DTT、0.003% BSA及 4% 甘油之4〇111河丁143-:9(31(口117.7)中’加入聚(^八)溶液並使其 最終濃度為20 pg/m卜以及加入聚(dT)溶液並使其最終濃度 為3 0 pg/ml,於3 7°C反應10分鐘後,冷卻至4°C,而調製得 聚(rA)及聚(dT)溶液。在該聚(rA)-聚(dT)溶液1〇〇 μΐ中加入 經任意稀釋之酵素液1 μΐ,於40°C反應10分鐘,繼而加入 0.5M EDTA 10 μ1以使反應停止後,測定260 nm之吸光度。 作為對照組者’係將0.5M EDTA 10 μΐ加入上述反應液後, 於40°C反應1 0分鐘’然後測定吸光度。其後,從EDTA不存 在下反應所求得之吸光度減去對照組之吸光度,而求得差 值(吸光度差)。亦即從吸光度差可以算出藉由酵素反應而 從聚(rA)-聚(dT)雜交體游離出之核甞酸之濃度。RNaseH之 1單位’為10分鐘期間使A26()增加量相當於1 nmole核糖核芬 酸游離所需之酵素量’其係從下式算出。 單位=[吸光度差x反應液量(ml)]/〇〇152><(11〇/1〇〇)x 稀釋率 實施例1 (1)在模型系中之檢測 檢讨在併用嵌合探針之即時ICAN反應系統中,SNP之檢 測方法做為檢測對象者,選擇編碼胰臟蘭氏小島類澱粉 蛋白貝之焱粉不溶素基因。在該基因中第20位之絲胺酸 83954 -30- 200401036 (AGC)置換為甘胺酸(GGC)之錯義變異在單獨時雖只引起 輕微的耐糖能力異常,但若合併2型糖尿病之遺傳要素,則 將提早其之發病以及更重症化。 首先用DNA合成機(Applied Biosystem公司製)合成在 ICAN反應中供檢測澱粉不溶素基因之變異用之IAPP-F-2 引子及IAPP-R-1引子,其分別具有序列表之序列編號1及2 之鹼基序列。繼而用DNA合成機調製具有序列表之序列編 號3,11及2 1記載之鹼基序列之嵌合寡核甞酸,野生型檢測 用之1人??探針€人0(”2)、1人??9入探針及1八??8八探針, 以及具有序列表之序列編號4,12及22記載之鹼基序列之變 異型檢測用之IAPP探針CGG (M2)、IAPP 9G探針及IAPP 8G 探針。又,野生型檢測用之IAPP探針CAG (W2)、ΙΑΡΡ 9A 探針及IAPP 8A探針,為在Y端附加做為螢光標識之6-FAM (ABI公司製)且在3'端附加做為消光標識之DABCYL(格蘭 研究公司製)之DNA-RNA-DNA型寡核苷酸探針;另一方面 ,變異型檢測用之IAPP探針CGG (M2)、IAPP 9G探針及IAPP 8G探針,為在5'端附加做為螢光標識之ROX (ABI公司製) 及在3·端附加做為消光標識之DABCYL之DNA-RNA-DNA 型寡核甞酸探針。 又,分別具有序列表之序列編號5及6記載之600 bp之鹼 基序列之片段藉由常法調製,然後分別將其分段選殖入 pGEM-T EASY載體(Promega製)。使用此等質體分別做為野 生型陽性對照組(序列編號5)及變異型陽性對照組(序列編 號6)。該陽性對照組,調製成濃度為每1 μΐ含1〇3,1〇4,1〇5 83954 31 200401036 套。因此,若使用上述對照組1 0 μΐ,將成為1 Ο4,1 〇5及1 ο6 套。又,IC AN法之反應條件被示於下文。 亦即,添加最終濃度為3 2 mM之海派斯-氫氧化鉀缓衝液a flat 7-11471 No. 8) ’ICAN method (Isothermal and Chimeric Primer _ Started nucleic acid amplification method, see International Publication No. 00/56877) and other nucleic acid amplification methods. ^ In these methods, at the same time or after the amplification of the target nucleic acid, the target base substitution can be detected by hybridizing with the labeled probe in the presence of RNaseH. W In a preferred aspect of the present invention, there is no particular limitation on jy. The charge sign is a composition comprising the following components: (a) the target nucleic acid, (b) at least one chimeric nucleotide primer, which is related to the target The above-mentioned special features of the nucleotides 83954 -19-200401036 of the 3 'terminal side of the definite base are substantially complementary, and contain at least members and ribonucleosides that are far away from deoxyribonucleotides and ribonucleic acid analogs. Acid, and the ribonucleotide is arranged at the 3, end or 3, end side of the primer, (c) can hybridize to the target nucleic acid region containing the above specific base, and depending on the type of the above specific base, A nuclease-cleaved or non-cleaved probe, (d) a DNA polymerase having strand displacement activity, and (e) a nuclease; and a step of detecting whether the probe in the composition is cleaved. Yet another aspect is characterized by comprising cultivating a composition containing the following components: (a) the target nucleic acid, (b) at least one oligonucleotide primer, which is characterized by the above characteristics of the target nucleic acid, the test base 3, The terminal sequence of the test base is complementary in f and contains at least a distant deoxyribonucleic acid: y: a member of an acid and a nucleotide analog, (c) can hybridize to the target nucleic acid region containing the specific base described above And probes that can be cleaved or not cleaved by nucleases depending on the type of the above-mentioned specific bases, and will not be cleaved by the 5-3 'exonuclease activity of DNA * synthase, (d) DNA polymerization Enzyme, and (e) a nuclease; and k ′ is a step of whether the probe in the composition is cleaved. Moreover, the re-state is characterized by comprising cultivating a composition containing the following components: (a) the target nucleic acid, (b) at least one chimeric oligonucleotide ^: acid primer 'and the above-mentioned characteristics of the target nucleic acid: bases, 3, the test sequence on the terminal side is substantially complementary, and contains at least members from ribonucleic acid and ribonucleic acid analogues, and ribonucleic acid 83954 -20- 200401036 l, and the ribonucleotide is configured At the 3 'end or 3, end side of the primer, (c) a probe that can choose to hybridize to a region containing the above-mentioned specific base on the target nucleic acid under specific temperature conditions, (d) a DNA polymerase, and (e ) Nuclease; and a step of detecting whether the probe in the composition is cut off. Furthermore, another aspect is characterized by comprising cultivating a composition containing the following ingredients:. U) the target nucleic acid, _ (b) at least one oligonucleotide primer, which is substantially complementary to the base sequence of the 3 'end side of the specific base of the target nucleic acid, and contains at least one selected from deoxyribonucleic acid Members of acids and nucleotide analogs, (c) probes that can choose whether to hybridize to the target nucleic acid region containing the specific test substrate under specific temperature conditions, (d) DNA polymerase, and (e) nucleic acids An enzyme; and a step of detecting whether a probe in the composition is cleaved. · The oligonucleotide primers are not particularly limited as long as they can amplify a region containing the above-mentioned specific base on the target nucleic acid. Although not particularly limited, the chimeric oligonucleotide primer described in International Publication No. 02/16639 is preferably used. The Dn A primer may be used in the method of the present invention. Furthermore, in the method of the present invention, two kinds of oligonucleotide primers can be used. Although the DNA polymerase used in the above steps is not particularly limited, it is preferable to use one having strand displacement activity. There is no particular limitation on the nuclease 83954 21 200401036 '. However, from the viewpoint of cutting the ribonucleotide portion of the chimeric oligocopper I, ribonuclease is suitable for use in the present invention. 'σ is particularly good, such as the use of beauty test complementary to the above specific test base: the base as a ribonucleotide probe and the use of a composition containing only dinuclear I 核 (as a nuclease) Detection method. In addition, there are no special restrictions on the conditions of the reaction, as long as the conditions for the DNA polymerase and nuclease used to maintain # 月 望 活动 are suitable. The temperature of the dagger is determined by the enzymes and primers used, and the bond length of the probe. In particular, the use of thermostable enzymes at high temperatures (for example, 50 to Μ should be particularly preferred.) In the above reaction, the target nucleic acid that has been amplified is hybridized with the probe. Among them, a mismatched portion is formed between the non-positive nucleic acid of the base sequence of the target nucleic acid and the probe and the double-stranded nucleic acid of the probe. In the case of == instead of a probe having a wild-type test sequence, if there is a test substrate substitution in the target nucleic acid, a mismatched portion as described above is formed. At this time, by coexisting with a nuclease with mismatch sensitivity, only the mismatch will not be formed: the probe is cut. Furthermore, the reason is to set the reaction conditions and the bond length of the probe in such a way that the broken probe does not re-hybridize with the target nucleic acid, and the cut probe will be released from the target nucleic acid, and then 耜 & _ & & μ ... And the new probe hybridizes with the target nucleic acid and cuts the sample. Repeat this astounding SR. ^ Temple step knows that the probe will accumulate when the reactant is cut off. Although the above reaction is an example of a case where a probe having a wild-type test sequence is used. C. By using a probe having a test sequence that includes a test substrate substitution, the probe can also be used in the presence of a target nucleic acid that has a test substrate substitution. Cleaved / 83954 -22- 200401036 The aforementioned ribonuclease Η is susceptible to mismatches and is suitable for use in the present invention to cleave probes. When the DNA polymerase used is a 5 3 'exonuclease activity, the probe is decomposed regardless of whether it is mismatched or not. Therefore, from the viewpoint of preventing this phenomenon, those who are used as the above-mentioned probes should not be decomposed by the DNA polymerase 5-3 'exonuclease activity, that is, for 5 | ~ 3, exonuclease Probes that are resistant to enzyme activity are preferred. In one aspect, by adjusting the distance from the hybridization region of the primer used to the hybridization region of the probe, a probe that is resistant to 5, _3, exonuclease activity can be constructed. Also, in another aspect, a probe modified such that the probe is not decomposed by 5, 4 3 'exonuclease activity can be used. There are no special restrictions on the modification, such as dephosphorylation at the 5 'end, modification of the hydroxyl group at the 3 position of ribose, use of (α -s) nucleotides in which an oxygen atom bonded to a phosphoryl group is replaced by a sulfur atom, Use of peptide nucleic acids (PNA; Nature, 365, 566-568 (1993)), amine alkylation, pigments, fluorescent substances, luminescent substances, matting substances, various ligands (biotin and digitalis, etc.) The addition of enzymes, enzymes, etc., and the introduction of substitution groups to obtain steric disorders. This modification can be placed at either the 51-terminus or 51-terminus side of the probe if the above-mentioned resistance is obtained. Also, in another aspect, although the amplified target nucleic acid hybridizes with the probe, under certain temperature conditions, when the base sequence of the probe and the base sequence of the target nucleic acid are not correctly consistent, the target The double-stranded core St of the nucleic acid and the probe is very unstable. When the secret sequence of the probe and the base sequence of the target nucleic acid are exactly the same, the double-stranded nucleic acid of the target and the probe 83954 -23-200401036 nucleic acid. 4 persons w. The second effect is that only when a stable double strand is formed, the probe is cut off, so that the cut off probe does not re-hybridize with the target nucleic acid, and the reaction conditions and the chain length of the probe The cleaved probe will be released from the target nucleic acid, and then the new probe will hybridize with the target nucleic acid and be similarly cleaved. Repeat these steps, and the cleaved probe will accumulate. Although the reaction is an example of the case where a probe having a wild-type base sequence is used ', by using a probe having a base sequence that includes a base substitution: the probe can also be cleaved by the presence of the target nucleic acid of the base substitution. . In the above case, it is necessary to set specific temperature conditions so that the base sequence of the nucleic acid of the probe: the motif ticket is unceremoniously consistent; I: the private nucleus and the double-stranded nucleic acid of the probe are very Unstable; on the other hand, the probe base sequence and the target base line sequence are correct-the sentiment = 'make & nucleic acid and probe double. The temperature can be regarded as probe withering. Although not particularly limited, 70 < > c is exemplified below, and 65 is used. 〇 The following is preferred. For the means of cutting the detection probes, it is only possible to use the well-known nuclear analysis method. For example, by hunting electricity, water, or local liquid phase. Chromatography can detect cuts by changing the chain length of a needle. As a particularly good person, it includes, for example, a probe with her # &a; + aa + ^ φ ^ ( Fluorescent extinction by Zuo Beibei ## lL π < Waibei is not at a proper interval. Although this temple probe is intact, the cavity will not emit fluorescence, but it is being cut. It is broken so that the fluorescent substance and the matting substance are enough to emit camping light. In the case that the plasma is pulled apart, 6-FAM (6-carboxyfluorescent ABCYL (4_: methylamino azobenzyl),) (6 · „_Χ_ 83954 -24-200401036 Rhodamine mDABCYL, 6-FAM and Eclipse (manufactured by Epoch BioSciences), ROX and Eclipse, TET (Four Gas Fluorescein) and daBCYL, TET and Eclipse, etc. By using These probes can be directly observed by the reaction solution in the reaction to see if there is any test group substitution. Also, by using such as Smart Cycler (TAKARA Bi o Company-made) Amplified nucleic acid in a reaction test tube can be detected and quantified immediately after the test tube is closed. In one aspect of the invention, the amplified product is hybridized with the probe. And using the RNA part will be cut off by the RNaseH in the ic AN reaction solution and get fluorescence only when the pairing is completely correct, and the RNA part will not be cut off by the RNaseH when mismatching, and the fluorescence signal cannot be obtained, and the target can be detected. Substitution of bases in nucleic acids. Also, in another aspect, the probe is cleaved by RNaseH only when a stable double strand is formed with the target nucleic acid under specific temperature conditions, and the target nucleic acid can be detected. Test base substitution. The target nucleic acid used in the base substitution detection method of the present invention can use single-stranded and double-stranded nucleic acids, as well as DNA and RNA. Depending on the nuclease used, it is sometimes difficult to use. RNA is used as the target nucleic acid, but in this case, by using the RNA as a template to modulate the cDNA, and then using (:: 〇1 ^ 八 as the target nucleic acid 'can detect the base substitution on the RNA. In the present invention ' The sample containing the target nucleic acid is used for the detection reaction. Although the above-mentioned four materials are specifically limited, they can include all samples such as nucleic acids or organisms. For example, cells, tissues (bioassay samples, etc.), whole blood, corporate culture, Cerebrospinal fluid, semen, saliva, sputum pain, urine, pterygium, hair, cell culture, etc. Although the above-mentioned specimens are not particularly limited, they are preferably subjected to appropriate treatment such as shape of 83954 -25- 200401036. Female * t For example, the heart becomes a form that can carry out the ϋΝΑ polymerase reaction :, X for the use of this turtle. These processes include lysis of cells and extraction and purification of nucleic acids from the sample. Cells containing higher human animals usually have a diploid pair of chromosomes / so 'there may be base substitutions in specific bases on the chromosome,' "Tian Ke Ke a means that neither chromosome has a test base substitution. There are three types of homozygote (homotype), homozygous zygote (isotype) in which chromosome substitution is present on both chromosomes, and heterozygote zygote (heterotype) with chromosome substitution in test base. Nucleic acid samples prepared by cells in the body, by using the method for detecting base replacement of the present invention, can investigate any genotype on the gene, and investigate whether the genotype of the tadpole ("cell") Or shaped. Although there is no particular limitation; t ', for example, when two probes corresponding to four test bases are used for implementation, the condition of the hair month method is f, two kinds of k are detected in a nucleic acid sample from a cell with a genotype & The needle's riboic acid is cut off by the accompanying signal. On the other hand, in nucleic acid samples from cells with genotypes, only one probe was detected. Therefore, the method of the present invention is also useful for detecting base substitutions on opposite genes as described above. Although the chimeric nucleotide raising primers used in the method of the present invention are not particularly limited < to use VII, nuclear testing to encode the pancreatic islet-like amyloid protein; the mutation of the insoluble gene and the sequence list Sequence numbers 丨, 2, 7, and 8 β-containing base sequences, and those for detecting aldehyde dehydrogenase (ALDH2) gene mutations and having the base sequences described in sequence numbers 1 3 and 14 of the sequence listing are Better. In the same way, the oligonucleotide 83954 -26- 200401036 primers for detecting the variation of the starch insolubilin gene are used, and those having the base sequences described in SEQ ID NOs: 9 and 〖〇 in the Sequence Listing, and for detecting aldehyde dehydrogenation It is preferable that the enzyme gene is mutated and has the base sequences described in SEQ ID NOs: 19 and 20 of the sequence listing. Although the probe used in the present invention is not particularly limited ^, it has a sequence number 3, 4, i, and 12 for detecting the variation of the amyloid gene of the amyloid pancreatic islet-like amyloid protein. Those having a base test sequence as described, and those having a base sequence described in sequence number 15, 16, 21, and 22 of the sequence listing for detecting mutations in the aldehyde dehydrogenase (ALDH2) gene are preferred. (3) Kit for detecting base substitution of the present invention The present invention provides a kit for detecting the aforementioned base substitution of the present invention. In an embodiment, the kit contains the components of the composition of the present invention, that is: (a) to y 1 type of conjugated oligonucleotide primer, which is related to the 3rd end of the above-mentioned specific test base of the target nucleic acid The test base sequence on the side is substantially complementary and contains at least a member selected from the group consisting of deoxyribonucleic acid and ribonucleic acid and ribonucleic acid ', and the ribonucleic acid: y: the acid is arranged in 3 of the primer The end or 3, end, and (b) are probes that can hybridize to the target nucleic acid region containing the above-mentioned specific base, and depending on the type of the above-mentioned specific base, can be cleaved or not cleaved by a nuclease. Yet another aspect is a set containing the following: Rong 2) at least one nucleotide-priming primer complementary to the target nucleic acid of the above-mentioned special line 3, the terminal side of the base sequence, and ( b) It can hybridize to the target nucleic acid region containing the above specific bases, and depending on the type of the above specific bases, it can be cleaved or not cleaved by nucleases, and not be DNAaK synthase 5—31 Digester activity cut probe. 83954 -27- 200401036 Another aspect is a set containing the following: At least! Chimeric oligonucleotides primers, the base sequence of the 3 'end side of the above-mentioned special double soil of the target nucleic acid It is complementary to each other, and contains at least: members of self-deoxyribonucleotides and riboic acid analogs and ribobisides: and the ribonucleoside is disposed at the 3, end or 3, end side of the primer (B) Under specific temperature conditions, it is possible to choose whether or not to hybridize the probe to the target nucleic acid region in which the above specific bases are hybridized. 3 Furthermore, another aspect is a set containing the following: (a) at least one chimeric oligonucleotide primer, which is identical to the test sequence of the 3 'end of the test sequence of the target nucleic acid Complementary and at least a member selected from the group consisting of deoxyribonucleotides and nucleotide analogs, and 3 (b) under specific temperature materials, can choose whether to hybridize to the region of the target nucleic acid coated with the above specific bases Probe. 3 The above neodymium needle is, for example, a probe containing a wild-type base sequence or a probe showing a human: base substitution test sequence, and those containing these two types of probes: 3 have a knife corresponding to 4 types 4 kinds of probes for test base. These probes can be used for identification. Σ Although the chimeric oligonucleotide primers used in the set of the present invention are not particularly limited, they can be used for detecting mutations in the amylin gene encoding the pancreatic islet-like amyloid protein and having the sequence of the sequence listing No.], 2, 7 and 8 are based on the test sequence 'and those for the detection of the dehydrogenase (ALDH) gene mutation are listed in the sequence number 13 and 14 are based on the ㉟-based sequence of 83954 -28- In the same way, the primers for detecting mutations in the starch insolubilin gene are used for those having the base sequences described in SEQ ID NOs: 9 and 10 of the Sequence Listing, and those for detecting the aldehyde dehydrogenase (ALDH2) gene. It is preferred that the mutations have the base sequences described in SEQ ID NOs: 19 and 20 of the sequence listing. Although the probes used in the kit of the present invention are not particularly limited, the probes used for detecting the variation of the amylin gene encoding the pancreatic islet amyloid protein and having sequence numbers 3, 4 ', and 12 of the sequence listing are used. Those with a base sequence of $, and those with a base sequence described in sequence number 15, 16, 21, and 22 of the sequence listing for detecting a mutation in the aldehyde dehydrogenase (ALDH2) gene are preferred. The above set may contain other components used in the preparation of a DNA polymerase, a nuclease, a DNA polymerase substrate (i.e., dNTP), and a reaction solution. As described above, in the present invention, the target nucleic acid having the sequence of the base substitution to be investigated is amplified. Furthermore, the probe is cut off continuously depending on the presence or absence of the base substitution. As a sample, base substitution can be detected with high sensitivity. In addition, the detection of the target nucleic acid's size, hybridization, probe cutting, and signal resulting from the probe cutting can be performed in a single step, and a simple and rapid method for test base replacement is provided. Although the present invention is described in more detail by the following examples, the present invention is limited to the scope of the examples. Reference Example 1 In the examples, the unit numbers of heat-resistant RNaseH were dissolved by the following method: 83954 -29-200401036 Poly (rA) and poly (dT) (both manufactured by Amersham Pharmacia Biotech) were each dissolved in In 1 ml of 1 mM EDTA in 40 mM Tris-HCl buffer (pH 7.7), a poly (rA) solution and a poly (dT) solution were prepared. Then, the poly (^ A) solution was added to 4011 Hetin 143-: 9 (31 (port 117.7)) containing 4 mM MgCl2, 1 mM DTT, 0.003% BSA and 4% glycerol and the final concentration was 20 pg / m and adding poly (dT) solution to a final concentration of 30 pg / ml, reacting at 37 ° C for 10 minutes, cooling to 4 ° C, and preparing poly (rA) and poly ( dT) solution. To this poly (rA) -poly (dT) solution 100 μΐ, add 1 μΐ of any diluted enzyme solution, and react at 40 ° C for 10 minutes, and then add 0.5M EDTA 10 μ1 to stop the reaction. Then, the absorbance at 260 nm was measured. As a control group, '0.5M EDTA 10 μΐ was added to the above reaction solution, and the reaction was performed at 40 ° C for 10 minutes. Then the absorbance was measured. Then, the reaction was determined in the absence of EDTA. Obtain the absorbance minus the absorbance of the control group to find the difference (absorbance difference). That is, from the absorbance difference, the riboic acid released from the poly (rA) -poly (dT) hybrid through enzyme reaction can be calculated. The concentration of 1 unit of RNaseH is the amount of enzyme required to increase A26 () during 10 minutes, which is equivalent to 1 nmole of riboflavin. Unit = [Difference in absorbance x amount of reaction solution (ml)] / 〇〇152 > < (11〇 / 1〇〇) x Dilution rate Example 1 (1) Testing and review in the model system In the real-time ICAN response system of the chimeric probe, the detection method of SNP is selected as the detection target, and the pancreas insoluble gene encoding pancreatic islet amyloid shellfish is selected. The serine acid at the 20th position in the gene 83954 -30- 200401036 (AGC) is replaced by a glycine (GGC) missense variant, which alone causes only a slight abnormality in glucose tolerance, but if the genetic elements of type 2 diabetes are combined, its onset will be earlier and more Aggravated. First, a DNA synthesizer (made by Applied Biosystem) was used to synthesize the IAPP-F-2 primer and the IAPP-R-1 primer for detecting the variation of the amylin gene in the ICAN reaction, each of which has the sequence of the sequence listing The base sequences of Nos. 1 and 2. Then a DNA synthesizer was used to prepare the chimeric oligonucleotides having the base sequences described in Sequence Numbers 3, 11 and 21 of the Sequence Listing, and one person for wild-type detection? Needle 0 ("2), 1 person? 9 probes and 18? 8 probes, to IAPP probes CGG (M2), IAPP 9G probes, and IAPP 8G probes for variant detection of the base sequences described in Sequence Numbers 4, 12, and 22 of the Sequence Listing. Also, IAPP probes for wild-type detection CAG (W2), IAPP 9A probe and IAPP 8A probe are DABCYL (Glen Research) with 6-FAM (manufactured by ABI) as the fluorescent logo on the Y end and 3 'end as the extinction logo. (Made by the company) DNA-RNA-DNA type oligonucleotide probe; on the other hand, IAPP probe CGG (M2), IAPP 9G probe and IAPP 8G probe for variant detection are added at the 5 'end ROX (fluorescently labeled) ROX (manufactured by ABI) and a DNA-RNA-DNA type oligonucleotide probe with DABCYL added as a matting mark at the 3 · end. In addition, fragments each having a base sequence of 600 bp as described in Sequence Numbers 5 and 6 of the Sequence Listing were prepared by a conventional method, and then they were individually selected and segmented into a pGEM-T EASY vector (promega). These plastids were used as the wild type positive control group (sequence number 5) and the variant positive control group (sequence number 6). The positive control group was prepared to have a concentration of 103, 104, 105 83954 31 200401036 per 1 μΐ. Therefore, if the above-mentioned control group 10 μ 使用 is used, it will be 10 04, 105 and 1 6 sets. The reaction conditions of the IC AN method are shown below. That is, add Hypas-KOH hydroxide to a final concentration of 3 2 mM

(pH 7.8) ’ 100 mM 乙酸 |甲,1% DMSO,0.01% BSA,4 mM 之乙酸鎂,各500 μΜ之dNTPs混合物,4U之BcaBESTDNA 聚合酶(TAKARA Bio公司製),用國際公開第02/22831號公 報記載之方法調製之Bca RNaseH 4800U,各25 pmol之 IAPP-F-2 及 IAPP-R-1 引子對,5pmol 之 IAPP 探針 CAG(W2) 及10 pmol之IAPP探針CGG (M2),以及做為模板核酸之各 陽性對照組10 μΐ,並用滅菌水使最終體積調整為25 μ1。將 該反應液置於預先設定在55。(:之Smart Cycler (TAKARA Bio公司製)中,並保持100分鐘。結果,在使用野生型陽性 對照組做為模板之情況,在1 04,1 05及1 06套/反應之任一系 統中’皆觀察到來自IAPP探針CAG(W2)之6-FAM螢光信號 大巾S增加。另一方面,大體未見到來自IApp探針CGG (M2) 之ROX螢光信號增加。 又’在使用變異型陽性對照組時,在1〇4,1〇5及1〇6套/ 反應之任一系統中,皆觀察到來自IAPP探針CGG (M2)之 R〇X發光信號大幅增加。另一方面,大體未見到來自IAPP 探針CAG (W2)26_FAM螢光信號之增加。 從上述可以確認,本發明之方法,藉由將野生型及/或變 ”型2種兩端標識之嵌合探針加以組合,可以即時檢測出澱 粉不溶素基因之變異。 83954 -32- 200401036 (2) 在基因組DNA中之檢測 檢討在以人類基因組DNA做為模板之即時ic AN反應系 統中’ SNP之檢測方法。除了用市售之人類基因組DNA(人 類基因組DNA ; 1 ng ’ 1 〇 ng或50 ng/反應)做為模板之核酸 之外,其餘與實施例1 -(1)記載之反應條件相同。結果與陽 性對照組之時一樣,觀察到來自IAPP探針CAG (W2)之 6-FAM螢光信號大幅增加。另一方面,大體未見到來自IApp 探針CGG (M2)之ROX螢光信號增加。又,該結果與用通常 之定序法解析人類基因組DNA之結果一致。因此,確認依 照本發明之結果與先前方法相同。 (3) RNaseH之檢討(pH 7.8) '100 mM acetic acid | formaldehyde, 1% DMSO, 0.01% BSA, 4 mM magnesium acetate, each 500 μM dNTPs mixture, 4U BcaBESTDNA polymerase (manufactured by TAKARA Bio), using International Publication No. 02 / Bca RNaseH 4800U prepared by the method described in Gazette No. 22831, each of 25 pmol IAPP-F-2 and IAPP-R-1 primer pairs, 5 pmol IAPP probe CAG (W2) and 10 pmol IAPP probe CGG (M2) And 10 μΐ of each positive control group as a template nucleic acid, and the final volume was adjusted to 25 μ1 with sterilized water. This reaction solution was set at 55 in advance. (: Smart Cycler (manufactured by TAKARA Bio), and held for 100 minutes. As a result, when a wild-type positive control group was used as a template, in any of 1, 04, 1 05, and 1 06 sets / reactions 'Each of the 6-FAM fluorescent signals from the IAPP probe CAG (W2) was observed to increase. The other hand, the ROX fluorescence signal from the IApp probe CGG (M2) was not seen to increase. When using the variant positive control group, a significant increase in the ROX luminescence signal from the IAPP probe CGG (M2) was observed in any of the systems of 104, 105, and 106 sets / reaction. On the one hand, no increase in the fluorescence signal from the IAPP probe CAG (W2) 26_FAM is generally seen. From the above, it can be confirmed that the method of the present invention includes embedding two types of wild-type and / or modified-type two-end markers. The combination of probes can be used to detect the variation of the starch insoluble gene in real time. 83954 -32- 200401036 (2) Detection in genomic DNA Review in the instant ic AN reaction system using human genomic DNA as a template. Detection method. Except using commercially available human genomic DNA (human genomic DNA; 1 ng '1 ng or 50 ng / reaction) except for the nucleic acid used as a template, the rest were the same as the reaction conditions described in Example 1-(1). The results were the same as those of the positive control group. W2) 6-FAM fluorescence signal increased significantly. On the other hand, no increase in ROX fluorescence signal from the IApp probe CGG (M2) was observed. Moreover, this result is similar to the analysis of human genomic DNA by the usual sequencing method. The results are consistent. Therefore, it is confirmed that the results according to the present invention are the same as the previous method. (3) Review of RNaseH

檢討本發明方法中使用之RNaseH。亦即,在上述實施例 1-(1)記載之反應中,以使用Tli RNaseH(用國際公開第 02/22831號公報記載之方法調製)之系統(丨00U/25 μΐ反應) 代替Bca RNaseH。在本實施例中,使用具有序列表之序列 編號7及8記載之鹼基序列之iaPP-F-Ι引子及IAPP-R6008引 子。又’反應溫度設定為6 0 °C。此以外之條件,與上述實 施例1 -(1)記載之反應條件完全相同。結果,使用野生型陽 性對照組做為模板核酸時,在1〇6套/反應之系統中觀察到來 自IAPP探針CAG (W2)之6-FAM螢光信號大幅增加。另一方 面,大體未見到來自IAPP探針CGG (M2)之ROX螢光信號增 加。又,使用變異型陽性對照組時,在1 〇6套/反應之系統中 觀察到來自IAPP探針CGG (M2)之ROX螢光信號大幅增加 ’另一方面,大體未見到來自IAPP探針CAG (W2)之6-FAM 83954 -- 200401036 f光信號增加。亦即,在本實施例中,反應溫度為60。。之 尚溫之情況,藉由用RNaseH選擇、切斷標的核酸與探針之 正確配對或錯配,或是用RNaseH選擇、切斷標的核酸與探 針所形成之安定雙股,將可以更高之精確度檢測出目的之 驗基置換。 (4)嵌合探針之rNa部分之鹼基數為丨個鹼基者之特異性 之檢討 對於本叙明方法所用之喪合探針之A部分由1驗基之 嘌呤鹼基組成之情況,檢討SNp檢測方法。在本實施例中 使用具有序列表11,12,21及22記載之鹼基序列之5 pm〇1 ΙΑΡΡ 9A探針與5 pm〇1 IApp 9G探針之組合,或$叩〇丨iApp 8A探針與5 pmol IAPP 8G探針之組合。又,將其他⑴八^^法 之反應條件示於下文。亦即,添加最終濃度為32 mM之海 派斯-氫氧化鉀緩衝液({^7.8),100〇11^乙酸鉀,1%131^8〇 ,0.01% BSA,4 mM 之乙酸鎂’各 5〇〇 μΜ2άΝτρδ 混合物 ,0.04%丙二胺,2U 之 BcaBEST DNA 聚合酶,100U 之 Tli RNaseH,各 50pmol 之 IAPP-F-2 及 IAPP-R]引子對,以及做 為模板核酸之各陽性對照組(濃度為2 χ 1〇5套/μ1) 5 μ1,並 用滅菌水使最終體積調整為25 μΐ。添加5 μ1水代替模板者 做為陰性對照組。將該反應液置於預先設定在6〇t之Smart Cycler中,並保持100分鐘。結果,在使用野生型陽性對照 組做為模板之情況’觀察到來自ΙΑΡΡ 9A探針或IAPP 8八探 針之6-FAM螢光信號大幅增加;在陰性對照組之情況,未 見备光彳&號 '交化。另一方面,未觀察到來自IAPP 探針或 83954 -34- 200401036 IAPP 8G探針之ROX螢光信號大幅增加。 又,使用變異型陽性對照組之情況,觀察到來自IAPP 9G 探針或IAPP 8G探針之ROX螢光信號大幅增加;在陰性對照 組之情況,未見螢光信號變化。另一方面,未觀察到來自 IAPP 9A探針或IAPP 8A探針之6-FAM螢光信號大幅增加。 從上述可以確認即使是RNA部分由1嘌呤鹼基組成之嵌 合探針,亦可以即時檢測出澱粉不溶素基因之變異。 實施例2胰臟蘭氏小島類澱粉蛋白質基因之PCR SNPs檢 測 檢討對象,與實施例1相同,選擇編碼胰臟蘭氏小島類澱 粉蛋白質之澱粉不溶素基因。 首先為了檢測在PCR反應系中澱粉不溶素基因之變異, 用DNA合成機(Applied Biosystem公司製)合成具有序列編 號9及10記載之鹼基序列之IAPP-F引子及IAPP-R引子。繼而 用DNA合成機調製具有序列編號11,12,21及22記載之鹼 基序列之嵌合寡核牮酸,野生型檢測用之IAPP 9A FAM探 針及IAPP 8A FAM探針,以及變異形檢測用IAPP 9G ROX 探針及IAPP 8G ROX探針。又,野生型檢測用之IAPP 9A FAM探針IAPP 8 A FAM探針,為在5'端附加做為螢光標識之 6-FAM且在1端附加做為消光標識之DABCYL之DNA-RNA-DNA型寡核嘗S曼探針;另一方面,變異型檢測用之 IAPP 9G ROX探針及IAPP 8G ROX探針,為在5'端附加做為 螢光標識之ROX及在3'端附加做為消光標識之DABCYL之 DNA-RNA-DNA型券核嘗酸抹針。 83954 -35 - 200401036 又,分別具有序列表之序列編號5及6記載之600 bp之鹼 基序列之片段藉由常法調製,然後分別將其分段選殖入 pGEM-T EASY載體(Promega製)。分別使用此等質體做為野 生型陽性對照組(序列編號5)及變異型陽性對照組(序列編 號6)。該陽性對照組,調製成濃度為每1 μ1含1〇5套。因此 ’若使用上述對照組1 μ 1,則每反應將成為1 〇5套。 PCR之反應條件如下述。亦即使用TaKaRa ExTaq R-PCR ver. (TAKARA Bio公司製),添加1 x R-PCR緩衝液,各300 μΜ 之 dNTPs,3 mM 鎂溶液,1.25U ExTaq R-PCR ver.,100U Tli RNaseH II,各 10 pmol 之 IAPP-F 引子及 IAPP-R引子,5 pmol 之 ΙΑΡΡ 9A FAM 探針或 ΙΑΡΡ 8A FAM 探針,5 pmol 之 IAPP 9G ROX探針或IAPP 8G ROX探針,以及做為模板核 酸之各陽性對照組1 μΐ(以上各濃度為最終濃度),並用滅菌 水使最終體積調整為25 μΐ。將該反應液置於Smart Cycler (TAKARA Bio公司製)中,於95°C處理10秒後,反覆進行95 °C /5秒,60°C /15秒及72°C /15秒之循環50次。又,螢光強度 之測定,在60°C /1 5秒之步驟中進行。Review the RNaseH used in the method of the invention. That is, in the reactions described in Example 1- (1) above, a system using Tli RNaseH (prepared by the method described in International Publication No. 02/22831) (00U / 25 μΐ reaction) was used instead of Bca RNaseH. In this example, the iaPP-F-1 primer and the IAPP-R6008 primer having the base sequences described in Sequence Numbers 7 and 8 of the Sequence Listing are used. The reaction temperature was set to 60 ° C. The other conditions are exactly the same as the reaction conditions described in Example 1- (1) above. As a result, when a wild-type positive control group was used as a template nucleic acid, a 6-FAM fluorescence signal from the IAPP probe CAG (W2) was significantly increased in a system of 106 sets / reaction. On the other hand, no increase in the ROX fluorescence signal from the IAPP probe CGG (M2) was seen. Moreover, when a variant positive control group was used, a significant increase in ROX fluorescence signal from the IAPP probe CGG (M2) was observed in a system of 106 sets / response. On the other hand, the IAPP probe was not generally seen CAG (W2) 6-FAM 83954-200401036 f Optical signal increased. That is, in this example, the reaction temperature is 60. . In the unwarranted situation, by using RNaseH to select and cut the target nucleic acid and probe correctly paired or mismatched, or use RNaseH to select and cut the target nucleic acid and probe to form a stable double strand, it will be higher Accuracy detects the intended basis replacement. (4) Review of the specificity of the base number of the rNa part of the chimeric probe is 丨 bases. For the case where the A part of the fungible probe used in this description method consists of a purine base of 1 base Review of SNp detection methods. In this example, a combination of the 5 pm01 IAPP 9A probe and the 5 pm1 IApp 9G probe with the base sequences described in Sequence Listings 11, 12, 21, and 22, or the $ AppiA 8A probe is used. Combination of needle and 5 pmol IAPP 8G probe. The reaction conditions of the other methods are shown below. That is, add Hyphas-potassium hydroxide buffer ({^ 7.8) to a final concentration of 32 mM, {10011 ^ potassium acetate, 1% 131 ^ 80, 0.01% BSA, 4 mM magnesium acetate, each 5 〇〇μΜ2άNτρδ mixture, 0.04% propylene diamine, 2U BcaBEST DNA polymerase, 100U Tli RNaseH, 50pmol each of IAPP-F-2 and IAPP-R] primer pairs, and each positive control group as a template nucleic acid ( The concentration was 2 x 105 sets / μ1) 5 μ1, and the final volume was adjusted to 25 μΐ with sterilized water. Add 5 μ1 of water instead of template as the negative control group. This reaction solution was placed in a Smart Cycler previously set at 60 t and held for 100 minutes. As a result, in the case of using the wild-type positive control group as a template, a 6-FAM fluorescence signal from the IAPP 9A probe or the IAPP 8 eight probe was significantly increased; in the case of the negative control group, no preparation was observed. & No. 'cross. On the other hand, no significant increase in the ROX fluorescence signal from the IAPP probe or 83954-34- 200401036 IAPP 8G probe was observed. In the case of using the variant positive control group, a significant increase in the ROX fluorescence signal from the IAPP 9G probe or the IAPP 8G probe was observed; in the case of the negative control group, no change in the fluorescence signal was observed. On the other hand, no significant increase in the 6-FAM fluorescence signal from the IAPP 9A probe or the IAPP 8A probe was observed. From the above, it was confirmed that even with an embedded probe in which the RNA portion is composed of 1 purine base, the variation of the amylin gene can be detected immediately. Example 2 Detection of Pancreatic Islet Islet Amyloid Protein Genes by PCR SNPs The review target was the same as in Example 1, and the starch insoluble gene encoding pancreatic Islet Islet starch protein was selected. First, in order to detect the variation of the amylin gene in the PCR reaction system, a DNA synthesizer (manufactured by Applied Biosystem) was used to synthesize the IAPP-F primer and the IAPP-R primer having the base sequences described in sequence numbers 9 and 10. Then, a DNA synthesizer was used to prepare chimeric oligonucleotides having the base sequences described in SEQ ID NOS: 11, 12, 21, and 22; the IAPP 9A FAM probe and the IAPP 8A FAM probe for wild-type detection; and variant detection. Use IAPP 9G ROX probe and IAPP 8G ROX probe. In addition, the IAPP 9A FAM probe IAPP 8 A FAM probe for wild-type detection is a DNA-RNA- with 6-FAM as a fluorescent label at the 5 'end and DABCYL as an extinction label at the 1 end. DNA-type oligonucleotide S-man probe; on the other hand, IAPP 9G ROX probe and IAPP 8G ROX probe for variant detection are ROX added as fluorescent label on the 5 'end and 3' added on the 3 'end. As a matting mark, the DNA-RNA-DNA type coupon of DABCYL is used to remove acid. 83954 -35-200401036 In addition, a fragment having a 600 bp base sequence described in sequence numbers 5 and 6 of the sequence listing, respectively, was modulated by a conventional method, and then it was segmented into pGEM-T EASY vector (promega) ). These plastids were used as a wild type positive control group (sequence number 5) and a variant positive control group (sequence number 6), respectively. The positive control group was prepared to have a concentration of 105 sets per 1 μ1. Therefore, if 1 μ1 of the above-mentioned control group is used, each reaction will be 105 sets. The reaction conditions for PCR are as follows. That is, using TaKaRa ExTaq R-PCR ver. (Manufactured by TAKARA Bio), adding 1 x R-PCR buffer, each 300 μM dNTPs, 3 mM magnesium solution, 1.25U ExTaq R-PCR ver., 100U Tli RNaseH II , Each 10 pmol of IAPP-F primer and IAPP-R primer, 5 pmol of IAPP 9A FAM probe or IAPP 8A FAM probe, 5 pmol of IAPP 9G ROX probe or IAPP 8G ROX probe, and as a template nucleic acid Each positive control group was 1 μΐ (the above concentrations are the final concentrations), and the final volume was adjusted to 25 μΐ with sterilized water. This reaction solution was placed in a Smart Cycler (manufactured by TAKARA Bio), and after being processed at 95 ° C for 10 seconds, it was repeatedly cycled at 95 ° C / 5 seconds, 60 ° C / 15 seconds, and 72 ° C / 15 seconds for 50 seconds. Times. The measurement of the fluorescence intensity was performed in the step of 60 ° C / 15 seconds.

結果,在使用野生型陽性對照組做為模板之情況,觀察 到來自IAPP 9A FAM探針或IAPP 8A FAM探針之6-FAM螢 光信號大幅增加。另一方面,大體未見到來自IAPP 9G ROX 探針或IAPP 8G ROX探針之ROX螢光信號之增加。又,使 用變異型陽性對照組做為模板之情況,觀察到來自IAPP 9G ROX探針或IAPP 8G ROX探針之ROX螢光信號之大幅增加 。另一方面,未觀察到來自IAPP 9A FAM探針或IAPP 8A 83954 •36- 200401036 FAM探針之6-FAM螢光信號之增加。 再者,在將做為模板之野生型陽性對照組及變異型陽性 對照組以等量混合者做為異型之模型系統之情況,觀察到 來自ΙΑΡΡ 9A FAM探針或ΙΑΡΡ 8A FAM探針之6-FAM發光 信號大幅增加。又,亦見到來自IApp 9G R〇x探針或IApp 8 G R Ο X探針之R 〇 χ螢光信號大幅增加。 從上述可以確認,本發明之方法,在即時pCR反應系統 中,藉由將野生型及變異型等二種兩端標識之嵌合探針加 以組合,可以檢測出澱粉不溶素基因之單一鹼基變異。 實施例3醛脫氫酶2基因之ICAN SNPs檢測之檢討 (1)在模型系統中之檢測 檢討在併用嵌合探針之即時IC AN反應系中之SNPS檢測 方法。檢討對象,選擇編碼醛脫氫酶2酵素之基因。在該基 因中之外顯子12中,存在第487位之穀胺酸(GAA)置換為離 胺酸(AAA)之一鹼基多型,至目前為止已報告與飲酒相關 之個人體質差異有密切關係,以及與罹患癌症之危險有關。 首先為了在ICAN反應系統中進行該醛脫氫酶2基因之變 異檢測,用DNA合成機(Applied Biosystem公司製)合成分別 具有序列表之序列編號13及14記載之鹼基序列之 ICAN-ALDH2-F嵌合引子及ICAN-ALDH2-R嵌合引子。繼而 合成具有序列表之序列編號15及16記載之鹼基序列之嵌合 券核嘗酸’野生型檢測用ALDH2 wG探針及變異型檢測用 ALDH2 mA探針。又’野生型檢測用之ALDH2 wG探針,為 在5’端附加做為螢光標識之R〇x標識且在3,端附加做為消 83954 -37- 200401036 光標識之Eclipse之DNA-RNA-DNA型募核芬酸探針;另一 方面’變異型檢測用之ALDH2mA探針’為在5,端附加做為 消光標識之Eclipse以及在12鹼基與13鹼基之間附加做為營 光標識之FAM之DNA-RNA-DNA型寡核苷酸探針。 又’分別具有序列表之序列編號1 7及1 8記載之2 1 5 bp之 鹼基序列之片段藉由常法調製,然後分別將其分段選殖入 pGEM EASY載體(Promega製)。分別使用此等質體做為野生 型陽性對照組(序列編號17)及變異型陽性對照組(序列編號 1 8)。該陽性對照組,調製成濃度為每1…含2 X 1 〇4套。因 此,右使用上述對照組5 μ 1,則每反應將成為1 〇5套。 ICAN法之反應條件如下述。亦即,添加最終濃度為32 之海派斯-氫氧化鉀緩衝液(pH 7.8),1 〇〇 mM乙酸鉀,5 mM 之乙酸錤’ 1。/〇二甲基亞颯,〇. 〇 4 〇/。丙二胺,〇 · 1 μ貝他因, 0.11%牛血清白蛋白’各60〇|^之€1]^丁?3,411之以36丑8丁 DNA聚合酶 ’ i〇OU Tli RNaseHII,各 5〇 pm〇kICAN_ ALDH2-F嵌合引子及ICAN-ALDH2-R嵌合引子對,5 pmol 之ALDH2 wG探針,7.5 pmol之ALDH2 mA,以及做為模板 核酸之各陽性對照組5 μ卜並用滅菌水使最終體積調整為25 μΐ。將該反應液置於Smart Cycler (Takara Bio公司製)中, 於70°C處理5分鐘後,於58。(:保持25分鐘,繼而於5(rc保持 20分鐘。又’螢光強度之測定,保持於58它及5時,各 測定1分鐘。 結果’在使用野生型陽性對照組做為模板之情況,可以 觀察到來自ALDH2 wG探針之ROX螢光信號大幅增加。另 83954 200401036 -*~ 畏曲 1 心 豆 觀祭到來自ALDH2 mA探針之6-FAM螢光产 號之增加。又,+ ° 在使用變異型陽性對照組做為模板之情沉 ,可以觀察到承 ’、水自ALDH2 mA探針之ό-FAM螢光信號大幅增 力口 。另一-方'而 田’大體未觀察到來自ALDH2 wG探針之R〇X 螢光信號之rci 3加。再者,在將做為模板之野生型陽性對照 組及變異型陽性對照組以等量混合者做為異型之模型系統 、清兄觀察到來自ALDH2 wG探針之ROX螢光信號大幅 增加又,亦觀察到來自ALDH2 mA探針之6-FAM螢光信號 大幅增加。 從上述可以確認,本發明之方法,在即時ICAN反應系統 中,藉由將野生型及變異型等二種兩端標識之嵌合探針加 以組合,可以識別醛脫氫酶2基因之單鹼基多型。 (2)在基因組dna中之檢測 檢討在以人類基因組dna做為模板之情況之即時ican 反應系中之SNPs檢測方法。做為模板之核酸,用QIAamp DNA迷你套組(QIAGEN公司)從進入治療階段後所提供之 口腔黏膜細胞及血液檢體調製。除了使用基因組DNA (5 Q ng/ 反應)之外’在與實施例3-(1)記載之反應條件相同之條件下 進行。 又’同時使用序列編號19及20所示之ALDH2-F引子及 ALDH2-R引子之引子對’並在下述條件下進行pcR。將戶斤 得之增幅產物用Microcon-30 (Milipore&司製)精製後,用 Eco57I消化,進行3% NuSieve 3 : 1瓊脂糖凝膠電泳,亦藉 由RFLP定類型。 83954 -39- 200401036 PCR使用TaKaRa ExTaq (TAKARA Bio公司製)進行。亦即 ,添加 1 x ExTaq緩衝液,各 200 μΜ之 dNTPs,1.25U ExTaq ,各10 pmol之ALDH2-F引子及ALDH2-R引子對,以及做 為模板核酸之調製人類基因組DNA 5 μΐ(以上各濃度為最 終濃度),並用滅菌水使最終體積調整為50 μΐ。將該反應 液置於 Smart Cycler SP (TAKARA Bio公司製)中,於 94。(:處 理30秒後,並反覆進行94°C/30秒,55°C/30秒及72°C/30秒 之循環3 0次。 丑(:〇571為識別(:丁0八八0之限制酵素,雖能切斷來自醛脫 氫酶2野生型之增幅產物,但不會切斷來自變異型之增幅產 物。 結果,在使用Eco 571之RFLP中,觀察到增幅產物被切斷 所產生之二片段,亦即在被認為係野生型之同型接合體之 基因組DNA檢體中,觀察到來自ALDH2 wG探針之ROX榮 光信號大幅增加。另一方面,大體未觀察到來自ALDH2 mA 探針之6-FAM螢光信號之增加。在使用Eco 571之RFLP中, 觀察到增幅產物被切斷者與未被切斷者之三片段,亦即在 被認為係異型接合體之基因組DNA檢體中,觀察到來自 ALDH2 wG探針之ROX螢光信號大幅增加。又,亦觀察到 來自ALDH2 mA探針之6-FAM螢光信號大幅增加。在使用 Eco 5 71之RFLP中,觀察到增幅產物未被切斷之一片段,亦 即在被認為係變異型之異型接合體之基因組DNA檢體中, 觀察到來自ALDH2 mA探針之6-FAM螢光信號大幅增加。另 一方面,大體未觀察到來自ALDH2 wG探針之ROX螢光信 83954 -40 - 200401036 號之增加。 從上述可以確認本發明方法之結果與先前RFLP法之結 果一致。 實施例4醛脫氫酶2基因之PCR SNPs檢測之檢討 (1)在模型系統中之檢測 檢討在併用本發明之嵌合探針之即時PCR反應系中之 SNPs檢測方法。檢討對象,選擇與實施例3相同之編碼醛脫 氫酶2酵素之基因。 首先為了進行在PCR反應系統中該醛脫氫酶2基因之變 異檢測,用DNA合成機(Applied Biosystem公司製)合成分別 具有序列表之序列編號19及20記載之鹼基序列之ALDH2-F 引子及ALDH2-R引子。繼而合成具有序列表之序列編號15 及1 6記載之鹼基序列之嵌合寡核苷酸,野生型檢測用 ALDH2 wG探針及變異型檢測用ALDH2 mA探針。又,野生 型檢測用之ALDH2 wG探針,為在5,端附加做為螢光標識之 ROX標識且在3’端附加做為消光標識之Eci丨pse之dna_ RNA-DNA型养核誓酸探針;另一方面,變異型檢測用之 ALDH2 mA探針,為在y端附加做為消光標識之EcHpse以及 在12鹼基與13鹼基之間附加做為螢光標識之FAM之 DNA-RNA-DNA型募核苷g曼探針。 又,分別具有序列表之序列編號17及18記載之215帅之 鹼基序列之片段藉由常法調製,然後分別將其分段選殖入 P-GEM EASY載體(Pr〇mega製)。分別使用此等質體做為野 生型陽性對照組(序列編號17)及變異型陽性對照組(序列編 83954 -41 · 200401036 號1 8)。該陽性對照組,調製成濃度為每1 μι含2 χ 1 〇4套。 因此,若使用上述對照組5 μΐ ,則每反應將成為1 05套。 PCR之反應如下述’亦即使用TaKaRa ExTaq R-PCR ver. (TAKARA Bio公司製),添加1 χ r_pcr緩衝液,各300 μΜ 之 dNTPs,5 mM 鎂溶液,1.25U ExTaq R-PCR ver.,100U Tli RNase Η II,各l〇 pmol 之 ALDH2-F引子及 ALDH2-R 引子對 ,5 pmol 之 ALDH2 wG 探針,20 pmol 之 ALDH2 mA 探針, 以及做為模板核酸之各陽性對照組5 μ1,並用滅菌水使最終 體積調整為25 μΐ。將該反應液置於smart Cycler (TAKARA B1 〇公司製)中,於9 5 °C處理1 〇秒後,反覆進行9 5 °C /5秒, 5 3 C /1 5秒及72 C /1 5秒之循環45次。又,螢光強度之測定, 在5 3 °C /1 5秒之步驟中進行。 結果,在使用野生型陽性對照組做為模板之情況,觀察 到來自ALDH2 wG探針之ROX螢光信號大幅增加。另一方 面,大體未觀察到來自ALDH2 mA探針之ό-FAM螢光信號之 增加。在使用變異型陽性對照組做為模板之情況,觀察到 來自ALDH2 mA探針之6_FAM螢光信號大幅增加。另一方面 ,大體未觀察到來自ALDH2 wG探針之R〇x榮光信號大幅 之增加再者,使用野生型陽性對照組與變異型陽性對照 組之等量混合物做為模板之情況,觀察到來自从則wG 探針之ROX螢光说大幅增加。又,亦觀察到來自 mA板針之6-FAM螢光信號大幅增加。 從上述可以確認,太於明夕古 如 尽七月之方法,在即時PCR反應系統 中’藉由將野生型及/或變里型箄— 寺—種兩端標識之嵌合探針 83954 -42 - 200401036 加以組合,可以識別醛脫氫酶2基因之單鹼基多型。 (2)在基因組DNA中之檢測 檢討在以人類基因組DNA做為模板之情況之即時pcR反 應系中之SNPs檢測方法。做為模板之核酸,用Aamp dna 迷你套組(QIAGEN公司)從進入治療階段後所提供之口腔 黏膜細胞及血液檢體調製。除了使用基因組DNA (50 ng/反 應)之外’在與實施例4-(1)記載之反應條件相同之條件下進 行。又,同時用Microcon-30 (Milipore公司製)精製以 ALDH2-F引子及ALDH2-R引子之引子對所得之增幅產物後 ,用Eco 571消化,進行3% NuSieve 3 : 1瓊脂糖凝膠電泳, 亦藉由RFLP定類型。Eco 571為識別CTGAAG之限制酵素, 雖能切斷來自酿脫氫酶2野生型之增幅產物,但不會切斷來 自變異型之增幅產物。 結果’在使用Eco 571之RFLP中’觀察到增幅產物被切斷 所產生之二片段,亦即在被認為係野生型之同型接合體之 基因組DNA檢體中’觀察到來自ALDH2 wG探針之R〇x螢 光信號大幅增加。另一方面,大體未觀察到來自ALDH2 mA 探針之6 - FA Μ螢光4s 5虎之增加。在使用以。571之RFLP中, 觀察到增幅產物被切斷者與未被切斷者之三片段,亦即在 被認為係異型接合體之基因組DNA檢體中,觀察到來自 ALDH2 wG探針之ROX螢光信號大幅增加。又,亦觀察到 來自ALDH2 mA探針之6-FAM螢光信號大幅增加。在使用 Eco 571之RFLP中,觀察到增幅產物未被切斷之一片段,亦 即在被認為係變異型之異型接合體之基因組DNA檢體中, 83954 -43 - 200401036 觀察到來自ALDH2 mA探針之6-FAM螢光信號大幅增加。另 一方面’大體未觀察到來自ALDH2 wG探針之ROX螢光信 號之增加。 從上述可以確認本發明方法之結果與先前RFLp法之結 果一致。 產業上之利用可能性 本發明之鹼基置換之檢測方法,在檢測天然存在或被人 為導入之驗基置換上有用。 藉由本發明,可以簡便、具再現性且以高敏感度檢測出 標的核酸上是否有鹼基置換。又’本發明可以用於檢測及 鑑疋如多型及變異之生物之基因組DNA上產生之鹼基置換 (例如SNP),在人類中亦可用於疾病基因之檢索及藥劑感受 性之解析、基因組藥物研發及基因組醫療等領域上。 序列全覽 序列編5虎1 ·用於增幅人類澱粉不溶素基因之一部分之 DNA之嵌合募核苷酸引子IApp_F_2。"核苷酸17至19為核糖 核#酸-其他核苷酸為去氧核糖核菩酸,,。 序列編號2 :用於增幅人類澱粉不溶素基因之一部分之 DNA之嵌合寡核嘗酸引子〖app-R-i。”核嘗酸18至20為核糖 核菩酸-其他核苷酸為去氧核糖核甞酸,,。 序列編唬3 ·用於檢測人類野生型澱粉不溶素基因之 片段之嵌合募核芬酸探針CAG(W2)。,,核菩酸8至1Q為核糖 核菩酸_其他核苷酸為去氧核糖核菩酸”。 序列編唬4 .用於檢測人類變異型澱粉不溶素基因之 83954 -44- 200401036 片=之嵌合寡核^酸探針CGG(M2) U酸8至Μ為核糖 核甘酸-其他核苷酸為去氧核糖核苷酸„。 序列編號5:來自人類之野生型殿粉不溶素基因之八 序列。 刀 序列編號6:來自人類之變異型殿粉不溶素基因之八 序列。 刀 序列編號7 :用於增幅人類澱粉不溶素基因之一邹八之 腿之&合寡m引子IAPP_F]。”核心⑴至叩:糖 核甘酸-其他核甘酸為去氧核糖核誓酸"。 序列編號8 :帛於增幅人類㈣不溶素基因之一部分之 DNA之&合募核:y:酸引子IApp_R6_。”核荅酸^ ^至μ為核 糖核$酸-其他核苷酸為去氧核糖核苷酸"。 序列編號9 :用於增幅人類澱粉不溶素基因之一部分之 DNA之 PCR 引子 IAPP-F。 序列編號10 ··用於增幅人類澱粉不溶素基因之一部分之 DNA之 PCR 引子 IAPP-R。 序列編號11 :用於檢測人類野生型澱粉不溶素基因之 DNA片段之探針IPAA9AFAM。"核苷酸9為核糖核誓酸·其 他核茹酸為去氧核糖核:y:酸”。 、 序列編號12 :用於檢測人類變異型澱粉不溶素基因之 DNA片段之探針IPAA9GFAM。"核㈣9為核糖核菩酸-其 他核誓酸為去氧核糖核芬酸”。 序列編號1 3 :用於增幅人類醛脫氫酶2基因之一部分之 DNA之嵌合寡核苷酸引子iCAN_ALDH2_F。核甞酸μ至加 83954 -45- 200401036 為核糖核甘酸_其他核苷酸為去氧核糖核嘗酸”。 序列、扁唬1 4 .用於增幅人類醛脫氫酶2基因之一部分之 DNA之嵌合募核誓酸引子ICan aldh2_r。”核芬酸以至⑼ 為核糖核嘗酸.其他核誓酸為去氧核糖核誓酸,,。 序列、'扁號1 5 .用於檢測人類野生型醛脫氫酶2基因之a 片段之探針ALDH2 wG。mu為核糖㈣酸.其他核答 酸為去氧核牆核荅酸”。 序列編號1 6 :用於檢測人半δ _ wAs a result, when a wild-type positive control group was used as a template, a 6-FAM fluorescence signal from the IAPP 9A FAM probe or the IAPP 8A FAM probe was observed to increase significantly. On the other hand, no increase in the ROX fluorescence signal from the IAPP 9G ROX probe or the IAPP 8G ROX probe was generally seen. In the case of using the variant positive control group as a template, a large increase in the ROX fluorescence signal from the IAPP 9G ROX probe or the IAPP 8G ROX probe was observed. On the other hand, no increase in the 6-FAM fluorescence signal from the IAPP 9A FAM probe or IAPP 8A 83954 • 36- 200401036 FAM probe was observed. In addition, in the case of using a wild type positive control group and a variant positive control group as templates to mix the same amount as a heterogeneous model system, it was observed that 6 from the IAPP 9A FAM probe or IAPP 8A FAM probe -FAM luminous signal increased significantly. In addition, a significant increase in the R 0 χ fluorescence signal from the IApp 9G Rox probe or the IApp 8G Rox probe was also seen. From the above, it can be confirmed that the method of the present invention can detect a single base of an amylin gene in a real-time pCR reaction system by combining two types of chimeric probes labeled at both ends, such as wild type and mutant type. variation. Example 3 Review of ICAN SNPs detection of aldehyde dehydrogenase 2 gene (1) Detection in model system The SNPS detection method in the real-time IC AN response system using a chimeric probe in combination was reviewed. For the review, select the gene encoding the aldehyde dehydrogenase 2 enzyme. In exon 12 of this gene, the 487th glutamic acid (GAA) substitution with a base polymorphism of lysine (AAA) exists. So far, there have been reports of differences in personal constitutions related to drinking. Close relationships and related to the risk of cancer. First, in order to detect the mutation of the aldehyde dehydrogenase 2 gene in an ICAN reaction system, a DNA synthesizer (manufactured by Applied Biosystem) was used to synthesize ICAN-ALDH2- having the base sequences described in sequence numbers 13 and 14 of the sequence listing, respectively. F chimeric primers and ICAN-ALDH2-R chimeric primers. Then, a chimera having a base sequence described in SEQ ID NOs: 15 and 16 of the Sequence Listing was synthesized, and an ALDH2 wG probe for wild-type detection and an ALDH2 mA probe for variant detection were synthesized. The ALDH2 wG probe for 'wild-type detection' is the DNA-RNA of the Eclipse with the Rox label as the fluorescent label on the 5 'end and the photon label on the 3' end with the optical label 83954 -37- 200401036 -DNA-type fenamic acid probe; on the other hand, the "ALDH2mA probe for variant detection" is an Eclipse with an extinction label at the 5 end and an additional 12 bases with 13 bases. DNA-RNA-DNA type oligonucleotide probe for light-labeled FAM. Further, each fragment having a base sequence of 2 15 bp described in SEQ ID NOs: 17 and 18 of the Sequence Listing was prepared by a conventional method, and then the fragments were individually selected and cloned into pGEM EASY vectors (promega). These plastids were used as a wild-type positive control group (sequence number 17) and a variant-type positive control group (sequence number 18). The positive control group was prepared to have a concentration of 2 × 104 sets per 1 ... Therefore, if 5 μ1 of the above-mentioned control group is used on the right, each reaction will become 105 sets. The reaction conditions of the ICAN method are as follows. That is, Hyphas-potassium hydroxide buffer (pH 7.8) at a final concentration of 32, 100 mM potassium acetate, and 5 mM gadolinium acetate 1 were added. / 〇dimethyl sulfene, 0.004 〇 /. Propylenediamine, 0.1 μ betaine, 0.11% bovine serum albumin ’each 60 〇 | ^ € 1] ^? 3,411 to 36 ug 8 d of DNA polymerase 'iOOU Tli RNaseHII, each 50pm 0kICAN_ALDH2-F chimeric primer and ICAN-ALDH2-R chimeric primer pair, 5 pmol ALDH2 wG probe, 7.5 pmol of ALDH2 mA, and 5 μ 卜 of each positive control group as template nucleic acid, and the final volume was adjusted to 25 μΐ with sterilized water. This reaction solution was placed in a Smart Cycler (manufactured by Takara Bio), and was treated at 70 ° C for 5 minutes, and then at 58 ° C. (: Hold for 25 minutes, and then hold at 5 (rc for 20 minutes. The measurement of the fluorescence intensity is maintained at 58 and 5 hours, and each of them is measured for 1 minute. Results) When using a wild-type positive control group as a template It can be observed that the ROX fluorescence signal from the ALDH2 wG probe has increased significantly. Another 83954 200401036-* ~ Diqu 1 Heart Bean Watch Festival has increased the 6-FAM fluorescence production number from the ALDH2 mA probe. Also, + ° In the case of using the variant positive control group as a template, it can be observed that the FAM fluorescence signal of Cheng's and ALDH2 mA probes has greatly increased. The other-Fang'ertian 'is generally not observed. To rci 3 from the ROX fluorescence signal from the ALDH2 wG probe. In addition, the wild-type positive control group and the variant-positive control group were used as templates to use a mixture of heterogeneous model systems, Brother Qing observed a significant increase in the ROX fluorescence signal from the ALDH2 wG probe, and also observed a significant increase in the 6-FAM fluorescence signal from the ALDH2 mA probe. From the above, it can be confirmed that the method of the present invention responds in real time to the ICAN response. In the system, the wild type and mutant The chimeric probes labeled at both ends can be combined to identify the single-base polymorphism of the aldehyde dehydrogenase 2 gene. (2) Detection in genomic DNA Review the immediate ican response in the case of using human genomic DNA as a template SNPs detection method in the system. As a template nucleic acid, the QIAamp DNA Mini Kit (QIAGEN) was used to modulate oral mucosal cells and blood samples provided after entering the treatment stage. In addition to using genomic DNA (5 Q ng / reaction) Other than ') were performed under the same conditions as the reaction conditions described in Example 3- (1).' Also use the primer pairs of the ALDH2-F primers and the ALDH2-R primers shown in SEQ ID NOS: 19 and 20 'below The pcR was performed under the conditions described above. The amplified product obtained by the household was refined with Microcon-30 (Milipore & Division), digested with Eco57I, and subjected to 3% NuSieve 3: 1 agarose gel electrophoresis, and also typed by RFLP. 83954 -39- 200401036 PCR was performed using TaKaRa ExTaq (manufactured by TAKARA Bio). That is, 1 x ExTaq buffer, 200 μM dNTPs each, 1.25 U ExTaq, 10 pmol of ALDH2-F primer and ALDH2-R primer were added. Yes and do 5 μΐ of human genomic DNA was prepared as a template nucleic acid (the above concentrations are the final concentrations), and the final volume was adjusted to 50 μ 用 with sterilized water. This reaction solution was placed in Smart Cycler SP (manufactured by TAKARA Bio) at 94. (: After processing for 30 seconds, repeat the cycle of 94 ° C / 30 seconds, 55 ° C / 30 seconds and 72 ° C / 30 seconds 30 times. Ugly (: 0571 is identification (: Ding 0 8880) Although the restriction enzyme can cut off the amplification product from the wild type of aldehyde dehydrogenase 2, it does not cut off the amplification product from the mutant type. As a result, in RFLP using Eco 571, it was observed that the amplification product was cut off. The second fragment produced, that is, in a genomic DNA specimen considered to be a wild-type homozygote, a significant increase in the ROX glory signal from the ALDH2 wG probe was observed. On the other hand, the ALDH2 mA probe was not generally observed Increase of 6-FAM fluorescence signal in needle. In RFLP using Eco 571, three fragments of the amplified product were cut off and those not cut off, that is, in the genomic DNA examination of the heterozygous junction In the body, a significant increase in the ROX fluorescence signal from the ALDH2 wG probe was observed. Also, a significant increase in the 6-FAM fluorescence signal from the ALDH2 mA probe was also observed. In the RFLP using Eco 5 71, an increase was observed A fragment of the product that has not been cut, that is, a heterotypic junction that is considered to be a variant A significant increase in 6-FAM fluorescence signal from the ALDH2 mA probe was observed in the genomic DNA specimen of the subject. On the other hand, no increase in ROX fluorescence signal 83954 -40-200401036 from the ALDH2 wG probe was observed. From the above, it can be confirmed that the results of the method of the present invention are consistent with the results of the previous RFLP method. Example 4 Review of PCR SNPs detection of aldehyde dehydrogenase 2 gene (1) Review of the detection in the model system and use of the chimerism of the present invention The real-time PCR reaction of the probe is a method for detecting SNPs. The target of the review was to select the same gene encoding the aldehyde dehydrogenase 2 enzyme as in Example 3. First, in order to perform the mutation of the aldehyde dehydrogenase 2 gene in the PCR reaction system For detection, a DNA synthesizer (manufactured by Applied Biosystem) was used to synthesize ALDH2-F primers and ALDH2-R primers having the base sequences described in sequence numbers 19 and 20 of the sequence listing, respectively, and then synthesize sequence numbers 15 and 1 of the sequence listing. The chimeric oligonucleotide of the base sequence described in 6, the ALDH2 wG probe for wild-type detection and the ALDH2 mA probe for variant detection. The ALDH2 wG probe for wild-type detection is at the 5 'end. Add the ROX logo as the fluorescent label and the DNA_RNA-DNA type nucleotrophic acid probe as the extinction label on the 3 'end. On the other hand, the ALDH2 mA probe for variant detection, A DNA-RNA-DNA type nucleoside g-man probe for attaching EcHpse as an extinction marker on the y-terminus and FAM as a fluorescent marker between 12 and 13 bases. Further, the fragments having the base sequence of 215 in the sequence numbers 17 and 18 in the sequence listing were respectively prepared by a conventional method, and then the fragments were individually selected and cloned into a P-GEM EASY vector (produced by Promega). These plastids were used as the wild type positive control group (sequence number 17) and the variant positive control group (sequence number 83954 -41 · 200401036 number 18). The positive control group was prepared to have a concentration of 2 x 104 sets per 1 μm. Therefore, if 5 μΐ of the above control group is used, each reaction will be 105 sets. The reaction of PCR is as follows, that is, using TaKaRa ExTaq R-PCR ver. (Manufactured by TAKARA Bio), adding 1 x r_pcr buffer, each 300 μM dNTPs, 5 mM magnesium solution, 1.25U ExTaq R-PCR ver., 100U Tli RNase Η II, 10 pmol of ALDH2-F primer and ALDH2-R primer pair, 5 pmol of ALDH2 wG probe, 20 pmol of ALDH2 mA probe, and 5 μ1 of each positive control group as template nucleic acid And adjust the final volume to 25 μΐ with sterilized water. This reaction solution was placed in a smart cycler (manufactured by TAKARA B10), and after being processed at 95 ° C for 10 seconds, it was repeatedly performed at 9 5 ° C / 5 seconds, 5 3 C / 1 5 seconds, and 72 C / 1 45 cycles in 5 seconds. The measurement of the fluorescence intensity was performed in the step of 5 3 ° C / 15 seconds. As a result, in the case where a wild-type positive control group was used as a template, a significant increase in the ROX fluorescence signal from the ALDH2 wG probe was observed. On the other hand, generally no increase in the? -FAM fluorescence signal from the ALDH2 mA probe was observed. In the case of using the variant positive control group as a template, a 6_FAM fluorescence signal from the ALDH2 mA probe was significantly increased. On the other hand, no significant increase in the Rox glory signal from the ALDH2 wG probe was observed. Furthermore, the same amount of mixture of the wild-type positive control group and the variant-positive control group was used as a template. The ROX fluorescence of the wG probe increased significantly. In addition, a 6-FAM fluorescence signal from a mA pin was significantly increased. From the above, it can be confirmed that the method is too old for tomorrow ’s evening, in a real-time PCR reaction system, 'by inserting wild-type and / or variable-type 箄 — 寺 — chimeric probes labeled at both ends- 42-200401036 Combined to identify single base polymorphisms of the aldehyde dehydrogenase 2 gene. (2) Detection in genomic DNA Review the SNPs detection method in the immediate pcR reaction system using human genomic DNA as a template. As a template nucleic acid, Aamp dna mini kit (QIAGEN) was used to prepare oral mucosal cells and blood samples provided after entering the treatment stage. Except that genomic DNA (50 ng / reaction) was used, it was performed under the same conditions as the reaction conditions described in Example 4- (1). In addition, the amplified product obtained by pairing the primers of the ALDH2-F primer and the ALDH2-R primer with Microcon-30 (Milipore) was purified at the same time, digested with Eco 571, and subjected to 3% NuSieve 3: 1 agarose gel electrophoresis. It is also determined by RFLP. Eco 571 is a restriction enzyme that recognizes CTGAAG. Although it can cut off the amplification products from the wild-type dehydrogenase 2 wild type, it will not cut off the amplification products from the mutant type. As a result, in the RFLP using Eco 571, two fragments resulting from the amplification product being cut off were observed, that is, in a genomic DNA specimen that was considered to be a wild-type homozygote, and an ALDH2 wG probe was observed. Rox fluorescence signal increased significantly. On the other hand, no increase in 6-FA M fluorescence 4s 5 tigers from the ALDH2 mA probe was generally observed. In use. In the RFLP of 571, three fragments of the amplified product and the non-cleaved product were observed, that is, ROX fluorescence from the ALDH2 wG probe was observed in the genomic DNA specimen considered to be a heterozygote. The signal increased significantly. In addition, a significant increase in 6-FAM fluorescence signal from the ALDH2 mA probe was also observed. In the RFLP using Eco 571, a fragment of the amplified product was not cut, that is, in the genomic DNA specimen of the heterozygote that is considered to be a variant, 83954 -43-200401036 was observed from the ALDH2 mA probe. The 6-FAM fluorescence signal of the needle increased significantly. On the other hand, 'the increase in ROX fluorescence signal from the ALDH2 wG probe was not generally observed. From the above, it can be confirmed that the results of the method of the present invention are consistent with the results of the previous RFLp method. Industrial Applicability The method for detecting a base substitution of the present invention is useful for detecting a base substitution that occurs naturally or is artificially introduced. According to the present invention, it is possible to detect the presence or absence of base substitution on a target nucleic acid simply, reproducibly, and with high sensitivity. Also, the present invention can be used to detect and identify base substitutions (such as SNPs) generated on genomic DNA of organisms such as polymorphisms and mutations, and can also be used in humans to search for disease genes, analyze drug sensitivity, and analyze genomic drugs. R & D and genomic medicine. Sequence Overview Sequence 5 Tiger 1 · Chimeric nucleotide primer IApp_F_2 for amplifying DNA of a part of human amylin gene. " Nucleotides 17 to 19 are ribose Nucleic acid-other nucleotides are deoxyribose riboic acid ,. SEQ ID NO: 2: Chimeric oligonucleotide primer [app-R-i] used to amplify the DNA of a part of the human amylin gene. "Nucleic acid 18 to 20 are ribonucleosides-other nucleotides are deoxyribonucleic acid,". Sequence editing 3 · Chimeric nucleus for detecting fragments of human wild-type starch insoluble gene Acid probe CAG (W2)., Ribonucleotide 8 to 1Q are ribonucleoborate_other nucleotides are deoxyribonucleic acid ". Sequence editing 4. For the detection of the human variant amylin gene 83954 -44- 200401036 pieces = chimeric oligonucleotide probe CGG (M2) U acid 8 to M are ribonucleotide-other nucleotides Is a deoxyribonucleotide. SEQ ID NO: 5: The eight sequence of the wild-type dianfen insoluble gene from humans. Knife sequence number 6: The eight sequence of the mutated temple-insoluble gene from humans. Knife sequence number 7 : Used to amplify one of the human starch insoluble genes, Zou Bazhi's leg & oligom primer IAPP_F]. "Core ⑴ to 叩: Glycosyl--other riboic acid is deoxyribonucleic acid ". SEQ ID NO: 8 & co-recruitment nucleus of DNA which is part of the amplified human insoluble gene: y: acid primer IApp_R6_. "Nucleic acid ^ ^ to μ are ribonucleic acid-other nucleotides are deoxyribonucleotides". SEQ ID NO: 9: PCR primer IAPP-F for amplifying DNA of a part of human amylin gene . SEQ ID NO: 10 · PCR primer IAPP-R for amplifying DNA of a part of human amylin gene. SEQ ID NO: 11: Probe IPAA9AFAM for detecting DNA fragment of human wild-type amylin gene. &Quot; Nuclear Nucleotide 9 is ribonucleic acid. Other ribonucleic acid is deoxyribonucleic acid: y: acid ". Sequence number 12: Probe IPAA9GFAM, a probe for detecting the DNA fragment of the human variant amylin gene. " Nucleic acid 9 is ribonucleic acid-other ribonucleic acid is deoxyribonucleic acid ". SEQ ID NO: 13: Chimeric oligonucleotide primer for amplifying DNA of a part of human aldehyde dehydrogenase 2 gene iCAN_ALDH2_F. Nucleic acid μ to add 83954 -45- 200401036 is ribonucleic acid _ other nucleotides are deoxyribonucleic acid ". Sequence, blunt 1 4. Chimeric nucleosome primer Ican aldh2_r used to amplify DNA of a part of human aldehyde dehydrogenase 2 gene. "Nucleic acid and even tritium are ribonucleic acid. Other ribonucleic acid is deoxyribonucleic acid. The sequence, 'Bin No. 1 5' is used to detect the a fragment of human wild-type aldehyde dehydrogenase 2 gene. Probe ALDH2 wG. Mu is ribonucleic acid. Other nucleotides are deoxyribonucleic acid ". Sequence number 16: for detecting human half δ_w

钿j人頡變異型醛脫氫酶2基因之DNA 片丰又之探針ALDH2 mA。&quot;核:y:酸9盔垃她&gt; # , 〇甘鲛9為核糖核苷酸_其他核苷 酸為去氧核糖·核誓酸Η。 序列編號17:來自人類之野Μ㈣氫酶2基因之-部分 序列。 序列編號18:來自人類之變異型酸脫氫酶2基因之一部分 序列。 序列編號19 :用於增幅人類搭脫氫酶2基因之一部分之 DNA之 PCR 引子 ALDH2F。 序列編號20 :用於與tjjs Α 咖、— 用於、t田人頰醛脫氫酶2基 DNA之PCR引子AlDH2R。 #刀之 序列編號21:用於檢測人類野生 囊片段之探針ΙΑΡΡ 8Α ΜΜ。”核 I素基因之 他核芬酸為去氧核糖核芬酸”。 為核糖核替酸·其 序列編號22:用於檢測人類變異型澱 DNA片段之探針IAPP 8G R〇x。„核» ‘溶素+基因之 他核苷酸為去氧核糖核苷酸”。 ’’’、&lt;·唐核苷酸-其 83954 -46 - 200401036 序列表 &lt;110&gt; TAKARA BIO INC. &lt;120〉核苷酸置換之檢測方法 &lt;130&gt; &lt;140&gt; 092104652 &lt; 141 &gt; 2002-03-05 &lt;150&gt; JP 2002-62543 &lt;151〉 2002-03-07 &lt;160&gt; 22 &lt;170&gt; Patentln Ver. 2. 1 &lt;210&gt; 1 &lt;211〉 19 &lt;212〉 DNA 〈213&gt;人造序列 &lt;220&gt; &lt;223〉組合之DNA/RNA分子之說明:核苷酸17至19為核糖 核苷酸-其他核苷酸為去氧核糖核苷酸。 &lt;220〉 &lt;223〉人造序列之說明:用於增幅人類澱粉不溶素基因之一 部分之DNA之嵌合募核苷酸引子IAPP-F-2 83954 &lt;220〉 &lt;220〉2⑽401036 &lt;223〉组合之DNA/RNA分子之說明:核苷酸17至19為核糖 核苷酸-其他核苷酸為去氧核糖核苷酸。 &lt;400&gt; 1 acactgccac atgtgcaac &lt;210&gt; 2 &lt;211〉 20 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220&gt; &lt;223〉組合之DNA/RNA分子之說明:核甞酸18至20為核糖 核苷酸-其他核苷酸為去氧核糖核苷酸》 &lt;220〉 &lt;223〉人造序列之說明:用於增幅人類澱粉不溶素基因之一 部分之DNA之嵌合募核甞酸引子IAPP-R-1 &lt;400〉 2 cttgccatat gtattggauc 83954 200401036 &lt;210&gt; 3 &lt;211&gt; 15 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223〉組合之DNA/RNA分子之說明:核苷酸8至10為核糖 核苷酸-其他核穿酸為去氧核糖核苷酸。 &lt;220〉 &lt;223〉人造序列之說明:用於檢測人類野生型澱粉不溶素基 因之DNA片段之嵌合寡核替酸探針CAG (W2)。 &lt;400〉 3 ttcattccag caaca &lt;210&gt; 4 &lt;211&gt; 15 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223〉組合之DNA/RNA分子之說明:核甞酸8至10為核糖 核苷酸-其他核苷酸為去氧核糖核苷酸。 83954 &lt;220〉 200401036 &lt;223〉人造序列之說明:用於檢測人類變異型澱粉不溶素基 因之DNA片段之嵌合寡核苷酸探針CGG (M2)。 &lt;400〉 4 ttcattccgg caaca 15钿 j Human 颉 mutant aldehyde dehydrogenase 2 gene DNA slice and probe ALDH2 mA. &quot; Nuclear: y: acid 9 垃 ラ 她 &gt;#, 〇 甘 鲛 9 is a ribonucleotide _ other nucleotides are deoxyribose, ribonucleotide. SEQ ID NO: 17-Partial sequence of the wild MHase 2 gene from human. SEQ ID No. 18: Partial sequence of a human-derived variant acid dehydrogenase 2 gene. SEQ ID No. 19: PCR primer ALDH2F used to amplify DNA of a part of the human dehydrogenase 2 gene. SEQ ID NO: 20: PCR primer AlDH2R used for tjjs Α coffee, — used for ttian human cheekaldehyde dehydrogenase 2-based DNA. # 刀 之 SEQ ID NO: 21: Probe IAPP 8A MM for detecting human wild cyst fragments. "The other riboflavin of the ribonin gene is deoxyriboflavin." It is ribonucleotide. SEQ ID NO: 22: Probe IAPP 8G Rox used to detect human variant lake DNA fragments. „Nuclear» ‘lysin + other nucleotides of the gene are deoxyribonucleotides”. '' ', &Lt; Tang Nucleotide-Its 83954 -46-200401036 Sequence Listing &lt; 110 &gt; TAKARA BIO INC. &Lt; 120> Detection method of nucleotide substitution &lt; 130 &gt; &lt; 140 &gt; 092104652 &lt; 141 &gt; 2002-03-05 &lt; 150 &gt; JP 2002-62543 &lt; 151〉 2002-03-07 &lt; 160 &gt; 22 &lt; 170 &gt; Patentln Ver. 2. 1 &lt; 210 &gt; 1 &lt; 211〉 19 &lt; 212> DNA <213 &gt; Artificial Sequence &lt; 220 &gt; &223; Description of the combined DNA / RNA molecule: nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides . &lt; 220〉 &lt; 223> Explanation of artificial sequence: Chimeric nucleotide primer IAPP-F-2 83954 &lt; 220> &lt; 220> 2⑽401036 &lt; for amplifying DNA of a part of human amylin gene 223> Explanation of the combined DNA / RNA molecule: nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides. &lt; 400 &gt; 1 acactgccac atgtgcaac &lt; 210 &gt; 2 &lt; 211〉 20 &lt; 212 &gt; DNA &lt; 213> Artificial sequence &lt; 220 &gt; &lt; 223> Description of the combined DNA / RNA molecule: Nucleic acid 18 to 20 is a ribonucleotide-other nucleotides are deoxyribonucleotides "&lt; 220〉 &lt; 223〉 Description of artificial sequence: chimeric nucleus for DNA amplification of part of human amylin gene Acid primer IAPP-R-1 &lt; 400〉 2 cttgccatat gtattggauc 83954 200401036 &lt; 210 &gt; 3 &lt; 211 &gt; 15 &lt; 212 &gt; DNA &lt; 213〉 artificial sequence &lt; 220〉 &lt; 223〉 combined DNA / RNA Molecular description: Nucleotides 8 to 10 are ribonucleotides-other riboacids are deoxyribonucleotides. &lt; 220 &gt; &lt; 223 &gt; Description of the artificial sequence: a chimeric oligonucleotide probe CAG (W2) for detecting a DNA fragment of a human wild-type amylin gene. &lt; 400> 3 ttcattccag caaca &lt; 210 &gt; 4 &lt; 211 &gt; 15 &lt; 212 &gt; DNA &lt; 213> Artificial sequence &lt; 220> &lt; 223> Description of the combined DNA / RNA molecule: Nucleic acid 8 to 10 is a ribonucleotide-the other nucleotides are deoxyribonucleotides. 83954 &lt; 220 &gt; 200401036 &lt; 223 &gt; Description of the artificial sequence: a chimeric oligonucleotide probe CGG (M2) for detecting a DNA fragment of a human variant amylin gene. &lt; 400〉 4 ttcattccgg caaca 15

&lt;210&gt; 5 &lt;211〉 600 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223&gt;人造序列之說明:來自人類之野生型澱粉不溶素基因 之一部分序列。&lt; 210 &gt; 5 &lt; 211 &gt; 600 &lt; 212 &gt; DNA &lt; 213> artificial sequence &lt; 220 &gt; &lt; 223 &gt; Description of artificial sequence: A partial sequence of a part of a wild type amylin gene from human.

&lt;400&gt; 5 aatctcagcc atctaggtgt ttgcaaacca aaacactgag ttacttatgt gaaaattgtt 60 tctttggttt tcatcaatac aagatatttg atgtcacatg gctggatcca gctaaaattc 120 taaggctcta acttttcaca tttgttccat gttaccagtc atcaggtgga aaagcggaaa 180 tgcaacactg ccacatgtgc aacgcagcgc ctggcaaatt ttttagttca ttccagcaac 240 aactttggtg ccattctctc atctaccaac gtgggatcca atacatatgg caagaggaat 300 gcagtagagg ttttaaagag agagccactg aattacttgc ccctttagag gacaatgtaa 360 ctctatagtt attgttttat gttctagtga tttcctgtat aatttaacag tgcccttttc 420 atctccagtg tgaatatatg gtctgtgtgt ctgatgtttg ttgctaggac atataccttc 480 tcaaaagatt gttttatatg tagtactaac taaggtccca taataaaaag atagtatctt 540 ttaaaatgaa atgtttttgc tatagatttg tattttaaaa cataagaacg tcattttggg 600 83954 -4- 200401036 &lt;210&gt; 6 &lt;211〉 600 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220&gt;&Lt; 400 &gt; 5 aatctcagcc atctaggtgt ttgcaaacca aaacactgag ttacttatgt gaaaattgtt 60 tctttggttt tcatcaatac aagatatttg atgtcacatg gctggatcca gctaaaattc 120 taaggctcta acttttcaca tttgttccat gttaccagtc atcaggtgga aaagcggaaa 180 tgcaacactg ccacatgtgc aacgcagcgc ctggcaaatt ttttagttca ttccagcaac 240 aactttggtg ccattctctc atctaccaac gtgggatcca atacatatgg caagaggaat 300 gcagtagagg ttttaaagag agagccactg aattacttgc ccctttagag gacaatgtaa 360 ctctatagtt attgttttat gttctagtga tttcctgtat aatttaacag tgcccttttc 420 atctccagtg tgaatatatg gtctgtgtgt ctgatgtttg ttgctaggac atataccttc 480 tcaaaagatt gttttatatg tagtactaac taaggtccca taataaaaag atagtatctt 540 ttaaaatgaa atgtttttgc tatagatttg tattttaaaa cataagaacg tcattttggg 600 83954 -4- 200401036 &lt; 210 &gt; 6 &lt; 211> 600 &lt; 212 &gt; DNA &lt; 213> artificial Sequence &lt; 220 &gt;

&lt;223〉人造序列之說明:來自人類之變異型澱粉不溶素基因 之一部分序列。 &lt;400〉 6 aatctcagcc atctaggtgt ttgcaaacca aaacactgag ttacttatgt gaaaattgtt 60 tctttggttt tcatcaatac aagatatttg atgtcacatg gctggatcca gctaaaattc 120 taaggctcta acttttcaca tttgttccat gttaccagtc atcaggtgga aaagcggaaa 180 tgcaacactg ccacatgtgc aacgcagcgc ctggcaaatt ttttagttca ttccggcaac 240 aactttggtg ccattctctc atctaccaac gtgggatcca atacatatgg caagaggaat 300&lt; 223> Explanation of artificial sequence: a partial sequence of a variant amyloidin gene from human. &Lt; 400> 6 aatctcagcc atctaggtgt ttgcaaacca aaacactgag ttacttatgt gaaaattgtt 60 tctttggttt tcatcaatac aagatatttg atgtcacatg gctggatcca gctaaaattc 120 taaggctcta acttttcaca tttgttccat gttaccagtc atcaggtgga aaagcggaaa 180 tgcaacactg ccacatgtgc aacgcagcgc ctggcaaatt ttttagttca ttccggcaac 240 aactttggtg ccattctctc atctaccaac gtgggatcca atacatatgg caagaggaat 300

gcagtagagg ttttaaagag agagccactg aattacttgc ccctttagag gacaatgtaa 360 ctctatagtt attgttttat gttctagtga tttcctgtat aatttaacag tgcccttttc 420 atctccagtg tgaatatatg gtctgtgtgt ctgatgtttg ttgctaggac atataccttc 480 tcaaaagatt gttttatatg tagtactaac taaggtccca taataaaaag atagtatctt 540 ttaaaatgaa atgtttttgc tatagatttg tattttaaaa cataagaacg tcattttggg 600 &lt;210&gt; 7 &lt;211&gt; 17 &lt;212〉 DNA &lt;213〉人造序列 83954 &lt;220〉 &lt;220〉200401036 &lt;223〉組合之DNA/RNA分子之說明:核苷酸15至17為核糖 核苷酸-其他核苷酸為去氧核糖核替酸。 &lt;220&gt; &lt;223〉人造序列之說明:用於增幅人類澱粉不溶素基因之一 部分之DNA之嵌合寡核苷酸引子IAPP-F-1。 &lt;400〉 7 tgcaacgcag cgccugg &lt;210&gt; 8 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223〉组合之DNA/RNA分子之說明:核:y:酸18至20為核糖 核苷酸-其他核苷酸為去氧核糖核苷酸。 &lt;220〉 &lt;223〉人造序列之說明:用於增幅人類澱粉不溶素基因之一 部分之DNA之嵌合寡核甞酸引子IAPP-R6008。 83954 200401036 &lt;400 8 cccacgttgg tagatgagag &lt;210&gt; 9 &lt;2U&gt; 20 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223〉人造序列之說明:用於增幅人類澱粉不溶素基因之一 部分之DNA之PCR引子IAPP-F。 &lt;400〉 9 tcacatttgt tccatgttac &lt;210&gt; 10 &lt;211〉 22 &lt;212〉 DNA &lt;213〉人造序列 &lt;220&gt; &lt;223〉人造序列之說明:用於增幅人類澱粉不溶素基因之一 部分之DNA之PCR引子IAPP-R。 83954 200401036 &lt;400&gt; 10 caataactat agagttacat tg 22 &lt;210&gt; 11 &lt;211〉 15 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220&gt; &lt;223〉組合之DNA/RNA分子之說明:核苷酸9為核糖核苷酸 -其他核苷酸為去氧核糖核甞酸。 &lt;220〉 &lt;223〉人造序列之說明:用於檢測人類野生型澱粉不溶素基 因之DNA片段之探針IPAA 9A FAM。 &lt;400&gt; 11 ttcattccag caaca 15 &lt;210&gt; 12 &lt;211&gt; 15 &lt;212〉 DNA 〈213&gt;人造序列 83954 &lt;220&gt; 200401036 &lt;223〉組合之DNA/RNA分子之說明:核苷酸9為核糖核甞酸 -其他核苷酸為去氧核糖核甞酸。 &lt;220&gt; &lt;223〉人造序列之說明:用於檢測人類變異型澱粉不溶素基 因之DNA片段之探針IPAA 9G FAM。gcagtagagg ttttaaagag agagccactg aattacttgc ccctttagag gacaatgtaa 360 ctctatagtt attgttttat gttctagtga tttcctgtat aatttaacag tgcccttttc 420 atctccagtg tgaatatatg gtctgtgtgt ctgatgtttg ttgctaggac atataccttc 480 tcaaaagatt gttttatatg tagtactaac taaggtccca taataaaaag atagtatctt 540 ttaaaatgaa atgtttttgc tatagatttg tattttaaaa cataagaacg tcattttggg 600 &lt; 210 &gt; 7 &lt; 211 &gt; 17 &lt; 212> DNA &lt; 213〉 Artificial sequence 83954 &lt; 220〉 &lt; 220〉 200401036 &lt; 223〉 Explanation of the combined DNA / RNA molecule: nucleotides 15 to 17 are ribonucleotides-other nucleotides are deoxyribonucleotides For acid. &lt; 220 &gt; &lt; 223> Explanation of artificial sequence: Chimeric oligonucleotide primer IAPP-F-1 for amplifying DNA of a part of human amylin gene. &lt; 400> 7 tgcaacgcag cgccugg &lt; 210 &gt; 8 &lt; 211 &gt; 20 &lt; 212 &gt; DNA &lt; 213> Artificial sequence &lt; 220> &lt; 223> Description of the combined DNA / RNA molecule: nuclear: y: acid 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides. &lt; 220> &lt; 223> Description of artificial sequence: Chimeric oligonucleotide primer IAPP-R6008 for amplifying DNA of a part of human amylin gene. 83954 200401036 &lt; 400 8 cccacgttgg tagatgagag &lt; 210 &gt; 9 &lt; 2U &gt; 20 &lt; 212 &gt; DNA &lt; 213〉 artificial sequence &lt; 220〉 &lt; 223〉 description of artificial sequence: used to amplify human amylin A part of the DNA primer IAPP-F. &lt; 400〉 9 tcacatttgt tccatgttac &lt; 210 &gt; 10 &lt; 211〉 22 &lt; 212〉 DNA &lt; 213〉 artificial sequence &lt; 220 &gt; &lt; 223> Description of artificial sequence: used to amplify the human starch insoluble gene Part of DNA PCR primer IAPP-R. 83954 200401036 &lt; 400 &gt; 10 caataactat agagttacat tg 22 &lt; 210 &gt; 11 &lt; 211〉 15 &lt; 212 &gt; DNA &lt; 213〉 Artificial sequence &lt; 220 &gt; &lt; 223〉 Explanation of the combined DNA / RNA molecule: nuclear Nucleotide 9 is a ribonucleotide-other nucleotides are deoxyribonucleotide. &lt; 220 &gt; &lt; 223 &gt; Explanation of artificial sequence: Probe IPAA 9A FAM for detecting DNA fragments of human wild-type starch insoluble gene. &lt; 400 &gt; 11 ttcattccag caaca 15 &lt; 210 &gt; 12 &lt; 211 &gt; 15 &lt; 212> DNA <213 &gt; Artificial sequence 83954 &lt; 220 &gt; 200401036 &lt; 223> Description of the combined DNA / RNA molecule: Nucleotide 9 is ribonucleic acid-other nucleotides are deoxyribonucleic acid. &lt; 220 &gt; &lt; 223> Explanation of artificial sequence: Probe IPAA 9G FAM for detecting a DNA fragment of a human variant amylin gene.

&lt;400〉 12 ttcattccgg caaca 15 &lt;210〉 13 &lt;211〉 20 &lt;212&gt; DNA &lt;213〉人造序列&lt; 400〉 12 ttcattccgg caaca 15 &lt; 210〉 13 &lt; 211〉 20 &lt; 212 &gt; DNA &lt; 213> artificial sequence

&lt;220〉 &lt;223〉組合之DNA/RNA分子之說明:核苷酸18至20為核糖 核苷酸-其他核苷酸為去氧核糖核苷酸。 &lt;220〉 &lt;223〉人造序列之說明:用於增幅人類醛脫氫酶2基因之一 部分之DNA之嵌合寡核苷酸引子ICAN-ALDH2-F。 83954 200401036 〈400&gt; 13 agttgggcga gtacgggcug &lt;210&gt; 14 &lt;211〉 20 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220&gt; 〈223&gt;組合之DNA/RNA分子之說明:核苷酸18至20為核糖 核苷酸-其他核苷酸為去氧核糖核苷酸。 &lt;220〉 &lt;223〉人造序列之說明:用於增幅人類醛脫氫酶2基因之一 部分之DNA之嵌合寡核苷酸引子ICAN-ALDH2-R。 &lt;400&gt; 14 cagaccctca agccccaaca &lt;210〉 15 &lt;211&gt; 14 &lt;212&gt; DNA &lt;213〉人造序列 83954 -10- &lt;220〉200401036 &lt;223〉組合之DNA/rna分子之說明··核甞酸η為核糖核甞酸 -其他核替酸為去氧核糖核:y:酸。 &lt;220〉 &lt;223〉人造序列之說明·•用於檢測人類野生型路脫氫酶2基 因之DNA片段之探針ALDH2 wG 〇 &lt;400〉 15 ggcatacact gaag 14 · &lt;210〉 16 &lt;211&gt; 17 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223&gt; 郷,躲糖核麵 &lt;220&gt; &lt;223〉人造序列之說明:用於檢測人類變異型醛脫氫酶2基 因之DNA片段之探針ALDH2 mA。 83954 -11 · 17200401036 &lt;400〉 16 catacactaa agtgaaa &lt;210) 17 〈211〉 215 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 醛脫氫酶2基因 &lt;223〉人造序列之說明:來自人類之野生型 之一部分序列 &lt;400〉 17 cagggtcaac tgctatgatg tgtttggagc cc.agtcaccc tttggtggct acaagatgtc 60 ggggagtggc cgggagttgg gcgagtacgg gctgcaggca tacactgaag tgaaaactgt 120 gagtgtggga cctgctgggg gctcagggcc tgttggggct tgagggtctg ctggtggctc 180 ggagcctgct gggggattgg ggtctgttgg gggct 215 &lt;210&gt; 18 &lt;211&gt; 215 &lt;212&gt; DNA 〈213&gt;人造序列 &lt;220〉 &lt;223〉人造序列之說明:來自人類之變異型醛脫氫酶2基因 之一部分序列 83954 -12- 200401036 &lt;400&gt; 18 cagggtcaac tgctatgatg tgtttggagc ccagtcaccc. tttggtggct acaagatgtc 60 ggggagtggc cgggagttgg gcgagtacgg gctgcaggca tacactaaag tgaaaactgt 120 gagtgtggga cctgctgggg gctcagggcc tgttggggct tgagggtctg ctggtggctc 180 ggagcctgct gggggattgg ggtctgttgg gggct 215 &lt;210&gt; 19 &lt;211&gt; 21 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223〉人造序列之說明:用於增幅人類醛脫氫酶2基因之一 部分之DNA之PCR引子ALDH2F。 &lt;400〉 19 cagggtcaac tgctatgatg t 21 &lt;210〉 20 &lt;211〉 21 &lt;212〉 DNA &lt;213&gt;人造序列 83954 ' 13- &lt;220&gt;200401036 &lt;223〉人造序列之說明:用於增幅人類醛脫氫酶2基因之一 部分之DNA之PCR引子ALDH2R。 &lt;400&gt; 20 agcccccaac agaccccaat c &lt;210&gt; 21 &lt;211&gt; 14 &lt;212〉 DNA &lt;213〉人造序列 &lt;220〉 &lt;223〉組合之DNA/RNA分子之說明:核苷酸8為核糖核苷酸 -其他核苷酸為去氧核糖核苷酸。 &lt;220〉 &lt;223〉人造序列之說明:用於檢測人類野生型澱粉不溶素基 因之DNA片段之探針ΙΑΡΡ 8A。 &lt;400&gt; 21 tcattccagc aaca &lt;210&gt; 22 83954 -14- 200401036 &lt;211&gt; 14 &lt;212&gt; DNA &lt;213〉人造序列 &lt;220〉 &lt;223〉組合之DNA/RNA分子之說明:核苷酸8為核糖核苷酸 -其他核苷酸為去氧核糖核苷酸。 &lt;220〉 &lt;223〉人造序列之說明:用於檢測人類變異型澱粉不溶素基因 之DNA片段之探針IAPP 8G。 &lt;400〉 22 tcattccggc aaca 83954 -15 -<220> &lt; 223> Explanation of the combined DNA / RNA molecule: nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides. &lt; 220 &gt; &lt; 223 &gt; Explanation of artificial sequence: Chimeric oligonucleotide primer ICAN-ALDH2-F for amplifying DNA of a part of human aldehyde dehydrogenase 2 gene. 83954 200401036 <400 >> 13 agttgggcga gtacgggcug &lt; 210 &gt; 14 &lt; 211> 20 &lt; 212 &gt; DNA &lt; 213> Artificial sequence &lt; 220 &gt; <223 &gt; Description of the combined DNA / RNA molecule: nucleotides 18 to 20 is a ribonucleotide-the other nucleotides are deoxyribonucleotides. &lt; 220 &gt; &lt; 223 &gt; Description of artificial sequence: Chimeric oligonucleotide primer ICAN-ALDH2-R for amplifying DNA of a part of human aldehyde dehydrogenase 2 gene. &lt; 400 &gt; 14 cagaccctca agccccaaca &lt; 210〉 15 &lt; 211 &gt; 14 &lt; 212 &gt; DNA &lt; 213> Artificial sequence 83954 -10- &lt; 220> 200401036 &lt; 223> Explanation of the combined DNA / rna molecule · -Ribonucleotide η is ribonucleotide-other ribo acids are deoxyribonucleotides: y: acid. &lt; 220〉 &lt; 223〉 Explanation of artificial sequence · • Probe ALDH2 wG for detecting DNA fragment of human wild-type dehydrogenase 2 gene 〇 &400; 15 ggcatacact gaag 14 &lt; 210〉 16 &lt; 211 &gt; 17 &lt; 212 &gt; DNA &lt; 213〉 artificial sequence &lt; 220〉 &lt; 223 &gt; 郷, sugar core avoidance surface &lt; 220 &gt; &lt; 223〉 artificial sequence description: used to detect human variant aldehyde Probe ALDH2 mA for the DNA fragment of the catalase 2 gene. 83954 -11 · 17200401036 &lt; 400> 16 catacactaa agtgaaa &lt; 210) 17 <211> 215 &lt; 212 &gt; DNA &lt; 213> artificial sequence &lt; 220> description of aldehyde dehydrogenase 2 gene &lt; 223> artificial sequence : from the human wild-type of a portion of the sequence &lt; 400> 17 cagggtcaac tgctatgatg tgtttggagc cc.agtcaccc tttggtggct acaagatgtc 60 ggggagtggc cgggagttgg gcgagtacgg gctgcaggca tacactgaag tgaaaactgt 120 gagtgtggga cctgctgggg gctcagggcc tgttggggct tgagggtctg ctggtggctc 180 ggagcctgct gggggattgg ggtctgttgg gggct 215 &lt; 210 &gt; 18 &lt; 211 &gt; 215 &lt; 212 &gt; DNA <213 &gt; artificial sequence &lt; 220> &lt; 223> Description of artificial sequence: a partial sequence of a mutant aldehyde dehydrogenase 2 gene derived from humans 83954 -12- 200401036 &lt; 400 &gt; 18 cagggtcaac tgctatgatg tgtttggggc ccagtcaccc. tttggtggct acaagatgtc 60 ggggagtggc cgggagttgg gcgagtacgg gctgcaggca & tacactaaag tgaaaactgt 120 gagtgtggga cctggg; ggggctggggctctggggctctggggctctggggctctgggg 212 &gt; DNA &lt; 213 &gt; Artificial Sequence &lt; 220 &gt; &lt; 223 &gt; Explanation of Artificial Sequence: PCR primer ALDH2F used to amplify the DNA of a part of the human aldehyde dehydrogenase 2 gene. &lt; 400〉 19 cagggtcaac tgctatgatg t 21 &lt; 210〉 20 &lt; 211〉 21 &lt; 212〉 DNA &lt; 213 &gt; artificial sequence 83954 '13- &lt; 220 &gt; 200401036 &lt; 223> Explanation of artificial sequence: A PCR primer ALDH2R that amplifies a portion of the human aldehyde dehydrogenase 2 gene. &lt; 400 &gt; 20 agcccccaac agaccccaat c &lt; 210 &gt; 21 &lt; 211 &gt; 14 &lt; 212〉 DNA &lt; 213〉 Artificial sequence &lt; 220〉 &lt; 223> Description of combined DNA / RNA molecule: Nucleotide 8 Ribonucleotides-Other nucleotides are deoxyribonucleotides. &lt; 220 &gt; &lt; 223 &gt; Description of artificial sequence: Probe IAPP 8A for detecting a DNA fragment of a human wild-type amylin gene. &lt; 400 &gt; 21 tcattccagc aaca &lt; 210 &gt; 22 83954 -14- 200401036 &lt; 211 &gt; 14 &lt; 212 &gt; DNA &lt; 213〉 Artificial sequence &lt; 220〉 &lt; 223〉 Description of the combined DNA / RNA molecule: Nucleotide 8 is a ribonucleotide-the other nucleotides are deoxyribonucleotides. <220> &lt; 223> Explanation of artificial sequence: Probe IAPP 8G for detecting a DNA fragment of a human variant amylin gene. &lt; 400〉 22 tcattccggc aaca 83954 -15-

Claims (1)

200401036 拾、申請專利範圍: 1. 一種供檢測標的核酸上之特定鹼基中是否有鹼基置換 之組合物’其包含: (a) 可將標的核酸上包含特定鹼基之區域增幅之引 子°玄引子為至少含有選自去氧核糖核甞酸及核甞酸類 似物中之成員及核糖核苷酸,該核糖核苷酸為配置於該 引子之3'末端或3,末端侧之至少2種鼓合寡核替酸引子; (b) 可與私的核酸上包含上述特定鹼基之區域雜交 且視上述知疋鹼基之種類可被核酸酶切斷或不被切斷 之探針; ⑷具有股置換活性之亀聚合酶;以及 (d)核酸酶。 2. 一種供檢測標的核醅μ + Μ &amp; 核^上之特定鹼基中是否有鹼基置換 之組合物,其包含: (a) 可將標的核酸卜&amp; y 上包含特定鹼基之區域增幅之引 子其係。至少含有選自去氧核糖核嘗酸及核替酸類似物 中之成員之至少2種寡核苷酸引子; (b) 可與標的核酸卜4人, 、 匕含上述特定鹼基之區域雜交 ’以及視上述特定鹼基 丞之種類可被核酸酶切斷或不被切 斷,且不會被DNA*入略七c 口自#之51 y 3,核酸外切酶活性切斷 之探針; (c) DNA聚合酶·,以及 (d) 核酸酶。 3 ·如申請專利範圍第9λ A 員之紐合物,其中該DN A聚合酶可 83954 為具有股置換活性之DNA聚合酶。 4.如申請專利範圍第1 及2員之組合物,其中該探針為含 核糖核芬酸之探針,兮 °亥核齩酶為核糖核酸酶Η。 5·—種鹼基置換之檢 、 法’其係檢測標的核酸上特定驗 基中是否有驗基置換夕 換之方法,其特徵為包含培育含有下 述成分之組合物,Α丨入、al # 才双測该組合物中之探針是否被切斷 之步驟, (a )標的核酸; (b)至少1種歲合寘 — … 口I核甘酸引子,其與標的核酸之上 =特定驗基之3,末端側之驗基序列實質上互補,並至少 有選自去氧核糖核苷酸及核苷酸類似物中之成員及 核糖核苷酸,且兮4 °亥核糖核知酸係配置在該引子之3,末端 或y末端側; (C)可與標的核酸上包含上述特定鹼基之區域雜交 且視卜w ’疋鹼基之種類可被核酸酶切斷或不被切斷 之探針; (d) 具有股置換活性之DNA聚合酶;以及 (e) 核酸酶。 種驗基置換之檢測方法,其係檢測標的核酸上特定鹼 疋否有驗基置換之方法,其特徵為包含培育含有下 刀之組合物’再檢測該組合物中之探針是否被切斷 之步驟: (a) 標的核酸; (b) 至少丨種寡核苷酸引子,其係與標的核酸之上述 83954 特定鹼基之3,太@ , ? 末而側之鹼基序列實質上互補,並至少含 有選自去氧核糠核嘗酸及核#酸類似物中之成員; ,、⑷可與:票的核酸上包含上述特定鹼基之區域雜交 ' I彳寸疋驗基之種類可被核酸酶切斷或不被切斷 ’且不會破DNA聚合酶之3,核酸外切酶活性切斷之 探針; (d) DNA聚合酶;以及 (e) 核酸酶。 如申明專利範圍第8項之檢測方法,其中該DNA聚合祿 為具有股置換活性之DN A聚合酶。 8·如申請專利範圍第5或6項之檢測方法,其中該組合物含 有2種引子。 9’如申請專利範圍第5或6項之檢測方法,其中該探針為含 有核糖核苷酸之探針,該核酸酶為核糖核酸酶Η。 10·如申請專利範圍第5或6項之檢測方法,其中將該组合物 在等溫條件下培育。 11. 一種肷合募核誓酸引子’其具有序列表之序列編號1、2 、7、8、13或14之鹼基序列。 12 · —種寡核:y:酸引子,其具有序列表之序列編號9、1 〇、 19或20之鹼基序列。 1 3. —種嵌合寡核甞酸引子’其具有序列表之序列編號3、4 、11、12、15、16、21或22之鹼基序列。 1 4. 一種供檢測標的核酸上之特定鹼基中是否有鹼基置換 之組合物,其包含: 83954 200401036 ( 種砍合暮核苷酸引子,其與標的核酸之上 述特定/基之1 2'末端側之驗基序列實質上互補,並至少 含有選自去氡核棰妨^1 核甘3欠及核苷酸類似物中之成員及 核糠核甘酸,且該核牆 糖核甘®文係配置在該引子之3'末端 或3'末端側;以及 包 15. ()在择寸疋酿度條件下可以選擇是否與標的核酸上 含上述特定鹼基之區域雜交之探針。 -種驗基置链* $丨人、a,i ^ . 、别方法’其係檢測標的核酸上特定 驗基中是否有鹼基置換 、.、 1換之方法,其特徵為包含培育含有 下述成分之組合物,i 士丄、Bt # , 再k測该組合物中之探針是否被切 斷之步驟: (a)標的核酸; 、乂b)、至〆1種嵌合寡核苷酸引子,其與標的核酸之上 =4寸,鹼基之3,末端側之鹼基序列實質上互補,並至少 16. 83954 1 有選自去氧核糖核苷酸及核苷酸類似物中之成員及 2 核糖核甘酸’且該核糖核嘗酸係配置在 或3,末端側; I于之3末鈿 3 勺:)在特定溫度條件下可以選擇是否與標的核酸上 匕1上述特定鹼基之區域雜交之探針; (d) DNA聚合酶,·以及 (e) 核酸酶。 種供檢測標的核酸上之特定鹼基中是否有鹼基置換 之套組,其包含: 、 U)至少1種嵌合寡核苷酸引子,其與標的核酸之上 200401036 =特,鹼基之3’末端側之驗基序列實質上互補,並至少 含有選自去氧核糖核甞酸及核嘗酸類似物中之成員及 核糖核黎酸,B # &gt; k 該核糖核谷酸係配置在該引子之3,末端 或3末端側;以及 ⑻可與標的核酸上包含上述特定驗基之區域雜交 ’見上述知疋驗基之種類可被核酸酶切斷或不被切斷 之探針。 7.種供測標的核酸±之特定驗基中是否有驗基置換 之套組,其包含: (a) 至少1種寡核苷酸引子,其與標的核酸之上述特 定驗基之3’末端側之驗基序列實質上互補;以及 (b) 可與標的核酸上包含上述特定鹼基之區域雜交 : 述知' 疋驗基之種類可被核酸酶切斷或不被核酸 酶切斷以及不會被DN A聚合酶之53,核酸外切酶活 性切斷之探針。 18.種(、铋測“的核酸上之特定鹼基争是否有鹼基置換 之套組,其包含: (a) 至少1種嵌合寡核苷酸引子,其與標的核酸之上 述特定鹼基之3,末端側之鹼基序列實質上互補,並至少 含有選自去氧核糖核苷酸及核苷酸類似物中之成員及 核糖核苷酸’且該核糖核苷酸係配置在該引子之3,末端 或3 1末端側;以及 (b) 在特定溫度條件下可以選擇是否與標的核酸上 包含上述特定鹼基之區域雜交之探針。 83954 200401036 H種供檢測標的核酸上之特线基中是否有驗基置換 之套組,其包含·· (a) 至少1種礙合寡核芬酸引子,其係與標的核酸之 士 j特,鹼基之3 ’末端侧之鹼基序歹4實質上互補,並至 少含有選自去氧核糖核芬酸及核菩酸類似物中之成員 ,以及 (b) 在特定溫度條 勹人 乘件下可以選擇是否與標的核酸上 匕3上述特定驗基之區域雜交之探針。 83954 200401036 柒、指定代表圖: (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件代表符號簡單說明: 捌、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 83954200401036 Scope of patent application: 1. A composition for detecting whether there is a base substitution in a specific base on a target nucleic acid, which comprises: (a) primers that can increase the area of the target nucleic acid containing a specific base ° Mysterious primers contain at least a member selected from deoxyribonucleic acid and riboic acid analogs and ribonucleotides, and the ribonucleotides are arranged at the 3 ′ end of the primer or at least 2 on the end side Kinds of oligonucleotide primers; (b) Probes that can hybridize to private nucleic acids containing the aforementioned specific bases and can be cleaved by nucleases or not depending on the type of the known bases; (Ii) a hydrazone polymerase having a strand displacement activity; and (d) a nuclease. 2. A composition for detecting whether there is a base substitution in a specific base on a target nucleus μ + Μ &amp; nucleus, comprising: (a) the target nucleic acid can be &amp; y containing a specific base The introduction of regional growth is related. At least two oligonucleotide primers containing at least two members selected from the group consisting of deoxyribonucleic acid and ribonucleotide analogs; (b) can hybridize with the target nucleic acid, including four specific bases, and the region containing the above specific base 'And probes that can be cleaved or not cleaved by nucleases depending on the types of specific bases mentioned above, and will not be cleaved by DNA * 入 略 七 c 口 ## 51 y 3, exonuclease activity cleaved probes (C) DNA polymerase, and (d) Nuclease. 3. If the compound of the 9th member of the scope of the patent application, the DNA polymerase 83954 is a DNA polymerase with strand replacement activity. 4. The composition of members 1 and 2 of the scope of application for a patent, wherein the probe is a probe containing riboribamic acid, and the ribozyme is a ribonuclease. 5 · —A kind of base substitution test and method, which is a method for detecting whether there is a test group replacement in a specific test group on a target nucleic acid, which is characterized by comprising cultivating a composition containing the following components: # Only double-check whether the probes in the composition are cut off, (a) the target nucleic acid; (b) at least one type of phytosynthesis —… I nucleotide primer, which is above the target nucleic acid = specific test 3, the test sequence of the terminal side is substantially complementary, and has at least a member selected from deoxyribonucleotides and nucleotide analogs and ribonucleotides, and the ribonucleotide system Placed on the 3, end or y-terminus side of the primer; (C) can hybridize to the target nucleic acid region containing the specific base mentioned above, and the type of the base can be cleaved or not cleaved by a nuclease Probes; (d) DNA polymerases with strand displacement activity; and (e) nucleases. A method for detecting base replacement is a method for detecting whether there is a base replacement for a specific base on a target nucleic acid, which is characterized by including cultivating a composition containing a lower knife, and then detecting whether the probe in the composition is cut off. Steps: (a) the target nucleic acid; (b) at least one oligonucleotide primer, which is substantially complementary to the base sequence of the target nucleic acid 3, too @,? And contains at least a member selected from the group consisting of deoxyribonucleic acid and nuclear acid; the type of the test base may be hybridized with the region of the nucleic acid containing the specific base described above; Probes that are cleaved or not cleaved by nucleases and that do not cleave DNA polymerase 3, exonuclease activity; (d) DNA polymerase; and (e) nuclease. For example, the detection method according to item 8 of the patent scope, wherein the DNA polymerase is a DNA polymerase having strand replacement activity. 8. The detection method according to item 5 or 6 of the patent application scope, wherein the composition contains two kinds of primers. 9 'The detection method according to claim 5 or 6, wherein the probe is a ribonucleotide-containing probe, and the nuclease is a ribonuclease. 10. The detection method of claim 5 or 6, wherein the composition is incubated under isothermal conditions. 11. A hybrid nucleic acid primer comprising a base sequence of SEQ ID NO: 1, 2, 7, 8, 13, or 14 of the sequence listing. 12 · — Oligonucleotides: y: acid primers having a base sequence of sequence number 9, 10, 19, or 20 of the sequence listing. 1 3. A chimeric oligonucleotide primer ' having a base sequence of sequence number 3, 4, 11, 12, 15, 16, 21, or 22 of the sequence listing. 1 4. A composition for detecting whether there is a base substitution in a specific base on a target nucleic acid, comprising: 83954 200401036 (species of cleavage nucleotide primers, and the specific / base of the target nucleic acid 1 2 The test sequence at the terminal end is substantially complementary and contains at least a member selected from the group consisting of denucleotide and nucleoside ^ 1 and nucleotide analogs, and ribonucleoside, and the ribonucleoside® The line is arranged at the 3 'end or the 3' end side of the primer; and the package 15. () Under the condition of selective fermentation, it is possible to select whether to hybridize the probe to the target nucleic acid region containing the above specific base. This kind of test base is set up. $ 丨 person, a, i ^., Other methods' It is a method for detecting whether there is a base substitution in a specific test base on the target nucleic acid,., 1 is a method, which is characterized by including cultivation and containing the following Composition of ingredients, i.e., Bt #, and then step of measuring whether the probe in the composition is cut off: (a) the target nucleic acid;, b), to 1 chimeric oligonucleotide Primers, which are substantially complementary to the target nucleic acid = 4 inches, 3 bases, and the base sequence on the end side, At least 16.83954 1 has a member selected from the group consisting of deoxyribonucleotides and nucleotide analogs, and 2 ribonucleosides, and the ribonucleotide is disposed on the 3 or terminal side; 3 scoops :) Under specific temperature conditions, you can choose whether to hybridize the probe to the above-mentioned specific base region on the target nucleic acid; (d) DNA polymerase, and (e) nuclease. A kit for detecting whether there is a base substitution in a specific base on a target nucleic acid, including: U) At least one chimeric oligonucleotide primer, which is above the target nucleic acid 200401036 = special, base The 3 ′ terminal side test sequence is substantially complementary and contains at least a member selected from the group consisting of deoxyribonucleic acid and ribonucleic acid analogs, and ribonucleic acid, B # &gt; k At the 3, end, or 3 end side of the primer; and ⑻ can hybridize to the target nucleic acid region containing the above-mentioned specific test substrate 'see above for the types of test substrates that can be cleaved by nucleases or not . 7. A set of test sample substitutions in a specific test sample of the target nucleic acid ±, comprising: (a) at least one oligonucleotide primer, which is 3 'to the specific test sample of the target nucleic acid The test sequence on the side is substantially complementary; and (b) it can hybridize to the region of the target nucleic acid that contains the above-mentioned specific base: the type of the test substrate can be cleaved by the nuclease or not, and Probe that will be cleaved by 53 DNA polymerase, exonuclease activity. 18. A set of bismuth-tested nucleic acids that determine whether there are base substitutions for specific bases, comprising: (a) at least one chimeric oligonucleotide primer that is related to the specific base of the target nucleic acid 3, the base sequence on the terminal side is substantially complementary, and contains at least a member selected from deoxyribonucleotides and nucleotide analogs and ribonucleotides', and the ribonucleotide is arranged in the The 3, end, or 31 end of the primer; and (b) a probe that can choose whether to hybridize to a region containing the above-mentioned specific base on the target nucleic acid under specific temperature conditions. 83954 200401036 H-specific characteristics of the target nucleic acid Is there a test group replacement set in the line base, which includes: (a) at least one oligonucleotide primer that interferes with the target nucleic acid j, the 3 'end of the base Sequence 4 is substantially complementary and contains at least a member selected from the group consisting of deoxyribonucleic acid and riboic acid, and (b) whether or not the target nucleic acid can be selected under certain temperature conditions. Probe for region hybridization of the above specific test substrate. 83954 200401 036. Designated representative map: (1) The designated representative map in this case is: (). (2) The representative symbols of the representative map are briefly explained: 捌 If there is a chemical formula in this case, please disclose the one that can best show the characteristics of the invention. Chemical formula: 83954
TW092104652A 2002-03-07 2003-03-05 Method of detecting base substitution TW200401036A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062543 2002-03-07

Publications (1)

Publication Number Publication Date
TW200401036A true TW200401036A (en) 2004-01-16

Family

ID=27784896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092104652A TW200401036A (en) 2002-03-07 2003-03-05 Method of detecting base substitution

Country Status (4)

Country Link
JP (1) JP4022522B2 (en)
AU (1) AU2003211421A1 (en)
TW (1) TW200401036A (en)
WO (1) WO2003074696A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333109B1 (en) 2008-09-03 2013-08-07 Takara Bio, Inc. Composition for detection of rna
JP5711234B2 (en) * 2010-07-29 2015-04-30 タカラバイオ株式会社 Method for producing RNA-containing probe for target base detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8102694A (en) * 1993-11-17 1995-06-06 Id Biomedical Corporation Cycling probe cleavage detection of nucleic acid sequences
ATE362532T1 (en) * 1999-03-19 2007-06-15 Takara Bio Inc METHOD FOR AMPLIFYING A NUCLEIC ACID SEQUENCE USING A CHIMERIC PRIMER
CN1254548C (en) * 2000-08-23 2006-05-03 宝生物工程株式会社 Method of amplifying nucleic acid

Also Published As

Publication number Publication date
JP4022522B2 (en) 2007-12-19
JPWO2003074696A1 (en) 2005-06-30
WO2003074696A1 (en) 2003-09-12
AU2003211421A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
TWI324182B (en) Detection of nucleic acid variation by cleavage-amplification method
KR101107911B1 (en) Primer set for amplification of ugt1a1 gene, reagent for amplification of ugt1a1 gene comprising the same, and use of the same
KR20110036646A (en) Method of detecting variation and kit to be used therein
CN108251522A (en) Human MTHFR and MTRR gene detection kit and application thereof
KR101446556B1 (en) Primer set for amplification of mthfr gene, mthfr gene amplification reagent comprising same, and use of same
JP5917144B2 (en) Probes for detecting polymorphisms in disease-related genes and uses thereof
KR101070349B1 (en) Probe for detecting abl gene mutation and uses thereof
KR101147277B1 (en) Probe for detecting mutation in jak2 gene and use thereof
KR101051385B1 (en) Primer set for obesity gene amplification, reagent for amplifying obesity gene comprising same and use thereof
JP2008161165A (en) Method for detecting gene using competing oligonucleotide
TW200404889A (en) Method of typing gene polymorphisms
KR101569127B1 (en) Probe for detecting polymorphism, method of detecting polymorphism, method of evaluating drug efficacy, disease prediction method and reagent kit for detecting polymorphism
KR101068605B1 (en) Primer set for amplification of nat2 gene, reagent for amplification of nat2 gene comprising the same, and use of the same
TW200401036A (en) Method of detecting base substitution
WO2011077990A1 (en) PROBES FOR DETECTION OF POLYMORPHISMS OF c-kit GENE, AND USE THEREOF
JP2013162783A (en) Method for detecting pon1 gene polymorphism (q192r)
JP2023523477A (en) Single-stranded nucleic acid for real-time detection of genetic mutation of a single target gene and detection method using the same
JP2014076044A (en) Probe for detecting mutation, method of detecting mutation, method of determining drug efficacy and kit for detecting mutation
EP2407560B1 (en) Probe for detection of polymorphism in abl gene, and use thereof
JP2008161164A (en) Method for detecting gene with primer containing artificial mismatched nucleic acid
US8748095B2 (en) Probe for detecting polymorphism in EGFR gene and use of the probe
KR20230091008A (en) Modified primers for loop-mediated isothermal amplification and use thereof
Xu et al. A Molecular Review of the Detection of Specific Nucleic Acids by Amplification and Hybridization Characterization of Microbial Diversity in the Food Chain: A Molecular Review
JP2008029205A (en) Diagnostic method using nucleic acid amplification
JP2002058483A (en) Method for assaying glutathione s-transferase, probe and kit therefor