TW200302486A - Charge injection - Google Patents
Charge injection Download PDFInfo
- Publication number
- TW200302486A TW200302486A TW092100296A TW92100296A TW200302486A TW 200302486 A TW200302486 A TW 200302486A TW 092100296 A TW092100296 A TW 092100296A TW 92100296 A TW92100296 A TW 92100296A TW 200302486 A TW200302486 A TW 200302486A
- Authority
- TW
- Taiwan
- Prior art keywords
- bit
- programming
- volts
- memory
- double
- Prior art date
Links
- 238000002347 injection Methods 0.000 title description 6
- 239000007924 injection Substances 0.000 title description 6
- 230000015654 memory Effects 0.000 claims abstract description 225
- 238000000034 method Methods 0.000 claims abstract description 117
- 230000000295 complement effect Effects 0.000 claims description 35
- 230000008859 change Effects 0.000 claims description 24
- 238000003491 array Methods 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 abstract description 9
- 230000000593 degrading effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 35
- 238000012790 confirmation Methods 0.000 description 22
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 12
- 150000004767 nitrides Chemical class 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 239000002784 hot electron Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 101150018075 sel-2 gene Proteins 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- -1 boron ion Chemical class 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 101150005652 selO gene Proteins 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3404—Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
- G11C16/3409—Circuits or methods to recover overerased nonvolatile memory cells detected during erase verification, usually by means of a "soft" programming step
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5657—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5671—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge trapping in an insulator
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0466—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
- G11C16/0475—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/344—Arrangements for verifying correct erasure or for detecting overerased cells
- G11C16/3445—Circuits or methods to verify correct erasure of nonvolatile memory cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3404—Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
- Read Only Memory (AREA)
Abstract
Description
200302486 五、發明說明(1) [發明所屬之技術領域] 本發明係大致有關記憶體系統,尤係有關一種在使用 虛擬接地(virtual ground)架構,且在具有雙位元記憶 電晶體單元的電子快閃記憶體裝置中,用來編程及抹除數 個位元區段之系統及方法。 [先前技術] 快閃記憶體是一種可被重新寫入且可在沒有供電的情 形下保持其内容之電子記憶體媒體。快閃記憶體裝置通常 具有1 0萬次至3 0萬次寫入週期的使用壽命。與可抹除單一 位元組的動悲卩返機存取記憶體(D y n a m丨c R a n d 〇 m A c c e s s Memory;簡稱DRAM)及靜態機存取記憶體(static200302486 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention relates generally to a memory system, and more particularly to an electronic device using a virtual ground architecture and having a two-bit memory transistor unit. System and method for programming and erasing several bit sectors in flash memory device. [Previous Technology] Flash memory is an electronic memory medium that can be rewritten and retains its contents without power. Flash memory devices typically have a useful life of 100,000 to 300,000 write cycles. And erasable single byte dynamic memory access memory (D y n a m 丨 c R a n d 0 m A c c e s s Memory; DRAM for short) and static machine access memory (static
Random Access Memory;簡稱SRAM)的記憶體晶片不同, 通常係以固定多個位元的區塊或區段為單位對快閃記憶體 進行抹除及寫入。快閃記憶體係由可在原位置進行抹除的 笔氣可抹除可程式唯頃έ己憶體(Electrically ErasableRandom Access Memory (abbreviated as SRAM) memory chips are different. Usually, flash memory is erased and written in blocks or sections with multiple bits. The flash memory system can be erased from its original position.
Programmable Read Only Memory;簡稱 EEPR0M)進展而 來,快閃記憶體具有較低的成本及較高的元件密度。此種 新的EEPR0M類型已發展成一種結合了 eprom的高元件密度 及E E P R 0 Μ的可以電氣抹除這兩項優點之重要的非揮發性記 憶體。 Χ 傳統的快閃記憶體係以一種將單一位元的資訊儲存在 每一記憶單元的記憶單元結構來建構。在此種單一位元記 憶體架構中,每一記憶單元通常包含一金屬氧化物半導體 (Metal Oxide Semiconductor;簡稱 M〇s)電晶體結Programmable Read Only Memory (EEPR0M for short) has evolved. Flash memory has lower cost and higher component density. This new type of EEPR0M has been developed into an important non-volatile memory that combines eprom's high component density and E E P R 0 M which can electrically erase these two advantages. ▶ The traditional flash memory system is constructed with a memory cell structure that stores a single bit of information in each memory cell. In this single-bit memory architecture, each memory cell usually includes a metal oxide semiconductor (Metal Oxide Semiconductor; M0s) transistor junction.
92257.ptd 第7頁 200302486 五、發明說明(2) 構,該結構具有在一基材或P型井中之一源極、一汲極、 及一通道,以及覆蓋在該通道之上的堆疊式閘極結構。該 堆疊式閘極可進一步包含在該P型井的表面上形成之薄閘 極介質層(有時被稱為隧道氧化物)。該堆疊式閘極亦包 舍覆蓋在該隧道氧化物之上的多晶矽浮接閘極,及覆蓋在 該浮接閘極之上的多晶矽間介質層。該多晶矽間之介質層 i常是一多層絕緣體例如具有兩個氧化物層而在其間夾入 一個氮化物層之氧化物-氮化物-氧化物 (Oxide-Nitride-Oxide;簡稱 0N0)層。最後,一多晶 控制閘極係覆蓋於該多晶矽間之介質層之上。 該控制閘極係連接到與一列與此種記憶單元相關聯之 一字線,以便以典型的N0R組態而形成若干區段的此種記 憶单元。此外’>及極區該等記憶早元係由^一導電位元線而 的連接在一起。記憶單元的通道根據該堆疊式閘極結構在 該-通道中產生的電場,而在源極與汲極之間傳導電流。在 該N0R組態中,單一行内的各電晶體之每一汲極端係連接 到相同的位元線。此外,每一快閃記憶單元係使其堆疊式 閘極端連接到不同的字線,而陣列中所有的快閃記憶單元 係使其源極端連接到共同源極端。在作業中,個別的快閃 #憶單元係利用周邊的解碼器及控制電路而經由各別的位 元線及字線而加以定址,以便執行編程(寫入)、讀取、 或抹除功能。 此種單一位元的堆疊式閘極快閃記憶單元係將一電壓 施加到控制閘極,並將源極接地,且將汲極連接到高於該92257.ptd Page 7 200302486 V. Description of the invention (2) The structure has a source, a drain, and a channel in a substrate or a P-type well, and a stacked type covering the channel Gate structure. The stacked gate may further include a thin gate dielectric layer (sometimes referred to as a tunnel oxide) formed on the surface of the P-well. The stacked gate also includes a polycrystalline silicon floating gate overlying the tunnel oxide and a polycrystalline silicon interlayer dielectric layer overlying the floating gate. The dielectric layer i between the polycrystalline silicon is often a multilayer insulator, such as an oxide-nitride-oxide (Oxide-Nitride-Oxide; abbreviated 0N0) layer having two oxide layers with a nitride layer sandwiched therebetween. Finally, a polycrystalline gate is overlaid on the dielectric layer between the polycrystalline silicon. The control gate is connected to a word line associated with a row of such memory cells to form sections of such memory cells in a typical NOR configuration. In addition, the memory early elements of the '> and polar regions are connected together by a conductive bit line. The channel of the memory cell conducts current between the source and the drain according to the electric field generated in the -channel by the stacked gate structure. In this NOR configuration, each drain terminal of each transistor in a single row is connected to the same bit line. In addition, each flash memory cell has its stacked gate terminals connected to a different word line, and all flash memory cells in the array have its source terminals connected to a common source terminal. In the operation, the individual flash # memory unit is addressed by using the surrounding decoder and control circuit through the respective bit lines and word lines in order to perform programming (writing), reading, or erasing functions. . This single-bit stacked gate flash memory cell applies a voltage to the control gate, grounds the source, and connects the drain to
92257.ptd 第8頁 200302486 五、發明說明(3) 源極電位之預定電位,而加以編程。跨越隧道氧化物兩端 所形成之高電場會導致一種被稱為n F 〇 w 1 e r - N 〇 r d h e i mπ穿 隨效應之現象。在該過程中’在中心記憶早元通道區的電 子穿過閘極氧化物而進入浮接閘極,且被困陷在浮接閘極 中,這是因為浮接閘極被多晶矽間之介質及隧道氧化物所 包圍。由於該等被困陷的電子,所以該記憶單元的臨界電 壓提高了 。由被困陷的電子產生的記憶單元臨界電壓的改 變(及因而造成的通道導電係數之改變)使得該記憶單元 被編程。 為了要抹除一典型的單一位元堆疊式閘極快閃記憶單 元,將一電壓施加到源極,並將控制閘極保持在一負電 位,同時可讓汲極浮接。在這些條件下,在介於浮接閘極 與源極之間之隧道氧化物兩端產生了 一電場。原先被困陷 在浮接閘極中的電子朝向浮接閘極中覆蓋在源極區之上的 部分流動,並群集在該部分中,且自浮接閘極粹取出來並 在F 〇 w 1 e r - Ν 〇 r d h e i m穿隧效應下經由隧道氧化物而進入源 極區。當自浮接閘極移開該等電子時,即抹除了該記憶單 元。 在傳統的單一位元快閃記憶體裝置中,要執行一抹除 確認,以便決定是否已正確地抹除了 一區塊或一組此種記 憶單元中之每一記憶單元。目前的單一位元抹除確認方法 提供了確認位元或記憶單元的抹除,並將補充抹除脈波施 加到個別的記憶單元,此種方法無法通過初始的確認。然 後再度確認該已抹除之記憶單元的狀態,繼續執行該程92257.ptd Page 8 200302486 V. Description of the invention (3) The predetermined potential of the source potential is programmed. The high electric field created across the tunnel oxide ends can cause a phenomenon known as n F 0 w 1 e r-N 0 r d h e i mπ tunneling effect. In this process, the electrons in the central memory early channel region pass through the gate oxide and enter the floating gate, and are trapped in the floating gate. This is because the floating gate is blocked by the polycrystalline silicon medium. And surrounded by tunnel oxides. Due to the trapped electrons, the critical voltage of the memory cell is increased. The change in the threshold voltage of the memory cell (and the resulting change in the channel conductivity) caused by the trapped electrons causes the memory cell to be programmed. In order to erase a typical single-bit stacked gate flash memory cell, a voltage is applied to the source and the control gate is held at a negative potential while the drain is allowed to float. Under these conditions, an electric field is generated across the tunnel oxide between the floating gate and source. The electrons originally trapped in the floating gate flow toward the portion of the floating gate covering the source region, and cluster in this part, and are taken out from the floating gate and removed at F ow. 1 er-Ν rdheim enters the source region through the tunnel oxide under the tunneling effect. When the electrons are removed from the floating gate, the memory cell is erased. In a conventional single-bit flash memory device, an erase confirmation is performed in order to determine whether each memory cell in a block or a group of such memory cells has been erased correctly. The current single-bit erasure confirmation method provides erasure of confirmation bits or memory cells, and applies supplementary erasure pulses to individual memory cells. This method cannot pass the initial confirmation. Then confirm the status of the erased memory unit again and continue the process.
92257.ptd 第9頁 200302486 五、發明說明(4) 序,直到成功地抹除了該記憶單元或位元或者該記憶單元 被標示為不能再用為止。 最近,已採用了雙位元快閃記憶單元,此種快閃記憶 單元可將兩位元的資訊儲存在單一記憶單元中。在單一位 元堆疊式閘極架構中採用的傳統之編程及抹除確認方法不 適用於此種雙位元裝置。最近,已採用了並不使用多晶矽 春接閘極的雙位元快閃記憶體結構,例如一種在0N0層之 上採用一多晶矽層以便提供字線連接之0Ν0快閃記憶體裝 置。傳統的技術從未提及與這類裝置相關聯之特性。因 ¥,本技術領域中非常需要新的改良式編程及抹除方法及 系統,此類新的改良式編程及抹除方法及系統將可確保正 確地編程及抹除雙位元記憶體虛擬接地架構中之資料位 元,並可應付此種架構的結構特性。 [發明内容] -本發明提供了一種在一相當高的電壓差(del ta VT) 之下編程一記憶體陣列的雙位元記憶單元的第一及第二位 元之系統及方法。該相對較高的V T保證在相當長的一段時 間中經過較高的溫度應力及(或)客戶操作之後,該記憶 體陣列仍能一貫地保持所編程的資料並能抹除資料。在一 對較高的電壓差之,對記憶單元的第一位元之編程會使 對第二位元的編程因較短的通道長度而變得較不易改變且 較快速。因此,本發明在編程第一及第二位元期間,採用 了經過選擇的閘極及汲極電壓、以及編程脈波寬度,此種 方式保證了一受到控制的第一位元V Τ,並減緩了對第二位92257.ptd Page 9 200302486 V. Description of the invention (4) until the memory unit or bit is successfully erased or the memory unit is marked as unusable. Recently, a two-bit flash memory unit has been used, which can store two bits of information in a single memory unit. The traditional programming and erase confirmation methods used in the single-bit stacked gate architecture are not applicable to such two-bit devices. Recently, a two-bit flash memory structure that does not use a polysilicon spring gate has been used, such as an ON0 flash memory device that uses a polysilicon layer above the ON0 layer to provide word line connections. Traditional technology has never mentioned the characteristics associated with such devices. Because of the need for new and improved programming and erasing methods and systems in this technical field, such new and improved programming and erasing methods and systems will ensure proper programming and erasing of the dual-bit memory virtual ground The bits of data in a structure and the structural characteristics of such a structure. [Summary]-The present invention provides a system and method for programming the first and second bits of a two-bit memory cell of a memory array under a relatively high voltage difference (delta VT). The relatively high VT guarantees that after a relatively long period of time after high temperature stress and / or customer operation, the memory array can still maintain the programmed data and erase the data. At a higher voltage difference, programming the first bit of the memory cell makes programming the second bit less difficult and faster due to the shorter channel length. Therefore, during the programming of the first and second bits, the present invention uses the selected gate and drain voltages and the programming pulse width. This method ensures a controlled first bit V T, and Slowed down to second place
92257.ptd 第10頁 200302486 五、發明說明(5) 元的編程。此外,該等經過選擇的燒錄參數可在不使電荷 耗損變差的情形下保持較短的編程時間。 本發明可進行有效率且徹底的編程、抹除、及確認, 因而儘量減少了類似於一 0N0雙位元記憶單元架構中會產 生的資料保持及過度抹除問題。當以與利用一 0Ν0架構形 成的雙位元記憶單元相關聯之方式採用本發明時,本發明 提供了顯著的優點。然而,我們當了解,本發明在與雙位 元記憶單元架構相關聯的方面有其效用,且本發明並不限 於任何特定的雙位元記憶單元使用之施行或組態。雖然與 編程雙位元記憶單元中的單一位元相關聯之電荷被隔離 了 ,但是該電荷將使對相關聯的記憶單元的編程變得較不 易改變,而使得該記憶單元較難以被抹除。例如,殘留的 電荷可能聚積在記憶單元的中央區,因而無法以正常單獨 抹除位元的方式來抹除該記憶單元。因此,本系統及方法 包含對記憶單元的在同一 0Ν0電晶體的兩相對端之正常位 元及互補位元(c 〇 in p 1 i m e n t a r y b i t)的編程、癌認、及 抹除。該抹除包括將一組抹除脈波施加到一單一的雙位元 記憶單元中之該正常位元及互補位元。該組抹除脈波係由 施加到該電晶體的兩端的一個兩端抹除脈波、接著由施加 到一端的一單端抹除脈波、以及施加到另一端的一單端抹 除脈波(所構成)。 在本發明的一個面向中,提供了 一種用來確認一記憶 體陣列的雙位元快閃記憶單元的抹除之系統及方法。該系 統及方法包括:預先編程各正常行位置及互補行位置中之92257.ptd Page 10 200302486 V. Description of the invention (5) Meta programming. In addition, these selected programming parameters can keep programming time short without degrading charge loss. The present invention can perform efficient and thorough programming, erasing, and confirming, thereby minimizing the problems of data retention and excessive erasure that are similar to those in a 0N0 double-bit memory cell architecture. The present invention provides significant advantages when applied in a manner that is associated with a two-bit memory cell formed using a 0NO architecture. However, we should understand that the present invention has its utility in relation to the architecture of the two-bit memory cell, and the present invention is not limited to the implementation or configuration of any particular two-bit memory cell. Although the charge associated with programming a single bit in a two-bit memory cell is isolated, the charge will make the programming of the associated memory cell less difficult to change, making the memory cell more difficult to erase . For example, the residual charge may accumulate in the central area of the memory cell, and the memory cell cannot be erased in the normal way of erasing the bits individually. Therefore, the system and method include programming, cancer recognition, and erasing of normal bits and complementary bits (c0 in p 1 i m n t a r y bit) of two opposite ends of the same ONO transistor of the memory cell. The erasing includes applying a set of erasing pulse waves to the normal bit and the complementary bit in a single two-bit memory cell. The group of erasing pulse waves is erased by one end applied to both ends of the transistor, followed by a single-end erased pulse applied to one end, and a single-end erased pulse applied to the other end. Waves (composed). In one aspect of the present invention, a system and method for confirming erasure of a dual-bit flash memory unit of a memory array are provided. The system and method include: pre-programming one of each normal row position and complementary row position
92257.ptd 第11頁 200302486 五、發明說明(6) 位元;然後確認各正常及互補位元行位置中的位元之抹 除。該碟認抹除要求在移到次一地址之前,每一位元地址 的位置先通過該抹除確認。另外,可對I / 0或字線的位元 執行抹除確認,以便在移到次一 I / 0或字線之前,I / 0的正 常位元及互補位元都必須通過抹除確認。如果地址之位置 並非低於用來界定空白狀態的最大VT,則施加一組抹除脈 k。該組抹除脈波包括在指定的持續時間(例如1 〇毫秒) 中施加到正常及互補行位置中的位元之一個兩端抹除脈 波、接著在指定的持續時間(例如1毫秒)中施加到正常 #位置及互補行位置中的一種行位置中的位元之一第一單 端抹除脈波、以及在一指定的持續時間(例如1毫秒)中 施加到正常行位置及互補行位置中的另一種行位置中的位 元之第二單端抹除脈波。重複該等確認及抹除步驟,直到 一區段中的每一正常位元及互補位元低於用來界定一空白 記1意單元之最大VT為止。然後針對每一區段而重複該等步 驟。 然後評估該等位元,以便決定該等位元是否已被過度 抹除或低於用來界定一空白記憶單元的最小VT。將一軟式 程式脈波提供給經決定已被過度抹除的該等位元。該軟式 •式球認應包括低位準的源極電壓,以便關掉來自同一行 上的其他記憶單元之漏電流。對正常行位置及互補行位置 中之位元執行第二或最後確認抹除程序,以便保證該軟式 程式脈波並未使該等位元上升到用來界定一空白記憶單元 的最大VT之上。92257.ptd Page 11 200302486 V. Description of the invention (6) Bits; then confirm the erasure of the bits in each normal and complementary bit row position. The disc erasure requires that the position of each bit address be confirmed by the erasure before moving to the next address. In addition, erase confirmation can be performed on bits of the I / 0 or word line so that before moving to the next I / 0 or word line, both the normal and complementary bits of the I / 0 must be confirmed by erase. If the location of the address is not lower than the maximum VT used to define the blank state, a set of erase pulses k is applied. This set of erasing pulse waves includes erasing the pulse waves at both ends of a bit applied to the normal and complementary row positions for a specified duration (for example, 10 milliseconds), and then for a specified duration (for example, 1 millisecond) One of the bits in one of the row positions applied to the normal # position and the complementary row position in the first single-ended erase pulse, and applied to the normal row position and the complement for a specified duration (eg, 1 millisecond) The second single-ended erase of the bit in the other row position of the row position erases the pulse wave. These confirmation and erasing steps are repeated until each normal bit and complementary bit in a segment is lower than the maximum VT used to define a blank note unit. These steps are then repeated for each segment. These bits are then evaluated to determine if they have been over-erased or below the minimum VT used to define a blank memory cell. A soft program pulse is provided to these bits which have been determined to have been over-erased. The soft ball type should include a low level source voltage in order to turn off leakage current from other memory cells on the same line. Perform a second or final confirmation erase procedure on the bits in the normal row position and the complementary row position to ensure that the soft program pulse does not raise the bits above the maximum VT used to define a blank memory cell .
92257.ptd 第12頁 200302486 五、發明說明(7) 為了達到前文所述的及相關的目的,本發明包含了在 本文中完整說明且於申請專利範圍中明確指出的特徵。下 文中之說明及附圖詳細述及了本發明的某些例示面向及實 施例。然而,這些面向及實施例只是象徵了可採用本發明 原理的各種方式中之一些方式。若參照下文中對本發明的 詳細說明,並配合各圖式,將可易於了解本發明的其他目 的、優點、及創新特徵。 [實施方式] 下文是參照各附圖而對本發明所作的詳細說明。本發 明提供了用來編程(寫入)、確認(讀取)、及正確地抹 除在雙位元模式下工作的雙位元記憶單元之方法及系統。 可配合快閃記憶體裝置中的晶片抹除或區段抹除作業而使 用本發明。此外,本發明提供了用來正確地配置並維護在 雙位元模式下工作的一陣列中之雙位元記憶單元之方法及 系統。雖然後文中係以與將每一記憶單元的兩個位元用於 資料儲存的0N0雙位元記憶單元架構相關聯之方式示出及 說明本發明,但是我們當了解,亦可將本發明應用於其他 類型的架構及其他的雙位元架構使用體系。 現在請參閱各圖式,第1圖示出可實施本發明的各種 面向中之一個或多個面向之一例示雙位元記憶單元(1 0 )。記憶單元(1 0)包含氮化矽層(16),該氮化矽層 (1 6)係夾在上二氧化矽層(14)與下二氧化矽層(18) 之間,而該等三層構成0Ν層(30)。一多晶矽層(1 2)係 設於該 ON層(30)之上,且提供了記憶單元(10)的一92257.ptd Page 12 200302486 V. Description of the Invention (7) In order to achieve the foregoing and related purposes, the present invention includes features fully described herein and clearly indicated in the scope of the patent application. The description and drawings that follow set forth certain illustrative aspects and embodiments of the invention in detail. However, these aspects and embodiments are merely some of the various ways in which the principles of the invention may be employed. The other objects, advantages, and innovative features of the present invention can be easily understood by referring to the following detailed description of the present invention and the accompanying drawings. [Embodiment] The following is a detailed description of the present invention with reference to the drawings. The present invention provides a method and system for programming (writing), confirming (reading), and correctly erasing a two-bit memory cell operating in a two-bit mode. The present invention can be used in conjunction with a chip erase or sector erase operation in a flash memory device. In addition, the present invention provides a method and system for correctly configuring and maintaining two-bit memory cells in an array operating in a two-bit mode. Although the present invention is shown and described in the following in association with the 0N0 two-bit memory cell architecture using two bits of each memory cell for data storage, we should understand that the present invention can also be applied Used in other types of architectures and other dual-bit architectures. Referring now to the drawings, Figure 1 illustrates one example of a dual bit memory cell (1 0) in one or more of the various aspects in which the present invention can be implemented. The memory unit (10) includes a silicon nitride layer (16), which is sandwiched between the upper silicon dioxide layer (14) and the lower silicon dioxide layer (18), and these The three layers constitute the ON layer (30). A polycrystalline silicon layer (12) is disposed on the ON layer (30) and provides a memory cell (10).
92257.ptd 第13頁 200302486 f五、發明說明(8) 字線連接。第一位元線(32)係設於第一區(4)之下的 該 0N層(3 0)之下,且第二位元線(34)係設於第二區 (6)之下的該 0N層(30)之下。位元線(32)及(34) 係由導電部分(24)及可自由選擇的氧化物部分(22)所 構成。在每一位元線(32)及(34)的兩端上設有硼離子 核心植入物(2 0),且該等位元線係在該等兩端處接觸下 三氧化矽層(1 8)或沿著整個電晶體。該等硼離子核心植 入物的摻雜濃度高於P型基材的摻雜濃度,且有助於控制 記憶單元(1 0)的VT。該記憶單元(1 0)係設於P型基材 ¥( 9)上,且係利用N +砷離子植入物形成位元線(3 2) 及(34)的導電部分(24) 5因而跨越該P型基材之間形 成了 一通道(8)。記憶單元(1 0)係由一單一的電晶體構 成,該電晶體具有由該N砷離子植入部(2 4 )所形成之可交 換源極的汲極,該N砷離子值入部(2 4 )係與一形成為多晶 矽字線(1 2 )的一部份之閘極共同設於該P型基材區(9 )之 上。 雖然第一及第二位元線(32)及(34)係相對於導電 部分(24)及可自由選擇的氧化物部分(22)所圖示,但 是我們當了解,亦可只利用導電部分形成該等位元線。此 夕#雖然第1圖在氮化矽層(1 6)中示出若干間隙,但是 我們當了解,亦可以沒有間隙而以單一條或單一層之方式 來製造該氮化^夕層(1 6)。 氮化矽層(1 6)形成一電荷困陷層。該記憶單元的編 程^係將電壓施加到汲極及閘極,並將源極接地而完成的。92257.ptd Page 13 200302486 f V. Description of the invention (8) Word line connection. The first bit line (32) is located under the 0N layer (30) under the first area (4), and the second bit line (34) is located under the second area (6) Under the 0N layer (30). The bit lines (32) and (34) are composed of a conductive portion (24) and a freely selectable oxide portion (22). A boron ion implant (20) is provided on each end of each bit line (32) and (34), and the bit lines are in contact with the lower silicon oxide layer ( 1 8) Or along the entire transistor. The doping concentration of these boron ion core implants is higher than the doping concentration of the P-type substrate and helps to control the VT of the memory cell (10). The memory unit (10) is provided on a P-type substrate ¥ (9), and the conductive portion (24) 5 of the bit lines (3 2) and (34) is formed by using an N + arsenic ion implant. A channel (8) is formed across the P-type substrate. The memory unit (10) is composed of a single transistor having a drain electrode of an exchangeable source formed by the N arsenic ion implanted portion (2 4), and the N arsenic ion input portion (2 4) The gate is formed on the P-type substrate region (9) together with a gate formed as a part of the polycrystalline silicon word line (1 2). Although the first and second bit lines (32) and (34) are illustrated relative to the conductive portion (24) and the freely selectable oxide portion (22), we should understand that it is also possible to use only the conductive portion Form such bit lines.该 夕 # Although Figure 1 shows several gaps in the silicon nitride layer (16), we should understand that the nitrided layer (1) can also be manufactured in a single strip or single layer without gaps (1 6). The silicon nitride layer (16) forms a charge trap layer. The memory cell is programmed by applying a voltage to the drain and gate and grounding the source.
92257.ptd 第14頁 200302486 五該層C到近汲第第近動 CC處元可}極可端位# 、發明說明(9) 電壓沿著該通道而產生電場,而使電子加速,並自基材 (9)跳進該氮化物,而此種現象被稱為熱電子注入 hot electron injection)。因為該等電子在汲極上得 大部分的能量,所以該等電子被困陷在且保持儲存在接 沒極的氮化物層處。記憶單元(1 0)通常是均句的,且 極及源極是可交換的。因為該氮化矽不導電,所以可使 一電荷(26)注入氮化物(16)中接近中央區(5)的 一端處,並可使第二電荷(2 8)注入氮化物(16)中接 中央區(5)的第二端處。因此,如果該等位元並未移 ,則每一記憶單元可以有兩個位元,而非一個位元。 如前文所述,可使該第一電荷(2 6)儲存在氮化物層 16)中的中央區(5)第一端處,並可使該第二電荷 2 8)儲存在氮化物層(16)中的中央區(5)第二端 ,因而每一記憶單元(1 0)可存在有兩個位元。該雙位 記憶單元(1 0) —般說來是對稱的,因而汲極及源極是 交換的。因此,當編程左方位元C 0時,第一位元線(3 2 可用來作為汲極端,且第二位元線(3 4)可用來作為源 端。同樣地,當編程右方位元C1時,第二位元線(34) 用來作為汲極端,且第一位元線(3 2)可用來作為源極 。第1表示出用來對具有第一位元C0及第二位元C1的雙 元記憶單元(1 0)執行讀取、編程、及單端抹除之一組 定的電壓參數。92257.ptd Page 14 200302486 F. This layer C to the near-kilth near-motion CC can be} 极 可 端 位 #, description of the invention (9) The voltage generates an electric field along this channel, which accelerates the electrons and automatically The substrate (9) jumps into the nitride, and this phenomenon is called hot electron injection. Because the electrons get most of their energy on the drain, the electrons are trapped and remain stored at the nitride layer of the electrode. The memory unit (10) is usually uniform, and the pole and source are interchangeable. Because the silicon nitride is not conductive, a charge (26) can be injected into the nitride (16) at an end near the central region (5), and a second charge (2 8) can be injected into the nitride (16). At the second end of the central area (5). Therefore, if the bits are not shifted, each memory cell can have two bits instead of one. As described above, the first charge (2 6) can be stored at the first end of the central region (5) in the nitride layer 16), and the second charge 2 8) can be stored in the nitride layer ( The second end of the central area (5) in 16), so each memory unit (10) may have two bits. The dual-bit memory cell (1 0) is generally symmetrical, so the drain and source are swapped. Therefore, when programming the left azimuth element C 0, the first bit line (3 2 can be used as the drain terminal, and the second bit line (34) can be used as the source end. Similarly, when programming the right azimuth element C 1 At the same time, the second bit line (34) is used as the drain terminal, and the first bit line (32) can be used as the source. The first bit is used to pair the first bit C0 and the second bit. C1's binary memory unit (1 0) performs reading, programming, and single-ended erasing of a set of voltage parameters.
92257.ptd 第15頁 200302486 磚 五、發明說明(ίο) 表1 作業 記憶 單元 閘極 位元線0 位元線1 註釋 讀取 C0 Vcc 0伏 1.2伏 額外行 讀取 C1 Vcc 1.2伏 0伏 正常行 編程 CO 9.25 至 9.5 伏 5至5.5伏 0伏 熱電子 編程 C1 9.25 至 9.5 伏 0伏 5至5.5伏 熱電子 單端抹除 CO -3至-6伏 5至6伏 浮接 熱電子注入 單端抹除 C1 -3至-6伏 浮接 5至6伏 熱電子注入 兩端抹除 Cl’CO -3至-6伏 5至6伏 5至6伏 熱電子注入 φ 可根據本發明的一個或多個面向而實現雙位元記憶單 元架構的各種實施例。本發明尤其適用於將一個雙位元記 憶單元的兩個位元用於資料或資訊儲存的記憶體裝置。本 發,的發明人已發現:編程及抹除此種記憶單元中的一個 位元(例如位元C0)時,將造成該位元的相關聯位元(例 如也元C1)的燒錄及(或)抹除。例如,對記憶單元(10 )的位元C 1之重複編程可能造成位元C 0中的電荷積聚,反 之亦然。此外,將抹除電壓脈波重複地施加到位元C 1可能 造成位元C0的過度抹除。相關聯的位元C0中的這些現象又 會造成正常作業中該等位元的作業之性能下降(例如,有 ^♦也讀取、寫入/編程、及(或)抹除一個或兩個位元的 能力)。本發明藉由選擇性地編程、確認、抹除、及重新 確認此種記憶單元的個別位元,以便進一步確保在快閃記 憶體裝置中的諸如區塊或區段抹除作業時對記憶單元有正 確的抹除,而解決了與雙位元記憶單元技術有關的上述這92257.ptd Page 15 200302486 Brick V. Explanation of the invention (ίο) Table 1 Gate bit line 0 bit line 1 of the working memory unit Note 1 Read C0 Vcc 0 volt 1.2 volt Extra line Read C1 Vcc 1.2 volt 0 volt Normal Line programming CO 9.25 to 9.5 volts 5 to 5.5 volts 0 volts hot electron programming C1 9.25 to 9.5 volts 0 volts 5 to 5.5 volts thermal electron single-ended erase CO -3 to -6 volts 5 to 6 volts floating hot electron injection single End erase C1 -3 to -6 volts Floating 5 to 6 volts Hot electron injection End erases Cl'CO -3 to -6 volts 5 to 6 volts 5 to 6 volts Hot electron injection φ Or various embodiments that implement a two-bit memory cell architecture. The present invention is particularly applicable to a memory device using two bits of a two-bit memory unit for data or information storage. In the present invention, the inventors have discovered that programming and erasing a bit (such as bit C0) in such a memory unit will cause the associated bit (such as also element C1) of the bit to be programmed and erased. (Or) erase. For example, reprogramming of bit C 1 of memory cell (10) may cause charge accumulation in bit C 0 and vice versa. In addition, repeatedly applying the erase voltage pulse to the bit C1 may cause excessive erasure of the bit C0. These phenomena in the associated bit C0 will in turn cause a decrease in the performance of these bit operations in normal operations (for example, ^ ♦ also read, write / program, and / or erase one or two Bit capabilities). In the present invention, by selectively programming, confirming, erasing, and reconfirming individual bits of such a memory unit, in order to further ensure that the memory unit is erased during a flash memory device such as a block or sector erase operation. There is a correct erasure, and the above-mentioned problems related to the two-bit memory cell technology are solved
92257.ptd 第16頁 200302486 五、發明說明(11) 些問題。 第2圖示出對記憶單元(1 0)中的兩個位元之編程。 為了便於解說,將一個位元稱為正常位元(Normal Bit ; 簡稱NB),而將相關聯的位元稱為互補位元 (Complimentary Bit;簡稱CB)。在讀取作業期間,最 接近被讀取的記憶單元之接面是接地端,而該電晶體的另 一端是汲極。此種方式被稱為反向讀取。在編程及抹除期 間,該汲極被轉換到最接近的接面,而此時該最接近的接 面之電壓是汲極電壓而非接地,此種方式係用於讀取及確 認作業。 可將雙位元記憶單元(1 0)視為一起動作的三個部 分,這三個部分是一互補位元區(40)、中央區(42)、 及正常位元區(44)。互補位元區(40)及中央區(42) 接近汲極/源極接面,且於編程及抹除作業期間可修改局 部的 VT。中央區(42)應接近記憶單元(10)的製程中 所產生的自然 VT。來自ON堆疊(30)的氮化矽(1 6)係 用於將第一電荷(38)儲存在正常位元區(44),並將第 二電荷(3 9)儲存在額外位元區(4 0)。因為氮化物並非 一導體,所以在編程及抹除作業期間加入或移開的電荷本 身應不會重新分佈,而是應停留在原先被注入的位置。亦 即,該電晶體的每一端可以有與另一端幾乎無關的不同之 電荷及不同之VT。例如,如果該CB及NB的自然或抹除/空 白VT大約為1 . 2伏,而且如果該NB被編程到約為3. 8伏的 V T,則該C B應仍然接近空白狀態。此外,如果兩個位元被92257.ptd Page 16 200302486 V. Description of the invention (11) These questions. Figure 2 shows the programming of the two bits in the memory cell (10). For the convenience of explanation, a bit is called a normal bit (NB), and an associated bit is called a complementary bit (CB). During a read operation, the interface closest to the memory cell being read is the ground terminal, and the other end of the transistor is the drain. This method is called reverse reading. During programming and erasing, the drain is switched to the closest interface. At this time, the voltage of the closest interface is the drain voltage instead of ground. This method is used for reading and verifying. The two-bit memory unit (10) can be regarded as three parts that work together. These three parts are a complementary bit area (40), a central area (42), and a normal bit area (44). The complementary bit area (40) and the central area (42) are close to the drain / source interface, and the local VT can be modified during programming and erasing operations. The central area (42) should be close to the natural VT generated in the process of the memory unit (10). The silicon nitride (16) from the ON stack (30) is used to store the first charge (38) in the normal bit region (44) and the second charge (39) in the extra bit region ( 4 0). Because the nitride is not a conductor, the charge added or removed during programming and erasing should not be redistributed, but should remain where it was originally injected. That is, each end of the transistor may have a different charge and a different VT that are almost unrelated to the other end. For example, if the natural or erase / empty VT of the CB and NB is about 1.2 volts, and if the NB is programmed to a V T of about 3.8 volts, the C B should still be close to a blank state. In addition, if two bits are
92257.ptd 第17頁 200302486 五、發明說明(12) 編程到3 . 8伏的V T,然後抹除該N B,則該C B應大約在3 . 8 伏,且該N B應大約在1. 2伏。 此外,在該NB的讀取作業期間,應由一汲極空乏區覆 蓋接近該CB位元線的電荷之一部分,這是因為源極(接地 點)必然是在最接近被確認的記憶單元之接面。該作業被 稱為反向讀取作業,這是因為被確認的記憶單元之接面係 i地的。雖然該反向讀取法覆蓋了接近另一位元的接面的 電荷之某些部分,但是在通道中央中的任何電荷將修改該 CB及該NB的有效VT。當該等區域中的一個區域之VT變得較 較低時,另一區域也可能受到影響,這是因為該等區 域都是同一電晶體的一部分。第3圖示出:在已經以類似 的編程參數對該CB進行編程之後,對該ΝΒ所執行的將電荷 (3 8)編程到ΝΒ區(44)之編程作業如何將使一積聚的電 荷(4 6)部分地脫離而進入中央區(4 2)。該有效的較短 通道是由於接近在該第二位元的編程期間接地的接面之該 第一位元上儲存的電荷。由於被充電的該第一位元所造成 的較短之通道長度,所以對第二位元的編程將比對該第一 位元的編程快許多。因為係以較不易改變之方式編程該第 二位元,所以該第二位元的抹除要比該第一位元的抹除缓 十·。本發明藉由選擇可用來以一致之方式編程及抹除兩個 位元並消除編程及抹除週期中積聚的殘留電荷之編程參 數,而解決了該第二位元的較不易改變之編程所產生之問 題。 ν 如第4圖所示,積聚的電荷(4 6)可能停留在記憶單92257.ptd Page 17 2002302486 V. Description of the invention (12) Program VT to 3.8 volts, and then erase the NB, then the CB should be about 3.8 volts, and the NB should be about 1.2 volts . In addition, during the reading operation of the NB, a portion of the charge close to the CB bit line should be covered by a drain empty region, because the source (ground point) is necessarily the closest to the memory cell being confirmed Meet. This operation is called a reverse reading operation because the interface of the identified memory unit is grounded. Although this reverse reading method covers some portion of the charge near the interface of another bit, any charge in the center of the channel will modify the effective VT of the CB and the NB. When the VT of one of these areas becomes lower, the other area may also be affected because these areas are all part of the same transistor. Figure 3 shows how, after the CB has been programmed with similar programming parameters, the programming operation performed on the NB to program the charge (38) to the NB area (44) will cause an accumulated charge ( 4 6) Partially detached into the central area (4 2). The effective shorter channel is due to the charge stored on the first bit approaching the ground that was ground during programming of the second bit. Due to the shorter channel length caused by the first bit being charged, programming the second bit will be much faster than programming the first bit. Because the second bit is programmed in a way that is less easily changed, erasing the second bit is slower than erasing the first bit. The invention solves the less easily changed programming place of the second bit by selecting a programming parameter that can be used to program and erase two bits in a consistent manner and eliminate residual charges accumulated during the programming and erasing cycle. Problems that arise. ν As shown in Figure 4, the accumulated charge (4 6) may stay on the memory sheet
92257.ptd 第18頁 200302486 五、發明說明(13) 元(1 0)中,並改變記憶單元(1 0)在每一週期中之編程 及抹除特性。該額外的第二位元編程電荷(4 6)之位置將 改變CB區(4 0)及NB區(4 4)的有效VT,並使抹除時間隨 著編程及抹除週期的次數增加而增加。兩端及單端抹除步 驟的組合提供了 一種用來控制陣列的記憶單元中之一般及 最外部位元的雙位元抹除之穩定方法。陣列的記憶單元中 之最外部位元通常有不同的通道長度或寬度,且只使用兩 端抹除法時會很緩慢地進行抹除,但是兩端抹除脈波對一 般的記憶單元有最佳的效果。因此,加入了一個單端抹 除,以便保持該陣列的記憶單元的最外部位元之抹除速 度。 因此,重要的是要確定對NB區(44)、中央區(42 )、及CB區(4 0)的VT進行監視,並將該等區的VT保持在 已知的位準,以便正確地操作該記憶單元。通常是在抹除 (後文中稱為 π雙位元抹除)期間執行監視並控制CB及 ΝΒ的VT之程序。因此,在本發明中,選擇編程參數,以便 確保該等位元不會因殘留電荷而被過度編程,且執行抹 除,以便確保中央區(4 2)中之殘留電荷受到控制。藉由 控制編程及抹除期間的VT分佈,在編程及抹除週期的抹除 及編程時間將會保持穩定。第5圖示出採用本發明的雙位 元編程及抹除方法的記憶單元(1 0)在編程及抹除週期之 後的情形。 許多快閃記憶體設有命令邏輯及嵌入式狀態機,用以 自動執行複雜的編程及抹除作業。靜態隨機存取記憶體92257.ptd Page 18 200302486 V. Description of the invention (13) Yuan (1 0), and change the programming and erasing characteristics of the memory unit (1 0) in each cycle. The position of the additional second bit programming charge (46) will change the effective VT of the CB area (40) and the NB area (44), and make the erase time increase with the number of programming and erase cycles. increase. The combination of two-end and single-end erase steps provides a stable method for controlling the two-bit erase of the general and outermost bits in the memory cells of the array. The outermost bits in the memory cells of the array usually have different channel lengths or widths, and they will be erased very slowly when only the two-side erase method is used, but the erase pulses at both ends are the best for ordinary memory cells. Effect. Therefore, a single-ended erase is added to maintain the erase speed of the outermost bits of the memory cells of the array. Therefore, it is important to determine the monitoring of the VTs in the NB area (44), the central area (42), and the CB area (40), and to maintain the VTs in these areas at known levels in order to correctly Operate the memory unit. The procedure of monitoring and controlling the VT of the CB and NB is usually performed during erasing (hereinafter referred to as π double-bit erasing). Therefore, in the present invention, the programming parameters are selected so as to ensure that the bits are not over-programmed due to the residual charge, and erase is performed to ensure that the residual charge in the central area (42) is controlled. By controlling the VT distribution during programming and erasing, the erasing and programming time during the programming and erasing cycle will remain stable. Fig. 5 shows a memory cell (10) using the two-bit programming and erasing method of the present invention after a programming and erasing cycle. Many flash memories have command logic and embedded state machines to automate complex programming and erase operations. Static random access memory
92257.ptd 第19頁 200302486 五、發明說明(14) (SRAM)模組組件可包含用來控制命令邏輯及記憶體系統 的作業而由一微控制器實施之程式。當一系統開機時,通 常係將這些程式載入一 SRAM中。可利用一匯流排將控制命 令自一處理器傳送到命令邏輯裝置,並將自該快閃記憶體 裝置讀取的資料或寫入該快閃記憶體裝置的資料與該命令 邏輯及一主處理器交換。該快閃記憶體裝置的該等嵌入式 狀態機產生用於詳細作業的命令邏輯控制,例如執行編 程、讀取、及抹除作業所需的的各種個別步驟。該狀態機 因而係用來減少通常與一包含快閃記憶體的微晶片相關聯 3φί吏用的一處理器(圖中未示出)所需之資源耗用。 現在請參閱第6圖,其中提供了 一系統(6 0),該系 統(6 0)係用來對一採用本發明的雙位元記憶單元的記憶 體身列(6 8)執行編程、確認、軟式編程、及抹除。在本 例子中,記憶體陣列(6 8)係由複數個 6 4 Κ區段(6 9) 所”構成。快閃記憶體陣列的一區段(6 9)包含記憶體陣列 (6 8)的一部分,其中包含經由共用相同的區段位址的所 有字線而聚集在一起的所有記憶單元。該區段位址通常是 用來定址到該記憶體陣列中的一個或多個記憶單元的地址 位元信號之η個(例如六個)最高有效地址位元,其中η是 整數。例如,可由8個10構成每一 64Κ區段(69),其中 一 I 0是具有4個正常位元及4個互補位元的4個記憶單元或4 個雙位元記憶單元構成之一列。我們當了解,記憶體陣列 (6 8)可以是任何數目的不同組態,例如,可由在8個記 憶單元上的8個正常位元及8個互補位元構成1 2 8 Κ區段。此92257.ptd Page 19 200302486 V. Description of the Invention (14) (SRAM) module components can contain programs implemented by a microcontroller to control the operation of command logic and memory systems. When a system is turned on, these programs are usually loaded into a SRAM. A bus can be used to transmit control commands from a processor to a command logic device, and to read data from the flash memory device or write data to the flash memory device with the command logic and a main process器 开关。 Exchange. The embedded state machines of the flash memory device generate command logic controls for detailed operations, such as various individual steps required to perform programming, reading, and erasing operations. The state machine is thus used to reduce the resource consumption of a processor (not shown) typically associated with a microchip containing flash memory. Referring now to FIG. 6, there is provided a system (60) for performing programming and confirmation on a memory array (68) using the dual-bit memory unit of the present invention. , Soft programming, and erasing. In this example, the memory array (6 8) is composed of a plurality of 6 4 K segments (6 9). One segment (6 9) of the flash memory array contains the memory array (6 8) A portion of the memory cell that contains all memory cells clustered together via all word lines that share the same sector address. The sector address is usually the address bits used to address one or more memory cells in the memory array. Η (for example, six) most significant address bits of a meta signal, where η is an integer. For example, each 64K sector (69) can be composed of 8 10s, of which I 0 has 4 normal bits and 4 4 complementary memory cells or 4 double-bit memory cells constitute a column. We should understand that the memory array (68) can be any number of different configurations, for example, it can be on 8 memory cells 8 normal bits and 8 complementary bits form a 1 2 8 K segment. This
92257.ptd 第20頁 200302486 五、發明說明(15) 外,可採用任何數目的區段,且只受限於應用的大小、及 採用快閃記憶體陣列(6 8)的裝置之大小。 系統(6 0)包含一連接到快閃記憶體陣列(6 8)之地 址解碼器(6 2),用以在對陣列(6 8)執行的各種作業 (例如編程、f胃取、破認、抹除)期間將各10解碼。該位 址解碼器自一系統控制器(圖中未示出)或類似的裝置接 收地址匯流排資訊。 一命令邏輯組件(6 4)包含一内部狀態機(6 5)。該 命令邏輯組件(6 4)係連接到地址記憶體陣列(6 8)。該 命令邏輯及狀態機自連接到一系統控制器或類似裝置的一 資料匯流排接收命令或指令。該等命令或指令呼叫命令邏 輯(6 4)及狀態機(6 5)中所嵌入的演算法。該等演算法 執行將於本文中說明的各種編程、讀取、抹除、軟式編 程、及確認方法。一電壓產生器組件(6 6)亦係連接到記 憶體陣列(68)以及命令邏輯(64)及狀態機(65)。電 壓產生器組件(66)係由命令邏輯(64)及狀態機(65) 所控制。電壓產生器組件(66)可工作而產生用來編程、 讀取、抹除、軟式編程、及確認記憶體陣列(6 8)的該等 記憶單元所需之電壓。 第7圖是例示64K區塊(70)的部分記憶單元佈局之俯 視或平視圖。本範例係參照由1 6位元I / 0所構成的6 4 K區塊 而顯示。我們當了解,各區塊(block)可以由8位元、32 位元、6 4位元、或更多位元的I / 0所構成,且不限於6 4 K (例如,可以是128K、2 5 6 K等)。該64K區塊(70)可以92257.ptd Page 20 200302486 V. Description of Invention (15) Any number of segments can be used, and it is limited only by the size of the application and the size of the device using the flash memory array (68). The system (60) includes an address decoder (62) connected to the flash memory array (68), and is used to perform various operations (e.g., programming, fetching, deciphering) on the array (68). , Erase) during the decoding of 10 each. The address decoder receives address bus information from a system controller (not shown) or a similar device. A command logic component (64) includes an internal state machine (65). The command logic component (6 4) is connected to the address memory array (6 8). The command logic and state machine receive commands or instructions from a data bus connected to a system controller or similar device. These commands or instructions call algorithms embedded in the command logic (64) and state machine (65). These algorithms perform the various programming, reading, erasing, soft programming, and validation methods that will be described in this article. A voltage generator component (66) is also connected to the memory array (68), the command logic (64) and the state machine (65). The voltage generator assembly (66) is controlled by the command logic (64) and the state machine (65). The voltage generator assembly (66) is operable to generate the voltages required for programming, reading, erasing, soft programming, and confirming the memory cells of the memory array (68). Fig. 7 is a top view or a plan view illustrating a layout of a part of a memory unit of a 64K block (70). This example is shown with reference to a 64 K block composed of 16 bit I / 0. We should understand that each block can be composed of 8-bit, 32-bit, 64-bit, or more I / 0, and is not limited to 64K (for example, it can be 128K, 2 5 6 K, etc.). The 64K block (70) can
92257.pid 第21頁 200302486 五、發明說明(16) 是一區段(sector)、或一區段的一部分。例如,具有連 接到共同金屬位元線的接點之一個或多個區塊可構成一區 段。0N0堆疊條或層(72)延伸到該記憶體陣列的長度, 且包含區塊(70)。區塊(70)包含16個I/O或行(76) 的群組。每一 ''字〃或I / 0的群組係由八個電晶體或八個 立常位元及八個互補位元所構成。每一 I / 0包含一多晶矽 字線(7 4),用以定址到該等列的記憶單元。複數條位元 線係設於0 Ν 0堆疊條層(7 2)之下,以便起動對該等記憶 單元的個別位元之讀取、寫入、及抹除。每一位元線係在 #組的十六列的一端上連接到一第一接點(78)及各金屬 位元線(圖中未示出),並在該組的另一端上連接到一第 二接點(7 9)。在圖7所示之例子中,示出了五條位元 線丨因而一位元線係連接到一行中的每隔一個的電晶體之 一端,且利用兩個選擇電晶體來選擇兩個電晶體的四個位 元、以便執行讀取、寫入、及抹除。 第8圖是利用若干選擇電晶體及三條位元線而定址到 一列中的前四個雙位元記憶單元以便讀取、寫入、及抹除 各位元之示意圖。第一雙位元記憶單元(8 2)包含第一位 元C0及第二位元C1,第二雙位元記憶單元(84)包含第一 Λ元C 2及第二位元C 3,第三雙位元記憶單元(8 6)包含第 一位元C 4及第二位元C 5,以及第四雙位元記憶單元(8 8) 包含第一位元C 6及第二位元C 7。這四個雙位元記憶單元可 構成一個8位元的字。設有選擇閘(8 8) ( S e 1 0)及選擇 閘(90) ( Sel 1),用以起動對雙位元記憶單元(82)的92257.pid Page 21 200302486 V. Description of the invention (16) is a sector, or part of a sector. For example, one or more blocks with contacts connected to a common metal bit line may constitute a block. The 0N0 stacked bars or layers (72) extend to the length of the memory array and include blocks (70). Block (70) contains a group of 16 I / Os or rows (76). Each group of words or I / 0 is composed of eight transistors or eight standing bits and eight complementary bits. Each I / 0 contains a polysilicon word line (74), which is used to address the memory cells in the columns. The plurality of bit lines are arranged below the 0 N 0 stacked strip layer (72) so as to start reading, writing, and erasing the individual bits of the memory cells. Each bit line is connected to a first contact (78) and each metal bit line (not shown) on one end of the sixteenth column of the # group, and is connected to the other end of the group A second contact (7 9). In the example shown in FIG. 7, five bit lines are shown. Therefore, one bit line is connected to one end of every other transistor in a row, and two selection transistors are used to select two transistors. Four bits to perform reading, writing, and erasing. Figure 8 is a schematic diagram of addressing the first four two-bit memory cells in a column using a number of selection transistors and three bit lines to read, write, and erase each bit. The first double-bit memory unit (82) includes a first bit C0 and a second bit C1, and the second double-bit memory unit (84) includes a first Λ-bit C 2 and a second bit C 3, The three double-bit memory unit (86) includes a first bit C4 and a second bit C5, and the fourth double-bit memory unit (88) includes a first bit C6 and a second bit C 7. These four double-bit memory cells can form an 8-bit word. There are selection gates (8 8) (S e 1 0) and selection gates (90) (Sel 1) for activating the two-bit memory unit (82).
92257.ptd 第22頁 200302486 五、發明說明(17) 位元C 0、C卜以及雙位元記憶單元(8 4)的位元C 2、C 3之 讀取、寫入、及抹除。設有選擇閘(92) ( Sel2)及選擇 閘(9 4) ( S e 1 3),用以起動對雙位元記憶單元(8 6)的 位元C4、C5、以及雙位元記憶單元(88)的位元C6、C7之 讀取、寫入、及抹除。第一開關(9 6)係連接到第一位元 線BL0,第二開關(98)係連接到一第二位元線BL1,以及 第三開關(1 0 0)係連接到第三位元線BL2。該第一、第 二、及第三開關係將對應的位元線耦合於電源(VDD)與 接地點(GND)之間。藉由提供下表2所示之不同電壓組 態,即可讀取該等雙位元記憶單元之任何位元。在第8圖 所示之例子中,正在讀取雙位元記憶單元(8 2)的位元 C0 ° 表292257.ptd Page 22 200302486 V. Description of the invention (17) Bits C 0, C, and bits C 2 and C 3 of the double-bit memory unit (84) read, write, and erase. There are selection gates (92) (Sel2) and selection gates (9 4) (Se 1 3) for activating bits C4, C5, and two-bit memory units of the two-bit memory unit (86). (88) Bits C6, C7 are read, written, and erased. The first switch (96) is connected to the first bit line BL0, the second switch (98) is connected to a second bit line BL1, and the third switch (100) is connected to the third bit line Line BL2. The first, second, and third open relationships couple the corresponding bit lines between a power source (VDD) and a ground point (GND). By providing the different voltage configurations shown in Table 2 below, any bit of these two-bit memory cells can be read. In the example shown in Figure 8, the bit C0 ° of the two-bit memory cell (8 2) is being read. Table 2
記憶 單元 WL A B C selO sel 1 sel 2 Sel 3 BLO BL 1 BL2 CO Vgate H L X L H L L GND VD X C1 Vgate L H X L H L L VD GND X C2 Vgate H L X H L L L GND VD X C3 Vgate L H X H L L L VD GND X C4 Vgate X H L L L L H X GND VD C5 Vgate X L H L L L H X VD GND C6 Vgate X H L L L H L X GND VD C7 Vgate X L H L L H L X VD GND 在雙位元編程期間,選擇一較高之V T改變值,以便補 償後週期的電荷耗損。在這些較高的VT改變值下,該電晶 體上的第一位元係以比編程電晶體上的第二位元慢很多的Memory unit WL ABC selO sel 1 sel 2 Sel 3 BLO BL 1 BL2 CO Vgate HLXLHLL GND VD X C1 Vgate LHXLHLL VD GND X C2 Vgate HLXHLLL GND VD X C3 Vgate LHXHLLL VD GND X C4 Vgate XHLLLLHX GND VD C5 V5 C5 V5 Vgate XHLLLHLX GND VD C7 Vgate XLHLLHLX VD GND During the two-bit programming, select a higher VT change value in order to compensate the charge loss of the subsequent cycle. At these higher VT changes, the first bit on the transistor is much slower than the second bit on the programming transistor.
92257.ptd 第23頁 200302486 五、發明說明(18) 速率下編程。這種情況不會在編程電壓低很多的時候發 生。第9圖示出第二位元的編程時間與第一位元的VT改變 值間之關係圖(1 1 0)。因為對第二位元的編程呈現較不 易改變及較快速的情況,所以第二位元決定了雙位元抹除 時間及可用來抹除雙位元的方法。重要的是要選擇使第二 位元編程後的VT接近第一位元編程後的VT之編程條件,否 如雙位元的抹除可能會非常緩慢,且編程後的第一位元將 會被過度抹除。一般而言,最關鍵的是控制編程第一位元 期間的汲極電壓,以便限制第一位元的V T範圍。為了控制 #一位元的V T,將兩個位元於編程期間的閘極電壓選擇為 大約9 . 2 5伏至大約9 . 5伏,將汲極電壓選擇為大約5 . 0伏至 大約5. 5伏,並將編程脈波的脈波寬度減小至0 . 5微秒。這 些條件有助於維持一較嚴格的第一位元VT,並減緩對第二 位元的編程。 • 0 N 0雙位元記憶單元的一關鍵性特性是:在加速高溫 烘烤(攝氏7 5至2 0 0度)期間的電荷耗損是編程及抹除週 期的次數之一強函數。第1 0圖示出以電壓表示的電荷耗損 與編程及抹除(Program and Erase ;簡稱PE)週期的次 數間之一關係圖(1 2 0)。該圖呈現可能的可靠性問題, 因為電荷耗損量隨著編程及抹除週期的次數增加到 1 0,0 0 0次而增加。該電晶體的單一位元編程後狀態(當編 程該電晶體的一端,但另一端是空白的或未被編程的,即 發生此種狀態)出現了在較大的週期次數時有較大的電荷 耗損之問題。兩個位元都被編程的情形所耗損的電荷小於92257.ptd Page 23 200302486 V. Description of the invention (18) Programming at speed. This situation does not occur when the programming voltage is much lower. Fig. 9 shows the relationship between the programming time of the second bit and the VT change value of the first bit (110). Because the programming of the second bit is harder to change and faster, the second bit determines the double bit erasing time and the method that can be used to erase the double bit. It is important to select the programming conditions that make the VT after the second bit programming approach the VT after the first bit programming. Otherwise, the erase of the two bits may be very slow, and the first bit after programming will be Excessively erased. In general, it is critical to control the drain voltage during programming of the first bit in order to limit the V T range of the first bit. In order to control the VT of one bit, the gate voltage of the two bits during programming is selected to be approximately 9.5 volts to approximately 9.5 volts, and the drain voltage is selected to be approximately 5.0 volts to approximately 5 volts. 5 volts and reduces the pulse width of the programmed pulse to 0.5 microseconds. These conditions help maintain a stricter first bit VT and slow down programming of the second bit. • A key characteristic of the 0 N 0 dual bit memory cell is that the charge loss during accelerated high temperature baking (75 to 200 degrees Celsius) is a strong function of the number of programming and erasing cycles. Fig. 10 is a graph showing the relationship between the charge loss represented by the voltage and the number of times of the program and erase (Program and Erase; PE) cycle (120). This figure presents a possible reliability issue because the charge loss increases as the number of programming and erasing cycles increases to 10,000. The single-bit programming state of the transistor (when one end of the transistor is programmed, but the other end is blank or unprogrammed, that is to say, this state occurs) has a larger number of cycles. The problem of charge loss. The charge consumed when both bits are programmed is less than
_ 111_ 111
-I-I
92257.ptd 第24頁 200302486 五、發明說明(19) 1 0或01狀態所耗損的電荷。因此,VT改變值係將編程選擇 在介於2至2. 5伏之間,以便補償因循環使用而造成的電荷 耗損。 考慮到前文所示出及說明的該等例示系統,請參閱第 1 1至1 4圖之流程圖,將可更易於了解可根據本發明而實施 的一方法。為了顧及說明的簡潔,雖然第1 1至1 4圖之方法 係以循序執行之方式而示出及說明,但是我們當了解,本 發明並不受限於所示之順序,因某些步驟可根據本發明而 以不同之順序來執行,且(或)可與本文示出及說明的其 他步驟同時執行。此外,並不是所有示出的步驟都是實施 根據本發明的一方法所必需的。 本發明的快閃記憶體陣列中的雙位元記憶單元之一關 鍵性特性是:在加速高溫烘烤(攝氏7 5至2 0 0度)期間的 電荷耗損是燒錄及抹除週期的次數之一強函數。此種現象 呈現可能的可靠性問題,這是因為電荷耗損量隨著編程及 抹除週期的次數增加到1 0 , 0 0 0次而增加。該電晶體的單一 位元1至0或0至1狀態(當編程該電晶體的一端,但另一端 是空白的或未被編程的’即發生此種狀悲)出現了在較大 的週期次數時有較大的電荷耗損之問題。在攝氏2 5 0度的 供烤溫度下’記憶早元電晶體的行為不是南斯(G a u s s i a η )型。在攝氏2 5 0度之下,由於氮化物中電荷的重新分 佈、以及在接近較大多晶矽間隙處的局部性增強被困陷的 氮化物電荷,所以接近較大字線(中心部分的多晶石夕閘極 )間隙的記憶單元電晶體耗損較多的電荷。我們發現:當92257.ptd Page 24 200302486 V. Description of the invention (19) The charge consumed in the 10 or 01 state. Therefore, the VT change value is programmed to be between 2 and 2.5 volts to compensate for the charge loss caused by cycling. Considering the exemplary systems shown and described above, please refer to the flowcharts in Figures 11 to 14 to make it easier to understand a method that can be implemented in accordance with the present invention. For the sake of brevity of the description, although the methods in Figures 11 to 14 are shown and explained in a sequential manner, we should understand that the present invention is not limited to the order shown, because some steps may Performed in a different order according to the present invention, and / or may be performed concurrently with other steps shown and described herein. Furthermore, not all steps shown are necessary to implement a method according to the invention. One of the key characteristics of the dual-bit memory cell in the flash memory array of the present invention is that the charge loss during the accelerated high-temperature baking (75 to 200 degrees Celsius) is the number of burning and erasing cycles One of the strong functions. This phenomenon presents a possible reliability problem because the charge loss increases as the number of programming and erasing cycles increases to 10, 000 times. The single bit 1 to 0 or 0 to 1 state of the transistor (when one end of the transistor is programmed, but the other end is blank or unprogrammed, that is to say this kind of tragedy) occurs in a larger cycle There is a problem of large charge loss in the number of times. At a baking temperature of 250 degrees Celsius, the behavior of the memory early element transistor is not Gauss s i a η type. Below 250 ° C, due to the redistribution of the charge in the nitride and the local enhancement of the trapped nitride charge near the large polycrystalline silicon gap, it is close to the larger word line (the polycrystalline stone in the central part) (East gate) gap memory cell transistor consumes more charge. What we found: When
92257.ptd 第25頁 200302486 五、發明說明(20) __ 所有裝置經過相同週期次數的循環 元電晶體晶粒在相同資料型樣下 二之後,母個記憶單 出現的。在循環使用次數超過K〗〇 耗損分佈是會重複 間的編程及抹除條件呈現對㊉# = ^之後’循環使用期 圖的影響很小之現象。 兒何毛知與週期次數間之關係 為了應付在100k週期之後 * 變值(例如,使ντ改攀、佶* Μ 电何耗損’增加編程VT改 閃記憶體陣列的使用壽命日 5伏),以便確保在快 有效的VT。我們決定··可、琴/ :,程後的記憶單元可維持 響a t e = 9 · 2 5至9 · 5伏,且广擇知' 疋的編程參數(例如,在 編程脈波施加〇 · 5微秒), i11 5 · 〇至5 · 5伏下,每一字的 較高的V Τ ( 2 . 0伏至2 5伏 而將雙位元記憶單元編程到一 極.短的編程時間。我們、、夫a ’且仍然在雙位元作業中保持 2 5 0度)下,電荷耗指/、定·在較高的溫度(例如攝氏 此·類與循環使用相關的㊉週期次數的一函數。用來修正 單元編程到2. 〇伏? P9 〔甩何耗損問題之方法是:將各記憶 土乙· 伏p气a 率來編程該等位元(例 司之一 VT改變值,並以較慢的速92257.ptd page 25 200302486 V. Description of the invention (20) __ All devices go through the same number of cycles. After the cell crystal grains are under the same data type, the second memory list appears. When the number of cycles exceeds K 〖〇 The wear distribution is a phenomenon in which the programming and erasing conditions will be repeated, and the effect of 之后 # = ^ after the cyclic cycle is small. The relationship between Er Maozhi and the number of cycles in order to cope with the value after 100k cycles (for example, to make ντ change, 佶 * Μ power consumption 'increase programming VT to change the lifetime of the flash memory array 5 volts), In order to ensure a fast and effective VT. We decided that ·····, / /, the memory unit after the process can maintain the sound ate = 9 · 2 5 to 9 · 5 volts, and widely choose the programming parameters of 疋 (for example, when the programming pulse is applied 0.5 Microseconds), i11 5 · 0 to 5 · 5 volts, the higher V T (2.0 volts to 25 volts) per word to program the dual bit memory cells to a pole. Short programming time. We, Fu a 'and still maintain 250 degrees in double-bit operation), the charge consumption refers to /, set at a higher temperature (such as Celsius, this type of cycle time related to the cycle time Function. It is used to modify the unit programming to 2.0 volts? P9 [The method to remove any loss is to program the bits in each memory (V, p, a) rate (the VT of one of the divisions changes the value, and At a slower speed
Ydraini· 0至 5. 5伏下,在 Vgate::=9· 25至 9· 5伏,且 ),以便對與雙位元編母一字的編程脈波施加〇 · 5微秒 控制。 &相關聯的互補位元干擾效應有較Ydraini · 0 to 5.5 Volts, at Vgate :: = 9 · 25 to 9 · 5 Volts, and) to apply a 0.5 microsecond control to the programming pulse that is a word with a double bit mother. & associated complementary bit interference effects
第11圖示出一種用 A 雙位元模式下操作沾4 '、疋根據本發明的一個面向而在 V Τ電壓改變值之特定方、〜旦陣列的一個雙位元記憶單元的 其中決定對於一办卜少 法。本方法開始於步驟(2 0 0), 、 在—陣列中的記憶單元之正常空白或未FIG. 11 shows a method for operating 4 ′ in an A-bit mode, according to an aspect of the present invention, and changing a specific value of the V T voltage, a two-bit memory cell of an array, in which the determination of I do Bu Shaofa. The method starts at step (2 0 0), where the memory cells in the array are normally blank or not.
200302486 五、發明說明(21) 經編程VT。在步驟(2 0 5)中,以各種編程VT改變值對該 批中之該陣列執行若干次編程及抹除週期,然後執行一高 溫加速烘烤(攝氏1 0 0至2 5 0度)。然後在步驟(2 1 0) 中,決定該等記憶單元的電荷耗損。在步驟(2 1 5)中, 根據電荷耗損量而增加編程V T改變值。在步驟(2 2 0) 中,選擇編程參數(例如,在 Vgate二9. 2 5至9. 5伏,且 Vdrain二5. 0至5 . 5伏下,每一字的編程脈波施加0 . 5微秒 ),以便保證在該增加的V T改變值下能夠控制第一位元的 VT,並減緩對第二位元的編程。在步驟(2 2 5)中,使用 所選擇的該等編程參數對該批的另一陣列執行若干編程及 抹除週期,然後執行加速烘烤。在步驟(2 3 0)中,本方 法決定步驟(2 2 5)中執行的該等編程及抹除週期的結果 是否為可接受的。如果該等編程及抹除週期的結果是不可 接受的(’’否π分支),則本方法回到步驟(2 2 0)。如果 該等編程及抹除週期的結果是可接受的(”是’’分支),則 在步驟(2 3 5)中將命令邏輯及狀態機設定成使用該VT改 變值及所選擇的汲極及閘極電位來編程該等雙位元記憶單 元的兩彳固位元。 我們當了解,不只是在正常的編程狀況下可採用使用 較高V Τ改變值的編程,而且在雙位元抹除方法中的預先編 程或編程階段亦可採用上述的編程方式。第1 2圖示出一種 使用所選擇的編程參數(例如,在Vgate = 9. 2 5至9. 5伏, Vdrain = 5. 0至5 . 5伏,V T改變值介於2伏與2 . 5伏之間下, 施加0 · 5微秒的編程脈波)之方法。200302486 V. Description of Invention (21) VT is programmed. In step (205), the array in the batch is programmed and erased several times with various programmed VT change values, and then a high temperature accelerated baking (100 to 250 degrees Celsius) is performed. Then in step (2 1 0), the charge loss of the memory cells is determined. In step (2 1 5), the programmed V T change value is increased according to the charge loss amount. In step (2 2 0), the programming parameters are selected (for example, at Vgate II 9. 2 5 to 9.5 volts and Vdrain II 5.0 to 5.5 volts, the programming pulse of each word applies 0 5 microseconds) in order to ensure that the VT of the first bit can be controlled and the programming of the second bit can be slowed down under the increased VT change value. In step (2 2 5), using the selected programming parameters, several programming and erasing cycles are performed on another array of the batch, and then accelerated baking is performed. In step (230), this method determines whether the results of the programming and erase cycles performed in step (22.5) are acceptable. If the results of such programming and erasing cycles are unacceptable ('' No 'branch), the method returns to step (2 2 0). If the results of these programming and erase cycles are acceptable ("yes" branch), then in step (2 3 5) the command logic and state machine are set to use the VT to change the value and the selected drain And gate potential to program the two fixed bits of these two-bit memory cells. We should understand that not only under normal programming conditions can be used to use higher V T to change the value of the programming, but also in the two-bit erase The programming method described above can also be used in the pre-programming or programming stages of the division method. Figure 12 shows a method using the selected programming parameters (for example, at Vgate = 9. 2 5 to 9.5 volts, Vdrain = 5. 0 to 5.5 volts, VT changes between 2 volts and 2.5 volts, and a programming pulse of 0.5 microseconds is applied).
92257.ptd 第27頁 200302486 五、發明說明(22) 第1 2至1 4圖所示之雙位元抹除方法包含一記憶單元抹 除程序,用以控制每一記憶電晶體的互補位元端及正常位 元端在空白或被抹除狀況下的V T臨界值上限及下限(例 如,最小V T = 1 . 0伏,最大V T = 1. 8伏)。此外,該雙位元抹 除方法包含軟式編程程序,用以避免可能造成較長編程時 間對記憶單元之過度抹除,而控制編程時間。該軟式編程 i可能影響到循環使用後的電荷耗損量。最後,該雙位元 抹除程序可包含第二抹除程序,用以保證任何記憶單元並 未因該軟式編程程序而被編程。第1 2至1 4圖所示之該雙 方法改善了在延伸循環使用期間(例如1 0 0,0 0 0次的 編程及抹除(PE)週期)工作的本發明的快閃記憶體陣列 之編程及抹除特性。 , 第1 2圖示出一種在接近正常位元及互補位元的高電壓 汲極接面處利用熱電洞注入之抹除方法。對一位元的重度 編程程序會造成積聚的殘留電荷,而單端抹除或傳統的抹 除法在可接受的電壓位準及(或)可接受的抹除時間範圍 内都無法觸及此種殘留電荷。本雙位元抹除方法在每一週 期中藉由確認及修改後之抹除法,而確保對正常位元及互 補位元的空白VT之控制。因此,本雙位元抹除方法在每一 月期間將一系列的抹除條件或序列施加到單一記憶單元 内的互補位元及其相關聯的正常位元。每一脈波的第一抹 除序列是一兩端或兩個汲極的抹除脈波,該脈波使所有記 憶單元電晶體的源極及汲極成為高電壓(例如4至7伏)。 容許互補位元及其相關聯的正常位元放電。然後將一單端 Λ92257.ptd Page 27 200302486 V. Description of the invention (22) The two-bit erasing method shown in Figs. 12 to 14 includes a memory unit erasing program to control the complementary bits of each memory transistor. The upper limit and lower limit of the VT threshold value of the terminal and the normal bit terminal under blank or erased conditions (for example, minimum VT = 1.0 volt, maximum VT = 1.8 volt). In addition, the two-bit erase method includes a soft programming program to avoid excessive erasing of the memory cells which may cause longer programming time, and to control the programming time. This soft programming i may affect the charge loss after recycling. Finally, the two-bit erase procedure may include a second erase procedure to ensure that any memory cells are not programmed by the soft programming procedure. The dual method shown in Figures 12 to 14 improves the flash memory array of the present invention that operates during extended cycle use (eg, 1,000 programming and erase (PE) cycles). Programming and erasing features. Fig. 12 shows an erasing method using hot hole injection at the high-voltage drain junction near the normal bit and the complementary bit. Heavy-duty programming of a single bit will cause a residual charge to accumulate, which cannot be reached by single-ended erase or traditional erase methods within an acceptable voltage level and / or acceptable erase time range Charge. This double-bit erasing method ensures the control of the blank VT of the normal bit and the complementary bit in each cycle by confirming and modifying the erasing method. Therefore, the present two-bit erase method applies a series of erase conditions or sequences to the complementary bits and their associated normal bits in a single memory cell during each month. The first erase sequence of each pulse is an erase pulse with two ends or two drains, which causes the source and drain of all memory cell transistors to become high voltage (for example, 4 to 7 volts) . The complementary bits and their associated normal bits are allowed to discharge. Then put a single-ended Λ
92257.ptd 第28頁 200302486 五、發明說明(23) 抹除脈波施加到互補位元(例如,互補位元端的汲極變為 高電壓,而另一電晶體接面則是浮接),然後將一單端抹 除脈波施加到正常位元(例如,正常位元端的汲極變為高 電壓,而另一電晶體接面則是浮接)。不論所要確認的位 元為何,該等單端脈波的順序是可以交換的。當該兩端抹 除脈波的時間是總抹除脈波時間的大約7 5 %至9 5 %時,在 0N0雙位元架構中達到了顯著改善的結果。 第1 2圖示出一種用來對根據本發明的一個面向而具有 雙位元記憶單元的快閃記憶體陣列執行編程及抹除之特定 方法。該方法開始於步驟(3 0 0),此時呼叫抹除程序。 例如,可將一命令自控制器傳送到設於快閃記憶體裝置上 的狀態機,而呼叫該抹除程序。在步驟(3 0 5)中,將正 常行位置及額外行位置中之位元編程到V Τ改變值。所選擇 的編程電壓參數是:在V g a t e = 9 . 2 5至9 . 5伏,Vdrain = 5.0 至5 . 5伏,V T改變值介於2伏與2 . 5伏之間下,施加0 . 5微秒 的脈波。本方法然後進入步驟(3 1 0),此時將指向該陣 列的記憶體地之地址計數器設定為第一地址。本方法然後 進入步驟(31 5)。在步驟(315)中,本方法對一區段中 之一地址位置執行確認抹除。該地址位置可以是單一位元 位置的一記憶體地址、或區段的I / 0或字位置之記憶體地 址。如果該地址位置的確認抹除失敗了 ,則本方法繼續進 入步驟(3 2 0)。在步驟(3 2 0)中,本方法決定是否已達 到最大脈波計數。如果已達到最大脈波計數(”是π分支 ),則本方法繼續進入步驟(3 2 5),此時指示該裝置為92257.ptd page 28 200302486 V. Description of the invention (23) The erasing pulse is applied to the complementary bit (for example, the drain of the complementary bit terminal becomes high voltage, and the other transistor interface is floating), A single-ended erase pulse is then applied to the normal bit (for example, the drain at the normal bit terminal becomes high voltage and the other transistor junction is floating). Regardless of the bit to be confirmed, the order of these single-ended pulses can be exchanged. When the pulse wave erasing time at these two ends is about 75% to 95% of the total pulse wave erasure time, a significantly improved result is achieved in the 0N0 double-bit architecture. Figure 12 illustrates a specific method for programming and erasing a flash memory array having a dual bit memory cell according to an aspect of the present invention. The method starts at step (300), at which point the erase routine is called. For example, a command can be transmitted from the controller to a state machine provided on the flash memory device, and the erase program can be called. In step (305), the bits in the normal row position and the extra row position are programmed to the VT change value. The selected programming voltage parameters are: at V gate = 9. 25 to 9.5 volts, Vdrain = 5.0 to 5.5 volts, and VT changes between 2 and 2.5 volts, applying 0. 5 microsecond pulse. The method then proceeds to step (310), at which time the address counter pointing to the memory location of the array is set to the first address. The method then proceeds to step (31 5). In step (315), the method performs a confirmation erase on one address location in a sector. The address location may be a memory address of a single bit location, or a memory address of a sector I / 0 or word location. If the confirmation erase of the address position fails, the method proceeds to step (3 2 0). In step (3 2 0), the method determines whether the maximum pulse wave count has been reached. If the maximum pulse wave count has been reached ("is a π branch), the method proceeds to step (3 2 5), at which point the device is indicated as
92257.ptd 第29頁 200302486 五、發明說明(24) 確實失敗。如果尚未達到最大脈波計數(”否”分支),則 本方法進入步驟(3 3 0),以便施加抹除脈波。 在步驟(3 3 0)中,本方法在8至1 2毫秒的一段持續時 間中將一個兩端抹除脈波施加到該區段的各互補行位置及 正常行位置(例如一個1 0毫秒的脈波)。在一段放電時間 乏後,在0. 5至2毫秒(例如1毫秒)的一段持續時間中將 二第一單端脈波施加到互補行位置中之位元,然後在〇. 5 至2毫秒(例如1毫秒)的一段持續時間中將一第二單端脈 波施加到正常行位置中之位元。本方法然後回到步驟 ^3 15),以便確認目前地址位置的抹除。如果目前地址 位置的確認抹除通過了 ,則本方法繼續進入步驟(3 3 5 ),以便決定目前位元或I / 0位址是否為最大地址位置。 如/果目前記憶單元或I/O位址不是最大地址位置(”否π分 支),則在步驟(3 4 0)中將地址計數器的位址位置遞增 到_次一地址位置。本方法然後回到步驟(3 1 5),以便執 行對該次一位址位置的抹除之確認。如果在步驟(3 3 5) 中決定已達到了最大地址(π是π分支),則本方法進入第 1 3圖所示之軟式編程程序,以便確保記憶單元並未被過度 抹除。 # 在第1 2圖所示的抹除方法之後,利用一種軟式編程方 法來控制空白狀態的最小(被過度抹除的)正常位元及互 補位元V Τ。被過度抹除的記憶單元是V Τ低於空白狀態的最 小值之和記憶單元,並不是傳統的行漏電位元。雖然將被 困陷的電洞儲存在氮化物層中並不被認為是可能的,但是92257.ptd Page 29 200302486 V. Description of the Invention (24) did fail. If the maximum pulse wave count ("No" branch) has not been reached, the method proceeds to step (330) to apply an erase pulse wave. In step (3 3 0), the method applies a two-end erasing pulse wave to each complementary row position and normal row position of the section in a period of 8 to 12 milliseconds (for example, a 10 millisecond Pulse). After a period of discharge time is exhausted, two first single-ended pulses are applied to the bits in the complementary row position for a duration of 0.5 to 2 milliseconds (for example, 1 millisecond), and then 0.5 to 2 milliseconds A second single-ended pulse is applied to a bit in the normal row position for a duration (eg, 1 millisecond). The method then returns to step ^ 3 15) to confirm the erasure of the current address location. If the confirmation erasure of the current address position has passed, the method continues to step (3 3 5) to determine whether the current bit or I / 0 address is the largest address position. If the current memory location or I / O address is not the largest address position ("Noπ branch"), the address position of the address counter is incremented to the next address position in step (340). This method then Return to step (3 1 5) in order to perform the confirmation of the erasure of the one-bit address position. If it is determined in step (3 3 5) that the maximum address has been reached (π is the π branch), the method enters The soft programming procedure shown in Figure 13 is used to ensure that the memory cells are not over-erased. # After the erase method shown in Figure 12 is used, a soft programming method is used to control the minimum of The erased) normal bit and complementary bit V T. The over-erased memory cell is the sum of the minimum value of V T below the blank state. It is not a traditional row drain potential cell. Storage of holes in the nitride layer is not considered possible, but
92257.ptd 第30頁 200302486 五、發明說明(25) 用來抹除記憶單元的電場是極高的,且可能將記憶單元的 局部VT降低到低於自然狀態。當發生此種情形時,被過度 抹除的記憶單元之正常位元及互補位元的其中之一或兩種 位元之編程時間將會增加。因此,執行第1 3圖所示之軟式 編程方法,以便消除被過度抹除的記憶單元,並維持循環 使用期間的穩定編程時間。 第1 3圖示出一種用來對快閃記憶體陣列執行軟式編程 以便確保快閃記憶體的記憶單元部不會被過度抹除之特定 方法。在步驟(4 0 0)中,開始該軟式編程程序。例如, 可將一命令自控制器傳送到設於快閃記憶體裝置上的狀態 機,而呼叫該軟式編程程序。在替代實施例中,該軟式編 程程序可以是整體抹除程序的一部分,且係在完成第1 2圖 所示之方法之後,開始該軟式編程程序。本方法然後進入 步驟(4 0 5),此時將地址計數器設定為第一地址。本方 法然後繼續進入步驟(41 0)。在步驟(410)中,本方法 對該第一地址位置的軟式編程執行確認。該確認應包含較 低的源極電壓,用以抑制任何次臨界漏電流 (subthreshold leakage current)。如果對該地址位置 的確認軟式編程失敗了 ,則本方法繼續進入步驟(4 1 5 ),以便決定是否已到達最大脈波計數(例如5個脈波 )。如果已到達了最大脈波計數(”是”分支),則在步驟 (4 2 5)中指示為確實失敗。如果尚未到達最大脈波計數 (”否π分支),則本方法進入步驟(4 2 0),以便將一軟 式編程脈波施加到該地址位置,並回到步驟(4 1 0),以92257.ptd Page 30 200302486 V. Description of the invention (25) The electric field used to erase the memory unit is extremely high, and it may reduce the local VT of the memory unit to below the natural state. When this happens, the programming time of one or both of the normal bit and the complementary bit of the over-erased memory cell will increase. Therefore, the soft programming method shown in Fig. 13 is performed in order to eliminate the over-erased memory cells and maintain a stable programming time during cycle use. Figure 13 illustrates a specific method for performing soft programming of the flash memory array to ensure that the memory cell portion of the flash memory is not over-erased. In step (400), the soft programming program is started. For example, a command can be transmitted from the controller to a state machine provided on the flash memory device, and the soft programming program can be called. In an alternative embodiment, the soft programming program may be a part of the overall erasing program, and the soft programming program is started after the method shown in FIG. 12 is completed. The method then proceeds to step (405) where the address counter is set to the first address. The method then proceeds to step (41 0). In step (410), the method confirms the soft programming of the first address location. The acknowledgement should include a lower source voltage to suppress any subthreshold leakage current. If the soft programming of the confirmation of the address location fails, the method proceeds to step (4 1 5) in order to determine whether the maximum pulse wave count (for example, 5 pulse waves) has been reached. If the maximum pulse count ("yes" branch) has been reached, it is indicated in step (4 2 5) that it did fail. If the maximum pulse wave count has not been reached ("Noπ branch"), the method proceeds to step (4 2 0), so as to apply a soft programming pulse to the address location, and returns to step (4 1 0) to
92257.ptd 第31頁 200302486 五、發明說明(26) 便確認該地址位置是否已通過該軟式編程確認條件。如果 該區段的該位址位置在步驟(41 0)中通過了 ,則本方法 繼續進入步驟(4 3 0),此時決定是否已達到該區段的最 大地址。如果尚未到達該最大區段地址(”否π分支),則 在步驟(4 3 5)中將該地址計數器的地址位置移到次一地 证位置,且本方法回到步驟(4 1 0),以便重複對該記憶 ά陣列中的該次一地址位置執行軟式編程確認的該等步 驟。如果在步驟(4 3 0)中決定已到達了最大地址位置(1 是π分支),則本方法進入第1 4圖所示之第二抹除程序。 φ 第1 4圖示出一種根據本發明一面向對快閃記憶體陣列 執行第二抹除程序以便確保該軟式編程程序並未過度編程 該記憶單元之特定方法。該方法開始於第二抹除程序的步 驟5 0 0)。例如,可將一命令自控制器傳送到設於快閃 記憶體裝置上的狀態機,而呼叫該第二抹除程序。在替代 實施例中,該第二抹除程序可以是整體抹除程序的一部 分,且係在完成第1 2及1 3圖所示之方法之後,開始該第二 抹除程序。本方法然後進入步驟(5 0 5),此時將地址計 數器設定為第一地址位置。本方法然後繼續進入步驟 (510)。在步驟(51 0)中,本方法對該記憶體陣列的一 中之地址位置執行確認抹除。該地址位置可以是單一 位元位置的記憶體地址、或該區段的I / 0或字位置之記憶 體地址。如果該地址位置的確認抹除失敗了 ,則本方法繼 續進入步驟(5 2 0)。在步驟(5 2 0)中,本方法決定是否 已到達了最大脈波計數。如果已到達了最大脈波計數(π92257.ptd Page 31 200302486 V. Description of the invention (26) It is confirmed whether the address location has passed the soft programming confirmation condition. If the address position of the sector has passed in step (41 0), the method proceeds to step (430), at which time it is determined whether the maximum address of the sector has been reached. If the maximum sector address has not been reached ("Noπ branch"), then the address position of the address counter is moved to the next land certificate position in step (4 3 5), and the method returns to step (4 1 0) In order to repeat the steps of performing soft programming confirmation on the next address location in the memory array. If it is determined in step (4 3 0) that the maximum address location has been reached (1 is a π branch), then this method Enter the second erase procedure shown in Fig. 14. φ Fig. 14 shows a method for performing a second erase procedure on a flash memory array according to the present invention to ensure that the soft programming program does not over-program the A specific method of the memory unit. The method starts at step 50 of the second erase procedure. For example, a command may be transmitted from the controller to a state machine provided on the flash memory device, and the second method may be called. Erase procedure. In an alternative embodiment, the second erasure procedure may be part of the overall erasure procedure, and the second erasure procedure is started after the method shown in FIGS. 12 and 13 is completed. This method then proceeds to step (5 0 5), at this time, the address counter is set to the first address position. The method then proceeds to step (510). In step (51 0), the method performs a confirmation wipe on the address position of one of the memory arrays. The address position can be the memory address of a single bit position, or the memory address of the sector's I / 0 or word position. If the confirmation and erasure of the address position fails, the method proceeds to step ( 5 2 0). In step (5 2 0), the method determines whether the maximum pulse wave count has been reached. If the maximum pulse wave count has been reached (π
92257.ptd 第32頁 200302486 五'發明說明(27) 是π分支),則本方法繼續進入步驟(5 3 0),此時指示該 裝置的一確實失敗。如果尚未到達最大脈波計數(”否π分 支),則本方法進入步驟(5 2 5),以便施加抹除脈波。 在步驟(5 2 5)中,本方法在8至1 2毫秒的一段持續時 間中將一抹除脈波施加到該區段的各互補行位置及正常行 位置(例如一個1 0毫秒的脈波)。在一段放電時間之後, 在0 · 5至2毫秒(例如1毫秒)的一段持續時間中將單端脈 波施加到互補行位置中之位元,然後在0. 5至2毫秒(例如 1毫秒)的一段持續時間中將一單端脈波施加到正常行位 置中之位元。本方法然後回到步驟(5 1 0),以便確認目 前地址位置的抹除。如果目前地址位置的確認抹除通過 了 ,則本方法繼續進入步驟(5 3 5),以便決定目前位元 或I / 0位址是否為最大地址位置。如果目前記憶單元或 I / 0位址不是最大地址位置(π否π分支),則在步驟 (5 4 0)中將地址計數器的地址位置遞增到次一地址位 置。本方法然後回到步驟(51 0),以便執行對該次一地 址位置的抹除之確認。如果在步驟(5 3 5)中決定已達到 了最大地址(”是π分支),則本方法結束,且該裝置回到 正常作業。 為達成本發明前述及其它目的,本發明包括有後敘之 申請專利範圍中所完整敘述及特別指出之特徵,但是對此 項技術具有一般知識者當可了解,本發明的許多進一步的 組合及變更也是可能的。因此,本發明將包含在最後的申 請專利範圍的精神及範圍内的所有此類改變、修改、及變92257.ptd page 32 200302486 Five 'invention description (27) is the π branch), then the method proceeds to step (5 3 0), at which time one of the devices is indicated to have failed. If the maximum pulse wave count has not been reached ("Noπ branch"), the method proceeds to step (5 2 5) in order to apply the erasing pulse wave. In step (5 2 5), the method ranges from 8 to 12 milliseconds. A wipe pulse is applied to the complementary row position and normal row position of the segment for a duration (for example, a pulse of 10 milliseconds). After a discharge time, between 0.5 · 2 to 2 milliseconds (for example, 1 Milliseconds) apply a single-ended pulse to a bit in a complementary row position for a duration, and then apply a single-ended pulse to the normal row for a duration of 0.5 to 2 milliseconds (eg, 1 millisecond) The bit in the position. The method then returns to step (5 1 0) in order to confirm the erasure of the current address position. If the confirmation erasure of the current address position has passed, the method proceeds to step (5 3 5), In order to determine whether the current bit or I / 0 address is the maximum address position. If the current memory unit or I / 0 address is not the maximum address position (π no π branch), then the address counter is set in step (5 4 0) The address location is incremented to the next address bit The method then returns to step (51 0) in order to perform confirmation of the erasure of the next address location. If it is determined in step (5 3 5) that the maximum address has been reached ("is a π branch), then this method The method ends and the device returns to normal operation. In order to achieve the foregoing and other objectives of the present invention, the present invention includes the features fully described and specifically pointed out in the scope of the patent application to be described later, but those with ordinary knowledge of this technology can understand that many further combinations of the present invention and Changes are also possible. Therefore, this invention shall include all such changes, modifications, and alterations within the spirit and scope of the scope of the final patent application.
92257.ptcl 第33頁 200302486 五、發明說明(28) 化。此外,雖然可以只參照數種實施例中之一種實施例而 揭示本發明的特定特徵,但是可將此種特徵與任何特定應 用可能需要及有利的其他實施例之一個或多個其他特徵結 合092257.ptcl Page 33 200302486 V. Description of the invention (28). In addition, although specific features of the invention may be disclosed with reference to only one of the several embodiments, such features may be combined with one or more other features of other embodiments that may be needed and advantageous for any particular application.
92257.ptd 第34頁 200302486 圖式簡單說明 [圖式簡單說明] 第1圖是可實施本發明的各種面向的一例示雙位元記 憶單元之一側視剖面圖; 第2圖是用來解說將一已編程之電荷儲存在雙位元記 憶單元的一正常區及一互補區之雙位元記憶單元側視剖面 圖; 第3圖是用來解說由於雙位元記憶單元的編程後第二 位元的過度編程而將不均勻的電何積聚在該記憶早元的中 央區之雙位元記憶單元側視剖面圖; 第4圖是用來解說在只使用單端抹除或兩端抹除而抹 除記憶單元之後殘留電荷停留在接近陣列邊緣的記憶單元 的中央區之雙位元記憶單元側視剖面圖; 第5圖是用來解說在抹除根據本發明的雙位元記憶單 元之後移開了停留在接近陣列邊緣的記憶單元的中央區的 殘留電荷之雙位元記憶單元側視剖面圖; 第6圖是適於實施本發明的各種面向的系統之方塊示 意圖; 第7圖是根據本發明而具有1 6字組的1 6位元記憶體的 雙位元快閃記憶體陣列的一 6 4 K區段之一部分俯視圖; 第8圖是根據本發明的雙位元記憶單元的一列的一部 分之不意圖; 第9圖是根據本發明一面向的一第一位元VT改變值與 第二位元編程時間之間的關係圖; 第1 0圖是根據本發明面向的VT改變值電荷耗損與編程92257.ptd Page 34 200302486 Brief description of the drawings [Simplified description of the drawings] Fig. 1 is a side sectional view of one example of a dual-bit memory unit capable of implementing various aspects of the present invention; Fig. 2 is used for explanation A cross-sectional side view of a two-bit memory cell storing a programmed charge in a normal region and a complementary region of the two-bit memory cell; Figure 3 is used to illustrate the second Side-view cross-sectional view of a double-bit memory cell that accumulates non-uniform electricity in the central region of the early memory cell by over-programming the bit; Figure 4 is used to illustrate the use of single-end erase or two-end erase Side view sectional view of a two-bit memory cell remaining in the central region of the memory cell near the edge of the array after the memory cell is erased; FIG. 5 is a diagram for explaining the two-bit memory cell according to the present invention after erasing Later, the side view of the two-bit memory cell with the residual charge remaining in the central region of the memory cell near the edge of the array removed; FIG. 6 is a block diagram of various systems suitable for implementing the present invention; FIG. 7 Top view of a portion of a 64 K segment of a dual bit flash memory array with 16 bits of 16 bits of memory according to the present invention; FIG. 8 is a diagram of a dual bit memory cell according to the present invention Part of a column is not intended; FIG. 9 is a relationship diagram between a first bit VT change value and a second bit programming time according to the present invention; FIG. 10 is a VT change according to the present invention Value Charge Depletion and Programming
92257.ptd 第35頁 200302486 圖式簡單說明 及抹除週期間之關係圖; 第1 1圖是用來決定一相當高的VT改變值及選擇的編程 參數以便編程根據本發明一面向的雙位元記憶單元的第一 及第二位元之方法之流程圖; , 第1 2圖是用來對根據本發明一面向的一陣列的雙位元 1己憶單元執行抹除確認的方法之流程圖; Λ 第1 3圖是用來在執行根據本發明一面向的第1 2圖所示 抹除確認方法之後對該雙位元記憶單元陣列的記憶單元執 行軟式編程的方法之流程圖;以及 φ 第1 4圖是用來在執行根據本發明一面向的第1 3圖所示 軟式編程方法之後對該雙位元記憶單元陣列的記憶單元執 行確認抹除的方法之流程圖。 4 第 — 5, 42 中 央 區 6 - 第 二 區 8 通 道 9 P型基材區 10 雙 位 元 記 憶 一 早兀 12 多 晶 矽 層 14 上 -- 氧 化 矽 層 16 氮 化 矽 層 18 下 二 氧 化 矽 層 20 硼 離 子 核 心植入物 22 氧 化 物 部 分 • 導 電 部 分 26, 38 第 .— 電 荷 28, 39 第 二 電 荷 30 ΟΝΟ層 32 第 一 位 元 線 34 第 二 位 元 線 40 額 外 位 元 44 正 常 位 元 區 46 電 a务 60 系 統92257.ptd Page 35 200302486 Schematic illustration and diagram of the relationship between the erasing period; Figure 11 is used to determine a relatively high VT change value and selected programming parameters to program the dual bit according to the present invention Flow chart of the method of the first and second bits of the meta-memory unit; Figure 12 is a flowchart of a method for performing erasure confirmation on a double-bit 1-memory unit of an array according to the present invention; FIG. 13 is a flowchart of a method for performing soft programming on the memory cells of the two-bit memory cell array after executing the erase confirmation method shown in FIG. 12 according to an aspect of the present invention; and Fig. 14 is a flowchart of a method for performing a confirm erase operation on the memory cells of the two-bit memory cell array after executing the soft programming method shown in Fig. 13 according to an aspect of the present invention. 4th — 5, 42 central area 6-second area 8 channels 9 P-type substrate area 10 double-bit memory early 12 polycrystalline silicon layer 14 up-silicon oxide layer 16 silicon nitride layer 18 lower silicon dioxide layer 20 Boron ion core implant 22 Oxide part • Conductive part 26, 38 No. — charge 28, 39 second charge 30 ONO layer 32 first bit line 34 second bit line 40 extra bit 44 normal bit area 46 electrical service 60 system
92257.ptd 第36頁 20030248692257.ptd Page 36 200302486
圖式簡單說明 68 記憶體陣 列 69 64K區段 62 位址解碼 器 64 命令邏輯組件 65 狀態機 66 電壓產生器組件 70 6 4 K區塊 72 0N0堆疊條 74 多晶碎字 線 76 行 78 第一接點 79 第二接點 82 第一雙位元記憶單 元 84 第二雙位 元記憶單 元 86 第三雙位 元記憶單 元 88 88, 第四雙位元記憶單 90, 92, 94 元 選擇閘 96 100 第一開關 第三開關 98 第二開關 92257.ptd 第37頁Schematic description 68 memory array 69 64K segment 62 address decoder 64 command logic component 65 state machine 66 voltage generator component 70 6 4 K block 72 0N0 stacking bar 74 polycrystalline word line 76 row 78 first Contact 79 Second contact 82 First double bit memory unit 84 Second double bit memory unit 86 Third double bit memory unit 88 88, Fourth double bit memory list 90, 92, 94 Yuan selection gate 96 100 First switch Third switch 98 Second switch 92257.ptd Page 37
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/050,483 US6567303B1 (en) | 2001-01-31 | 2002-01-16 | Charge injection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200302486A true TW200302486A (en) | 2003-08-01 |
TWI260639B TWI260639B (en) | 2006-08-21 |
Family
ID=27609070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092100296A TWI260639B (en) | 2002-01-16 | 2003-01-08 | Charge injection |
Country Status (8)
Country | Link |
---|---|
JP (1) | JP2005516330A (en) |
KR (1) | KR20040071322A (en) |
CN (1) | CN100433193C (en) |
AU (1) | AU2002367512A1 (en) |
DE (1) | DE10297641T5 (en) |
GB (1) | GB2400709B (en) |
TW (1) | TWI260639B (en) |
WO (1) | WO2003063167A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6967873B2 (en) * | 2003-10-02 | 2005-11-22 | Advanced Micro Devices, Inc. | Memory device and method using positive gate stress to recover overerased cell |
US7307878B1 (en) | 2005-08-29 | 2007-12-11 | Spansion Llc | Flash memory device having improved program rate |
US8358543B1 (en) | 2005-09-20 | 2013-01-22 | Spansion Llc | Flash memory programming with data dependent control of source lines |
US7433228B2 (en) * | 2005-09-20 | 2008-10-07 | Spansion Llc | Multi-bit flash memory device having improved program rate |
US7957204B1 (en) | 2005-09-20 | 2011-06-07 | Spansion Llc | Flash memory programming power reduction |
KR100666223B1 (en) * | 2006-02-22 | 2007-01-09 | 삼성전자주식회사 | Three-level nonvolatile semiconductor memory device for decreasing noise between memory cells and operating method therefor |
US7969788B2 (en) * | 2007-08-21 | 2011-06-28 | Micron Technology, Inc. | Charge loss compensation methods and apparatus |
CN111863086B (en) * | 2019-04-29 | 2022-07-05 | 北京兆易创新科技股份有限公司 | Method and device for controlling programming performance |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5675537A (en) * | 1996-08-22 | 1997-10-07 | Advanced Micro Devices, Inc. | Erase method for page mode multiple bits-per-cell flash EEPROM |
US5870335A (en) * | 1997-03-06 | 1999-02-09 | Agate Semiconductor, Inc. | Precision programming of nonvolatile memory cells |
US6768165B1 (en) * | 1997-08-01 | 2004-07-27 | Saifun Semiconductors Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US6044022A (en) * | 1999-02-26 | 2000-03-28 | Tower Semiconductor Ltd. | Programmable configuration for EEPROMS including 2-bit non-volatile memory cell arrays |
US6396741B1 (en) * | 2000-05-04 | 2002-05-28 | Saifun Semiconductors Ltd. | Programming of nonvolatile memory cells |
US6307784B1 (en) * | 2001-02-28 | 2001-10-23 | Advanced Micro Devices | Negative gate erase |
US6456533B1 (en) * | 2001-02-28 | 2002-09-24 | Advanced Micro Devices, Inc. | Higher program VT and faster programming rates based on improved erase methods |
US6512701B1 (en) * | 2001-06-21 | 2003-01-28 | Advanced Micro Devices, Inc. | Erase method for dual bit virtual ground flash |
-
2002
- 2002-12-17 KR KR10-2004-7011031A patent/KR20040071322A/en not_active Application Discontinuation
- 2002-12-17 JP JP2003562936A patent/JP2005516330A/en active Pending
- 2002-12-17 DE DE10297641T patent/DE10297641T5/en not_active Withdrawn
- 2002-12-17 WO PCT/US2002/040775 patent/WO2003063167A2/en active Application Filing
- 2002-12-17 GB GB0417770A patent/GB2400709B/en not_active Expired - Fee Related
- 2002-12-17 AU AU2002367512A patent/AU2002367512A1/en not_active Abandoned
- 2002-12-17 CN CNB028272501A patent/CN100433193C/en not_active Expired - Lifetime
-
2003
- 2003-01-08 TW TW092100296A patent/TWI260639B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE10297641T5 (en) | 2005-01-05 |
GB2400709B (en) | 2005-12-28 |
CN1628358A (en) | 2005-06-15 |
GB2400709A (en) | 2004-10-20 |
WO2003063167A2 (en) | 2003-07-31 |
WO2003063167A3 (en) | 2003-12-04 |
GB0417770D0 (en) | 2004-09-15 |
KR20040071322A (en) | 2004-08-11 |
JP2005516330A (en) | 2005-06-02 |
TWI260639B (en) | 2006-08-21 |
AU2002367512A1 (en) | 2003-09-02 |
CN100433193C (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4601250B2 (en) | Method and system for dual-bit memory erase verification | |
JP3955530B2 (en) | Higher program VT and faster program speed based on improved erase method | |
US6512701B1 (en) | Erase method for dual bit virtual ground flash | |
US6160739A (en) | Non-volatile memories with improved endurance and extended lifetime | |
TWI286754B (en) | Algorithm dynamic reference programming | |
US6567303B1 (en) | Charge injection | |
US7773429B2 (en) | Non-volatile memory device and driving method thereof | |
KR100960352B1 (en) | Method of erasing a flashing memory using a pre-reasing step | |
JP2006310720A (en) | Inversion bit line, non-volatile memory trapping charge and its operating method | |
JP2008506217A (en) | Method for improving erase voltage distribution of flash memory array with dummy word line | |
JP2012517070A (en) | Overerase management in NAND-based NOR flash memory | |
WO2003079370A1 (en) | Overerase correction method | |
US7804713B2 (en) | EEPROM emulation in flash device | |
KR100379553B1 (en) | A array of flash memory cell and method for programming of data thereby and method for erased of data thereby | |
JP2008508662A (en) | Flash memory unit and flash memory device programming method | |
JP4252464B2 (en) | Refresh method for dynamic page program | |
JP4235115B2 (en) | Erase method for improved dual bit memory cell | |
US6934190B1 (en) | Ramp source hot-hole programming for trap based non-volatile memory devices | |
TW200302486A (en) | Charge injection | |
US7554851B2 (en) | Reset method of non-volatile memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |