TR2022014113A2 - METHOD OF OBTAINING A BIOSENSOR WITH A BIOMATERIAL INTEGRATED METASURFACE - Google Patents

METHOD OF OBTAINING A BIOSENSOR WITH A BIOMATERIAL INTEGRATED METASURFACE

Info

Publication number
TR2022014113A2
TR2022014113A2 TR2022/014113A TR2022014113A TR2022014113A2 TR 2022014113 A2 TR2022014113 A2 TR 2022014113A2 TR 2022/014113 A TR2022/014113 A TR 2022/014113A TR 2022014113 A TR2022014113 A TR 2022014113A TR 2022014113 A2 TR2022014113 A2 TR 2022014113A2
Authority
TR
Turkey
Prior art keywords
metasurface
antibody
protein
exosome
gold
Prior art date
Application number
TR2022/014113A
Other languages
Turkish (tr)
Inventor
İnci̇ Fati̇h
Deri̇n Esma
Original Assignee
Bilkent Ueniversitesi Ulusal Nanoteknoloji Arastirma Merkezi
Bi̇lkent Üni̇versi̇tesi̇ Ulusal Nanoteknoloji̇ Araştirma Merkezi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bilkent Ueniversitesi Ulusal Nanoteknoloji Arastirma Merkezi, Bi̇lkent Üni̇versi̇tesi̇ Ulusal Nanoteknoloji̇ Araştirma Merkezi̇ filed Critical Bilkent Ueniversitesi Ulusal Nanoteknoloji Arastirma Merkezi
Priority to TR2022/014113A priority Critical patent/TR2022014113A2/en
Publication of TR2022014113A2 publication Critical patent/TR2022014113A2/en
Priority to PCT/TR2023/050943 priority patent/WO2024058756A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Buluş, atıl optik disklere biyomalzeme entegre edilmesiyle elde edilen metayüzeyler sayesinde vücut sıvısındaki biyobelirteçlerin tespit edilmesini sağlayan bir biyosensör elde etme yöntemi (100) ile ilgilidir.The invention relates to a method of obtaining a biosensor (100) that enables the detection of biomarkers in body fluid, thanks to the metasurfaces obtained by integrating biomaterials into inert optical discs.

Description

TARIFNAME BIYOMALZEME ENTEGRE EDILMIS METAYÜZEYE SAHIP BIR BIYOSENSÖR ELDE ETME YÖNTEMI Teknik Alan Bulus, atil optik disklere biyomalzeme entegre edilmesiyle elde edilen metayüzeyler sayesinde Vücut siVisindaki biyobelirteçlerin tespit edilmesini saglayan bir biyosensör elde etme yöntemi ile ilgilidir. Önceki Teknik Hastanelerdeki is yükünü ve masraflarini azaltmak için saglik sistemi, merkezi teshis platformlarindan hasta basi test platformlarina geçis yapmakta ve böylece daha fazla bireye ulasilmasi hedeflenmektedir. Bu baglamda, biyosensör platformlari, bu mevcut testlere alternatif veya tamamlayici olarak hastalik teshisi üzerinde çok önemli bir etkiye sahiptir. Günümüzde, ELISA, Simoa, LumineX ve MultipleX Searchlight gibi geleneksel hastalik teshisi metotlari biyobelirteç tayini için kullanilmaktadir. Ancak bu metotlarin karmasik, uzun süreli ve pahali olmasi en büyük handikaplaridir. Bu nedenle, erken tani için düsük maliyetli, kolay kullanima sahip dogrulugu ve hassasiyeti yüksek, yari/kismi invazif testlerin gelistirilmesine acil ihtiyaç duyulmaktadir. Dünya Saglik Örgütü (WHO) hasta-basi tani sistemleri gelistirilirken (i) düsük maliyetli, (ii) hassas, (iii) spesifik, (iv) kullanici dostu, (V) hizli ve (Vi) dayanikli, (Vii) karmasik ekipman gerektirmeyen ve (Viii) rahatça kullanilabilen özelliklerinin olmasi gerektigini beliitmektedir. Bu nedenle, hasta- basi testleri gelistirilirken bu özelliklere dikkat edilmelidir. Optik biyosensörler hasta-basi tani testlerinin gelistirilmesi için en sik kullanilan stratejilerden biridir. Herhangi bir moleküler isaretlemeye ihtiyaç duymadan, hizli ve hassas ölçümler alinabilecek platformlarin gelistirilmesine uygundur. Bu uygulama alani yaygin olarak kullanilmasinin en önemli nedenleri arasindadir. Optik biyosensörlerin diger bir avantaji ise mikroakiskanlarin kolaylikla entegre edilebilmesidir. Böylece siVi geçisi kolaylikla saglanabilmekte ve gerekli örnek ve solüsyon kullanimi önemli ölçüde azaltilabilmektedir. Metamalzemeler ve metayüzeyler, isigi manipüle eden alt dalga boyu kalinliklarindaki ince plazmonik veya dielektrik malzeme katmanlari içeren nanoyapili ara-yüzlerdir. Bu nedenle optik sensör yapiminda yaygin olarak kullanilmaktadirlar. Metamalzemeler, dogada dogrudan bulunmazlar. Farkli malzemelerin sekline ve malzeme birlesimine bagli olarak bir araya getirilmesiyle tasarlanmis nanoyapilar olarak elde edilebilirler. Bu nanoyapilar sayesinde yeni özellikler (isik kontrol kabiliyeti gibi) elde edilmektedir. Metayüzey üretiminde farkli stratejiler kullanilmaktadir ancak bunlarin birçogu oldukça kompleks ve pahali prosedürlerdir. Herhangi bir hastaligin tespitinde kullanilabilecek potansiyel biyobelirteçleri (serum, kan, tükürük, idrar, gayta, lavaj siVisi, interstisyel siVi ve diger Vücut siVilarindan) tespit etmek için biyomalzeme entegre edilmis metayüzeyler, biyosensör olarak kullanilmaktir. Bu sistemler ayni zamanda metamalzeme plazmonik sensör olarak da isimlendirilebilmektedir. Hücrelerden eksozomlarin salinimi pek çok hastalikla iliskilendirilmektedir. Son zamanlarda yapilan çalismalar da salinan eksozomlarin, biyobelirteç olarak potansiyelini ortaya koymaktadir. Eksozomlarin membraninda üç farkli tetraspanin olarak da bilinen proteinler bulunmaktadir. Tetraspininlere özel olan antijenler kullanilarak eksozomlar yakalanabilmekte ve tayin edilebilmektedir. Tetraspaninler eksozomlarda bol miktarda bulundugundan, eksozom tespiti için en çok kullanilan belirteçlerden biridir. Bu bilgiler isiginda yukarida belirtilen olumsuzluklarin üstesinden gelmek üzere Vücut siVisindaki biyobelirteçlerin tespit edilmesini biyomalzeme entegre edilerek hassasiyeti aitirilmis biyosensörler (metayüzey/metamalzeme/metamalzeme plazmonik sensör) ile gerçeklestirmeyi, maliyet, biyouyumluluk ve karmasiklikla ilgili üretim zorluklarini çözmeyi ve düsük maliyetli kolay tespit yapmayi saglayan bir biyobelirteç elde etme yöntemine ihtiyaç duyulmaktadir. Teknigin bilinen durumda yer alan CN10203735 8 sayili Çin patent dokümaninda, biyomolekül tespitinde yüzey aktivasyonu gerçeklestirilen optik bir disk kullanimindan bahsedilmektedir. Bulusun Kisa Açiklamasi Bu bulusun amaci, atil optik disklere biyomalzeme entegre edilmesiyle elde edilen metayüzeyler sayesinde Vücut siVisindaki biyobeliiteçlerin tespit edilmesini saglayan biyosensör elde etme yöntemi gerçeklestirmektir. Bu bulusun baska bir amaci, âtil optik disklerden elde edilen nanoyapilar sayesinde düsük maliyetli biyosensör elde edilmesini saglayan bir yöntem gerçeklestirmektir. Bu bulusun bir baska amaci, âtil optik disklere kimyasal yollarla entegre edilen altin nanopaitikül (AuNP) ve olusturulan nanoadalar sayesinde hassas biyobelirteç tayini yapilmasini saglayan bir yöntem gerçeklestirmektir. Bu bulusun bir diger amaci, yüzeyinde Poli L Lizin (PLL) katmani, altin nanopartikül ve nanoada yapilarinin bulunmasiyla gümüs üst yüzeye sahip sensörlerde oksitlenmenin önlendigi hassas biyosensörler elde edilmesini saglayan Bu bulusun diger bir amaci, hastanelerdeki is yükü ve masrafi azaltmak için merkezi teshis platformlari yerine hasta basi test cihazlari gelistirilmesini saglayan Bulusun Ayrintili Açiklamasi Bu bulusun amacina ulasmak için gerçeklestirilen "Biyomalzeme Entegre Edilmis Metayüzeye Sahip Bir Biyosensör Elde Etme Yöntemi" ekli sekillerde gösterilmis olup, bu sekillerden; Sekil 1. Bulus konusu yönteme ait akis semasidir. Sekil 2. Metayüzeylerin üretim asamalarinin sematik anlatimidir (a) DVD plastik kalibin üzerine birden fazla metal kaplamasi (Titanyum: 10 nm; Gümüs: 30 nm; Altin: 15 nm) ile olusturulan plazmonik sensörün AFM ve SEM görüntüleri ve AFM profili. (b) Bos metayüzeye altin nanopartiküllerin PLL katmani araciligiyla entegre edilmesi (1:10 seyreltilmis) ile olusturulan plazmonik sensörün AFM ve SEM görüntüleri ve AFM profili. (c) Dogudan PLL katmani üzerine kloroaurik asit (HAuCl4) ve hidroksilamin hidroklorür (HONH2.HC1) kullanarak tohumlama yapilarak olusturulan nanoada yapili plazmonik sensörün AFM ve SEM görüntüleri ve AFM profili. (d) DVD plastik kalibin üzerine 65 nm Gümüs metal kaplamasi ile olusturulan plazmonik sensörün AFM ve SEM görüntüleri ve AFM profili. (e) Bos gümüs metayüzeye altin nanopartiküllerin PLL katmani araciligiyla entegre edilmesi (1:10 seyreltilmis) ile olusturulan plazmonik sensörün AFM ve SEM görüntüleri ve AFM profili. (f) Dogudan PLL katmani üzerine kloroaurik asit (HAuCl4) ve hidroksilamin hidroklorür (HONH2.HC1) kullanarak tohumlama yapilarak olusturulan nanoada yapili plazmonik sensörün AFM ve SEM görüntüleri ve AFM profili. Sekil 3. Bos altin ve gümüs üst metayüzeye sahip plasmonik sensörün performansinin incelenmesi (a) Bos altin üst metayüzeye sahip sensör için son ölçüm analizi yapilarak farkli gliserol çözeltilerinin (%1-%70) plazmonik rezonans degerindeki degisimleri. (b) Bos gümüs üst metayüzeye sahip sensör için son ölçüm analizi yapilarak farkli gliserol çözeltilerinin (%1-%70) plazmonik rezonans degerindeki degisimleri (c) Bos altin üst metayüzeye sahip sensör için son ölçüm analizi yapilarak farkli gliserol çözeltilerinin (%l-%70) plazmonik rezonans degerindeki degisimlerin isi haritasi ile gösterimi. (d) Bos gümüs üst metayüzeye sahip sensör için son ölçüm analizi yapilarak farkli gliserol çözeltilerinin (%l-%70) plazmonik rezonans degerindeki degisimlerin isi haritasi ile gösterimi. (e) Altin ve gümüs üst metayüzeylere sahip sensörlerin plazmonik rezonans degerinin farkli gliserol çözeltilerine göre degisiminin zamana göre gösterimi. (f) Altin ve gümüs üst metayüzeylere sahip sensörlerin farkli derisimde ve kirilma indisindeki gliserol çözeltilerinin olusturduklari etkinin dogrusal gösterimi. Sekil 4. Sensör performanslarinin karsilastirilmasi (a) Bos altin ve gümüs üst yüzeyin farkli derisimde ve kirilma indisindeki gliserol çözeltilerinin olusturduklari etkinin dogrusal gösterimi. (b) Farkli PLL konsantrasyonlari üzerine ayni tohumlama çözeltisi verilerek nanoada olusturulan yüzeyin farkli derisimde ve kirilma indisindeki gliserol çözeltilerinin olusturduklari etkinin dogrusal gösterimi. (0) Altin nanopartikül miktarinin altin üst metayüzeye sahip plazmonik sensör rezonansina farkli derisimde ve kirilma indisindeki gliserol çözeltilerinin olusturduklari etkinin dogrusal gösterimi. (d) Belirlenen altin nanopartikül miktarinin gümüs üst metayüzeye sahip plazmonik sensör rezonansina farkli derisimde ve kirilma indisindeki gliserol çözeltilerinin olusturduklari etkinin dogrusal gösterimi ve bos gümüs üst metayüzey ile karsilastirilmasi. (e) Tohumlama solüsyonun konsantrasyonunun altin üst metayüzeye sahip plazmonik sensör rezonansina farkli derisimde ve kirilma indisindeki gliserol çözeltilerinin olusturduklari etkinin dogrusal gösterimi. (f) Belirlenen tohumlama solüsyonun gümüs üst metayüzeye sahip plazmonik sensör rezonansina farkli derisimde ve kirilma indisindeki gliserol çözeltilerinin olusturduklari etkinin dogrusal gösterimi ve bos gümüs üst metayüzey ile karsilastirilmasi. Sekil 5. Sinyal iyilestirmesinin altin üst metayüzeye sahip sensörlerde karsilastirilmasi (a) Bos altin üst yüzeye sahip sensörün 108 paitikül/mL eksozom yakalanmasi ve sinyal gösterimi. (b) Altin Nanopaitikül entegred edilmis altin üst yüzeye sahip sensörün 108 paitikül/mL eksozom yakalanmasi ve sinyal gösterimi. (C)Tohumlama ile nanoada olusturulmus altin üst yüzeye sahip sensörün 108 partikül/mL eksozom yakalanmasi ve sinyal gösterimi. (d) Verilerin parametrik olmayan Kruskal-Wallis istatistiksel analizi (herhangi bir istatistiksel fark gözlenmedi (n=3, p0.05)). (e) Verinin normalize edilmesiyle (0-1 arasinda) tüm modifikasyonlarin karsilastirilmasi Sekil 6. Sinyal iyilestirmesinin gümüs üst metayüzeye sahip sensörlerde karsilastirilmasi (a) Bos gümüs üst yüzeye sahip sensörün 108 partikül/mL eksozom yakalanmasi ve sinyal gösterimi. (b) Altin Nanopartikül entegre edilmis gümüs üst yüzeye sahip sensörün 108 partikül/mL eksozom yakalanmasi ve sinyal gösterimi. (c) Tohumlama ile nanoada olusturulmus gümüs üst yüzeye sahip sensörün 108 paitikül/mL eksozom yakalanmasi ve sinyal gösterimi. (d) Verilerin parametrik olmayan Kruskal-Wallis istatistiksel analizi (istatistiksel fark yildiz isaretiyle gösterildi (n= 3, p<0.05)). (e) Verinin normalize edilmesiyle (0-1 arasinda) tüm modifikasyonlarin karsilastirilmasi Sekil 7. Altin nanopartikülleri entegre edilmis yüzeylere anti-CD63 antikoru tutturularak farkli sistemlere uygunlugu test edilmesi (a) Anti-CD81 antikoru tutturulmus altin nanopartikül entegre edilmis gümüs üst yüzeye sahip sensörün üzerine 108 partikül/mL verilerek performansin gösterimi. (b) Anti-CD63 antikoru tutturulmus altin nanopartikül entegre edilmis gümüs üst yüzeye sahip sensörün üzerine 108 paitikül/mL verilerek performansin gösterimi. Klinik uygulanabilirligi testi (0) Eksozom örnekleri yapay idrar içerisinde hazirlanarak altin nanopartikül entegre edilmis altin üst yüzeye sahip sensör üzerindeki performansinin gösterimi. (d) Eksozom örnekleri yapay idrar içerisinde hazirlanarak altin nanopartikül entegre edilmis gümüs üst yüzeye sahip sensör üzerindeki performansinin gösterimi. Sekilde yer alan parçalar numaralandirilmis olup, bu numaralarin karsiliklari asagida verilmistir: 100. Yöntem Atil optik disklere biyomalzeme entegre edilmesiyle elde edilen metayüzeyler sayesinde vücut sivisindaki biyobeliiteçlerin tespit edilmesini saglayan bulus konusu yöntem (100); -atil optik disklerin metal ile kaplanarak metayüzey elde edilmesi (101), -hazirlanan metayüzeye biyomalzeme entegre edilerek yüzeyin islevsel hale getirilmesi (102), -islevsel hale getirilen metayüzeye tohumlama çözeltisi verilerek yüzeyde nanoada olusturulmasi (1 03), -tohumlama çözeltisi verilen metayüzeye eksozom membran proteinine ait antikor verilmesi (104) ve -bir vücut sivisina yerlestirilen, antikora sahip metayüzey ile antikora iliskin eksozomun yakalanarak hastalik tespiti yapilmasi (105) adimlarini içermektedir. Bulus konusu yöntemin (100) âtil optik disklerin metal ile kaplanarak metayüzey elde edilmesi ( plastik koruma katmani bir biçak yardimi ile kaldirilmakta ve açiga çikan nanoperiyodik yapiya kimyasal asindirma islemi uygulanmaktadir. Bulusun bir uygulamasinda kimyasal asindirma islemine maruz birakilan nanoperiyodik yapiya sahip optik disk plastik kalip olarak kullanilmakta ve plastik kalip elektron-isinli buharlasma yöntemi sayesinde sirasiyla titanyum veya krom (yapiskan tabaka olarak), gümüs ve altin ile kaplanarak altin üst yüzeye sahip metayüzey (biyosensör/metamalzeme plazmonik sensör) elde edilmektedir. Bulusun bir baska uygulamasinda kimyasal asindirma islemine maruz birakilan nanoperiyodik yapiya sahip optik disk püskürtme (sputtering) yöntemiyle gümüs ile kaplanmaktadir. Bulus konusu yöntemin (100) hazirlanan metayüzeye biyomalzeme entegre edilerek yüzeyin islevsel hale getirilmesi (102) adiminda, altin ve gümüs üst yüzeye sahip metayüzeyler istenilen ölçülerde kesilerek etanol ile temizlenmektedir. Ardindan bu yüzeyler 0,05 mg/mL - 1 mg/mL araligindaki konsantrasyonlarda biyomalzeme olan PLL çözeltisi içerisinde 8-12 saat 2-8 oCade inkübe edilerek islevsel hale getirilmektedir. Bulus konusu yöntemin (100) islevsel hale getirilen metayüzeye tohumlama çözeltisi verilerek yüzeyde nanoada olusturulmasi (103) adiminda, PLL çözeltisi ile islevsellestirilmis yüzeye dogrudan tohumlama çözeltisi (kloroaurik asit (HAuCl4) ve hidroksilamin hidroklorür (HONH2.HCl)) verilmektedir. Yüzeyde uM HONH2.HCl verildigi durumda metayüzeyin yüzeyinde nanoada olusumu gerçeklesmektedir. Bulus konusu yöntemin (100) tohumlama çözeltisi verilen metayüzeye eksozom membran proteinine ait antikor verilmesi (104) adiminda, PLL çözeltisi uygulanarak nanoada olusturulan metayüzeye dogrudan baglayici bir protein olan 50-1000 ug/mL Protein G uygulanmaktadir. Protein-protein etkilesimi sayesinde Protein G metayüzeye tutturulmaktadir. Ardindan eksozomlarin membraninda bulunan proteinlerden biri olan CD81 tespiti için 50-500 ug/mL anti-CD81 antikoru yüzeye verilmekte ve 1-5 saat 2-8 oC'de inkübe edilmektedir. Bulus konusu yöntemin (100) bir vücut sivisina yerlestirilen, antikora sahip metayüzey ile antijene iliskin eksozomun yakalanarak hastalik tespiti yapilmasi (105) adiminda, böbrek hücrelerinin besiyerinden mikroakiskan kullanilarak eksozom izole edilmekte ve bu eksozomlarin konsantrasyonu, çapi ve boyut dagilimlari çözeltideki tekil parçaciklarin Brown hareketini izleyen lazer tabanli optik bir teknik (NTA Instrument (NS300, Malvern Instruments Ltd., Malvern, Worcestershire, UK) ile analiz edilmektedir. Konsantrasyonu belirlenen örnekler, 105-109 paitikül/mL olacak sekilde PBS ile seyreltilmektedir. Elde edilen eksozomlar altin nanopaitikül entegre edilen ve nanoada olusturulan yüzeye verilerek dalga boyu kaymasi hesaplanmaktadir. Hesaplanan dalga boyu kaymasi bilgisi isiginda eksozom varligi ve eksozomla iliskili hastalik tespiti yapilmaktadir. Bulusun bir uygulamasinda yöntemin (100) farkli hastaliklara uygulanabilirligini göstermek açisindan yüzeye anti-CD81 antikoru yerine anti-CD63 antikoru verilerek eksozom membraninda yer alan ikinci bir protein (CD-63 antijeni) kullanimi hedeIlenmektedir. PLL çözeltisi uygulanarak altin nanopartikül entegre edilen gümüs üst metayüzeye sahip sensöre dogrudan baglayici bir protein olan 50-1000 ug/mL Protein G uygulanmaktadir. Protein-protein etkilesimi sayesinde Protein G metayüzeye tutturulmaktadir. Ardindan eksozomlarin membraninda bulunan proteinlerden biri olan CD63 tespiti için 50 - 500 ug/mL anti-CD63 antikoru yüzeye verilmekte ve +2-8 oC'de 1-5 saat inkübe edilmektedir. Bulusun bir uygulamasinda yöntemin (100) klinik olarak uygulanabilirligini göstermek için eksozom örnekleri yapay idrar içerisinde hazirlanmaktadir. PLL çözeltisi uygulanarak altin nanopartikül entegre edilen gümüs üst metayüzeye sahip sensöre dogrudan baglayici bir protein olan 50 - 1000 ug/mL Protein G uygulanmaktadir. Protein-protein etkilesimi sayesinde Protein G metayüzeye tutturulmaktadir. Ardindan eksozomlarin membraninda bulunan proteinlerden biri olan CD81 tespiti için 50 - 500 ug/mL anti-CD81 antikoru yüzeye verilmekte ve 2-8 oC'de 1-5 saat inkübe edilmektedir. Böbrek hücrelerinin besiyerinden mikroakiskan kullanilarak eksozom izole edilmekte ve bu eksozomlarin konsantrasyonu, çapi ve boyut dagilimlari çözeltideki tekil parçaciklarin Brown hareketini izleyen lazer tabanli optik bir teknik (NTA Instrument (NS300, Malvem Instruments Ltd., Malvern, Worcestershire, UK) ile analiz edilmektedir. Konsantrasyonu belirlenen örnekler, 105-109 partikül/mL olacak sekilde yapay idrar ile seyreltilmektedir. Elde edilen eksozomlar altin nanopartikül entegre edilmis yüzeylere verilerek dalga boyu kaymasi hesaplanmaktadir. Hesaplanan dalga boyu kaymasi bilgisi isiginda eksozom varligi ve eksozomla iliskili hastalik tespiti yapilmaktadir. Söz konusu yönteme (100) erisilmesi için izlenen tüm deneysel süreç asagida belirtildigi sekilde gerçeklesmistir. Optik disklerin yüzeyinde barindigi nanoperiyodik yapilar kullanilarak altin ve gümüs üst yüzeye sahip metamalzemeler üretildi. Öncelikle DVD,deki plastik koruma katmani biçak yardimiyla kaldirildi ve sirasiyla kimyasal asindirma ve metal kaplama yapilarak plazmonik etki elde edildi. Altin üst yüzey için elektron- isinli buharlasma yöntemiyle titanyum veya krom, gümüs ve altin kaplanip, metamalzeme plazmonik sensörler elde edildi. Gümüs üst yüzey içinse püskürtme (sputtering) yöntemiyle gümüs dogrudan nanoperiyodik yapinin üstüne kaplandi. Elde edilen yüzeylerin yapilarini incelemek için taramali elektron mikroskopisi (Scanning Electron Microscope: SEM) ve atomik kuvvet mikroskopisi (Atomic Force Microscope: AFM) kullanildi. Sekil 2a,da altin üst yüzeye ait bos yüzeye ait SEM, AFM görüntüsü ve profili gösterilmektedir. Sekil 2d,da gümüs üst yüzeye ait bos yüzeye ait SEM, AFM görüntüsü ve profili gösterilmektedir. AFM sonuçlarina göre periyodik yapinin boyutu N740 nm olarak belirlendi (Sekil 2a- 2d). Ayni karakterizasyon islemleri altin nanopartikülleri entegre edilmis ve nanoada olusturulmus yüzeyler için de yapildi. Elde edilen görüntülerde, altin partiküller ve nanoadalar açikça görülmektedir (Sekil 2b-f). Hazirlanan metayüzeylerin hassasiyet performansi ölçümü için farkli oranlarda yüzeydeki kirilma indisini degistirerek yüzeye molekül baglanmasini taklit etmek amaciyla kullanildi. Sekil 3,te bos altin ve gümüs üst yüzeye sahip plazmonik sensör kullanildi ve rezonans kaymalari Sekil 3a-d,de görüldü. Zamana-bagli ölçümlerde ise MATLAB GUI tabanli kullanici dostu bir yazilim üretildi ve rezonans kaymalarinin zamana bagli hesaplanmasiyla elde edildi (Sekil 3e). Dalga boyu kaymasi, kirilma indisi degisimine göre çizilerek dogrusal bir grafik elde edildi (Sekil 3f). Bos altin üst yüzeye sahip plazmonik sensör ile bos gümüs üst yüzeye sahip plazmonik sensör sonuçlari karsilastirildigi zaman, gümüs yüzeyin daha hassas oldugu gözlendi (Sekil 4a). Altin ve gümüs üst yüzeyler elde edildikten sonra istenilen ölçülerde kesilerek etanol ile temizlendi. Daha sonra bu yüzeyler farkli konsantrasyondaki (0,05-1 mg/mL) PLL çözeltisi içerisinde 8-12 saat 2-8 oC'de inkübe edildi. Daha sonra üzerlerine ayni miktarda tohumlama solüsyonu verilerek nanoada olusturuldu. Elde edilen sonuçlara göre, 0,5 mg/mL PLL entegre edilmis yüzeyler en iyi sonucu verdigi görüldü (Sekil 4b). Daha sonraki islemlerde 0,5 mg/mL PPL ile modifiye edilmis yüzeyler kullanildi. Islevsel hale getirilen yüzeyler farkli konsantrasyonlardaki altin nanopartikül solüsyonu içerisinde gece boyunca inkübe edildi. Çok fazla altin nanopartikül entegre edilmesi nanoperiyodik yapiyi bozdugu için sinyal kaybina neden oldu. Elde edilen sonuçlara göre stok altin nanopartikül solüsyonunun 1:2 - 1:50 oranlarinda seyreltilmesi gerektigi gözlendi (Sekil 4c). Ayni islem gümüs üst metayüzeye sahip sensör ile tekrarlandi (Sekil Nanoada olusumu ise önce altin nanopartikül entegre edilmis yüzeylerde denendi ancak herhangi bir degisim gözlenmedi. Bu nedenle, PLL ile islevsellestirilmis yüzeye dogrudan tohumlama çözeltisi (kloroaurik asit (HAuCl4) ve hidroksilamin hidroklorür (HONH2.HCl)) verildi. Yüzeye nanoada olusturmak için, farkli konsantrasyonlarda PLL, kloroaurik asit (HAuCl4) ve hidroksilamin hidroklorür (HONH2.HCl) kullanilarak protokol optimize edildi. Sekil 5c,de görüldügü üzere, HM HAuCl4: 20 HM HONH2.HCl karistirilarak tohumlama yapildigi zaman en yüksek dalga boyu kaymasi gözlendi. Kirilma indisi duyarliligi (1) numarali denklem kullanilarak hesaplandigi zaman, en yüksek deger 0.5 mg/mL PLL konsantrasyonu üzerine 121 (v:v) 20 HM HAuCl4: 20 HM HONH2.HCl tohumlama yapildigi zaman elde edildi (Tablo 1). Daha sonraki adimlar, optimize edilen bu konsantrasyonlar üzerinden devam edildi. Kirilma indisi duyarliligi = 'ün ............. (1) Tablo 1: Farkli konsantrasyonlardaki tohumlama yapilarak sensörün kirilma indisi duyarliligi hesaplanmasi Örnek Kirilma indisi duyarliligi Bos altin üst yüzey 438.078 1 mg/mL PLL - 10 pM Tohumlama 500.957 Optimize edilen PLL konsantrasyonundan sonra, farkli konsantrasyondaki tohumlama solüsyonlari ( yüzeylere verilerek sinyal iyilestirilmesinde fark olup olmadigi gözlendi. Elde edilen sonuçlara göre en iyi sinyal 10 MM tohumlama solüsyonu verildigi zaman gözlendi (Sekil 4e-f). Gerçeklestirilen deneyde eksozom membranindaki proteinlerden biri olan CD81'e odaklanildi ve sensör yüzeyi anti-CD81 antikoru ile islevsellestirildi. Bunun için bos altin yüzey üzerine anti-CD81 antijenini tutturmak adina katman katman yüzey kimyasi yapmak gerekiyor. Katman katman kimyayi olusturmak için sensör yüzeyi, oda sicakliginda gece boyunca 1-10 mM 11-merkaptoundekanoik asit (MUA) ile islevsellestirildi, böylece yüzeyde karboksil gruplari olusturuldu. Inkübasyon süresi sona erdikten sonra baglanmamis moleküller etanol ile yikanarak uzaklastirildi ve yüzeyi oda sicakliginda kurutuldu. Daha sonra, hazirlanan mikroakiskan çip sensör yüzeyi ile birlestirildi ve 1-Etil-3-(3- dimetilaminopropil)karbodiimid (EDC) ( (50 mM) karisimi kanallara verildi ve 20-60 dakika oda sicakliginda inkübe edildi. Daha sonra baglanmamis molekülleri uzaklastirmak için kanallar PBS ile yikandi. Üçüncü adim da ise EDC/NHS ile olusturulan süksinimit gruplarina Protein G baglandi. Bu adim için 100 ug/mL Protein G PBS içinde hazirlandi ve kanallar araciligiyla uygulandi ve gece boyunca 2-8 oC'de inkübe edildi ve inkübasyon sona erdiginde kanallar PBS ile yikandi. Son adim olarak 50-500 ug/mL anti-CD81 antijeni yüzeye verildi ve 1-5 saat boyunca 2-8 oC'de inkübe Sensör yüzeyine yerlestirilen mikroakiskan çipler, poli(metil metakrilat) (PMMA, 2 mm kalinliginda) ve çift taraIli yapiskan film (DSA, 50 um kalinliginda) ile hazirlandi. PMMA ve DSA katmanlari ayri ayri RDWorks programi kullanilarak tasarlandi ve lazer kesici (LazerFiX, Türkiye) ile kesildi. PMMA katmaninda sivi girisi ve çikisi için bosluklar açildi ve kilcal hortumlarin (tübingler) bu bosluklara epoksi reçinesi yardimi ile sabitendi. DSA katmaninda sivi akisi için kanallar olusturuldu ve PMMA ile birlestirildi. Hazirlanan mikroakiskan çip, DSA yardimiyla sensör yüzeyine yapistirildi. Tohumlama yapilan yüzeyde, PLL uygulandigi için, MUA ve EDC/NHS kimyasi adimlari elenerek, dogrudan 50-1000 ug/mL Protein G uygulandi. Protein-protein etkilesimi sayesinde Protein G yüzeye tutturuldu. Daha sonra 50-500 ug/mL anti- CD81 antikoru yüzeye verildi ve 1-5 saat 2-8 oC'de inkübe edildi. Ayni islem anti- CD63 antikoru için de gerçeklestirildi. Daha sonra, örnek olarak kullanilabilmesi için eksozomlar, böbrek hücrelerinin besiyerinden mikroakiskan kullanilarak izole edildi. Izole edilen eksozomlarin konsantrasyonuni, çapini ve boyut dagilimlarini çözeltideki tekil parçaciklarin Brown hareketini izleyen lazer tabanli bir optik teknik olan NTA Instrument (NS300, Malvem Instruments Ltd., Malvern, Worcestershire, UK) kullanilarak analiz edildi. Konsantrasyonu belirlenen örnekler, 105-109 paitikül/mL olacak sekilde PBS ve yapay idrar ile seyreltildi. Elde edilen eksosomlar, islevsellestirelen iki yüzeye de verildi ve dalga boyu kaymasi hesaplandi. Bos altin üst yüzeye sahip plazmonik sensörde, Sekil 5a,da gösterildigi üzere dalga boyu kaymasi 1.27 nm (ortalama 0.94 ± 0.29 nm) olarak hesaplanirken, yüzeye altin nanopartikül entegre edildigi zaman bu kayma 1.82 nm (ortalama 1.54±0.52 nm) olarak hesaplanirken (Sekil 5b), tohumlama metoduyla nanoada olusturuldugu zaman bu kayma 1.7 nm (1.27±0.50 nm) olarak belirlendi (Sekil 50). Bu veriler normalize edildigi zaman (0-1), altin nanopartikül entegrasyonu bos yüzeye göre 5,5 kat sinyal aitirirken nanoada olusturulmasi sinyali 3,5 kat arttirilidigi görüldü (Sekil 5e). Sekil 6a,da gösterildigi üzere, bos gümüs üst yüzeye sahip sensörün dalga boyu kaymasi 1.11 nm (ortalama 0.77±0.34 nm) olarak hesaplanirken, yüzeye altin nanopartikül entegre edildigi zaman bu kayma metoduyla nanoada olusturuldugu zaman bu kayma 0.43 nm (0.42±0.20 nm) olarak belirlendi (Sekil 60). Bu veriler normalize edildigi zaman (0-1), altin nanopartikül entegrasyonu bos yüzeye göre 2,6 kat sinyal aitirirken nanoada olusturulmasi sinyali azaltmistir (Sekil 6e). Bulus konusu yöntem (100) sayesinde âtil optik disklerden elde edilen nanoyapilar düsük maliyetli sensör üretimine olanak saglamaktadir. Kimyasal yollarla entegre edilen altin nanopartiküller ve olusturulan nanoadalar daha hassas biyobelirteç tayinine olanak sunmaktadir. Bu temel kavramlar etrafinda, bulus konusu "Biyomalzeme Entegre Edilmis Metayüzeye Sahip Bir Biyosensör Elde Etme Yöntemi (100)" için çok çesitli uygulamalarin gelistirilmesi mümkün olup, bulus burada açiklanan örneklerle sinirlandirilamaz, esas olarak istemlerde belirtildigi gibidir. TR TR DESCRIPTION METHOD OF OBTAINING A BIOSENSOR WITH A METASURFACE INTEGRATED IN BIOMATERIAL Technical Field The invention relates to a method of obtaining a biosensor that enables the detection of biomarkers in body fluid, thanks to the metasurfaces obtained by integrating biomaterial into inert optical discs. Prior Art In order to reduce the workload and costs in hospitals, the healthcare system is switching from central diagnosis platforms to point-of-care testing platforms, thus aiming to reach more individuals. In this context, biosensor platforms have a very significant impact on disease diagnosis as an alternative or complement to these existing tests. Nowadays, traditional disease diagnosis methods such as ELISA, Simoa, LumineX and MultipleX Searchlight are used for biomarker determination. However, the biggest disadvantages of these methods are that they are complex, long-lasting and expensive. Therefore, there is an urgent need to develop low-cost, easy-to-use, highly accurate and sensitive semi/partially invasive tests for early diagnosis. While developing point-of-care diagnostic systems, the World Health Organization (WHO) recommends that they are (i) low-cost, (ii) sensitive, (iii) specific, (iv) user-friendly, (V) fast and (Vi) durable, (Vii) do not require complex equipment. and (Viii) It must have features that can be used easily. Therefore, these features should be taken into consideration when developing bedside tests. Optical biosensors are one of the most commonly used strategies for the development of point-of-care diagnostic tests. It is suitable for the development of platforms that can take fast and precise measurements without the need for any molecular labeling. This application area is among the most important reasons why it is widely used. Another advantage of optical biosensors is that microfluidics can be easily integrated. Thus, fluid transfer can be easily achieved and the required sample and solution usage can be significantly reduced. Metamaterials and metasurfaces are nanostructured interfaces containing thin layers of plasmonic or dielectric materials at subwavelength thicknesses that manipulate light. For this reason, they are widely used in optical sensor construction. Metamaterials are not directly found in nature. They can be obtained as designed nanostructures by combining different materials depending on their shape and material composition. Thanks to these nanostructures, new features (such as light control ability) are obtained. Different strategies are used in metasurface fabrication, but most of them are quite complex and expensive procedures. Metasurfaces integrated into biomaterials are used as biosensors to detect potential biomarkers (from serum, blood, saliva, urine, stool, lavage fluid, interstitial fluid and other body fluids) that can be used in the detection of any disease. These systems can also be called metamaterial plasmonic sensors. The release of exosomes from cells is associated with many diseases. Recent studies also reveal the potential of released exosomes as biomarkers. There are three different proteins, also known as tetraspanins, in the membrane of exosomes. Exosomes can be captured and identified using antigens specific to tetraspins. Since tetraspanins are abundant in exosomes, they are one of the most used markers for exosome detection. In the light of this information, in order to overcome the drawbacks mentioned above, a biomarker that enables the detection of biomarkers in body fluid with sensitive biosensors (metasurface/metamaterial/metamaterial plasmonic sensor) integrated with biomaterials, solving production difficulties related to cost, biocompatibility and complexity, and enabling easy detection at low cost is possible. A method of obtaining it is needed. In the Chinese patent document numbered CN10203735 8, which is in the state of the art, the use of an optical disc with surface activation in biomolecule detection is mentioned. Brief Description of the Invention The aim of this invention is to realize a biosensor obtaining method that enables the detection of biomarkers in body fluid, thanks to the metasurfaces obtained by integrating biomaterials into inert optical discs. Another aim of this invention is to realize a method that allows obtaining low-cost biosensors thanks to nanostructures obtained from inert optical discs. Another aim of this invention is to realize a method that enables sensitive biomarker determination thanks to the gold nanopaticle (AuNP) integrated into inert optical discs by chemical means and the nanoislands created. Another aim of this invention is to obtain sensitive biosensors in which oxidation is prevented on sensors with a silver surface by the presence of a Poly L Lysine (PLL) layer, gold nanoparticle and nanoisland structures on the surface. Another aim of this invention is to replace central diagnostic platforms in order to reduce the workload and expense in hospitals. Detailed Description of the Invention, which enables the development of point-of-care testing devices. The "Method for Obtaining a Biosensor with a Biomaterial-Integrated Metasurface", which was carried out to achieve the purpose of this invention, is shown in the attached figures, and from these figures; Figure 1. is the flow chart of the method that is the subject of the invention. Figure 2. Schematic representation of the production stages of metasurfaces. (a) AFM and SEM images and AFM profile of the plasmonic sensor created by multiple metal coatings (Titanium: 10 nm; Silver: 30 nm; Gold: 15 nm) on a DVD plastic mold. (b) AFM and SEM images and AFM profile of the plasmonic sensor created by integrating gold nanoparticles (diluted 1:10) into the blank metasurface through the PLL layer. (c) AFM and SEM images and AFM profile of the nanoisland structured plasmonic sensor created by seeding using chloroauric acid (HAuCl4) and hydroxylamine hydrochloride (HONH2.HC1) onto the PLL layer directly. (d) AFM and SEM images and AFM profile of the plasmonic sensor formed by 65 nm Silver metal coating on the DVD plastic mold. (e) AFM and SEM images and AFM profile of the plasmonic sensor created by integrating gold nanoparticles (diluted 1:10) onto the empty silver metasurface through the PLL layer. (f) AFM and SEM images and AFM profile of the nanoisland structured plasmonic sensor created by seeding using chloroauric acid (HAuCl4) and hydroxylamine hydrochloride (HONH2.HC1) onto the PLL layer directly. Figure 3. Examination of the performance of the plasmonic sensor with empty gold and silver upper metasurface. (a) Changes in the plasmonic resonance value of different glycerol solutions (1%-70%) by performing the final measurement analysis for the sensor with empty gold upper metasurface. (b) The changes in the plasmonic resonance value of different glycerol solutions (1%-70%) by making the final measurement analysis for the sensor with the empty silver top metasurface. 70) Representation of changes in plasmonic resonance value with heat map. (d) Final measurement analysis for the sensor with an empty silver upper metasurface, showing the changes in the plasmonic resonance value of different glycerol solutions (1%-70%) with a heat map. (e) Time representation of the change of plasmonic resonance value of sensors with gold and silver metasurfaces according to different glycerol solutions. (f) Linear representation of the effect of glycerol solutions of different concentrations and refractive index on sensors with gold and silver metasurfaces. Figure 4. Comparison of sensor performances (a) Linear representation of the effect of glycerol solutions at different concentrations and refractive indexes on the empty gold and silver surface. (b) Linear representation of the effect of glycerol solutions of different concentrations and refractive index on the surface created on the nanoisland by applying the same seeding solution on different PLL concentrations. (0) Linear representation of the effect of the amount of gold nanoparticles on the resonance of the plasmonic sensor with the gold upper metasurface, created by glycerol solutions of different concentrations and refractive index. (d) Linear representation of the effect of glycerol solutions of different concentrations and refractive index on the plasmonic sensor resonance of the determined amount of gold nanoparticles with the silver top metasurface and comparison with the empty silver top metasurface. (e) Linear representation of the effect of the concentration of the seeding solution on the resonance of the plasmonic sensor with the gold-top metasurface of glycerol solutions of different concentrations and refractive index. (f) Linear representation of the effect of glycerol solutions of different concentrations and refractive index on the plasmonic sensor resonance of the determined seeding solution with the silver top metasurface and comparison with the empty silver top metasurface. Figure 5. Comparison of signal improvement in sensors with gold top metasurface (a) 108 particles/mL exosome capture and signal representation of the sensor with empty gold top surface. (b) 108 particles/mL exosome capture and signal display of the sensor with Gold Nanopaticle integrated gold top surface. (C) 108 particles/mL exosome capture and signal display of the sensor with a gold top surface formed on a nanoisland by seeding. (d) Non-parametric Kruskal-Wallis statistical analysis of data (no statistical difference observed (n=3, p0.05)). (e) Comparison of all modifications by normalizing the data (between 0-1) Figure 6. Comparison of signal improvement in sensors with silver top metasurface (a) 108 particles/mL exosome capture and signal representation of the sensor with empty silver top surface. (b) 108 particles/mL exosome capture and signal representation of the sensor with silver top surface integrated with Gold Nanoparticle. (c) 108 particles/mL exosome capture and signal display of the sensor with a silver surface formed on a nanoisland by seeding. (d) Non-parametric Kruskal-Wallis statistical analysis of the data (statistical difference indicated with an asterisk (n= 3, p<0.05)). (e) Comparison of all modifications by normalizing the data (between 0-1). Figure 7. Testing the suitability of the sensor for different systems by attaching anti-CD63 antibody to the surfaces integrated with gold nanoparticles. Demonstration of performance by administering 108 particles/mL. (b) Demonstration of the performance by administering 108 particles/mL onto the sensor with a silver surface integrated with a gold nanoparticle attached to the anti-CD63 antibody. Clinical applicability test (0) Exosome samples are prepared in artificial urine and demonstration of their performance on the sensor with gold nanoparticle integrated gold surface. (d) Exosome samples are prepared in artificial urine and demonstration of their performance on the sensor with a silver surface integrated with gold nanoparticles. The parts in the figure are numbered, and the equivalents of these numbers are given below: 100. Method The method of the invention (100), which enables the detection of biomarkers in body fluid thanks to the metasurfaces obtained by integrating biomaterials into inert optical discs; -obtaining a metasurface by coating inert optical discs with metal (101), -functionalizing the surface by integrating biomaterial into the prepared metasurface (102), -creating a nanoisland on the surface by giving seeding solution to the functionalized metasurface (103), -exosomes being added to the metasurface given the seeding solution It includes the steps of administering antibodies to the membrane protein (104) and detecting the disease by capturing the antibody-related exosome with the antibody-containing metasurface placed in a body fluid (105). Obtaining a metasurface by coating the inert optical discs (100) with metal in the method of the invention (the plastic protection layer is removed with the help of a knife and a chemical etching process is applied to the resulting nanoperiodic structure. In one embodiment of the invention, the optical disc with a nanoperiodic structure subjected to chemical etching is used as a plastic mold. is used and a metasurface (biosensor/metamaterial plasmonic sensor) with a gold upper surface is obtained by coating the plastic mold with titanium or chrome (as an adhesive layer), silver and gold, respectively, thanks to the electron-beam evaporation method. In another embodiment of the invention, nanoperiodic materials are exposed to chemical etching. The optical disc with the structure is coated with silver by sputtering method. In the step (102) of the method of the invention, which integrates the biomaterial into the prepared metasurface and makes the surface functional (102), the metasurfaces with gold and silver upper surfaces are cut to the desired dimensions and cleaned with ethanol. Then, these surfaces are made functional by incubating them in PLL solution, which is a biomaterial, at concentrations between 0.05 mg/mL - 1 mg/mL for 8-12 hours at 2-8 °C. In the step (103) of the method of the invention (100) to create a nanoisland on the surface by giving seeding solution to the functionalized metasurface, seeding solution (chloroauric acid (HAuCl4) and hydroxylamine hydrochloride (HONH2.HCl)) is directly given to the surface functionalized with PLL solution. When µM HONH2.HCl is given to the surface, nanoisland formation occurs on the surface of the metasurface. In the step (104) of administering antibodies to the exosome membrane protein to the metasurface given the seeding solution of the method (100) of the invention, 50-1000 ug/mL Protein G, which is a direct binding protein, is applied to the metasurface formed on the nanoisland by applying PLL solution. Thanks to protein-protein interaction, Protein G is attached to the metasurface. Then, to detect CD81, one of the proteins found in the membrane of exosomes, 50-500 ug/mL anti-CD81 antibody is given to the surface and incubated at 2-8 oC for 1-5 hours. In the step (105) of the method of the invention (100), which detects the disease by capturing the antigen-related exosome with the antibody-containing metasurface placed in a body fluid, the exosome is isolated from the kidney cells' medium using microfluidics, and the concentration, diameter and size distribution of these exosomes are measured following the Brownian motion of the individual particles in the solution. It is analyzed with a laser-based optical technique (NTA Instrument (NS300, Malvern Instruments Ltd., Malvern, Worcestershire, UK). The samples, whose concentration is determined, are diluted with PBS to 105-109 particles/mL. The resulting exosomes are integrated into gold nanopaticules and The wavelength shift is calculated by applying it to the surface created on the nanoisland. In the light of the calculated wavelength shift information, the presence of exosomes and exosome-related diseases are detected. In an embodiment of the invention, in order to show the applicability of the method (100) to different diseases, anti-CD63 antibody is given to the surface instead of anti-CD81 antibody, which is located on the exosome membrane. The use of a second protein (CD-63 antigen) is planned. By applying PLL solution, 50-1000 ug/mL Protein G, a binding protein, is applied directly to the sensor with a silver upper metasurface integrated with a gold nanoparticle. Thanks to protein-protein interaction, Protein G is attached to the metasurface. Then, to detect CD63, one of the proteins found in the membrane of exosomes, 50 - 500 ug/mL anti-CD63 antibody is given to the surface and incubated at +2-8 oC for 1-5 hours. In an embodiment of the invention, exosome samples are prepared in artificial urine to demonstrate the clinical applicability of the method (100). By applying PLL solution, 50 - 1000 µg/mL Protein G, a binding protein, is applied directly to the sensor with a silver upper metasurface integrated with a gold nanoparticle. Thanks to protein-protein interaction, Protein G is attached to the metasurface. Then, to detect CD81, one of the proteins found in the membrane of exosomes, 50 - 500 ug/mL anti-CD81 antibody is given to the surface and incubated at 2-8 oC for 1-5 hours. Exosomes are isolated from the medium of kidney cells using microfluidics, and the concentration, diameter and size distribution of these exosomes are analyzed with a laser-based optical technique (NTA Instrument (NS300, Malvem Instruments Ltd., Malvern, Worcestershire, UK) that monitors the Brownian motion of single particles in the solution. The concentration is determined. The determined samples are diluted with artificial urine to 105-109 particles/mL. The obtained exosomes are given to the gold nanoparticle integrated surfaces and the wavelength shift is calculated. In the light of the calculated wavelength shift information, the presence of exosomes and exosome-related diseases are detected. The method in question (100 ) was carried out as stated below. Metamaterials with gold and silver upper surfaces were produced by using the nanoperiodic structures on the surface of optical discs. First, the plastic protection layer on the DVD was removed with the help of a knife, and the plasmonic effect was achieved by chemical etching and metal coating, respectively. . For the gold surface, titanium or chrome, silver and gold were coated with the electron-beam evaporation method, and metamaterial plasmonic sensors were obtained. For the silver surface, silver was coated directly on the nanoperiodic structure using the sputtering method. Scanning Electron Microscope (SEM) and atomic force microscopy (AFM) were used to examine the structures of the obtained surfaces. Figure 2a shows the SEM, AFM image and profile of the empty surface of the gold upper surface. Figure 2d shows the SEM, AFM image and profile of the empty surface of the silver upper surface. According to AFM results, the size of the periodic structure was determined as N740 nm (Figure 2a-2d). The same characterization processes were also performed for the surfaces where gold nanoparticles were integrated and nanoislands were formed. In the images obtained, gold particles and nanoislands are clearly visible (Figure 2b-f). To measure the sensitivity performance of the prepared metasurfaces, it was used to imitate molecule binding to the surface by changing the refractive index on the surface at different rates. In Figure 3, a plasmonic sensor with an empty gold and silver upper surface was used and the resonance shifts were seen in Figure 3a-d. For time-dependent measurements, a user-friendly software based on MATLAB GUI was produced and the resonance shifts were obtained by calculating them over time (Figure 3e). A linear graph was obtained by plotting the wavelength shift against the refractive index change (Figure 3f). When the results of the plasmonic sensor with a blank gold top surface were compared with the plasmonic sensor with a blank silver top surface, it was observed that the silver surface was more sensitive (Figure 4a). After the gold and silver upper surfaces were obtained, they were cut to the desired dimensions and cleaned with ethanol. Then, these surfaces were incubated in PLL solution of different concentrations (0.05-1 mg/mL) for 8-12 hours at 2-8 oC. Then, nanoislands were created by giving the same amount of seeding solution on them. According to the results obtained, it was seen that the surfaces integrated with 0.5 mg/mL PLL gave the best results (Figure 4b). In subsequent processes, surfaces modified with 0.5 mg/mL PPL were used. The functionalized surfaces were incubated in different concentrations of gold nanoparticle solution overnight. Integrating too many gold nanoparticles caused signal loss because it disrupted the nanoperiodic structure. According to the results obtained, it was observed that the stock gold nanoparticle solution should be diluted at a ratio of 1:2 - 1:50 (Figure 4c). The same process was repeated with the sensor with a silver upper metasurface (Figure Nanoisland formation was first tried on gold nanoparticle-integrated surfaces, but no change was observed. Therefore, direct seeding solution (chloroauric acid (HAuCl4) and hydroxylamine hydrochloride (HONH2.HCl) was applied to the PLL-functionalized surface. )) was given. To create nanoislands on the surface, the protocol was optimized by using different concentrations of PLL, chloroauric acid (HAuCl4) and hydroxylamine hydrochloride (HONH2.HCl). As seen in Figure 5c, when seeding was done by mixing HM HAuCl4: 20 HM HONH2.HCl The highest wavelength shift was observed. When the refractive index sensitivity was calculated using equation (1), the highest value was obtained when 121 (v:v) 20 HM HAuCl4: 20 HM HONH2.HCl was seeded on 0.5 mg/mL PLL concentration ( Table 1). The next steps were continued based on these optimized concentrations. Refractive index sensitivity = ............ (1) Table 1: Calculation of the refractive index sensitivity of the sensor by seeding at different concentrations Sample Refractive index sensitivity Empty gold top surface 438.078 1 mg/mL PLL - 10 pM Seeding 500.957 After the optimized PLL concentration, seeding solutions of different concentrations were applied to the surfaces to observe whether there was a difference in signal improvement. According to the results obtained, the best signal was observed when 10 MM seeding solution was given (Figure 4e-f). In the experiment, we focused on CD81, one of the proteins in the exosome membrane, and the sensor surface was functionalized with anti-CD81 antibody. For this, it is necessary to perform layer-by-layer surface chemistry to attach the anti-CD81 antigen to the empty gold surface. To establish the layer-by-layer chemistry, the sensor surface was functionalized with 1–10 mM 11-mercaptoundecanoic acid (MUA) overnight at room temperature, thereby creating carboxyl groups on the surface. After the incubation period ended, unbound molecules were removed by washing with ethanol and the surface was dried at room temperature. Then, the prepared microfluidic chip was combined with the sensor surface and the 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (50 mM) mixture was introduced into the channels and incubated at room temperature for 20-60 minutes. Then, to remove unbound molecules. The channels were washed with PBS. In the third step, Protein G was bound to the succinimide groups formed with EDC/NHS. For this step, 100 µg/mL Protein G was prepared in PBS and applied through the channels and incubated at 2-8 °C overnight and the incubation ended. As a final step, 50-500 µg/mL anti-CD81 antigen was given to the surface and incubated at 2-8 oC for 1-5 hours. Microfluidic chips placed on the sensor surface were made of poly(methyl methacrylate) (PMMA, 2 mm thick) and double-sided adhesive film (DSA, 50 um thick). PMMA and DSA layers were designed separately using the RDWorks program and cut with a laser cutter (LazerFiX, Turkey). Gaps were opened in the PMMA layer for liquid inlet and outlet and capillary tubes were cut. (tubings) were fixed to these gaps with the help of epoxy resin. Channels for liquid flow were created in the DSA layer and combined with PMMA. The prepared microfluidic chip was adhered to the sensor surface with the help of DSA. Since PLL was applied on the seeded surface, MUA and EDC/NHS chemistry steps were eliminated and 50-1000 ug/mL Protein G was applied directly. Thanks to protein-protein interaction, Protein G was attached to the surface. Then, 50-500 µg/mL anti-CD81 antibody was administered to the surface and incubated for 1-5 hours at 2-8 oC. The same process was performed for anti-CD63 antibody. Exosomes were then isolated from the kidney cell medium using microfluidics to be used as samples. The concentration, diameter and size distribution of isolated exosomes were analyzed using the NTA Instrument (NS300, Malvem Instruments Ltd., Malvern, Worcestershire, UK), a laser-based optical technique that tracks the Brownian motion of individual particles in solution. The samples, whose concentration was determined, were diluted with PBS and artificial urine to 105-109 particles/mL. The resulting exosomes were applied to both functionalized surfaces and the wavelength shift was calculated. In the plasmonic sensor with an empty gold upper surface, the wavelength shift is calculated as 1.27 nm (average 0.94 ± 0.29 nm), as shown in Figure 5a, while when the gold nanoparticle is integrated on the surface, this shift is calculated as 1.82 nm (average 1.54 ± 0.52 nm) (Figure 5b), when the nanoisland was created by the seeding method, this shift was determined as 1.7 nm (1.27±0.50 nm) (Figure 50). When these data were normalized (0-1), it was observed that the gold nanoparticle integration increased the signal by 5.5 times compared to the blank surface, while the signal of nanoisland formation increased by 3.5 times (Figure 5e). As shown in Figure 6a, the wavelength shift of the sensor with an empty silver upper surface is calculated as 1.11 nm (0.77±0.34 nm on average), while when a gold nanoparticle is integrated on the surface and a nanoisland is formed with this shifting method, this shift is 0.43 nm (0.42±0.20 nm). was determined as (Figure 60). When these data were normalized (0-1), gold nanoparticle integration resulted in a 2.6-fold increase in signal compared to the blank surface, while nanoisland formation reduced the signal (Figure 6e). Thanks to the method (100) of the invention, nanostructures obtained from inert optical discs enable low-cost sensor production. Gold nanoparticles integrated by chemical means and nanoislands created enable more sensitive biomarker determination. Around these basic concepts, it is possible to develop a wide variety of applications for the subject of the invention, "Method for Obtaining a Biosensor with a Biomaterial-Integrated Metasurface (100)", and the invention cannot be limited to the examples explained here, it is essentially as stated in the claims.TR TR

Claims (1)

1.ISTEMLER . Atil optik disklere biyomalzeme entegre edilmesiyle elde edilen metayüzeyler sayesinde vücut sivisindaki biyobeliiteçlerin tespit edilmesini saglayan; -âtil optik disklerin metal ile kaplanarak metayüzey elde edilmesi (101), -hazirlanan metayüzeye biyomalzeme entegre edilerek yüzeyin islevsel hale getirilmesi (102), -islevsel hale getirilen metayüzeye tohumlama çözeltisi verilerek yüzeyde nanoada olusturulmasi (1 03), -tohumlama çözeltisi verilen metayüzeye eksozom membran proteinine ait antikor verilmesi (104) ve -bir vücut sivisina yerlestirilen, antikora sahip metayüzey ile antikora iliskin eksozomun yakalanarak hastalik tespiti yapilmasi (105) adimlarini içermesi ile karakterize edilen bir yöntem (100). . Âtil optik disklerin metal ile kaplanarak metayüzey elde edilmesi (101) adiminda, âtil optik diskteki (DVD: Digital Versatile Disc) plastik koruma katmaninin bir biçak yardimi ile kaldirilmasi ve açiga çikan nanoperiyodik yapiya kimyasal asindirma islemi uygulanmasi ile karakterize edilen Istem 1,deki gibi bir yöntem (100). . Âtil optik disklerin metal ile kaplanarak metayüzey elde edilmesi (101) adiminda, kimyasal asindirma islemine maruz birakilan nanoperiyodik yapiya sahip optik diskin plastik kalip olarak kullanilmasi ve plastik kalibin elektron-isinli buharlasma yöntemi sayesinde sirasiyla titanyum veya krom (yapiskan tabaka olarak), gümüs ve altin ile kaplanarak altin üst yüzeye sahip metayüzey (biyosensör/metamalzeme plazmonik sensör) elde edilmesi ile karakterize edilen Istem 2,deki gibi bir yöntem (100). 4. Atil optik disklerin metal ile kaplanarak metayüzey elde edilmesi (101) adiminda, kimyasal asindirma islemine maruz birakilan nanoperiyodik yapiya sahip optik diskin püskürtme (sputtering) yöntemiyle gümüs ile kaplanmasiyla karakterize edilen Istem 2,deki gibi bir yöntem (100). . Hazirlanan metayüzeye biyomalzeme entegre edilerek yüzeyin islevsel hale getirilmesi (102) adiminda, altin ve gümüs üst yüzeye sahip metayüzeylerin istenilen ölçülerde kesilerek etanol ile temizlenmesi ve ardindan bu yüzeylerin 0,05 mg/mL - 1 mg/mL araligindaki konsantrasyonlarda biyomalzeme olan PLL çözeltisi içerisinde 8-12 saat 2-8 oCade inkübe edilerek islevsel hale getirilmesi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100). . Islevsel hale getirilen metayüzeye tohumlama çözeltisi verilerek yüzeyde nanoada olusturulmasi (103) adiminda, PLL çözeltisi ile islevsellestirilmis yüzeye dogrudan tohumlama çözeltisi (kloroaurik asit (HAuCl4) ve hidroksilamin hidroklorür (HONH2.HCl)) verilmesi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100). . Islevsel hale getirilen metayüzeye tohumlama çözeltisi verilerek yüzeyde nanoada olusturulmasi (103) adiminda, yüzeyde 0,05-1 mg/mL PLL HONH2.HCl verildigi durumda metayüzeyin yüzeyinde nanoada olusumu gerçeklesmesi ile karakterize edilen Istem 6,daki gibi bir yöntem (100). . Tohumlama çözeltisi verilen metayüzeye eksozom membran proteinine ait antikor verilmesi (104) adiminda, PLL çözeltisi uygulanarak nanoada olusturulan metayüzeye dogrudan baglayici bir protein olan 50-1000 ug/mL Protein G uygulanmasi ile karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100). Tohumlama çözeltisi verilen metayüzeye eksozom membran proteinine ait antikor verilmesi (104) adiminda, protein-protein etkilesimi sayesinde Protein G,nin metayüzeye tutturulmasi ve ardindan eksozomlarin membraninda bulunan proteinlerden biri olan CD81 tespiti için 50-500 ug/mL anti-CD81 antikorunun yüzeye verilerek 1-5 saat 2-8 oC'de inkübe edilmesi ile karakterize edilen Istem 8,deki gibi bir yöntem (100). Tohumlama çözeltisi verilen metayüzeye eksozom membran proteinine ait antikor verilmesi (104) adiminda, anti-CD81 antikoru yerine eksozom membraninda yer alan bir protein olan anti-CD63 antikorunun kullanilmasi ile karakterize edilen Istem 8,deki gibi bir yöntem (100). Bir vücut sivisina yerlestirilen, antikora sahip metayüzey ile antijene iliskin eksozomun yakalanarak hastalik tespiti yapilmasi (105) adiminda, böbrek hücrelerinin besiyerinden mikroakiskan kullanilarak eksozom izole edilmesi ve bu eksozomlarin konsantrasyonun, çapinin ve boyut dagilimlarinin çözeltideki tekil parçaciklarin Brown hareketini izleyen lazer tabanli optik bir teknik ile analiz edilmesiyle karakterize edilen yukaridaki istemlerden herhangi birindeki gibi bir yöntem (100). Bir vücut sivisina yerlestirilen, antikora sahip metayüzey ile antijene iliskin eksozomun yakalanarak hastalik tespiti yapilmasi (105) adiminda, konsantrasyonu belirlenen örneklerin, 105-109 partikül/mL olacak sekilde PBS ile seyreltilmesiyle karakterize edilen Istem 11,deki gibi bir yöntem (100). Elde edilen eksozomlarin altin nanopartikül entegre edilen ve nanoada olusturulan yüzeye verilerek dalga boyu kaymasinin hesaplanmasi ve hesaplanan dalga boyu kaymasi bilgisi isiginda eksozom varligi ve eksozomla iliskili hastalik tespiti yapilmasi ile karakterize edilen Istem 12 , deki gibi bir yöntem (100). TR TR1.CLAIMS. Enables the detection of biomarkers in body fluid thanks to metasurfaces obtained by integrating biomaterials into inert optical discs; -obtaining a metasurface by covering dormant optic discs with metal (101), -functionalizing the surface by integrating biomaterial into the prepared metasurface (102), -creating a nanoisland on the surface by giving seeding solution to the functionalized metasurface (103), -exosomes being added to the metasurface given the seeding solution A method (100) characterized by the steps of administering an antibody to a membrane protein (104) and detecting the disease by capturing the antibody-related exosome with a metasurface containing the antibody placed in a body fluid (105). . In the step (101) of obtaining a metasurface by coating inert optical discs with metal, the plastic protection layer on the inert optical disc (DVD: Digital Versatile Disc) is removed with the help of a knife and a chemical etching process is applied to the resulting nanoperiodic structure, as in Claim 1. method (100). . In the step (101) of obtaining a metasurface by coating inert optical discs with metal, the optical disc with a nanoperiodic structure, which is subjected to chemical etching, is used as a plastic mold and, thanks to the electron-beam evaporation method of the plastic mold, titanium or chrome (as an adhesive layer), silver and gold, respectively, are used. A method (100) as in Claim 2, which is characterized by obtaining a metasurface (biosensor/metamaterial plasmonic sensor) with a gold upper surface by coating it with. 4. A method (100) as in Claim 2, characterized by coating the optical disc with a nanoperiodic structure, which is exposed to chemical etching, with silver by the sputtering method, in the step (101) of obtaining a metasurface by coating inert optical discs with metal. . In the step (102) of making the surface functional by integrating the biomaterial into the prepared metasurface, the metasurfaces with gold and silver upper surfaces are cut to the desired dimensions and cleaned with ethanol, and then these surfaces are soaked in PLL solution, which is a biomaterial, at concentrations between 0.05 mg/mL - 1 mg/mL. A method (100) as in any of the above claims, characterized by making it functional by incubating it for 12 hours at 2-8 °C. . A method as in any of the above claims, characterized by giving seeding solution (chloroauric acid (HAuCl4) and hydroxylamine hydrochloride (HONH2.HCl)) directly to the surface functionalized with PLL solution, in step (103) to create nanoislands on the surface by giving seeding solution to the functionalized metasurface ( one hundred). . A method (100) as in Claim 6, which is characterized by nanoisland formation on the surface by giving seeding solution to the functionalized metasurface in the step (103). . A method as in any of the above claims (100), characterized by applying 50-1000 µg/mL Protein G, a direct binding protein, to the metasurface formed on the nanoisland by applying PLL solution, in the step (104) of administering antibodies to the exosome membrane protein to the metasurface given the seeding solution. In step (104), giving antibody to the exosome membrane protein to the metasurface given the seeding solution, Protein G is attached to the metasurface thanks to the protein-protein interaction, and then 50-500 ug/mL anti-CD81 antibody is given to the surface for the detection of CD81, one of the proteins found in the membrane of exosomes. A method (100) as in Claim 8, characterized by incubation at 2-8 oC for -5 hours. A method (100) as in Claim 8, characterized by using anti-CD63 antibody, a protein located in the exosome membrane, instead of anti-CD81 antibody in the step (104) of administering antibody to the exosome membrane protein to the metasurface given the seeding solution. In the step (105) of detecting the disease by capturing the antigen-related exosome with an antibody-containing metasurface placed in a body fluid, the exosome is isolated from the kidney cells' medium using microfluidics and the concentration, diameter and size distribution of these exosomes are measured by a laser-based optical technique that monitors the Brownian motion of single particles in the solution. A method (100) as in any of the above claims, characterized by analyzing. A method (100) as in Claim 11, characterized by detecting the disease by capturing the antigen-related exosome with an antibody-containing metasurface placed in a body fluid, and diluting the samples with determined concentration with PBS to 105-109 particles/mL, in the step (105). A method as in Claim 12, characterized by calculating the wavelength shift of the obtained exosomes by introducing them to the surface where the gold nanoparticle is integrated and the nanoisland is formed, and detecting the presence of exosomes and exosome-related diseases in the light of the calculated wavelength shift information (100). TR TR
TR2022/014113A 2022-09-12 2022-09-12 METHOD OF OBTAINING A BIOSENSOR WITH A BIOMATERIAL INTEGRATED METASURFACE TR2022014113A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2022/014113A TR2022014113A2 (en) 2022-09-12 2022-09-12 METHOD OF OBTAINING A BIOSENSOR WITH A BIOMATERIAL INTEGRATED METASURFACE
PCT/TR2023/050943 WO2024058756A1 (en) 2022-09-12 2023-09-12 A method of obtaining a biosensor with a biomaterial integrated metasurface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/014113A TR2022014113A2 (en) 2022-09-12 2022-09-12 METHOD OF OBTAINING A BIOSENSOR WITH A BIOMATERIAL INTEGRATED METASURFACE

Publications (1)

Publication Number Publication Date
TR2022014113A2 true TR2022014113A2 (en) 2022-10-21

Family

ID=85162120

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/014113A TR2022014113A2 (en) 2022-09-12 2022-09-12 METHOD OF OBTAINING A BIOSENSOR WITH A BIOMATERIAL INTEGRATED METASURFACE

Country Status (2)

Country Link
TR (1) TR2022014113A2 (en)
WO (1) WO2024058756A1 (en)

Also Published As

Publication number Publication date
WO2024058756A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
Inan et al. Photonic crystals: emerging biosensors and their promise for point-of-care applications
US10928319B2 (en) Digital LSPR for enhanced assay sensitivity
US9176152B2 (en) Methods and apparatuses for detection of positional freedom of particles in biological and chemical analyses and applications in immunodiagnostics
US20230213507A1 (en) Optical probe for bio-sensor, optical bio-sensor including optical probe, and method for manufacturing optical probe for bio-sensor
US8355136B2 (en) Sub-micron surface plasmon resonance sensor systems
EP1602917A2 (en) Evanescent wave sensor containing nanostructures and methods of using the same
Cretich et al. High sensitivity protein assays on microarray silicon slides
JP5643825B2 (en) Substance determination device
CA2634027A1 (en) Sub-micron surface plasmon resonance sensor systems
CN101646943A (en) Method for blocking non-specific protein binding on a functionalized surface
Huang et al. Competitive protein adsorption on biomaterial surface studied with reflectometric interference spectroscopy
US20210364404A1 (en) Biodetector based on interference effect of thin film with ordered porous nanostructures and method for using same to detect biomolecules
US11280784B2 (en) Patterned plasmonic nanoparticle arrays for multiplexed, microfluidic biosensing assays
US8916389B2 (en) Sensor element for SPR measurement
TR2022014113A2 (en) METHOD OF OBTAINING A BIOSENSOR WITH A BIOMATERIAL INTEGRATED METASURFACE
CN1142433C (en) Process for preparing antigen microarray based on self antibody repertoire
JP2006214880A (en) Planar cell
JP6729595B2 (en) Method for estimating histopathological diagnosis of prostate cancer (Gleason score)
US20130230931A1 (en) Target substance detecting apparatus, and target substance detecting method
US20220412972A1 (en) Diagnosis method using plasmon phenomenon, diagnostic kit and manufacturing method of diagnostic kit
Khatri et al. Inexpensive polyester sheet based waveguides for detection of cardiac biomarker, myeloperoxidase
WO2024034561A1 (en) Solid phase carrier, and target object measurement kit
RU2361215C1 (en) Diagnostic test system for disease detection
CN113552041B (en) Exosome subtype analysis method based on single particle imaging
Bakhshpour-Yucel et al. Interferometric reflectance imaging sensor for diagnosis and therapy